
Chapter 6
Risk Measurement Principles

In this chapter, we take a close look at the principles of risk measurement. We
argue that it is natural to quantify the riskiness of a position in monetary units
so that the measurement of the risk of a position can be interpreted as the size of
buffer capital that should be added to the position to provide a sufficient protection
against undesirable outcomes. In the investment problems in Chap. 4, variance was
used to quantify the riskiness of a portfolio. However, variance, being just the
expected squared deviation from the mean value, does not differentiate between
good positive deviations and bad negative deviations and cannot easily be translated
into meaningful monetary values unless the future value we consider is close to
normally distributed. The risk premium considered in Chap. 5 is more natural than
the variance as a summary of the riskiness and potential reward of a position.
However, the risk premium is difficult to use effectively to control the risk taking of
a financial institution or to determine whether the aggregate position of a company
or business unit is acceptable from a risk perspective. In this chapter, we will
present measures of risk, including the widely used value-at-risk and expected
shortfall, analyze their properties, and evaluate their performance in a large number
of examples.

6.1 Risk Measurement

We now turn to the topic of how to measure risk. Consider two times, time 0, which
is now, and a future time �t > 0. We may choose to measure time in units of �t

and therefore take the future time to be 1.
Let V1 represent the random value at time 1 of a portfolio. The precise meaning

of portfolio is left unspecified but may include assets, liabilities, and any kind of
contract that can be assigned a monetary value. To measure the risk of the portfolio,
we analyze the probability distribution of V1. The probability distributions assigned
to V1 are likely to vary among a group of individuals or organizations for which the
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160 6 Risk Measurement Principles

future portfolio value is of relevance. Moreover, the way the probability distribution
of V1 is transformed into a measurement of the riskiness of the portfolio may depend
on the context.

An asset manager, whose main objective is to generate profits while controlling
the risk of and size of losses, needs to consider the whole range of possible
outcomes of V1 together with possible externally imposed risk constraints and
profitability requirements. A risk controller analyzes the part of the distribution
of V1 corresponding to unfavorable outcomes. In particular, the portfolio may be
considered acceptable by the risk controller but not by the asset manager if it is
not likely to produce a good return. Similarly, a portfolio that has good potential of
producing high returns may be unacceptable to the risk controller who finds that the
probabilities of large losses are too high and have been overlooked (or ignored) by
the asset manager.

A regulator of a finance or insurance market wants to impose rules on risk
taking that on the one hand prevents banks or insurance companies from taking
too much risk, and thereby threatening financial stability, but on the other hand
allows companies to be profitable. The rules must enable the supervisory authority
to classify the overall position of a company as either acceptable or unacceptable.
Moreover, the supervisor must be able to inform a company with an unacceptable
position of suitable actions to obtain an acceptable position, for instance, the
minimum additional capital that the company must raise and invest prudently in
order to be allowed to continue its business.

Many properties of a portfolio can be understood in terms of the probability
distribution (e.g., the density function or distribution function) of its future value
V1. However, probability distributions are difficult objects to compare. Therefore,
it is tractable to come up with a good way to summarize, from a risk measurement
perspective, the entire probability distribution in a single number. We now discuss
how this can be done.

Suppose there is a reference instrument with percentage return R0 from time 0

to 1. The precise meaning of the reference instrument may depend on the context
in which we are quantifying risk. For simplicity, here we take it be risk-free zero-
coupon bonds maturing at time 1. If B0 is the current spot price of the bond with
face value 1 at time 1, then R0 D 1=B0 is the percentage return on the risk-free
zero-coupon bond.

Consider a linear vector space X of random variables X representing the values at
time 1 of portfolios. We denote by � a function that assigns a real number (or C1)
to each X in X, representing a measurement of the risk of X . The number �.X/ is
interpreted as the minimum capital that needs to be added to the portfolio at time 0

and invested in the reference instrument in order to make the position acceptable.
If �.X/ � 0, then X is the value at time 1 of an acceptable portfolio; no capital
needs to be added. In principle, a risk measure � could assign different values to
two equally distributed future portfolio values X1 and X2. Throughout the book, we
will only consider risk measures � for which �.X/ depends on X only through its
probability distribution.
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Next we list and comment upon some properties that have been proposed as
natural requirements for good risk measures.

Translation invariance. �.X C cR0/ D �.X/ � c for all real numbers c.
This property says that adding a certain amount c of cash (and buying zero-

coupon bonds for this amount) will reduce risk by the same amount. In particular,
for an unacceptable portfolio X , adding the amount �.X/ makes the position
acceptable: �.X C �.X/R0/ D �.X/ � �.X/ D 0.

Monotonicity. If X2 � X1, then �.X1/ � �.X2/.
This property says that if the first position has a greater value than the second

position at time 1 for sure, then the first position must be considered less risky.
A risk measure satisfying the properties translation invariance and monotonicity is
called a monetary measure of risk.

It is often suggested that a risk measure should reward diversification. Loosely
speaking, it is wise not to put all your eggs in the same basket. The following
property describes how diversification should be rewarded.

Convexity. �.�X1 C .1 � �/X2/ � ��.X1/ C .1 � �/�.X2/ for all real numbers �

in Œ0; 1�.
In particular, if �.X1/ � �.X2/ and � has the convexity property, then

�.�X1 C .1 � �/X2/ � ��.X1/ C .1 � �/�.X2/ � �.X2/:

For example, investing a fraction of the initial capital in one stock and the remaining
capital in another stock, rather than everything in the more risky stock, reduces
the overall risk. A risk measure satisfying the properties translation invariance,
monotonicity, and convexity is called a convex measure of risk.

Normalization. �.0/ D 0.
The normalization property says that it is acceptable not to take any position at

all. Note that convexity and normalization imply that for � in Œ0; 1�

�.�X/ D �.�X C .1 � �/0/ � ��.X/;

which in turn implies that for � � 1

��.X/ D ��

�
1

�
�X

�
� �

1

�
�.�X/ D �.�X/:

We conclude that the risk increases at least linearly in the size of the position.
A strict inequality for large � would reflect the well-known difficulty of selling off
a large position within a short amount of time without affecting the price too much.

Positive homogeneity. �.�X/ D ��.X/ for all � � 0.
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This property means that if we double the size of the position, then we double the
risk. Moreover, taking � D 0 we find that �.0/ D 0, i.e., the positive homogeneity
property implies the normalization property.

Subadditivity. �.X1 C X2/ � �.X1/ C �.X2/.
This property says that diversification should be rewarded. A bank consisting of

two units should be required to put aside less buffer capital than the sum of the
buffer capital for the two units considered as separate entities. In particular, if the
regulator enforces the use of a subadditive risk measure, then it does not encourage
companies to break up into parts in order to reduce the buffer capital requirement.
Note that convexity together with positive homogeneity implies subadditivity.

A risk measure � satisfying the properties of translation invariance, monotonicity,
positive homogeneity, and subadditivity is called a coherent measure of risk.
Whereas a coherent risk measure is also a convex risk measure, a convex risk
measure need not be coherent.

It may seem unintuitive at first to define the risk measure � on the value of a
portfolio at time 1. Suppose R0 D 1 and consider a fund manager who at time 0

invests V0 D $10 million in a giveaway portfolio with a value of V1 D $1 million
.at time 1 ($9 million is given away). If the risk measure � satisfies the translation
invariance and normalization properties, then the risk measure applied to the future
value of the portfolio yields �.$1 million/ D �$1 million, which corresponds to an
acceptable investment. How can giving away money be an acceptable investment?
The explanation lies in the interpretation of the future value X . Let us consider
two stylized cases. In the first case, the fund manager is managing his own money,
X D V1, and there is nothing unacceptable about letting the fund manager give
away some or all of his capital. In the second case, the money of the fund belongs
to the fund’s investors. In this case, the initial capital should be viewed as a liability
to the fund’s investors and X D V1 � V0. Therefore, �.X/ D $9 million, which
corresponds to an unacceptable investment.

Example 6.1 (Solvency capital requirement). In the Solvency II framework, which
is a regulatory framework for the insurance industry, a company is considered
solvent if �.A1 � L1/ � 0, where A1 and L1 are the values of its assets and
liabilities 1 year from now and � a monetary (translation invariant and monotone)
risk measure. It is quite common to illustrate the solvency graphically in terms of a
picture of the balance sheet of the insurance company with the current value of assets
to the left and the current value of liabilities to the right, and with the insurer being
solvent if the height of the left column exceeds that of the right column (Fig. 6.1).

Let A0 be the current market value of the assets, and let L0 be the current market
value (or best estimate) of the liabilities. Since � is translation invariant, we may
write

�.A1 � L1/ D �.ŒA0 � L0�R0 C ŒA1 � A0R0� � ŒL1 � L0R0�/

D L0 � A0 C �.ŒA1 � A0R0� � ŒL1 � L0R0�„ ƒ‚ …
�

/:
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Fig. 6.1 Balance sheet. Left:
present value of assets (gray).
Right: present value of
liabilities (gray). The
solvency capital requirement
is illustrated in white. The
company is solvent if the
present value of the assets is
greater than the present value
of the liabilities plus the
solvency capital requirement

The quantity �.�/ is called the solvency capital requirement and is denoted by SCR.
A portfolio with a future value A1 � L1 is acceptable if �.A1 � L1/ � 0, which is
equivalent to A0 � L0 C SCR. The latter says that the current value of the assets
exceeds the current value of the liabilities plus the solvency capital requirement.
The balance sheet illustration of solvency may give the false impression, if not
correctly interpreted, that solvency is about current asset and liability values,
whereas solvency is really about future asset and liability values.

