
Chapter 1
Interest Rates and Financial Derivatives

In this chapter we present the basic theory of interest rate instruments and the pricing
of financial derivatives. The material we have chosen to present here is interesting
and relevant in its own right but particularly so as the basis for the principles and
methods considered in subsequent chapters.

The chapter consists of two sections. Section 1.1 presents the basic theory of
interest rate instruments and focuses on the no-arbitrage valuation of cash flows.
Section 1.2 presents the no-arbitrage principle for valuation of financial derivative
contracts, contracts whose payoffs are functions of the value of another asset at a
specified time in the future, and exemplifies the use of this principle. In a well-
functioning market of derivative contracts, the derivative prices can be represented
in terms of expected values of the payoffs, where the expectation is computed with
respect to a probability distribution for the underlying asset value on which the
contracts are written. If many derivative contracts are traded in the market, then
we can say rather much about this probability distribution, and individual investors
may compare it to their own subjective assessments of the underlying asset value
and use the result of the comparison to make wise investment and risk management
decisions.

1.1 Interest Rates and Deterministic Cash Flows

Consider a bank account that pays interest at the rate r per year. If yearly
compounding is used, then one unit of currency on the bank account today has
grown to .1 C r/n units after n years. Similarly, if monthly compounding is used,
then one unit in the bank account today has grown to .1 C r=12/12n units after
n years. Compounding can be done at any frequency. If a year is divided into m

equally long time periods and if the interest rate r=m is paid at the end of each
period, then one unit on the bank account today has grown to .1Cr=m/m units after
1 year. We say that the annual rate r is compounded at the frequency m. Note that
.1 C r=m/m is increasing in m. In particular, a monthly rate r is better than a yearly
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4 1 Interest Rates and Financial Derivatives

rate r for the holder of a savings account. Continuous compounding means that we
let m tend to infinity. Recall that .1 C 1=m/m ! e as m ! 1, which implies that
.1 C r=m/m ! er as m ! 1. Unless stated otherwise, interest rates in this book
always refer to continuous compounding. That is, one unit deposited in a savings
account with a 5% interest rate per year has grown to e0:05t units after t years. Note
that the interest rate is just a means of expressing the rate of growth of cash. An
investor cares about the rate of growth but not about which type of compounding is
used to express this rate of growth.

In reality, things are certainly a bit more involved. The rate of interest on money
deposited in a bank account differs from that for money borrowed from the bank.
Moreover, the length of the time period also affects the interest rate. In most cases,
the lender cannot ignore the risk that the borrower might be unable to live up to the
borrower’s obligations, and therefore the lender requires compensation in terms of
a higher interest rate for accepting the risk of losing money.

1.1.1 Deterministic Cash Flows

Consider a set of times 0 D t0 < t1 < � � � < tn, with t0 D 0 being the present time.
A deterministic cash flow is a set f.ck; tk/I k D 0; 1; : : : ; ng of pairs .ck; tk/, where
ck and tk are known numbers and where ck represents the amount of cash received
at time tk by the owner of the cash flow. A negative value of ck means that the owner
of the cash flow must pay money at time tk . Here we consider financial instruments
that can be identified with deterministic cash flows. Any two parties can enter an
agreement to exchange cash flows, but the contracted cash flow is not deterministic
if there is a possibility that one party will fail to deliver the contracted cash flow.

An important instrument corresponding to a deterministic cash flow is the risk-
free bond. The bonds issued by governments are typically good proxies. A risk-free
bond issued at the present time corresponds to the cash flow

f.�P0; 0/; .c; �t/; : : : ; .c; .n � 1/�t/; .c C F; n�t/g; (1.1)

where P0 > 0 is the present bond price, c � 0 the periodic coupon amount paid
to the bondholder, F > 0 the face value or principal of the bond, �t > 0 the time
between coupon payments, and T D n�t the time to maturity of the bond. Time is
typically measured in years with �t D 0:5 or �t D 1. If �t D 0:5, then the bond
pays coupons semiannually and 2c is the annual coupon amount. If c D 0, then the
bond is called a zero-coupon bond. Zero-coupon bonds often have less than 1 year
to maturity. Buying a bond of the type given by (1.1) at time 0 that was issued at
time �u, with u 2 .0; �t/, implies the cash flow

f.�P0; 0/; .c; �t � u/; : : : ; .c; .n � 1/�t � u/; .c C F; n�t � u/g;
where P0 is the price of the bond at time 0. Typically, P0 > P�u since a buyer who
purchases the bond at �u would have to wait longer before receiving money.
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Consider a market with an interest rate r per year that applies to all types of
investment, loan and deposit (think of an ideal bank account without fees and
restrictions on transactions). Then an amount A today is worth ert A after t years.
Similarly, an amount A received in t years from today is worth e�rtA today. We say
that e�rt A is the present value of A at time t , and e�rt is the discount factor for cash
received at time t . The present value of a cash flow f.ck; tk/I k D 0; : : : ; ng on this
market is

P0.r/ D
nX

kD0

cke�rtk :

The internal rate of return is the number r for which P0.r/ D 0. Note that the
equation P0.r/ D 0 does not necessarily determine the internal rate of return
uniquely for arbitrary deterministic cash flows. However, if c0 < 0 and ck � 0

for k � 1 with ck > 0 for some k (e.g., the cash flow of a bond), then it is not
difficult to verify that the internal rate of return is uniquely determined. For a bond,
the internal rate of return is called the yield to maturity of the bond.

Consider a zero-coupon bond with current price P0 > 0 that pays the amount
F > 0 at t years from now, i.e., the cash flow f.�P0; 0/; .F; t/g. Clearly, there is a
number rt such that the relation P0 D e�rt t F holds. The number rt is the t-year zero
rate (or the t-year zero-coupon bond rate or spot rate), and the number e�rt t is the
discount factor for money received t years from now. Note that the discount factor
e�rt t is the current price for one unit received at time t . The graph of rt viewed as a
function of t is called the zero rate curve (or spot rate curve or yield curve). Market
prices show that the zero rate curve is typically increasing and concave (the value of
the second-order derivative with respect to t is negative). In particular, the assump-
tion of a flat zero rate curve (rt D r for all t) is not consistent with market data.

The risk-free bonds discussed above are risk free in the sense that the buyer
of such a bond will for sure receive the promised cash flow. However, a risk-free
bond is risky if the holder sells the bond prior to maturity since the income from
selling the bond is uncertain and depends on the market participants’ demand for
and valuation of the remaining cash flow. Moreover, the risk-free bond is risk free
if held to maturity only in nominal terms. If, for instance, inflation is high, then the
cash received at maturity may be worth little in the sense that you cannot buy much
for the received amount. A bond is not risk free if it is possible that the issuer of the
bond does not manage to pay the bondholder according to the specified cash flow of
the bond. Such a bond is called risky or defaultable.

1.1.2 Arbitrage-Free Cash Flows

How are zero rates determined from prices of traded bonds or other cash flows? The
simplest way would be to look up prices of zero-coupon bonds with the relevant
maturity times. The problem with this approach is that such zero-coupon bond
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prices are typically not available. The cash flows priced by the market are typically
more complicated cash flows such as coupon bonds. Moreover, the total number of
cash flow times are often larger than the number of cash flows. Before addressing
the question of how to determine zero rates from traded instruments, one must
determine whether there exist any zero rates at all that are consistent with the
observed prices.

Fix a set of times 0 D t0 < � � � < tn and consider a market consisting of m cash
flows:

f.ck;0; t0/; .ck;1; t1/; : : : ; .ck;n; tn/g; k D 1; : : : ; m:

Since the times are held fixed, we represent the cash flows more compactly as m

elements c1; : : : ; cm in R
nC1 (vectors with n C 1 real-valued components). It is

assumed (although this is not entirely realistic) that you can buy and short-sell
unlimited amounts of these contracts/cash flows. Short-selling a financial instrument
should be interpreted as borrowing the instrument from a lender, then selling it at
the current market price and at a later time purchasing an identical instrument at the
prevailing market price and returning it to the lender. Here we ignore borrowing fees
associated with short-selling. It is also assumed here (again not entirely realistically)
that the market prices for buying and selling an instrument coincide and that there
are no fees charged for buying and selling.

