Chapter 9
Multivariate Models

In this chapter, we consider multivariate models for the joint distribution of several
risk factors such as returns or log returns for different assets, zero rate changes for
different maturity times, changes in implied volatility, and losses due to defaults
on risky loans. Our aim is to specify a good model for the future value g(X) of a
portfolio, where the function g is known and its argument X is a random vector
of, for instance, log returns and zero rate changes over a given future time period.
Since the function g is known, what remains is to make a good choice of probability
distribution for random vector X.

The first sections, Sects. 9.1-9.3, present spherical and elliptical distributions
and their applicability in a wide range of problems in risk management. Elliptical
distributions provide convenient and flexible multivariate models. This set of models
includes the multivariate normal model but allows for a much wider range of tail
behavior and dependence properties.

Elliptical distributions have the following important property: if X has an
elliptical distribution, then the distribution of any linear combination w'X of its
components is known. This property is useful because if X represents the returns
of the financial assets in a portfolio, then we know the distribution of every linear
portfolio. The property is useful even if we do not model the returns directly with
an elliptical distribution. Suppose that X represents a vector of log returns, zero rate
changes, etc. and is modeled by an elliptical distribution. If the portfolio value at
some future time is given by g(X), then a first order Taylor approximation of g
around the mean vector u = E[X] leads to the first-order approximation

d
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The right-hand side is a linear combination of the components of X whose
distribution therefore is known. Thus, whenever linearization of the nonlinear
function g is justified, we can approximate the probability distribution of g(X)
analytically.
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274 9 Multivariate Models

An important property of spherically distributed random vectors is that they can
be decomposed into a product of a radial part and an independent angular part
that is uniformly distributed on a sphere. This property makes it easy to simulate
from a spherical (elliptical) distribution in any dimension. In particular, we can
approximate the probability distribution of g(X) arbitrarily well by simulating a
large enough sample from X and consider the resulting empirical distribution of the
simulated outcomes of g(X).

A series of applications of elliptical distribution in risk management, including
risk aggregation, solvency computations for an insurance company, and hedging of
options, is presented in Sect. 9.3.

Then we turn our attention to multivariate models for random vectors that do
not show signs of elliptical symmetry, and the notion of copula is introduced in
Sect.9.4. On the one hand, the copula is just a multivariate distribution function
appearing in the representation of a multivariate distribution function in terms of its
(continuous) marginal distribution functions. On the other hand, the copula may be
identified as the dependence structure of a multivariate distribution, and by varying
the copula for a random vector X for which the distributions of the components
X} are held fixed, we may understand better the effect of the dependence between
the Xj on the distribution for the future portfolio value g(X). We rarely have
sufficient information to accurately specify the copula of a random vector X, and
by varying the copula within a set of copula functions, we may study the robustness
of the distribution of the portfolio value g(X) to misspecifications of the dependence
between the components of X. Moreover, the representation of a multivariate model
for X in terms of a copula and distribution functions for the Xj is useful for
simulation from the distribution of X: an outcome from X is constructed as an
outcome from the copula together with an application of the quantile transform.

Finally, in Sect.9.5, we consider the effect of dependence modeling for large
homogeneous portfolios. We consider a high-dimensional random vector X with
equally distributed components and study the effect of the dependence between the
components on the distribution of the sum of the components of X.

9.1 Spherical Distributions

A random vector Y has a spherical distribution in R¢ if its distribution is spherically
symmetric. In other words, its distribution is invariant under rotations and reflec-
tions. Linear transformations that represent rotations and reflections correspond to
multiplication by orthogonal matrices. Recall that a matrix O is orthogonal if it has
real entries and OO = I, where I is the identity matrix. Formally, Y has a spherical
distribution if

OY = Y for every orthogonal matrix O. (CAY

Figure 9.1 shows scatter plots of samples from two spherical distributions.
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Fig. 9.1 Left plot: sample of size 3,000 from bivariate standard normal distribution. Right plot:
sample of size 300 from uniform distribution on the unit circle

Three examples of spherical distributions are presented below. Before presenting
the examples, let us recall the definition of the multivariate normal distribution.

(1) A random vector Z has standard normal distribution N, (0,I) if Z =
(Zy,...,Z4)", where Z,, ..., Z,; are independent and N(0, 1)-distributed.

(2) A random vector X is Ny (p, X' )-distributed if X = p + AZ, where AAT = ¥
and Z is N (0, I)-distributed.

Example 9.1 (Standard normal distribution). The first example of a spherical
distribution is the standard normal distribution Ny (0,I). Let Z have a Ny (0,I)
distribution, and let O be an arbitrary orthogonal matrix. By property (2) above, OZ
has the distribution N, (0, OOT). Since OOT = I, we conclude that Z satisfies (9.1).
The left plot in Fig. 9.1 shows a scatter plot of a sample from N, (0, I).

Example 9.2 (Standard normal variance mixture). Another example of a spherical
distribution is obtained by multiplying a N, (0, I)-distributed random vector Z by
an independent nonnegative random variable W. Notice that, for any orthogonal
matrix O, a

OWZ =WOZ = WL,

where the last equality follows since Z is spherically distributed.

The uniform distribution on the unit sphere S*~! = {x € R : |x| = 1}, where
|x|> = xTx, assigns equal probability to any two subsets of S~ with the same
surface area.

Example 9.3 (Uniform distribution on the unit sphere). A third example of a spher-
ical distribution is the uniform distribution on the unit sphere, i.e., the probability
mass is distributed uniformly on the unit sphere S’ ! Let U be uniformly distributed
on the unit sphere and consider a subset A of the unit sphere. For any orthogonal
matrix O it holds that

P(OU€e A) =P(Uc 0 '4) =P(U e 0T4) = P(U € A),



276 9 Multivariate Models

where the last equality holds because O is an orthogonal matrix and therefore A and
OT A have the same surface area. Therefore, U is spherically distributed. The right
plot in Fig. 9.1 shows a sample from the uniform distribution on the unit circle.

The following property is a key property of spherical distributions.

Proposition 9.1. If a is an arbitrary vector in R? and Y is spherically distributed
and of the same dimension, then a'Y = |a|Y.

Proof. Take a # 0, let u = a/|a|, and pick an orthogonal matrix O whose first
row is equal to u’. Since OY < Y, it follows that a’Y = |a[u"Y = |a|(OY), £
|a|Y1. O

The following property is another key property of spherical distributions.

Proposition 9.2. IfY is spherically distributed, then Y = RU, where R =< |Y|, U
is uniformly distributed on the unit sphere and R and U are independent. Moreover,

P(Y/|Y|e- ||Y]|>0)=PUc€").

The proposition provides a way to simulate from a spherical distribution. First
draw a vector from the uniform distribution on the unit sphere by sampling from a
standard normal distribution and dividing by its norm. Then draw the radial part by
sampling from the distribution of |Y].

To prove Proposition 9.2, we first state and prove the following lemma.

Lemma 9.1. The uniform distribution on the unit sphere is the unique spherical
distribution on the unit sphere.

Proof. Let Z have a spherical distribution on the unit sphere. For any orthogonal
matrix O and subset A of S“~! it holds that P(Z € OA4) = P(O"Z € 0T04) =
P(Z € A) since Z is spherically distributed and OT is an orthogonal matrix. If
Z were not uniformly distributed on SS9~ then there would exist a subset 4 of
S9! and an orthogonal matrix Qg such that P(Z € A) # P(Z € OyAy), which
contradicts that Z is spherically distributed. O

Proof of Proposition 9.2. 1Tt is sufficient to show that P(|]Y| > r, Y/|Y| € 4) =
P(]Y| > r)P(U € A) forany r > 0 and any subset A of S?~!, where U is uniformly
distributed on the unit sphere.

We claim that, for any r > 0, I{|Y| > r}Y/|Y| is spherically distributed. To
prove the claim, note that for any orthogonal matrix O it holds that |OY| = |Y| and
OY £ Y and therefore

OI{|Y| > r}Y/|Y| = I{|OY| > r}OY/|OY| = I{|Y| > r}Y/|Y|.

To complete the proof of Proposition 9.2, we may without loss of generality take r
such that P(]Y| > r) > 0 and note that
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P(Y/IY[ € A||Y|>r)=PU{|Y|>r}Y/|Y| € A)/P(Y|>r)
=PU{|Y[>r}Y/[Y| € OA)/P([Y|>r)
=P(Y/|Y| € OA | [Y| > r).

It now follows from Lemma 9.1 that P(Y/|Y| € A | |Y| > r) = P(U € A), and
therefore P(|Y| > r,Y/|Y| € A) = P(]Y| > r)P(U € A). |

9.2 Elliptical Distributions

The multivariate normal distribution is very useful in the construction of multivariate
models. Its popularity derives primarily from the fact that it is tractable, allowing
for explicit calculations, and it that can be motivated asymptotically by the central
limit theorem. For univariate data that show clear signs of symmetry the univariate
normal distribution does not necessarily give a good fit to the data. Typically
normal tails do not match empirical tails particularly well. Similarly, the multivariate
normal distribution is often at best a reasonable first approximation for samples of
multivariate observations with clear signs of elliptical symmetry.
A random vector X has a Ny (p, X') distribution if

X <+ AZ, 9.2)

where AAT = ¥ and Z has a N, (0, I) distribution. An easy way to obtain a richer
class of multivariate distributions, which share many of the tractable properties
of the multivariate normal distribution, is to replace the standard normal vector Z
in (9.2) by an arbitrary spherically distributed random vector Y. Formally, a random
vector X has an elliptical distribution if there exist a vector u, a matrix A, and a
spherically distributed vector Y such that

X £+ AY. 9.3)

The matrix A and the spherical distribution of Y in (9.3) are not determined by
the distribution of X: we may replace the pair (A,Y) in (9.3) by (cA,c¢~'Y) for
any constant ¢ € (0,00). A matrix X satisfying ¥ = AAT is called a dispersion
matrix of the elliptically distributed vector X. If the covariance matrix Cov(X) exists
finitely, then Cov(X) = ¢ X for some constant ¢ € (0, 00). To verify this claim, we
note that, by (9.3) and Proposition 9.2,
T 2 1,1 _ E[R]
Cov(X) =E[(X—pu)X—u) ] =E[RJAE[UU JA" = TZ.

The last equality above can be proven as follows. Consider a standard normally
distributed vector Z and recall that Z/|Z] is uniformly distributed on the unit sphere
and E[|Z|?] = d. Therefore,

I = Cov(Z) = E[|Z|*] E[UU"] = 4 E[UU"].
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For a dispersion matrix X with nonzero diagonal entries we define the linear
correlation parameter p;; = X;; /(Z;; X;;)"/%. If Cov(X) exists finitely, then p;; =
Cor(X;, X;), i.e., the linear correlation parameter coincides with the ordinary linear
correlation coefficient.

The normal variance mixture distributions are the distributions of random vectors
with stochastic representation

X < pu+ WAZ, (9.4)

where A and Z are the same as in (9.2) and W is a nonnegative random variable
independent of Z. From Example 9.2 it follows that a normal variance mixture
distribution is an elliptical distribution. By conditioning on W = w, we see that
X|W = wis Ny(u,w? X )-distributed, which explains the name normal variance
mixture. If E[W?] < oo, then X has a well-defined mean vector = E[X] and
covariance matrix

Cov(X) = E[(X — u)(X — n)"] = E[W?]AE[ZZ"|AT = E[W?]X.

Example 9.4 (Multivariate Student’s t). If we take w2 L v/S,, where S, has a
Chi-square distribution with v degrees of freedom, then the resulting distribution of
X = u + WALZ is called a multivariate Student’s ¢ distribution with v degrees of
freedom, written #; (i, X', v). Note that ¥ is not the covariance matrix of X. Since
E[W?] = v/(v —2) if v > 2, it follows that Cov(X) = (v/(v —2)) X.

For a normally distributed random vector X = p + AZ, where AAT = ¥ any
linear combination of the components of X is again normally distributed. That is,
for any nonrandom vector w of the same dimension,

wiX £ wiy +wAZ
=wpu+(A™W)'Z
Lwu+wxrw/?z,.

A similar property holds for arbitrary elliptical distributions.

Proposition 9.3. If X has an elliptical distribution with stochastic representation
X £ u + AY, where Y is spherically distributed, then for any vector a of the same
dimension a"X < a"p + (a" X a)'/2Y, where ¥ = AAT.

The proof is omitted since the result follows immediately from Proposition 9.1 and
the defining property (9.3) of elliptical distributions.

As was previously mentioned, normal variance mixture distributions and, more
generally, elliptical distributions share many of the attractive properties of normal
distributions. However, there are important exceptions. Recall that the components
of the Ny (p, X')-distributed vector p +AZ are independent if and only if AAT = ¥
is a diagonal matrix, that is, if the components are uncorrelated. This property does
not hold for arbitrary normal variance mixture distributions. If X < p + WAZ
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with AAT = X a diagonal matrix, then the components of X are uncorrelated.
If ¥ is a diagonal matrix with strictly positive diagonal entries, then (Xy, X;) =
(uk + WAk x Zi, o1 + WAL Z1), where Ay i, Ar; > 0. Clearly, X; and X; are not
independent unless W is a constant.

The sum of independent elliptically distributed random vectors with the same (up
to a constant factor) dispersion matrix is elliptically distributed.

Proposition 9.4. If the random vectors X, and X, in R? are independent and
elliptically distributed with common dispersion matrix X, then X; + X is ellip-
tically distributed.

Proof . For a matrix A such that AAT = ¥ we may write X; + X, = u; + o +
A(Y; + Y;) for some independent spherically distributed vectors Y; and Y,. It
remains to show that Y; + Y5 is spherically distributed. For every orthogonal matrix
O andyinR?,

PO(Y) + Ys) < y) = / P(OY, + 2 < y | OY; = 2)d Foy, (2)dz

= / P(Y, + z < y)d Fy,(z)dz
=P(Y,+ Y, <y),

ie,O(Y; +Y>) = Y, 4+ Y,, from which the conclusion follows. O

Example 9.5 (Summation of log returns). Consider a set of identically distributed
and uncorrelated random variables X1, ..., X,, that represent future daily log returns
for some asset. Suppose that each log return has a finite mean p and standard
deviation o. If the log returns are independent, then by the central limit theorem,
X + --- + X, is approximately N(nt, no?)-distributed for n large. If the vector
X = (Xi,..., X,;)T of log returns has an elliptical distribution, then Proposition 9.3
implies that
X 44+ X, =1"X £ np +n'2(X, — ).

