Chapter 7
Empirical Methods

In this chapter we consider a modeling approach that uses a set of historical data,
such as bond prices, share prices, claim sizes, or exchange rates, to model the value
at a future time 7" > 0 of portfolios whose values depend on a given set of assets and
possibly also liabilities. Here we want the data to speak for themselves in the sense
that the model for the future values should only be based on information available
in the given historical data samples. The assumption we make is therefore that the
information in the samples is representative of future values and that no additional
probability beliefs of the modeler are relevant.

Historical share prices S_,, ..., Sy of a stock over the last n 4+ 1 time periods are
not necessarily good representatives of possible values for the future share price S;.
But the sample of historical returns Ry = S_j41/S—, fork = n—1,...,1,
may be assumed to be a good representative of possible values for the future
return R; = S;/So over the next time period. Similarly, the historical zero
rates r—,, ..., I'g, corresponding to a given time to maturity, may be transformed
into zero rate changes r_;4, — r—, for k = n — 1,...,1, that can be viewed
as good representatives of the possible zero rate change r; — ry over the next
time period. If we believe in this approach, then appropriate transformations of
the historical samples produce samples of the random values, e.g., returns, that
determine the future portfolio values. If the generated sample of returns or value
changes can be viewed as samples from independent and identically distributed
random variables, then standard statistical techniques can be used to investigate the
probability distribution of future portfolio values, expressed as known functions of
future returns or value changes.

In this chapter, we will investigate this approach to modeling the future.
This is a subjective approach just as any other approach (such as assigning a
parametric probability distribution to the future portfolio value). However, it is fully
nonparametric and is a reasonable approach if we believe that the mechanism that
produced the returns in the past is the same as the mechanism that will produce
returns in the future, even if the mechanism is unknown to us.
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The first topic of this chapter is how to turn historical prices into a sample from
the distribution of the future portfolio value under the assumption that returns over
the next time period will be similar to those returns. This material is presented in
Sect.7.1. In Sect. 7.2 we consider the empirical distribution, which is the probability
distribution derived from a data sample. The quantile function of the empirical
distribution is the empirical quantile studied in Sect.7.3. The main objective in
these two sections is to investigate how the accuracy of empirical probabilities
and quantiles, relative to the true unknown quantities they are measuring, varies
with the sample size and characteristics of the unknown distribution from which the
sample of observations is generated. Empirical distributions and quantiles provide
natural estimators of value-at-risk (VaR) and expected shortfall (ES), which are
presented in Sect. 7.4. Point estimates of risk measures are not particularly useful
unless they are accompanied by estimates of their accuracy. Therefore, we analyze
in detail methods for constructing confidence intervals for the quantities estimated
by empirical estimators. In Sect.7.5, we present a method for constructing exact
confidence intervals for quantiles and a method for constructing approximative
confidence intervals using the nonparametric bootstrap procedure. The latter method
is further studied in Sect.7.6, which deals with the uncertainty in estimates for
solvency capital requirements for a nonlife insurer.

7.1 Sample Preparation

Denote the current time by 0, and consider a future time that we call time 1. Let V)
be the random value of some portfolio at time 1 that we can express as a function
of the vector S; of asset prices at time 1. For the sake of clarity of presentation we
take S; to be the share prices of some stocks. It is assumed that we have access to
a sample {S_,,S_,+1,...,So} of vectors of historical prices from the n previous
equally spaced points in time (e.g., days, weeks) and from the current time. It is
clear that the sample points may be strongly dependent (the share price on any
given day is strongly dependent on the previous day’s price). Moreover, it is likely
that the asset prices S_x, from k time periods ago, are quite different from what can
be anticipated for Sy, at least if k is large. The sample of historical asset prices may,
however, be transformed into a sample of vectors of returns R—, 41, ..., Rg, where

R, = (RY.....R%) with R, =S’ /S', |

fork =0,...,n—1,and/ = 1,...,d. Itis often reasonable to assume, supported
by statistical analysis, that the points of the sample {R_,;,..., Ry} are weakly
dependent and close to identically distributed and have distributional characteristics
that are representative also for R, the vector of percentage returns for the next
time period. The portfolio value at time 1 is V; = f(R;) for some function f that
depends on information available at time O such as the current asset prices So. Then
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the sample {R_,11,...,Ro} of return vectors can be transformed into the sample
{f(RZy51), ..., f(Ro)} from the probability distribution of V| = f(R;). If the
vectors in the former sample are approximately independent copies of R, then the
vectors in the latter sample are approximately independent copies of V.

The transformation of historical prices into historical returns is not essential for
the sample preparation scheme to work. Returns could, for instance, be replaced
by something else, such as price differences. The essential point is that the original
sample {S_,,,S_,+1,...,So} is transformed into a sample {Z_, 1, ..., Zo}, which
in turn could be transformed into a sample { f(Z—,+1), ..., f(Zo)} whose points
may be viewed as independent copies of the future portfolio value V. This situation
is the desired starting point for statistical analysis. From a sample of independent
and identically distributed random variables drawn from the unknown probability
distribution of ¥V, statistical methods can be applied to investigate the probability
distribution of the future portfolio value V.

The approach presented for generating a sample from the probability distribution
of the future portfolio value is based on the assumption that changes in values in
the past contain relevant information for assessing the probability distribution of
changes in value from now until the future time we are considering. Determining
the extent to which this assumption is reasonable requires some serious thinking.
Big changes in the legal or political environment, monetary policies of governments
or central banks, or other events may make it hard to justify this assumption.

Throughout the book we write {S_,,,S_,+1,...,So} for the random vectors of
historical prices (and similarly for the sample of returns) and s—,,S—,+1, . .., So for
the actual observations of the historical prices. The following example illustrates the
sample preparation approach.

Example 7.1 (Sample preparation). Consider a portfolio consisting of long posi-
tions in two different assets, one unit of the first asset and two units of the second
asset. The daily prices per unit of the two assets over the last 20 days are given by
S} and S? fort = =20, ...,0. Suppose the corresponding pairs of returns

R, = (R!,R) =(S!/S |, S?/S* ), t=-19,...,0,
are independent and identically distributed. If V) is the value of the portfolio at
time 1, then

1 S2
L +287=L = S§R} +2S5R] = f(Ry),

S
Vi =S| +257 =5, G
SO

1L

So
where f(x,y) = Six +282y. The random variables { f (R-20+1), ..., f(Ro)} can
be viewed as a sample of independent copies of V.

It may happen that we have access to daily historical prices and want to use the
data to investigate the probability distribution of the value of a portfolio a week
(month or year) from now. Then there are different options available. Consider the
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sample {S_,,S_,+1, ..., So} of vectors of historical prices and suppose we want to
investigate the distribution of V7, where T > 1. We assume that the original sample
can be transformed into a sample {R_,, 41, ..., Ro} of vectors of returns such that the
vectors are approximately independent copies of R; and that V7 = f(R;---Ryp),
where R; - - - Ry is interpreted as componentwise multiplication and R; - - - Ry is the
vector of returns over the next period of length 7.

Example 7.2 (Thinning of the sample). One way of obtaining a sample of vectors
of returns over time periods of length 7" would be to start with the sample
{S—rp/1),-- .. S—7,S0} and set

R = (RT)L.... . (RDY )T with (RT) = ' /S 1y

fork =0,...,[n/T]—1,and ] = 1,...,d. Here [y] denotes the largest integer

smaller than or equal to y, i.e., [y] = max{k € N : k < y}. The sample
{R(_T[,)l ST ,Rf)T) } is a sample of vectors of returns over nonoverlapping time
periods of length 7. If these return vectors are independent copies of R; --- Ry,
then f (R(_T[})T /7] i) f (R(()T) ) are independent copies of V. The problem with
this approach is that much of the possibly relevant information in the original sample

{S—1,S—u+1, ..., S0} is ignored and the sample size is reduced from n to [n/T].