Under the imposed assumptions one can form linear portfolios of the original
cash flows and thereby create new cash flows of the form c D Pm

kD1 hkck . The
hks are any real numbers, and negative values correspond to short sales. The market
therefore consists of arbitrary linear combinations of the original cash flows and can
be represented as a linear subspace C of RnC1, spanned by the cash flows c1; : : : ; cm.
We say that there exists an arbitrage opportunity if there exists a c 2 C such that
c ¤ 0 (ck ¤ 0 for some k) and c � 0 (ck � 0 for all k). Such an element c
corresponds to a contract that does not imply any initial or later costs and gives
the buyer a positive amount of money. Such a contract cannot exist on a well-
functioning market, at least not for long. If it did exist, some market participants
would spot it and take advantage of it. Their actions would, in turn, drive the prices
to the point where the arbitrage opportunity disappeared. The absence of arbitrage
opportunities is equivalent to the existence of discount factors for the maturity times
under consideration. This fact is a consequence of the following result from linear
algebra.

Theorem 1.1. Let C be a linear subspace of RnC1. Then the following statements
are equivalent:

(i) There exists no element c 2 C satisfying c ¤ 0 and c � 0.
(ii) There exists an element d 2 R

nC1 with d > 0 satisfying cTd D 0 for all c 2 C.

Proof. The implication (ii) ) (i) in Theorem 1.1 is easily shown: if d > 0 and
cTd D 0 for all c 2 C, then each nonzero c 2 C must have both a positive
component and a negative component. The implication (i) ) (ii) is more difficult
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to show. Assume that (i) holds and let

K D fk D .k0; : : : ; kn/T 2 R
nC1 such that k0 C � � � C kn D 1 and ki � 0 for all ig:

From (i) it follows that K and C have no common element. Let d be a vector in
R

nC1 of shortest length among all vectors in R
nC1 of the form k � c for k 2 K and

c 2 C. The proof of the fact that such a vector d exists is postponed to Lemma 1.1
right after this proof. Take a representation d D k� �c�, where k� 2 K and c� 2 C.
For any � 2 Œ0; 1�, k 2 K , and c 2 C we notice that �k� C .1 � �/k 2 K and
�c� C .1��/c 2 C. By the definition of k� and c�, the function f defined on Œ0; 1�,
given by

f .�/ D �
.�k� C .1 � �/k/ � .�c� C .1 � �/c/

�2

has a minimum at � D 1. We may write

f .�/ D .�d C .1 � �/.k � c//T.�d C .1 � �/.k � c//

D �2dTd C 2�.1 � �/dT.k � c/ C .1 � �/2.k � c/T.k � c/:

The fact that f has a minimum at � D 1 implies that

f 0.1/ D 2
�

dTd � dT.k � c/
�

� 0:

Equivalently, dTk � dTd � dTc for any k 2 K and c 2 C. If dTc ¤ 0 for some
c 2 C, then dT.tc/ ¤ 0 for jt j arbitrarily large, which implies that dTk is larger
than any positive number for all k 2 K . This is clearly false, and we conclude that
dTc D 0 for all c 2 C, which implies that dTk � dTd � 0 for all k 2 K . It remains
to show that the components of d are strictly positive. With k D .1; 0; : : : ; 0/T we
get d0 � dTd > 0, and similarly for the other components of d by choosing k
among the standard basis vectors of RnC1. We conclude that the implication (i) )
(ii) holds. �

The following result from analysis is used in the proof of Theorem 1.1.

Lemma 1.1. There exists a vector d of shortest length between K and C.

Proof. For k in K , let v be the corresponding vector of shortest length between k
and C. If c is the orthogonal projection of k onto C, then v D k � c. We will first
show that the function f , given by f .k/ D v, is continuous. For any k1; k2 in K ,
by orthogonality, the corresponding vectors v1; v2 and c1; c2 satisfy

jk2 � k1j2 D jv2 � c2 � v1 C c1j2 D jv2 � v1j2 C jc2 � c1j2:
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In particular,

jf .k2/ � f .k1/j D jv2 � v1j � jk2 � k1j;

which proves the continuity of f . Since K is compact and f is continuous, V D
f .K/ is compact, too. Vector d is a vector in V of minimal norm. Such a vector
exists because it is a minimizer of a continuous function, the norm, over the compact
set V . �

Consider statement (ii) of Theorem 1.1. Clearly the statement holds for some d
if and only if it holds for d replaced by td for any t > 0, in particular, for the choice
t D 1=d0 > 0. Therefore, Theorem 1.1 says that the market C has no arbitrage
opportunities if and only if there exists a vector d D .1; d1; : : : ; dn/T, dk > 0 for
all k, such that cTd D 0 for all c 2 C. The components of such a vector d are the
discount factors for the times t0; : : : ; tn. In particular, an arbitrage-free price of an
instrument paying ck at time tk , for k � 1, is

P0 D
nX

kD1

ckdk: (1.2)

Equivalently, .�P0; c1; : : : ; cn/T belongs to C. There may exist a range of arbitrage-
free prices p with each p satisfying (1.2) for some vector d with the property cTd D
0 for all c 2 C. Note that the discount factors dk, k D 0; : : : ; n, may be written
dk D e�rk tk , where rk is the zero rate corresponding to payment time tk .

If there exists precisely one vector d of discount factors, then C D fcI cTd D 0g,
and C is said to be complete. If C is complete, then any new cash flow (or contract)
c introduced is either redundant (a linear combination of c1; : : : ; cm) or creates an
arbitrage opportunity. Real-world markets are typically not complete: a new contract
is not identical to a linear combination of existing contracts.

Suppose that the cash flow corresponds to bonds, i.e., for each ck we have that
�ck;0 is the bond price today, ck;n is the face value plus a coupon, and the other
ck;j s (j D 1; : : : ; n � 1) are coupons. Under the assumption that this bond market
is complete and without arbitrage opportunities, the bond price �ck;0 is given by

�ck;0 D
nX

j D1

ck;j e�tj rj ;

where rj are the (unique) zero rates.
Given a market consisting of the cash flows c1; : : : ; cm, it is not difficult to

check if the market is arbitrage free and, if so, whether the market is complete
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Table 1.1 Specifications of three bonds

Bond A B C

Bond price 99.65 113.43 121.30
Maturity (days) 190 32 C 2 � 365 241 C 3 � 365

Annual coupon 0 5.5 6.75
Face value 100 100 100
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Fig. 1.1 Left plot: graphical illustration of cash flows for the three bonds; right plot: discount
factors in Table 1.2. In the left plot, time is on the x-axis and the payment amounts on the y-axis.
In the right plot, the time to maturity is on the x-axis and the value of the discount factors is on the
y-axis

or not. An arbitrage-free (and complete) market is equivalent to the existence (and
uniqueness) of a solution d D .d1; : : : ; dn/T to the matrix equation

0

B@
�c1;0

:::

�cm;0

1

CA D

0

B@
c1;1 : : : c1;n

::: � � � :::

cm;1 : : : cm;n

1

CA

0

B@
d1

:::

dn

1

CA ; (1.3)

where .ck;0; : : : ; ck;n/ D cT
k . The analysis of solutions to matrix equation (1.3) is a

standard problem in linear algebra.

