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Preface

This book presents sound principles and useful methods for making investment and
risk management decisions in the presence of hedgeable and nonhedgeable risks.

In everyday life we are often forced to make decisions involving risks and
perceived opportunities. The consequences of our decisions are affected by the
outcomes of random variables that are to various degrees beyond our control. Such
decision problems arise, for instance, in financial and insurance markets. What
kind of insurance should you buy? What is an appropriate way to invest money
for later stages in life or for building a capital buffer to guard against unforeseen
events? While private individuals may choose not to take a quantitative approach
to investment and risk management decisions, financial institutions and insurance
companies are required to quantify and report their risks. Financial institutions and
insurance companies have assets and liabilities, and their investment actions involve
both speculation and hedging. In fact, every time a liability is not hedged perfectly,
the hedging decision is a speculative decision on the outcome of the hedging
error. Although hedging and investment problems are often presented separately
in the literature, they are indeed two intimately connected aspects of portfolio risk
management. A major objective of this book is to take a coherent and pragmatic
approach to investment and risk management integrated in a portfolio analysis
framework.

The mathematical fields of probability, statistics, and optimization form a natural
basis for quantitatively analyzing the consequences of different investment and risk
management decisions. However, advanced mathematics is not a necessity per se
for dealing with the problems in this area. On the contrary, a large amount of
highly sophisticated mathematics in a book on this topic may lead the reader to
draw the wrong conclusions about what is essential (and possible) and what is not.
We assume that the reader of this book has a mathematical/statistical knowledge
corresponding to undergraduate-level courses in linear algebra, analysis, statistics,
and probability. Some knowledge of basic optimization theory will also be useful.
The book presents material precisely using basic undergraduate-level mathematics
and is self-contained.
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viii Preface

There are two fundamental difficulties to finding solutions to the problems in
investment and risk management. The first is that the decisions strongly depend
on subjective probabilities of the future values of financial instruments and other
quantities. Financial data are the consequences of human actions and sentiments
as well as random events. It is impossible to know the extent to which historical
data explain the future that one is trying to model. This is in sharp contrast to
card games or roulette where the probability of future outcomes can be considered
as known. Statistics may assist the user in motivating the choice of a particular
model or to fit models to historical data, but the probabilities of future events will
nevertheless be affected by subjective judgment. As a consequence, it is practically
impossible to assess the accuracy of the subjective probabilities that go into the
mathematical procedures. Misspecifications of the input to a quantitative procedure
for decision making will always be reflected in the output, and critical judgment
cannot be replaced by mathematical sophistication.

The second fundamental difficulty is that even when there is a consensus on
the probabilities of future events, a decision that is optimal for one decision maker
may be far from optimal for another one with a different attitude toward risk.
Mathematics can assist in translating a probability distribution and an attitude
toward risk and reward into a portfolio choice in a consistent way. However, it is
difficult to even partially specify a criterion for a desired trade-off between risk
and potential reward in an investment situation. Simple and transparent criteria for
financial decision making may be more suitable than more advanced alternatives
because they enable the user to fully understand the effects of variations in
parameter values and probability distributions. Although designing a quantitative
and principle-based approach to financial decision making is by no means easy, the
alternatives are often ad hoc and lack transparency.

At this point we emphasize the difference between uncertainty and randomness.
Even if we do not know the outcome when throwing a fair six-sided die, we can be
rather certain that the probability of each possible outcome is one sixth. However,
if we do not know the marking of the die, whether it is symmetric, or the number of
sides it has, then we have no clue about the probability distribution generating the
outcomes. In particular, uncertainty is closely related to lack of information. Saying
that we are unsure about the probability distribution of the future value of an asset
does not correspond to assigning a probability distribution with a large variance.
Knowing the probability distribution is potentially very valuable since it provides
a good basis for taking financial positions that are likely to turn out successful.
Conversely, if we are very uncertain about the probability distribution of future
values, then we should not take any position at all: we should not play a game
that we do not understand. Of course, there is a certain degree of uncertainty in all
decision making. If one feels more comfortable with, say, assigning a probability
distribution to the difference between two future asset prices rather than to the
prices themselves, then clearly it is wiser to take a position on the outcome of
the difference of the prices. Intelligent use of statistics, together with a good
understanding of whether the data are likely to be representative for future events,
may reduce the degree of uncertainty. Techniques from probability theory are useful
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for quantifying the probability of future events. Techniques from optimization
enable one to find optimal decisions and allocations under the assumption that the
input to the optimizing procedure is reliable.

Investment and risk management problems are fundamental problems that cannot
be ignored. Since it is difficult or impossible to accurately specify the probability
distributions that describe the problems we need to solve, we believe that it is
essential to focus on the simplest possible principles, methods, and models that
still capture the essential features of the problems. Many of the more technically
advanced approaches suffer from spurious sophistication when confronted with
the real-world problems they are supposed to handle. We have avoided material
that is attractive from a mathematical point of view but does not have a clear
methodological purpose and practical utility. Our aim has been to produce a text
founded in rigorous mathematics that presents practically relevant principles and
methods. The material is accessible to students at the advanced undergraduate or
Master’s level as well as industry professionals with a quantitative background.

The story we want to tell is not primarily told by the theory we present but rather
by the examples. The many examples, covering a diverse set of topics, illustrate how
principles, methods, and models can be combined to approach concrete problems
and to draw useful conclusions. Many of the examples build upon examples
presented earlier in the book and form series of examples on a common theme.
We want the more extensive examples to be used together with implementations
of the methods to address hedging and investment problems with real data. The
source code, in the statistical programming language R, that was used to generate
the examples and illustrations in the book is publicly available at the authors’ Web
pages. We have also included exercises that, on the one hand, train the reader
in mastering certain techniques and, on the other hand, convey essential ideas.
In addition, we have included more demanding projects that assist the reader in
obtaining a deeper understanding of the subject matter.

This book is the result of the joint efforts of two academics, Hult and Lindskog,
who teamed up with two industry professionals, Hammarlid and Rehn. The material
of this book is based on several versions of lecture notes written by Hult and
Lindskog for use in courses at KTH. The idea to turn these lecture notes into a
book came from Hammarlid and Rehn, and we all underestimated the amount of
work required to turn this idea into reality. Essentially all the material from the
lecture notes we started off with was either thrown away or rewritten completely.
The book was written by Hult and Lindskog but has benefited very much from years
of discussions with and valuable feedback from Hammarlid and Rehn. The ordering
of the authors reflects the fact that they can be divided into two groups that have
contributed differently toward the final result. Within the two groups the authors are
simply listed in alphabetic order, and the order there does not have any relevance
besides the alphabetical order.

Several people have played an important part in the development of this book.
We thank Thomas Mikosch and Sid Resnick for their encouragement and for their
valuable feedback on the book. Moreover, their own excellent books have inspired
us and provided a goal to aim for. We thank our colleagues Boualem Djehiche and
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Harald Lang for supporting our work and for many stimulating discussions. We
would also like to thank the students in our courses at KTH for many years of
feedback on earlier versions of the material in this book. Vaishali Damle at Springer
has played a key role in guiding us toward the completion of this book. Finally,
special thanks go to our families for their endless support throughout this long
process.

Stockholm, Sweden Henrik Hult, Filip Lindskog,
Ola Hammarlid, Carl Johan Rehn
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Part I
Principles



Chapter 1
Interest Rates and Financial Derivatives

In this chapter we present the basic theory of interest rate instruments and the pricing
of financial derivatives. The material we have chosen to present here is interesting
and relevant in its own right but particularly so as the basis for the principles and
methods considered in subsequent chapters.

The chapter consists of two sections. Section 1.1 presents the basic theory of
interest rate instruments and focuses on the no-arbitrage valuation of cash flows.
Section 1.2 presents the no-arbitrage principle for valuation of financial derivative
contracts, contracts whose payoffs are functions of the value of another asset at a
specified time in the future, and exemplifies the use of this principle. In a well-
functioning market of derivative contracts, the derivative prices can be represented
in terms of expected values of the payoffs, where the expectation is computed with
respect to a probability distribution for the underlying asset value on which the
contracts are written. If many derivative contracts are traded in the market, then
we can say rather much about this probability distribution, and individual investors
may compare it to their own subjective assessments of the underlying asset value
and use the result of the comparison to make wise investment and risk management
decisions.

1.1 Interest Rates and Deterministic Cash Flows

Consider a bank account that pays interest at the rate r per year. If yearly
compounding is used, then one unit of currency on the bank account today has
grown to .1 C r/n units after n years. Similarly, if monthly compounding is used,
then one unit in the bank account today has grown to .1 C r=12/12n units after
n years. Compounding can be done at any frequency. If a year is divided into m
equally long time periods and if the interest rate r=m is paid at the end of each
period, then one unit on the bank account today has grown to .1Cr=m/m units after
1 year. We say that the annual rate r is compounded at the frequency m. Note that
.1C r=m/m is increasing inm. In particular, a monthly rate r is better than a yearly

H. Hult et al., Risk and Portfolio Analysis: Principles and Methods, Springer Series
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rate r for the holder of a savings account. Continuous compounding means that we
let m tend to infinity. Recall that .1C 1=m/m ! e as m ! 1, which implies that
.1 C r=m/m ! er as m ! 1. Unless stated otherwise, interest rates in this book
always refer to continuous compounding. That is, one unit deposited in a savings
account with a 5% interest rate per year has grown to e0:05t units after t years. Note
that the interest rate is just a means of expressing the rate of growth of cash. An
investor cares about the rate of growth but not about which type of compounding is
used to express this rate of growth.

