
Chapter 7
Empirical Methods

In this chapter we consider a modeling approach that uses a set of historical data,
such as bond prices, share prices, claim sizes, or exchange rates, to model the value
at a future time T > 0 of portfolios whose values depend on a given set of assets and
possibly also liabilities. Here we want the data to speak for themselves in the sense
that the model for the future values should only be based on information available
in the given historical data samples. The assumption we make is therefore that the
information in the samples is representative of future values and that no additional
probability beliefs of the modeler are relevant.

Historical share prices S�n; : : : ; S0 of a stock over the last nC1 time periods are
not necessarily good representatives of possible values for the future share price S1.
But the sample of historical returns R�k D S�kC1=S�k, for k D n � 1; : : : ; 1,
may be assumed to be a good representative of possible values for the future
return R1 D S1=S0 over the next time period. Similarly, the historical zero
rates r�n; : : : ; r0, corresponding to a given time to maturity, may be transformed
into zero rate changes r�kC1 � r�k, for k D n � 1; : : : ; 1, that can be viewed
as good representatives of the possible zero rate change r1 � r0 over the next
time period. If we believe in this approach, then appropriate transformations of
the historical samples produce samples of the random values, e.g., returns, that
determine the future portfolio values. If the generated sample of returns or value
changes can be viewed as samples from independent and identically distributed
random variables, then standard statistical techniques can be used to investigate the
probability distribution of future portfolio values, expressed as known functions of
future returns or value changes.

In this chapter, we will investigate this approach to modeling the future.
This is a subjective approach just as any other approach (such as assigning a
parametric probability distribution to the future portfolio value). However, it is fully
nonparametric and is a reasonable approach if we believe that the mechanism that
produced the returns in the past is the same as the mechanism that will produce
returns in the future, even if the mechanism is unknown to us.
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198 7 Empirical Methods

The first topic of this chapter is how to turn historical prices into a sample from
the distribution of the future portfolio value under the assumption that returns over
the next time period will be similar to those returns. This material is presented in
Sect. 7.1. In Sect. 7.2 we consider the empirical distribution, which is the probability
distribution derived from a data sample. The quantile function of the empirical
distribution is the empirical quantile studied in Sect. 7.3. The main objective in
these two sections is to investigate how the accuracy of empirical probabilities
and quantiles, relative to the true unknown quantities they are measuring, varies
with the sample size and characteristics of the unknown distribution from which the
sample of observations is generated. Empirical distributions and quantiles provide
natural estimators of value-at-risk (VaR) and expected shortfall (ES), which are
presented in Sect. 7.4. Point estimates of risk measures are not particularly useful
unless they are accompanied by estimates of their accuracy. Therefore, we analyze
in detail methods for constructing confidence intervals for the quantities estimated
by empirical estimators. In Sect. 7.5, we present a method for constructing exact
confidence intervals for quantiles and a method for constructing approximative
confidence intervals using the nonparametric bootstrap procedure. The latter method
is further studied in Sect. 7.6, which deals with the uncertainty in estimates for
solvency capital requirements for a nonlife insurer.

7.1 Sample Preparation

Denote the current time by 0, and consider a future time that we call time 1. Let V1

be the random value of some portfolio at time 1 that we can express as a function
of the vector S1 of asset prices at time 1. For the sake of clarity of presentation we
take S1 to be the share prices of some stocks. It is assumed that we have access to
a sample fS�n; S�nC1; : : : ; S0g of vectors of historical prices from the n previous
equally spaced points in time (e.g., days, weeks) and from the current time. It is
clear that the sample points may be strongly dependent (the share price on any
given day is strongly dependent on the previous day’s price). Moreover, it is likely
that the asset prices S�k , from k time periods ago, are quite different from what can
be anticipated for S1, at least if k is large. The sample of historical asset prices may,
however, be transformed into a sample of vectors of returns R�nC1; : : : ; R0, where

R�k D �
R1�k; : : : ; Rd�k

�T
with Rl�k D Sl�k=Sl�k�1

for k D 0; : : : ; n � 1, and l D 1; : : : ; d . It is often reasonable to assume, supported
by statistical analysis, that the points of the sample fR�nC1; : : : ; R0g are weakly
dependent and close to identically distributed and have distributional characteristics
that are representative also for R1, the vector of percentage returns for the next
time period. The portfolio value at time 1 is V1 D f .R1/ for some function f that
depends on information available at time 0 such as the current asset prices S0. Then
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the sample fR�nC1; : : : ; R0g of return vectors can be transformed into the sample
ff .R�nC1/; : : : ; f .R0/g from the probability distribution of V1 D f .R1/. If the
vectors in the former sample are approximately independent copies of R1, then the
vectors in the latter sample are approximately independent copies of V1.

The transformation of historical prices into historical returns is not essential for
the sample preparation scheme to work. Returns could, for instance, be replaced
by something else, such as price differences. The essential point is that the original
sample fS�n; S�nC1; : : : ; S0g is transformed into a sample fZ�nC1; : : : ; Z0g, which
in turn could be transformed into a sample ff .Z�nC1/; : : : ; f .Z0/g whose points
may be viewed as independent copies of the future portfolio value V1. This situation
is the desired starting point for statistical analysis. From a sample of independent
and identically distributed random variables drawn from the unknown probability
distribution of V1, statistical methods can be applied to investigate the probability
distribution of the future portfolio value V1.

The approach presented for generating a sample from the probability distribution
of the future portfolio value is based on the assumption that changes in values in
the past contain relevant information for assessing the probability distribution of
changes in value from now until the future time we are considering. Determining
the extent to which this assumption is reasonable requires some serious thinking.
Big changes in the legal or political environment, monetary policies of governments
or central banks, or other events may make it hard to justify this assumption.

Throughout the book we write fS�n; S�nC1; : : : ; S0g for the random vectors of
historical prices (and similarly for the sample of returns) and s�n; s�nC1; : : : ; s0 for
the actual observations of the historical prices. The following example illustrates the
sample preparation approach.

Example 7.1 (Sample preparation). Consider a portfolio consisting of long posi-
tions in two different assets, one unit of the first asset and two units of the second
asset. The daily prices per unit of the two assets over the last 20 days are given by
S1

t and S2
t for t D �20; : : : ; 0. Suppose the corresponding pairs of returns

Rt D .R1
t ; R2

t / D .S1
t =S1

t�1; S2
t =S2

t�1/; t D �19; : : : ; 0;

are independent and identically distributed. If V1 is the value of the portfolio at
time 1, then

V1 D S1
1 C 2S2

1 D S1
0

S1
1

S1
0

C 2S2
0

S2
1

S2
0

D S1
0 R1

1 C 2S2
0 R2

1 D f .R1/;

where f .x; y/ D S1
0 x C2S2

0 y. The random variables ff .R�20C1/; : : : ; f .R0/g can
be viewed as a sample of independent copies of V1.

It may happen that we have access to daily historical prices and want to use the
data to investigate the probability distribution of the value of a portfolio a week
(month or year) from now. Then there are different options available. Consider the
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sample fS�n; S�nC1; : : : ; S0g of vectors of historical prices and suppose we want to
investigate the distribution of VT , where T > 1. We assume that the original sample
can be transformed into a sample fR�nC1; : : : ; R0g of vectors of returns such that the
vectors are approximately independent copies of R1 and that VT D f .R1 � � � RT /,
where R1 � � � RT is interpreted as componentwise multiplication and R1 � � � RT is the
vector of returns over the next period of length T .

Example 7.2 (Thinning of the sample). One way of obtaining a sample of vectors
of returns over time periods of length T would be to start with the sample
fS�T Œn=T �; : : : ; S�T ; S0g and set

R.T /

�k D ..R.T //1�k; : : : ; .R.T //d�k/T with .R.T //l�k D Sl�T k=Sl�T .kC1/

for k D 0; : : : ; Œn=T � � 1, and l D 1; : : : ; d . Here Œy� denotes the largest integer
smaller than or equal to y, i.e., Œy� D maxfk 2 N W k � yg. The sample
fR.T /

�Œn=T �C1; : : : ; R.T /
0 g is a sample of vectors of returns over nonoverlapping time

periods of length T . If these return vectors are independent copies of R1 � � � RT ,
then f .R.T /

�Œn=T �C1/; : : : ; f .R.T /
0 / are independent copies of VT . The problem with

this approach is that much of the possibly relevant information in the original sample
fS�n; S�nC1; : : : ; S0g is ignored and the sample size is reduced from n to Œn=T �.