Example 1.1 (Bootstrapping zero rates). Consider a market consisting of the bonds
in Table 1.1. From Table 1.1 and Fig. 1.1 we see that there are in total eight nonzero
cash flow times

.t1; : : : ; t8/ � .0:09; 0:52; 0:66; 1:09; 1:66; 2:09; 2:66; 3:66/;

where t1 corresponds to 32 days from now and therefore 32=365 � 0:09 years from
now, etc. Therefore, there are also eight undetermined discount factors d1; : : : ; d8
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Table 1.2 Cash flow times (years), discount factors, and zero rates (%) (discount factors obtained
as in Example 1.1 by linear interpolation between discount factors)

Time 0.088 0.521 0.660 1.088 1.660 2.088 2.660 3.660
Discount factors 0.999 0.997 0.994 0.987 0.978 0.972 0.964 0.951
Zero rates 0.673 0.674 0.869 1.158 1.317 1.381 1.380 1.384

solving the matrix equation Cd D P of the type in (1.3), where d D .d1; : : : ; d8/
T,

P D .99:65; 113:43; 121:30/T, and

C D
0

@
0 100 0 0 0 0 0 0

5:5 0 0 5:5 0 105:5 0 0

0 0 6:75 0 6:75 0 6:75 106:75

1

A :

There exist solutions to this matrix equation, so there are no arbitrage opportunities
in this bond market. The problem here is that there is an infinite number of possibly
very different solutions. One solution is obtained by setting the discount factors
corresponding to coupon dates to one, d1 D d3 D d4 D d5 D d7 D 1, which gives
the equation system

0

@
100 0 0

0 105:5 0

0 0 106:75

1

A

0

@
d2

d6

d8

1

A D
0

@
99:65

113:43 � 2 � 5:5

121:30 � 3 � 6:75

1

A

with solution .d2; d6; d8/ � .0:9965; 0:9709; 0:9466/. The corresponding zero rates
are, in percentages, with two decimals, r1; : : : ; r8 � 0; 0:67; 0; 0; 0; 1:41; 0; 1:50.
This is clearly a silly solution as it would imply that the price of a zero-coupon
bond maturing 2:66 years from now with face value 100 is 100. Who would buy
this bond?

Let us now take a step back and consider a better approach, which is often
referred to as the bootstrap method (note: there are other methods referred to as
bootstrap methods that have nothing to do with interest rates). The discount factor
d2 D 0:9965 corresponding to the zero-coupon bond is known. Also, the discount
factor corresponding to cash flow today is clearly d0 D 1. Therefore, it seems
reasonable to assign a value to d1 by interpolation between the two neighboring
discount factors. Let us for simplicity use linear interpolation, which gives

d1 D d0 C d2 � d0

t2 � t0
.t1 � t0/ � 0:9994:

Now we have assigned values to the first two (nontrivial) discount factors, and we
need an approach other than linear interpolation between known discount factors to
assign values to the remaining ones. The second bond yields the equation

113:43 � 5:5d1 D 5:5d4 C 105:5d6;
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which is an equation with two unknowns. Assuming temporarily that the value of
d4 is given by linear interpolation between the last (in the sense of the order of the
cash flow times) known discount factor d2 and the unknown d6 we get the equation

113:43 � 5:5d1 D 5:5

�
d2 C d6 � d2

t6 � t2
.t4 � t2/

�
C 105:5d6;

which can be solved for d6, yielding d6 � 0:9716. Now the discount factors
d3; d4; d5 are assigned values by linear interpolation between d2 and d6:

dk D d2 C d6 � d2

t6 � t2
.tk � t2/ for k D 3; 4; 5:

This gives .d3; d4; d5/ � .0:9943; 0:9875; 0:9784/. The last two discount factors
d7 and d8 are assigned values by repeating the foregoing procedure. This gives
.d7; d8/ � .0:9639; 0:9506/. The cash flow times, the discount factors, and the
corresponding zero rates are given in Table 1.2.

Yield curves are not only derived from bond prices. The next example shows
how a yield curve can be extracted from forward prices. In this example, the notion
of present price and forward price of an asset is needed. Consider a contract for
delivery of an asset at a future time t > 0. The forward price G

.t/
0 of the contract

is the price, agreed upon at the current time 0, which will be paid at maturity, time
t , of the contract. The present price P

.t/
0 of the contract is the price that is agreed

upon and paid at the current time 0. In the sequel, when there is no risk of confusion
about the maturity time, we will sometimes drop the superscript and write G0 and
P0. The present price is the discounted forward price: P

.t/
0 D dtG

.t/
0 , where dt is

the discount factor between 0 and t .
The present price of a share of a stock that does not pay dividends before time t

must be identical to the spot price, S0, for immediate delivery since there is no cost
or benefit from holding the asset between time 0 and time t : the forward price must
satisfy dt G

.t/
0 D P

.t/
0 D S0. The present price, for delivery at a future time t2, of one

share of a stock that pays a known dividend amount c at time t1 < t2 is determined
by the relation

P
.t2/
0 D S0 � dt1c:

The validity of the relation follows from the ensuing argument. Consider first the
strategy of, at time 0, buying the share and short-selling a zero-coupon bond that
matures at time t1 with face value c, and at time t2 selling the share. The initial cost
of this strategy is S0 � dt1c, and it gives the random payoff St2 at time t2. On the
other hand, consider a contract that delivers one share of the stock at time t2. Since
the contract and the foregoing strategy have identical future cash flows, their initial
cash flows must coincide in order not to introduce arbitrage opportunities.



12 1 Interest Rates and Financial Derivatives

Table 1.3 Forward prices on April 8 for delivery of one share of H&M at different maturity times

Maturity April 15 May 20 June 17 September 16 December 16 January 20 March 16
Forward

price
218.64 209.52 209.92 211.29 212.85 213.50 214.59

Example 1.2 (Zero rates from forward prices). On April 8, the spot price S0 for
buying one share of H&M on the Nasdaq Nordic OMX exchange was 218:60

Swedish kronor. Table 1.3 shows forward prices on that same day for one share
of the stock for delivery at different maturities. The company H&M announced that
on May 6 it would pay a dividend of c D 9:50 kronor per share. This explains the
large difference between the current forward prices for the maturity dates April 15
and May 20.

Consider the cash flow times t0; : : : ; t9 given by

t0 D 0 (Apr 8); t1 D 0:019 (Apr 15); t2 D 0:063 (May 6);
t3 D 0:115 (May 20); t4 D 0:192 (Jun 17); t5 D 0:441 (Sep 16);
t6 D 0:690 (Dec 16); t7 D 0:786 (Jan 20); t8 D 0:940 (Mar 16):

The corresponding discount factors are denoted d0; : : : ; d8. Since there is no
dividend paid before t1, the discount factor d1 is derived from the relation d1G

.t1/
0 D

S0, where S0 is the spot price and, hence, also the present price for delivery of one
share of H&M at time t1. The present price for delivery of one share of H&M at t3

gives the relation d3G
.t3/
0 D S0 � cd2. Similarly, for the remaining maturities we

have dkG
.tk/
0 D S0 �cd2 for k D 4; : : : ; 8. In all, we have seven equations and eight

unknowns, which gives an underdetermined equation system with solution

d1 D S0

G
.t1/
0

and dk D S0

G
.tk/
0

� d2c

G
.tk/
0

for k D 3; : : : ; 8; (1.4)

parameterized by d2. To find a reasonable solution among all possible solutions,
the bootstrapping procedure presented above suggests expressing d2 by linear
interpolation between d1 and d3. The equation

d2 D d1 C d3 � d1

t3 � t1
.t2 � t1/;

together with the equations for the maturity times t1 and t3, gives

d2 D
 

1 C c

G
.t3/
0

t2 � t1

t3 � t1

!�1 � S0

G
.t1/
0

�
1 � t2 � t1

t3 � t1

�
C S0

G
.t3/
0

t2 � t1

t3 � t1

�
;

from which the values of all discount factors can be computed from (1.4) (Fig. 1.2).
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Fig. 1.2 Left plot: discount factors in Example 1.2. Time to maturity is on the x-axis; value
of discount factors is on the y-axis. The right plot shows the zero rates (%) in Example 1.2
corresponding to the linearly interpolated discount factors

Example 1.3 (Interest rate swap). Let 0 D t0 < t1 < � � � < tn D T be a sequence
of equally spaced times with � D tk � tk�1 D T=n, and let d1; : : : ; dn be discount
factors giving the value at time 0 of money at times t1; : : : ; tn.

An interest rate swap is an agreement at time 0 between two parties to exchange
floating interest rate payments (a stochastic cash flow) for fixed interest rate
payments (a deterministic cash flow) on a notional principal L (US $100 million,
say) until, and including, time tn with zero initial cost for both parties.