In reality, things are certainly a bit more involved. The rate of interest on money
deposited in a bank account differs from that for money borrowed from the bank.
Moreover, the length of the time period also affects the interest rate. In most cases,
the lender cannot ignore the risk that the borrower might be unable to live up to the
borrower’s obligations, and therefore the lender requires compensation in terms of
a higher interest rate for accepting the risk of losing money.

1.1.1 Deterministic Cash Flows

Consider a set of times 0 D t0 < t1 < � � � < tn, with t0 D 0 being the present time.
A deterministic cash flow is a set f.ck; tk/I k D 0; 1; : : : ; ng of pairs .ck; tk/, where
ck and tk are known numbers and where ck represents the amount of cash received
at time tk by the owner of the cash flow. A negative value of ck means that the owner
of the cash flow must pay money at time tk . Here we consider financial instruments
that can be identified with deterministic cash flows. Any two parties can enter an
agreement to exchange cash flows, but the contracted cash flow is not deterministic
if there is a possibility that one party will fail to deliver the contracted cash flow.

An important instrument corresponding to a deterministic cash flow is the risk-
free bond. The bonds issued by governments are typically good proxies. A risk-free
bond issued at the present time corresponds to the cash flow

f.�P0; 0/; .c;�t/; : : : ; .c; .n � 1/�t/; .c C F; n�t/g; (1.1)

where P0 > 0 is the present bond price, c � 0 the periodic coupon amount paid
to the bondholder, F > 0 the face value or principal of the bond, �t > 0 the time
between coupon payments, and T D n�t the time to maturity of the bond. Time is
typically measured in years with �t D 0:5 or �t D 1. If �t D 0:5, then the bond
pays coupons semiannually and 2c is the annual coupon amount. If c D 0, then the
bond is called a zero-coupon bond. Zero-coupon bonds often have less than 1 year
to maturity. Buying a bond of the type given by (1.1) at time 0 that was issued at
time �u, with u 2 .0;�t/, implies the cash flow

f.�P0; 0/; .c;�t � u/; : : : ; .c; .n � 1/�t � u/; .c C F; n�t � u/g;
where P0 is the price of the bond at time 0. Typically, P0 > P�u since a buyer who
purchases the bond at �u would have to wait longer before receiving money.
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Consider a market with an interest rate r per year that applies to all types of
investment, loan and deposit (think of an ideal bank account without fees and
restrictions on transactions). Then an amount A today is worth ertA after t years.
Similarly, an amountA received in t years from today is worth e�rtA today. We say
that e�rtA is the present value of A at time t , and e�rt is the discount factor for cash
received at time t . The present value of a cash flow f.ck; tk/I k D 0; : : : ; ng on this
market is

P0.r/ D
nX

kD0
cke

�rtk :

The internal rate of return is the number r for which P0.r/ D 0. Note that the
equation P0.r/ D 0 does not necessarily determine the internal rate of return
uniquely for arbitrary deterministic cash flows. However, if c0 < 0 and ck � 0

for k � 1 with ck > 0 for some k (e.g., the cash flow of a bond), then it is not
difficult to verify that the internal rate of return is uniquely determined. For a bond,
the internal rate of return is called the yield to maturity of the bond.

Consider a zero-coupon bond with current price P0 > 0 that pays the amount
F > 0 at t years from now, i.e., the cash flow f.�P0; 0/; .F; t/g. Clearly, there is a
number rt such that the relationP0 D e�rt tF holds. The number rt is the t-year zero
rate (or the t-year zero-coupon bond rate or spot rate), and the number e�rt t is the
discount factor for money received t years from now. Note that the discount factor
e�rt t is the current price for one unit received at time t . The graph of rt viewed as a
function of t is called the zero rate curve (or spot rate curve or yield curve). Market
prices show that the zero rate curve is typically increasing and concave (the value of
the second-order derivative with respect to t is negative). In particular, the assump-
tion of a flat zero rate curve (rt D r for all t) is not consistent with market data.

The risk-free bonds discussed above are risk free in the sense that the buyer
of such a bond will for sure receive the promised cash flow. However, a risk-free
bond is risky if the holder sells the bond prior to maturity since the income from
selling the bond is uncertain and depends on the market participants’ demand for
and valuation of the remaining cash flow. Moreover, the risk-free bond is risk free
if held to maturity only in nominal terms. If, for instance, inflation is high, then the
cash received at maturity may be worth little in the sense that you cannot buy much
for the received amount. A bond is not risk free if it is possible that the issuer of the
bond does not manage to pay the bondholder according to the specified cash flow of
the bond. Such a bond is called risky or defaultable.

1.1.2 Arbitrage-Free Cash Flows

How are zero rates determined from prices of traded bonds or other cash flows? The
simplest way would be to look up prices of zero-coupon bonds with the relevant
maturity times. The problem with this approach is that such zero-coupon bond
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prices are typically not available. The cash flows priced by the market are typically
more complicated cash flows such as coupon bonds. Moreover, the total number of
cash flow times are often larger than the number of cash flows. Before addressing
the question of how to determine zero rates from traded instruments, one must
determine whether there exist any zero rates at all that are consistent with the
observed prices.

Fix a set of times 0 D t0 < � � � < tn and consider a market consisting of m cash
flows:

f.ck;0; t0/; .ck;1; t1/; : : : ; .ck;n; tn/g; k D 1; : : : ; m:

Since the times are held fixed, we represent the cash flows more compactly as m
elements c1; : : : ; cm in R

nC1 (vectors with n C 1 real-valued components). It is
assumed (although this is not entirely realistic) that you can buy and short-sell
unlimited amounts of these contracts/cash flows. Short-selling a financial instrument
should be interpreted as borrowing the instrument from a lender, then selling it at
the current market price and at a later time purchasing an identical instrument at the
prevailing market price and returning it to the lender. Here we ignore borrowing fees
associated with short-selling. It is also assumed here (again not entirely realistically)
that the market prices for buying and selling an instrument coincide and that there
are no fees charged for buying and selling.

Under the imposed assumptions one can form linear portfolios of the original
cash flows and thereby create new cash flows of the form c D Pm

kD1 hkck . The
hks are any real numbers, and negative values correspond to short sales. The market
therefore consists of arbitrary linear combinations of the original cash flows and can
be represented as a linear subspace C of RnC1, spanned by the cash flows c1; : : : ; cm.
We say that there exists an arbitrage opportunity if there exists a c 2 C such that
c ¤ 0 (ck ¤ 0 for some k) and c � 0 (ck � 0 for all k). Such an element c
corresponds to a contract that does not imply any initial or later costs and gives
the buyer a positive amount of money. Such a contract cannot exist on a well-
functioning market, at least not for long. If it did exist, some market participants
would spot it and take advantage of it. Their actions would, in turn, drive the prices
to the point where the arbitrage opportunity disappeared. The absence of arbitrage
opportunities is equivalent to the existence of discount factors for the maturity times
under consideration. This fact is a consequence of the following result from linear
algebra.

Theorem 1.1. Let C be a linear subspace of RnC1. Then the following statements
are equivalent:

(i) There exists no element c 2 C satisfying c ¤ 0 and c � 0.
(ii) There exists an element d 2 R

nC1 with d > 0 satisfying cTd D 0 for all c 2 C.

Proof. The implication (ii) ) (i) in Theorem 1.1 is easily shown: if d > 0 and
cTd D 0 for all c 2 C, then each nonzero c 2 C must have both a positive
component and a negative component. The implication (i) ) (ii) is more difficult
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to show. Assume that (i) holds and let

K D fk D .k0; : : : ; kn/
T 2 R

nC1 such that k0 C � � � C kn D 1 and ki � 0 for all ig:

From (i) it follows that K and C have no common element. Let d be a vector in
R
nC1 of shortest length among all vectors in R

nC1 of the form k � c for k 2 K and
c 2 C. The proof of the fact that such a vector d exists is postponed to Lemma 1.1
right after this proof. Take a representation d D k� �c�, where k� 2 K and c� 2 C.
For any � 2 Œ0; 1�, k 2 K , and c 2 C we notice that �k� C .1 � �/k 2 K and
�c� C .1��/c 2 C. By the definition of k� and c�, the function f defined on Œ0; 1�,
given by

f .�/ D �
.�k� C .1 � �/k/� .�c� C .1 � �/c/�2

has a minimum at � D 1. We may write

f .�/ D .�d C .1� �/.k � c//T.�d C .1 � �/.k � c//

D �2dTd C 2�.1� �/dT.k � c/C .1 � �/2.k � c/T.k � c/:

The fact that f has a minimum at � D 1 implies that

f 0.1/ D 2
�

dTd � dT.k � c/
�

� 0:

Equivalently, dTk � dTd � dTc for any k 2 K and c 2 C. If dTc ¤ 0 for some
c 2 C, then dT.tc/ ¤ 0 for jt j arbitrarily large, which implies that dTk is larger
than any positive number for all k 2 K . This is clearly false, and we conclude that
dTc D 0 for all c 2 C, which implies that dTk � dTd � 0 for all k 2 K . It remains
to show that the components of d are strictly positive. With k D .1; 0; : : : ; 0/T we
get d0 � dTd > 0, and similarly for the other components of d by choosing k
among the standard basis vectors of RnC1. We conclude that the implication (i) )
(ii) holds. �

The following result from analysis is used in the proof of Theorem 1.1.