Example 6.2 (An absolute lower bound). Suppose that acceptable portfolios are
those that are certain not to be below a fixed number c. This gives the risk measure

�.X/ D minfm W mR0 C X � cg:

Define x0 to be the smallest value that X can take (if no such value exists, then take
x0 to be the largest value smaller than all the values that X can take), and notice that

�.X/ D minfm W mR0 C X � cg D c � x0

R0

; (6.1)

i.e., the discounted difference between the required capital c at time 1 and the worst
possible outcome for the value of the portfolio at time 1. In particular, we note that
if the portfolio contains short positions in some asset with an unbounded value at
time 1 so that x0 D �1, then �.X/ D C1.

We claim that the risk measure � given by (6.1) is a convex measure of risk.
To verify this claim, we need to show the translation invariance, monotonicity, and
convexity. Translation invariance is shown by noticing that for all real numbers a,

�.X C aR0/ D c � .x0 C aR0/

R0

D �.X/ � a:
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To show monotonicity, we notice that if X2 � X1, then the corresponding lower
bounds satisfy x02 � x01, and therefore

�.X1/ D c � x01

R0

� c � x02

R0

D �.X2/:

Finally, we verify that the convexity property holds. If X1 and X2 have lower bounds
x01 and x02, then, for � 2 Œ0; 1�, the corresponding lower bound y0 for Y D �X1 C
.1 � �/X2 is greater than or equal to �x01 � .1 � �/x02. Therefore,

�.�X1 C .1 � �/X2/ D c � y0

R0

� c � �x01 � .1 � �/x02

R0

D �
c � x01

R0

C .1 � �/
c � x02

R0

D ��.X1/ C .1 � �/�.X2/:

Example 6.3 (Mean–variance risk measures). Consider portfolios whose future
values X have finite variances and a risk measure of the form

�.X/ D � EŒX=R0� C c
p

Var.X=R0/; c > 0: (6.2)

By standard properties of the expected value and variance, it follows that � is
translation invariant and positively homogeneous. Moreover, � is subadditive. This
follows from the fact that

Var.X1 C X2/ D Var.X1/ C Var.X2/ C 2 Cor.X1; X2/
p

Var.X1/ Var.X2/

�
�p

Var.X1/ C
p

Var.X2/
�2

;

i.e., the standard deviation of the sum is less than or equal to the sum of the
standard deviations for the two terms. Since � is both positively homogeneous and
subadditive, it is also convex. However, the monotonicity condition is in general
not satisfied, so � in (6.2) is not a convex measure of risk. The following example
illustrates the lack of monotonicity. Let X1 D �R0 with probability one and let X2

be a random variable that may take the values R0 and �R0, each with probability
1=2. Then X1 � X2, and if c > 1 in (6.2), then

�.X2/ D c
p

Var.X2=R0/ D c > 1 D � EŒX1=R0� D �.X1/:

The lack of monotonicity is a serious flaw and limits the use of the mean–
variance risk measure. However, for normally distributed random variables the
mean–variance risk measure is canonical. If X is normally distributed, then we may
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write X
dD EŒX� Cp

Var.X/Z, where Z is a standard normally distributed random
variable. For any translation-invariant, positively homogeneous risk measure � we
find that

�.X/ D �.EŒX� Cp
Var.X/Z/

D � EŒX=R0� Cp
Var.X=R0/R0�.Z/:

We conclude that as long as X is normally distributed, any translation-invariant,
positively homogeneous risk measure satisfies the defining property (6.2) of mean–
variance risk measures.

6.2 Value-at-Risk

The value-at-risk (VaR) at level p 2 .0; 1/ of a portfolio with value X at time 1 is

VaRp.X/ D minfm W P.mR0 C X < 0/ � pg; (6.3)

where R0 is the percentage return of a risk-free asset. In words, the VaR of a position
with value X at time 1 is the smallest amount of money that if added to the position
now and invested in the risk-free asset ensures that the probability of a strictly
negative value at time 1 is not greater than p.

From (6.3) we see that X � 0 implies that VaRp.X/ � 0. In order for VaRp to
be a sensible choice of risk measure for typical asset portfolios with mainly long
positions, it is common to take the following view: at the current time 0 one starts
from scratch and takes a risk-free loan of size V0 (which is the current portfolio
value), uses the capital to purchase the asset portfolio, and ends up with the net
value X D V1 � V0R0 at time 1. Therefore, the portfolio is classified as acceptable
if the difference between the actual future portfolio value and the value that would
be obtained by instead investing the current portfolio value in a risk-free asset is
VaRp-acceptable.

Before investigating the properties of VaR we first need to make sure that the
minimum in (6.3) is attained so the definition really makes sense. To this end,
note that

fm W P.mR0 C X < 0/ � pg
D fm W P.�X=R0 > m/ � pg
D fm W 1 � P.�X=R0 � m/ � pg
D fm W P.�X=R0 � m/ � 1 � pg: (6.4)

Since a distribution function F is right continuous (F.x/ # F.x0/ as x # x0) and
increasing, fm W F.m/ � 1 � pg D Œm0; 1/ for some m0, and therefore there exists
a smallest element.
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Set L D �X=R0. If X D V1�V0R0 is the net gain from the investment, where the
current portfolio value V0 is viewed as a liability, then L D �X=R0 D V0 � V1=R0

has a natural interpretation as the discounted loss. The identities in (6.4) give an
alternative (equivalent) formulation of VaRp.X/ in terms of L:

VaRp.X/ D minfm W P.L � m/ � 1 � pg: (6.5)

We may interpret VaRp.X/ as the smallest value m such that the probability of the
discounted portfolio loss L D �X=R0 being at most m is at least 1 � p. Expressed
differently, VaRp.X/ is the smallest amount of money that, if put aside and invested
in a risk-free asset at time 0, will be sufficient to cover a potential loss at time
1 with a probability of at least 1 � p. Commonly encountered values for p are
5%, 1%, and 0:5%, which shows that VaRp.X/ describes (to some extent) the right
tail of the probability distribution of the discounted loss L. The length in physical
time of the time period over which the discounted loss is modeled is often taken
to reflect the time it may take to move out of an unfavorable position in the face
of adverse price movements. In market risk measurement (e.g., stocks, bond and
financial derivatives), the length of the time period is typically 1 day or 10 days,
whereas 1 year is typical for credit and insurance risk measurement (e.g., retail
or corporate loans or the aggregate value of assets and liabilities of an insurance
company).

In statistical terms, VaRp.X/ is the .1 � p/-quantile of L. The u-quantile of a
random variable L with distribution function FL is defined as

F �1
L .u/ D minfm W FL.m/ � ug;

and F �1
L is just the ordinary inverse if FL is strictly increasing. If FL is both

continuous and strictly increasing, then F �1
L .u/ is the unique value m such that

FL.m/ D u. For a general FL, the quantile value F �1
L .u/ is obtained by plotting the

graph of FL and setting F �1
L .u/ to be the smallest value m for which FL.m/ � u.

With this notation it follows that

VaRp.X/ D F �1
L .1 � p/: (6.6)

To better understand the properties of the risk measure VaRp , we first study the
quantile function in more detail. We denote the uniform distribution on the interval
.0; 1/ by U.0; 1/, i.e., the probability distribution of a random variable U satisfying
P.U � u/ D u for u in .0; 1/.

Proposition 6.1. Let F be a distribution function on R. Then:

(i) u � F.x/ if and only if F �1.u/ � x.
(ii) If F is continuous, then F.F �1.u// D u.

(iii) (Quantile transform) If U is U.0; 1/-distributed, then P.F �1.U / � x/ D F.x/.
(iv) (Probability transform) If X has distribution function F , then F.X/ is U.0; 1/-

distributed if and only if F is continuous.
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Proof. (i): Suppose F �1.u/ � x. By definition, F.F �1.u// D F.minfy W
F.y/ � ug/ � u. Since F is nondecreasing, u � F.F �1.u// � F.x/.
Suppose now that u � F.x/. Since F is nondecreasing, F �1.F.x// D
minfy W F.y/ � F.x/g � x. Since F �1 also is nondecreasing, F �1.u/ �
F �1.F.x// � x.

(ii): As in (i) we have u � F.F �1.u//. Take y < F �1.u/ and note that by (i) this is
equivalent to F.y/ < u. Now, if F.y/ D P.X � y/ < u for all y < F �1.u/,
then P.X < F �1.u// � u. Then

u � F.F �1.u// D P.X < F �1.u// C P.X D F �1.u//

� u C P.X D F �1.u//:

The continuity of F implies that P.X D F �1.u// D 0. We conclude that
u D F.F �1.u//.

(iii): U � F.x/ if and only if F �1.U / � x by (i). Hence, P.F �1.U / � x/ D
P.U � F.x// D F.x/.

(iv): Suppose F is continuous. By the quantile transform and (ii),

P.F.X/ D u/ D P.F.F �1.U // D u/ D P.U D u/ D 0:

Hence, by (i)

P.F.X/ � u/ D P.F.X/ < u/ C P.F.X/ D u/

D P.F.X/ < u/

D 1 � P.F.X/ � u/

D 1 � P.X � F �1.u//

D P.X < F �1.u//

D F.F �1.u//:

It now follows from (ii) that F.X/ is U.0; 1/-distributed.
To show the converse we show the equivalent statement, that if F is not

continuous, then F.X/ is not U.0; 1/-distributed. If F is discontinuous at x,
then 0 < P.X D x/ � P.F.X/ D F.x//. Hence, F.X/ has a point mass and
therefore cannot be U.0; 1/-distributed. �

It is not difficult to see that the quantile function, and therefore also VaR, is
translation invariant and positive homogeneous. For constants c1; c2 with c2 > 0,

F �1
c1Cc2L.p/ D minfm W P.c1 C c2L � m/ � pg

D minfm W FL..m � c1/=c2/ � pg



168 6 Risk Measurement Principles

D fput m0 D .m � c1/=c2g
D minfc1 C c2m0 W FL.m0/ � pg
D c1 C c2 minfm0 W FL.m0/ � pg
D c1 C c2F �1

L .p/: (6.7)

Moreover, the quantile function, and therefore also VaR, satisfies the monotonicity
condition. This follows from the fact that L2 � L1 implies FL1.m/ � FL2 .m/ and
therefore

F �1
L1

.p/ D minfm W FL1 .m/ � pg
� minfm W FL2 .m/ � pg D F �1

L2
.p/:

Here we summarize the properties for VaR that have been established up to this
point.