We see that the n-day log return and the 1-day log return belong to the same
location-scale family of distributions. For instance, if the 1-day log return has a
heavy-tailed Student’s ¢ distribution with a low-degree-of-freedom parameter, then
so does the n-day log return.

9.2.1 Goodness of Fit of an Elliptical Model

Consider a random vector X with an elliptical distribution with representation X =
it + AY, where Y has a spherical distribution and ¥ = AAT is invertible. By
Proposition 9.3,

w'X £ wiy + (W' Zw)"/2Y, for all nonrandom vectors w # 0
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or, equivalently,

TX J—
% £ Y, for all nonrandom vectors w # 0. 9.5)
wlXw

The property (9.5) can be used to investigate whether or not a multivariate sample
is likely to come from an elliptical distribution. Let us illustrate the procedure by an
example.

Example 9.6 (Estimation and fit of an elliptical model). Consider a sample of size
500 of pairs of daily log returns for the Dow Jones Industrial Average (DJIA) and
Nasdaq Composite indices (index values from November 11, 2008 until November
4, 2010). The scatter plot of the pairs of log returns is shown in the upper left plot
in Fig.9.2. The log-return sample is denoted {x,...,X500}. We assume initially
that the sample can be seen as outcomes from an elliptically distributed vector X
and investigate whether this assumption can be rejected or not. If it is not rejected,
then we also want to determine the elliptical distribution of X. We assume that the
location parameter g and a scalar multiple of the shape parameter C = ¢ X', which
is assumed invertible, can be estimated. Note that (9.5) can be expressed as

wiX —wT
(WTW)I/I; <L ¢712y,  for all nonrandom vectors w # 0.

If the covariance matrix Cov(X) exists finitely, then ¢ = E[X], and we may
take C = Cov(X). Here we estimate g and C by the sample mean and sample
covariance, respectively. The estimates are denoted @ and C. Consider a large
set of vectors {wy,...,w,} of unit length. For each w; we construct the sample
(k15w Yiso0) by

WX — WL

= — ork=1,....,n, [ =1,...,500.
(Wi Cwy)!/2

Ykl

Each such sample can be viewed as a sample from ¢~'/2Y;. If the data were
generated by the elliptical distribution of X, then all the n constructed samples
must come from the same distribution, the distribution of ¢~'/2Y;. By overlaying
the n g—q plots of the empirical quantiles for the n samples against the quantiles of
a chosen reference distribution, we can check graphically whether the data appear
to be consistent with an elliptical distribution or not. Moreover, the distribution of
¢~'/2Y; can be estimated from the q—q plots.

Here we take n = 100 and sample the w; randomly from the uniform distribution
of the unit sphere by setting wy = 2z;/|zx|, where the z; are outcomes of
independent N3 (0, I)-distributed random vectors. The upper left plot in Fig.9.2 is
a scatter plot of the sample {Xi,...,Xs00}. The upper right plot in Fig.9.2 shows
the n = 100 gq—q plots of the empirical quantiles of the samples {y.1,..., Yk500}
(y-axis) against the quantiles of the standard normal distribution (x-axis). The
g—q plots indicate a reasonable fit to a common distribution with heavier tails than
the normal distribution.



9.2 Elliptical Distributions 281

0 0°® €7
o o
o < “
o N
S
o i
[Te) AN
=} I
S -
. ]
o ©
g ° T T T I_l T T T T T T
I -0.05 0.00 0.05 -3 2 -1 0 1 2 3
0
o
oS
o
S
o
0
=}
‘:|5-

3 2 -1 0 1 2 3

Fig. 9.2 Scatter plot showing pairs (xp, xy) of DJIA and Nasdaq log returns. Upper right plot:
100 overlaid q—q plots for empirical quantiles for each of 100 samples {yx 1, ..., Vi.s00} (y-axis)
against standard normal quantiles (x-axis). The solid curve in the lower plot shows the quantiles of
the model for the Nasdaq log returns based on the fitted bivariate Student’s # model (y-axis) against
standard normal quantiles (x-axis). The dashed curve in the lower plot shows the polynomial
normal quantiles (Example 8.11) fitted to the Nasdaq log returns (y-axis) against the standard
normal quantiles (x-axis)

Under the assumption that {xi, ..., Xs0} is a sample from the bivariate Student’s
t, distribution with v > 2 (otherwise it does not make sense to use the sample
covariance matrix) and under the assumption that f = x and C = Cov(X), it
holds that all the samples {yi.1,..., Vks00} are samples from the distribution of
((v—=2)/v)"/2Z, where Z is standard ¢, -distributed. Least-squares estimation based
on all 100 univariate samples gives the estimate V' ~ 4.09. The selected model for
the sample {Xi. . .., Xsoo} is the distribution 1, (%L, (¥ — 2)/9)C. D).

The second marginal distribution (a univariate Student’s ¢ distribution) of the
bivariate Student’s ¢ distribution for the pair of DJIA and Nasdaq log returns
provides a model for the Nasdaq log returns. In the lower plot in Fig.9.2, we
compare this model to the polynomial normal model in Example 8.11. The solid
curve in the lower plot is a g—q plot of the quantiles for the model for the Nasdaq
log returns (y-axis) against standard normal quantiles (x-axis). The quantiles of the
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fitted polynomial normal model in Example 8.11 are plotted against the standard
normal quantiles as the dashed curve in the lower plot in Fig.9.2. It is hard to
distinguish between the two models.

9.2.2 Asymptotic Dependence and Rank Correlation

We now introduce general notions of dependence and study them in the context of
elliptical distributions.

The first notion of dependence measures the dependence of extreme values and
is called tail dependence or asymptotic dependence. Consider a pair (X, X2) of
random variables with equally distributed components. We say that X; and X,
are asymptotically dependent in the lower left tail if the limit lim,_,_oc P(X; <
x | X1 < x), the coefficient of lower tail dependence, is strictly positive and
asymptotically independent if the limit is zero.

Proposition 9.5. If (X, X,) has a bivariate standard normal distribution with
linear correlation coefficient p < 1, then limy,__oo P(X; < x | X1 < x) = 0.

Proof . First note that P(X,; < x | X; < x) = P(X; < x, X; < x)/®(x) and that
(X1.X2) £ (Z1.pZ1+(1—p*)'/?Z,), where Z,, Z, are independent and standard
normally distributed. If p = —1, then the statement of the proposition holds, so we
may without loss of generality assume that |p| < 1. We may write

[e.]

P(X; <x, X, <x) = / P(Z) <x.pZi + (1 —p*)'"*t < x) $(t)dt

—00

a(x) 00
- / PP (1)di + / O((x — (1 p) 20/ p)p(0)di,

—00 a(x)

where a(x) = ((1 — p)/(1 + p))/?x. Therefore,

Jato <P((x—(1—p2>1/2r>/p)¢<t)dz)

Jim PO S x| XS0 = lim (‘D(MH 50

iy @(e—(1=p))20) [ p)p (1)dt
lim .
X—>—00 qb(x)

Applying I’Hoépital’s rule gives

lim P(X><x [ X;=x)
X—>—00

_ D(x) (1—p 172 . * 21/2
— tim S5 () dm [ == 0 g i
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We saw in Example 8.1 that @(x) ~ —¢(x)/x as x — —o0, so we only need to
compute the last limit given above. By writing up explicitly the standard normal
densities and making a substitution of integration variable, we arrive at

*° a(x)
o) o, P p2)'?1)/ p)p (1)t = /_  P@du= ().
which tends to 0 as x — —o0. -

Unlike the components of a normally distributed random vector, the components
of a vector with a bivariate Student’s ¢ distribution are asymptotically dependent.
We omit the proof of the following proposition and refer the reader to Sect. 9.6 for
further details.

Proposition 9.6. Let (X, X») have an elliptical distribution with linear correlation
parameter p. If X| and X, are equally distributed, and if P(X| < x) is regularly
varying at —oo with index —u, then

/2
f(n/Z—arcsin p/2 (COS t)adt

fon/z (cost)odt

lim P(Xzfxlefx)Z
xX—>—00

Zero correlation does not imply asymptotic independence, and covariances and
correlations do not provide sufficient information to assess dependence between
extreme values. For example, a quadratic hedge—based on a covariance structure—
may perform poorly when it matters the most if the liability and the hedging
instruments are asymptotically dependent. There are many examples from financial
markets of simultaneous extreme price movements for assets whose log returns are
weakly correlated between the assets.

Consider an elliptically distributed random vector (X, X») with a dispersion
matrix X¥. Recall that any matrix X, = c¢X is a dispersion matrix for (X, X3).
However, the linear correlation parameter p = X,/(X1%22)"/? is uniquely
determined by the elliptical distribution. Since p = Cor(X}, X,), whenever
Cor(X1, X,) exists [the variances Var(X;) and Var(X,) are nonzero and finite],
we may estimate p as the sample correlation coefficient. However, for heavy-tailed
data (corresponding to distributions with finite variances) the sample correlation
coefficient is an estimator of p with a large—or infinite—variance. An alternative
approach to estimating the linear correlation parameter p is based on estimating
another (rank) correlation coefficient called Kendall’s tau, whose value for an
elliptical distribution can be expressed in terms of the linear correlation parameter
p. This approach allows for estimation of p also for elliptical distributions whose
marginal distributions have infinite variances.

Kendall’s tau for the random vector (X1, X>) is defined as

(X1, X2) = P((X; — X)) (X2 — X3) > 0) —=P((X; — X])(X2 — X3) <0), (9.6)

where (X7, X3) is an independent copy of (X, X>).
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Proposition 9.7. Let (X1, X») have an elliptical distribution with location param-
eter (L1, 2) and linear correlation parameter p. If P(X1 = 1) = P(X2 = o) =
0, then

2
(X1, X2) = = arcsin p. 9.7

Proof . Without loss of generality we may consider the case |p| < 1. Since P((X; —
X)) (X, — X)) = 0) = 0, we find that
(X1, X2) = 2P((X) — X]) (X2 — X3) > 0) — 1.

The independence of X = (X1, X»)" and X' = (X/, X;)T and representation (9.3)
imply that
(X, X) = (o, ) + A(RU, R'U"),

where R, R’, U, U’ are independent. From Proposition 9.4 we know that X — X’ <
AR*U*, where R* and U* are independent, and the assumption P(X; = u;) =
P(X, = py) = 0 implies that P(R* = 0) = 0. With W = AU* we have found that

(X1, X2) =2P(R*W/Wy > 0) — 1 = 2P(W1 W, > 0) — 1.

cosU
sinU )’

Write
¥ _ (012 0102,(2))’ A= (01(1_p2)1/2 cn,o)’ U

01020 0; 0 o>

[l=

where U is uniformly distributed on [—r, ). Then
P(W W, > 0) = 2P(W, > 0, W, > 0)
= 2P(01(1 — p»)%cosU + o1psinU > 0,05 sinU > 0)
= 2P((1 — p»)/?cosU + psinU > 0,sinU > 0)
=2P(cosycosU +sinysinU > 0,sinU > 0),

where y = arcsinp € [—n/2,7/2]. Clearly, sin U > 0 is here equivalent to U €
(0, ). Since cos y cosU + siny sinU = cos(U — y) and cos(U — y) > 0 is here
equivalentto U € (y — /2,y 4+ 7/2), we find that
P(cos y cosU+sin y sin U>0,sinU>0) = P(Ue(y—n/2, y+m/2) N (0, 1))
=PWU«<(0, y+7/2)).
Putting the pieces together gives

arcsin p + /2

(X1, Xp) =4
2

2
1 = — arcsin p. O
b4
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Consider the function sign(x) with value 0 for x = 0 and the value x/|x|
otherwise. Kendall’s tau in (9.6) can be written as

‘C(Xl,Xz) = E[sign ((Xl —X{)(Xz—Xé))] . (98)

Given a sample {X|, ..., X,} of identically distributed vectors X; = (Xj.1, Xx2)T,
we estimate (9.8) by the number of index pairs (j, k), where j < k such that
(Xj1 — Xk1)(Xj2 — Xk2) > 0 minus the number of index pairs such that
(X1 — Xi1) (X2 — Xi2) < 0divided by the total number of index pairs:

-1
T= (Z) > sign (X0 = Xe) (X2 = Xi2)

J<k

Finally, if the X}, are elliptically distributed such that the condition in Proposition 9.7
holds, then the estimator of the linear correlation parameter p is chosen as

5 = sin (f?) . 9.9)
2

To assess the accuracy of the estimator in (9.9) and compare it to the sample
correlation coefficient, we consider a simulation study that is summarized in
Fig.9.3. For samples from a bivariate normal distribution the two estimators perform
similarly. For samples from a bivariate Student’s ¢ distribution with three degrees of
freedom we find that the estimator in (9.9), a nonlinear transformation of Kendall’s
tau estimator, performs much better than the sample correlation coefficient and
similarly to its performance on data from a bivariate normal distribution.