Lemma 1.1. There exists a vector d of shortest length betweenK and C.

Proof. For k in K , let v be the corresponding vector of shortest length between k
and C. If c is the orthogonal projection of k onto C, then v D k � c. We will first
show that the function f , given by f .k/ D v, is continuous. For any k1;k2 in K ,
by orthogonality, the corresponding vectors v1; v2 and c1; c2 satisfy

jk2 � k1j2 D jv2 � c2 � v1 C c1j2 D jv2 � v1j2 C jc2 � c1j2:
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In particular,

jf .k2/� f .k1/j D jv2 � v1j � jk2 � k1j;

which proves the continuity of f . Since K is compact and f is continuous, V D
f .K/ is compact, too. Vector d is a vector in V of minimal norm. Such a vector
exists because it is a minimizer of a continuous function, the norm, over the compact
set V . �

Consider statement (ii) of Theorem 1.1. Clearly the statement holds for some d
if and only if it holds for d replaced by td for any t > 0, in particular, for the choice
t D 1=d0 > 0. Therefore, Theorem 1.1 says that the market C has no arbitrage
opportunities if and only if there exists a vector d D .1; d1; : : : ; dn/

T, dk > 0 for
all k, such that cTd D 0 for all c 2 C. The components of such a vector d are the
discount factors for the times t0; : : : ; tn. In particular, an arbitrage-free price of an
instrument paying ck at time tk , for k � 1, is

P0 D
nX

kD1
ckdk: (1.2)

Equivalently, .�P0; c1; : : : ; cn/T belongs to C. There may exist a range of arbitrage-
free prices p with each p satisfying (1.2) for some vector d with the property cTd D
0 for all c 2 C. Note that the discount factors dk, k D 0; : : : ; n, may be written
dk D e�rk tk , where rk is the zero rate corresponding to payment time tk .

If there exists precisely one vector d of discount factors, then C D fcI cTd D 0g,
and C is said to be complete. If C is complete, then any new cash flow (or contract)
c introduced is either redundant (a linear combination of c1; : : : ; cm) or creates an
arbitrage opportunity. Real-world markets are typically not complete: a new contract
is not identical to a linear combination of existing contracts.

Suppose that the cash flow corresponds to bonds, i.e., for each ck we have that
�ck;0 is the bond price today, ck;n is the face value plus a coupon, and the other
ck;j s (j D 1; : : : ; n � 1) are coupons. Under the assumption that this bond market
is complete and without arbitrage opportunities, the bond price �ck;0 is given by

�ck;0 D
nX

jD1
ck;j e

�tj rj ;

where rj are the (unique) zero rates.
Given a market consisting of the cash flows c1; : : : ; cm, it is not difficult to

check if the market is arbitrage free and, if so, whether the market is complete
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Table 1.1 Specifications of three bonds

Bond A B C

Bond price 99.65 113.43 121.30
Maturity (days) 190 32C 2 � 365 241C 3 � 365
Annual coupon 0 5.5 6.75
Face value 100 100 100
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Fig. 1.1 Left plot: graphical illustration of cash flows for the three bonds; right plot: discount
factors in Table 1.2. In the left plot, time is on the x-axis and the payment amounts on the y-axis.
In the right plot, the time to maturity is on the x-axis and the value of the discount factors is on the
y-axis

or not. An arbitrage-free (and complete) market is equivalent to the existence (and
uniqueness) of a solution d D .d1; : : : ; dn/

T to the matrix equation

0

B@
�c1;0
:::

�cm;0

1

CA D

0

B@
c1;1 : : : c1;n
::: � � � :::

cm;1 : : : cm;n

1

CA

0

B@
d1
:::

dn

1

CA ; (1.3)

where .ck;0; : : : ; ck;n/ D cT
k . The analysis of solutions to matrix equation (1.3) is a

standard problem in linear algebra.

Example 1.1 (Bootstrapping zero rates). Consider a market consisting of the bonds
in Table 1.1. From Table 1.1 and Fig. 1.1 we see that there are in total eight nonzero
cash flow times

.t1; : : : ; t8/ � .0:09; 0:52; 0:66; 1:09; 1:66; 2:09; 2:66; 3:66/;

where t1 corresponds to 32 days from now and therefore 32=365 � 0:09 years from
now, etc. Therefore, there are also eight undetermined discount factors d1; : : : ; d8
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Table 1.2 Cash flow times (years), discount factors, and zero rates (%) (discount factors obtained
as in Example 1.1 by linear interpolation between discount factors)

Time 0.088 0.521 0.660 1.088 1.660 2.088 2.660 3.660
Discount factors 0.999 0.997 0.994 0.987 0.978 0.972 0.964 0.951
Zero rates 0.673 0.674 0.869 1.158 1.317 1.381 1.380 1.384

solving the matrix equation Cd D P of the type in (1.3), where d D .d1; : : : ; d8/
T,

P D .99:65; 113:43; 121:30/T, and

C D
0

@
0 100 0 0 0 0 0 0

5:5 0 0 5:5 0 105:5 0 0

0 0 6:75 0 6:75 0 6:75 106:75

1

A :

There exist solutions to this matrix equation, so there are no arbitrage opportunities
in this bond market. The problem here is that there is an infinite number of possibly
very different solutions. One solution is obtained by setting the discount factors
corresponding to coupon dates to one, d1 D d3 D d4 D d5 D d7 D 1, which gives
the equation system

0

@
100 0 0

0 105:5 0

0 0 106:75

1

A

0

@
d2

d6
d8

1

A D
0

@
99:65

113:43� 2 � 5:5
121:30� 3 � 6:75

1

A

with solution .d2; d6; d8/ � .0:9965; 0:9709; 0:9466/. The corresponding zero rates
are, in percentages, with two decimals, r1; : : : ; r8 � 0; 0:67; 0; 0; 0; 1:41; 0; 1:50.
This is clearly a silly solution as it would imply that the price of a zero-coupon
bond maturing 2:66 years from now with face value 100 is 100. Who would buy
this bond?

Let us now take a step back and consider a better approach, which is often
referred to as the bootstrap method (note: there are other methods referred to as
bootstrap methods that have nothing to do with interest rates). The discount factor
d2 D 0:9965 corresponding to the zero-coupon bond is known. Also, the discount
factor corresponding to cash flow today is clearly d0 D 1. Therefore, it seems
reasonable to assign a value to d1 by interpolation between the two neighboring
discount factors. Let us for simplicity use linear interpolation, which gives

d1 D d0 C d2 � d0

t2 � t0
.t1 � t0/ � 0:9994:

Now we have assigned values to the first two (nontrivial) discount factors, and we
need an approach other than linear interpolation between known discount factors to
assign values to the remaining ones. The second bond yields the equation

113:43� 5:5d1 D 5:5d4 C 105:5d6;
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which is an equation with two unknowns. Assuming temporarily that the value of
d4 is given by linear interpolation between the last (in the sense of the order of the
cash flow times) known discount factor d2 and the unknown d6 we get the equation

113:43� 5:5d1 D 5:5

�
d2 C d6 � d2

t6 � t2
.t4 � t2/

�
C 105:5d6;

which can be solved for d6, yielding d6 � 0:9716. Now the discount factors
d3; d4; d5 are assigned values by linear interpolation between d2 and d6:

dk D d2 C d6 � d2

t6 � t2
.tk � t2/ for k D 3; 4; 5:

This gives .d3; d4; d5/ � .0:9943; 0:9875; 0:9784/. The last two discount factors
d7 and d8 are assigned values by repeating the foregoing procedure. This gives
.d7; d8/ � .0:9639; 0:9506/. The cash flow times, the discount factors, and the
corresponding zero rates are given in Table 1.2.