Proposition 6.2. The properties translation invariance, monotonicity, and positive
homogeneity hold for VaRp .

Examples of the lack of subadditivity of VaRp can be found even for sums
of independent and identically distributed random variables. One such example is
obtained by combining Examples 6.9 and 6.10.

Example 6.4 (A crude upper bound). Sometimes we need to estimate the quantile
F �1

L .p/ for p 2 .0; 1/ close to one, although the distribution of L is far from
being well understood. Suppose, for instance, that only the mean EŒL� and the
variance Var.L/ are available to us. Cantelli’s inequality, the one-sided version of
Chebyshev’s inequality, says that

P.L � EŒL� � y/ � Var.L/

y2 C Var.L/

or equivalently that

P.L � y/ � Var.L/

.y � EŒL�/2 C Var.L/
:

Now we can turn this upper bound for the tail probability into an upper bound for
the p-quantile of the distribution of L:

F �1
L .p/ � min

n
y W Var.L/

.y � EŒL�/2 C Var.L/
� 1 � p

o
D EŒL� C

�
Var.L/p

1 � p

�1=2

:
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The upper bound on the quantile is not necessarily a good estimate, but it is
the smallest upper bound (best conservative estimate) if no information about the
distribution of L is available besides the mean and the variance.

Example 6.5 (Lognormal distribution). Consider a stock with spot price S0 today
and random spot price S1 tomorrow, and assume that the 1-day interest rate is
zero. We want to compute VaRp.S1 � S0/ under the assumption that the log return
log.S1=S0/ is normally distributed. Note that VaRp.S1 � S0/ D F �1

S0�S1
.1 � p/ and

that

S0 � S1 D �S0.e
log.S1=S0/ � 1/

dD �S0.e
�C�Z � 1/;

where Z is standard normally distributed. Write L D S0 � S1 and notice that
L D �g.Z/, where g is a continuous and strictly increasing function. To compute
VaRp.S1 � S0/ D F �1

L .1 � p/, we will combine the two relations

F �1�g.Z/.1 � p/ D �F �1
g.Z/.p/; (6.8)

F �1
g.Z/.p/ D g.F �1

Z .p//; (6.9)

to obtain

VaRp.S1 � S0/ D �g.F �1
Z .p// D S0.1 � e�C�˚�1.p//:

Let us first show relation (6.8). Since P.g.Z/ D x/ D 0 for every x, it holds that

F�g.Z/.x/ D P.�g.Z/ � x/ D P.g.Z/ � �x/ D 1 � Fg.Z/.�x/;

and therefore solving F�g.Z/.x/ D 1�p for x is equivalent to solving Fg.Z/.�x/ D
p, which in turn is equivalent to x D �F �1

g.Z/.p/. Let us now show relation (6.9).
We notice that

Fg.Z/.x/ D P.g.Z/ � x/ D P.Z � g�1.x// D FZ.g�1.x//;

and therefore solving Fg.Z/.x/ D p for x is equivalent to solving g�1.x/ D
F �1

Z .p/, which in turn is equivalent to x D g.F �1
Z .p//.

As the previous example illustrates, a common situation is when we want to
compute VaRp.X/ when X D g.Z/ for a continuous and monotone function g

and a random variable Z. In the preceding example, g was continuous and strictly
increasing and Z had a normal distribution. The payoff function of a call option,
.S1 �K/C, is nondecreasing but not strictly increasing, so the preceding calculation
does not apply. The following two results show that also the more general situation
can be handled without too much difficulty.
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Proposition 6.3. If g W R ! R is nondecreasing and left continuous, then for any
random variable Z it holds that F �1

g.Z/.p/ D g.F �1
Z .p// for all p 2 .0; 1/.

Proof. First we show that, with X D g.Z/, F �1
X .p/ � g.F �1

Z .p//. To see this,
first observe that since g is nondecreasing, Z � F �1

Z .p/ implies that g.Z/ �
g.F �1

Z .p//. Moreover, since FZ is right continuous, it holds that FZ.F �1
Z .p// � p.

Therefore,

P.X � g.F �1
Z .p/// D P.g.Z/ � g.F �1

Z .p/// � P.Z � F �1
Z .p// � p:

Since F �1
X .p/ is the smallest number m such that P.X � m/ � p, we have shown

that F �1
X .p/ � g.F �1

Z .p//.
To show the reverse inequality F �1

X .p/ � g.F �1
Z .p//, we use the left continuity

of g. Since g is nondecreasing and left continuous, there exists for each y 2 R and
" > 0 a ı > 0 such that

fz W z 2 .y � ı; y�g � fz W g.z/ 2 .g.y/ � "; g.y/�g:
Moreover, since g is nondecreasing, we have

fz W g.z/ � g.y/g D fz W z � yg [ fz W g.z/ D g.y/; z > yg;
fz W g.z/ � g.y/ � "g � fz W z � yg:

Combining the preceding three set relations yields

fz W g.z/ � g.y/ � "g � fz W z � y � ıg:
Therefore,

P.X � g.F �1
Z .p// � "/ D P.g.Z/ � g.F �1

Z .p// � "/

� P.Z � F �1
Z .p/ � ı/

< p;

where in the last step we used the fact that the right continuity of FZ implies that for
every ı > 0 we have FZ.F �1

Z .p/�ı/ < p. It follows that g.F �1
Z .p//�" < F �1

X .p/.
Since " > 0 was arbitrary, we conclude that g.F �1

Z .p// � F �1
X .p/. This completes

the proof. �

The following proposition, combined with Proposition 6.3, enables efficient
computations of VaRp.X/ in a wide range of applications. We denote by

F �1
X ..1 � p/C/ D lim

"#0
F �1

X .1 � p C "/

the limit from the right of the quantile function of X , F �1
X , at the point 1 � p.
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Proposition 6.4. For any random variable X , F �1�X .p/ D �F �1
X ..1 � p/C/ for all

p 2 .0; 1/. In particular, if FX is continuous and strictly increasing, then F �1�X .p/ D
�F �1

X .1 � p/.

The best way to verify the equality F �1�X .p/ D �F �1
X ..1 � p/C/ is by selecting

a random variable X whose distribution function FX has both a flat part and a jump
and to draw and inspect the graphs of FX , F�X , F �1

X , and F �1�X . Without loss of
generality we may choose a random variable with distribution function x 7! FX .x/

whose graph is shown in the upper left plot in Fig. 6.2. To draw the graph of p 7!
�F �1

X ..1 � p/C/, we proceed as follows. The graph of p 7! F �1
X .p/ (lower left

plot in Fig. 6.2) is obtained by reflecting the graph of FX in the line y D x. Note
that the quantile function F �1

X is left continuous. Finally, we draw the graph of
p 7! �F �1

X ..1 � p/C/ (lower right plot in Fig. 6.2) by first reflecting the graph of
F �1

X in x-axis, then reflecting the resulting graph in the line p D 1=2, and finally
taking limits from the left of the resulting function of p (which corresponds to taking
limits from the right if the function is viewed as a function of 1 � p). To draw the
graph of p 7! F �1�X .p/, we proceed as follows. First draw the graph of x 7! F�X .x/

(upper right plot in Fig. 6.2). Then draw the graph of p 7! F �1�X .p/ (lower right plot
in Fig. 6.2) by reflecting the previous graph in the line y D x.

A formal proof of Proposition 6.4 goes as follows.

Proof. First note that

F �1�X .p/ D minfm W P.�X � m/ � pg
D minfm W P.X � �m/ � pg
D minfm W P.X < �m/ � 1 � pg
D � maxfm W P.X < m/ � 1 � pg:

It remains to show that maxfm W P.X < m/ � 1�pg D lim"#0 F �1
X .1�p C"/. Let

m1�p D maxfm W P.X < m/ � 1 � pg, and note that it follows from the definition
of the quantile F �1

X that FX .F �1
X .u// D FX .minfm W FX .m/ � ug/ � u. Therefore,

for " 2 .0; p/,

P.X < m1�p/ � 1 � p < 1 � p C " � P.X � F �1
X .1 � p C "//;

from which it follows that m1�p � F �1
X .1 � p C "/. Since the inequalities hold for

any " 2 .0; p/, we may take the limit as " # 0 and therefore conclude that

m1�p � lim
"#0

F �1
X .1 � p C "/:

To show the reverse inequality, we first take an arbitrary ı > 0 and note that the
definition of m1�p implies that P.X < m1�p C ı/ > 1 � p, which in turn implies
that

P.X < m1�p C ı/ > 1 � p C "
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Fig. 6.2 Upper left plot: distribution functions FX .x/; upper right plot: distribution function
F

�X .x/. Lower left plot: quantile function F �1
X .p/; lower right plot: function �F �1

X ..1 � p/C/

for all sufficiently small " > 0. Therefore, m1�p C ı � F �1
X .1 � p C "/ for all

sufficiently small " > 0, and taking the limit as " # 0 gives

m1�p C ı � lim
"#0

F �1
X .1 � p C "/:

Since ı > 0 was arbitrary, it follows that

m1�p � lim
"#0

F �1
X .1 � p C "/:

This completes the proof. �

Example 6.6 (Put spread). Consider a portfolio with a value at time 1 given by

.K2 � S1/C � .K1 � S1/C for K1 < K2:
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This is the value at maturity of a put spread; a long position in a put option with
strike K2 and price C2 and a short position of the same size in a put option with a
lower strike K1 and price C1. The net value X at time 1, considering the cost of the
put spread as a risk-free loan to be paid at time 1, is

X D .K2 � S1/C � .K1 � S1/C � .C2 � C1/R0:

We write L D �X=R0 D g.S1/, where

g.y/ D 1

R0

�
.K1 � y/C � .K2 � y/C

�
C C2 � C1

and note that the function g is continuous and nondecreasing. By Proposition 6.3 it
follows that

VaRp.X/ D F �1
L .1 � p/ D F �1

g.S1/.1 � p/ D g.F �1
S1

.1 � p//

D 1

R0

�
.K1 � F �1

S1
.1 � p//C � .K2 � F �1

S1
.1 � p//C

�
C C2 � C1:

Example 6.7 (Structured product). Financial contracts that are combinations of a
bond, giving the buyer a guaranteed return on investment, and a derivative contract,
giving the buyer the possibility of a high return, are often called structured products.
The simplest form of a structured product with maturity in 1 year is a portfolio
consisting of a long position of size h0 in a risk-free bond that pays 1 to its holder
1 year from now and a long position of size h1 in a European call option on the
value S1 of a stock index 1 year from now with a strike price K . Suppose that S1

is lognormally distributed, LN.�; �2/. If the current spot prices of the bond and
option are B0 and C0, respectively, then the current value of the portfolio is V0 D
h0B0 C h1C0.

To evaluate the riskiness of this portfolio, we want to compute VaRp.X/, where
X D V1 � V0=B0 and V1 D h0 C h1.S1 � K/C is the value of the portfolio at
maturity. Write

VaRp.X/ D F �1�B0V1CV0
.1 � p/ D F �1�g.Z/.1 � p/;

where Z is standard normally distributed and g is given by

g.Z/ D B0.h0 C h1.e
�C�Z � K/C/ � V0:

Note that g is continuous and nondecreasing. Applying first Proposition 6.4 and
then Proposition 6.3 gives

F �1�g.Z/.1 � p/ D �F �1
g.Z/.pC/ D �g.F �1

Z .pC//:
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Since Z is standard normally distributed with strictly increasing distribution
function ˚ , we find that F �1

Z .pC/ D ˚�1.p/ and conclude that

VaRp.X/ D �B0.h0 C h1.e�C�˚�1.p/ � K/C/ C V0

D h1

�
C0 � B0.e

�C�˚�1.p/ � K/C/
�
:

Suppose value X at time 1 of a portfolio can be expressed as X D f .Z/ for
a smooth nonlinear function f and Z having a standard distribution. If f is not
monotone, then it is difficult (or impossible) to express the quantiles of X in terms
of the quantiles of Z. One way to overcome this difficulty is by approximating f

by a first-order Taylor expansion and then approximate X by

X � f .EŒZ�/ C df

d z
.EŒZ�/.Z � EŒZ�/:

This approach is referred to as linearization. The following example gives an
illustration of linearization in a simple example where explicit calculations are
possible and linearization is not really needed. The example also shows that
linearization (like any other approximation) must be used wisely; careless use may
result in serious errors.

Example 6.8 (Linearization). You hold a portfolio consisting of a long position of 5

shares of stock A. The stock price today is S0 D 100, and we assume a zero interest
rate. The daily log returns

Y1 D log.S1=S0/; Y2 D log.S2=S1/; : : :

of stock A are assumed to have a normal distribution with zero mean and standard
deviation � D 0:01. Let V0 be the current value of the portfolio, and let V1 D
S0e

Y1 D S0e
0:01Z , where Z D Y1=0:01 is standard normally distributed, be the

value of the portfolio tomorrow.
We first consider the effect of linearization over a 1-day horizon. We start by

explicitly computing VaR0:01.V1�V0/ and then compute the approximation obtained
by replacing V1 by its first-order Taylor approximation with respect to Z. Notice that
VaR0:01.V1 �V0/ D F �1

V0�V1
.0:99/ and V0 �V1 D �500.eY1 �1/ D �500.e0:01Z �1/.

Therefore, as in Example 6.5,

VaR0:01.V1 � V0/ D 500.1 � e0:01˚�1.0:01// D 11:5:

The first-order Taylor approximation of V1 is V1 D 500e0:01Z � 500.0:01Z C 1/,
which gives
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VaR0:01.V1 � V0/ � VaR0:01.5Z/ D 5˚�1.0:99/ � 11:6:

The relative error of the VaR approximation is 1:2%, which is rather small.
We now consider the effect of linearization over a longer time horizon and

illustrate that the error due to linearization may be substantial. We make the
simplifying assumption that log returns over nonoverlapping time periods are
independent. We consider the effect of holding the aforementioned portfolio for 100
(trading) days and let V100 be the value of the portfolio 100 days from now. We start
by explicitly computing VaR0:01.V100 � V0/ and then compute the approximation
obtained by replacing V100 seen as a function of a standard normal variable Z by
its first-order Taylor approximation with respect to Z. As previously, we ignore
interest rates. We may write VaR0:01.V100�V0/ D F �1

V0�V100
.0:99/, where V0�V100 D

�500.eY100 � 1/ with Y100 denoting the 100-day log return. Note that

Y100 D log S100=S0 D log S1=S0 C � � � C log S100=S99;

which shows that Y100 is a sum of 100 independent N.0; 0:012/-distributed random
variables. Therefore, Y100

dD 0:1Z, where Z is standard normally distributed. In
particular, V0 � V100

dD �500.e0:1Z � 1/ and

VaR0:01.V100 � V0/ D 500.1 � e0:1˚�1.0:01// � 103:8:

Using a first-order Taylor approximation gives V100
dD 500e0:1Z � 500.0:1Z C 1/,

which gives the approximation

VaR0:01.V100 � V0/ � VaR0:01.50Z/ D 50˚�1.0:99/ � 116:3:

The relative error of the VaR approximation is 12:1%.

Next follows the first two in a series of four examples on credit default swaps
(CDSs). The examples treat portfolios containing defaultable bonds and CDSs.
There are two general messages communicated by these examples. The first
message is that VaR at level p does not provide any information about the worst-case
outcomes corresponding to an event whose probability is less than p. Using VaR,
therefore, enables investors to hide risk in the right tail of the distribution of L. The
second message is that, besides not investing at all, there are essentially two ways
to reduce risk. One way is to hedge a risk by buying protection against undesired
events. Hedging may be viewed as buying insurance. In the following examples,
hedging amounts to buying credit default swaps. Another way to reduce risk is by
diversification. A well-diversified position has a future value that depends on many
independent sources of randomness such that the exposure to each one of them is
small. Diversification is the key principle for an insurer and the opposite of buying
insurance.
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A problem with VaR is that it does not necessarily reward diversification. In
Example 6.10 it is shown that a diversified portfolio may have higher risk, measured
by VaR, than a comparable nondiversified portfolio. The example also shows that
VaR is not subadditive in general.

Example 6.9 (Credit default swap I). Consider an investor with $100 who has the
opportunity to take long positions in a defaultable bond and a credit default swap
(CDS) on this bond. One bond costs $97 now and pays $100 6 months from now
if the issuer does not default and 0 if the issuer defaults. The CDS costs $4 and
pays $100 6 months from now if the bond issuer defaults and nothing otherwise.
For simplicity we assume that a risk-free bond with maturity in 6 months has zero
interest rate, so B0 D 1. The investor believes that the default probability is 0:02 and
wants to maximize the expected value of V1, the value in dollars of the investor’s
position at the maturity of the bond, subject to the risk constraint VaR0:05.V1 �
100/ � 10 and a budget constraint. It is assumed throughout that the investor can
only take long positions. Otherwise, with the prices given previously, there would
be an arbitrage opportunity. Why? How much of the $100 does the investor invest
in the bond? How much in the CDS?

Let w1 and w2 be the amounts invested in bonds and CDSs in the portfolio,
respectively. Let c1 D 97 and c2 D 4 be the prices of the bond and the CDS,
respectively. Then the value at time 1 (after 6 months) is V1 D w1c�1

1 100.1 � I / C
w2c

�1
2 100I , where I is the default indicator, I D 1 if the issuer defaults, and I D 0

otherwise, with P.I D 1/ D 0:02. Then

EŒV1� D 98w1c
�1
1 C 2w2c

�1
2 D 98

97
w1 C 1

2
w2;

from which it is clear that the investor wants to invest as much as possible in the
bond without violating the constraints. Moreover,

VaRp.V1 � 100/ D 100 C VaRp

�
100w1c

�1
1 C 100

�
w2c�1

2 � w1c
�1
1

�
I
�

;

which gives

VaRp.V1 � 100/ D100 � 100w1c
�1
1

C
(

100.w2c
�1
2 � w1c

�1
1 / VaRp.I / if w2c�1

2 � w1c
�1
1 ;

100.w1c
�1
1 � w2c

�1
2 / VaRp.�I / if w2c�1

2 < w1c
�1
1 :

By (6.6) we have VaRp.I / D F �1�I .1 � p/ and VaRp.�I / D F �1
I .1 � p/ where, by

Proposition 6.4,

F �1�I .1 � p/ D �F �1
I .pC/ D

� �1 if p 2 Œ0:98; 1�;

0 if p 2 Œ0; 0:98/;
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and

F �1
I .1 � p/ D

�
0 if p 2 Œ0:02; 1�;

1 if p 2 Œ0; 0:02/:

This implies that

VaRp.V1 � 100/ D 100 �
8<
:

100 max.w1c
�1
1 ; w2c�1

2 / if p 2 Œ0:98; 1�;

100w1c
�1
1 if p 2 Œ0:02; 0:98/;

100 min.w1c
�1
1 ; w2c�1

2 / if p 2 Œ0; 0:02/:

In particular, VaR0:05.V1 � 100/ D 100 � 100w1c
�1
1 , and therefore w2 D 100 � w1,

together with VaR0:05.V1 � 100/ � 10, is equivalent to w1 � 87:3. Since a dollar
invested in the bond gives a much better expected return than a dollar invested in the
CDS, the investor wants to maximize w1 subject to the constraints. Therefore, the
solution to the optimization problem with the VaR constraint is .w1; w2/ D .100; 0/.
That is, buy defaultable bonds only. The catch here is that VaR at level 0:05 does
not take into account the possibility of default, which occurs with probability 0:02.
This enables the investor to hide the default risk in the tail.