9.2.3 Linearization and Elliptical Distributions

Suppose that the future value of a financial portfolio can be expressed as g(X),
where the function g is a known function and X is a random vector whose
components represent, e.g., log returns for a given set of assets over a given future
time period. If the time period is rather short and if X is likely to take a value that is
not too far from its expected value u = E[X], then the first-order approximation

d
d
g0 ~ g (W) + Vg" (WX =) = g(u) + Y 5 j; () (Xi — ju0)
k=1

can be assumed to be accurate. The approximation replaces the nonlinear expression
in the components of X by a weighted sum of the components translated by a
constant. However, it is typically hard to determine the probability distribution of a
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Fig. 9.3 Histograms based on 10,000 estimates of linear correlation parameter, where each
estimate is based on a sample of size 100 from a bivariate elliptical distribution with linear
correlation parameter 0.5. Plots to left show estimates based on samples from a bivariate normal
distribution. Plots to right show estimates based on sample from a bivariate Student’s ¢ distribution
with three degrees of freedom. The estimates in the upper plots are ordinary sample correlations.
The estimates in the lower plots are transformations of Kendall’s tau estimates as in (9.9)

sum of dependent random variables. An important exception is when X is elliptically
distributed. In this case, X has the stochastic representation X = p + AY, where Y
has a spherical distribution, so Proposition 9.3 gives

12
gX) ~ g(p) + VgT (W) (X —p) = g(u) + (Vg (r)EVg(p)) ' Y1, (9.10)
where ¥ = AAT or, more explicitly,
12

d
d ad
g0 A g+ | Y W wIu| .
k=1 X Xk

The accuracy of this approximation clearly depends strongly on how concentrated
the probability mass of X is around its expected value p. We illustrate the accuracy
of the linearization with an example for one-dimensional elliptical distributions and
a specific function g.
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Fig. 9.4 These four q—q plots illustrate the approximation error from linearization. The plots show
the quantiles of e¥ (y-axis) against the quantiles of 1 + X (x-axis). The upper plots correspond
to X’s being N(0,0.02?)-distributed (leff) and N(0, 0.3%)-distributed (right). The lower plots
correspond to X’s having a Student’s ¢ distribution with three degrees of freedom and standard
deviation 0.02 (left) and 0.3 (right)

Example 9.7 (Linearization). Let g(x) = e* and consider a random variable X
with a spherical distribution with distribution function F. The quantile function of
g(X) is g(F~'(p)), whereas the that of g(0) + g'(0)X = 1+ X is 1 + F~'(p).
Figure 9.4 plots the quantiles of e* (y-axis) against the quantiles of 1 + X (x-axis)
together with the dashed straight line corresponding to a perfect fit. The upper plots
correspond to X’s being normally distributed with standard deviation 0.02 (left)
and 0.3 (right). The lower plots correspond to X ’s having a Student’s ¢ distribution
with three degrees of freedom and standard deviation 0.02 (left) and 0.3 (right). We
see that the smaller the standard deviation is and the lighter the tails are, the more
accurate is the linear approximation.

Example 9.8 (Linearization and risk measures). Suppose that g(X) represents the
value at time 7 of a portfolio of financial assets, where X has an elliptical
distribution with stochastic representation X = g + AY. Consider a risk measure
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p and the approximation of g(X) in (9.10). If By is the discount factor giving the
current value of money at time 7, and if p is translation invariant and positively
homogeneous, then

p(e(X) ~ p (g(m) + (V"W EVe(w)'* 1)
= —Bog(w) + (V& (W) EVg(w)" p(11).

For p chosen as value-at-risk (VaR) or expected shortfall (ES) and for Y; normally
distributed or Student’s f-distributed, the quantity p(Y;) can be computed as in
Example 6.13. If Y] is standard normally distributed, then

VaR, (Y1) = Bo@~'(1—p) and ES,(Y)) = BOM'

If Y| has a standard Student’s ¢ distribution with v degrees of freedom, then

VaR,(Y1)=Bot, '(1-p) and ES,(Y))=B,

g (t; ' (1-p)) (v+(tu‘ ‘(p))z)
5 ,

v—1

where g, and ¢, are the density and distribution functions, respectively, of Y.
If p is a monotone risk measure and g is a convex function, then it follows from
Proposition 2.2 that

p(gX) < p(g(p) + Vg (W)X —p)),

i.e., linearization overestimates the risk. If p is also translation invariant and
positively homogeneous, then

A

p(g(X) < p(gp) + Vg ()X — p))

— —Bog(n) + (V" (w) ZVe(w))"* p(11).

As an illustration, let X be a vector of log returns of d assets and consider a linear
portfolio consisting of a long position of current value wy > 0 in the kth asset, for
every k. Then the future portfolio value is g(X) = wieX! + --- + wyeX? and g is
convex.

Example 9.8 illustrates how linearization and an elliptical approximation can be
used to construct explicit approximation formulas for risk measures. This approach
must be used with caution. The accuracy of the first-order approximation of g
around p evaluated at X is best around . However, risk measures of g(X), such as
VaR and ES, typically depend on the behavior of X far from p.

Example 9.9 (Linearization over a short time horizon). Considering a portfolio of
shares of two stocks. The portfolio contains /#; and h, shares of the two stocks.
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The spot prices at time ¢ are given by S tl and S tz, respectively. Suppose that we want
to compute VaR ,(Vr — Vo/By), where Vr — V;/ By is the change in portfolio value
from now until time 7', measured in money at time 7. We have

Vr — Vo/Bo = (St — Sy/Bo) + ha(S7 — S/ Bo)
=Sy (e*' — 1/Bo) + hyS3(e** — 1/By)
= g(X1, X»),

where (X1, X2) = (log(S+/S,), log(S2/52)) is the log-return pair from now until
time 7. If T" is small (a couple of days, say), then it may be reasonable to set u; =
M2 = 0 and By = 1, which yields

2
0
g(X1, Xo) ~ g, o) + ) ﬁ(m, ) (Xk — purc)
k=1

2 2
=Y hS§e™ —1/Bo) + > hiS§e™ (X — )
k=1 k=1

=S¢ X1 + haSEXs.

IfX = (X1, X 2)T has an elliptical distribution with representation X = AY, where
AAT = ¥ then

VaR, (Vi — Vo/Bo) ~ Vo + VaR, (W' Zw)"/?Y))
= Vo+ (W EWPFN - p).

where W' = (1S}, h,S?).

Example 9.10 (Linearization over a long time horizon). Suppose that we want to
compute VaR,(Vr — Vy/By) for a portfolio over a T-day period. Suppose further
that Vr can be expressed as a function g of the 7-day log returns and that the
vectors X1, ..., X7 of 1-day log returns are independent and identically elliptically
distributed with mean g = E[X|] and covariance matrix X = Cov(X;). Set W =
X +-- -+ X7 and note that W, with E[W] = T'u and Cov(W) = T X', is the vector
of log returns for the entire 7'-day period. From Proposition 9.4 we know that W
is elliptically distributed, however, in general (unless W is normally distributed) of
a different type than X;. The elliptical distribution of W is not easily inferred from
the distribution of X;. However, if T is sufficiently large, then it may be reasonable
(based on the central limit theorem) to assume that W is approximately normally
distributed. However, one should be aware that the convergence in distribution to
the normal distribution in the central limit theorem is slow in the tail regions.
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Linearization, together with the normal approximation, gives

d
g(W) = S (e"™ —1/By)

k=1
d d
~ > hieSE(e™ = 1/Bo) + > hiSEe™ (Wi — Tuax)
k=1 k=1
J J 1/2
A hiSEe™ = 1/Bo) + TV | 3" hihy Sy Sk Wtz ) 2,
k=1 jk=1
where Z is standard normally distributed. In particular,
d
VaR,(Vr—Vo/Bo) ~ Y _ hiS§ (1—Boe )
k=1
d .
+T2Bo | D hyihe S Sge Wt g |27 (1-p).
k=1

If BoeT#x ~ 1 for all k, then the estimate of VaR,(Vr — Vy/By) is approximately
proportional to the square root of the length T of the time period.

As an illustration, we consider the situation where X; has a ten-dimensional
Student’s ¢ distribution with three degrees of freedom, with zero mean and standard
deviations 0.01 and pairwise linear correlation coefficients of 0.4. Moreover, we
assume that we hold one share of each stock (h; = 1), that the current share price is
10 for each stock (S¥ = 10), and that interest rates can be ignored (By = 1). This
gives

VaR, (Vr — Vo/Bo) ~ TV*(d(1 + 0.4(d — 1)))!?&7'(1 — p)
= 77)"?¢7(1 — p).

We now compare this estimate to the empirical estimate based on a large simulated
sample of independent copies of V7 — Vj/ By. The results are shown in Fig.9.5. It is
interesting to note that for 7" small, the underestimation of VaR ,(Vr — V,/By) for p
small due to the lighter tails of the normal distribution is offset by the overestimation
of VaR ,(Vr — Vo/ By) due to linearization.
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Fig. 9.5 Illustration of
accuracy of estimates of
VaR 05(Vr — Vp) and
VaR o1 (V7 — Vp) based on
linearization and a normal
approximation, as functions
of T € {1,...,100} (dashed
curves). The solid curves
show the empirical VaR
estimates based on simulated
samples of size 103
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9.3 Applications of Elliptical Distributions
in Risk Management

In this section, we consider five applications of elliptical distributions in risk
management. In the first application, we derive a risk-aggregation formula that
relates the risk, in terms of a translation-invariant and positively homogeneous risk
measure, for a sum of jointly elliptically distributed random values to the risk of
the terms in the sum. The second application shows how linearization and a normal
approximation can be used to approximate the risk measure VaR o95(A4 — L) used to
determine the solvency of an insurance company. This application presents the idea
behind the so-called standard formula that is used in the measurement of risk in the
insurance industry. The third application suggests a hedging approach to European
call options that is more appropriate than delta hedging if the joint distribution for
the log return of the underlying asset value and the change in the implied volatility
can be assumed to be elliptical. The fourth application presents how a trader might
design a bet on changes in implied volatility for two maturity times and considers
ways to investigate the risk of such a bet. The fifth application illustrates that if the
vector of returns on a set of risky assets can be assumed to be elliptically distributed,
then portfolio investment problems can often be reduced to the trade-off investment
problem (4.7).

9.3.1 Risk Aggregation with Elliptical Distributions

Consider a company divided into n business units with future net values of assets
and liabilities given by Xi,..., X,. Suppose that each business unit is able to
accurately estimate E[X}] and p(X}), where p is some translation-invariant and
positively homogeneous risk measure. The company wants to compute p(X; +
-+ 4+ X,) to get a measurement on the aggregate risk for the whole company.
There is no straightforward way to combine the individual risk estimates p(Xj)
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and the expected values E[X}] into an aggregate risk estimate. However, there
is a convenient risk-aggregation formula that is valid under the assumption that
(X1,...,X,)T has an elliptical distribution.

Suppose that X = (X1, ..., X,)" has an elliptical distribution so that X < u +
AY, with AAT = X, and Y has a spherical distribution. Matrix ¥ can always be
expressed as the product DCD, where D is a diagonal matrix with diagonal entries

Dy = 2];/,3 and C is a correlation matrix (the linear correlation matrix of X if it
exists). Note that

p(X1 4+ X,) =—=Bo Y _ ju +p(Z(Xk—Mk)),

k=1 k=1

where By is the discount factor between now and the considered future time, and
n
D (X — ) = 1TAY £ (17X 1)y,
k=1
Since 1T X1 = X + Yio+--+ X pand X = D ;Cj Dy, it holds that

1/2

p (Z(Xk —~ uk)) =p||D_Zik| M
k=1 J.k

12
= Z CixDj D p(Y1)

ik

1/2

= Z CriDjj Dixp(Y1)?

ik

1/2

= ZCj,kp(Dj,ij)P(Dk,kYk)

ik

1/2

=D Ciup(Xj — pj)p(Xi — )

ik

We have found that if X = (X;,..., X,,)" has an elliptical distribution and if p is a
translation-invariant and positively homogeneous risk measure, then

1/2
p(Xi+-+X,) = [ Y CiulBopj + p(X )} Bopx + p(X)} | —Bo Y -
Jk k

The only additional input needed, besides the individual risk estimates p(X}) and
the means i, are the linear correlation coefficients C; .
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9.3.2 Solvency of an Insurance Company

In this section, we present another example of linearization and normal approxima-
tion in the context of the solvency of an insurance company.

Consider an insurance company with assets and liabilities. Let A and L denote
the time 1 (1 year from now) values of the assets and liabilities, respectively. We
consider the insurance company to be solvent if

VaR.o05(4 — L) < 0.
If ) is the current risk-free, 1-year zero rate, then we may write
VaRg.00s(4 — L) = F,= (. 4(0.995).

We consider a stylized model for the assets and liabilities and assume that the
liabilities correspond to the stochastic cash flow (Cy,...,C,), where Cj is the
amount the insurer has to pay at the end of year k due to the occurrence of claims
before the end of year 1. Each written contract offers a protection for the insured
over a l-year period. Operating expenses for the insurer could be included in
the Cy or dealt with in other ways. The expectation E[C] is the expected claim
amount to be paid at time k, and e™"* E[C] is the present value of this amount.
The expected claim amount E[C] could be determined by some stochastic claim-
reserving method, such as the chain ladder method presented in Sect. 7.6.1. The best
estimate, at time 0, of the present value of the liabilities is

Lo =) E[Cle"*.
k=1
Attime 1 we observe C; and receive new information about the future payments Cy.
If I, denotes the information available at time 1, then E[Cy | 1;] is the updated
prediction of the payment due at time k. The time 1 value of the liabilities is
therefore given by

n
L = ZE[Ck | Il]e_("k—l‘l'Ark—l)(k_l)’
k=1
where Ar is the vector of zero rate changes from time 0 to 1. Suppose for simplicity
that the assets of the insurer consist of a bond portfolio designed to match future
claim payments and K units of cash on a bank account. The time 0 value Ay of the
assets and the time 1 value A of the assets are given by

Ao =) E[Cle™ + K,
k=1

A= ZE[Ck]e_(rkfl'i‘Arkfl)(k_l) + Ke'l.
k=1
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The time O value of the bond portfolio precisely matches the time O value of the
liability, Ag — K = Ly. Moreover,

e (L—A)=¢e™" Z(E[Ck | 1] — E[Cy])e 1t an—nt=D _ g
k=1

n
=Y e E[Ci]Yie™ — K
k=1

=g(X1..... X, Y1.,.... 1)),

where X = —ri — (ri—1 + Arg—1)(k = 1) + rik, Yy = (E[Cy | L] —E[Cy])/ E[Ck]
fork =1,...,n,and

g(x,y) = Ze""‘k E[Cklyre™ — K.
k=1

The quantity Y, = (C; —E[C;])/ E[C;] measures the relative deviation of the actual
amount paid at the end of the year from the current prediction. For k > 2, Y, =
(E[Ck | I1]—E[Ck])/ E[C)] measures the relative deviation of the updated prediction
at the end of the year of the claim payments at time k, for claims incurred before
the end of the year, from the current prediction.