Example 7.3 (Historical simulation). An approach that, unlike the approach in
Example 7.2, uses the entire original sample is to draw with replacement 7" vectors
from the sample {R_,41,...,Rp} and form the componentwise product of these
vectors, denoted by RT(T). Repeat the procedure m times to obtain the sample

{RT(T), . ,R;k,,(T) } of fictive return vectors over time periods of length 7'. If the
original return vectors R_, 4, ..., Ry are independent and identically distributed,
then the vectors RT(T), e, R;,(T) are identically distributed but not independent
since some of the random indices may take the same index value, but they are
conditionally independent given R_,, 1, ..., Ro.

The sample { f (RT(T) ) P (R,’Z(T) )} is a sample of size m, where the sample
points are approximately distributed as V7. This approach to generating a sample
from the distribution of V7 is called a historical simulation. On the one hand, all
the original sample points are used and the sample size m can be chosen arbitrarily
large. On the other hand, the original return vectors appear as factors in more than
one of the fictive return vectors RZ(T), so there may be substantial redundancy in the
constructed sample of return vectors over periods of length 7.

7.2 Empirical Distributions

Consider observations Xi,...,X, of independent and identically distributed
d-dimensional random vectors X, ..., X, with a common unknown distribution
function F(x) = P(X < x), where X is an independent copy of X; and X < x is
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interpreted as an inequality for all the components; X < x if and only if X; < x;
for j = 1,...,d. Suppose that we want to compute some quantity 6 = 6(F) that
depends on F, for instance, the mean, the variance, a quantile, or a risk measure.
It is impossible to compute 6 since F is unknown, but the observations Xxi, ..., X,
allow us to approximate the unknown distribution by that obtained from assigning a
probability weight 1/n to each of the x,. That is, approximating the unknown F'(x)
by the fraction F},(x) of the x; that are smaller than or equal to x,

F,(x) = %Zl{xk < x}.
k=1

The distribution function F, is called the empirical distribution function of
X1,...,X,. The random counterpart, which is the empirical distribution associated
with the random sample {X, ..., X}, is given by

Fox(®) = %Z I{X; < x}.
k=1

Note that F, x is a random object whose outcome F), is a distribution function.

The (strong) law of large numbers says that if Z;, Z,,... is a sequence of
independent copies of a random variable Z for which the expected value E[Z] exists
finitely, then

1 n
— > Zy — E[Z] with probability 1 as n — oc.
n

k=1

If we choose Z; = I{Xy; < x}, then E[Z;] = P(X}; < x) = F(x) and the law
of large numbers implies that, with probability one, lim, . F, x(X) = F(x). In
particular, the empirical distribution function F, x is a good approximation of the
unknown distribution function F as long as the sample size n is sufficiently large.
Similarly, if we choose Z; = h(Xy), then E[Z;] = E[h(X;)] = E[#(X)] and the
law of large numbers implies that, with probability one,

/ h(x)dF,x(x) = %Zh(xk) — E[h(X)] = / h(x)dF(x) asn — oo. (1.1)
k=1

In particular, the expression on the left-hand side of (7.1) is a good approximation
of the expression on the right-hand side as long as the sample size n is sufficiently
large.

Example 7.4 (Sample mean and variance). Consider a sample {xj,...,x,}
and the corresponding empirical distribution function F,. The sample mean
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X = (x1 + -+ + x,)/n is simply the expected value of a random variable with the
distribution function F);:

1 n
/xdF,,(x) = ;Zxk = X.
k=1

We know from (7.1) that X = (X, + -+ X,)/n — E[X] with probability one as
n — oo, and it is easy to see that E[X] = E[X]. The variance of F,, is

2 n n 2
1 1
/xzan(x) - (/ xan(x)) = - Zx,% Y (Zxk)
"= N
1 n
n k=1
_ ! (ng —2) X+ Zfz)
"= k=1 k=1

1 n
=-Y (u—%)%
n
k=1

We know from (7.1) that, with probability one,

n—oo n

1 « —
lim — (X — X)> = Var(X).
k=1

However, the expected value of the variance estimator is not equal to Var(X).
Therefore, the variance is typically estimated by the sample variance

1 < -
S2 - _ 2
— ) (X =X),
k=1
which satisfies E[S?] = Var(X).
Consider a subset B of R? and suppose that we want to estimate the probability

P(B) = P(X € B). Similarly to the empirical distribution function, we form the
empirical estimator

1 n
P,x(B) = " Z I{X; € B}. (7.2)
k=1
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Notice that P, x(B) = F,x(x) if B = {y : y < x} and that the sum in (7.2)
is Bin(n, P(B))-distributed. In particular, from the expected value nP(B) and
variance n P(B)(1 — P(B)) of the binomially distributed sum in (7.2) we find that

E[P,x(B)] = P(B) and Var(P,x(B)) = %P(B)(l — P(B)).

Moreover, it follows from the law of large numbers that lim,, o, P, x(B) = P(B)
with probability one.

Example 7.5 (Estimation of small probabilities). In this example, we investigate the
sample size needed for accurate empirical estimation of a small probability P(B). A
common measure of the accuracy of an estimator is the relative error—the standard
deviation of the estimator divided by the estimated quantity. In this context, the
relative error is given by

Var(P,x(B)'? 0 1 1/2
P (_P(B)_l)

It is natural to require that the standard deviation of the estimator must be at least no
greater than the probability to be estimated. Under this requirement, since P(B) is
assumed to be small, we find that n &~ 1/ P(B), which corresponds to a very large
required sample size if P(B) is small.

The accuracy of the estimator can be investigated by considering the probability

() Prx(B) — P(B)‘ - 8) _ P(l _ .o bx(B)

P(B) P(B) <1+ 8).

Since the sum in (7.2) is Bin(n, P(B))-distributed, we find that

PnX(B) [n(14¢)P(B)] n . i
P( ) <1+e)= k;) (k)P(B) (1— P(B))"™*,

and similarly with 1 — ¢ instead of 1 + &.

Another approach to investigating the accuracy of the estimator when the sample
size n is large is to apply the central limit theorem. If Z;, Z,, ... is a sequence
of independent copies of a random variable Z with finite expected value p and
standard deviation o, then

lim P

n—o00

<21 +--+Z,—nu

e < x) — @(x) forall x,

where @ denotes the standard normal distribution function. Taking Z;, = I{X; €
B}/n we find that
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Tim P ((myz(m,x(m — P(B)) < x) — @(x) forallx.

In particular, P, x(B) is approximately N(P(B), P(B)(1 — P(B))/n))-distributed
if n is large.

7.3 Empirical Quantiles

Here we consider observations xi,...,x, from independent and identically dis-
tributed random variables X, ..., X,, with a common unknown distribution func-
tion F defined on the real line R. The empirical quantile function F, ! is the quantile
function of the empirical distribution function F), and therefore given by

F'(p) = min{x : F,(x) > p}.