The floating interest rate payments are paid at times �=m D ı; 2ı; : : : ; mnı D
T , where typically m D 2. The floating-rate payment due at time kı is the interest
earned between times .k � 1/ı and kı on the notional L, i.e., the random amount

L
� 1

dk�1;k

� 1
�
;

where dk�1;k denotes the discount factor at time .k � 1/ı between times .k � 1/ı

and kı. To determine the initial value of the floating-rate payments of the swap,
we determine the value of a contract that pays the holder a never-ending stream of
floating-rate payments at times kı, for k D mnC1; mnC2; : : : , on principal L. The
cash flow of the contract is obtained by investing at time kı the amount L in zero-
coupon bonds maturing at time .k C1/ı and at time .k C1/ı, collecting the interest
earned, and repeating the procedure with the remaining amount L. The value of this
contract is therefore the value dnL of having the amount L at time tn D T . Similarly,
the value of a contract that pays the holder a never-ending stream of floating-rate
payments at times kı, for k D 1; 2; : : : , on principal L is L. Therefore, the initial
value of the floating-rate payments of the swap is L.1�dn/. Notice that the number
ı does not show up, so the value of the floating-rate payments does not depend on
the frequency of the floating-rate payments.
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The initial value of the deterministic cash flow corresponding to payments cL at
the times t1; : : : ; tn is simply the sum of the discounted payments: cL.d1 C� � �Cdn/.
Therefore, the fixed-rate payments of the swap have the initial value cL.d1 C � � � C
dn/. The initial value of the swap is zero for both the floating-rate and fixed-rate
receiver in the swap contract. Therefore, the number c must satisfy cL.d1 C � � � C
dn/ D L.1�dn/, i.e., c D .1�dn/=.d1 C� � �Cdn/. The interest rate corresponding
to the fixed-rate payment cL is called the swap rate. The swap rate can be seen as
the yield to maturity of a bond with initial value L, maturing at tn with face value
L and coupons cL at times tk . Notice that at time t > 0 the discount factors will
typically have changed and the value of the swap will be positive for one of the two
parties and negative for the other.

The zero rates rk D � log.dk/=tk corresponding to the discount factors
d1; : : : ; dn are called swap zero rates. The discount factors d1; : : : ; dn and the
corresponding swap zero rates are obtained from a set of swap contracts, with a
corresponding set of contracted swap rates, by a bootstrap procedure similar to the
one considered in Example 1.1.

There are many versions of interest rate swaps. The most common interest
rate swap contract prescribes floating-rate payments every 6 months (3 months)
and fixed-rate payments every 12 months (6 months), i.e., at half the frequency
of the floating-rate payments. The floating interest rate is an interbank interest
rate such as LIBOR (London Interbank Offered Rate) and not defined in terms of
government bonds. A practical issue of some importance that we ignored previously
is that different day count conventions typically apply to fixed rates and floating
rates. When writing rk D � log.dk/=tk one should specify if tk equals the actual
number of days divided by 360 or 365. Swap data show that two swap contracts
with different values of ı, different frequencies of floating-rate payments, that are
otherwise identical can have slightly different swap rates. This is at odds with the
preceding swap valuation and shows that the credit risk borne by the floating-rate
receiver from having to wait longer between the floating-rate payments is taken into
account by the market in the valuation of the swap. Here credit risk refers to the risk
of a failure to deliver the contracted cash flow.

1.2 Derivatives and No-Arbitrage Pricing

Consider the times 0 and T > 0, with 0 being the present time, and let ST be the
spot price of some asset at time T . A contract with payoff f .ST / at time T for some
function f is called a European derivative written on ST . The derivative price �f is
the amount that is paid now in exchange for the payoff f .ST / at time T . A European
call option on ST with strike price K is a contract that gives the holder the right, but
not the obligation, to purchase the underlying asset at time T for price K . Since this
right is only exercised at time T if ST > K , we see that the European call option is a
derivative contract with payoff f .ST / D max.ST �K; 0/. A European put option on



1.2 Derivatives and No-Arbitrage Pricing 15

ST with strike price K is a derivative contract with payoff f .ST / D max.K�ST ; 0/.
In this case, the holder has the right, but not the obligation, to sell the underlying
asset at time T for price K .

We consider a market where m derivative contracts with current prices �k and
payoffs fk.ST /, for k D 1; : : : ; m, and a risk-free zero-coupon bond maturing at
time T with face value 1 and current price B0 can be bought and sold. The bond
saves us from difficulties in relating money at time 0 to money at time T . Here we
assume that the market participants can buy and short-sell these contracts without
paying any fees, and that for each contract the prices for buying and selling the
contract coincide.

From the perspective of one of the market participants we want to understand
how to assign a price to a new derivative contract in terms of the prices of the m

existing derivative contracts and the bond. The market participants can form linear
portfolios of the original derivative contracts, and such a portfolio will constitute
a new derivative contract with payoff f .ST / D Pm

kD1 hkfk.ST / and price �f DPm
kD1 hk�k . A contract of this type is called an arbitrage opportunity if �f D 0,

P.f .ST / � 0/ D 1, and P.f .ST / > 0/ > 0. An arbitrage opportunity is a contract
that gives the holder a strictly positive probability of making a profit without taking
any risk. The probability P is the subjective probability of the market participant
under consideration. In particular, the existence of arbitrage opportunities depends
on the subjective assessment of which events have probability zero.

Theorem 1.2. The following statements are equivalent.

1. There are no arbitrage opportunities.
2. The prices �f can be expressed as �f D B0 EQŒf .ST /�, where the expectation

is computed with respect to a probability Q that assigns zero probability to the
same events as does the probability P.

Remark 1.1. (i) The probability Q is called the forward probability. Note that
EQŒf .ST /� is the forward price of the contract for delivery of f .ST / at time T .

(ii) There are examples of arbitrage opportunities that do not depend on the
subjective probability P. Consider two derivative contracts with prices �f and
�g and payoffs f .ST / and g.ST / satisfying �f < �g and f .ST / � g.ST /

(for example, two European call options such that the one with the higher strike
price costs more than the one with the lower strike price). A long position of
size one in the cheaper derivative, a short position of size one in the expensive
derivative, and a long position with initial value �g ��f in the bond produces a
contract with zero initial price and payoff f .ST / � g.ST / C .�g � �f /=B0 > 0

at time T .

Proof. We begin by proving the implication (ii) ) (i). This implication is the easier
one to prove and also probably the most relevant one since it means that as long as
one comes up with a model for ST that produces the observed prices, one can use
this model for pricing new contracts without risking the introduction of arbitrage
opportunities.
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Suppose that (ii) holds, and consider a payoff f .ST / satisfying P.f .ST / � 0/ D
1 and P.f .ST / > 0/ > 0. We need to show that �f D B0 EQŒf .ST /� ¤ 0. By
assumption, it also holds that Q.f .ST / � 0/ D 1 and Q.f .ST / > 0/ > 0. Since
Q.f .ST / � 0/ D 1, we may express EQŒf .ST /� as

EQŒf .ST /� D
Z 1

0

Q.f .ST / > t/dt;

(see Remark 1.2), and since Q.f .ST / > 0/ > 0, there exist " > 0 and ı > 0 such
that Q.f .ST / > "/ > ı. Therefore,

�f

B0

D EQŒf .ST /� D
Z 1

0

Q.f .ST / > t/dt �
Z "

0

Q.f .ST / > t/dt > "ı > 0;

which proves the claim, i.e., the implication (ii) ) (i).
Proving the implication (i) ) (ii) in a general setting is rather difficult. It

becomes much less difficult if we assume that ST takes values in a finite (but
arbitrarily large) set. This is not at all an unrealistic assumption; ST will take values
with finitely many decimals, and it is plausible that P.ST > s/ D 0 for all s

greater than some sufficiently large number. Let fs1; : : : ; sng, with P.ST D sk/ > 0

and P.ST D s1/ C � � � C P.ST D sn/ D 1, be the set of possible outcomes for
ST . Then every contract can be represented as a vector x D .x0; x1; : : : ; xn/T in
R

nC1. The contract with payoff f .ST / and price �f can be represented as the
vector x D .��f ; f .s1/; : : : ; f .sn//T. Therefore, the set of all contracts constructed
from the original m derivative contracts forms a linear subspace of RnC1. Let us
denote this linear space by X. We see that x 2 X is an arbitrage opportunity if
x ¤ 0 and x � 0. Theorem 1.1 says that there are no arbitrage opportunities if
and only if there exists a vector y 2 R

nC1 with y > 0 such that xTy D 0 for
all x 2 X. Of course, the same result holds if y is replaced by y�1