Example 7.3 (Historical simulation). An approach that, unlike the approach in
Example 7.2, uses the entire original sample is to draw with replacement T vectors
from the sample fR�nC1; : : : ; R0g and form the componentwise product of these
vectors, denoted by R�.T /

1 . Repeat the procedure m times to obtain the sample

fR�.T /
1 ; : : : ; R�.T /

m g of fictive return vectors over time periods of length T . If the
original return vectors R�nC1; : : : ; R0 are independent and identically distributed,
then the vectors R�.T /

1 ; : : : ; R�.T /
m are identically distributed but not independent

since some of the random indices may take the same index value, but they are
conditionally independent given R�nC1; : : : ; R0.

The sample ff .R�.T /
1 /; : : : ; f .R�.T /

m /g is a sample of size m, where the sample
points are approximately distributed as VT . This approach to generating a sample
from the distribution of VT is called a historical simulation. On the one hand, all
the original sample points are used and the sample size m can be chosen arbitrarily
large. On the other hand, the original return vectors appear as factors in more than
one of the fictive return vectors R�.T /

k , so there may be substantial redundancy in the
constructed sample of return vectors over periods of length T .

7.2 Empirical Distributions

Consider observations x1; : : : ; xn of independent and identically distributed
d -dimensional random vectors X1; : : : ; Xn with a common unknown distribution
function F.x/ D P.X � x/, where X is an independent copy of Xk and X � x is
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interpreted as an inequality for all the components; X � x if and only if Xj � xj

for j D 1; : : : ; d . Suppose that we want to compute some quantity � D �.F / that
depends on F , for instance, the mean, the variance, a quantile, or a risk measure.
It is impossible to compute � since F is unknown, but the observations x1; : : : ; xn

allow us to approximate the unknown distribution by that obtained from assigning a
probability weight 1=n to each of the xk. That is, approximating the unknown F.x/

by the fraction Fn.x/ of the xk that are smaller than or equal to x,

Fn.x/ D 1

n

nX

kD1

I fxk � xg:

The distribution function Fn is called the empirical distribution function of
x1; : : : ; xn. The random counterpart, which is the empirical distribution associated
with the random sample fX1; : : : ; Xng, is given by

Fn;X.x/ D 1

n

nX

kD1

I fXk � xg:

Note that Fn;X is a random object whose outcome Fn is a distribution function.
The (strong) law of large numbers says that if Z1; Z2; : : : is a sequence of

independent copies of a random variable Z for which the expected value EŒZ� exists
finitely, then

1

n

nX

kD1

Zk ! EŒZ� with probability 1 as n ! 1:

If we choose Zk D I fXk � xg, then EŒZk� D P.Xk � x/ D F.x/ and the law
of large numbers implies that, with probability one, limn!1 Fn;X.x/ D F.x/. In
particular, the empirical distribution function Fn;X is a good approximation of the
unknown distribution function F as long as the sample size n is sufficiently large.
Similarly, if we choose Zk D h.Xk/, then EŒZk� D EŒh.Xk/� D EŒh.X/� and the
law of large numbers implies that, with probability one,

Z
h.x/dFn;X.x/ D 1

n

nX

kD1

h.Xk/ ! EŒh.X/� D
Z

h.x/dF.x/ as n ! 1: (7.1)

In particular, the expression on the left-hand side of (7.1) is a good approximation
of the expression on the right-hand side as long as the sample size n is sufficiently
large.

Example 7.4 (Sample mean and variance). Consider a sample fx1; : : : ; xng
and the corresponding empirical distribution function Fn. The sample mean
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x D .x1 C � � � C xn/=n is simply the expected value of a random variable with the
distribution function Fn:

Z
xdFn.x/ D 1

n

nX

kD1

xk D x:

We know from (7.1) that X D .X1 C � � � C Xn/=n ! EŒX� with probability one as
n ! 1, and it is easy to see that EŒX� D EŒX�. The variance of Fn is

Z
x2dFn.x/ �

�Z
xdFn.x/

�2

D 1

n

nX

kD1

x2
k � 1

n2

 
nX

kD1

xk

!2

D 1

n

 
nX

kD1

x2
k � nx2

!

D 1

n

 
nX

kD1

x2
k � 2

nX

kD1

xxk C
nX

kD1

x2

!

D 1

n

nX

kD1

.xk � x/2:

We know from (7.1) that, with probability one,

lim
n!1

1

n

nX

kD1

.Xk � X/2 D Var.X/:

However, the expected value of the variance estimator is not equal to Var.X/.
Therefore, the variance is typically estimated by the sample variance

S2 D 1

n � 1

nX

kD1

.Xk � X/2;

which satisfies EŒS2� D Var.X/.

Consider a subset B of Rd and suppose that we want to estimate the probability
P.B/ D P.X 2 B/. Similarly to the empirical distribution function, we form the
empirical estimator

Pn;X.B/ D 1

n

nX

kD1

I fXk 2 Bg: (7.2)
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Notice that Pn;X.B/ D Fn;X.x/ if B D fy W y � xg and that the sum in (7.2)
is Bin.n; P.B//-distributed. In particular, from the expected value nP.B/ and
variance nP.B/.1 � P.B// of the binomially distributed sum in (7.2) we find that

EŒPn;X.B/� D P.B/ and Var.Pn;X.B// D 1

n
P.B/.1 � P.B//:

Moreover, it follows from the law of large numbers that limn!1 Pn;X.B/ D P.B/

with probability one.

Example 7.5 (Estimation of small probabilities). In this example, we investigate the
sample size needed for accurate empirical estimation of a small probability P.B/. A
common measure of the accuracy of an estimator is the relative error—the standard
deviation of the estimator divided by the estimated quantity. In this context, the
relative error is given by

Var.Pn;X.B//1=2

P.B/
D n�1=2

� 1

P.B/
� 1

�1=2

:

It is natural to require that the standard deviation of the estimator must be at least no
greater than the probability to be estimated. Under this requirement, since P.B/ is
assumed to be small, we find that n � 1=P.B/, which corresponds to a very large
required sample size if P.B/ is small.

The accuracy of the estimator can be investigated by considering the probability

P
�ˇˇ
ˇ
Pn;X.B/ � P.B/

P.B/

ˇ
ˇ
ˇ < "

�
D P

�
1 � " <

Pn;X.B/

P.B/
< 1 C "

�
:

Since the sum in (7.2) is Bin.n; P.B//-distributed, we find that

P
�Pn;X.B/

P.B/
< 1 C "

�
D

Œn.1C"/P.B/�X

kD0

 
n

k

!

P.B/k.1 � P.B//n�k;

and similarly with 1 � " instead of 1 C ".
Another approach to investigating the accuracy of the estimator when the sample

size n is large is to apply the central limit theorem. If Z1; Z2; : : : is a sequence
of independent copies of a random variable Z with finite expected value � and
standard deviation � , then

lim
n!1 P

�Z1 C � � � C Zn � n�

n1=2�
� x

�
D ˚.x/ for all x;

where ˚ denotes the standard normal distribution function. Taking Zk D I fXk 2
Bg=n we find that
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lim
n!1 P

�� n

P.B/.1 � P.B//

�1=2

.Pn;X.B/ � P.B// � x
�

D ˚.x/ for all x:

In particular, Pn;X.B/ is approximately N.P.B/; P.B/.1 � P.B//=n//-distributed
if n is large.