Since g is a nonlinear function of the risk factors (X1,..., X,,Y;,...,Y,), the
computation of VaR is simplified substantially by linearization. Let uy = E[Xk],
and note that E[Y;] = 0. Therefore, it makes sense to consider the first-order
approximation of g around (i1, ..., iy, 0, ...,0), which gives

n
gXi . X Y1 Y ~ g ks 0. 0) + Y e TR E[C] Ve
k=1

n
—K + ) e E[C] Ve
k=1

=-—K+wy,

where wy = e K E[Ci]e”*. Because of the linearization, the effect of the X
vanishes. The contributions to the risk coming from changes in the zero rates are
second-order effects and do not show up in the linearized version of g. Although
ignoring second-order effects is convenient for explicit computations, it leads to a
crude approximation.

If Y is N(0, X')-distributed, then we find that

VaRg005(A — L) ~ F 7 1y(0.995) = =K + (W' Z'w)"/2071(0.995).
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Taking this approximation as an equality we find that the solvency condition
VaR go5(A — L) < 0is equivalent to

K > (W' Zw)2071(0.995).

The outlined procedure is the basic idea behind the standard formula in the Solvency
II framework for the computation of sufficient buffer capital for an insurance
company. Of course, in practice, many more risk factors need to be included and the
insurer’s asset portfolio is more complex. Nevertheless, the linearization approach
and the normal approximation is at the heart of the standard formula. To compensate
for the inaccuracies of linearization and the normal approximation, the covariance
matrix X' is not estimated from data but given exogenously by the regulators.

9.3.3 Hedging of a Call Option When the Volatility
Is Stochastic

Suppose that now at time 0 we have issued a European call option with strike price
K on the value S7 of a stock market index at time 7. Suppose also that we want to
hedge against changes in the option price from now until time ¢ < T by taking a
position in the underlying index and deposit cash to minimize

E[(ho 4+ h1 S, — C1)?),

where C; is the call option price at time . If 7 is small, then the delta-hedging
approach in Sect.3.5 gives an approximative solution to the quadratic hedging
problem. Suppose that the option price is expressed in terms of the Black—Scholes
formula (1.7) as a function C;, = C(S;,0,,r:,t,T — t), where the arguments
correspond to the value of the underlying index at time ¢, the option’s implied
volatility at time ¢, interest rate prevailing between time ¢ and the maturity time
T of the option, and the remaining time to maturity. The delta-hedging approach
relies on the first-order approximation

aCy
C =~ Co+ —(S; — So),
t o+ 350( t 0)
which gives the delta-hedge position (A, h? ) & (ho, hy), where
aC() aCO
hS=— and h}=Co— —=1Sp.
T K

The Black—Scholes formula reads
Ci = S,P(dy) — Ke """ d(dy),

log(S;/K 2/2)0(T —1t
o= DESIK O DTy g, gy T
o, —t
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and gives

aCy log(So/K) + (ro + 02/2)T
0~ o), di = :
aSO ( l) : O'()\/T

The hedging error at time ¢ is
Y+ h}S, — C; = Co— C; + D(d))(S; — So).

The change in the interest rate from ry to r; typically does not contribute much to
the hedging error, and therefore we may approximate r; ~ ro. We may therefore
view the hedging error as a function of the changes in the index value and in the
implied volatility or, equivalently, as a function g(z) evaluated at Z = (Z,, Z»),
where Z; = log(S;/So) and Z, = o, — 0p. Therefore, a model for (Zy, Z,)
implies a model for the hedging error and the latter model can be analyzed by,
e.g., simulation from (Z;, Z,). The sample from (Z, Z,) can then be converted
to a sample from the distribution of the hedging error whose empirical distribution
can be studied. Alternatively, we could linearize the nonlinear function g(z) and
evaluate the linear approximation at Z = (Z, Z,). The linearization approach may
give an approximation of the distribution for the hedging error that can be analyzed
analytically, without simulation. Consider the first-order approximation

0 d
Ci ~ g(0) + =2 (0)Z) + -2 (0)Z,
07 022
where g(z) = g1(g2(z1). g3(z2)) with g2(z1) = Soe, g3(z2) = z2 + 09, and

gi(s,0) = s®(d)) — Ke T P(d,),

2 —
4 log6/K) +0(roT+_0t/2)(T D and dy=di—oNT 1.

The chain rule, together with the expressions for the partial derivatives of the Black—
Scholes formula (Sect. 1.2.2), gives

9 3 d

28 0) = Z5L(S0,00) Z22(0) = D(d)) S0

071 as dz;

g g1 dgs

—(0) = —=(S0,00)5——(0) = ¢(d1)SovVT — 1.
022 filo) dz

Summing up, we arrive at the following approximation of the hedging error:

hS +hiS, — C, = Co— C; + ®(d))(S: — So)
~ Co— Co— D(d)SoZ1 — ¢p(d)SoNT — 1 Z
+&(d1)(So(1 + Z1) — So)
= —¢(d1)SoVT — 1 (0, — 00).
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We see that the position, the delta hedge and the issued call option, is immune
against changes in the index value (approximately, over a short time period) and
that the hedging error is due to changes in the implied volatility. We also find that
the variance of the hedging error is

Var(hd + h8S, — C)) ~ ¢(d))*S(T —t) Var(a,).

We now want to reduce the hedging error by replacing the delta hedge by a similar
hedge that also takes changes in the implied volatility into account. The position in
the underlying index and in cash for the optimal quadratic hedge is

COV(SI ) Ct)

= Var(S;)

and ho = E[C;] — h1 E[S;].

Here we approximate

Cov(S;, C;) ~ Cov(SoZ1. D(d)SoZy + ¢(d1)SoNT — t Z5)
= S2®(d)) Var(Z)) + S2p(d)NT —t Cov(Z,, Z,).
Var(S;) ~ Sg Var(Z,),
E[C/] =~ Co,
E[S/] ~ So.

This gives the hedge (hg. 1) ~ (ho, h1), where

" COV(Z],ZQ)
hi = &(dy) + ¢(di)VT W

= &(d) + ¢d)VT —P,
h = Co— h*So,
where 07, = Var(Z)!/? and p = Cor(Z,, Z,). We observe that the position h}

in the underlying index corresponds to the delta-hedge position hf plus a correction
term. We get the following approximation of the hedging error:

h; + hTS[ —C;, ~ Cy+ (@(dl) + ¢(d1)\/ T — t?p) SoZ1
Zy
—Co— D(d1)SoZ1 — ¢(d1)SovT —tZ,
— (ST — 1 (Zi

Zy

,OZI — Zz) .
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In particular, the variance of the hedging error is approximately

Var(hé + hTSt — C;) ~ Var ((ﬁ(dl)S()\/ T—t (%pzl - Zz))
o

Z\
= ¢(d1)*Sg(T — 1) Var(o,)(1 — p?),

where the last equality can be verified by straightforward computations of the
variance of the sum of two correlated terms. Notice that taking changes in implied
volatility into account when computing the approximation of the quadratic hedge
makes the variance of the hedging error smaller by a factor of (1 — p?).

9.3.4 Betting on Changes in Volatility

Suppose that a trader is betting on changes in implied volatility from time O today
until time ¢ > 0 in the future for two future maturity times and that we want to
analyze the riskiness of this volatility bet. Consider two call options on the values
of an index at two future times 0 < 77 < T5. The trader believes that over a short
period of time the change in implied volatility o, — o/ for the nearer maturity time
Ty will be greater than that for the more distant maturity time 7>, 07 — 0. The
trader wants to capitalize on this belief but at the same time not bet on other potential
movements of the underlying index value. We first determine the particular portfolio
corresponding to the volatility bet.

Consider a long position of size &, in a call option with strike K| maturing at
time 7 and a short position of size /3 in a call option with strike K, maturing at
time 7. The future value of this position is, to a first-order approximation and with
the expressions for the partial derivatives of the Black—Scholes formula,

]’lzCrl — h3Ct2 IS hzcol — h3C02
+ha (D(d})(S, = S0) + $(d) SV Ti (6} =)
—hs (D(dF)(S, = So) + B(d}) S0V Ta(0F = 03) )
where
log(So/K ;) + (r; + (0)2/2)T;
O'é v/ Tj

With Z; = log(S;/So), Z> = atl — cr(%, and Z; = atz — og, and the approximation
S; —So ~ SoZ,, we get

di = for j =1,2.

haCl = h3CF &~ haCy — h3Cf + (e ®(dy) — hs@(d})) SoZ)
+haSop(d])VT1Zy — h3Sep(dD) VT2 Zs.
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The volatility bet is a bet on the occurrence of the event Z, > Z3, and on nothing
else. Therefore, the trader chooses /1, and /3 so that

had(d) Ty — hagp(d?) /T, = 0,

meaning that the impact of a parallel shift in the implied volatility should be
approximately zero. Moreover, the trader wants the bet to be immune to changes
in the value of the underlying index. Therefore, the trader takes the position

hy = —(ha®(d}) — hs®(d}))
in the index and a position
ho = —hiSo — haCl + h3C3

in cash. Summing up, we find that the volatility bet corresponds to the portfolio
weights hg, iy, by, h3 and the future portfolio value

pd) VT
¢(d2)\/_

= hySop(d)Ti(Z — Z3).

To estimate the risk of holding this portfolio until time 7, we could now assign a
bivariate elliptical distribution to (Z,, Z3), determine the corresponding univariate
elliptical distribution of Z, — Z3, and finally compute p(h2So¢(d})v/T1(Z2 — Z3))
for a suitable choice of risk measure p. However, this apparent straightforward
approach to measuring the riskiness of the volatility bet is not unproblematic.
Assigning a bivariate model to (Z,, Z3) can at best be guided by historical data on
implied volatility changes but will to a large extent be based on subjective beliefs.
Moreover, if the sizes of the option positions are large, then it may be unrealistic to
assume that the positions can be closed at time ¢ if ¢ is small. In that case, we need
a longer time period for the risk modeling, and this makes the whole linearization
approach questionable.

ho 4+ S, + hyC — hsCE ~ hySod(d )T Zy — hy o~ L S0 (d?) /T Z3

9.3.5 Portfolio Optimization with Elliptical Distributions

Suppose vector R of returns on a collection of risky assets can be modeled by a
normal variance mixture distribution so that R = p 4+ WAZ, where Z is N;(0, I)-
distributed and independent of W > 0, and AAT = X If Ry is the return on a
risk-free asset, then the future value of a portfolio with monetary portfolio weights
w in the risky assets and wy in the risk-free asset can be expressed as

Vi =woRy + WTR
L woRo+wp +wW'EZw2wz,. 9.11)
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Suppose the variance Var(V}) = o?w' X'w, where 02 = Var(W Z,), exists. Then
the solution to the investment problem

maximize woRo + wTp — ZC—VOUZWTZW
subjectto wo + w'l < 1,
follows from the solution to the trade-off investment problem (4.7) by replacing X
in (4.7) by 02 ¥ and is given by
|4
w= —0(0227)_1(;L —Rol) and wo=V,—w'l.
c

A convenient feature of having an elliptical distribution for vector R of returns
is that portfolio optimization problems often reduce to the trade-off investment
problem (4.7). Consider the problem of portfolio optimization in the context of a
spectral risk measure.

Example 9.11 (Spectral risk measures). Portfolio optimization with respect to a
spectral risk measure (Sect.6.5) amounts to minimizing a spectral risk measure
py(X), where X denotes a future portfolio value, under a budget constraint (and
possibly additional constraints). By the stochastic representation (9.11), we can
express the quantile function of V; as

Fy'(p) = woRo + W' + (W' Zw)'2Fyl (p).

Therefore, the spectral risk measure

1
pp(X) = — /0 $(p)Fi o (P)dp.

applied to X = V| — Vy Ry, can be expressed as

1
pe (Vi — VoRo) = —/O b (P)Fyy g, (P)dp + Vo

1 1
R_o (—W()RO —wip — (wTZw)l/Z/ ¢(p)F‘;lzl(p)dp) + .
0

In particular, we can formulate the portfolio optimization problem

minimize P (W() R() + WTR — V()R())
subject to wo + w'l < Vg

as the trade-off problem

maximize woRo + W — 55 (w Z'w)!/?
subjectto wo + w'l < 1,
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where 1
c=—N®[;¢@ﬂ%20mb.

We conclude that, for an elliptical model for vector R of returns, minimizing the
spectral risk measure of the future portfolio value subject to a budget constraint is
equivalent to solving a trade-off problem with the trade-off parameter given above.

9.4 Copulas

A rather common situation arises when we search for a multivariate model for a
set of random variables Yi,...,Y; whose univariate distributions are rather well
understood but whose joint distribution is only partially understood. A useful
approach to the construction of a multivariate distribution for Y = (Y1, ..., Yy) with
specified univariate marginal distribution functions Gy, ..., Gy, the distribution
functions of the vector’s components, is obtained by combining the so-called
probability and quantile transforms. The probability transform says that if X is a
random variable with a continuous distribution function F, then F(X) is uniformly
distributed on the interval (0, 1). The quantile transform says that if U is uniformly
distributed and if G is any distribution function, then G~'(U) has distribution
function G. This implies that for any random vector X = (Xi,..., X;) whose
components have continuous distribution functions Fi, ..., Fy, the random vector
Y = (G7Y(Fi(X))),....G; (Fi(X4))) corresponds to a multivariate model with
prespecified univariate marginal distributions. If all F; and G, are both continuous
and strictly increasing, then the preceding statement is actually straightforward to
verify:
P(G. ' (Fu(Xi)) < y) = P(Fie(Xp) < Gi(y)) = Gr(»).

which shows that Y, has distribution function Gy. The difficulty when it comes to
constructing a good multivariate model for Y using this approach clearly lies in the
choice of the distribution for vector X since the dependence between the X will be
inherited by the Y.