Example 6.10 (Credit default swap II). Let us look a bit closer at the optimal
solution .w1; w2/ D .100; 0/ to the investment problem in Example 6.9. The optimal
weights give the optimal portfolio value V1 D .1002=97/.1 � I / at maturity.
Moreover, we have seen that

VaR0:05.V1 � 100/ D VaR0:05

�
1002

97
.1 � I / � 100

�

D 100 � 1002

97
C 1002

97
VaR0:05.�I /

D 100
�
1 � 100

97

�
< 0: (6.10)

The negative value highlights the fact that at the 5% level VaR does not pick up
the default risk. In particular, it treats the defaultable bond as a risk-free bond.
Suppose, in contrast, that we have 100 identical bonds whose default events are
independent and that the investor invests one dollar in each of them (which gives
the same expected portfolio value as for the optimal solution in Example 6.9). The
risk of the new portfolio, in terms of VaR0:05, is

VaR0:05.V1 � 100/ D VaR0:05

 
100

97

100X
kD1

.1 � Ik/ � 100

!

D 100 � 1002

97
C 100

97
VaR0:05

 
�

100X
kD1

Ik

!
:
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Since Z D P100
kD1 Ik is Bin.100; 0:02/-distributed and VaR0:05.�Z/ D F �1

Z .0:95/,
it follows that

VaR0:05.V1 � 100/ D 100 � 1002

97
C 100

97
F �1

Z .0:95/:

We can compute P.Z � 4/ � 0:949 and P.Z � 5/ � 0:985. Therefore,
F �1

Z .0:95/ D minfm W P.Z � m/ � 0:95g D 5, which implies that

VaR0:05.V1 � 100/ D 100 C 100

97
.�100 C 5/

D 100
�
1 � 95

97

�
> 0: (6.11)

That is, in this example diversification increases the risk! The reason is that
diversification here makes VaR0:05 take into account the default risk that for the
nondiversified investment was hidden in the tail. In particular, we conclude that
VaR is not subadditive since (6.10) and (6.11) imply

VaR0:05

 
100X
kD1

.1 � Ik/

!
>

100X
kD1

VaR0:05.1 � Ik/:

6.3 Expected Shortfall

Although VaR is probably the most commonly used risk measure for risk control
in the financial industry, it has several limitations. Its biggest weakness is that it
ignores the left tail (beyond level p) of the distribution of X . (The fact that it is just
a quantile value means that it ignores most of the distribution of X .) In particular, it
allows a careless/dishonest risk manager to miss/hide unlikely but catastrophic risks
in the left tail.

A natural remedy for not considering catastrophic loss events with small
probabilities would be to consider the average VaR values below the level p. This
average of VaR values gives the risk measure expected shortfall (ES) at level p,
which is defined as

ESp.X/ D 1

p

Z p

0

VaRu.X/du:

With minor technical modifications, ES is also called Average VaR (AVaR),
Conditional VaR (CVaR), Tail VaR (TVaR), or Tail Conditional Expectation (TCE).

ES is often proposed as a superior alternative to VaR because it considers all
of the left tail of the probability distribution of X and because it is a coherent
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measure of risk. The coherence of ES, Proposition 6.6, implies that it is also convex,
and the latter property is essential for ensuring that investment problems with ES
constraints are convex optimization problems. To show the coherence of ES and
also to use it effectively in optimization problems, we first present useful alternative
representations of ES.

Proposition 6.5. (i) ES has the following representations:

ESp.X/ D 1

p

Z 1

1�p

F �1
L .u/du; L D �X=R0; (6.12)

ESp.X/ D � 1

p

Z p

0

F �1
X=R0

.u/du; (6.13)

ESp.X/ D � 1

p
EŒX=R0I fX=R0 � F �1

X=R0
.p/�

� F �1
X=R0

.p/

 
1 � FX=R0.F

�1
X=R0

.p//

p

!
; (6.14)

ESp.X/ D min
c

�c C 1

p
EŒ.c � X=R0/C�: (6.15)

(ii) If X has a continuous distribution function, then, with L D �X=R0,

ESp.X/ D EŒL j L � VaRp.X/� D EŒL j L � F �1
L .1 � p/�: (6.16)

The right-hand side of (6.15) is often called CVaR. This representation is useful
in portfolio optimization problems. From (6.16) we find that if X has a continuous
distribution function, then ES is the average loss conditional on the loss being larger
than or equal to the VaR at the level p. This expression motivates the name ES.

Proof. (i) From the definition we see that ES is simply an average of quantile values
of L:

ESp.X/ D 1

p

Z p

0

F �1
L .1 � u/du D 1

p

Z 1

1�p

F �1
L .u/du:

This proves the first representation (6.12). To prove the second representation, recall
from Proposition 6.4 that F �1�X=R0

.1 � u/ D �F �1
X=R0

.uC/. But F �1
X=R0

.uC/ is not

equal to F �1
X=R0

.u/ in general. However, we do have equality for almost all u in the

sense that if we draw U uniformly on .0; 1/, then F �1
X=R0

.U C/ D F �1
X=R0

.U / with
probability one. In particular, when U has a uniform distribution on .0; p/, it holds
that

ESp.X/ D 1

p

Z p

0

F �1
L .1 � u/du



180 6 Risk Measurement Principles

D EŒF �1
L .1 � U /�

D � EŒF �1
X=R0

.U C/�

D � EŒF �1
X=R0

.U /�

D � 1

p

Z p

0

F �1
X=R0

.u/du;

which proves (6.13). Let us prove (6.14). The only difficulty is when FX=R0 has
a jump at F �1

X=R0
.p/ and FX=R0.F

�1
X=R0

.p// > p. Using statements (i) and (iii) of
Proposition 6.1 shows that

EŒX=R0I fX=R0 � F �1
X=R0

.p/g�
D EŒF �1

X=R0
.U /I fF �1

X=R0
.U / � F �1

X=R0
.p/�

D EŒF �1
X=R0

.U /I fU � FX=R0 .F
�1
X=R0

.p//�

D EŒF �1
X=R0

.U /I fU � pg� C EŒF �1
X=R0

.U /I fp < U � FX=R0.F
�1
X=R0

.p//g�

D
Z p

0

F �1
X=R0

.u/du C F �1
X=R0

.p/
�
FX=R0 .F

�1
X=R0

.p// � p
�
:

Therefore,

� 1

p
EŒX=R0I fX=R0 � F �1

X=R0
.p/� � F �1

X=R0
.p/

 
1 � FX=R0.F

�1
X=R0

.p//

p

!

D � 1

p

Z p

0

F �1
X=R0

.u/du;

from which the conclusion follows from (6.13). To prove (6.15) we consider the
function

G.c/ D �c C 1

p
EŒ.c � X=R0/C� D �c C 1

p

Z c

�1
FX=R0 .x/dx

and note that G is convex. Since

EŒ.c � X=R0/C� D EŒ.c � X=R0/I fc � X=R0 > 0g�

D
Z 1

0

P.c � X=R0 > t/dt

D
Z c

�1
P.X=R0 < u/du;
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we find that G is differentiable except at the points where FX=R0 has jumps and,
except for those points,

G0.c/ D �1 C 1

p
FX=R0.c/:

It follows that G0.c/ � 0 for c such that FX=R0.c/ � p and that G0.c/ � 0 for c

such that FX=R0.c/ � p. Therefore, G has a (not necessarily unique) minimum at
minfc W FX=R0.c/ � pg D F �1

X=R0
.p/. Evaluating G at this point gives

G.F �1
X=R0

.p// D �F �1
X=R0

.p/ C 1

p
EŒ.F �1

X=R0
.p/ � X=R0/C�

D �F �1
X=R0

.p/ C 1

p
E
h�

F �1
X=R0

.p/�X=R0

�
I
n
X=R0 � F �1

X=R0
.p/

oi

D � 1

p
E
h
X=R0I

n
X=R0 � F �1

X=R0
.p/

oi

� F �1
X=R0

.p/

 
1 � FX=R0 .F

�1
X=R0

.p//

p

!
;

from which the conclusion follows from (6.14).
(ii) Suppose that X has a continuous distribution function. Recall from point (iii)

of Proposition 6.1 that if U is uniformly distributed on .0; 1/, then F �1
L .U / has

distribution function FL. In particular, the random variables L, F �1
L .U /, and

F �1
L .1 � U / all have the same distribution function FL. Moreover, if FL is

continuous, then FL.F �1
L .u// D u by Proposition 6.1(ii). Therefore,

EŒL j L � F �1
L .1 � p/� D EŒL I fL � F �1

L .1 � p/g�
P.L � F �1

L .1 � p//

D 1

p
EŒF �1

L .1 � U / I fF �1
L .1 � U / � F �1

L .1 � p/g�

D 1

p
EŒF �1

L .1 � U / I f1 � U � 1 � pg�

D 1

p
EŒF �1

L .1 � U / I fU � pg�

D 1

p

Z p

0

VaRu.X/du:
�

We are now well equipped to prove that ES is a coherent measure of risk.