0 y. The bond
corresponds to the vector x D .�B0; 1; : : : ; 1/T. Since xT.y�1

0 y/ D 0, we havePn
kD1 y�1

0 yk D B0. For k D 1; : : : ; n set qk D .B0y0/�1yk and note that qk > 0

and
Pn

kD1 qk D 1. In particular, the qk constitute a probability distribution on the
set fs1; : : : ; sng of possible outcomes for ST . With x D .��f ; f .s1/; : : : ; f .sn//T

we see that xT.B0y0/�1y D 0 is equivalent to �f D B0

Pn
kD1 f .sk/qk , which is

precisely what Theorem 1.2 says. �

Remark 1.2. The representation of the expected value of a nonnegative random
variable as an integral of its tail probabilities is not difficult to justify. Consider a
random variable X � 0 with distribution function F , and set F D 1 � F . If F has
a density f , then

Z 1

0

F .t/dt D
Z 1

0

h Z 1

t

f .u/du
i
dt D

Z 1

0

f .u/
h Z u

0

dt
i
du D

Z 1

0

uf .u/du;



1.2 Derivatives and No-Arbitrage Pricing 17

where we have simply changed the order of integration. The existence of a density
f is actually not needed for the result to hold, but it simplifies the presentation.

Theorem 1.2 tells us how to price a new contract with payoff g.ST / such that no
arbitrage opportunity is introduced: simply assign the price �g D B0 EQŒg.ST /� to
the derivative contract. The expected value EQŒg.ST /� is the expected value of the
random variable g.ST / computed with respect to the probability Q. Theorem 1.2
does not say that this price �g is the unique arbitrage-free price of the new
contract. There are typically many possible representations of the existing prices
as discounted expected values, and the different representations are likely to
give different prices to new contracts. More precisely: suppose that you assign
a probability distribution to ST with more than m parameters and that there is
more than one solution (a set of parameters) to the nonlinear system of equations
�k D B0 EQŒfk.ST /�, k D 1; : : : ; m, where the left-hand side is the market price
of the kth original derivative and the right-hand side is the discounted expected
payoff according to your chosen parametric model. Then there are probably several
solutions, and the different solutions are likely to give different prices B0 EQŒg.ST /�

to a new derivative contract with payoff g.ST /.

Example 1.4 (Rolling dice). Let ST be the value of a six-sided die. The die is not
necessarily fair. Suppose for now that there are two derivative contracts on ST

available on the market, a bet on even numbers (contract A) and a bet on odd
numbers (contract B). Both contracts pay 1 if the bet turns up right and 0 otherwise,
and the market prices of both contracts are 1=2. There are no arbitrage opportunities
on this market if the subjective probabilities P.ST D 1/; : : : ; P.ST D 6/ are
strictly positive. There are infinitely many choices of strictly positive probabilities
Q.ST D 1/; : : : ; Q.ST D 6/ such that (ii) of Theorem 1.2 holds. One such choice is
given by

Q.ST D 1/ D � � � D Q.ST D 6/ D 1=6:

Depending on the subjective view of the probabilities P.ST D 1/; : : : ; P.ST D 6/,
there may be opportunities for good deals: portfolios whose expected payoffs
are greater than their prices. Consider an agent whose subjective view of the
probabilities are such that

P.ST D k/ D 0 for k D 4; 5; 6:

To this agent the set of possible outcomes is reduced to f1; 2; 3g. Note that the
observed prices are still consistent with no arbitrage. Suppose a new contract C
is introduced paying 1 if the outcome of ST is 1 or 2, and that the market price
of this contract is 1=3. The original market is still free of arbitrage (the same Q
still works). However, on the reduced set of outcomes f1; 2; 3g it is not possible to
find a probability Q that reproduces the market prices. To the agent who believes
in the reduced set of possible outcomes there seems to be an arbitrage opportunity.
A portfolio consisting of a long position in C and a short position in A of the same
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size has a strictly negative price equal to �1=6 (you get money now) and has a
nonnegative payoff with P-probability 1. The agent now has two choices: try to
capitalize on the perceived arbitrage opportunity by going long in C and short in A,
or revise the subjective probabilities. This example illustrates that there may be
portfolios that are perceived as arbitrage opportunities because the subjective model
used to assign probabilities to future events is too simplistic.

Example 1.5 (Calls and digitals). Consider a derivative with payoff I fST > Kg
(meaning the value 1 if the event occurs and 0 otherwise) at time T , referred to as
a digital or binary option, with current price D0.K/. Consider also two call options
with payoffs max.ST �K; 0/ and max.ST �.K �1/; 0/ at time T and current prices
C0.K/ and C0.K � 1/. Let xC D max.x; 0/, and notice that

.ST � K C 1/C � .ST � K/C D
8
<

:

0 if ST < K � 1;

ST � K C 1 if ST 2 ŒK � 1; K�;

1 if ST > K:

In particular, .ST � K C 1/C � .ST � K/C � I fST > Kg.
If C0.K � 1/ � C0.K/ < D0.K/, then there are arbitrage opportunities. Buying

the call option with strike K �1 and short-selling the call and the digital option with
the strike K gives a strictly positive cash flow at time 0, which can be used to buy
zero coupon bonds maturing at time T . Moreover, the cash flow from the payoffs of
the options at time T is nonnegative. We have thus constructed a contract with zero
initial cash flow that gives a strictly positive cash flow at time T . This is an arbitrage
opportunity regardless of the probability distribution assigned to ST .

If C0.K � 1/ � C0.K/ D D0.K/, then there may be arbitrage opportunities.
Buying the call option with strike K � 1 and short-selling the call and the digital
option with the strike K gives zero initial cash flow and a cash flow .ST � K C
1/I fST 2 ŒK � 1; K�g � 0 at time T . If P.ST 2 ŒK � 1; K�/ > 0, then this is an
arbitrage opportunity.

Example 1.6 (Put–call parity). Suppose there is a risk-free zero-coupon bond
maturing at time T with face value 1, a call option with strike price K on the
value ST at time T , and a put option with the same strike price K on ST . Write
B0, C0, and P0 for the current prices of the bond, call option, and put option,
respectively. Suppose further that there is a forward contract on ST with forward
price G0, the amount agreed upon today that is paid at time T in exchange for the
random amount ST .

A position of size G0 � K in the bond (long or short depending on the sign of
G0 � K) and a long position in the forward contract give the price B0.G0 � K/

for the derivative contract with payoff ST � K . However, the same payoff can be
produced by taking positions in the options. A long position in the call option and a
short position in the put option correspond to a long position in a derivative contract
with price C0 � P0 and the payoff

.ST � K/C � .K � ST /C D ST � K
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at time T . In an arbitrage-free market, the prices of two derivative contracts with
the same payoffs must coincide. Otherwise a risk-free profit is made by buying the
cheaper of the two and short-selling the more expensive one. Therefore,

C0 � P0 D B0.G0 � K/:

This relation between bond, forward, call option, and put option prices is called the
put–call parity.

Example 1.7 (Parametric forward distribution). Suppose you want to use the para-
metric density function q� , whose argument is a real number and whose parameter
vector � is multidimensional, as a model for the forward probability. Suppose
further that the nonlinear system of equations in �

�k D B0

Z
fk.s/q�.s/ds; k D 1; : : : ; m

has a solution ��. Theorem 1.2 tells us that the market is arbitrage free if for any
interval .a; b/ it holds that

Z b

a

q��.s/ds D 0 if and only if
Z b

a

p.s/ds D 0;

where p is your subjective probability density for the future spot price ST . In this
case you may assign the arbitrage-free price

�g D B0

Z
g.s/q��.s/ds

to a derivative contract with payoff g.ST /.