Example 9.12. Consider the two scatter plots in Fig. 9.6. The left scatter plot shows
a sample of size 2,000 from a bivariate standard normal distribution with linear
correlation 0.5. The right scatter plot shows a sample of size 2,000 from a bivariate
distribution with standard normal marginal distributions and a dependence structure
inherited from a bivariate Student’s ¢ distribution with one degree of freedom. The
points of the right scatter plot were obtained from the points of the left scatter plot as
follows. Write Z, ..., Z»yo for the independent bivariate normal random vectors
whose outcomes are shown in the left plot. Let Sy, ..., Sy be independent X%'
distributed random variables independent of the sample from the bivariate normal
distribution. A sample of independent bivariate Student’s #;-distributed vectors was
obtained by setting X; = Sk_ v 2Zk for k = 1,...,2000. Finally, the random
vectors whose outcomes are shown in the plot to the right were constructed as
Y, = (d)_l(l‘l(Xk’l)), CP_I(Zl (Xkyz)))T fork =1,...,2000.
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Fig. 9.6 Samples of size 2,000 from two bivariate distributions with standard normal marginal
distributions. Left plot: sample from a bivariate standard normal with linear correlation 0.5. Right
plot: sample from a bivariate standard Student’s ¢ distribution with one degree of freedom, with
marginal distributions transformed to a standard normal

Suppose that we want to build a multivariate model corresponding to a random

vector X = (X1, ..., Xy) with a nontrivial dependence between its components and
certain marginal distribution functions Fj, ..., F;. Then the quantile transform says
that we may start with a suitable vector U = (Uy, ..., U;) whose components are

uniformly distributed on (0, 1) and specify X as
X = (F7'(U).....F;' Ua).

The random vector X inherits the dependence among its components from vector U.
The distribution function C of a random vector U whose components Uy are
uniformly distributed on (0, 1) is called a copula, i.e.,

Clur,...,ug) =PWU; <uy,....Us <ug), (ui,...,uq) < 0,1)7.

Let (X1,..., Xy) be a random vector with distribution function F(x,...,x;) =
P(X; < x1,...,Xs =< x4) and suppose that Fy(x) = P(X; < x) is a
continuous function for every k. The probability transform, statement (iv) of
Proposition 6.1, implies that the components of the vector U = (Uy,...,Uy) =
(Fi(Xy1),...,Fs(Xy)) are uniformly distributed on (0, 1). In particular, the distri-
bution function C of U is a copula and we call it the copula of X. Using statement
(i) of Proposition 6.1 we find that

C(Fi(x1),....Fa(xq)) = P(Ui < Fi(x1),...,Us < Fy(xq))

=P(F7'(U) < x1..... F;'(Us) < xa)
= F(x1,...,Xq).
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This representation of the joint distribution function F in terms of the copula C
and the marginal distribution functions Fi,..., F; explains the name “copula”
a function that “couples” the joint distribution function to its univariate marginal
distribution functions.

Example 9.13 (Gaussian and Student’s t copulas). The copula CI?“ of a
d-dimensional standard normal distribution, with linear correlation matrix R, is
the distribution function of the random vector (@(X),...,®(Xy)), where @ is
the univariate standard normal distribution function and X is N (0, R)-distributed.
Hence,

Cu) = P(@(X)) <up,....P(Xy) <ug) = (D (1), .... 0  (uy)),

where @4 is the distribution function of X. Copulas of the preceding form are called
Gaussian copulas.

The copula C| p of a d-dimensional standard Student’s ¢ distribution with v > 0
degrees of freedom and linear correlation matrix R is the distribution of the random
vector (¢,(X1),...,4(Xy)), where X has a 7;(0, R, v) distribution and ¢, is the
univariate standard Student’s ¢, distribution function. Hence,

C (W) = Pty (X1) < i 1,(Xa) < ua) = 1)t (), 17 (ua)),

where tj{ r the distribution function of X. Copulas of the preceding form are called
Student’s ¢ copulas.

Consider a random vector (Y7, Y») with continuous strictly increasing marginal
distribution functions G| and G, and the copula of a Student’s ¢ distribution with
linear correlation parameter p. We consider here the question of how p can be
estimated from a sample from the distribution of (Y7, ¥>). We may write (Y1, Y>) =
(Gl_l(Fl (X1)), Gz_l(Fz(Xz))), where (X1, X,) has a Student’s ¢ distribution with
linear correlation parameter p. In particular, the functions 7; and 7, given by
Tr(x) = Gk_l (Fx(x)) are continuous and strictly increasing, so for an independent
copy (X{. X3) of (X1, X») it holds that

(Y1, Y2) = ©(T1(X1), T(X>))

2P((T1(X1) — Ti(X)D)(Ta(X2) — Ta(X3)) > 0) — 1
=2P((X1 — XD)(X2 — X3) > 0)— 1

= 1(X1, X»).

It follows immediately from (9.7) that p = sin(wz(Y},Y2)/2). Therefore, the
estimate T of 7(Yy, Y,) from the sample from the distribution of (Y1, ¥>) gives an
estimate p = sin(r7/2) of p.

Example 9.14 (Investments in foreign stocks). Consider a Swedish investor about to
invest Swedish kronor (SEK) in foreign telecom stocks. The current share prices of
British Telecom (BT) and Deutsche Telekom (DT) are 185.5 British pounds (GBP)
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Fig. 9.7 Scatter plot to left shows log-return pairs, British Telecom in pounds on the x-axis and
Deutsche Telekom in euros on the y-axis. The scatter plot to the right shows log-return pairs,
SEK/GBP on the x-axis and SEK/EUR on the y-axis

and 9.26 euros (EUR), respectively. The current SEK/GBP exchange rate is 0.0942
(x kronor can be exchanged for 0.0942x pounds). The current SEK/EUR exchange
rate is 0.1098.

The investor has obtained a sample of four-dimensional vectors of share prices,
in the local currencies, and exchange rates from the 249 most recent (trading) days.
We assume that the investor believes that the information in the data is relevant for
assessing future portfolio values, and that no additional information on which to
base model selection is available. The scatter plots for the stock log-return pairs and
for the exchange-rate log-return pairs are shown in Fig.9.7.

The investor is about to invest the amounts w; and w, kronor in the two foreign
telecom stocks and wants to model the portfolio value V; in kronor tomorrow.
Let A;, B;, C;, D, denote the time ¢ share prices (BT and DT) and exchange rates
(SEK/GBP and SEK/EUR). Let X4 = log(A4,/Ao) be the log return from today
until tomorrow for BT in GBP and similarly for X, X¢, Xp. If h; and &, are the
number of shares of BT and DT bought, then

Ao

Zh =
Col wi

0

By
d —hy=ws.
an D 2 wo

The portfolio value in kronor tomorrow is therefore

Ay B,

Vi=h— +hy—

1 1C1+ 2D1
A (C ‘1+ B,
=w— [ = Wy —
"4\ G *By

D,
Dy

X

wiexp{X4— Xc} +waexp{Xp — Xp}.
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If the investor has already decided on a particular portfolio, i.e., has chosen the
portfolio weights w; and w,, then the log-return data may be used to generate a sam-
ple from the distribution of V; by viewing V; as a function of (X4, X, X¢, Xp).
This sample can be transformed into a sample from the distribution of the portfolio
log return log(V;/ V), where Vy = wy + wy, and a parametric model can be chosen
for the portfolio log return.

Here we want to allow the investor to vary the portfolio weights in order to choose
an optimal (according to some criterion left unspecified) portfolio. Therefore,
instead of setting up a model for V directly, we set a model for the joint log-return
distribution of (X 4, X, X¢, Xp) from which the model for V] is easily inferred.

The Student’s ¢ location-scale family of distributions is a natural choice of
parametric family for log returns. Maximum-likelihood estimation of the parameter
triple (i, o, v) of the Student’s ¢ location-scale family on the samples of daily log
returns gives the following estimates:

(—6-107*,0.013, 3.7)  (British Telecom in pounds),
2- 1074, 0.015, 7.7)  (Deutsche Telekom in euros),
(2-107*, 0.006, 9.6)  (SEK/GBP),

(8-107>, 0.004, 8.6) (SEK/EUR).

There is no a priori reason for the log-return distributions to be symmetric; the
polynomial normal model in Example 8.10 is also a natural model for the log
returns. The estimated parameters (6y, 01, 6, 63) based on the samples of daily log
returns are

(3.1, 142.6, —1.4, 15.5)- 10™*  (British Telecom in pounds),
(8.8, 120.1, 9.2,22.1)-107* (Deutsche Telekom in euros),

(4.0, 53.5,=3.7, 3.6)-10* (SEK/GBP),

(1.9, 31.1,-2.0, 3.5)-107* (SEK/EUR).

The conditions 65 > 0 and 36,63 — 63 > 0 ensuring that the third-degree polynomial
is strictly increasing is satisfied for estimated parameter vectors. Figure 9.8 shows
the empirical quantiles of the log returns of BT and DT against those of the fitted
parametric distributions. By comparing the two upper q—q plots we find that the
polynomial normal model captures the asymmetry between the left and right tails in
BT log-return data, whereas the Student’s # model does not.

We now proceed to the modeling of the dependence between the log returns.
The sample correlations between log returns of the stocks and log returns of the
exchange rates is approximately zero, and there are no obvious economic reasons
not to assume independence between the log-return pairs (X4, Xp) and (X¢, Xp)
of stocks and exchange rates, respectively. We therefore assume that the log-return
pairs (X4, Xp) and (X¢, Xp) are independent and that the distribution functions
of the two log-return pairs are of the form, with subscripts s for stocks and e for
exchange rates,

P(X4 < x4,Xp < xp) = C, , (Fa(xa), Fp(xp)),
P(Xc < xc,Xp < xp) = C,,, (Fc(xc), Fp(xp)),
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Fig. 9.8 Upper plots: empirical quantiles of British Telecom log-return data (y-axes) against
quantiles of fitted distributions (x-axes): Student’s ¢ model to the /eft and polynomial normal model
to the right. Lower plots: empirical quantiles of Deutsche Telekom log-return data (y-axes) against
quantiles of fitted distributions (x-axes): Student’s ¢ model to the /eft and polynomial normal model
to the right

where Fy4, Fg, Fc, Fp denote the distribution functions of X4, Xg, X¢, Xp. Stu-
dent’s ¢ copula is a flexible parametric family for the dependence structure of the
log-return pairs. Set Uy = F4(X4) and similarly for Ug, Uc, Up. The assumption
of Student’s ¢ copulas as models for the dependence structure for the log-return pairs
requires that (Uy, Ug) = (1 — Uy, 1 — Up) and (Uc,Up) = (1 — Uc, 1 — Up).
Whatever choice of models for the individual log returns X 4, X5, X¢, Xp among
the sets of models given above, the log-return data give no reasons to reject the
hypothesis that (U4, Ug) = (1 — Uy, 1 — U) and (Uc,Up) = (1 — Uc, 1 —Up)
(Fig.9.9).

We may now estimate p; and p, by p; = sin(77,/2) and p, = sin(n7,/2),
and the estimate of (p;, p.) is approximately (0.62,0.61). Under the assumption
that the marginal distribution functions Fy4, Fp, Fc, Fp of the joint log-return
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Fig. 9.9 Left scatter plot: sample points in (9.12) obtained by componentwise transformation of
original log-return pairs for stocks by fitted Student’s ¢ location-scale distribution functions. Right
scatter plot: with corresponding sample points for componentwise transformation by distribution
functions of fitted polynomial normal models added, marked by times symbol, to illustrate the
effect of the componentwise transformations

distribution equal the estimated marginal distribution functions F A, F B, F C, F D
we may transform the samples

(X Xp), o (XGP.XE®)} and {(Xg, Xp).... (XE®, X3%)}
into the samples
{(ULUp).... . (UFF U™} and {(Ug. Up).....(UER.UG®)}  (9.12)

from Student’s ¢ copulas, where Uﬁ = FA(Xﬁ), and similarly for Uk, Ué‘, Ug. In
the case of a polynomial normal model choice, dropping subscripts for notational
convenience, F (x) = (27 '(x)), and g l()c) is obtamed as the (here unique real)
solution y to the polynomial equation 90 + 91 y+ 92 Yo+ 93 y? = x. Under the
further assumption that the linear correlation parameters ps, 0, equal the estimates
Ds» Pe» the two samples in (9.12) are samples from two Student’s 7 copulas whose
parameters are known except for the degree-of-freedom parameters v and v,. The
unknown parameters can be estimated by maximum likelihood, and the bivariate
density function of Student’s ¢ copula corresponding to the pair of log returns for
stocks is given by

2 1 1 gi - (t,. (1), 1, (u2))
- ~(t~ St = ) s
Guraua v, o ()b ) = S T )

' ~(up,up) =
Vs, Ps
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where t> . and g?> - denote the distribution and density function, respectively,

Vs Ps Vs s
of the bivgriate Stud?:nt’s t distribution with degree-of-freedom parameter v, and
linear correlation parameter py, and #,, and g, denote the distribution and density
function, respectively, of the univariate Student’s ¢ distribution with degree-of-
freedom parameter vs. The procedure is similar for the pair of log returns for the
exchange rates.

The samples in (9.12) depend on the choice of parametric models for the log
returns and the corresponding parameter estimates. Therefore, we will here obtain
two pairs of estimates (7, D, ) of the copula parameters v and v,. If the log-return
distributions are assumed to be Student’s ¢ distributions and the parameters are
estimated by maximum likelihood, then we obtain the copula parameter estimates
Vs, Ve) =~ (5.1,6.8). If the log-return distributions are assumed to be given by
the polynomial normal model, then we obtain the copula parameter estimates
(s, Ve) ~ (3.6,5.5).

Now that the two models for the joint log-return distribution of the vector
(X4,Xp,Xc,Xp) are set up and their parameters estimated, we evaluate the
models in terms of how close the resulting distribution of the portfolio log return

Vi Vi
log(Vi/ Vo). Vi = 2 exp{Xa—Xc} + = exp{Xp — Xp}

is to the empirical distribution of the portfolio log return. The joint log-return
models do not give closed-form expressions for the distributions of the portfolio
log return. However, the portfolio log-return distributions are straightforward to
simulate from. We simulate 10° outcomes of log(V;/ V;), according to the chosen
model, by simulating outcomes (Z 4, Zp) and (Z¢, Zp) of independent Student’s ¢-
distributed random vectors and using the formula

log (% exp{ﬁzl(z;(zn—?zl(z;(zc)m% exp{F;‘(r;(zg)—ﬁg‘(r;(za))}),

where (Z 4, Zp) has a bivariate standard Student’s ¢ distribution with degree-of-
freedom parameter vy and linear correlation parameter py, and (Z¢, Zp) has a
bivariate standard Student’s ¢ distribution with degree-of-freedom parameter v, and
linear correlation parameter p,. Finally, we compare the empirical distributions of
the simulated samples of size 10> to the empirical distribution based on the original
log-return sample. The result is shown in Fig. 9.10. Both models give a good fit to
the log-return data.