7.3 Empirical Quantiles

Here we consider observations x1; : : : ; xn from independent and identically dis-
tributed random variables X1; : : : ; Xn with a common unknown distribution func-
tion F defined on the real line R. The empirical quantile function F �1

n is the quantile
function of the empirical distribution function Fn and therefore given by

F �1
n .p/ D minfx W Fn.x/ � pg:

Similarly, the empirical quantile function F �1
n;X is the quantile function of Fn;X . We

will now show that the empirical quantile F �1
n;X .p/ is the kth largest of the sample

points X1; : : : ; Xn (and therefore the same holds for F �1
n in terms of the sample

points x1; : : : ; xn), where k D k.n; p/ depends on n and p. It turns out to be useful
to order the sample fX1; : : : ; Xng such that X1;n � � � � � Xn;n (if F is continuous,
then with probability one there are no j ¤ k such that Xj D Xk , i.e., no ties). Note
that

minfx W Fn;X .x/ � pg D min

(

x W
nX

kD1

I fXk;n � xg � np

)

: (7.3)

Since the sum
Pn

kD1 I fXk;n � xg can only take integer values, we see that the
right-hand side of (7.3) is equal to Xj;n for some j . Which j ? Note that for any j

in the set f1; : : : ; ng,

nX

kD1

I fXk;n � Xj;ng D
nX

kDj

I fXk;n � Xj;ng D n � j C 1;

and we must look for the largest j such that the last expression is greater than or
equal to np. If we take j D Œn.1 � p/� C 1, then

n � j C 1 D n � Œn.1 � p/� � n � n.1 � p/ D np;

with equality if and only if np is an integer. In particular, every j � Œn.1 � p/� C 2

gives n � j C 1 < np. We conclude that the empirical quantile function is given by

F �1
n;X .p/ D XŒn.1�p/�C1;n; p 2 .0; 1/;
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a piecewise constant function on .0; 1/ with

XŒn.1�p/�C1;n D Xk;n if p 2 .1 � k=n; 1 � .k � 1/=n�: (7.4)

It can be shown that if F is strictly increasing, then P.limn!1 F �1
n;X .p/ D

F �1.p// D 1 for all p 2 .0; 1/. Therefore, the empirical quantile is an arbitrary
good approximation of the true but unknown quantile if the sample size n is
sufficiently large. We prove the following slightly weaker statement.

Proposition 7.1. Let X1; X2; : : : be a sequence of independent and identically
distributed random variables with common distribution function F , and let Fn;X

be the empirical distribution function of the first n elements of the sequence. If
F is strictly increasing in a neighborhood of F �1.p/, then limn!1 P.jF �1

n;X .p/ �
F �1.p/j > "/ D 0 for every " > 0.

Proof. From the quantile transform, Proposition 6.1, we know that F �1.U / has
distribution function F if U is uniformly distributed on .0; 1/. Therefore, we
may consider a sequence of independent random variables U1; U2; : : : uniformly
distributed on .0; 1/ and represent X1; : : : ; Xn as F �1.U1/; : : : ; F �1.Un/. Write
U1;n � � � � � Un;n for the ordered Uk. Note that F �1

n;X .p/ D F �1.UŒn.1�p/�C1;n/,
and since F is strictly increasing in a neighborhood of F �1.p/, it follows that F �1

is continuous at p. Note also that

fu W jF �1.u/ � F �1.p/j > "g D fu W jF �1.u/ � F �1.p/j > "; ju � pj � ıg
[ fu W jF �1.u/ � F �1.p/j > "; ju � pj < ıg

� fu W ju � pj � ıg
[ fu W jF �1.u/ � F �1.p/j > "; ju � pj < ıg;

and the continuity at p implies that

lim
ı!0

fu W jF �1.u/ � F �1.p/j > "; ju � pj < ıg

is the empty set. Therefore, for all ı > 0,

P.jF �1
n;X .p/ � F �1.p/j > "/ � P.jUŒn.1�p/�C1;n � pj � ı/ C Cı;

and since limı!0 Cı D 0, to complete the proof it only remains to show that
limn!1 P.jUŒn.1�p/�C1;n � pj � ı/ D 0 for every ı > 0.

We claim that Uk;n is Beta.n � k C 1; k/-distributed. To verify this claim, we
first recall that the Beta.a; b/ distribution is a probability distribution on .0; 1/ with
density function
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f .x/ D � .a C b/

� .a/� .b/
xa�1.1 � x/b�1;

where � .n/ D .n�1/Š. The Beta.a; b/ distribution has mean a=.aCb/ and variance
ab.a C b/�2.a C b C 1/�1. The density function fUk;n

of Uk;n can be expressed as

fUk;n
.x/ D d

dx
P.Uk;n � x/ D lim

�!0

P.Uk;n 2 Œx; x C ��/

�
:

We want to compute the limit on the right-hand side above. To this end, we introduce
the notation

Ax D ˚
n � k of the Uj are in .0; x/ and

1 of the Uj is in Œx; x C �� and

k � 1 of the Uj are in .x C �; 1/
�

and notice that

P.Uk;n 2 Œx; x C ��/ D P.Ax/ C o.�/

D nŠ

.n � k/Š.k � 1/Š
xn�k�1.1 � x � �/k�1 C o.�/;

where o.�/ is the probability of the event fUk;n 2 Œx; x C ��g when two or more of
the Uj are in Œx; x C ��. Letting � ! 0 gives

fUk;n
.x/ D nŠ

.n � k/Š.k � 1/Š
xn�k.1 � x/k�1

D � .n C 1/

� .n � k C 1/� .k/
xn�kC1�1.1 � x/k�1;

which confirms the claim that Uk;n is Beta.n � k C 1; k/-distributed. In particular,

EŒUk;n� D n � k C 1

n C 1
D 1 � k

n C 1
; (7.5)

EŒU 2
k;n� D .n � k C 1/.n � k C 2/

.n C 1/.n C 2/
: (7.6)

Finally, take p 2 .0; 1/ and k.n/ D Œn.1 � p/� C 1. Then from (7.5) and (7.6) we
find that

EŒUk.n/;n� D 1 � Œn.1 � p/� C 1

n C 1
! 1 � .1 � p/ D p as n ! 1
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and further that

n EŒ.Uk.n/;n � p/2� ! p.1 � p/ as n ! 1: (7.7)

The conclusion now follows from an application of Markov’s inequality together
with (7.7): for every ı > 0

P.jUk.n/;n � p j � ı/ � ı�2 EŒ.Uk.n/;n � p/2� ! 0 as n ! 1: �

But how good is the empirical quantile as an approximation of the true quantile
for finite sample sizes? It turns out that this question can be answered, at least in the
sense that for a given distribution function F we can express the distribution of the
empirical quantile in terms of F .

Let Yx be the number of sample points exceeding x, i.e., the number of indices
k for which Xk > x. It follows immediately that Yx is Bin.n; q/-distributed, where
q D P.Xk > x/ D 1 � F.x/. We have

P.X1;n � x/ D P.Yx D 0/;

P.X2;n � x/ D P.Yx � 1/;

:::

P.Xj;n � x/ D P.Yx � j � 1/:

Since F �1
n;X .p/ D XŒn.1�p/�C1;n, we have found that

P.F �1
n;X .p/ � x/ D P.Yx � Œn.1 � p/�/ D

Œn.1�p/�X

kD0

 
n

k

!

.1 � F.x//kF.x/n�k:

For a given F these probabilities are easily evaluated on a computer. In particular,
we can compute probabilities of the kind

P

 ˇˇ
ˇ
ˇ̌
F �1

n;X .0:95/ � F �1.0:95/

F �1.0:95/

ˇ
ˇ
ˇ
ˇ̌ < "

!

D P

 

1 � " <
F �1

n;X .0:95/

F �1.0:95/
< 1 C "

!

;

i.e., the probability that the relative error is at most ". Graphs showing these
probabilities for different sample sizes and distributions can be found in Fig. 7.1.

The graph of the density function gives information about the concentration of
the probability mass that is more easily interpreted than the graph of the distribution
function. Differentiating the distribution function of the empirical quantile
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Fig. 7.1 Probabilities P.1 � " < F �1
n;X .0:95/=F �1.0:95/ < 1 C "/ for " in .0; 0:25/ for sample

sizes n D 100; 200; 400; 800 (lower to upper curve), where F is the standard normal distribution
function in the left plot and standard lognormal in the right plot
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Fig. 7.2 Density functions of empirical quantile estimators F �1
n;X .0:95/ for sample sizes n D

100; 200; 400; 800, where F is the standard normal distribution function in the left plot and
standard lognormal in the right plot

P.F �1
n;X .p/ � x/ D

Œn.1�p/�X

kD0

 
n

k

!

.1 � F.x//kF.x/n�k;

i.e., the right-hand expression above, gives the density function of the empirical
quantile (assuming that F has a density f ). It is given by

nŠ

Œn.1 � p/�Š.n � Œn.1 � p/� � 1/Š
.1 � F.x//Œn.1�p/�F .x/n�Œn.1�p/��1f .x/: (7.8)

The graphs of density function (7.8) of the empirical quantile for different sample
sizes and distributions are shown in Fig. 7.2.