Similarly, the empirical quantile function Fn_}( is the quantile function of F, y. We
will now show that the empirical quantile Fn_}( (p) is the kth largest of the sample

points X1, ..., X, (and therefore the same holds for Fn_1 in terms of the sample
points Xy, ..., x,), where k = k(n, p) depends on n and p. It turns out to be useful
to order the sample {X, ..., X} such that X;,, > --- > X,,, (if F is continuous,

then with probability one there are no j # k such that X; = X, i.e., no ties). Note
that

n
min{x : F, x(x) > p} =min{x : Z I{Xkn <x}>=np; . (7.3)
k=1

Since the sum ) ;_, /{Xx, < x} can only take integer values, we see that the
right-hand side of (7.3) is equal to X, for some j. Which j? Note that for any
in the set {1,...,n},

n n
D IXen < Xju}y =Y IXin < Xy} =n—j+1,
k=1 k=]

and we must look for the largest j such that the last expression is greater than or
equal to np. If we take j = [n(1 — p)] + 1, then

n—j+1=n—n1-p)l>n—n-p)=np,

with equality if and only if np is an integer. In particular, every j > [n(1 — p)] + 2
givesn — j + 1 < np. We conclude that the empirical quantile function is given by

Fn_,)l((l’) = Xpa-pj+1n. P €(0,1),
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a piecewise constant function on (0, 1) with
Xp—p+in = Xinif pe (1 —k/n, 1= (k —1)/n]. (7.4)

It can be shown that if F is strictly increasing, then P(lim,_ oo an)l((p) =
F~'(p)) = 1forall p € (0,1). Therefore, the empirical quantile is an arbitrary
good approximation of the true but unknown quantile if the sample size n is
sufficiently large. We prove the following slightly weaker statement.

Proposition 7.1. Let X, X,,... be a sequence of independent and identically
distributed random variables with common distribution function F, and let F, x
be the empirical distribution function of the first n elements of the sequence. If
F is strictly increasing in a neighborhood of F~'(p), then lim,_s oo P(|an)l( (p) —
F~'(p)| > &) = 0 for every e > 0.

Proof. From the quantile transform, Proposition 6.1, we know that F~!'(U) has
distribution function F if U is uniformly distributed on (0, 1). Therefore, we
may consider a sequence of independent random variables Uy, U,, ... uniformly
distributed on (0, 1) and represent Xy,..., X, as F‘l(Ul), R F‘l(Un). Write
U, > - > U,, for the ordered Uj. Note that an)l((p) = F‘l(U[,,(l_p)]H,,,),
and since F is strictly increasing in a neighborhood of F~'(p), it follows that F~!
is continuous at p. Note also that

i |F ) = F7'(p)| > e} = {u: |[F ') — F7'(p)| > & |u— p| = 8}
Udu: [F~ ) — F7'(p)| > & lu— p| < &
CHlu:lu—pl=38}
Udu: [F7 ) = F7H(p)| > &, lu— p| < 8},
and the continuity at p implies that

limfu: |F~'@) = F'(p)] > &, |u—p| < &}

is the empty set. Therefore, for all § > 0,

P(F, x(p) = F7'(p)| > &) = P(\Upni—pyi+10 = P = 8) + G,

and since limg_.oCs = 0, to complete the proof it only remains to show that
lim, 00 P(|Up1=py)+1.0n — p| = 6) = 0 for every § > 0.

We claim that Uy, is Beta(n — k + 1, k)-distributed. To verify this claim, we
first recall that the Beta(a, b) distribution is a probability distribution on (0, 1) with
density function
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B 'a+b) ,, b1
fx) = F(Tl“(b)x (I—x)""",

where I'(n) = (n—1)!. The Beta(a, b) distribution has mean a/(a +b) and variance
ab(a + b)2(a + b + 1)7". The density function fy, , of Uk, can be expressed as

P(Uk,n S [xs-x + A])

d .
Jue, () = d_P(Uk,n <x)= A@O %

X

We want to compute the limit on the right-hand side above. To this end, we introduce
the notation
A, = {n—k of the U; are in (0, x) and
1 of the U; is in [x, x + A] and
k —1of the U; are in (x+A,1)}

and notice that

P(Uk, € [x,x + A]) = P(Ay) + 0(4)

n!

= mx”"‘Al(l —x = A4 0(Q),

where 0(A) is the probability of the event {Uy ,, € [x, x + A]} when two or more of
the U; are in [x, x + A]. Letting A — 0 gives

xn—k(l _ X)k_l

n:
Ju, (x) = =)k — 1!

_ I'n+1)
 I'(n—k+ 1) (k)

n—k+1-1 (1 _ X)k_l .

which confirms the claim that Uy , is Beta(n — k + 1, k)-distributed. In particular,

n—k+1 k
E[Us.] = Y 1-— part (7.5)
E[Ukz,n] _ m—k+1)(n—k+ 2)' 7.6)

(n+Dn+2)

Finally, take p € (0,1) and k(n) = [n(1 — p)] + 1. Then from (7.5) and (7.6) we
find that

1-— 1
E[Uk(n),n]=1—%—>l—(l—p)=p asn — 0o
n
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and further that
nE[(Ukyn — p)’l = p(1 = p) asn — oc. (7.7)

The conclusion now follows from an application of Markov’s inequality together
with (7.7): for every § > 0

P(|Ukyn — | = 8) <8 *E[(Ukyn — )’ ] = 0 asn — oo. 0

But how good is the empirical quantile as an approximation of the true quantile
for finite sample sizes? It turns out that this question can be answered, at least in the
sense that for a given distribution function F' we can express the distribution of the
empirical quantile in terms of F.

Let Y, be the number of sample points exceeding x, i.e., the number of indices
k for which X > x. It follows immediately that Y, is Bin(#n, ¢)-distributed, where
q =P(X; > x) =1— F(x). We have

P(X1, <x) =P, =0),
P(XZ,n =< )C) = P(Yx =< 1)5

P(Xjn =x) =P(Yx = j—1).
Since Fn_’}( () = Xjn(1=p))+1,1, We have found that

[n(1=p)]

P(F,y(p) <x)=P(Y, <[n(1-p) = Y (Z)(l — F(x) F(x)" ™.

k=0

For a given F these probabilities are easily evaluated on a computer. In particular,
we can compute probabilities of the kind

F1(0.95)
P <eg|=Pll—-e<———<1+¢],
F~1(0.95)
i.e., the probability that the relative error is at most . Graphs showing these
probabilities for different sample sizes and distributions can be found in Fig.7.1.
The graph of the density function gives information about the concentration of

the probability mass that is more easily interpreted than the graph of the distribution
function. Differentiating the distribution function of the empirical quantile

F;4(0.95) — F~1(0.95)
F~1(0.95)
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Fig. 7.1 Probabilities P(1 — ¢ < F,f)} (0.95)/F~1(0.95) < 1 + ¢) for ¢ in (0, 0.25) for sample
sizes n = 100, 200, 400, 800 (lower to upper curve), where F is the standard normal distribution
function in the left plot and standard lognormal in the right plot
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Fig. 7.2 Density functions of empirical quantile estimators an)} (0.95) for sample sizes n =
100, 200, 400, 800, where F is the standard normal distribution function in the left plot and
standard lognormal in the right plot

[n(1=p)]

P x(p) =) = XI(QU—FawFuW%

k=0

i.e., the right-hand expression above, gives the density function of the empirical
quantile (assuming that F has a density f'). It is given by

n!
[n(1 = p))i(n —[n(1 = p)] - D!

The graphs of density function (7.8) of the empirical quantile for different sample
sizes and distributions are shown in Fig.7.2.

Now we consider another approach to investigating the accuracy of the empirical
quantile estimator F, }(p) = Xpu(1—p)+1, based on the sample {Xi,...,X,} of
independent copies of X with distribution function F. The approach considered

(1= FOepmPIE ey =Pl £ (x). (7.8)
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here is appropriate for rather large sample sizes n. Here we want to determine the
sample size n required for bounding the root mean square error (RMSE) of the
empirical quantile by 107¢ F~!(p) for some d > 1. More precisely, we want to
determine the smallest integer n such that

E[(Xp—py+10 — F T (p)H? < 1079 F (). (7.9)

From Proposition 6.1 we know that we can represent Xi,..., X, in terms of F
and independent random variables Uy, ..., U, uniformly distributed on (0, 1) as
F~Y(U)), ..., F~Y(U,). In particular, Xjy1—pyj+10 = F ' (Upn(=p)+12)-

Under the assumption that F is differentiable with a density function f we may
use a Taylor expansion of F~! around point p to approximate

Xin=p+1n = F 7 (Up(-pl+1.)

d
=F'(p)+ %F_l(p)(U[n(l_,,Hl,n — p) + remainder term

=F(p)+ — p) + remainder term.