Yield curves are not only derived from bond prices. The next example shows
how a yield curve can be extracted from forward prices. In this example, the notion
of present price and forward price of an asset is needed. Consider a contract for
delivery of an asset at a future time t > 0. The forward price G.t/

0 of the contract
is the price, agreed upon at the current time 0, which will be paid at maturity, time
t , of the contract. The present price P .t/

0 of the contract is the price that is agreed
upon and paid at the current time 0. In the sequel, when there is no risk of confusion
about the maturity time, we will sometimes drop the superscript and write G0 and
P0. The present price is the discounted forward price: P .t/

0 D dtG
.t/
0 , where dt is

the discount factor between 0 and t .
The present price of a share of a stock that does not pay dividends before time t

must be identical to the spot price, S0, for immediate delivery since there is no cost
or benefit from holding the asset between time 0 and time t : the forward price must
satisfy dtG

.t/
0 D P

.t/
0 D S0. The present price, for delivery at a future time t2, of one

share of a stock that pays a known dividend amount c at time t1 < t2 is determined
by the relation

P
.t2/
0 D S0 � dt1c:

The validity of the relation follows from the ensuing argument. Consider first the
strategy of, at time 0, buying the share and short-selling a zero-coupon bond that
matures at time t1 with face value c, and at time t2 selling the share. The initial cost
of this strategy is S0 � dt1c, and it gives the random payoff St2 at time t2. On the
other hand, consider a contract that delivers one share of the stock at time t2. Since
the contract and the foregoing strategy have identical future cash flows, their initial
cash flows must coincide in order not to introduce arbitrage opportunities.
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Table 1.3 Forward prices on April 8 for delivery of one share of H&M at different maturity times

Maturity April 15 May 20 June 17 September 16 December 16 January 20 March 16
Forward

price
218.64 209.52 209.92 211.29 212.85 213.50 214.59

Example 1.2 (Zero rates from forward prices). On April 8, the spot price S0 for
buying one share of H&M on the Nasdaq Nordic OMX exchange was 218:60
Swedish kronor. Table 1.3 shows forward prices on that same day for one share
of the stock for delivery at different maturities. The company H&M announced that
on May 6 it would pay a dividend of c D 9:50 kronor per share. This explains the
large difference between the current forward prices for the maturity dates April 15
and May 20.

Consider the cash flow times t0; : : : ; t9 given by

t0 D 0 (Apr 8); t1 D 0:019 (Apr 15); t2 D 0:063 (May 6);
t3 D 0:115 (May 20); t4 D 0:192 (Jun 17); t5 D 0:441 (Sep 16);
t6 D 0:690 (Dec 16); t7 D 0:786 (Jan 20); t8 D 0:940 (Mar 16):

The corresponding discount factors are denoted d0; : : : ; d8. Since there is no
dividend paid before t1, the discount factor d1 is derived from the relation d1G

.t1/
0 D

S0, where S0 is the spot price and, hence, also the present price for delivery of one
share of H&M at time t1. The present price for delivery of one share of H&M at t3
gives the relation d3G

.t3/
0 D S0 � cd2. Similarly, for the remaining maturities we

have dkG
.tk/
0 D S0�cd2 for k D 4; : : : ; 8. In all, we have seven equations and eight

unknowns, which gives an underdetermined equation system with solution

d1 D S0

G
.t1/
0

and dk D S0

G
.tk/
0

� d2c

G
.tk/
0

for k D 3; : : : ; 8; (1.4)

parameterized by d2. To find a reasonable solution among all possible solutions,
the bootstrapping procedure presented above suggests expressing d2 by linear
interpolation between d1 and d3. The equation

d2 D d1 C d3 � d1

t3 � t1
.t2 � t1/;

together with the equations for the maturity times t1 and t3, gives

d2 D
 
1C c

G
.t3/
0

t2 � t1

t3 � t1

!�1 � S0

G
.t1/
0

�
1 � t2 � t1

t3 � t1

�
C S0

G
.t3/
0

t2 � t1
t3 � t1

�
;

from which the values of all discount factors can be computed from (1.4) (Fig. 1.2).
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Fig. 1.2 Left plot: discount factors in Example 1.2. Time to maturity is on the x-axis; value
of discount factors is on the y-axis. The right plot shows the zero rates (%) in Example 1.2
corresponding to the linearly interpolated discount factors

Example 1.3 (Interest rate swap). Let 0 D t0 < t1 < � � � < tn D T be a sequence
of equally spaced times with � D tk � tk�1 D T=n, and let d1; : : : ; dn be discount
factors giving the value at time 0 of money at times t1; : : : ; tn.

An interest rate swap is an agreement at time 0 between two parties to exchange
floating interest rate payments (a stochastic cash flow) for fixed interest rate
payments (a deterministic cash flow) on a notional principal L (US $100 million,
say) until, and including, time tn with zero initial cost for both parties.

The floating interest rate payments are paid at times �=m D ı; 2ı; : : : ; mnı D
T , where typically m D 2. The floating-rate payment due at time kı is the interest
earned between times .k � 1/ı and kı on the notional L, i.e., the random amount

L
� 1

dk�1;k
� 1

�
;

where dk�1;k denotes the discount factor at time .k � 1/ı between times .k � 1/ı

and kı. To determine the initial value of the floating-rate payments of the swap,
we determine the value of a contract that pays the holder a never-ending stream of
floating-rate payments at times kı, for k D mnC1;mnC2; : : : , on principalL. The
cash flow of the contract is obtained by investing at time kı the amount L in zero-
coupon bonds maturing at time .kC1/ı and at time .kC1/ı, collecting the interest
earned, and repeating the procedure with the remaining amountL. The value of this
contract is therefore the value dnL of having the amountL at time tn D T . Similarly,
the value of a contract that pays the holder a never-ending stream of floating-rate
payments at times kı, for k D 1; 2; : : : , on principal L is L. Therefore, the initial
value of the floating-rate payments of the swap is L.1�dn/. Notice that the number
ı does not show up, so the value of the floating-rate payments does not depend on
the frequency of the floating-rate payments.
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The initial value of the deterministic cash flow corresponding to payments cL at
the times t1; : : : ; tn is simply the sum of the discounted payments: cL.d1C� � �Cdn/.
Therefore, the fixed-rate payments of the swap have the initial value cL.d1 C � � � C
dn/. The initial value of the swap is zero for both the floating-rate and fixed-rate
receiver in the swap contract. Therefore, the number c must satisfy cL.d1 C � � � C
dn/ D L.1�dn/, i.e., c D .1�dn/=.d1C� � �Cdn/. The interest rate corresponding
to the fixed-rate payment cL is called the swap rate. The swap rate can be seen as
the yield to maturity of a bond with initial value L, maturing at tn with face value
L and coupons cL at times tk . Notice that at time t > 0 the discount factors will
typically have changed and the value of the swap will be positive for one of the two
parties and negative for the other.

The zero rates rk D � log.dk/=tk corresponding to the discount factors
d1; : : : ; dn are called swap zero rates. The discount factors d1; : : : ; dn and the
corresponding swap zero rates are obtained from a set of swap contracts, with a
corresponding set of contracted swap rates, by a bootstrap procedure similar to the
one considered in Example 1.1.

There are many versions of interest rate swaps. The most common interest
rate swap contract prescribes floating-rate payments every 6 months (3 months)
and fixed-rate payments every 12 months (6 months), i.e., at half the frequency
of the floating-rate payments. The floating interest rate is an interbank interest
rate such as LIBOR (London Interbank Offered Rate) and not defined in terms of
government bonds. A practical issue of some importance that we ignored previously
is that different day count conventions typically apply to fixed rates and floating
rates. When writing rk D � log.dk/=tk one should specify if tk equals the actual
number of days divided by 360 or 365. Swap data show that two swap contracts
with different values of ı, different frequencies of floating-rate payments, that are
otherwise identical can have slightly different swap rates. This is at odds with the
preceding swap valuation and shows that the credit risk borne by the floating-rate
receiver from having to wait longer between the floating-rate payments is taken into
account by the market in the valuation of the swap. Here credit risk refers to the risk
of a failure to deliver the contracted cash flow.

1.2 Derivatives and No-Arbitrage Pricing

Consider the times 0 and T > 0, with 0 being the present time, and let ST be the
spot price of some asset at time T . A contract with payoff f .ST / at time T for some
function f is called a European derivative written on ST . The derivative price �f is
the amount that is paid now in exchange for the payoff f .ST / at time T . A European
call option on ST with strike priceK is a contract that gives the holder the right, but
not the obligation, to purchase the underlying asset at time T for priceK . Since this
right is only exercised at time T if ST > K , we see that the European call option is a
derivative contract with payoff f .ST / D max.ST �K; 0/. A European put option on
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ST with strike priceK is a derivative contract with payofff .ST / D max.K�ST ; 0/.
In this case, the holder has the right, but not the obligation, to sell the underlying
asset at time T for price K .

We consider a market where m derivative contracts with current prices �k and
payoffs fk.ST /, for k D 1; : : : ; m, and a risk-free zero-coupon bond maturing at
time T with face value 1 and current price B0 can be bought and sold. The bond
saves us from difficulties in relating money at time 0 to money at time T . Here we
assume that the market participants can buy and short-sell these contracts without
paying any fees, and that for each contract the prices for buying and selling the
contract coincide.