Now we consider another approach to investigating the accuracy of the empirical
quantile estimator F �1

n;X .p/ D XŒn.1�p/�C1;n based on the sample fX1; : : : ; Xng of
independent copies of X with distribution function F . The approach considered
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here is appropriate for rather large sample sizes n. Here we want to determine the
sample size n required for bounding the root mean square error (RMSE) of the
empirical quantile by 10�d F �1.p/ for some d � 1. More precisely, we want to
determine the smallest integer n such that

EŒ.XŒn.1�p/�C1;n � F �1.p//2�1=2 � 10�d F �1.p/: (7.9)

From Proposition 6.1 we know that we can represent X1; : : : ; Xn in terms of F

and independent random variables U1; : : : ; Un uniformly distributed on .0; 1/ as
F �1.U1/; : : : ; F �1.Un/. In particular, XŒn.1�p/�C1;n D F �1.UŒn.1�p/�C1;n/.

Under the assumption that F is differentiable with a density function f we may
use a Taylor expansion of F �1 around point p to approximate

XŒn.1�p�C1;n D F �1.UŒn.1�p�C1;n/

D F �1.p/ C d

dp
F �1.p/.UŒn.1�p�C1;n � p/ C remainder term

D F �1.p/ C 1

f .F �1.p//
.UŒn.1�p�C1;n � p/ C remainder term:

If we ignore the remainder term and use (7.6), then we may approximate the mean
square error of the empirical quantile estimator by

E
h�

XŒn.1�p/�C1;n � F �1.p/
�2i � 1

f .F �1.p//2
E
h�

UŒn.1�p/�C1;n � p
�2i

D 1

f .F �1.p//2

p.1 � p/

n
: (7.10)

Can we ignore the error term? By Taylor’s formula we find that if f does not vary
that much in a neighborhood of F �1.p/, then, as n ! 1,

E
	
.XŒn.1�p/�C1;n � F �1.p//2


 1

f .F �1.p//2

p.1 � p/

n
C O.n�2/:

The notation O.n�2/ as n ! 1 means that the remainder term divided by n�2 is
bounded as n ! 1.

If we want the bounded RMSE in (7.9) and approximate the mean square error
by (7.10), then we find that the sample size n should be

n � p.1 � p/

f .F �1.p//2F �1.p/2
102d :
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We illustrate the size of n for the exponential and the Pareto distribution. The
following example shows that large sample sizes are required to obtain small relative
errors for the empirical estimator of high quantiles.

Example 7.6 (Bound on the RMSE). Consider an exponential distribution with
F.x/ D 1 � e�x for x > 0. Then F �1.p/ D � log.1 � p/ and f .F �1.p// D
expflog.1 � p/g D 1 � p. If p D 0:99 and d D 2 (RMSE of 1% of F �1.p/), then
we need a sample size n such that

n � p

.1 � p/Œlog.1 � p/�2
104 � 4:7 � 104:

Consider a Pareto distribution with F.x/ D 1 � x�3 for x > 1. Then F �1.p/ D
.1 � p/�1=3 and f .F �1.p// D 3.1 � p/4=3. If p D 0:99 and d D 2 (a RMSE of
1% of F �1.p/), then we need a sample size n such that

n � p

9.1 � p/
104 D 1:1 � 105:

7.4 Empirical VaR and ES

If X is the value at time 1 of a financial portfolio, then VaRp.X/ D F �1
L .1 � p/,

where L D �X=R0, where R0 is the return on the reference instrument (a risk-free
zero-coupon bond, say). Given a sample L1; : : : ; Ln of independent copies of L, the
empirical estimate of VaRp.X/ is therefore given by

bVaRp.X/ D LŒnp�C1;n;

where L1;n � � � � � Ln;n is the ordered sample. Note that bVaRp.X/ is simply the
empirical .1 � p/-quantile of Lk .

To compute the empirical VaR estimate from a sample of historical prices, we
first transform the prices into a sample fL1; : : : ; Lng and then compute the VaR
estimate as an empirical quantile. The following example illustrates this procedure.

Example 7.7 (Empirical VaR). Consider a portfolio consisting of long positions in
two different assets, one unit of the first asset and two units of the second asset.
Historical daily prices per unit of the two assets over the last 20 days are given by
S1

t and S2
t for t D �20; : : : ; 0. Assume the corresponding pairs of returns

Rt D .R1
t ; R2

t / D .S1
t =S1

t�1; S2
t =S2

t�1/; t D �19; : : : ; 0;

are independent and identically distributed. The value of the portfolio at time 0 is
given by V0 D S1

0 C 2S2
0 , and the value at time 1 is V1 D S1

1 C 2S2
1 . Suppose

we want to compute the empirical VaR0:05 estimate of X D V1 � V0R0, where for
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simplicity we set R0 D 1. We may express X as the value of a function evaluated at
the point R1:

X D V1 � V0 D .S1
1 � S1

0 / C 2.S2
1 � S2

0 /

D S1
0 .R1

1 � 1/ C 2S2
0 .R2

1 � 1/ D g.R1/:

Under the assumption that the Rt , for t D �19; : : : ; 0, are independent copies of
R1, we can easily construct independent copies of X by setting Xk D g.R�20Ck/

for k D 1; : : : ; 20. Setting Lk D �Xk and ordering the sample of Lk as L1;20 �
� � � � L20;20, we compute the empirical estimate of VaR0:05.X/ as bVaR0:05.X/ D
LŒ20�0:05�C1;20 D L2;20.

Example 7.8 (Thinning versus historical simulation). Suppose today is November
3, 2010, and we have just invested an amount of 100 in the Dow Jones Industrial
Average (DJIA) stock market index. We want to analyze the risk we face from
holding the position over a period of 20 trading days. The value of the position
20 trading days from today is V20 D 100R1 � � � R20, where R1; : : : ; R20 are
the daily returns over the time period under consideration. We want to estimate
VaRp.V20 �100/ (the effect of interest rates are ignored) based on the 801 historical
index values of DJIA from August 30, 2007 to November 2, 2010.

If the thinning approach in Example 7.2 is used, then we use every 20th value
of the sample of historical DJIA values to obtain the sample fR.20/

�39; : : : ; R
.20/
0 g of

historical 20-day returns. We set

Xk D 100.R
.20/

�40Ck � 1/ and Lk D �Xk for k D 1; : : : ; 40

and estimate VaRp.V20 � 100/ as LŒ40p�C1;40.
If the historical simulation approach in Example 7.3 is used, then we may choose

m D 5;000 in Example 7.3 and use the sample of historical DJIA values to obtain
the sample fR�.20/

1 ; : : : ; R
�.20/
5000 g of fictive 20-day returns. We set

Xk D 100.R
�.20/

k � 1/ and Lk D �Xk for k D 1; : : : ; 5000

and estimate VaRp.V20 � 100/ as LŒ5000p�C1;5000.
The left plot in Fig. 7.3 shows the left tail of the empirical distribution function

of Xk for the two approaches. Because the thinning approach gives a sample of
small size 40, the staircase shape is pronounced and the tail estimate is unreliable.
The historical simulation approach gives a much smoother, and likely more reliable,
estimate of the left tail of the distribution function of V20 � 100. The right plot in
Fig. 7.3 shows the estimates of VaRp.V20 � 100/ as a function of p for the two
approaches.

We now present the empirical ES estimator. Recall that the ES at level p of a
portfolio with value X at time 1 is given by
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Fig. 7.3 Above: observed upper triangle of paid claims; Below: unobserved triangle of outstanding
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ESp.X/ D 1

p

Z p

0

VaRu.X/du:

The empirical ES estimator is obtained by simply replacing VaRp.X/ by its
empirical estimator bVaRp.X/ D LŒnp�C1;n, where Lk D �Xk=R0 and L1;n � � � � �
Ln;n is the ordered loss sample. This implies

cESp.X/ D 1

p

Z p

0

LŒnu�C1;ndu

D 1

p

0

@
Œnp�X

kD1

Lk;n

n
C
�

p � Œnp�

n

�
LŒnp�C1;n

1

A : (7.11)

If Œnp� is an integer, then the expression in the last display reduces to the sample
mean of the Œnp� largest losses. To clarify how one arrives at the expression in (7.11),
suppose that Œnp� � 2, and notice that in this case

Z p

0

LŒnu�C1;ndu

D
Z 1=n

0

L1;ndu C � � � C
Z Œnp�=n

.Œnp��1/=n

LŒnp�;ndu C
Z p

Œnp�=n

LŒnp�C1;ndu

D 1

n
L1;n C � � � C 1

n
LŒnp�;n C

�
p � Œnp�

n

�
LŒnp�C1;n:

Example 7.9 (Empirical ES). Consider the historical daily prices of two assets
A and B, listed in Table 7.1. You are considering taking a position correspond-
ing to a long position of two units of asset A and three units of asset B.
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Table 7.1 Historical daily prices of two assets A and B