1
W(U[n(l—p]ﬂ,n

If we ignore the remainder term and use (7.6), then we may approximate the mean
square error of the empirical quantile estimator by

1
E [(X[n(l—p)]+l,n - F_l(p))z] ~ W E [(U[n(l—ﬁ)]+l,n - p)Z]
1 p(1—p)

= (7.10)
FET(p)? n

Can we ignore the error term? By Taylor’s formula we find that if f does not vary

that much in a neighborhood of F~'(p), then, as n — oo,

1 p(1—p)

-2
TP + 0.

E[(Xpa—pi+10 — F' ()]

The notation O(n~?) as n — oo means that the remainder term divided by n~2 is
bounded as n — oo.

If we want the bounded RMSE in (7.9) and approximate the mean square error
by (7.10), then we find that the sample size n should be

p(l1—p) 2d
~ 104,
Y R FE () F(p)
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We illustrate the size of n for the exponential and the Pareto distribution. The
following example shows that large sample sizes are required to obtain small relative
errors for the empirical estimator of high quantiles.

Example 7.6 (Bound on the RMSE). Consider an exponential distribution with
F(x) = 1—e for x > 0. Then F~!'(p) = —log(l — p) and f(F~'(p)) =
exp{log(1 — p)} =1—p.If p = 0.99and d = 2 (RMSE of 1% of F~!(p)), then
we need a sample size n such that

P

na 10* ~ 4.7 - 10*.
(1= p)llog(1 = p)I?

Consider a Pareto distribution with F(x) = 1 —x=3 for x > 1. Then F~!(p) =
(1—=p) Y and fF(F'(p)) =301 —p)*>.If p = 0.99and d = 2 (a RMSE of
1% of F~'(p)), then we need a sample size n such that

P

na~ ———10=1.1-10°.
9(1—p)

7.4 Empirical VaR and ES

If X is the value at time 1 of a financial portfolio, then VaR,(X) = F; (1 — p),
where L = —X /R, where R is the return on the reference instrument (a risk-free
zero-coupon bond, say). Given a sample L, ..., L, of independent copies of L, the
empirical estimate of VaR,(X) is therefore given by

VaRp(X) = L[np]+l,n7

where Ly, > --+ > L, , is the ordered sample. Note that @p (X) is simply the
empirical (1 — p)-quantile of Ly.

To compute the empirical VaR estimate from a sample of historical prices, we
first transform the prices into a sample {L,,...,L,} and then compute the VaR
estimate as an empirical quantile. The following example illustrates this procedure.

Example 7.7 (Empirical VaR). Consider a portfolio consisting of long positions in
two different assets, one unit of the first asset and two units of the second asset.
Historical daily prices per unit of the two assets over the last 20 days are given by
S!and S? fort = =20, ...,0. Assume the corresponding pairs of returns

R, = (R, R) =(S!/S |, S?/S* ), t=-19,...,0,
are independent and identically distributed. The value of the portfolio at time O is

given by Vy = S} + 252, and the value at time 1 is V; = S| + 257. Suppose
we want to compute the empirical VaRg o5 estimate of X = V| — VR, where for
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simplicity we set Ry = 1. We may express X as the value of a function evaluated at
the point R;:

X =V Vo= (S —S3) +2(S} -2
= S3(R! — 1) +282(R} — 1) = g(Ry).

Under the assumption that the R;, for r = —19,...,0, are independent copies of
R, we can easily construct independent copies of X by setting Xy = g(R_z+%)
for k = 1,...,20. Setting Ly = —X} and ordering the sample of Ly as L >

- > Lyp20, we compute the empirical estimate of VaRg5(X) as @0,05 (X) =
L200.051+1.20 = L2.20.

Example 7.8 (Thinning versus historical simulation). Suppose today is November
3, 2010, and we have just invested an amount of 100 in the Dow Jones Industrial
Average (DJIA) stock market index. We want to analyze the risk we face from
holding the position over a period of 20 trading days. The value of the position
20 trading days from today is Voy = 100R;:-- Ry, where Rj,..., Ry are
the daily returns over the time period under consideration. We want to estimate
VaR , (V20 — 100) (the effect of interest rates are ignored) based on the 801 historical
index values of DJIA from August 30, 2007 to November 2, 2010.

If the thinning approach in Example 7.2 is used, then we use every 20th value
of the sample of historical DJIA values to obtain the sample { R(_zg, e, R(()ZO)} of
historical 20-day returns. We set

Xe =100(R%) ., —1) and Ly =—X; fork=1,...,40

and estimate VaR , (Va9 — 100) as L40p)+1.40-
If the historical simulation approach in Example 7.3 is used, then we may choose
m = 5,000 in Example 7.3 and use the sample of historical DJIA values to obtain
the sample {RT(ZO), ey R;kéég) } of fictive 20-day returns. We set
*(20)
X =100(R,“ —1) and Ly =-—X; fork=1,...,5000

and estimate VaR , (V29 — 100) as L 5000p]+1,5000-

The left plot in Fig. 7.3 shows the left tail of the empirical distribution function
of X} for the two approaches. Because the thinning approach gives a sample of
small size 40, the staircase shape is pronounced and the tail estimate is unreliable.
The historical simulation approach gives a much smoother, and likely more reliable,
estimate of the left tail of the distribution function of V5o — 100. The right plot in
Fig.7.3 shows the estimates of VaR,(V2 — 100) as a function of p for the two
approaches.

We now present the empirical ES estimator. Recall that the ES at level p of a
portfolio with value X at time 1 is given by
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1 P
ES,(X) = —/ VaR, (X )du.
P Jo

The empirical ES estimator is obtained by simply replacing VaR,(X) by its
empirical estimator @,,(X) = Lijpj+1, Wwhere Ly = —Xy/Roand Ly, > --- >
L, , is the ordered loss sample. This implies

— 1 [P
ESP(X) = —/ L[nu]+1,ndu
0

V4
[np]
1 Lin ( [ﬂP])
» ; n n [np]

If [np] is an integer, then the expression in the last display reduces to the sample
mean of the [np] largest losses. To clarify how one arrives at the expression in (7.11),
suppose that [np] > 2, and notice that in this case

p
/ L[nu]+l,nd’4
0

1/n [npl/n r
/ Ly,du+---+ / Lipyndu + / Lppj+1,ndu
0 (Inpl—1)/n [np]/n

S ELY) +( [np])L
" L.n " [npl.n P n [np]+1.n-

Example 7.9 (Empirical ES). Consider the historical daily prices of two assets
A and B, listed in Table 7.1. You are considering taking a position correspond-
ing to a long position of two units of asset A and three units of asset B.
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Table 7.1 Historical daily prices of two assets A and B

Day -20 —19 —18 —17 —16 —15 —14
Asset A 81.75 81.35 804 81.05 83.35 83.00 83.30
Asset B 81.25 81.00 81.5 81.50 81.85 81.25 8145
Day —13 —12 —11 —10 -9 —8 -7
Asset A 86.0 85.5 84.50 84.00 84.05 8235 8345
AssetB  83.5 83.5 8375 86.00 8575 84.60 83.85
Day —6 -5 —4 -3 -2 —1 0
Asset A 83.50 844 86.9 8590 8255 8375 84.75
Asset B 84.55 84.0 84.3 8475 8535 87.00 85.75

Table 7.2 Sample of X values and corresponding ordered L values

Sample of Xj-values: transformation of historical prices

—-1.62 —0.39 1.37 591 —2.60 1.25 1197 =099 —1.21 591
—-0.65 —6.88 —0.02 2.25 0.15 5.94 —-0.58 —4.79 744 —1.67
Ordered sample of corresponding Ly values

6.88 4.79 2.60 1.67 1.62 1.21 0.99 0.65 0.58 0.39
0.02 -0.15 —-125 -—-137 =225 =591 =591 =594 —744 —1197

To evaluate the riskiness of this investment, you want to compute the empirical
ES estimate ES , (X ), where p = 0.06 and X is the difference between the value of
the position tomorrow and its current value. We may express X as a function of the
vector Ry = (R%, RY) of returns over the next day as

X =V —Vy=2SMR} = 1) +3SZ(R? — 1) = f(Ry).