Proposition 6.6. ES is a coherent measure of risk.
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Proof. It follows immediately from the definition that ES inherits the properties
translation invariance, monotonicity, and positive homogeneity from VaR. It only
remains to prove subadditivity. Consider two future portfolio values X1 and X2 and
write Yk D Xk=R0 for k D 1; 2. We will use representation (6.15) of ES to prove
subadditivity, i.e., that ESp.X1 C X2/ � ESp.X1/ C ESp.X2/. For k D 1; 2 let c�

k

be a minimizer of

�c C 1

p
EŒ.c � Yk/C�:

Note that

ESp.X1 C X2/ D min
c

�c C 1

p
EŒ.c � Y1 � Y2/C�

� �.c�
1 C c�

2 / C 1

p
E
	
.c�

1 C c�
2 � Y1 � Y2/C



:

The proof is complete if we show the nonnegativity of the difference

ESp.X1/ C ESp.X2/ � ESp.X1 C X2/

� �c�
1 C 1

p
EŒ.c�

1 � Y1/C� � c�
2 C 1

p
EŒ.c�

2 � Y2/C�

C .c�
1 C c�

2 / � 1

p
EŒ.c�

1 C c�
2 � Y1 � Y2/C�

D 1

p
EŒ.c�

1 � Y1/.I fY1 � c�
1 g � I fY1 C Y2 � c�

1 C c�
2 g/�

C 1

p
EŒ.c�

2 � Y2/.I fY2 � c�
2 g � I fY1 C Y2 � c�

1 C c�
2 g/�:

We claim that the last two terms above are nonnegative. Indeed,

EŒ.c�
1 � Y1/.I fY1 � c�

1 g � I fY1 C Y2 � c�
1 C c�

2 g/�
D EŒ.c�

1 � Y1/.I fY1 � c�
1 g � I fY1 C Y2 � c�

1 C c�
2 g/I fY1 � c�

1 g�
C EŒ.c�

1 � Y1/.I fY1 � c�
1 g � I fY1 C Y2 � c�

1 C c�
2 g/I fY1 > c�

1 g�
� EŒ.c�

1 � Y1/I fY1 � c�
1 g� � EŒ.c�

1 � Y1/I fY1 > c�
1 g�

� 0;

which shows the nonnegativity of the first term. An identical argument shows that
the second term is nonnegative too. The proof is complete. �
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Next we continue the sequence of examples on defaultable bonds and CDSs.
Here the risk measure VaR is replaced by ES, and this changes the portfolio selection
problem substantially.

Example 6.11 (Credit default swap III). Consider the investor and the investment
opportunities in Example 6.9. Here the risk constraint VaR0:05.V1 � 100/ � 10 is
replaced by ES0:05.V1 � 100/ � 10.

Recall that VaRp.V1 � 100/ was computed in Example 6.9:

VaRp.V1 � 100/ D 100 �
8<
:

100 max.w1c
�1
1 ; w2c�1

2 / if p 2 Œ0:98; 1�;

100w1c
�1
1 if p 2 Œ0:02; 0:98/;

100 min.w1c
�1
1 ; w2c�1

2 / if p 2 Œ0; 0:02/:

Then ES0:05.V1 � 100/ can be computed as

ES0:05.V1 � 100/ D 1

0:05

Z 0:05

0

VaRp.V1 � 100/dp

D
�

100 � 100w1c
�1
1 if w1c�1

1 < w2c�1
2 ;

100 � 100 3
5
w1c

�1
1 � 100 2

5
w2c�1

2 if w1c�1
1 � w2c�1

2 :

Recall that c1 D 97 and c2 D 4. With w2 D 100 � w1 we find that w1c
�1
1 < w2c�1

2

is equivalent to w1 < 96:0396. We want to take w1 as large as possible and therefore
consider the case w1 � 96:0396. In this case, ES0:05.V1 � 100/ � 10, together with
w2 D 100 � w1, is equivalent to w1 � 97. Since a dollar invested in the bond gives a
much better expected return than a dollar invested in the CDS, the investor wants to
maximize w1 subject to the constraints. Therefore, the solution to the optimization
problem with the ES constraint is .w1; w2/ D .97; 3/. Since ES takes into account
the entire tail, there is no way to hide the default risk in the tail. This is reflected in
the optimal portfolio.

Example 6.12 (Credit default swap IV). Consider an investor who has $100 and
may invest the capital in long positions in 100 bonds and CDSs that are identical to
those in Example 6.10. It is assumed that the corresponding indicator variables Ik

(Ik takes the value 1 if the kth bond issuer defaults) are independent. The value of
the investor’s portfolio at the maturity of the bonds is

V1 D
100X
kD1

100

97
wk.1 � Ik/ C

100X
kD1

100

4
w100CkIk;

where w1; : : : ; w100 is the capital invested in the bonds and w101; : : : ; w200 is the
capital invested in the CDSs. The investor wants to maximize the expected value

EŒV1� D
100X
kD1

98

97
wk C

100X
kD1

1

2
w100Ck;
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from which it is seen that the investor wants to invest as much as possible in the
bonds. The risk constraint is given by ES0:05.V1 � 100/ � 10. In Example 6.11, we
saw that with only one bond and one CDS the optimal solution was .w1; w2/ D
.97; 3/. Here it seems plausible that a diversified position in the bonds leads to
lower risk and therefore that it will be possible to invest less capital in the CDSs
with the low expected returns. We now verify that this is indeed the case. Just as in
Example 6.10 we have

VaRp.V1 � 100/ D 100 � 1002

97
C 100

97
F �1

Z .1 � p/;

where Z D P100
kD1 Ik is Bin.100; 0:02/-distributed. This gives

ESp.V1 � 100/ D 100 � 1002

97
C 100

97

�
1

0:05

Z 0:05

0

F �1
Z .1 � p/dp

�
;

where

1

0:05

Z 0:05

0

F �1
Z .1 � p/dp D 20

�
.P.Z � 5/ � 0:95/5

C
100X
kD6

k.P.Z � k/ � P.Z � k � 1//
�

� 5:41416;

and therefore ES0:05.V1 � 100/ � 2:488825 < 10. We conclude that the investor
may invest the entire capital in the bonds without violating the risk constraint. Thus,
an optimal portfolio is w1 D � � � D w100 D 1, w101 D � � � D w200 D 0.

Next we study some standard models for log returns of asset prices where ES can
be explicitly computed.

Example 6.13 (Normal and Student’s t distribution). Consider a 1-day investment
in a risky asset. Suppose the influence of interest rates for such a short time period
can be neglected. Let X D V1 � V0 D � C �Z, where Z is a standard normally
distributed random variable, and let ˚ and � denote the distribution and density
function of Z, respectively. Then VaRp.X/ D �� C �˚�1.1 � p/ and

ESp.X/ D �� C �

p

Z 1

1�p

˚�1.u/du

D fset l D ˚�1.u/g

D �� C �

p

Z 1

˚�1.1�p/

l�.l/dl



6.3 Expected Shortfall 185

D �� C �

p

Z 1

˚�1.1�p/

l
1p
2	

e�l2=2dl

D �� C �

p

h
� 1p

2	
e�l2=2

i1
˚�1.1�p/

D �� C �
�.˚�1.1 � p//

p
:

Now let Z have a standard Student’s t distribution with 
 > 0 degrees of freedom.
Then Z has a density

g
.x/ D C
�
1 C x2




��.
C1/=2

; where C D � ..
 C 1/=2/p

	� .
=2/

:

If t
 is the distribution function of Z, then VaRp.X/ D �� C �t�1

 .1 � p/ and, if


 > 1, then

ESp.X/ D �� C �

p

Z 1

t�1

 .1�p/

lg
.l/d l

D �� C �

p

"
C
=2

�.
 C 1/=2 C 1

�
1 C l2




��.
C1/=2C1
#1

t�1

 .1�p/

D �� C �
g
.t�1


 .1 � p//

p

�
 C .t�1

 .p//2


 � 1

�
:

Example 6.14 (Normal and Student’s t: a comparison). The normal distribution
and the Student’s t distribution are simple and popular distributions for modeling
log returns of asset prices. An important difference between the two is that Student’s
t distributions have heavier tails, i.e., they place more mass far away from the mean.
This can be observed directly from the density function. The standard Student’s t

distribution with 
 degrees of freedom has a density that decays roughly as jxj�


for large jxj (called polynomial decay), whereas the standard normal density decays
much faster, as e�x2=2. This implication of heavy tails is that there is a higher
probability of extreme outcomes. Let us compare the risk measures VaR and ES
for the two distributions.