Day �20 �19 �18 �17 �16 �15 �14

Asset A 81.75 81.35 80.4 81.05 83.35 83.00 83.30
Asset B 81.25 81.00 81.5 81.50 81.85 81.25 81.45

Day �13 �12 �11 �10 �9 �8 �7

Asset A 86.0 85.5 84.50 84.00 84.05 82.35 83.45
Asset B 83.5 83.5 83.75 86.00 85.75 84.60 83.85

Day �6 �5 �4 �3 �2 �1 0

Asset A 83.50 84.4 86.9 85.90 82.55 83.75 84.75
Asset B 84.55 84.0 84.3 84.75 85.35 87.00 85.75

Table 7.2 Sample of Xk values and corresponding ordered Lk values

Sample of Xk-values: transformation of historical prices

�1.62 �0.39 1.37 5.91 �2.60 1.25 11.97 �0.99 �1.21 5.91
�0.65 �6.88 �0.02 2.25 0.15 5.94 �0.58 �4.79 7.44 �1.67

Ordered sample of corresponding Lk values

6.88 4.79 2.60 1.67 1.62 1.21 0.99 0.65 0.58 0.39
0.02 �0.15 �1.25 �1.37 �2.25 �5.91 �5.91 �5.94 �7.44 �11.97

To evaluate the riskiness of this investment, you want to compute the empirical
ES estimate ESp.X/, where p D 0:06 and X is the difference between the value of
the position tomorrow and its current value. We may express X as a function of the
vector R1 D .RA

1 ; RB
1 / of returns over the next day as

X D V1 � V0 D 2SA
0 .RA

1 � 1/ C 3SB
0 .RB

1 � 1/ D f .R1/:

From Table 7.1 we can compute the corresponding vectors of historical returns. The
function f then transforms these vectors into the sample of Xk values shown in
Table 7.2 (rounded off to two decimal points). Setting Lk D �Xk and ordering the
Lk gives the ordered sample of Lk values in Table 7.2. From (7.11) we find that the
ES estimate based on the values l1;n � � � � � ln;n is

1

p

0

@
Œnp�X

kD1

lk;n

n
C
�

p � Œnp�

n

�
lŒnp�C1;n

1

A :

Here, with n D 20 and p D 0:06 and the values lk;n in Table 7.2 we get

1

0:06

�
6:88

20
C .0:06 � 0:05/4:79

�
� 6:53:
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7.5 Confidence Intervals

Suppose we have observations x1; : : : ; xn of independent and identically distributed
random variables X1; : : : ; Xn from an unknown distribution function F and we want
to know the value � D �.F / of some quantity that is determined by the unknown
F . Examples include the mean, the variance, some quantile, or some risk measure
that depends on F . We may estimate � by the empirical estimator b� D �.Fn;X /

obtained by computing � from Fn;X instead of F . However, a point estimate is
not meaningful unless we have some way of assessing its accuracy. Since we can
never know whether the observations x1; : : : ; xn are representative outcomes from
the unknown distribution F , we can never know whether the empirical estimate
b�obs D �.Fn/ based on these observations is close to the true value � . What we can
do is compute a confidence interval for � .

Let us first recall what a confidence interval is. Given q 2 .0; 1/, we want to form
a stochastic interval .A; B/, where A D fA.X1; : : : ; Xn/ and B D fB.X1; : : : ; Xn/

for some functions fA and fB such that

P.A < � < B/ D q;

i.e., the stochastic interval .A; B/ covers the value � with probability q. Clearly, we
want q to be close to 1, e.g., q D 0:95, and at the same time we want that the length
of the interval is likely to be small. The interval .a; b/, where a D fA.x1; : : : ; xn/

and b D fB.x1; : : : ; xn/, is a confidence interval for � with confidence level q. We
may say that we feel confident at level q that the interval .a; b/ covers the value � .
Note that q is not the probability that the specific interval .a; b/ covers � (either it
does or it does not), but q is the probability that the procedure generating the interval
will produce an interval covering � if fed with a new random sample of the same
size from the same probability distribution. Often we want to find a double-sided
interval so that

P.A < � < B/ D q; P.A � �/ D P.B � �/ D .1 � q/=2:

Since F is unknown, we do not know the functions fA; fB , but we can construct
approximate confidence intervals. If � is a quantile of F , i.e., � D F �1.p/, then we
can actually find exact confidence intervals for � , but not for arbitrary confidence
levels q.

7.5.1 Exact Confidence Intervals for Quantiles

Suppose we have observations x1; : : : ; xn of outcomes of independent and identi-
cally distributed random variables X1; : : : ; Xn with common unknown continuous
distribution function F . Suppose further that we want to construct a confidence
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interval .a; b/ for the quantile F �1.p/, where a D fA.x1; : : : ; xn/ and b D
fB.x1; : : : ; xn/ such that

P.A < F �1.p/ < B/ D q; P.A � F �1.p// D P.B � F �1.p// D .1 � q/=2;

where q is a confidence level, A D fA.X1; : : : ; Xn/, and B D fB.X1; : : : ; Xn/.
Since F is unknown, we cannot find a and b. However, we can look for i > j and
the smallest q0 � q such that

P.Xi;n < F �1.p/ < Xj;n/ D q0;

P.Xi;n � F �1.p// � .1 � q/=2; P.Xj;n � F �1.p// � .1 � q/=2: (7.12)

It remains to compute the probabilities in (7.12). Let YF �1.p/ be the number of
sample points exceeding F �1.p/, i.e., the number of indices k for which Xk >

F �1.p/. It follows immediately that YF �1.p/ is Bin.n; r/-distributed, where r D
P.Xk > F �1.p// D 1 � F.F �1.p//. From Proposition 6.1 we know that the
continuity of F implies that F.F �1.u// D u for all u 2 .0; 1/. In particular, YF �1.p/

is Bin.n; 1�p/-distributed. The probabilities in (7.12) are easily expressed in terms
of the probabilities of YF �1.p/, which are very easily computed (with the assistance
of some appropriate software). We have

P.X1;n � F �1.p// D P.YF �1.p/ D 0/;

P.X2;n � F �1.p// D P.YF �1.p/ � 1/;

:::

P.Xj;n � F �1.p// D P.YF �1.p/ � j � 1/:

Similarly, P.Xi;n � F �1.p// D 1 � P.YF �1.p/ � i � 1/. We may now can compute
the probabilities P.Xj;n � F �1.p// and P.Xi;n � F �1.p// for different i and j

until we find indices that satisfy (7.12).

Example 7.10 (Exact intervals for quantiles). Suppose we have a sample
fX1; : : : ; X200g of independent and identically distributed random variables with
common unknown continuous distribution function F and we want a confidence
interval for F �1.0:95/ with confidence level q0 � q D 0:95. Since YF �1.0:95/ is
Bin.200; 0:05/-distributed, we find that

P.X5;200 � F �1.0:95// D P.YF �1.0:95/ � 4/ � 0:0264;

P.X17;200 � F �1.0:95// D 1 � P.YF �1.0:95/ � 16/ � 0:0238:

Therefore, P.X17;200 < F �1.0:95/ < X5;200/ � 0:95, so .x17;200; x5;200/ is a
confidence interval for F �1.0:95/ with a confidence level of approximately 95%.
The length of the confidence interval depends on the sample points, which in turn
depends on the unknown distribution function F . Figure 7.4 shows 100 outcomes
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Fig. 7.4 Each plot shows empirical confidence intervals .x17;200; x5;200/ for F �1.0:95/ with
confidence level 95% for 100 samples of size 200. Left plot: empirical confidence intervals for
F the standard normal distribution; right plot: for F the standard lognormal distribution function

.x17;200; x5;200/ of the empirical confidence interval for F �1.0:95/ for F standard
normal (left plot) and for F standard lognormal (right plot). Notice that the 25th
confidence interval for the lognormal F says that if we had the 25th lognormal
sample, then we could only say that we are rather sure that the 95% quantile of
the unknown distribution lies somewhere between 4 and 11:8. This illustrates the
difficulty of accurately estimating quantile values.

7.5.2 Confidence Intervals Using the Nonparametric Bootstrap

For quantiles we have seen how to construct exact confidence intervals. However,
for risk measures, which unlike VaR are not simply quantile values, and for other
quantities such as moments and loss probabilities this approach does not work.
We will here investigate a useful method for constructing approximate confidence
intervals called the nonparametric bootstrap method.