From Table 7.1 we can compute the corresponding vectors of historical returns. The
function f then transforms these vectors into the sample of Xj values shown in
Table 7.2 (rounded off to two decimal points). Setting L; = — X, and ordering the
Ly gives the ordered sample of L values in Table 7.2. From (7.11) we find that the
ES estimate based on the values [y, > --- > [, , is

[np]

1 lien [np]

— i —— ) n
E:n +(P ) el

p k=1

Here, with n = 20 and p = 0.06 and the values /;, in Table 7.2 we get

! 6'88+(006 0.05)4.79 ) ~ 6.53
0.06 \_ 20 ' R B
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7.5 Confidence Intervals

Suppose we have observations xy, . .., X, of independent and identically distributed
random variables X1, ..., X, from an unknown distribution function F' and we want
to know the value 6 = 6(F) of some quantity that is determined by the unknown
F. Examples include the mean, the variance, some quantile, or some risk measure
that depends on F. We may estimate 6 by the empirical estimator 0 = O(Fu.x)
obtained by computing 6 from F), x instead of F. However, a point estimate is
not meaningful unless we have some way of assessing its accuracy. Since we can
never know whether the observations xi, ..., X, are representative outcomes from
the unknown distribution F', we can never know whether the empirical estimate
gobs = O(F,) based on these observations is close to the true value 8. What we can
do is compute a confidence interval for 6.

Let us first recall what a confidence interval is. Given ¢ € (0, 1), we want to form
a stochastic interval (4, B), where A = f4(X1,...,X,) and B = fp(X1,...,X,)
for some functions f4 and fp such that

P(A<6<B)=gq,

i.e., the stochastic interval (A, B) covers the value 6 with probability ¢. Clearly, we
want ¢ to be close to 1, e.g., ¢ = 0.95, and at the same time we want that the length
of the interval is likely to be small. The interval (a, b), where a = f4(x1,...,Xxy,)
and b = fp(x1,...,Xx,), is a confidence interval for 6 with confidence level g. We
may say that we feel confident at level ¢ that the interval (a, b) covers the value 6.
Note that ¢ is not the probability that the specific interval (a, b) covers 6 (either it
does or it does not), but g is the probability that the procedure generating the interval
will produce an interval covering 6 if fed with a new random sample of the same
size from the same probability distribution. Often we want to find a double-sided
interval so that

P(A<O<B)=q, P(A>0)=PB <0)=(1-q)/2.

Since F is unknown, we do not know the functions fy4, fp, but we can construct
approximate confidence intervals. If § is a quantile of F,i.e., & = F~!(p), then we
can actually find exact confidence intervals for 6, but not for arbitrary confidence
levels g.

7.5.1 Exact Confidence Intervals for Quantiles

Suppose we have observations xi, ..., x, of outcomes of independent and identi-
cally distributed random variables X1, ..., X;, with common unknown continuous
distribution function F. Suppose further that we want to construct a confidence
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interval (a,b) for the quantile F~!(p), where a = f4(x1,...,x,) and b =
fB(x1,...,x,) such that

P(A<F'(p)<B)=¢q, P(A=F ' (p)=PB=<F(p)=(10-9)/2,

where ¢ is a confidence level, A = f4(X;,...,X,), and B = fp(Xy,..., X,).
Since F is unknown, we cannot find a and b. However, we can look for i > j and
the smallest ¢’ > ¢ such that

P(Xin < FH(p) < Xjn) =4,

PXin > F ' (p) <(1—q)/2, PX;u<F ' (p)=l-gq)/2. (112

It remains to compute the probabilities in (7.12). Let Yp—1(,) be the number of
sample points exceeding F~!(p), i.e., the number of indices k for which X; >
F~!(p). It follows immediately that Yp—1(p) is Bin(n, r)-distributed, where r =
P(X;y > F~'(p)) = 1 — F(F~'(p)). From Proposition 6.1 we know that the
continuity of F implies that F(F ' (u)) = uforall u € (0, 1). In particular, Yie—1(p
is Bin(n, 1 — p)-distributed. The probabilities in (7.12) are easily expressed in terms
of the probabilities of Y1, which are very easily computed (with the assistance
of some appropriate software). We have

P(X1, < F'(p)) = P(Yp-i(,) = 0),
P(Xs, < F7'(p)) = P(Yp1p) < 1),

P(Xjn < F7'(p) =P(Yp—1py < j — D).

Similarly, P(X;,, > F~'(p)) =1— P(Yp-1(,) <i—1). We may now can compute
the probabilities P(X;, < F~'(p)) and P(X;,, > F~'(p)) for different i and j
until we find indices that satisfy (7.12).

Example 7.10 (Exact intervals for quantiles). Suppose we have a sample
{X1,..., X0} of independent and identically distributed random variables with
common unknown continuous distribution function F' and we want a confidence
interval for F~1(0.95) with confidence level ¢’ ~ ¢ = 0.95. Since Yr—1(0.95) 18
Bin(200, 0.05)-distributed, we find that

P(X5.00 < F7'(0.95)) = P(Yr—1(95) < 4) &~ 0.0264,
P(Xi7200 > F~'(0.95)) = 1 — P(Y—1(9.05) < 16) ~ 0.0238.

Therefore, P(Xn’zo() < F_l (095) < X5’200) % 0.95, SO ()C17’200, )C5’200) is a
confidence interval for F~'(0.95) with a confidence level of approximately 95%.
The length of the confidence interval depends on the sample points, which in turn
depends on the unknown distribution function F. Figure 7.4 shows 100 outcomes
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Fig. 7.4 Each plot shows empirical confidence intervals (x7.200. X5.200) for F~1(0.95) with
confidence level 95% for 100 samples of size 200. Left plot: empirical confidence intervals for
F the standard normal distribution; right plot: for F the standard lognormal distribution function

(x17.200, X5.200) of the empirical confidence interval for F~!(0.95) for F standard
normal (left plot) and for F standard lognormal (right plot). Notice that the 25th
confidence interval for the lognormal F says that if we had the 25th lognormal
sample, then we could only say that we are rather sure that the 95% quantile of
the unknown distribution lies somewhere between 4 and 11.8. This illustrates the
difficulty of accurately estimating quantile values.

7.5.2 Confidence Intervals Using the Nonparametric Bootstrap

For quantiles we have seen how to construct exact confidence intervals. However,
for risk measures, which unlike VaR are not simply quantile values, and for other
quantities such as moments and loss probabilities this approach does not work.
We will here investigate a useful method for constructing approximate confidence
intervals called the nonparametric bootstrap method.

Suppose we have observations xi, ..., x, of independent and identically dis-
tributed random variables Xi,..., X, and we want to estimate some quantity
0 = O(F) that depends on the unknown distribution F of Xj. For instance, 0
could be the p-quantile & = F~!(p) giving /9\0[,5 = X[p(1—p)]+1.» Or the mean
0 = [ xdF(x) giving /9\01,5 = (x1 +---+ x,)/n. We want to construct a confidence
interval for 8 with confidence level g.