If X = (Xy,..., Xy) is a random vector with continuous marginal distribution
functions Fi,..., Fg, and if Gy,...,G,; are any given distribution functions,
then the random vector Y = (G{'(Fi(X1))....,G;'(F4(X4))) has marginal
distribution functions Gy,..., G, and has inherited the dependence structure or
copula from vector X. However, it may happen that the distribution functions
Fy, ..., F; cannot be determined explicitly. Another option is to consider a family
of models for vectors (Uy, ..., Uy) with components that are uniformly distributed
on (0, 1) and consider models of the form Y = (G ' (U)). ..., G;' (Uy)).
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Fig. 9.10 These two q—q plots show the empirical quantiles of the portfolio log returns (y-axes)
for wy = w, = V,/2 against the quantiles of two models for log(V;/Vy) (x-axes). The plot to
the left corresponds to the model for (X4, Xp, X¢, Xp) with Student’s ¢ marginal distributions,
and the plot to the right corresponds to the model for (X4, Xp, X¢, Xp) with polynomial normal
marginal distributions

Example 9.15 (Archimedean copulas). Consider a strictly positive random variable
X with a density f and Laplace transform ¥(f) = E[e™'X]. A useful family
of copulas called Archimedean copulas is based on the fact that ¥ (—log(V)/X)
is uniformly distributed on (0, 1) if V is uniformly distributed on (0,1) and
independent of X . To verify this claim we first note that

U(t) = /000 e " f(x)dx and V(1) = _/000 xe ™ f(x)dx <0,

so ¥ is nonnegative, continuous, and strictly decreasing on [0, c0). For any u €

(0, 1) we can now verify that
—logV i —logV
Pl 220 ) <u)=glp(v (2 ) <u|x
X I X
p (V < e VWX | X)]

=E
'e—w—l(u)x]

=y W () =u

=E

It follows that if Vi, ..., V; are uniformly distributed on (0, 1) and independent of

- 1()g [’ - 1()g [’d

X (9.13)
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is a copula. We should always aim to understand a multivariate model through its
stochastic representation. Here ¥ is decreasing with ¥ (0) = 1 and lim;—.o ¥ (¢) =
0. Therefore, we observe that if X takes a small value, then the random variables
—log(Vi)/ X, for k = 1,...,d, are all likely to take large values, which implies
small values for the random variables U, = W(—log(Vx)/X). In particular,
choosing a random variable X that has a relatively high probability of taking very
small values is likely to lead to asymptotic dependence, in the sense that small
values for one component are likely to imply small values for other components, for
a model with the stochastic representation (G;'(U)), ..., G;l(Ud)). Simulation
from an Archimedean copula C as above is straightforward: just independently
simulate standard uniform variates Vj, ..., V; and X, and set U according to (9.13).
Note that the copula can be expressed explicitly as

Cuy,...,uq) =PUi<uy,...,Us<uy)
:E[P (Vl < e_lrl(”‘)x,---,Vdfe_wil(ud)x I X)]

—E [e—w—‘<u1>+~~~+w—‘<ud>>X]
=vW@ )+ + 8 (). 9.14)

Example 9.16 (Clayton copula). 1If X has a Gamma(1/6, 1) distribution, then X
has density function f(x) = x'/~1e=*/I"(1/0) and Laplace transform

1

1/0-1 ,—x 3, _ —1/6
F(l/@)x e tdx =@+ 1),

U(t) = Ele™¥] = /000 e

This choice of ¥ gives the Clayton copula. Solving ¥ (¥~ !(u)) = u for ¥~ (u)
gives W' (u) = u=% — 1. Therefore, the copula expression (9.14) takes the form

oy =@+ +uz? —d + 1)

Applying I’Hopital’s rule shows that the Clayton copula has lower tail dependence
in the sense that

Qu?—1)71/0
u

Y Gl

d
—0 a4
" duu

= lim 2u 7 Qum? — 1)7Vo!

lim P(Up < | Uj <u) = lim

— p-1/8
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If 6 = 1, then both X, and the random variables — log V}, are standard exponentially
distributed. In particular, we may write

Ey Ey )
Up,....,Uy) = .
G a) (E()-‘rEl Ey+ Ey
where Eo, Ey, ..., E; are independent and standard exponentially distributed. We

see that for all the U, to take small values, we need E, to take a small value.
However, for all the Uy, to take large values, we need E to take a large value and
for all Ey,..., E; to take small values. The latter is less likely, and therefore a
reasonable guess is that the Clayton copula does not have upper tail dependence:
lim, o P(Ux > u | U; > u) = 0. An application of I’"Hopital’s rule verifies this
claim. Samples from the Clayton copula are illustrated graphically in Fig.9.11.

9.4.1 Misconceptions of Correlation and Dependence

Now we turn to common misconceptions of linear correlation. We have seen that
given any two univariate distribution functions F; and F, and copula function C,
F(x1,x2) = C(Fi(x1), F2(x2)) is a bivariate distribution function with marginal
distribution functions F; and F,. It is typically hard to know which copula C
to choose, and it is therefore tempting to ask for a bivariate distribution with
given marginal distribution functions F; and F, and a given linear correlation
coefficient p. However, we will see that this question is ill-posed in the sense that
the set of bivariate distributions fulfilling the requirement may be empty.

To this end we first consider an integral representation of the covariance between
two random variables in terms of their joint distribution function and their marginal
distribution functions.

Proposition 9.8. If (X, X;) has distribution function F and marginal distribution
functions Fy and F, and the covariance Cov(X1, X,) exists finitely, then

o0 o0
Covtxi X = [ [ (Fenx) = A FaGe)dn e
—00 J —00
Proof. Let (Y1, Y») be an independent copy of (X, X,), and note that
E[(X1=Y1)(X2—Y2)] = E[X1 X5]—E[X, V2] +E[Y1Y2] —E[Y; X5] = 2 Cov(X1, X2).

Writing
(X — 1) = / (1Y) < ) — T{X) < x})da,
—00
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Fig. 9.11 The upper two scatter plots show samples of size 2,000 from two bivariate distributions
with standard normal marginal distributions. The left plot shows a sample from the bivariate
standard normal distribution with linear correlation coefficient 0.5 and the right plot shows a
sample from a bivariate Clayton copula with parameter 6 = 1, componentwise transformed to
standard normal marginal distributions. The two lower scatter plots show samples of size 2,000
from two bivariate distributions with Gamma(3, 1) marginal distributions. The left plot corresponds
to the copula of a bivariate standard normal distribution with linear correlation 0.5, and the right
plot corresponds to the copula of the vector (U;, U,) such that (1 — Uy, 1 — U,) has a bivariate
Clayton copula with parameter 6 = 1

and similarly for (X, — Y>), we find that
E[(X1—Y1)(X>—Y2)]

=E |:/_°° (I{Y1<x1}—1{X<x1 })dx /_Oo (I{Yzfo}—I{ngxz})de}

:E[/_oo /_°° (I{Ylsxl}—l{xlst})(1{ngxz}_z{xzfn})dxldﬁ}
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_ /_ /_ BV <oy ] (X1 <0 B[ Yy <2} { Xa <ol s

= 2/_00 /_OO(F()Q,xz) — Fi(x1) F>(x2))dx dx,,

from which the conclusion follows. O

To determine which joint distribution function gives the minimal and maximal
covariance (and therefore also linear correlation), we need to determine sharp upper
and lower bounds on F in terms of F; and F,. Note that

min(P(X; < x1),P(X2 < x2)) > P(X1 < x1, X2 < x2)
=1—-P(X; > x; or X3 > x3)

1= (P(X1 > x1) + P(X2 > x2))

=P(X; = x1) +P(X2 < x2) — 1,

%

)
max(Fi(x1) + F2(x2) — 1,0) < F(x1, x2) < min(Fi(x1), F2(x2)).  (9.15)
If (X1, X2) = (F7'(U), F; 1(U)), then statement (i) of Proposition 6.1 implies that

F(x1,x) =P(F'(U) < x1. F; '(U) < x5)
=P = Fi(x1), U = Fa(x2))
= min(Fl ()Cl), Fz(Xz)),
so the upper bound is attained. In this case, X; and X, are said to be comonotonic.

If (X1, X») = (Fl_1 ), Fz_l (1—U0)), then statement (i) of Proposition 6.1 implies
that

F(x1,x) = P(F7'(U) < x1, 5 '(1 = U) < x)
=PU < Fi(x1),1 = U < F5(x2))
= max(Fi(x;) + F>(x3) — 1,0),

so the lower bound is also attained. In this case, X; and X, are said to be
countermonotonic.

Proposition 9.9. Let F) and F, be distribution functions for random variables with
nonzero finite variances. The set of linear correlation coefficients p(F) for the set
of bivariate distribution functions F with marginal distribution functions Iy and F,
form a closed interval [pmin, Pmax] With 0 € (Pmin, Pmax) Such that p(F) = pmin if
and only if F(x1,x2) = max(F1(x1) + F2(x2) — 1,0) and p = pmax if and only if
F(x1, x2) = min(Fi(x1), F2(x2)).



314 9 Multivariate Models

Proof. The existence of attainable minimum and maximum linear correlation values
Pmin> Pmax follows immediately from Proposition 9.8 and the bounds in (9.15).
Taking F(xy, x2) = Fi(x1) F>(x2) shows that O € [pmin, Pmax]- By Proposition 9.8,
Pmax = 0 would 1mply that min(Fl (xl), Fz()Cz)) = F ()Cl)Fz()Cz) for all xq, x»,
which in turn implies that either F; or F, takes only the values 0 and 1. Such
distribution functions correspond to constant random variables for which the
variance is zero. We conclude that pp,x > 0. A similar argument shows that ppi, < 0.
It remains to show that any value in [pmin, Pmax] 1S attainable. For A € [0, 1] the
function

Fy(x1,x2) = Amax(Fy(x1) + F2(x2) — 1,0) + (1 = 4) min(F; (x1), Fa(x2))
18 a distribution function since it is the distribution function of the random vector
I(F7'(U). F; (1= U) + (1 = D(F'(U), F;L(U)),

where [ and U are independent, / takes the value 1 with probability A and the value
0 otherwise, and U is uniformly distributed on (0, 1). Moreover, Fy (x1, 1) = Fi(x1)
and F)(1,x2) = F>(xy). Varying A € [0, 1] shows that all values in the interval
[Pmin» Pmax] are attainable correlation values. O

Example 9.17 (A bad stress test). Consider potential aggregate losses X and Y
in two lines of business for an insurance company. Suppose that X is Exp(a)-
distributed and that Y is Pa(«)-distributed with an unspecified dependence structure.
To perform a stress test, the chief risk officer asks an actuary to assign a high linear
correlation to the pair (X, Y) and study the effect on the quantile values for the
sum X + Y. This problem is ill-posed. The correlation coefficient does not exist for
o < 2 since

2 . R . o 2—a
E[Y~] —Xlgr;o/l yay™dy = lim S (x" — 1)
does not exist finitely for @ < 2. Moreover, for « > 2 not all correlation values
are possible for the pair (X,Y), and for each attainable correlation value there
are infinitely many possible joint distributions for (X, Y) that may produce very
different distributions for X + Y.

To compute the upper bound pn,x of the attainable correlation values, we note
that Y < ¢X and that X and Y are comonotonic if ¥ = e*. In particular, ppax =
Cor(X, eX). The means and variances of the Exp(e) and Pa(a) distributions are
given by

1 1
B) = g Va0 = 5. Bl = o= Vare®) = o
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Fig. 9.12 The upper two plots show histograms of the distribution of X + Y, based on samples
of size 10° and with the values corresponding to very high quantiles omitted, where X is Exp(x)-
distributed and Y is Pa(a)-distributed with & = 2.1. The left histogram corresponds to Y = e,
and the right histogram corresponds to X and Y independent. Lower right plot: empirical quantiles
of X + e* divided by empirical quantiles of X + Y with X and Y independent. Lower right plot:
Pmax as a function of o

and integration by parts can be used to compute the covariance

o0
Cov(X,e*) = E[Xe*] — E[X]E[¢*] = / xae'""  dx — = .
0 a—1  (x—1)2

We find that

B Cov(X,e”) B (a® —2a)'/2
P = Nar(X) 2 Var(e¥)12 ~ a—1

The lower right plot in Fig. 9.12 shows pnax as a function of . For instance, @ = 2.1
gives pmax ~ 0.4, which may indicate weak dependence, although it corresponds to
comonotonicity. The histograms in Fig. 9.12 show the distribution of X + Y in the
case of comonotonicity (left plot) and independence (right plot) for X and Y for
a=2.1.
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Example 9.18 (Correlation and causality). If we analyze quarterly data of changes
in the 3-month, zero-coupon bond rate for government bonds and quarterly data
of log returns of the country’s stock market index, then it is likely that a bivariate
autoregressive model of order 1, AR(1), gives a rather good fit. With X! and X?
denoting the change in the 3-month rate and the index log return, respectively, from
quarter t — 1 to ¢, consider the model

X,1 0.450.02 th_l Zl‘1
2 ] = 2 + 2 ]
X; —-9.20.35 X, Z;

or in matrix form X; = AX,_| + Z,, where the Z; are independent and identically
distributed and

2.107° 0
Cov(Z;) = (0 10_2) .
We find that
o
X, =AX, 1 +Z =AAX 2+ Z )+ Z ==Y AZ ;.
k=0

In particular,

Cov(X,) = Y _ A* Cov(Z)(AN)" ~ (

3.18-107° —2.82- 10_5)
k=0

—2.82-107° 1.47-1072
which corresponds to a linear correlation coefficient Cor(X!, X?) ~ —0.04.
However,
Cov(X2, X ) = Cov(—=9.2X,_, + 035X, + Z2, X" )
= —9.2Var(X) +0.35Cov(X/, X?),
which gives

Var(X])
Var(X7?)