Suppose we have observations x1; : : : ; xn of independent and identically dis-
tributed random variables X1; : : : ; Xn and we want to estimate some quantity
� D �.F / that depends on the unknown distribution F of Xk . For instance, �

could be the p-quantile � D F �1.p/ giving b�obs D xŒn.1�p/�C1;n or the mean

� D R
xdF.x/ givingb� obs D .x1 C � � �C xn/=n. We want to construct a confidence

interval for � with confidence level q.
If F were known, we could compute the value � analytically or approximate it

numerically. Alternatively, we could simulate a large sample from F to approxi-
mately compute � as the empirical estimate. The problem here is that we do not
know F and we only have one sample fx1; : : : ; xng of size n from F .
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One way to produce more samples is to randomly draw with replacement n times
from the set of observations x1; : : : ; xn to produce a sample fX�

1 ; : : : ; X�
n g. The

sample points X�
k are independent and Fn-distributed (uniformly distributed on the

set of the original observations x1; : : : ; xn). Some of the X�
k are likely to be equal,

even if the xk are all different. The probability that X�
j ¤ X�

k for all j ¤ k is
very small; the probability that none of the xks is drawn twice among the n tries is
nŠ=nn. Write F �

n for the empirical distribution of X�
1 ; : : : ; X�

n andb�� D �.F �
n / for

the estimate of � based on the sample fX�
1 ; : : : ; X�

n g. Even though fX�
1 ; : : : ; X�

n g is
not a sample from F , it has most of the characteristics of a sample from F as long
as n is sufficiently large. In particular, the probability distribution of b�� is likely
to be close to the probability distribution ofb� . Whereas the probability distribution
ofb� is unknown (since F is not known), the probability distribution ofb�� can be
approximated arbitrarily well by repeated resampling N times for N large enough.

An approximative confidence interval I�;q for � of confidence level q using the
nonparametric bootstrap method is constructed as follows.

• For each j in the set f1; : : : ; N g draw with replacement n times from the sample
fx1; : : : ; xng to obtain the sample fX�.j /

1 ; : : : ; X
�.j /
n g and the corresponding

empirical distribution function F
�.j /
n .

• Compute the estimatesb��
j D �.F

�.j /
n / of � and the residuals R�

j Db�obs �b��
j for

j D 1; : : : ; N .
• Form the interval

I�;q D .b�obs C R�
ŒN.1Cq/=2�C1;N ;b�obs C R�

ŒN.1�q/=2�C1;N /;

where R�
1;N � � � � � R�

N;N is the ordering of the sample fR�
1 ; : : : ; R�

N g.

Why is the interval I�;q a reasonable approximative confidence interval for �? Here
is one way of motivating the procedure.

Let G denote the distribution function of � �b� . Then

q D P.G�1..1 � q/=2/ < � �b� < G�1..1 C q/=2//

D P.b� C G�1..1 � q/=2/ < � <b� C G�1..1 C q/=2//:

Therefore, .b�obs CG�1..1 � q/=2/;b�obs CG�1..1 Cq/=2// is a confidence interval
for � of level q. The problem is that we do not know the distribution function G.

The success of the bootstrap relies on the validity of the bootstrap principle,
which says that G can be well approximated by the empirical distribution G�

N of
R�

1 ; : : : ; R�
N . Then the quantiles G�1..1 � q/=2/ and G�1..1 C q/=2/ can be well

approximated by the empirical counterparts R�
ŒN..1Cq/=2/�C1;N and R�

ŒN.1�q/=2�C1;N ,
which leads to the interval I�;q . We need n to be sufficiently large to make it

plausible that the bootstrap principle holds so � �b� andb�obs �b�� are approximately
equally distributed. This requirement is investigated in the following example.
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Example 7.11 (Bootstrap intervals for quantiles). Suppose we want to construct
confidence intervals for � D VaR0:05.V1 � V0/, where V0 and V1 are respectively
the current value and the value tomorrow of a long position in some stock index.
Since the time period here is only 1 day, we ignore the impact of interest rates. We
may express V1 in terms of the return R1 of the stock index as V1 D V0R1, and we
assume that log R1 is normally distributed with zero mean and standard deviation
0:01. For simplicity we also assume that V0 D 1. This implies that

VaR0:05.V1 � V0/ D F �1
V0�V1

.0:95/ D V0

�
1 � F �1

R1
.0:05/

� � 0:016314:

In reality we would not know with certainty the return distribution or, therefore, the
value of VaR0:05.V1 � V0/. However, we may—under the right circumstances—
believe that the past n index returns can be seen as sample points from the
distribution of the future return R1 and in that case transform the historical returns
into outcomes l1; : : : ; ln of L1; : : : ; Ln that are independent copies of L D V0 � V1.
The problem we investigate here is how to construct and evaluate confidence
intervals for F �1

L .0:95/ given the sample fl1; : : : ; lng. We have already seen how we
can construct confidence intervals for quantiles, and this approach is applicable here
since VaR0:05.V1 � V0/ D F �1

L .0:95/. However, the aim here is to investigate the
nonparametric bootstrap approach to construct approximative confidence intervals
and evaluate it by comparing it to the approach for quantiles.

Recall that the accuracy of the nonparametric bootstrap approach for constructing
confidence intervals is likely to be good if � � b� , where b� D LŒ0:05n�C1;n, and
b�obs �b�� have approximately the same probability distribution. The upper left plot
in Fig. 7.5 shows a histogram from 2,000 simulations of � �b� . The upper right and
middle plots in Fig. 7.5 show histograms of 2,000 bootstrap simulations ofb�obs �b��
based on resampling from three different outcomes of L1; : : : ; L500. Based on these
plots, we definitely see a resemblance between the distribution of ��b� andb�obs�b��,
but it is clear that much information has been lost in the bootstrap world. One might
suspect that increasing the number N of resampling runs could improve things. The
middle left and lower left plots show bootstrap simulations ofb�obs �b�� based on
the same sample fl1; : : : ; l500g, where the number N is 2,000 for the middle left plot
and 10,000 for the lower left plot. The same comparison is shown in the middle right
and the lower right plots but based on another sample fl1; : : : ; l500g. We observe that
increasing the number N of bootstrap simulations to a very large number does not
improve things much.

Finally, we compute 50 confidence intervals for � of confidence level 0:95 with
the exact method (left plot in Fig. 7.6) and with the nonparametric bootstrap method
(right plot in Fig. 7.6). We observe that the results are very similar. The differences
among the confidence intervals are to a much greater extent due to the differences
among the 50 outcomes of the random sample fL1; : : : ; L500g than to the particular
method used. We conclude that here the bootstrap method performs rather well.
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Fig. 7.5 Upper left plot: histogram of 2,000 outcomes of � � O� based on 2,000 outcomes of
fL1; : : : ; L500g. Each of the remaining plots shows centered bootstrap estimates O�obs � O��. Upper
right and middle plots: histograms based on N D 2,000 resampling runs for three different
outcomes of the sample fL1; : : : ; L500g. Middle and lower left plots: based on the same original
sample, the number of resampling runs is 10,000 for the lower left plot instead of 2,000. Similarly
for middle and lower right plots
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Fig. 7.6 Each plot shows 50 confidence intervals for VaR0:05.V1�V0/ based on simulated samples
of size 500. Left plot: result for the exact method for quantiles; right plot: result for nonparametric
bootstrap method

7.6 Bootstrapping in Nonlife Insurance

This section is devoted to an application of the nonparametric bootstrap in an
insurance context. Consider a nonlife insurer who is about to quantify risk with
a 1-year horizon. The risk is quantified in terms of a solvency capital requirement
(SCR). The SCR is, as in Example 6.1, given by

SCR D �.A1 � A0R0 � L1 C L0R0/;

where time is measured in years, A0 and A1 are the values of the assets at times
0 and 1, L0 and L1 are the values of the liabilities at times 0 and 1, and � is a
risk measure, e.g., VaR or ES. To compute the SCR, the insurer must determine the
distribution of A1 � L1—the value of the assets minus the value of the liabilities
1 year from now.

To compute L0, the current value of the liabilities, the insurer adopts a claim
reserving technique called the chain ladder, which will be explained below. L0 con-
sists of two parts: the value of the outstanding payments of incurred but not yet
settled claims and the total value of the payments due to claims that will occur over
the next year. The current value of the liabilities is computed as the sum of the
discounted predicted future payment amounts.