First we compare VaRp.X/ and ESp.X/ as a function of p (left plot in Fig. 6.3).
The plot shows the ratio ESp.X/= VaRp.X/ as a function of p for the standard
normal distribution (lower graph) and the standard Student’s t distribution with
3, 2, and 1:1 degrees of freedom (second lowest to upper graph). For the normal
distribution the ratio is slightly above one, indicating that for small values of p most
of the remaining probability mass in the tail to the left of ˚�1.p/ is concentrated
very close to ˚�1.p/. Note that for heavier tails, i.e., smaller degree of freedom
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Fig. 6.3 Left plot: graphs of ESp.X/= VaRp.X/ as a function of p for X standard normal
distribution (lowest graph) and Student’s t -distribution for 
 D 3; 2; 1:1. Right plot: graphs of
VaRp.X/= VaRp.Y / (lower graph) and ESp.X/= ESp.Y / (upper graph) as functions of p, where
X is t -distributed with 
 D 3 and variance 1, and Y is standard normally distributed

parameters 
, the ratio is higher, indicating that the probability mass to the left of
t�1

 .p/ is spread out to the left of this value and spread out more the smaller the

value of 
 is.
In the right plot in Fig. 6.3, we compare VaR for a t3-distribution and a

normal distribution with unit variance, and similarly for ES by plotting the ratios
VaRp.X/= VaRp.Y / and ESp.X/= ESp.Y / as functions of p, where X is t-
distributed with 
 D 3 and variance 1, and Y is standard normally distributed. If
Z has a standard t
-distribution, then its variance is 
.
 � 2/�1, so in this example,
X D Z=

p
3, which implies that X and Y both have unit variance. We observe that

for small p the ratios are greater than one. This is a result of the heavier tails of the
t3-distribution.

Example 6.15 (Lognormal distribution). Consider the current and future values V0

and V1 of an asset. By borrowing the amount V0 to finance the long position in the
asset, the future net value of the position is X D V1 � V0R0, where V0R0 is the
future value of the debt. If Z1 D log.V1=V0/ is the log return of the asset, then
X D V0.expfZ1g � R0/.

We will analyze ESp.X/ under the assumption that Z1 has either a normal
distribution or a Student’s t distribution. Applying Proposition 6.3, with g.z/ D
V0.e

z � R0/, and Proposition 6.4 gives

VaRu.X/ D F �1�g.Z1/=R0
.1 � u/ D �g

�
F �1

Z1
.u/
�

D V0

�
1 � 1

R0

e
F �1

Z1
.u/

�
:

If Z1 is N.�; �2/-distributed, then F �1
Z1

.u/ D � C �˚�1.u/

ESp.X/ D 1

p

Z p

0

VaRu.X/du D V0

�
1 � 1

pR0

Z p

0

e�C�˚�1.u/du

�
:
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With q.u/ D ˚�1.u/ we have dq.u/=du D 1=�.˚�1.u//, and the integral to the
right above can be written as

Z p

0

e�C�˚�1.u/du D
Z ˚�1.p/

�1
1p
2	

e�C�q�q2=2dq

D e�C�2=2

Z ˚�1.p/

�1
1p
2	

e�.q��/2=2dq

D ˚.˚�1.p/ � �/e�C�2=2:

We have found that if Z1 is N.�; �2/-distributed, then

ESp.X/ D V0

 
1 � ˚.˚�1.p/ � �/e�C�2=2

pR0

!
:

Similarly, if Z1 is distributed as � C �Y , where Y has a standard Student’s t

distribution with 
 degrees of freedom, then F �1
Z1

.u/ D � C �t�1

 .u/ and

ESp.X/ D V0

�
1 � 1

pR0

Z p

0

e�C�t�1

 .u/du

�
:

The integral expression can be evaluated by numerical integration.

6.4 Risk Measures Based on Utility Functions

Consider a concave and strictly increasing function u, that is, a utility function.
Suppose that we consider a portfolio with value X at time 1 acceptable if it satisfies
EŒu.X/� � u.C / for a predetermined number C , i.e., if its certainty equivalent is at
least C . Let

�u.X/ D minfm W EŒu.mR0 C X/� � u.C /g; (6.17)

and note that �u.X/ is the smallest amount of money that needs to be added and
invested in a risk-free asset to make the corresponding position acceptable. In fact,
�u.X/ is the unique number m satisfying EŒu.mR0 C X/� D u.C /. Let us prove
this claim. Since u is strictly increasing, the function m 7! EŒu.mR0 C X/� is also
strictly increasing, so there is at most one such number m. Since m 7! u.mR0Cx/ is
concave, then m 7! EŒu.mR0 CX/� is also concave and, therefore, also continuous.
Therefore, there is at least one such number m.

Proposition 6.7. The risk measure �u in (6.17) is a convex measure of risk.
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Before proving the proposition we remark that �u is in general not a coherent
measure of risk. If C D 0, then the normalization property holds, but �u will
typically not be positively homogeneous.

Proof. We have

�u.X C yR0/ D minfm W EŒu..m C y/R0 C X/� � u.C /g
D minfk W EŒu.kR0 C X/� � u.C /g � y

D �u.X/ � y;

which shows that �u is translation invariant. Since u is increasing, X2 � X1 implies
that EŒu.mR0 C X2/� � EŒu.mR0 C X1/�, and therefore

�u.X2/ D minfm W EŒu.mR0 C X2/� � u.C /g
� minfm W EŒu.mR0 C X1/� � u.C /g
D �u.X1/;

which proves the monotonicity of �u. By the definition of �u, it holds that

�u.�X1 C .1 � �/X2/ D minfm W EŒu.mR0 C �X1 C .1 � �/X2/� � u.C /�g:

Therefore, the convexity of �u follows if we show that m0 D ��u.X1/ C .1 � �/

�u.X2/ satisfies EŒu.m0R0 C �X1 C .1 � �/X2/� � u.C /. Indeed,

EŒu.Œ��u.X1/ C .1 � �/�u.X2/�R0 C �X1 C .1 � �/X2/�

� � EŒu.�u.X1/R0 C X1/� C .1 � �/ EŒu.�u.X2/R0 C X2/�

D �u.C / C .1 � �/u.C /

D u.C /;

where the first inequality holds because u is concave and where the second to last
equality holds because EŒu.�u.Xk/R0 CXk/� D u.C / by definition of �u. The proof
is complete. �

6.5 Spectral Risk Measures

Consider a random variable X representing the value at time 1 of a portfolio.
Let R0 be the return of a zero-coupon bond maturing at time 1, and let FX=R0

be the distribution function of X=R0, i.e., the discounted future portfolio value.
A natural set of risk measures consists of risk measures that can be written as
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�1 times a weighted average of the quantile values F �1
X=R0

.p/. We have seen that

VaRp.X/ D �F �1
X=R0

.p/ for those x where FX=R0.x/ is neither flat nor has a jump
and that

ESp.X/ D � 1

p

Z p

0

F �1
X=R0

.u/du:

In particular, ESp puts equal weight on all the quantiles F �1
X=R0

.u/ for u < p. It is not
at all evident that this is the most natural choice. Consider a nonnegative function �

on .0; 1/ that is decreasing and integrates to 1, and define

��.X/ D �
Z 1

0

�.u/F �1
X=R0

.u/du: (6.18)

A risk measure �� with this representation is called a spectral risk measure, and the
function � is called the risk aversion function. A tractable property of spectral risk
measures is that, like risk measures based on utility functions, all quantile values
of the probability distribution of the considered portfolio value can be taken into
account—not just those corresponding to the left tail. We see that ESp is a spectral
risk measure with risk aversion function p�1I.0;p/. This risk aversion function says
that the worst fractions p of quantile values are weighted equally as they enter
only through their mean value. In particular, extreme losses are not considered
worse (receive higher weights) than less extreme losses. In general, the risk aversion
function lets you specify your attitude toward risk. In spirit, it is similar to a utility
function. The difference is that the utility function relates how much you value x

units of cash over y units of cash, whereas the risk aversion function relates how
highly you penalize the quantile at level p over the quantile at level q. Two examples
of risk aversion functions are the polynomial and exponential risk aversion functions
given by

�pol;ˇ.p/ D 1

ˇ
.1 � p/ˇ�1; ˇ � 1;

�exp;� .p/ D � expf��pg
1 � expf��g ; � > 0:

Note that both functions are decreasing and integrate to 1. For the most part we
will in the sequel assume that the risk aversion function � is differentiable. This
assumption is made purely for convenience. The results presented below hold also
without this assumption.

We begin with two useful representations of a spectral risk measure. The first one
shows, using integration by parts, that �� can be viewed as a weighted average of ES.
The second representation is similar to representation (6.15) for ES but requires the
more general convex optimization from Sect. 2.2.



190 6 Risk Measurement Principles

Proposition 6.8. If � is differentiable, then �� in (6.18) satisfies

��.X/ D �
Z 1

0

d�

du
.u/u ESu.X/du � �.1/ EŒX=R0�; ; (6.19)

��.X/ D min
f

Z 1

0

d�

du
.u/fuf .u/ � EŒ.f .u/ � X=R0/C�du � �.1/ EŒX=R0�;

(6.20)

where the minimum is taken over all functions f .