1/2
Cor(X2, X)) =-92 ( ) +0.35Cor(X,, X?) ~ —0.44

reflecting the fact that the stock market typically reacts negatively to increasing
interest rates (the present value of future dividends decreases) and positively to
decreasing interest rates. Similarly, Cor(X ,1, X tz_ ) ~ 0.41, which may reflect the
fact that central banks raise interest rates to cool down an overheated economy and
lower interest rates to boost a struggling economy. The main point is that the linear
correlation coefficient Cor(X,', X?) ~ —0.04 that could be estimated on the pairs
of interest rate changes and index log returns says very little about the dependencies
between interest rate changes and index log returns. Here we have two rather strong
causal dependencies that essentially net out when only considering the dependence
among the components of the random vector (X', X?).
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Fig. 9.13 q—q plots of simulated samples of size 2,000 against a normal distribution with zero
mean and variance 55. The first distribution (/ef?) is the sum of the components of a ten-dimensional
standard normal distributed vector with pairwise linear correlation 0.5. The second distribution
(right) is the sum of the components on a ten-dimensional random vector with standard normal
univariate marginal distributions and the dependence structure of a ten-dimensional Student’s ¢
distribution with one degree of freedom and pairwise linear correlation 0.5

Example 9.19 (Asymptotic dependence). We know from Proposition 9.5 that the
components of a bivariate standard normally distributed vector (X, X,) with linear
correlation p < 1 are asymptotically independent in the sense that lim,_, o, P(X, <
x | X1 < x) = 0. In this case, an extreme value for one component is not likely
to make the other component take an extreme value. Combining Proposition 9.6
and Example 8.2 implies that the components of a bivariate standard Student’s
t,-distributed vector (Y7, Y2) with linear correlation p € (0, 1) are asymptotically
dependent in the sense that lim,_,_oo P(Y2 < x | ¥; < x) = A > 0. In this case, an
extreme value for one component makes it likely that the other component will take
an extreme value.

Consider the random vector (U;,U) = (D(X}), P(X,)), whose distribution
function is called a Gaussian copula, and the random vector (V},V;) =
(t,(Y1),1,(Y2)), whose distribution function is called a ¢, copula. If G is a
distribution function and p € (0,1) is small, then the probability that both
components of the vector (Z;, Z,) = (G~ (V1),G7(V,)) take values smaller
than G~'(p) is approximately

P(Zi <G ' (p).Z, <G ' (p) =PV = p)P(Va < p | Vs < p) ~ Ap,

whereas the corresponding probability of joint extremes for the vector (W, W) =
(G (Uy), G™1(Uy)) is of the order p>. As a consequence, the left tail of Z; + Z,
will be heavier than that of W; + W,. The influence of the (lack of) asymptotic
dependence of the (Gaussian) #, copula of a random vector on the tail behavior of
the sum of its components is valid for vectors of arbitrary dimension. Figure 9.13
illustrates this effect graphically in terms of g—q plots for 10-dimensional random
vectors Z and W, where G = @ is the standard normal distribution function and the
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underlying multivariate standard normally distributed X and Student’s 7, -distributed
Y both have pairwise linear correlation parameter p = 0.5. With R denoting the
linear correlation matrix with off-diagonal entries 0.5,

Zy+ -+ Zip £ 1"RD?Z,
is N(0, 55)-distributed.

Example 9.20 (Default risk). Consider a portfolio of corporate loans of a retail
bank. Suppose there are n loans and let, for k = 1,...,n, X be an indicator that
takes the value 1 if the kth obligor has defaulted on its loan at the end of the year,
and 0 otherwise. Suppose also that the default probabilities py = P(X; = 1) can
be accurately estimated and may be considered as known. A common estimation
approach is to divide the obligors into m homogeneous groups so that all obligors
belonging to the same group have the same default probability. The estimates of
default probabilities can then be based on the relative frequencies of defaults over
the years for the different groups.

The random variable N = X; + --- 4+ X, representing the total number of
defaults within the current year, is likely to be of interest to the bank. However,
the default probabilities only determine the marginal distributions and not the
full multivariate distribution of the random vector (X,...,X,). To specify a
multivariate model for the default indicators, it is common to consider a vector
(Y1,...,Y,) of so-called latent variables. The latent variable Y; may represent the
difference between the values of the assets and liabilities of the kth obligor at the
end of the year, and a threshold dj is determined so that Y; < dj corresponds to
default for obligor k. We may now express the probability that the first k among the
n loans default as, assuming that the Y} have continuous distribution functions,

Pk =P <dy,.... Y < dy)
=CPY, <dy),....P(Yr <di).,1,....,1)
= C(plv---vpkslv---vl)v

where C denotes the copula of (Y, ..., Y,). Joint default probabilities of this type
will depend heavily on the choice of copula C. To illustrate this point, we consider
a numerical example.

Consider a loan portfolio with n = 1,000 obligors, and suppose that the default
probability of each obligor is equal to p = 0.05, i.e., pr = 0.05 for each k.
We consider four different copula models for the latent variable vector: (a) C is
a Gaussian copula with pairwise correlation parameter p = 0, (b) C is a Gaussian
copula with pairwise correlation parameter p = 0.1, (c) C is a Student’s #3 copula
with pairwise correlation parameter p = 0, and (d) C is a Student’s #3 copula with
pairwise correlation parameter p = 0.1.

For each model we generate a sample of size 10° from the resulting model for
N, the total number of defaults, and illustrate the distribution of N in terms of the
histograms shown in Fig. 9.14. The histograms show clearly that zero correlation for
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Fig. 9.14 The distribution of the number of defaults is illustrated in histograms based on samples
of size 10° for the sum of 10° default indicators. The histograms correspond to the following latent
variable models: Gaussian with p = 0 (upper left), Gaussian with p = 0.1 (upper right), Student’s
t3 with p = 0 (middle and lower left), Student’s t3 with p = 0.1 (middle and lower right)

the underlying Student’s ¢ distribution is far from independence. For the Gaussian
copula, zero correlation is equivalent to independence. The histograms also show
the impact on the distribution of N of the small change in the correlation parameter
p from 0 to 0.1.
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9.5 Models for Large Portfolios

In this section we investigate models for the aggregated loss S, = X;+---+ X, for
a large homogeneous portfolio over a specified time period. Here X represent the
loss from an investment in the kth asset. As an example we consider the aggregate
loss of a bank’s portfolio of loans to small and medium size firms due to failure of
borrowers to honor their contracted obligations to the lender (the bank). The number
of assets, n, is thought of as very large, and we do not have enough information to
accurately specify an n-dimensional distribution for (X1, ..., X,). We will present
a cruder approach based on conditional independence.

In many cases, it is not reasonable to assume that the X are independent because
the losses may depend on the state of the economy. However, it may be reasonable
to assume that the X are conditionally independent, given the values of a set of
economic indicators (e.g., current and future values of interest rates for different
maturities, capacity utilization in the industry, GDP growth). Let the components
of random vector Z represent the future values of the economic indicators, and let
fa(Z) = E[S,/n | Z] be the expected average loss conditional on the economic
indicators. When 7 is large, it seems plausible that the diversification effect causes
the idiosyncratic risks to be small and the main risk drivers are captured by vector Z.
This motivates the approximation S, & nf,(Z). A mathematical motivation for the
approximation S, &~ nf,(Z) is given in the following result.

Proposition 9.10. Let X;,..., X, be random variables that are conditionally
independent given random vector L. Write S, = X1 + --- + X,, and f,(Z) =
E[S,/n | Z). Then

> k=1 E[Var(X | Z)]

P(IS,/n — ful@)] > &) < ey ,

If, in addition, the Xy are identically distributed, then f = f, does not depend on
n and

E[X7] - E[f(Z)*]

e > 0.
ne?

P(ISu/n— f(Z)| > ¢) <

If, further, the Xy, take values in {0, 1}, then

EL/(Z)] — ELf 2]

ne?

P(ISu/n = fu(Z)] > &) <
Proof . An application of Chebyshev’s inequality gives

P(|Sy/n — fu(Z)| > &) = E[P(|S, —nf,(Z)| > ne | Z)]
- E[Var(S, | Z)]
- n2e2 '
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Because the X} are conditionally independent given Z, it follows that
n
E[Var(S, | Z)] = ) E[Var(X; | Z).

k=1

which proves the first claim. The second claim follows from the first claim because
E[Var(X; | Z)]= E[Var(X, | Z)|=E[E[X] | Z]-(E[X, | Z])*]= E[X{]-E[f(Z)’].
Moreover, if X takes a value in {0, 1}, then E[X? | Z] = E[X, | Z] = f(Z). This
completes the proof. O

Proposition 9.10 not only motivates the approximation S, =~ nf,(Z); it also
provides an upper bound for tail probabilities for the aggregated loss S,. For
instance, combining Proposition 9.10 and the inequality

P(S, > 5) = P(Sy > 5,[S, —nfu(Z)| < en) +P(Sy > 5,8y —nfu(Z)| > en)
<P(nfu(Z) > s —en) +P(|Sy —nfu(Z)| > en), &>0,

gives an upper bound for P(S, > ). The upper bound for the tail probability

gives an upper bound for the quantile. If the X are identically distributed and
conditionally independent given Z, then, with C = E[X 12] —E[f(Z)?],

F5,'(g) = min{s : Fs,(s) > ¢}

= min{s : P(S, >s) <1—¢q}
min{s : P(nf(Z) > s —en) + C/(?n) < 1 —q}
=n(e+ Fjg)(q + C/(en)), &>0.

IA

In particular,
F5 (@) < nmin (e + Fyyy (@ + C/@&) . € = EIX}—E[f(2)%]. (©.16)

The upper bound for quantile (9.16) can be used to derive upper bounds for risk
measures such as VaR and ES.

Example 9.21 (A large homogeneous loan portfolio). Consider a large portfolio of
loans to small and medium size firms and suppose that we want to analyze the
distribution of aggregate losses from now until 1 year from now due to defaults.
Write Xy, for the loss on the kth loan and S,, = X +-- -4 X, for the aggregated loss.
In this case, X} can be written as X, = Ly I, where I is the default indicator that
takes the value 1 if the kth obligor defaults and O otherwise, and Ly is the amount
of money lost if the kth obligor defaults. If the default probabilities P(I; = 1) are
of similar size and the loss given default variables L are statistically similar, then
the loan portfolio can be considered homogeneous.
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A particularly nice situation is where the L; are identical and deterministic,
L, =1,foreachk = 1,...,n.In this case

S, 1 « N,
fn(Z)ZE[7 |z} :E[;];Lklk |z} :lE[7|Z]

where N, = I} + --- + I, is the number of defaults. The fraction of defaults,
given the economic indicators, is written as p,(Z) = E[N,/n | Z]. That is,
fa(Z) = Ip,(Z), and the aggregated loss can be approximated by S, ~ nlp,(Z).
If, in addition, the default indicators are identically distributed, then p,(Z) = p(Z)
does not depend on 7, and the last statement of Proposition 9.10 leads to

E[p(Z)(1 — p(Z))]
ne2 '

P(INu/n = p(Z)| > &) <

9.5.1 Beta Mixture Model

In this section, we will illustrate the modeling approach presented in the previous
example for a specific choice of model for N = N, defaults and p(Z) fraction
of defaults. Write N = I} + --- + [, where the [} are identically distributed,
independent, and Bernoulli distributed with parameter Z conditional on the random
variable Z = f(Z), which we take to be Beta(a, b)-distributed. We do not give any
economic interpretation of the Beta(a, b)-distributed Z and choose this model only
because it is a particularly simple model to work with in terms of both analytical
and numerical computations.

The assumption that Z is Beta(a, b)-distributed implies that Z has the density
function

g@) = 7M1 =" ab>0,2€(0,1),
p(a.b)
where f(a, b) can be expressed in terms of the Gamma function as
! I'(a)I(b)
by=[ 21— = ———.
plab)y = [ @ ta—o e = O

Using the property I"(z + 1) = zI'(z) of the Gamma function we find that
1 ! _ B(a+1,b) a

E Z == o < a 1 - b ld = ’ = s

2= gy |, #0 - = N = o

Bla+2,b) a(a+1)
Bla,b) — (a+b)a+b+1)

E[Z°] =
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Fig. 9.15 Distribution functions (left) and quantile functions (right) for beta-binomial distribu-
tions with n = 10*, p = 0.05, and (a, b) = ((1—c)/c)(p, 1—p) for ¢ = 0,0.001,0.01,0.05,0.1
(¢ = 0 gives the Bin(n, p) distribution)

Conditional on Z, the number of defaults N has a Bin(n, Z) distribution, and
therefore the distribution of N is given by

1
P(N =k) = (Z /0 F(1 =2 g(z)dz
1
_ (Z ﬂ(al b)/o k=11 Z gyrkHb=lg,
_[(n\Bla+k,b+n—k)
-~ \k Bla.b) ’

which is called the beta-binomial distribution. The distribution function of the beta-
binomial distribution is illustrated in Fig.9.15. The expected number of defaults is
easily computed:

E[N] = E[E[N | Z]] = E[nZ] = n

a+b’

In addition, the individual default probability is P(I; = 1) = E[E[[; | Z]] =
E[Z], the pairwise default probability is P(I; = I, = 1) = E[Z?], and the default
correlation is

E[li L] -E[I)* _ E[Z*] -E[Z]* _ 1

E[I}]-E[L]*  E[Z]-E[Z2? a+b+1

Cor(1y, I,) =

To analyze the model, we fix the common individual default probability at p =
P(/; = 1). This implies that we allow only parameter pairs (@, b) for which p =
a/(a + b),i.e., pairs (a, b) satisfying

1_
@b)=—=(p.1=p). ce(.1).
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where ¢ are possible values for the default correlation Cor(/;, I;). We can now study
the beta-binomial distribution and compare the quantile Fy !(g) with its estimate
nF;'(q). We find that for ¢ € [0.9,0.99], the values of Fy'(q)/F,;}(¢) are in the
intervals

(1.006675,1.015625) for ¢ = 0.001,
(1.001286, 1.003138) for ¢ = 0.01,
(1.000199, 1.000966) for ¢ = 0.05,
(1.000023, 1.000610) for ¢ = 0.1.