From the perspective of one of the market participants we want to understand
how to assign a price to a new derivative contract in terms of the prices of the m
existing derivative contracts and the bond. The market participants can form linear
portfolios of the original derivative contracts, and such a portfolio will constitute
a new derivative contract with payoff f .ST / D Pm

kD1 hkfk.ST / and price �f DPm
kD1 hk�k . A contract of this type is called an arbitrage opportunity if �f D 0,

P.f .ST / � 0/ D 1, and P.f .ST / > 0/ > 0. An arbitrage opportunity is a contract
that gives the holder a strictly positive probability of making a profit without taking
any risk. The probability P is the subjective probability of the market participant
under consideration. In particular, the existence of arbitrage opportunities depends
on the subjective assessment of which events have probability zero.

Theorem 1.2. The following statements are equivalent.

1. There are no arbitrage opportunities.
2. The prices �f can be expressed as �f D B0 EQŒf .ST /�, where the expectation

is computed with respect to a probability Q that assigns zero probability to the
same events as does the probability P.

Remark 1.1. (i) The probability Q is called the forward probability. Note that
EQŒf .ST /� is the forward price of the contract for delivery of f .ST / at time T .

(ii) There are examples of arbitrage opportunities that do not depend on the
subjective probability P. Consider two derivative contracts with prices �f and
�g and payoffs f .ST / and g.ST / satisfying �f < �g and f .ST / � g.ST /

(for example, two European call options such that the one with the higher strike
price costs more than the one with the lower strike price). A long position of
size one in the cheaper derivative, a short position of size one in the expensive
derivative, and a long position with initial value �g ��f in the bond produces a
contract with zero initial price and payoff f .ST /�g.ST /C .�g ��f /=B0 > 0
at time T .

Proof. We begin by proving the implication (ii) ) (i). This implication is the easier
one to prove and also probably the most relevant one since it means that as long as
one comes up with a model for ST that produces the observed prices, one can use
this model for pricing new contracts without risking the introduction of arbitrage
opportunities.
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Suppose that (ii) holds, and consider a payoff f .ST / satisfying P.f .ST / � 0/ D
1 and P.f .ST / > 0/ > 0. We need to show that �f D B0 EQŒf .ST /� ¤ 0. By
assumption, it also holds that Q.f .ST / � 0/ D 1 and Q.f .ST / > 0/ > 0. Since
Q.f .ST / � 0/ D 1, we may express EQŒf .ST /� as

EQŒf .ST /� D
Z 1

0

Q.f .ST / > t/dt;

(see Remark 1.2), and since Q.f .ST / > 0/ > 0, there exist " > 0 and ı > 0 such
that Q.f .ST / > "/ > ı. Therefore,

�f

B0
D EQŒf .ST /� D

Z 1

0

Q.f .ST / > t/dt �
Z "

0

Q.f .ST / > t/dt > "ı > 0;

which proves the claim, i.e., the implication (ii) ) (i).
Proving the implication (i) ) (ii) in a general setting is rather difficult. It

becomes much less difficult if we assume that ST takes values in a finite (but
arbitrarily large) set. This is not at all an unrealistic assumption; ST will take values
with finitely many decimals, and it is plausible that P.ST > s/ D 0 for all s
greater than some sufficiently large number. Let fs1; : : : ; sng, with P.ST D sk/ > 0

and P.ST D s1/ C � � � C P.ST D sn/ D 1, be the set of possible outcomes for
ST . Then every contract can be represented as a vector x D .x0; x1; : : : ; xn/

T in
R
nC1. The contract with payoff f .ST / and price �f can be represented as the

vector x D .��f ; f .s1/; : : : ; f .sn//T. Therefore, the set of all contracts constructed
from the original m derivative contracts forms a linear subspace of RnC1. Let us
denote this linear space by X. We see that x 2 X is an arbitrage opportunity if
x ¤ 0 and x � 0. Theorem 1.1 says that there are no arbitrage opportunities if
and only if there exists a vector y 2 R

nC1 with y > 0 such that xTy D 0 for
all x 2 X. Of course, the same result holds if y is replaced by y�1

0 y. The bond
corresponds to the vector x D .�B0; 1; : : : ; 1/T. Since xT.y�1

0 y/ D 0, we havePn
kD1 y�1

0 yk D B0. For k D 1; : : : ; n set qk D .B0y0/
�1yk and note that qk > 0

and
Pn

kD1 qk D 1. In particular, the qk constitute a probability distribution on the
set fs1; : : : ; sng of possible outcomes for ST . With x D .��f ; f .s1/; : : : ; f .sn//T
we see that xT.B0y0/

�1y D 0 is equivalent to �f D B0
Pn

kD1 f .sk/qk , which is
precisely what Theorem 1.2 says. �

Remark 1.2. The representation of the expected value of a nonnegative random
variable as an integral of its tail probabilities is not difficult to justify. Consider a
random variable X � 0 with distribution function F , and set F D 1 � F . If F has
a density f , then

Z 1

0

F .t/dt D
Z 1

0

h Z 1

t

f .u/du
i
dt D

Z 1

0

f .u/
h Z u

0

dt
i
du D

Z 1

0

uf .u/du;
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where we have simply changed the order of integration. The existence of a density
f is actually not needed for the result to hold, but it simplifies the presentation.

Theorem 1.2 tells us how to price a new contract with payoff g.ST / such that no
arbitrage opportunity is introduced: simply assign the price �g D B0 EQŒg.ST /� to
the derivative contract. The expected value EQŒg.ST /� is the expected value of the
random variable g.ST / computed with respect to the probability Q. Theorem 1.2
does not say that this price �g is the unique arbitrage-free price of the new
contract. There are typically many possible representations of the existing prices
as discounted expected values, and the different representations are likely to
give different prices to new contracts. More precisely: suppose that you assign
a probability distribution to ST with more than m parameters and that there is
more than one solution (a set of parameters) to the nonlinear system of equations
�k D B0 EQŒfk.ST /�, k D 1; : : : ; m, where the left-hand side is the market price
of the kth original derivative and the right-hand side is the discounted expected
payoff according to your chosen parametric model. Then there are probably several
solutions, and the different solutions are likely to give different pricesB0 EQŒg.ST /�

to a new derivative contract with payoff g.ST /.

Example 1.4 (Rolling dice). Let ST be the value of a six-sided die. The die is not
necessarily fair. Suppose for now that there are two derivative contracts on ST
available on the market, a bet on even numbers (contract A) and a bet on odd
numbers (contract B). Both contracts pay 1 if the bet turns up right and 0 otherwise,
and the market prices of both contracts are 1=2. There are no arbitrage opportunities
on this market if the subjective probabilities P.ST D 1/; : : : ;P.ST D 6/ are
strictly positive. There are infinitely many choices of strictly positive probabilities
Q.ST D 1/; : : : ;Q.ST D 6/ such that (ii) of Theorem 1.2 holds. One such choice is
given by

Q.ST D 1/ D � � � D Q.ST D 6/ D 1=6:

Depending on the subjective view of the probabilities P.ST D 1/; : : : ;P.ST D 6/,
there may be opportunities for good deals: portfolios whose expected payoffs
are greater than their prices. Consider an agent whose subjective view of the
probabilities are such that

P.ST D k/ D 0 for k D 4; 5; 6:

To this agent the set of possible outcomes is reduced to f1; 2; 3g. Note that the
observed prices are still consistent with no arbitrage. Suppose a new contract C
is introduced paying 1 if the outcome of ST is 1 or 2, and that the market price
of this contract is 1=3. The original market is still free of arbitrage (the same Q
still works). However, on the reduced set of outcomes f1; 2; 3g it is not possible to
find a probability Q that reproduces the market prices. To the agent who believes
in the reduced set of possible outcomes there seems to be an arbitrage opportunity.
A portfolio consisting of a long position in C and a short position in A of the same



18 1 Interest Rates and Financial Derivatives

size has a strictly negative price equal to �1=6 (you get money now) and has a
nonnegative payoff with P-probability 1. The agent now has two choices: try to
capitalize on the perceived arbitrage opportunity by going long in C and short in A,
or revise the subjective probabilities. This example illustrates that there may be
portfolios that are perceived as arbitrage opportunities because the subjective model
used to assign probabilities to future events is too simplistic.

Example 1.5 (Calls and digitals). Consider a derivative with payoff I fST > Kg
(meaning the value 1 if the event occurs and 0 otherwise) at time T , referred to as
a digital or binary option, with current price D0.K/. Consider also two call options
with payoffs max.ST �K; 0/ and max.ST �.K�1/; 0/ at time T and current prices
C0.K/ and C0.K � 1/. Let xC D max.x; 0/, and notice that

.ST �K C 1/C � .ST �K/C D
8
<

:

0 if ST < K � 1;
ST �K C 1 if ST 2 ŒK � 1;K�;
1 if ST > K:

In particular, .ST �K C 1/C � .ST �K/C � I fST > Kg.
If C0.K � 1/� C0.K/ < D0.K/, then there are arbitrage opportunities. Buying

the call option with strikeK�1 and short-selling the call and the digital option with
the strike K gives a strictly positive cash flow at time 0, which can be used to buy
zero coupon bonds maturing at time T . Moreover, the cash flow from the payoffs of
the options at time T is nonnegative. We have thus constructed a contract with zero
initial cash flow that gives a strictly positive cash flow at time T . This is an arbitrage
opportunity regardless of the probability distribution assigned to ST .