7.6.1 Claims Reserve Prediction Via the Chain Ladder

The prediction of the future payment amounts is based on a historical record of
paid claims. It is assumed that all claims that occurred at least n C 1 years ago
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Table 7.3 Above: observed upper triangle of paid claims; below: unobserved
triangle of outstanding claims

Development year

Origin 0 1 2 � � � n � 1 n

�n � 1 C
�n�1;0 C

�n�1;1 C
�n�1;2 � � � C

�n�1;n�1 C
�n�1;n

�n C
�n;0 C

�n;1 C
�n;2 � � � C

�n;n�1

:
:
:

:
:
:

:
:
:

�2 C
�2;0 C

�2;1

�1 C
�1;0

0

Development year

Origin 0 1 2 � � � n � 1 n

�n � 1

�n C
�n;n

�n C 1 C
�nC1;n�1 C

�nC1;n

:
:
:

:
:
:

:
:
:

�1 C
�1;1 C

�1;2 � � � C
�1;n�1 C

�1;n

0 C0;0 C0;1 C0;2 � � � C0;n�1 C0;n

are completely settled, but all claims that occurred at most n years ago are not
completely settled. The historical record of paid claims is displayed in the form of
a claims triangle. The triangle of paid claims, called the upper triangle, displays on
each row the amounts of paid claims for claims incurred with the same origin year.
The columns represent the development years—the difference between the year a
claim was settled and the year it was incurred. The entry C�k;l represents the amount
paid for claims that were incurred in year �k and paid l year later, in year �k C l ,
for l D 0; : : : ; k � 1. The upper triangle is illustrated in the top half of Table 7.3.

The insurer relies on the assumption that the payment pattern over the develop-
ment years is repetitive. Even if the number of accidents and claim amounts may
differ significantly from year to year, the payment patterns over the development
years look similar. Based on this assumption the upper triangle of paid claims
can be used to predict unobserved future payments. The unknown future payments
are represented in the lower triangle of outstanding claims, with entries C�k;l for
l D k; : : : ; n. The lower triangle is illustrated in the bottom half of Table 7.3.

To formulate the idea that the payment patterns are repetitive, one possibility,
which is the one we follow here, is to assume a multiplicative structure for the
cumulative claims. Consider, for k D 1; : : : ; n C 1 and l D 0; : : : ; k � 1, the
cumulative amounts paid for claims that occurred in year �k,

D�k;l D
lX

j D0

C�k;j :

Suppose the expected cumulative payments can be written as

EŒD�k;lC1� D EŒD�k;l �fl ; l D 0; : : : ; n � 1;
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where f0; : : : ; fn�1 are called development factors. Then the expected amounts paid
are given by

EŒC�k;0� D EŒD�k;0�;

EŒC�k;l � D EŒD�k;l � D�k;l�1� D EŒC�k;0�f0 � � � fl�2.fl�1 � 1/; l D 1; : : : ; n:

A simple model for C�k;l is obtained by assuming that the observed payments have
the representation C�k;l D EŒC�k;l �R�k;l , where fR�k;lgn

k;lD0 are independent and
identically distributed with EŒR�k;l � D 1.

A standard method for predicting the lower triangle (outstanding claims) is called
the chain ladder method. In the chain ladder method, the development factors are
estimated by

bf l D
PnC1

kDlC2 D�k;lC1
PnC1

kDlC2 D�k;l

; l D 0; : : : ; n � 1: (7.13)

The expected amounts of paid claims, EŒC�k;l �, in the upper triangle can be
estimated by

bC �k;0 D bD�k;0 D D�k;k�1

bf 0 : : :bf k�2

; (7.14)

bC �k;l D bD�k;l � bD�k;l�1 D D�k;k�1

bf l : : :bf k�2

�
1 � 1

bf l�1

�
(7.15)

for k D 1; : : : ; n C 1; l D 1; : : : ; k � 1, and the residuals are computed as

R�k;l D C�k;l

bC �k;l

; k D 1; : : : ; n C 1; l D 0; : : : ; k � 1:

The predictions for the unobserved cumulative claim amounts in the lower triangle
are given by

bD�k;l D D�k;k�1
bf k�1 � � �bf l�1 (7.16)

for k D 1; : : : ; n and l D k; : : : ; n. The corresponding predictions for the
unobserved future payments in the lower triangle are

bC �k;l D bD�k;lC1 � bD�k;l : (7.17)

The last row in the lower triangle of outstanding payments, corresponding to k D 0,
represents amounts for claims that will occur during the next year. Therefore, it does
not contain any observations in the upper triangle and cannot be predicted with the
standard chain ladder. We will predict this row by predicting the initial payment
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D0;0 by the mean of the predictions for the previous years and then apply the chain
ladder method for the predictions of D0;l for l � 1. More precisely, the predictions
for the last row may be constructed as follows:

bD0;0 D 1
nC1

PnC1
kD1

D
�k;k�1

bf 0:::bf k�2

; bD0;l D bD0;0
bf 0 � � �bf l�1;

bC 0;0 D bD0;0; bC 0;l D bD0;lC1 � bD0;l :

When the prediction of all future payments bC �k;l , k D 0; : : : ; n, l D k; : : : ; n, is
completed, the present value L0 of the outstanding claims is computed as

L0 D
nX

kD0

nX

lDk

bC �k;l e
�rl�kC1.l�kC1/;

where rT D .r1; : : : ; rn/ is the vector of current zero rates.
At time 1, new information is available as the values of the diagonal entries C�k;k ,

for k D 0; : : : ; n, are observed. The value L1 of the liabilities at time 1 will be
computed similarly to L0. First, the new observations C�k;k , for k D 0; : : : ; n, are
entered into the upper triangle of observed payments. Then, the development factors
are updated by

bf .1/

l D
PnC1

kDlC1 D�k;lC1
PnC1

kDlC1 D�k;l

for l D 0; : : : ; n � 1;

and the predictions, denoted by bC .1/

�k;l , are updated accordingly by entering the
updated development factors in (7.16) and (7.17). Assuming the zero rates at time 1

are r C �r, the value of the liabilities at time 1 can be expressed as

L1 D
nX

kD0

C�k;k C
n�1X

kD0

nX

lDkC1

bC .1/

�k;l e
�.rl�kC�rl�k/.l�k/:

Note that L1 is completely determined by the random variables C�k;k , for k D
0; : : : ; n, and �r, all observed at time 1.

To protect the value of the liabilities against changes in the zero rates, it is
assumed that the insurer has purchased a bond portfolio. Rewrite the current value
of the liabilities by summing along the diagonals as

L0 D
nC1X

mD1

0

@
n�mC1X

j Dm�1

bC �.m�j �1/;j

1

A e�rmm:
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Then we see that a good choice of the bond portfolio is obtained by buyingPn�mC1
j Dm�1

bC �.m�j �1/;j zero-coupon bonds with maturity m years from now. If the
zero rate changes are independent of the claim amounts C�k;k, for k D 0; : : : ; n,
then this bond portfolio is the quadratic hedge of the value of the liabilities at time 1.

To compute the SCR, we need to apply the risk measure � to the quantity
A1 � A0R0 � L1 C L0R0. Under the assumption that A0 D L0, it is sufficient to
consider the distribution of A1 �L1. If the true development factors were known, the
distribution of L1 could be sampled by sampling the diagonal elements C�k;k , for
k D 0; : : : ; n, updating the prediction of the lower triangle, sampling the zero rate
changes �r, and computing the outcome of L1 by discounting the future payments
in each simulated scenario. When adopting an empirical approach, the diagonal
elements are sampled by sampling the residuals R�k;k , for k D 0; : : : ; m, from the
empirical distribution of the residuals and putting C�k;k D bC �k;kR�k;k . Similarly,
the zero rate changes may be sampled from the empirical distribution of historical
zero rate changes.

A problem with the empirical approach is that it does not account for parameter
uncertainty in the development factors. The development factors, used for predicting
the diagonal means bC �k;k , are not known but merely estimated from the upper
triangle. Since the amount of data is rather limited, the parameter uncertainty may
be substantial. To account for the parameter uncertainty, a bootstrap procedure can
be implemented as outlined below. The algorithm below generates a sample from
the so-called predictive distribution of A1 � L1, in which the parameter uncertainty
is taken into account. The input to the algorithm is an upper triangle of amounts
paid, as in the left table in Table 7.3. The algorithm proceeds as follows.