Example 1.8 (Online sports betting). Suppose you are visiting the Web site of an
online sports betting agent, the bookmaker, with the intent of betting on a Premier
League game, Chelsea vs. Liverpool. The odds offered by the bookmaker are
“Chelsea”: 2:50, “draw”: 3:25, and “Liverpool”: 2:70. The corresponding outcome
of the game are denoted by 1, X , and 2, and for each of the outcomes it is assumed
that you do not assign zero probability to the occurrence of that outcome. This game
may be viewed as a market with three digital derivatives with prices q1 D 1=2:50,
qX D 1=3:25, and q2 D 1=2:70 and payoffs X1, XX , and X2, where X1 D 1 if
the outcome of the game is “Chelsea” and 0 otherwise, and similarly for the other
payoffs. Notice that

q1 C qX C q2 D 1

2:50
C 1

3:25
C 1

2:70
� 1:078:



20 1 Interest Rates and Financial Derivatives

Since the prices do not sum up to one, they cannot be interpreted as probabilities.
Equivalently, they cannot be expressed as (discounted) expected payoffs. A natural
question, in light of Theorem 1.2, is therefore: is there an arbitrage opportunity?
The answer is no. The reason is that you cannot sell the contracts short on this
market (the bookmaker is not willing to switch sides with you). To see that there
is no arbitrage, one could argue as follows. Consider dividing the initial capital
1 into bets on “Chelsea,” “draw,” and “Liverpool,” where w1; wX ; w2 � 0, with
w1 C wX C w2 D 1, are the amounts placed on the respective possible outcomes.
The portfolio .w1; wX ; w2/ is an arbitrage opportunity if its post game value

w1

q1

X1 C wX

qX

XX C w2

q2

X2

is greater than or equal to one for sure and strictly greater than one with a strictly
positive probability. Suppose that .w1; wX ; w2/ is an arbitrage opportunity. For the
postgame portfolio value to be greater than or equal to one it is necessary that
w1=q1 � 1, wX =qX � 1, and w2=q2 � 1. Therefore,

w1 C wX C w2 � q1 C qX C q2 > 1;

which is a contradiction. We conclude that there are no arbitrage opportunities. The
key to arriving at this conclusion is, of course, that the sum of the reciprocal odds is
greater than one. The excess 1:078 � 1 D 0:078 can be interpreted as the margin the
bookmaker takes as a profit.

Occasionally, when examining the odds of many different sports betting agents,
you may find better odds. If the best available odds happen to be 2:75 on “Chelsea,”
3:50 on “Draw,” and 2:95 on “Liverpool,” then there is an arbitrage opportunity. In
the analogy with the digital derivative market, here the sum of the digital derivative
prices sum up to a number less than one. Therefore, a portfolio can be formed
whose initial value is less than one and whose postgame value is one, from which
an arbitrage portfolio can be formed.

1.2.1 The Lognormal Model

Suppose that there exist a risk-free zero-coupon bond with price B0 that pays the
amount 1 at time T and a forward contract on ST with current forward price G0.
A long position in the bond of size G0 together with a long position of size one in
the forward contract produces a European derivative contract with price B0G0 and
payoff ST at time T . Therefore, we are in the setting of Theorem 1.2 [with m D 1

and f1.s/ D s].
Here we will choose a lognormal distribution for ST in the representation

B0G0 D B0 EQŒST � and derive arbitrage-free pricing formulas for European
derivatives. Note that ST has a lognormal distribution if log ST has a normal
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distribution. If we choose �T and �2T to be the mean and variance of the normal
distribution for log ST , then we may write log ST D �T C �

p
T Z for a standard

normally distributed random variable Z. Since

G0 D EQŒST � D
Z 1

�1
e�T C�

p
T z e�z2=2

p
2�

d z D e�T C�2T=2

Z 1

�1
e�.z��

p
T /2=2

p
2�

d z

D e�T C�2T=2;

we see that �T D log G0 � �2T=2 and log ST is N.log G0 � �2T=2; �2T /-
distributed. In particular, we may write

ST D G0e
�

p
T Z��2T=2

with Z standard normally distributed, and therefore the price of a derivative on ST

with payoff g.ST / may be expressed as

�g D B0 EQŒg.ST /� D B0

Z 1

�1
g
�
G0e�

p
T z��2T=2

�e�z2=2

p
2�

d z: (1.5)

This representation of the derivative price is known as Black’s formula (Fisher
Black). For call (and put) options, Black’s formula turns into a very nice explicit
expression. The price C0 of a call option on ST with strike price K can be
expressed as

C0 D B0 EQŒmax.ST � K; 0/�

D B0 EQŒ.ST � K/I fST > Kg�
D B0 EQŒ.G0e��2T=2C�

p
T Z � K/I fZ > �g�

D B0G0e��2T=2 EQŒe�
p

T ZI fZ > �g� � KB0 EQŒI fZ > �g�;

where

� D log.K=G0/

�
p

T
C �

p
T

2
:

Therefore, with ˚ denoting the standard normal distribution function,

C0 D B0G0e
��2T=2

Z 1

�

e�
p

T z e�z2=2

p
2�

d z � B0K.1 � ˚.�//

D B0G0

Z 1

�

e�.z��
p

T /2=2

p
2�

d z � B0K˚.��/
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D B0G0

Z 1

���
p

T

e�z2=2

p
2�

d z � B0K˚.��/

D B0G0˚.�
p

T � �/ � B0K˚.��/:

This expression for the call option price, called Black’s formula for call options, is
typically written as

C B
0 D B0.G0˚.d1/ � K˚.d2//; (1.6)

where

d1 D log.G0=K/

�
p

T
C �

p
T

2
and d2 D d1 � �

p
T :

If the underlying asset is a pure investment asset (holding the asset brings neither
benefits nor costs), then a buyer of the underlying asset at time 0 does not care
whether the asset is delivered at that time or at the later time T . This implies that the
spot price S0 for immediate delivery at time 0 must coincide with the derivative price
B0G0 for delivery of the asset at time T . If the underlying asset is a pure investment
asset, then Black’s formula for call option prices is called the Black–Scholes, or the
Black–Merton–Scholes formula for call option prices, and reads

C0 D S0˚.d1/ � B0K˚.d2/; (1.7)

where

d1 D log.S0=.B0K//

�
p

T
C �

p
T

2
and d2 D d1 � �

p
T :

If the market provides us with the prices C0 and G0, or with C0, S0, and B0 if the
underlying asset is a pure investment asset, then the model parameter � is obtained
as the solution to a nonlinear equation in one variable [(1.6) or (1.7)] and is called the
implied volatility (implied by the market prices). For a given underlying asset and
maturity time, an option price is often quoted in volatility rather than in monetary
units. The implied volatilities for two call options on ST with different strike prices
typically do not coincide. Therefore, the lognormal model is inconsistent with price
data. However, the very simple lognormal model is still surprisingly accurate and is
used as a benchmark model with the modification that the volatility parameter � is
viewed as a function of the strike price K (thereby violating the assumption of the
lognormal model). The graph of the function �.K/ is called the volatility smile or
volatility skew.
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Table 1.4 Current prices of options maturing in 35 days

Strike 980 990 1,000 1,020 1,040
Call price 63.625 56.625 50.000 37.625 27.250

Strike 1,060 1,080 1,100 1,120 1,140
Call price 18.500 12.000 7.125 3.825 1.875

Strike 980 990 1,000 1,020 1,040
Put price 23.875 26.875 30.375 38.125 47.625

1.2.2 Implied Forward Probabilities

Consider n call option prices C0.K1/; : : : ; C0.Kn/ on ST , the forward price G0 of
ST , and the price B0 of a zero-coupon bond maturing at time T with face value 1.
It is assumed that the set of prices do not give rise to arbitrage opportunities. From
Black’s formula (1.6) the implied volatilities �.K1/; : : : ; �.Kn/ are obtained, and
by interpolation and extrapolation among the implied volatilities a volatility smile
can be created that can be used together with Black’s formula to price any European
derivative on ST . For call options, write C0.K/ D C B

0 .K; �.K//, where C B
0 denotes

Black’s formula and �.K/ is the volatility smile evaluated at K . The produced prices
are arbitrage free if and only if there is a probability distribution for ST so that
C0.K/ D B0 EQŒmax.ST � K; 0/� for all K . We may write

C0.K/ D B0 EQŒmax.ST � K; 0/�

D B0

Z 1

0

Q.max.ST � K; 0/ > t/dt

D B0

Z 1

K

Q.ST > t/dt :

In particular, the prices are arbitrage free if and only if there exists a distribution
function Q, the forward probability distribution function, such that

dC0

dK
.k/ D �B0.1 � Q.k// for all k � 0:

Moreover, we see that if C0.K/ is twice differentiable, then the prices are arbitrage
free if and only if there exists a density function q such that

d 2C0

dK2
.k/ D B0q.k/ for all k � 0:

Example 1.9 (Implied volatilities). Consider the option prices specified in
Table 1.4. The options were the actively traded European call and put options
that day on the value of a stock market index 35 trading days later (7 weeks later).
For simplicity, the prices in the table are computed as mid prices; the mid price is
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Table 1.5 Zero rates derived from put–call parity

Strike 980 990 1,000 1,020 1,040
Zero rate (%) 0.632 0.626 0.529 0.431 0.509

Table 1.6 Implied volatilities using Black’s formula

Strike 980 990 1,000 1,020 1,040
Implied vol. 0.274 0.268 0.263 0.250 0.239
Strike 1,060 1,080 1,100 1,120 1,140
Implied vol. 0.227 0.218 0.208 0.198 0.190

the average of the bid price (the highest price at which a buyer is willing to buy)
and the ask price (the lowest price at which a seller is willing to sell). The index
level at the time, here called the spot, was S0 D 1;018:89.