If C0.K � 1/ � C0.K/ D D0.K/, then there may be arbitrage opportunities.
Buying the call option with strike K � 1 and short-selling the call and the digital
option with the strike K gives zero initial cash flow and a cash flow .ST � K C
1/I fST 2 ŒK � 1;K�g � 0 at time T . If P.ST 2 ŒK � 1;K�/ > 0, then this is an
arbitrage opportunity.

Example 1.6 (Put–call parity). Suppose there is a risk-free zero-coupon bond
maturing at time T with face value 1, a call option with strike price K on the
value ST at time T , and a put option with the same strike price K on ST . Write
B0, C0, and P0 for the current prices of the bond, call option, and put option,
respectively. Suppose further that there is a forward contract on ST with forward
price G0, the amount agreed upon today that is paid at time T in exchange for the
random amount ST .

A position of size G0 � K in the bond (long or short depending on the sign of
G0 � K) and a long position in the forward contract give the price B0.G0 � K/

for the derivative contract with payoff ST � K . However, the same payoff can be
produced by taking positions in the options. A long position in the call option and a
short position in the put option correspond to a long position in a derivative contract
with price C0 � P0 and the payoff

.ST �K/C � .K � ST /C D ST �K
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at time T . In an arbitrage-free market, the prices of two derivative contracts with
the same payoffs must coincide. Otherwise a risk-free profit is made by buying the
cheaper of the two and short-selling the more expensive one. Therefore,

C0 � P0 D B0.G0 �K/:

This relation between bond, forward, call option, and put option prices is called the
put–call parity.

Example 1.7 (Parametric forward distribution). Suppose you want to use the para-
metric density function q� , whose argument is a real number and whose parameter
vector � is multidimensional, as a model for the forward probability. Suppose
further that the nonlinear system of equations in �

�k D B0

Z
fk.s/q�.s/ds; k D 1; : : : ; m

has a solution ��. Theorem 1.2 tells us that the market is arbitrage free if for any
interval .a; b/ it holds that

Z b

a

q��.s/ds D 0 if and only if
Z b

a

p.s/ds D 0;

where p is your subjective probability density for the future spot price ST . In this
case you may assign the arbitrage-free price

�g D B0

Z
g.s/q��.s/ds

to a derivative contract with payoff g.ST /.

Example 1.8 (Online sports betting). Suppose you are visiting the Web site of an
online sports betting agent, the bookmaker, with the intent of betting on a Premier
League game, Chelsea vs. Liverpool. The odds offered by the bookmaker are
“Chelsea”: 2:50, “draw”: 3:25, and “Liverpool”: 2:70. The corresponding outcome
of the game are denoted by 1, X , and 2, and for each of the outcomes it is assumed
that you do not assign zero probability to the occurrence of that outcome. This game
may be viewed as a market with three digital derivatives with prices q1 D 1=2:50,
qX D 1=3:25, and q2 D 1=2:70 and payoffs X1, XX , and X2, where X1 D 1 if
the outcome of the game is “Chelsea” and 0 otherwise, and similarly for the other
payoffs. Notice that

q1 C qX C q2 D 1

2:50
C 1

3:25
C 1

2:70
� 1:078:
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Since the prices do not sum up to one, they cannot be interpreted as probabilities.
Equivalently, they cannot be expressed as (discounted) expected payoffs. A natural
question, in light of Theorem 1.2, is therefore: is there an arbitrage opportunity?
The answer is no. The reason is that you cannot sell the contracts short on this
market (the bookmaker is not willing to switch sides with you). To see that there
is no arbitrage, one could argue as follows. Consider dividing the initial capital
1 into bets on “Chelsea,” “draw,” and “Liverpool,” where w1;wX ;w2 � 0, with
w1 C wX C w2 D 1, are the amounts placed on the respective possible outcomes.
The portfolio .w1;wX ;w2/ is an arbitrage opportunity if its post game value

w1
q1
X1 C wX

qX
XX C w2

q2
X2

is greater than or equal to one for sure and strictly greater than one with a strictly
positive probability. Suppose that .w1;wX ;w2/ is an arbitrage opportunity. For the
postgame portfolio value to be greater than or equal to one it is necessary that
w1=q1 � 1, wX=qX � 1, and w2=q2 � 1. Therefore,

w1 C wX C w2 � q1 C qX C q2 > 1;

which is a contradiction. We conclude that there are no arbitrage opportunities. The
key to arriving at this conclusion is, of course, that the sum of the reciprocal odds is
greater than one. The excess 1:078�1 D 0:078 can be interpreted as the margin the
bookmaker takes as a profit.

Occasionally, when examining the odds of many different sports betting agents,
you may find better odds. If the best available odds happen to be 2:75 on “Chelsea,”
3:50 on “Draw,” and 2:95 on “Liverpool,” then there is an arbitrage opportunity. In
the analogy with the digital derivative market, here the sum of the digital derivative
prices sum up to a number less than one. Therefore, a portfolio can be formed
whose initial value is less than one and whose postgame value is one, from which
an arbitrage portfolio can be formed.

1.2.1 The Lognormal Model

Suppose that there exist a risk-free zero-coupon bond with price B0 that pays the
amount 1 at time T and a forward contract on ST with current forward price G0.
A long position in the bond of size G0 together with a long position of size one in
the forward contract produces a European derivative contract with price B0G0 and
payoff ST at time T . Therefore, we are in the setting of Theorem 1.2 [with m D 1

and f1.s/ D s].
Here we will choose a lognormal distribution for ST in the representation

B0G0 D B0 EQŒST � and derive arbitrage-free pricing formulas for European
derivatives. Note that ST has a lognormal distribution if logST has a normal
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distribution. If we choose �T and �2T to be the mean and variance of the normal
distribution for logST , then we may write logST D �T C �

p
TZ for a standard

normally distributed random variableZ. Since

G0 D EQŒST � D
Z 1

�1
e�TC�p

T z e
�z2=2

p
2�

d z D e�TC�2T=2
Z 1

�1
e�.z��p

T /2=2

p
2�

d z

D e�TC�2T=2;

we see that �T D logG0 � �2T=2 and logST is N.logG0 � �2T=2; �2T /-
distributed. In particular, we may write

ST D G0e
�

p
TZ��2T=2

with Z standard normally distributed, and therefore the price of a derivative on ST
with payoff g.ST / may be expressed as

�g D B0 EQŒg.ST /� D B0

Z 1

�1
g
�
G0e

�
p
T z��2T=2

�e�z2=2

p
2�

d z: (1.5)

This representation of the derivative price is known as Black’s formula (Fisher
Black). For call (and put) options, Black’s formula turns into a very nice explicit
expression. The price C0 of a call option on ST with strike price K can be
expressed as

C0 D B0 EQŒmax.ST �K; 0/�
D B0 EQŒ.ST �K/I fST > Kg�
D B0 EQŒ.G0e

��2T=2C�p
TZ �K/I fZ > �g�

D B0G0e
��2T=2 EQŒe

�
p
TZI fZ > �g��KB0 EQŒI fZ > �g�;

where

� D log.K=G0/

�
p
T

C �
p
T

2
:

Therefore, with ˚ denoting the standard normal distribution function,

C0 D B0G0e
��2T=2

Z 1

�

e�
p
T z e

�z2=2

p
2�

d z � B0K.1 � ˚.�//

D B0G0

Z 1

�

e�.z��p
T /2=2

p
2�

d z � B0K˚.��/
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D B0G0

Z 1

���p
T

e�z2=2

p
2�

d z � B0K˚.��/

D B0G0˚.�
p
T � �/� B0K˚.��/:

This expression for the call option price, called Black’s formula for call options, is
typically written as

C B
0 D B0.G0˚.d1/ �K˚.d2//; (1.6)

where

d1 D log.G0=K/

�
p
T

C �
p
T

2
and d2 D d1 � �

p
T :

If the underlying asset is a pure investment asset (holding the asset brings neither
benefits nor costs), then a buyer of the underlying asset at time 0 does not care
whether the asset is delivered at that time or at the later time T . This implies that the
spot price S0 for immediate delivery at time 0must coincide with the derivative price
B0G0 for delivery of the asset at time T . If the underlying asset is a pure investment
asset, then Black’s formula for call option prices is called the Black–Scholes, or the
Black–Merton–Scholes formula for call option prices, and reads

C0 D S0˚.d1/ � B0K˚.d2/; (1.7)

where

d1 D log.S0=.B0K//

�
p
T

C �
p
T

2
and d2 D d1 � �p

T :