If F were known, we could compute the value 6 analytically or approximate it
numerically. Alternatively, we could simulate a large sample from F to approxi-
mately compute 6 as the empirical estimate. The problem here is that we do not
know F and we only have one sample {xi, ..., x,} of size n from F.
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One way to produce more samples is to randomly draw with replacement n times

from the set of observations xi,...,x, to produce a sample {X,..., X,;}. The
sample points X are independent and F,,-distributed (uniformly distributed on the
set of the original observations xj, ..., x,). Some of the X ]:‘ are likely to be equal,

even if the x; are all different. The probability that X7 # X forall j # k is
very small; the probability that none of the xis is drawn twice among the n tries is
n!/n". Write F," for the empirical distribution of X, ..., X)* and o* = O(F)) for
the estimate of 6 based on the sample {X[*,..., X*}. Even though { X[, ..., X} is
not a sample from F', it has most of the characteristics of a sample from F as long
as n is sufficiently large. In particular, the probability distribution of 0* is likely
to be close to the probability distribution of 6. Whereas the probability distribution
of § is unknown (since F' is not known), the probability distribution of 9* can be
approximated arbitrarily well by repeated resampling N times for N large enough.

An approximative confidence interval /g, for 6 of confidence level ¢ using the
nonparametric bootstrap method is constructed as follows.

e Foreach j inthe set {1,..., N} draw with replacement n times from the sample
{X1,...,X,} to obtain the sample {Xl*(j), ey Xn*(j)} and the corresponding
empirical distribution function F,,*(j ).

e Compute the estimates 5;‘ = G(F,,*(j ) ) of 6 and the residuals R;‘ = gobs —aj for
j=1,...,N.

¢ Form the interval

To.g = (Bobs + Riy(14g)/2141.8+ Oobs + Riva—g)/2141.8)-

where Ry y > .-+ > R} y is the ordering of the sample { R}, ..., R} }.

Why is the interval /g, a reasonable approximative confidence interval for 6?7 Here
is one way of motivating the procedure.
Let G denote the distribution function of & — 6. Then

g=PG((1-9)/2)<0-0<G((1+9)/2)

=PO+G '(1-¢)/2) <0 <0 +G'((1+q)/2)).

Therefore, (Bops + G~ (1 —q)/2), Bops + G~ ((1 +¢)/2)) is a confidence interval
for 6 of level g. The problem is that we do not know the distribution function G.
The success of the bootstrap relies on the validity of the bootstrap principle,
which says that G can be well approximated by the empirical distribution G}, of
RY,..., R%. Then the quantiles G™'((1 — ¢)/2) and G~!((1 + ¢)/2) can be well
approximated by the empirical counterparts Ry 442415 a4 Riyi_g) 241.x°
which leads to the interval Ig,. We need n to be sufficiently large to make it
plausible that the bootstrap principle holds so 6 —fand /9\01,5 —0* are approximately
equally distributed. This requirement is investigated in the following example.
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Example 7.11 (Bootstrap intervals for quantiles). Suppose we want to construct
confidence intervals for & = VaRgo5(V; — Vo), where Vj and V; are respectively
the current value and the value tomorrow of a long position in some stock index.
Since the time period here is only 1 day, we ignore the impact of interest rates. We
may express V; in terms of the return R, of the stock index as V| = VR, and we
assume that log R; is normally distributed with zero mean and standard deviation
0.01. For simplicity we also assume that Vjy = 1. This implies that

VaRoos(Vi — Vo) = Fy; Ly, (0.95) = Vo(1 — Fg,'(0.05)) ~ 0.016314.

In reality we would not know with certainty the return distribution or, therefore, the
value of VaRgos(V; — V). However, we may—under the right circumstances—
believe that the past n index returns can be seen as sample points from the
distribution of the future return R; and in that case transform the historical returns
into outcomes /1, ...,I, of Ly, ..., L, that are independent copies of L = Vy — V.
The problem we investigate here is how to construct and evaluate confidence
intervals for F;1(0.95) given the sample {/y, ..., ,}. We have already seen how we
can construct confidence intervals for quantiles, and this approach is applicable here
since VaRgos(Vi — Vo) = F| 1(0.95). However, the aim here is to investigate the
nonparametric bootstrap approach to construct approximative confidence intervals
and evaluate it by comparing it to the approach for quantiles.

Recall that the accuracy of the nonparametric bootstrap approach for constructing
confidence intervals is likely to be good if 6 — '9\, where 0 = Lio.051)+1,1> and
gobs — 0* have approximately the same probability distribution. The upper left plot
in Fig. 7.5 shows a histogram from 2,000 simulations of 6 — 6. The upper right and
middle plots in Fig. 7.5 show histograms of 2,000 bootstrap simulations of gobs —6*
based on resampling from three different outcomes of Ly, ..., Lsy. Based on these
plots, we definitely see a resemblance between the distribution of ¢ —/9\ and /9\0]35 —o* s
but it is clear that much information has been lost in the bootstrap world. One might
suspect that increasing the number N of resampling runs could improve things. The
middle left and lower left plots show bootstrap simulations of gobs — 0* based on
the same sample {/1, ..., [500}, where the number N is 2,000 for the middle left plot
and 10,000 for the lower left plot. The same comparison is shown in the middle right
and the lower right plots but based on another sample {/1, . .., [500}. We observe that
increasing the number N of bootstrap simulations to a very large number does not
improve things much.

Finally, we compute 50 confidence intervals for 6 of confidence level 0.95 with
the exact method (left plot in Fig. 7.6) and with the nonparametric bootstrap method
(right plot in Fig. 7.6). We observe that the results are very similar. The differences
among the confidence intervals are to a much greater extent due to the differences
among the 50 outcomes of the random sample {L1, ..., Lso} than to the particular
method used. We conclude that here the bootstrap method performs rather well.
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Fig. 7.5 Upper left plot: histogram of 2,000 outcomes of 6 — 6 based on 2,000 outcomes of
{L1, ..., Lsy}. Each of the remaining plots shows centered bootstrap estimates 90bs — 6~ Upper
right and middle plots: histograms based on N = 2,000 resampling runs for three different
outcomes of the sample {L1, ..., Lso}. Middle and lower left plots: based on the same original
sample, the number of resampling runs is 10,000 for the lower left plot instead of 2,000. Similarly
for middle and lower right plots
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Fig. 7.6 Each plot shows 50 confidence intervals for VaR os(V; — V) based on simulated samples
of size 500. Left plot: result for the exact method for quantiles; right plot: result for nonparametric
bootstrap method

7.6 Bootstrapping in Nonlife Insurance

This section is devoted to an application of the nonparametric bootstrap in an
insurance context. Consider a nonlife insurer who is about to quantify risk with
a l-year horizon. The risk is quantified in terms of a solvency capital requirement
(SCR). The SCR is, as in Example 6.1, given by

SCR = p(A; — AgRo — L1 + LoRy),

where time is measured in years, Ay and A; are the values of the assets at times
0 and 1, Ly and L; are the values of the liabilities at times O and 1, and p is a
risk measure, e.g., VaR or ES. To compute the SCR, the insurer must determine the
distribution of A; — L{—the value of the assets minus the value of the liabilities
1 year from now.

To compute Ly, the current value of the liabilities, the insurer adopts a claim
reserving technique called the chain ladder, which will be explained below. Ly con-
sists of two parts: the value of the outstanding payments of incurred but not yet
settled claims and the total value of the payments due to claims that will occur over
the next year. The current value of the liabilities is computed as the sum of the
discounted predicted future payment amounts.