Proof. First observe that

Z 1

0

F �1
X=R0

.u/du D EŒX=R0�:

This follows, for instance, from (6.14) with p D 1. Then, upon changing the order
of integration in the third equality below, we find that

��.X/ D �
Z 1

0

�.v/F �1
X=R0

.v/dv

D
Z 1

0

�Z 1

v

d�

du
.u/du � �.1/

�
F �1

X=R0
.v/dv

D
Z 1

0

d�

du
.u/

�Z u

0

F �1
X=R0

.v/dv

�
du � �.1/

Z 1

0

F �1
X=R0

.v/dv

D �
Z 1

0

d�

du
.u/u

��
�1

u

�Z u

0

F �1
X=R0

.v/dv

�
du � �.1/ EŒX=R0�

D �
Z 1

0

d�

du
.u/u ESu.X/du � �.1/ EŒX=R0�:

This proves (6.19). Informally, the second representation (6.20) follows from the
representation of ESu.X/ in (6.15). Write

ESu.X/ D min
f .u/

�f .u/ C 1

u
EŒ.f .u/ � X=R0/C�;

insert this expression into (6.19), and finally move the coordinatewise minimum
inside the integral out of the integral to get (6.20). Now we consider a more formal
argument, in the context of Sect. 2.2. Let

F.f / D
Z 1

0

d�

du
.u/fuf .u/ � EŒ.f .u/ � X=R0/C�du � �.1/ EŒX=R0�:
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Since there are no constraints on f , here we have

H.f; g/ D
Z 1

0

d�

du
.u/fu � FX=R0.f .u//g.g.u/ � f .u//du:

If H.f; g/ D 0 for each g, then f must satisfy FX=R0.f .u// D u for each u.
However, for such a function f it follows, as in the proof of (6.15), that

�f .u/ C 1

u
EŒ.f .u/ � X=R0/C� D ESu.X/;

and therefore it follows from (6.19) that the minimum of F.f / is given by

�
Z 1

0

d�

du
.u/u ESu.X/du � �.1/ EŒX=R0� D ��.X/:

The proof is complete. �

From representation (6.19) we observe that many properties of spectral risk
measures follow from properties of ES. In particular, spectral risk measures are
coherent.

Proposition 6.9. The spectral risk measure �� in (6.18) is a coherent measure of
risk.

Proof. Since � is nonnegative and integrates to 1, the properties of the quantile
function imply that �� is translation invariant, monotone, and positively homo-
geneous. To prove subadditivity, we make the additional assumption that the risk
aversion function � is differentiable. Then the subadditivity of �� follows from the
subadditivity of ES. Indeed, for two future portfolio values X1 and X2 we have

��.X1 C X2/ D �
Z 1

0

d�

du
.u/u ESu.X1 C X2/du � �.1/ EŒ.X1 C X2/=R0�

� �
Z 1

0

d�

du
.u/u

�
ESu.X1/ C ESu.X2/

�
du � �.1/ EŒ.X1 C X2/=R0�

D ��.X1/ C ��.X2/: �

6.6 Notes and Comments

An extensive account of VaR for financial risk management is given in the book [24]
by Philippe Jorion. The concept of coherent measures of risk was proposed by
Philippe Artzner, Freddy Delbaen, Jean-Marc Eber and David Heath [4]. For an
extensive account of convex and coherent measures of risk see the book [17]
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by Hans Föllmer and Alexander Schied. The coherence of ES was proved by
Carlo Acerbi and Dirk Tasche in [2]. An introduction to and properties of spectral
risk measures can be found in Acerbi’s work [1]. Portfolio optimization with ES
constraints was considered by Tyrrell Rockafellar and Stan Uryasev in [38] and
extended to so-called generalized deviations, which are closely related to spectral
risk measures, in works by Rockafellar, Uryasev, and Michael Zabarankin [39–41].

6.7 Exercises

In the exercises below, it is assumed, wherever applicable, that you can take
positions corresponding to fractions of assets.

Exercise 6.1 (Convexity and subadditivity). Show that a positively homogeneous
risk measure is convex if and only if it is subadditive.

Exercise 6.2 (Stop-loss reinsurance). Suppose that the total claim amount S in
1 year for an insurance company has a standard exponential distribution. The
insurance company can buy so-called stop-loss reinsurance so that a claim amount
exceeding F �1

S .0:95/ is paid by the reinsurer. In this case, the insurance company
has to pay L D min.S; F �1

S .0:95// C p, where p is the premium paid for the stop-
loss reinsurance. Determine the premium p for which F �1

S .0:99/ D F �1
L .0:99/.

Exercise 6.3 (Quantile bound). Let Z denote the daily log return of an asset.
Empirical studies suggest that Z has zero mean, standard deviation 0:01, and
a symmetric density function. Someone claims that F �1

Z .0:99/ D 0:1. Use
Chebyshev’s inequality P.jZ � EŒZ�j > x/ � x�2 Var.Z/, for x > 0, to show
that this claim is false.

Exercise 6.4 (Tail conditional median). The tail conditional median TCMp.X/ D
medianŒL j L � VaRp.X/�, where L D �X=R0, has been proposed as a more
robust alternative to ESp.X/ since TCMp.X/ is not as sensitive as ESp.X/ to the
behavior of the left tail of the distribution of X .

Let Y have a standard Student’s t distribution with 
 degrees of freedom, and
set X D e0:01Y � 1. Compute and plot the graphs of ES0:01.X/ and TCM0:01.X/ as
functions of 
 2 Œ1; 15�.

Exercise 6.5 (Production planning). Consider a company that has the option to
start production of a volume t � 0 of a certain good during the next year. The
company has capital of $10,000 to use for the production. Any capital not spent
on production is deposited in a bank account that does not pay interest. The cost
for producing a volume t > 0 of the good is t thousand dollars plus a startup cost
of $5,000. The income from selling a volume t of the good is 5t thousand dollars.
The unknown demand for the good (the maximum volume the company can sell) is
modeled as a random variable with distribution function 1 � x�2, x � 1.



6.7 Exercises 193

(a) How much should the company produce to maximize EŒV1.t/�, where V1.t/ is
the income from sales plus money in the bank account at the end of next year
when producing volume t of the good?

(b) Compute VaRp.V1.t/ � 10;000/ with V1.t/ as in (a) and where t is the
maximizer of EŒV1.t/�.

Exercise 6.6 (Risky bonds). Consider a market with an asset with a risk-free 1-
year return of R0 D 1:05. There are also two defaultable bonds on the market
whose issuers can be assumed to default independently of each other. Both bonds
have maturity in 1 year and a face value of $100,000, which is paid in the case of
no default before the end of the year. For each bond a default event makes the bond
worthless. Both bonds have the same price of 100;000.1 � q/=R0 dollars today,
where q D 0:025 can be interpreted as the market’s implied default probability. You
believe that the market is overestimating the default probability, which you believe
is p D 0:024. You have V0 D $1 million to invest in the risky bonds and in the
risk-free asset.

(a) Determine the portfolio that maximizes your expected return given that the
standard deviation of your portfolio does not exceed $25,000. You are not
allowed to take short positions in the risky bonds or in the risk-free asset.

(b) Determine the expected value and the standard deviation of the value at the end
of the year of the optimal portfolio in (a).

(c) Compute VaR0:05.V1 � V0R0/ and ES0:05.V1 � V0R0/, where V1 is the value of
the optimal portfolio in (a) at the end of the year.

(d) Shortly after you buy the portfolio, a financial crisis breaks out and you realize
that one of the issuers is in serious financial distress. You update the default
probability to 0:91 for one of the bonds. The other bond is unaffected by the
crisis, and its default probability remains 0:024. You can assume that the default
events are independent. Compute VaR0:05.V1 � V0R0/ and ES0:05.V1 � V0R0/,
where V1 is the value of the optimal portfolio in (a) at the end of the year.

Exercise 6.7 (Leverage and margin calls). Consider the portfolio in Exercise
3.3(c).

(a) Compute VaRp.V2/ for p � 0:05, where V2 is the value in 2 months of the
portfolio in Exercise 3.3 (c) that maximizes the expected payoff in 2 months.

(b) Compute ESp.V2/ for p � 0:05, where V2 is as in (a).

Exercise 6.8 (Risk and diversification). Consider the setup in Example 6.10 with
100 identical bonds whose default events are independent. Consider an investor with
initial capital of V0 D $1 million who invests this capital in long positions of equal
size in n � 100 of the bonds. The value of the bond portfolio at maturity of the
bonds is denoted by V1.n/.

(a) Plot VaR0:05.V1.n/ � V0/ as a function of n, where n ranges from 1 to 100.
(b) Plot ES0:05.V1.n/ � V0/ as a function of n, where n ranges from 1 to 100.
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Project 6 (Collar options). A private investor owns a large quantity of shares of a
single stock and is worried about the position being too risky in the near future. A
bank offers the investor the opportunity to implement a collar option as protection
against falling share prices. The collar option considered here is a long position in a
European put option on the future share price with a strike price below the current
share price and a short position of the same size in a European call option with
strike price above the current share price with the same time to maturity as for the
put option.

Suppose that the investor holds 1,000 shares and the current share price is $100.
Suppose further that the strike prices of the put and call options are $95 and $105,
respectively, and both options expire in 2 months. Suppose that the stock pays no
dividends within the next 2 months, that all interest rates are zero, and that the put
and call prices correspond to implied volatilities of 0:25 and 0:2, respectively, per
year if the Black–Scholes formulas for European put and call options are used.

Suppose that the log return of the share price from today until half a month from
today is 0:04X , where X has a standard Student’s t distribution with 4 degrees of
freedom, and that the implied volatilities in half a month from today are the same as
today.

(a) The investor decides to take a collar option position corresponding to 1,000 puts
and calls. The investor’s collar option position is financed by a zero-interest-
rate loan if the initial value is positive. If the value is negative, then the investor
receives cash that is deposited in an account that pays no interest. Express V1,
the value in half a month from today of the shares and the collar option position
minus the current value of the collar option position, as a function of the log
return 0:04X .

(b) Consider the same situation as in (a) and compute VaR0:05.V1 �V0/, where V0 is
the current value of the shares. Compare the result to the corresponding result in
a situation where the investor decides not to take a collar option position (only
shares).

(c) The investor decides to take a collar option position corresponding to h 2
Œ0; 1;000� puts and calls. Vary h and study the effect on the density function
of V1, where V1 is the value in half a month from today of the shares and the
collar option position minus the current value of the collar option position.
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