If the market provides us with the prices C0 and G0, or with C0, S0, and B0 if the
underlying asset is a pure investment asset, then the model parameter � is obtained
as the solution to a nonlinear equation in one variable [(1.6) or (1.7)] and is called the
implied volatility (implied by the market prices). For a given underlying asset and
maturity time, an option price is often quoted in volatility rather than in monetary
units. The implied volatilities for two call options on ST with different strike prices
typically do not coincide. Therefore, the lognormal model is inconsistent with price
data. However, the very simple lognormal model is still surprisingly accurate and is
used as a benchmark model with the modification that the volatility parameter � is
viewed as a function of the strike price K (thereby violating the assumption of the
lognormal model). The graph of the function �.K/ is called the volatility smile or
volatility skew.
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Table 1.4 Current prices of options maturing in 35 days

Strike 980 990 1,000 1,020 1,040
Call price 63.625 56.625 50.000 37.625 27.250

Strike 1,060 1,080 1,100 1,120 1,140
Call price 18.500 12.000 7.125 3.825 1.875

Strike 980 990 1,000 1,020 1,040
Put price 23.875 26.875 30.375 38.125 47.625

1.2.2 Implied Forward Probabilities

Consider n call option prices C0.K1/; : : : ; C0.Kn/ on ST , the forward price G0 of
ST , and the price B0 of a zero-coupon bond maturing at time T with face value 1.
It is assumed that the set of prices do not give rise to arbitrage opportunities. From
Black’s formula (1.6) the implied volatilities �.K1/; : : : ; �.Kn/ are obtained, and
by interpolation and extrapolation among the implied volatilities a volatility smile
can be created that can be used together with Black’s formula to price any European
derivative on ST . For call options, write C0.K/ D C B

0 .K; �.K//, whereC B
0 denotes

Black’s formula and �.K/ is the volatility smile evaluated atK . The produced prices
are arbitrage free if and only if there is a probability distribution for ST so that
C0.K/ D B0 EQŒmax.ST �K; 0/� for all K . We may write

C0.K/ D B0 EQŒmax.ST �K; 0/�

D B0

Z 1

0

Q.max.ST �K; 0/ > t/dt

D B0

Z 1

K

Q.ST > t/dt :

In particular, the prices are arbitrage free if and only if there exists a distribution
functionQ, the forward probability distribution function, such that

dC0

dK
.k/ D �B0.1 �Q.k// for all k � 0:

Moreover, we see that if C0.K/ is twice differentiable, then the prices are arbitrage
free if and only if there exists a density function q such that

d2C0

dK2
.k/ D B0q.k/ for all k � 0:

Example 1.9 (Implied volatilities). Consider the option prices specified in
Table 1.4. The options were the actively traded European call and put options
that day on the value of a stock market index 35 trading days later (7 weeks later).
For simplicity, the prices in the table are computed as mid prices; the mid price is
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Table 1.5 Zero rates derived from put–call parity

Strike 980 990 1,000 1,020 1,040
Zero rate (%) 0.632 0.626 0.529 0.431 0.509

Table 1.6 Implied volatilities using Black’s formula

Strike 980 990 1,000 1,020 1,040
Implied vol. 0.274 0.268 0.263 0.250 0.239
Strike 1,060 1,080 1,100 1,120 1,140
Implied vol. 0.227 0.218 0.208 0.198 0.190

the average of the bid price (the highest price at which a buyer is willing to buy)
and the ask price (the lowest price at which a seller is willing to sell). The index
level at the time, here called the spot, was S0 D 1;018:89.

From the put–call parity in Example 1.6 we see that the put and call prices can be
combined to get prices of the derivative that pays one unit of the index at maturity
(we ignore commissions and trading costs). The index does not pay dividends, and
therefore the spot S0 equals B0G0, where B0 is the price of a zero-coupon bond that
matures at the same time as the options and G0 is the forward price of the index.
Therefore, the put–call parity reads

C0 � P0 D S0 � B0K:

From this relation we can derive B0 and the zero rate r D � log.B0/=T , where
T D 35=252 is the time to maturity (assuming 252 trading days per year). As
we have prices on calls and puts for several strikes, each pair will give a possibly
different value of r . The extracted zero rates r are presented in Table 1.5. The zero
rates are not identical over the range of strikes, but we make a rough approximation
and assume the zero rate is equal to 0:5%.

Now we can compute the implied volatilities using Black’s formula (1.6). The
implied volatilities are presented in Table 1.6. They are also shown in the left-hand
plot in Fig. 1.3. The implied volatilities often have a convex looking shape and are
therefore often referred to as the volatility smile.

We now turn to the question of how implied volatilities for strikes K1; : : : ; Kn

should be used to price a derivative that is not actively traded on a market. For
instance, a digital option with payoff I fST � Kg, where Ki < K < KiC1. The
arbitrage-free price of the digital option is given by

D0.K/ D B0 EQŒI fST � Kg� D B0 Q.ST � K/ D B0.1�Q.K//;

where Q is a choice of pricing probability, satisfying the conditions in Theorem 1.2,
and Q is the corresponding distribution function for ST . If we use the lognormal
model, then

EQŒI fST � Kg� D Q.ST � K/ D ˚.d2/;
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Fig. 1.3 Left plot: implied volatilities and graph of fitted second-degree polynomial. The strike
price is on the x-axis, and volatility on the y-axis. Right plot: graph of implied forward density
corresponding to fitted volatility smile, drawn by a solid curve within the range of strikes and by
a dashed curve outside the range of the strikes. The dashed curve shows the graph of the density
corresponding to the lognormal model with the volatility parameter chosen as the average of the
implied volatilities

where

d2 D log.G0=K/

�
p
T

� �
p
T

2
;

but it is far from clear what volatility � we should use.
A common practice is to use Black’s model together with a suitable implied

volatility smile �.k/ and express the price of a call option with an arbitrary strike
price k as C0.k/ D C B

0 .k; �.k//. Recall that these prices are arbitrage free if there
exists a forward distribution functionQ such that

Q.k/ D 1C 1

B0

dC0

dK
.k/: (1.8)

If Black’s model together, with a suitable implied volatility smile �.k/, is used, then
C0.k/ D C B

0 .k; �.k// and

dC0

dK
.k/ D @C B

0

@K
.k; �.k//C @C B

0

@�
.k; �.k//

d�

dK
.k/

D �B0˚.d2/C B0G0	.d1/
p
T
d�

dK
.k/: (1.9)



26 1 Interest Rates and Financial Derivatives

The last equality is not obvious and requires an explanation. Recall that the standard
normal density is given by 	.z/ D expf�z2=2g=p2� , and notice that

d21 D
� log.G0=K/

�
p
T

�2 C �2T

4
C log.G0=K/;

.d1 � �
p
T /2 D

� log.G0=K/

�
p
T

�2 C �2T

4
� log.G0=K/

D d21 � 2 log.G0=K/:

Therefore,

@C B
0

@K
D �B0˚.d2/C B0

�
G0	.d1/

@d1

@K
�K	

�
d1 � �p

T
� @d2
@K

�

D �B0˚.d2/

since @d1=@K D @d2=@K , and

@C B
0

@�
D B0

�
G0	.d1/

@d1

@�
�K	

�
d1 � �

p
T
� @d2
@�

�

D B0G0	.d1/
p
T

since @d1=@� D @d2=@� C p
T .

With Black’s model with a volatility smile �.k/ the price of the digital option
with payoff I fST � Kg follows from (1.8) and (1.9) and is given by

D0.K/ D B0.1 �Q.K// D B0˚.d2/� B0G0	.d1/
p
T
d�

dK
.K/:

Notice that the expression in (1.9) must be nondecreasing in k (recall also that d1 and
d2 depend on k) and takes values in the interval Œ�B0; 0� for the functionQ in (1.8)
to be a distribution function. In particular, there are conditions that a volatility smile
�.k/ must satisfy to give rise to arbitrage-free derivative prices.

A natural approach to constructing a volatility smile is to use some interpolation
method to interpolate between the implied volatilities. Linear interpolation is one
choice, and then �.k/, for k 2 ŒKi ;KiC1�, is given by

�.k/ D �.Ki /C �.KiC1/� �.Ki /

KiC1 �Ki

.k �Ki/:

However, linear interpolation may lead to a model that admits arbitrage. We now
show this claim. For this model to be free of arbitrage it is necessary that the slope
of �.k/ be nondecreasing, i.e., that the linearly interpolated volatility smile �.k/ be
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a convex function. Suppose, on the contrary, that the slope between Ki�1 and Ki is
larger than the slope betweenKi and KiC1. In mathematical terms, suppose that

slopeiC1 D �.KiC1/ � �.Ki /

KiC1 �Ki

<
�.Ki /� �.Ki�1/
Ki �Ki�1

D slopei :

As a consequence,

lim
k"Ki

Q.k/ D 1C 1

B0
lim
k"Ki

dC0

dK
.k/

D 1C 1

B0
lim
k"Ki

�
@C B

0

@K
.k; �.k//C @C B

0

@�
.k; �.k//

d�

dk
.k/

�

D 1C 1

B0

�
@C B

0

@K
.Ki ; �.Ki //C @C B

0

@�
.Ki ; �.Ki //slopei

�

> 1C 1

B0

�
@C B

0

@K
.Ki ; �.Ki //C @C B

0

@�
.Ki ; �.Ki //slopeiC1

�

D 1C 1

B0
lim
k#Ki

�
@C B

0

@K
.k; �.k//C @C B

0

@�
.k; �.k//

d�

dk
.k/

�

D lim
k#Ki

Q.k/:

We find that the function Q has a negative jump at Ki , and therefore it cannot be
a distribution function. We conclude that it is necessary that slopeiC1 � slopei ,
i.e., that

�.KiC1/� �.Ki /

KiC1 �Ki

� �.Ki / � �.Ki�1/
Ki �Ki�1

for a pricing model with linearly interpolated implied volatilities to be free of
arbitrage.