7.6.1 Claims Reserve Prediction Via the Chain Ladder

The prediction of the future payment amounts is based on a historical record of
paid claims. It is assumed that all claims that occurred at least n + 1 years ago
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Table 7.3 Above: observed upper triangle of paid claims; below: unobserved
triangle of outstanding claims

Development year

Origin 0 1 2 v on—1 n
—n—1 C—n—l,O C—/l—l,l C—/1—1,2 te C—/l—l,/l—l C—n—l,n
—n C—n,O C—/l.l C—/l.Z te C—/l.n—l
-2 C_sp C
—1 C_10
0

Development year
Origin 0 1 2 e on—1 n
—n—1
—n Cfn,n
—n+1 C—/l-i-l,/t—l C—n-‘rl,n
—1 C_11 C_ia s Coppm Coian
0 Coo Co Coa o Con—m Con

are completely settled, but all claims that occurred at most n years ago are not
completely settled. The historical record of paid claims is displayed in the form of
a claims triangle. The triangle of paid claims, called the upper triangle, displays on
each row the amounts of paid claims for claims incurred with the same origin year.
The columns represent the development years—the difference between the year a
claim was settled and the year it was incurred. The entry C_j ; represents the amount
paid for claims that were incurred in year —k and paid / year later, in year —k + [,
for!/ =0,...,k — 1. The upper triangle is illustrated in the top half of Table 7.3.

The insurer relies on the assumption that the payment pattern over the develop-
ment years is repetitive. Even if the number of accidents and claim amounts may
differ significantly from year to year, the payment patterns over the development
years look similar. Based on this assumption the upper triangle of paid claims
can be used to predict unobserved future payments. The unknown future payments
are represented in the lower triangle of outstanding claims, with entries C_x; for
I =k,...,n. The lower triangle is illustrated in the bottom half of Table 7.3.

To formulate the idea that the payment patterns are repetitive, one possibility,
which is the one we follow here, is to assume a multiplicative structure for the
cumulative claims. Consider, fork = 1,...,n + 1l and/ = 0,...,k — 1, the
cumulative amounts paid for claims that occurred in year —k,

/
D_y; = Z Ckj.
=0

Suppose the expected cumulative payments can be written as

E[D—k,l+1] = E[D_k,l]f/, [=0,...,n—1,
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where f, ..., fy—1 are called development factors. Then the expected amounts paid
are given by

E[C—k o] = E[D—k ],
E[C_k] = E[D—; — D— 1] = E[C—x ol fo - fima(fi-=1 = 1), [ =1,...,n.

A simple model for C_y ; is obtained by assuming that the observed payments have
the representation C—x; = E[C_x;]R—,, where {R_x}} ,_, are independent and
identically distributed with E[R_; ;] = 1.

A standard method for predicting the lower triangle (outstanding claims) is called
the chain ladder method. In the chain ladder method, the development factors are
estimated by

n+1
~ i, D
fl:w, [=0,....,n—1. (7.13)

k=i+2 Dk

The expected amounts of paid claims, E[C_k;], in the upper triangle can be
estimated by

D_ji—1

Coio=Dogo= =21, (7.14)
Soooi fr—
s =~ =~ D_j k- 1
Copy=D_yy =Dy = =21 (1 - = ) (7.15)
Ji-o fr— fi-1
fork=1,...,n+ 1,1 =1,...,k — 1, and the residuals are computed as
C_
R_ ) = = k’l, k=1,....n+1,1=0,...,k—1.
C i

The predictions for the unobserved cumulative claim amounts in the lower triangle
are given by

Doty =D—gsr frmr f1m1 (7.16)

for k = 1,....,n and | = k,...,n. The corresponding predictions for the
unobserved future payments in the lower triangle are

6—k,l = ﬁ—k,l+l - ﬁ—k,l- (7.17)

The last row in the lower triangle of outstanding payments, corresponding to k = 0,
represents amounts for claims that will occur during the next year. Therefore, it does
not contain any observations in the upper triangle and cannot be predicted with the
standard chain ladder. We will predict this row by predicting the initial payment
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Dy by the mean of the predictions for the previous years and then apply the chain
ladder method for the predictions of Dy, for [ > 1. More precisely, the predictions
for the last row may be constructed as follows:

- e N PPN
Do,o=,,+qZZi1A o Doy = Doofo-+ fi-1.

Soefr—2’

Co0 = Doy, Coi = Dos+1— Doy.

When the prediction of all future payments é_k,,, k=0,....n,l =k,...,n,is
completed, the present value L of the outstanding claims is computed as

n

n
Lo = Z Z /C\_k,[e_rl_""“(l_k"'l),

k=01=k

where rT = (ry,...,r,) is the vector of current zero rates.

Attime 1, new information is available as the values of the diagonal entries C_y
for k = 0,...,n, are observed. The value L of the liabilities at time 1 will be
computed similarly to L. First, the new observations C_ x, for k = 0,...,n, are
entered into the upper triangle of observed payments. Then, the development factors
are updated by

n+1
2 _ Zk=l+1 D41 _
i W forl—O,...,n—l,
k=1+1"—kl
and the predictions, denoted by C c® _.» are updated accordingly by entering the
updated development factors in (7.16) and (7.17). Assuming the zero rates at time 1
are r + Ar, the value of the liabilities at time 1 can be expressed as

L, = Zc_kk.q_z Z C(l) —(r1—k+An—)1—k)

k=0I1=k+1

Note that L; is completely determined by the random variables C_x 4, for k =
0,...,n,and Ar, all observed at time 1.

To protect the value of the liabilities against changes in the zero rates, it is
assumed that the insurer has purchased a bond portfolio. Rewrite the current value
of the liabilities by summing along the diagonals as

n+1 [n—m+1

Lo=)Y | > Copujmnyy [

m=1 \ j=m—1
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Then we see that a good choice of the bond portfolio is obtained by buying

~

Z;’;’:’nﬂ C _(n—j—1),j zero-coupon bonds with maturity m years from now. If the
zero rate changes are independent of the claim amounts C_y y, for k = 0,...,n,
then this bond portfolio is the quadratic hedge of the value of the liabilities at time 1.

To compute the SCR, we need to apply the risk measure p to the quantity
Ay — AoRo — L1 + LoRy. Under the assumption that 4y = Ly, it is sufficient to
consider the distribution of 4| — L. If the true development factors were known, the
distribution of L could be sampled by sampling the diagonal elements C_j x, for
k = 0,...,n, updating the prediction of the lower triangle, sampling the zero rate
changes Ar, and computing the outcome of L by discounting the future payments
in each simulated scenario. When adopting an empirical approach, the diagonal
elements are sampled by sampling the residuals R_j x, for k = 0, ..., m, from the
empirical distribution of the residuals and putting C_; ; = C —kk R—k k. Similarly,
the zero rate changes may be sampled from the empirical distribution of historical
zero rate changes.

A problem with the empirical approach is that it does not account for parameter
uncertainty in the development factors. The development factors, used for predicting
the diagonal means C —k k> are not known but merely estimated from the upper
triangle. Since the amount of data is rather limited, the parameter uncertainty may
be substantial. To account for the parameter uncertainty, a bootstrap procedure can
be implemented as outlined below. The algorithm below generates a sample from
the so-called predictive distribution of A; — L, in which the parameter uncertainty
is taken into account. The input to the algorithm is an upper triangle of amounts
paid, as in the left table in Table 7.3. The algorithm proceeds as follows.

1. Compute the estimates ?0, cee ?,,_1 of the development factors by (7.13).

2. Compute the estimates 6_/(,1 of E[C_y ] fork =1,...,n+1,1=0,...,k—1,
by (7.14) and (7.15).

3. Compute the residuals R_;; = C_k,//a_k,/, fork = 1,....n 4+ 1,1 =
0,....,k—1.

4. For each bootstrap iteration, j = 1, ..., N, repeat the following:

(a) Draw with replacement bootstrapped residuals R*, ,, fork = 1,...,n + 1,

[ =0,...,k—1, fromthe set {R_;;, k = 1,....n+1,1 =0,....k—1}.