Fy' @)/ F,}(q) €

In particular, the approximation N ~ nZ is very accurate. We also find that a small
change in the common default correlation coefficient between the I; has a huge
effect on the distribution of N = I} + --- 4+ I,,. This is seen in Fig.9.15, which
shows distribution functions and quantile functions for beta-binomial models with
p = 0.05n = 10%, and different correlation coefficients. Figure 9.15 illustrates
clearly that only specifying the individual default probability p says very little about
the distribution of N. Every choice of (a,b) = ((1 —c¢)/c)(p,1 — p), ¢ > 0, gives
default probability p. Let Z. , be Beta-distributed with the parameters a, b above.
Then, for every ¢ > 0,

Var(Zcp) _ p(1=p)e
. :

P(lzc,p —p|l>e) =< . 2

In particular, if N , is beta-binomially distributed with mixture variable Z, ,, then

P(Nc,p = k) =E [(Z) Zf,p(l _ ZC'P)n_k]
=" [(Z)Zf,p(l - Zc,p)n_k; |Zcp— pl < c1/3:|

n
+E |:<k) Zf,p(l - Zc.,p)n_k? |Zep — Pl > C1/3:|

< max (Z) (p+FA=(p+0)" + p=p)'3

NG

— (Z)pk(l —p)"* asc —0.

The lower bound is constructed similarly. We conclude that N, converges in
distribution to Bin(n, p) as ¢ — 0. This is also seen in Fig. 9.15.
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9.6 Notes and Comments

Much more material on elliptical distributions can be found in the book [16] by
Kai-Tai Fang, Samuel Kotz, and Kai Wang Ng.

For further material on multivariate elliptical and copula-based models, depen-
dence concepts, and applications in financial risk management we refer the reader
to the book [31] by Alexander McNeil, Riidiger Frey, and Paul Embrechts. Much
material on models and methods for portfolio credit risk, which we have only
touched upon here, can be found in [31]. Moreover, techniques for parameter
estimation for copula models, a topic we have not considered at all, are presented
and illustrated in [31].

A statement equivalent to Proposition 9.6 appears in the book Chap. [12] by
Paul Embrechts, Alexander McNeil and Daniel Straumann It can be proved by
considering the conditional density of one component of a bivariate Student’s ¢-
distributed vector given a value of its other component. However, the asymptotic
dependence (or tail dependence) property of the Student’s ¢ distribution is a conse-
quence of a more general fact that says that pairs of components of an elliptically
distributed random vector are asymptotically dependent if the distribution functions
of its components are regularly varying. A proof of this more general fact, which
also applies to Proposition 9.6, can be found in the article [22] by Henrik Hult and
Filip Lindskog. The statement in Proposition 9.7 appears in the book Chap. [25] by
Filip Lindskog, Alexander McNeil, and Uwe Schmock. and in the article [15] by
Hong-Bin Fang, Kai-Tai Fang, and Samuel Kotz.

The reader seeking more information about copulas in general is encouraged to
consult the books [23] by Harry Joe and [35] by Roger Nelson.

9.7 Exercises

In the exercises below, it is assumed, whenever applicable, that you can take
positions corresponding to fractions of assets.

Exercise 9.1 (Risk minimization). Consider the value L of a liability and values
Xi,..., Xy of assets at time 7" > 0 that may be used to hedge the liability. Suppose
that L and the X; have finite variances, and let p be a translation-invariant and
positively homogeneous risk measure.

(a) Show that if (Xy,..., X4, L) has an elliptical distribution, then the portfolio
weights hg, Ay, ..., hy minimizing

E[(ho + h1 X1 + -+ + haXa — L)?],

i.e., the optimal quadratic hedge, minimize p(ho + h X1 + -+ + hg Xq — L).
(b) Show, by an explicit example, that the conclusion in (a) does not hold in general
when (X1, ..., Xy, L) does not have an elliptical distribution.
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Exercise 9.2 (Allocation invariance). Let X = (X;,...,X;)T and Y =
Yi,..., Yd)T be random vectors having normal variance mixture distributions
with identical dispersion matrices and identical location vectors Ryl, where R is
the return on a risk-free asset. Vectors X and Y represent returns on 24 risky assets.
Let Vx(w) and Vy(w) denote the values at the end of the investment horizon for
an investment of the capital ¥, in positions in the risk-free asset and in the assets
with return vectors X and Y, respectively, where w is a vector of monetary portfolio
weights corresponding to the positions in the risky assets.

(a) Show that if p is a translation-invariant and positively homogeneous risk
measure, then
p(Vx(W) — VoRy)
p(Vy(w) — VoRo)
does not depend on the allocation of the initial capital or on the common
dispersion matrix of the return vectors.
(b) Suppose that X has a Student’s ¢ distribution with four degrees of freedom, that
Y has a normal distribution, and that p = VaR,, and compute the expression
in (9.17) as a function of p for p < 0.05.

9.17)

Exercise 9.3 (Asymptotic dependence). Consider a random vector (X, X>)
whose components are equally distributed and use Propositions 9.5 and 9.6 to
compute limy—, P(X2 > x | X; > x) in the following two cases:

(a) X; and X, are Student’s f-distributed with four degrees of freedom, and
(X1, X») has a Gaussian copula with linear correlation parameter 0.5.

(b) X, and X, are Student’s z-distributed with four degrees of freedom, and
(X1, X2) has a Student’s ¢ copula with linear correlation parameter 0.5 and
degrees of freedom parameter 6.

Exercise 9.4 (Comonotonic additive risk). Show that if X; and X, are comono-
tone random variables, then VaR,(X; + X») = VaR,(X;) + VaR,(X>) and
Py (X1 4+ X2) = ps(X1) + pg (X>) for any spectral risk measure pg defined in (6.18).

Exercise 9.5 (Kendall’s tau). Let ¥ be the Laplace transform of a strictly positive
random variable, and consider the random pair (U}, U,) whose distribution function
is the copula C(u1, uz) = ¥ (¥ (u1) + ¥~ (u2)).

(a) Show that t(U;, U,) = 4E[C(Uy, Uy)] — 1.
(b) It can be shown that P(C(U;, Us) < v) = v—¥~L(v)/ (¥~ (v) forvin (0, 1).
Use this relation to show that

1 lII_l
‘C(Ul,Uz):l—‘r4/(; (WT)(/‘Z’) V.

(¢) Compute t(Uj, U,) when C = CeCl is a Clayton copula.
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Exercise 9.6 (Credit rating migration). Consider the two corporate bonds in
Exercise 4.6. Let the credit ratings be numbered from 1 to 4 and correspond to
the ratings Excellent, Good, Poor, and Default in Exercise 4.6. Let (X, X;) denote
the pair of credit ratings of the two issuers after 1 year with the distribution given in
Table 4.1.

(a) Find acopulaC suchthat P(X| < x1, X5 < x3) = C(P(X; < x1),P(X; < x2))
for all (x1, x3).

(b) Thecopula C of (X}, X,) in (a) can be well approximated by a Gaussian copula.
Investigate numerically what value of the correlation parameter in the Gaussian
copula gives a good approximation of the copula of (X, X») in (a).

Exercise 9.7 (Portfolio default risk). Consider a latent variable model for a
homogeneous portfolio of n risky loans. Let p be the default probability for each

loan, let Y, Y),...,Y, be independent and standard normally distributed, and let
p € (0, 1) be a parameter. The default indicators are modeled as
: — -1
X = | HEVPY + VT = oY = @7(p). (9.18)
0 otherwise,

where @ denotes the standard normal distribution function.

(a) Determine the random variable ® = g(Y) such that the default indicators are
conditionally independent and Be(8)-distributed given ® = 6.
(b) Show that the following formula holds for the g-quantile of ®:

NG ! )

J1=0p J1—p

(c) Consider a loan portfolio of a bank consisting of one thousand loans, each of
size one million dollars. Suppose that, for each of the loans, the probability of
default within 1 year is 3%, and in case of default the bank makes a loss equal
to 25% of the size of the loan. Suppose further that the bank makes a profit of
$10,000 per year from interest payments on each loan that does not default and
nothing on those that do. The bank decides to set aside an amount of buffer
capital that equals its estimate of ESg ;(.S), where S is the profit from interest
income minus the loss from defaults over a 1-year period. Estimate the size
of the buffer capital under the assumption that the default indicators are given
by (9.18) with p = 0.2 and that the bank may invest in a risk-free, 1-year,
zero-coupon bond with a zero rate of 3%.

+ o (p)

F5'(q) = @ (cb—l(q)

Exercise 9.8 (Potential death spiral). Consider a life insurance company with a
liability cash flow with long duration. The value of the liability 1 year from now
is denoted by L and increases in value when interest rates decline. The premium
received for insuring the liability is V) = 1.1 E[L]. The insurer invests its capital
in a fixed-income portfolio with 1-year return R; and in a stock market portfolio
with 1-year return R;. The vector (R, R, L) is, for simplicity, assumed to have a
multivariate Student’s ¢ distribution with four degrees of freedom. Its mean vector
and correlation matrix are given by
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R, 1.02 R, 1 0309
El{ R | =110 and Cor| R, | =[103 102
L 1.2-107 L 0902 1

The standard deviations of R;, R, and L are given by 0.005, 0.05, and 1.2 - 10°,
respectively.

Let w, w, be the amount invested in the fixed-income portfolio and the stock
market portfolio, respectively. The insurer invests the initial capital V} in the two
portfolios so that the expected value of its asset portfolio has an expected return of
1.06.

(a) Determine w; and wy.

(b) Is the insurer solvent in the sense that VaR gp5(4A — L) < 0?

(c) Suppose there is an instantaneous decline of 15% in the value of the stock
market portfolio. Does the insurer remain solvent? If not, determine how the
insurer must adjust the asset portfolio weights w; and w, simply to become
solvent in the sense that VaRg go5(4A — L) = 0.

(d) Compute the expected return of the insurer’s adjusted asset portfolio determined
in (¢).

Comment: A simultaneous decline in the value of stocks and in interest rates
is particularly dangerous to an insurer with a liability having a long duration.
The reduction in the value of the insurer’s capital forces the insurer to adjust its
asset allocation away from stocks to less risky fixed-income instruments to remain
solvent. The adjusted allocation has a lower expected return, which makes it difficult
for the insurer to make up for the suffered losses. Moreover, insurance companies
often have large amounts of capital invested in the stock market, and a forced sale
of large positions in stocks and an increase in the demand for safe bonds could
reduce both the prices of stocks and the interest rates even more. This phenomenon,
sometimes referred to as a death spiral, makes the insurer stuck in a near-insolvent
state with an asset portfolio that is unlikely to generate good returns.

Project 10 (Scenario-based risk analysis). Consider a stylized model of a life
insurer. The insurer faces a liability cash flow of 100 each year for the next 30
years. The current zero rates are given in Table 9.1, from which the current value
of the liability can be computed. In the market there is a short supply of bonds
with maturities longer than 10 years. Therefore, the insurer has purchased a bond
portfolio with payments only within the next 10 years. The bond portfolio has the
cash flow given in Table 9.1. The insurer has also invested in a stock portfolio. The
initial capital of the insurer is 30% more than the current value of the liability. The
insurer invests 70% of the initial capital in the bond portfolio and 30% of the initial
capital in the stock portfolio. The objective in this project is to identify the most
dangerous extreme scenario.

Suppose that there are two risk factors in the model, the log return Y; of the stock
portfolio and the size Y, of a parallel shift of the zero-rate curve. The risk factors are
assumed to have a bivariate normal distribution, means jt1, 42, standard deviations
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Table 9.1 Annual cash flow of bond portfolio and current zero rates

Time 1 2 3 4 5 6 7 8 9 10
Bond payment 4 2 3 1 4 2 3 1 5 5
Zero rate (%) 286 324 355 393 427 462 496 530 555 580
Time 11 12 13 14 15 16 17 18 19 20

Bond payment 0 0 0 0 0 0 0 0 0 0
Zerorate (%)  6.05 630 645 6060 674 690 7.00 721 732 1732

Time 21 22 23 24 25 26 27 28 29 30
Bond payment 0 0 0 0 0 0 0 0 0 0
Zero rate (%) 740 748 756 7.64 7770 7.77 783 790 795 8.00

01, 072, and linear correlation coefficient p given by
ur =008, wu,=0, o07=0.2, o0,=001, p=0.1.

Consider equally likely extreme scenarios in the following sense. The risk factors
can be represented via two independent standard normally distributed random
variables Z; and Z, as

Yi = +o01Zy,

=0, (/021 + \/1——/0222)-

All scenarios with |/ Z 12 + Z% = 3 can be viewed as equally likely extreme scenar-
ios corresponding to three-standard-deviation movements. The extreme scenarios
for Z, Z, translate into extreme scenarios for the risk factors Y;, ¥, by the relation
above.

(a) Plot the value of the insurer’s portfolio, assets minus liabilities, in 1 year for all
the equally likely extreme scenarios.

(b) Identify which scenario for Y}, Y, leads to the worst outcome for the value of
the insurer’s assets minus that of the liabilities in 1 year.

(c) Repeat the analysis outlined above and find the most dangerous scenario when
(Y1, Y») has another bivariate elliptical distribution.

Project 11 (Tail dependence in large portfolios). Let Zy, ..., Zs, represent log
returns from today until tomorrow for 50 hypothetical financial assets. Suppose
that Z; has a Student’s ¢ distribution with three degrees of freedom and standard
deviation 0.01 for each k and that t(Z;, Z;) = 0.4 for j # k.

Consider an investment of $20,000 in long positions in each of the assets. Let
Vo and V; be the portfolio value today and tomorrow, respectively. Investigate the
effect of tail dependence on the distribution of the portfolio value V; tomorrow
and the distribution of the portfolio log return log(V;/ Vp) by simulating from the
distribution of V;. Simulate from the distribution of V| under the assumption that
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(@) (Zy,...,Zs) has a Gaussian copula.

(b) (Zi,...,Zs) has a t4-copula.

(¢) (Zy,...,Zs) has a Clayton copula.

(d) How large a sample size is needed to get stable estimates of VaRg o; (V] — V)
and ES o1 (V1 — V) ? Explain the differences in the estimates of VaRg o1 (V1 — 1)
and ESg 01 (V) — V) in the three cases (a)—(c).

(e) Compare the results in (a)—(d) to the results when $1 million is invested in only
one of the assets.

(f) Suppose that the Z are equally distributed and have a left-skewed polynomial
normal distribution with zero mean and standard deviation 0.01. Study and
explain the effect of the log-return distribution of the Zj on the distribution
of V; and the portfolio risk by simulating from the distribution of V; under
assumptions (a)—(c).
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