From the put–call parity in Example 1.6 we see that the put and call prices can be
combined to get prices of the derivative that pays one unit of the index at maturity
(we ignore commissions and trading costs). The index does not pay dividends, and
therefore the spot S0 equals B0G0, where B0 is the price of a zero-coupon bond that
matures at the same time as the options and G0 is the forward price of the index.
Therefore, the put–call parity reads

C0 � P0 D S0 � B0K:

From this relation we can derive B0 and the zero rate r D � log.B0/=T , where
T D 35=252 is the time to maturity (assuming 252 trading days per year). As
we have prices on calls and puts for several strikes, each pair will give a possibly
different value of r . The extracted zero rates r are presented in Table 1.5. The zero
rates are not identical over the range of strikes, but we make a rough approximation
and assume the zero rate is equal to 0:5%.

Now we can compute the implied volatilities using Black’s formula (1.6). The
implied volatilities are presented in Table 1.6. They are also shown in the left-hand
plot in Fig. 1.3. The implied volatilities often have a convex looking shape and are
therefore often referred to as the volatility smile.

We now turn to the question of how implied volatilities for strikes K1; : : : ; Kn

should be used to price a derivative that is not actively traded on a market. For
instance, a digital option with payoff I fST � Kg, where Ki < K < KiC1. The
arbitrage-free price of the digital option is given by

D0.K/ D B0 EQŒI fST � Kg� D B0 Q.ST � K/ D B0.1 � Q.K//;

where Q is a choice of pricing probability, satisfying the conditions in Theorem 1.2,
and Q is the corresponding distribution function for ST . If we use the lognormal
model, then

EQŒI fST � Kg� D Q.ST � K/ D ˚.d2/;
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Fig. 1.3 Left plot: implied volatilities and graph of fitted second-degree polynomial. The strike
price is on the x-axis, and volatility on the y-axis. Right plot: graph of implied forward density
corresponding to fitted volatility smile, drawn by a solid curve within the range of strikes and by
a dashed curve outside the range of the strikes. The dashed curve shows the graph of the density
corresponding to the lognormal model with the volatility parameter chosen as the average of the
implied volatilities

where

d2 D log.G0=K/

�
p

T
� �

p
T

2
;

but it is far from clear what volatility � we should use.
A common practice is to use Black’s model together with a suitable implied

volatility smile �.k/ and express the price of a call option with an arbitrary strike
price k as C0.k/ D C B

0 .k; �.k//. Recall that these prices are arbitrage free if there
exists a forward distribution function Q such that

Q.k/ D 1 C 1

B0

dC0

dK
.k/: (1.8)

If Black’s model together, with a suitable implied volatility smile �.k/, is used, then
C0.k/ D C B

0 .k; �.k// and

dC0

dK
.k/ D @C B

0

@K
.k; �.k// C @C B

0

@�
.k; �.k//

d�

dK
.k/

D �B0˚.d2/ C B0G0	.d1/
p

T
d�

dK
.k/: (1.9)
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The last equality is not obvious and requires an explanation. Recall that the standard
normal density is given by 	.z/ D expf�z2=2g=p

2� , and notice that

d 2
1 D

� log.G0=K/

�
p

T

�2 C �2T

4
C log.G0=K/;

.d1 � �
p

T /2 D
� log.G0=K/

�
p

T

�2 C �2T

4
� log.G0=K/

D d 2
1 � 2 log.G0=K/:

Therefore,

@C B
0

@K
D �B0˚.d2/ C B0

�
G0	.d1/

@d1

@K
� K	

�
d1 � �

p
T
� @d2

@K

�

D �B0˚.d2/

since @d1=@K D @d2=@K , and

@C B
0

@�
D B0

�
G0	.d1/

@d1

@�
� K	

�
d1 � �

p
T
� @d2

@�

�

D B0G0	.d1/
p

T

since @d1=@� D @d2=@� C p
T .

With Black’s model with a volatility smile �.k/ the price of the digital option
with payoff I fST � Kg follows from (1.8) and (1.9) and is given by

D0.K/ D B0.1 � Q.K// D B0˚.d2/ � B0G0	.d1/
p

T
d�

dK
.K/:

Notice that the expression in (1.9) must be nondecreasing in k (recall also that d1 and
d2 depend on k) and takes values in the interval Œ�B0; 0� for the function Q in (1.8)
to be a distribution function. In particular, there are conditions that a volatility smile
�.k/ must satisfy to give rise to arbitrage-free derivative prices.

A natural approach to constructing a volatility smile is to use some interpolation
method to interpolate between the implied volatilities. Linear interpolation is one
choice, and then �.k/, for k 2 ŒKi ; KiC1�, is given by

�.k/ D �.Ki / C �.KiC1/ � �.Ki /

KiC1 � Ki

.k � Ki /:

However, linear interpolation may lead to a model that admits arbitrage. We now
show this claim. For this model to be free of arbitrage it is necessary that the slope
of �.k/ be nondecreasing, i.e., that the linearly interpolated volatility smile �.k/ be
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a convex function. Suppose, on the contrary, that the slope between Ki�1 and Ki is
larger than the slope between Ki and KiC1. In mathematical terms, suppose that

slopeiC1 D �.KiC1/ � �.Ki /

KiC1 � Ki

<
�.Ki / � �.Ki�1/

Ki � Ki�1

D slopei :

As a consequence,

lim
k"Ki

Q.k/ D 1 C 1

B0
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k"Ki

dC0

dK
.k/

D 1 C 1
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k"Ki

�
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0

@K
.k; �.k// C @C B

0

@�
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d�

dk
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�

D 1 C 1

B0

�
@C B

0
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.Ki ; �.Ki // C @C B

0
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�

> 1 C 1

B0

�
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0
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�

D 1 C 1
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�
@C B

0

@K
.k; �.k// C @C B

0

@�
.k; �.k//

d�

dk
.k/

�

D lim
k#Ki

Q.k/:

We find that the function Q has a negative jump at Ki , and therefore it cannot be
a distribution function. We conclude that it is necessary that slopeiC1 � slopei ,
i.e., that

�.KiC1/ � �.Ki /

KiC1 � Ki

� �.Ki / � �.Ki�1/

Ki � Ki�1

for a pricing model with linearly interpolated implied volatilities to be free of
arbitrage.

An alternative to linear interpolation between implied volatilities, although still
rather ad hoc, is to fit a second-degree polynomial �.k/ D c0 C c1k C c2k2 to the
implied volatilities using least squares. The least-squares-fitted volatilities �.Ki /

will not coincide with the original implied volatilities. However, typically the second
degree polynomial gives a good enough fit so that the resulting model prices for the
call and put options lie between the observed bid and ask prices.