*

(b) Compute a bootstrapped upper triangle with entries C*; ; = C k.l Rfk’[ for
k=1,....n+1,1=0,....k—1.

(c) Compute the development factors f*,..., f,*, of the bootstrapped upper
triangle as in (7.13). R
(d) Compute one-step predictions ka’k, for k = 0,...,n, using the boot-

strapped upper triangle.
(e) Draw with replacement the outcomes of diagonal residuals R*} ,, for k =
0,...,n,fromthesetofresiduals {R_;;,k = 1,...,n+1,1 =0,...,k—1}.
(f) Add the diagonal C_*,f’k = ka’kRi;k, for k = 0,...,n, to the boot-
strapped upper triangle to form a sample of the upper triangle at time 1.
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Table 7.4 Current zero rates used in Example 7.12

Maturity (years) 1 2 3 4 5 6 7 8 9 10
Zero rate (%) 082 157 216 254 282 304 323 337 349 358

(g) Compute the development factors }’\3*, s AZL of the upper triangle at
time 1. R
(h) Compute the predictions Cf’}‘d, fork =1,...,n,l =k,..., n,forthe lower

triangle at time 1.

(i) Draw one outcome Ar of zero rate changes from the set of historical zero
rate changes.

(j) Compute the value of the liabilities at time 1 as

n n—1 n
L, = Z j/t,k + Z Z Ci’]“(,le_(rlfk"rAr[—k)(l_k'f'l)

k=0 k=01=k+1

and the value of the bond portfolio as

n n—1 n
Ar = Zc—k,k + Z Z C_y e~ 1—FAm-)U=k+D)
k=0 k=01=k+1

and store the difference A1 — L;.

Example 7.12 (Sampling from the predictive distribution). Consider a nonlife in-
surer with upper triangle of paid claim amounts as in Table 7.5. The claims are
assumed to be completely settled 9 years after the incident year. The objective
is to determine the predictive distribution of the value of the assets minus the
value of the liabilities, A; — L, 1 year from now. The bootstrapping algorithm
outlined above is run. A historical sample of quarterly zero rate changes serves as
the basis for generating annual zero rate changes Ar. Each annual zero rate scenario
is constructed by sampling four quarterly scenarios, with replacement, and adding
them up. The current zero rates are given in Table 7.4.

A histogram of N = 10,000 samples from the predictive distribution of A; — L;
is given in Fig. 7.7.

7.7 Notes and Comments

An introduction to the bootstrap and related resampling procedures, including
statistical applications, is given in the classic book [11] by Bradley Efron and Robert
Tibshirani.

Stochastic claims reserving techniques, extending the chain ladder, have been
developed in the actuarial literature in recent decades by Thomas Mack [28] and
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Fig. 7.7 Histogram in
Example 7.12 for predictive
distribution of the value of
assets minus the value of the
liabilities in 1 year from now

T T T T T 1
—1.5e+07 —5.0e+06 0.0e+00 5.0e+06 1.0e+07

many others. A comprehensive treatment of such techniques is the book [46] by
Mario Wiitrich and Michael Merz. Our approach to bootstrapping the chain ladder
method is a slight variation of the method presented by Peter England and Richard
Verrall [14]. The upper claims triangle in Table 7.5 used in Example 7.12 originates
from a paper by G.C. Taylor and FR. Ashe [45].

7.8 Exercises

Exercise 7.1 (Empirical VaR). A unit within a bank is required to report an
empirical estimate of VaR;(X ), where X is the portfolio value the next day from
its trading activities. The empirical estimate @0.01 (X) is based on market prices
from the previous n 4 1 days that are transformed into a sample of size n from
the distribution of X and the sample points are assumed to be independent and
identically distributed. Compute the probability

P (@0,01 (X) > VaRy o (X)>

as a function of n and determine its minimum and maximum for # in {100, . . ., 300}.

Exercise 7.2 (Empirical tail conditional median). The tail conditional median
TCM,(X) = median[L | L > VaR,(X)], where L = —X /Ry, has been proposed
as a more robust alternative to ES,(X) since TCM,(X) is not as sensitive as
ES, (X) to the behavior of the left tail of the distribution of X.

Let Y have a standard Student’s ¢ distribution with v degrees of freedom, and set
X = %Y _1. Consider the empirical estimators TCMy 5 (X) and ESg 05(X) based
on a sample of size 200 from the distribution of L = —X. Generate histograms
based on samples of size 10° from the distributions of @0,05 (X) and l:lgo.os(X )
forv =2and v = 10.
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Exercise 7.3 (Empirical expected shortfall). Let {Z;,...,Z,} be a sample of
independent and identically distributed historical log returns that are distributed as
the log return log(S7/So) of an asset from today until time 7" > 0. Show that if
the risk-free return over the investment period is 1, then the empirical estimator of
ES, (St — So) is given by

1 n
min—c + — Y (¢ + So — Soe“)I{Z < log(1 + ¢/So)}.
¢ np k=1

Exercise 7.4 (Empirical spectral risk measure). Let {Z,...,Z,} be a sample
of independent and identically distributed historical log returns that are distributed
as the log return log(S7/Sy) of an asset from today until time 77 > 0. Show that
if the risk-free return over the investment period is 1 and if py is a spectral risk
measure with risk aversion function ¢, then the empirical estimator of py (S7 — So)
is given by

n (n—k+1)/n
So(l — Zq&kez’”’), where ¢ = / ¢w)du.
k=1 (n—k)/n
Project 7 (Total returns). Consider a 5-year investment in a portfolio of dividend-
paying stocks. The yearly portfolio returns S,+;/S; and dividends D, 4 paid at time
t 4 1 are modeled as

Sitt = M 02Xt 4nq D+ — 0.05¢0:057/2+0.05Y 1,
S[ St : 5

where X1,..., Xs5,Y1,..., Y5 are independent and standard normally distributed.

(a) Consider the value in 5 years of investing $1 million in a portfolio of stocks and
reinvesting the dividends in the portfolio of stocks. Determine the function f
such that the value V5 in 5 years of the investment strategy can be expressed as
V5 = f(,LL,Xl,...,Xs,Yl,...,Y5).

(b) Simulate a sample of suitable size from the distribution of (X,..., X5,
Y1,...,Ys) and use this sample to determine the empirical distribution of Vs
for a range of values of the parameter p. Estimate the smallest value of pu for
which the probability that Vs exceeds the value in 5 years of an investment of
$1 million in a 5-year zero-coupon bond with zero rate 5% per year is 0.75.

Project 8 (Pension savings). Consider a yearly investment of $1,000 in long
positions in a portfolio of stocks and a risk-free, 1-year, zero-coupon bond over
a 30-year period. The yearly returns on the portfolio of stocks in year k is modeled
as Ry = e* 9%k where Z; is standard normally distributed. The yearly returns are
assumed to be independent. The yearly return on the risk-free bond is assumed to
be ¢*0!. The fraction of the yearly amount invested in the portfolio of stocks at the
beginning of year k is p(1 — c¢(k — 1)/30), where p, ¢ € [0, 1].
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(a)

(b)
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Determine a function f such that the value of the pension savings in 30 years
can be expressed as Vo = f(u,0, p,¢c, Z1,..., Z30).

Simulate a sample of suitable size n from the distribution of (Z1, ..., Z3p) and
use this sample to determine the empirical distribution F;, of V3 for a range of
values of the parameters i, 0, p, c.

Set w = 0.06 and 0 = 0.2 and investigate the effects on the empirical
distribution F,(p,c) of V3o of varying p and c. Suggest a suitable criterion
for selecting the optimal empirical distribution F,(p,c) and determine the
optimizer (p, c).
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