1. Compute the estimates bf 0; : : : ;bf n�1 of the development factors by (7.13).
2. Compute the estimates bC �k;l of EŒC�k;l � for k D 1; : : : ; n C 1, l D 0; : : : ; k � 1,

by (7.14) and (7.15).
3. Compute the residuals R�k;l D C�k;l=bC �k;l , for k D 1; : : : ; n C 1, l D

0; : : : ; k � 1.
4. For each bootstrap iteration, j D 1; : : : ; N , repeat the following:

(a) Draw with replacement bootstrapped residuals R��k;l , for k D 1; : : : ; n C 1,
l D 0; : : : ; k � 1, from the set fR�k;l ; k D 1; : : : ; n C 1; l D 0; : : : ; k � 1g.

(b) Compute a bootstrapped upper triangle with entries C ��k;l D bC �k;l R
��k;l for

k D 1; : : : ; n C 1, l D 0; : : : ; k � 1.
(c) Compute the development factors f �

0 ; : : : ; f �
n�1 of the bootstrapped upper

triangle as in (7.13).
(d) Compute one-step predictions bC ��k;k , for k D 0; : : : ; n, using the boot-

strapped upper triangle.
(e) Draw with replacement the outcomes of diagonal residuals R���k;k , for k D

0; : : : ; n, from the set of residuals fR�k;l ; k D 1; : : : ; nC1; l D 0; : : : ; k�1g.
(f) Add the diagonal C ���k;k D bC ��k;kR���k;k , for k D 0; : : : ; n, to the boot-

strapped upper triangle to form a sample of the upper triangle at time 1.
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Table 7.4 Current zero rates used in Example 7.12

Maturity (years) 1 2 3 4 5 6 7 8 9 10
Zero rate (%) 0.82 1.57 2.16 2.54 2.82 3.04 3.23 3.37 3.49 3.58

(g) Compute the development factors bf ��
0 ; : : : ;bf ��

n�1 of the upper triangle at
time 1.

(h) Compute the predictions bC ���k;l , for k D 1; : : : ; n, l D k; : : : ; n, for the lower
triangle at time 1.

(i) Draw one outcome �r of zero rate changes from the set of historical zero
rate changes.

(j) Compute the value of the liabilities at time 1 as

L1 D
nX

kD0

C ���k;k C
n�1X

kD0

nX

lDkC1

bC ���k;l e
�.rl�kC�rl�k/.l�kC1/

and the value of the bond portfolio as

A1 D
nX

kD0

bC �k;k C
n�1X

kD0

nX

lDkC1

bC �k;l e
�.rl�kC�rl�k/.l�kC1/

and store the difference A1 � L1.

Example 7.12 (Sampling from the predictive distribution). Consider a nonlife in-
surer with upper triangle of paid claim amounts as in Table 7.5. The claims are
assumed to be completely settled 9 years after the incident year. The objective
is to determine the predictive distribution of the value of the assets minus the
value of the liabilities, A1 � L1, 1 year from now. The bootstrapping algorithm
outlined above is run. A historical sample of quarterly zero rate changes serves as
the basis for generating annual zero rate changes �r. Each annual zero rate scenario
is constructed by sampling four quarterly scenarios, with replacement, and adding
them up. The current zero rates are given in Table 7.4.

A histogram of N D 10;000 samples from the predictive distribution of A1 � L1

is given in Fig. 7.7.

7.7 Notes and Comments

An introduction to the bootstrap and related resampling procedures, including
statistical applications, is given in the classic book [11] by Bradley Efron and Robert
Tibshirani.

Stochastic claims reserving techniques, extending the chain ladder, have been
developed in the actuarial literature in recent decades by Thomas Mack [28] and
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Fig. 7.7 Histogram in
Example 7.12 for predictive
distribution of the value of
assets minus the value of the
liabilities in 1 year from now

many others. A comprehensive treatment of such techniques is the book [46] by
Mario Wütrich and Michael Merz. Our approach to bootstrapping the chain ladder
method is a slight variation of the method presented by Peter England and Richard
Verrall [14]. The upper claims triangle in Table 7.5 used in Example 7.12 originates
from a paper by G.C. Taylor and F.R. Ashe [45].

7.8 Exercises

Exercise 7.1 (Empirical VaR). A unit within a bank is required to report an
empirical estimate of VaR0:01.X/, where X is the portfolio value the next day from
its trading activities. The empirical estimate bVaR0:01.X/ is based on market prices
from the previous n C 1 days that are transformed into a sample of size n from
the distribution of X and the sample points are assumed to be independent and
identically distributed. Compute the probability

P
�
bVaR0:01.X/ > VaR0:01.X/

�

as a function of n and determine its minimum and maximum for n in f100; : : : ; 300g.

Exercise 7.2 (Empirical tail conditional median). The tail conditional median
TCMp.X/ D medianŒL j L � VaRp.X/�, where L D �X=R0, has been proposed
as a more robust alternative to ESp.X/ since TCMp.X/ is not as sensitive as
ESp.X/ to the behavior of the left tail of the distribution of X .

Let Y have a standard Student’s t distribution with 	 degrees of freedom, and set
X D e0:01Y �1. Consider the empirical estimators 1TCM0:05.X/ and cES0:05.X/ based
on a sample of size 200 from the distribution of L D �X . Generate histograms
based on samples of size 105 from the distributions of 1TCM0:05.X/ and cES0:05.X/

for 	 D 2 and 	 D 10.
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Exercise 7.3 (Empirical expected shortfall). Let fZ1; : : : ; Zng be a sample of
independent and identically distributed historical log returns that are distributed as
the log return log.ST =S0/ of an asset from today until time T > 0. Show that if
the risk-free return over the investment period is 1, then the empirical estimator of
ESp.ST � S0/ is given by

min
c

�c C 1

np

nX

kD1

.c C S0 � S0e
Zk /I fZk � log.1 C c=S0/g:

Exercise 7.4 (Empirical spectral risk measure). Let fZ1; : : : ; Zng be a sample
of independent and identically distributed historical log returns that are distributed
as the log return log.ST =S0/ of an asset from today until time T > 0. Show that
if the risk-free return over the investment period is 1 and if �
 is a spectral risk
measure with risk aversion function 
, then the empirical estimator of �
.ST � S0/

is given by

S0

�
1 �

nX

kD1


keZk;n

�
; where 
k D

Z .n�kC1/=n

.n�k/=n


.u/du:

Project 7 (Total returns). Consider a 5-year investment in a portfolio of dividend-
paying stocks. The yearly portfolio returns StC1=St and dividends DtC1 paid at time
t C 1 are modeled as

StC1

St

D e�C0:2XtC1 and
DtC1

St

D 0:05e�0:052=2C0:05YtC1 ;

where X1; : : : ; X5; Y1; : : : ; Y5 are independent and standard normally distributed.

(a) Consider the value in 5 years of investing $1 million in a portfolio of stocks and
reinvesting the dividends in the portfolio of stocks. Determine the function f

such that the value V5 in 5 years of the investment strategy can be expressed as
V5 D f .�; X1; : : : ; X5; Y1; : : : ; Y5/.

(b) Simulate a sample of suitable size from the distribution of .X1; : : : ; X5;

Y1; : : : ; Y5/ and use this sample to determine the empirical distribution of V5

for a range of values of the parameter �. Estimate the smallest value of � for
which the probability that V5 exceeds the value in 5 years of an investment of
$1 million in a 5-year zero-coupon bond with zero rate 5% per year is 0:75.

Project 8 (Pension savings). Consider a yearly investment of $1,000 in long
positions in a portfolio of stocks and a risk-free, 1-year, zero-coupon bond over
a 30-year period. The yearly returns on the portfolio of stocks in year k is modeled
as Rk D e�C�Zk , where Zk is standard normally distributed. The yearly returns are
assumed to be independent. The yearly return on the risk-free bond is assumed to
be e0:01. The fraction of the yearly amount invested in the portfolio of stocks at the
beginning of year k is p.1 � c.k � 1/=30/, where p; c 2 Œ0; 1�.
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(a) Determine a function f such that the value of the pension savings in 30 years
can be expressed as V30 D f .�; �; p; c; Z1; : : : ; Z30/.
Simulate a sample of suitable size n from the distribution of .Z1; : : : ; Z30/ and
use this sample to determine the empirical distribution Fn of V30 for a range of
values of the parameters �; �; p; c.

(b) Set � D 0:06 and � D 0:2 and investigate the effects on the empirical
distribution Fn.p; c/ of V30 of varying p and c. Suggest a suitable criterion
for selecting the optimal empirical distribution Fn.p; c/ and determine the
optimizer .p; c/.
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