Let us illustrate the procedure on the option data in Example 1.9. The resulting
second-degree polynomial and the implied volatilities are shown in the left-hand
plot in Fig. 1.3. Here we observe a very good fit to the implied volatilities. Note that
in the left-hand plot in Fig. 1.3 the graph of the function �.k/ is plotted also outside
the range of the strikes. However, to the left of the smallest strike (980) and to the
right of the highest strike (1,140) we do not have information on what the volatility
smile looks like. Extrapolating outside the range of the data is nothing but a crude
guess.
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The resulting implied forward distribution Q can now be computed from (1.8),
and the corresponding implied density q is given by

q.k/ D 1

B0

d 2

dk2
C B

0 .k; �.k//

D 1

B0

 
@2C B

0

@K2
.k; �.k// C 2

@2C B
0

@K@�
.k; �.k//

d�

dK
.k/

C@C B
0

@�
.k; �.k//

d 2�

dK2
.k/ C @2C B

0

@�2
.k; �.k//

�
d�

dK
.k/

�2
!

:

Computing the second-order partial derivatives of C B
0 .K; �/ from Black’s formula

is straightforward—but tedious. Therefore, we simply state them and leave it to the
reader as an exercise to verify them. The second-order derivatives are given by

@2C B
0

@K2
.K; �/ D B0

K�
p

T
	.�d2/;

@2C B
0

@�@K
.K; �/ D B0G0

K�
d1	.d1/;

@2C B
0

@�2
.K; �/ D B0G0

p
T

�
d1d2	.d1/:

The resulting density q.k/ is shown in the right-hand plot in Fig. 1.3. The solid part
of the curve indicates the range between the smallest and largest strikes (the interval
on which we have information from the price data). The dashed part of the curve is
the extrapolation outside the range of the strikes of the option data. We compare the
density implied by the volatility smile and Black’s call option price formula to the
density for the lognormal model with the volatility parameter chosen as the average
of the implied volatilities. This lognormal density is shown as the dashed curve in
the plot to the right in Fig. 1.3. We observe that the effect of the volatility smile,
compared to a constant volatility, is that the implied forward density is left-skewed
and has more probability mass in the left tail.

1.3 Notes and Comments

To prove the no-arbitrage theorem for deterministic cash flows, Theorem 1.1, we
used a proof we learned from Harald Lang. The same idea was also used to prove
Theorem 1.2 under the assumption that the spot price ST takes values in a finite
set. Theorem 1.2 is called the First Fundamental Theorem of Asset Pricing and
appears here in its simplest form. A more general version of the theorem, without the
assumption of a finite set of possible outcomes for ST and with multiple time periods
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instead of one, was proved by Robert Dalang, Andrew Morton, and Walter Willinger
in [10]. Since then, many alternative proofs of their theorem have appeared.

The material in Sect. 1.2 on no-arbitrage pricing and the lognormal model is
a very brief summary of selected topics from the enormous amount of literature
written on no-arbitrage pricing of derivatives contracts since the seminal work
in [6, 32], and [5] of Fisher Black, Myron Scholes, and Robert Merton in the early
1970s. A natural motivation for the use of lognormal models can be found in the
work [42] of Paul Samuelson, which predates that of Fisher Black, Myron Scholes,
and Robert Merton.

The reader who seeks more information about financial markets and contracts, in-
cluding the topics presented here, is recommended to consult the popular textbooks
of John Hull, for instance [21].

1.4 Exercises

In the exercises below, it is assumed, wherever applicable, that you can take
positions corresponding to fractions of assets.

Exercise 1.1 (Arbitrage in bond prices). (a) Consider a market consisting of the
five risk-free bonds shown in Table 1.7. Show that the market is free of arbitrage
and determine the zero rates, or construct an arbitrage portfolio.

(b) Consider a market consisting of the three bonds denoted A, D, and E in
Table 1.7. Show that the market is free of arbitrage and use the bootstrapping
procedure to determine the zero rates, or construct an arbitrage portfolio.

Exercise 1.2 (Put–call parity). (a) Consider a European derivative contract,
called a collar, with payoff function f given by

f .x/ D
8
<

:

K1 if x < K1;

x if x 2 ŒK1; K2�;

K2 if x > K2;

where K1 < K2. Express the forward price of a collar in terms of the forward
prices of appropriate European call and put options and the forward price of the
underlying asset.

Table 1.7 Bond specifications

Bond A B C D E

Bond price ($) 98.51 100.71 188.03 111.55 198.96
Maturity (years) 0.5 1 1.5 1.5 2
Annual coupon ($) 0 4 0 12 8
Face value ($) 100 100 200 100 200

Half of the annual coupon is paid every 6 months from today and including the time of
maturity; the first coupon payment is in 6 months
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Table 1.8 Odds offered by seven bookmakers

Bookmaker 1 2 3 4 5 6 7

Everton 4.30 4.55 4.35 4.30 4.55 4.60 4.70
Draw 3.50 3.55 3.35 3.70 3.30 3.45 3.55
Manchester City 1.85 1.80 1.95 1.80 1.85 1.85 1.75

Table 1.9 Bond specifications

Bond A B C D

Bond price ($) 98 104 93 98
Maturity (years) 1 2 1 2
Annual coupon ($) 0 5 0 10
Face value ($) 100 100 100 100

The annual coupon is paid every 12 months starting from today and including
the time of maturity. The first coupon payment is in 12 months

(b) A risk reversal is a position made up of a long position in an out-of-the-money
(worthless if it were to expire today) European call option and a short position of
the same size in an out-of-the-money European put option; both options have
the same maturity and are written on the same underlying asset. Express the
forward price of a risk reversal in terms of the forward prices of the underlying
asset and a collar on this asset.

Exercise 1.3 (Sports betting). Consider the odds shown in Table 1.8 of seven
bookmakers on the outcome of a football game between Everton and Manchester
City. Is it possible to create an arbitrage opportunity by making bets corresponding
to long positions?

Exercise 1.4 (Lognormal model). (a) Let Z have a standard normal distribution.
For any a > 0 and b 2 R compute EŒeaZI fZ > bg�.

(b) Let R have the lognormal distribution LN.�; �2/. For an arbitrary number c,
compute

EŒ.R � c/C�; Var..R � c/C/; Cov.R; .R � c/C/; Cov..R � c/C; .R � d/C/;

where d > c.
(c) What happens to the preceding quantities if R is replaced by S D S0R for a

constant S0 > 0?

Exercise 1.5 (Risky bonds). Consider investments in long positions in the four
bonds shown in Table 1.9. Bonds A and B are issued by the United States
government, and their cash flows are considered risk free. Bonds C and D are issued
by a bank in the USA experiencing serious financial difficulties. If the bank were to
default, bonds C and D would be worthless.
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(a) Determine the current 1- and 2-year US Treasury zero rates and the 1- and
2-year credit spreads for the bonds issued by the bank. Determine the probabil-
ities of default within 1 and within 2 years implied by the bond prices.

(b) An investor is certain that the bank is considered by the government to be
too important to the financial system to be allowed to default. However, the
investor believes that the market will continue to believe that the bank may
default on its bonds. The investor believes that the 1-year Treasury zero rate
in 1 year is N.0:03; 0:012/-distributed and that the 1-year credit spread in 1
year is N.0:13; 0:032/-distributed. Determine the investment strategy in terms of
$10,000 invested in long positions in the bonds and a strategy for how to reinvest
any cash flow received in 1 year that maximizes the expected value of the cash
flow in 2 years.

(c) Suppose that the investor is wrong and the market’s view, corresponding to the
current bond prices, is right. Determine the distribution function of the investor’s
(perceived) optimal cash flow in 2 years in (b).

Project 1 (Implied forward distribution). Find prices of traded European put
and call options of the future value of a stock market index. Consider prices of
the options that are traded in sufficiently large volumes so that the prices contain
relevant information about the future index value.

Use the material in Sect. 1.2.2 to estimate the density function of the future index
value implied by the option prices. Make the plots correspond to Fig. 1.3. Make
sure that the method used for interpolation and extrapolation of the implied Black’s
model volatilities does not lead to arbitrage in the pricing model you suggest.


	Chapter
1 Interest Rates and Financial Derivatives
	1.1 Interest Rates and Deterministic Cash Flows
	1.1.1 Deterministic Cash Flows
	1.1.2 Arbitrage-Free Cash Flows

	1.2 Derivatives and No-Arbitrage Pricing
	1.2.1 The Lognormal Model
	1.2.2 Implied Forward Probabilities

	1.3 Notes and Comments
	1.4 Exercises