An alternative to linear interpolation between implied volatilities, although still
rather ad hoc, is to fit a second-degree polynomial �.k/ D c0 C c1k C c2k

2 to the
implied volatilities using least squares. The least-squares-fitted volatilities �.Ki /

will not coincide with the original implied volatilities. However, typically the second
degree polynomial gives a good enough fit so that the resulting model prices for the
call and put options lie between the observed bid and ask prices.

Let us illustrate the procedure on the option data in Example 1.9. The resulting
second-degree polynomial and the implied volatilities are shown in the left-hand
plot in Fig. 1.3. Here we observe a very good fit to the implied volatilities. Note that
in the left-hand plot in Fig. 1.3 the graph of the function �.k/ is plotted also outside
the range of the strikes. However, to the left of the smallest strike (980) and to the
right of the highest strike (1,140) we do not have information on what the volatility
smile looks like. Extrapolating outside the range of the data is nothing but a crude
guess.
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The resulting implied forward distribution Q can now be computed from (1.8),
and the corresponding implied density q is given by

q.k/ D 1

B0

d2

dk2
C B
0 .k; �.k//

D 1

B0

 
@2C B

0

@K2
.k; �.k//C 2

@2C B
0

@K@�
.k; �.k//

d�

dK
.k/

C@C B
0

@�
.k; �.k//

d2�

dK2
.k/C @2C B

0

@�2
.k; �.k//

�
d�

dK
.k/

�2!
:

Computing the second-order partial derivatives of C B
0 .K; �/ from Black’s formula

is straightforward—but tedious. Therefore, we simply state them and leave it to the
reader as an exercise to verify them. The second-order derivatives are given by

@2C B
0

@K2
.K; �/ D B0

K�
p
T
	.�d2/;

@2C B
0

@�@K
.K; �/ D B0G0

K�
d1	.d1/;

@2C B
0

@�2
.K; �/ D B0G0

p
T

�
d1d2	.d1/:

The resulting density q.k/ is shown in the right-hand plot in Fig. 1.3. The solid part
of the curve indicates the range between the smallest and largest strikes (the interval
on which we have information from the price data). The dashed part of the curve is
the extrapolation outside the range of the strikes of the option data. We compare the
density implied by the volatility smile and Black’s call option price formula to the
density for the lognormal model with the volatility parameter chosen as the average
of the implied volatilities. This lognormal density is shown as the dashed curve in
the plot to the right in Fig. 1.3. We observe that the effect of the volatility smile,
compared to a constant volatility, is that the implied forward density is left-skewed
and has more probability mass in the left tail.

1.3 Notes and Comments

Theorem 1.2 under the assumption that the spot price ST takes values in a finite
set. Theorem 1.2 is called the First Fundamental Theorem of Asset Pricing and
appears here in its simplest form. A more general version of the theorem, without the
assumption of a finite set of possible outcomes for ST and with multiple time periods

To prove the no-arbitrage theorem for deterministic cash flows, Theorem 1.1, we
used a proof we learned from Harald Lang. The same idea was also used to prove
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instead of one, was proved by Robert Dalang, Andrew Morton, and Walter Willinger
in [10]. Since then, many alternative proofs of their theorem have appeared.

The material in Sect. 1.2 on no-arbitrage pricing and the lognormal model is
a very brief summary of selected topics from the enormous amount of literature
written on no-arbitrage pricing of derivatives contracts since the seminal work
in [6, 32], and [5] of Fisher Black, Myron Scholes, and Robert Merton in the early
1970s. A natural motivation for the use of lognormal models can be found in the

The reader who seeks more information about financial markets and contracts, in-
cluding the topics presented here, is recommended to consult the popular textbooks
of John Hull, for instance [21].

1.4 Exercises

In the exercises below, it is assumed, wherever applicable, that you can take
positions corresponding to fractions of assets.

Exercise 1.1 (Arbitrage in bond prices). (a) Consider a market consisting of the
five risk-free bonds shown in Table 1.7. Show that the market is free of arbitrage
and determine the zero rates, or construct an arbitrage portfolio.

(b) Consider a market consisting of the three bonds denoted A, D, and E in
Table 1.7. Show that the market is free of arbitrage and use the bootstrapping
procedure to determine the zero rates, or construct an arbitrage portfolio.

Exercise 1.2 (Put–call parity). (a) Consider a European derivative contract,
called a collar, with payoff function f given by

f .x/ D
8
<

:

K1 if x < K1;

x if x 2 ŒK1;K2�;

K2 if x > K2;

where K1 < K2. Express the forward price of a collar in terms of the forward
prices of appropriate European call and put options and the forward price of the
underlying asset.

Table 1.7 Bond specifications

Bond A B C D E

Bond price ($) 98.51 100.71 188.03 111.55 198.96
Maturity (years) 0.5 1 1.5 1.5 2
Annual coupon ($) 0 4 0 12 8
Face value ($) 100 100 200 100 200

Half of the annual coupon is paid every 6 months from today and including the time of
maturity; the first coupon payment is in 6 months

and Robert Merton.
work [42] of Paul Samuelson, which predates that of Fisher Black, Myron Scholes,
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Table 1.8 Odds offered by seven bookmakers

Bookmaker 1 2 3 4 5 6 7

Everton 4.30 4.55 4.35 4.30 4.55 4.60 4.70
Draw 3.50 3.55 3.35 3.70 3.30 3.45 3.55
Manchester City 1.85 1.80 1.95 1.80 1.85 1.85 1.75

Table 1.9 Bond specifications

Bond A B C D

Bond price ($) 98 104 93 98
Maturity (years) 1 2 1 2
Annual coupon ($) 0 5 0 10
Face value ($) 100 100 100 100

The annual coupon is paid every 12 months starting from today and including
the time of maturity. The first coupon payment is in 12 months

(b) A risk reversal is a position made up of a long position in an out-of-the-money
(worthless if it were to expire today) European call option and a short position of
the same size in an out-of-the-money European put option; both options have
the same maturity and are written on the same underlying asset. Express the
forward price of a risk reversal in terms of the forward prices of the underlying
asset and a collar on this asset.

Exercise 1.3 (Sports betting). Consider the odds shown in Table 1.8 of seven
bookmakers on the outcome of a football game between Everton and Manchester
City. Is it possible to create an arbitrage opportunity by making bets corresponding
to long positions?

Exercise 1.4 (Lognormal model). (a) Let Z have a standard normal distribution.
For any a > 0 and b 2 R compute EŒeaZI fZ > bg�.

(b) Let R have the lognormal distribution LN.�; �2/. For an arbitrary number c,
compute

EŒ.R � c/C�; Var..R � c/C/; Cov.R; .R � c/C/; Cov..R � c/C; .R � d/C/;

where d > c.
(c) What happens to the preceding quantities if R is replaced by S D S0R for a

constant S0 > 0?

Exercise 1.5 (Risky bonds). Consider investments in long positions in the four
bonds shown in Table 1.9. Bonds A and B are issued by the United States
government, and their cash flows are considered risk free. Bonds C and D are issued
by a bank in the USA experiencing serious financial difficulties. If the bank were to
default, bonds C and D would be worthless.
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(a) Determine the current 1- and 2-year US Treasury zero rates and the 1- and
2-year credit spreads for the bonds issued by the bank. Determine the probabil-
ities of default within 1 and within 2 years implied by the bond prices.

(b) An investor is certain that the bank is considered by the government to be
too important to the financial system to be allowed to default. However, the
investor believes that the market will continue to believe that the bank may
default on its bonds. The investor believes that the 1-year Treasury zero rate
in 1 year is N.0:03; 0:012/-distributed and that the 1-year credit spread in 1
year is N.0:13; 0:032/-distributed. Determine the investment strategy in terms of

(c) Suppose that the investor is wrong and the market’s view, corresponding to the
current bond prices, is right. Determine the distribution function of the investor’s
(perceived) optimal cash flow in 2 years in (b).

Project 1 (Implied forward distribution). Find prices of traded European put
and call options of the future value of a stock market index. Consider prices of
the options that are traded in sufficiently large volumes so that the prices contain
relevant information about the future index value.

Use the material in Sect. 1.2.2 to estimate the density function of the future index
value implied by the option prices. Make the plots correspond to Fig. 1.3. Make
sure that the method used for interpolation and extrapolation of the implied Black’s
model volatilities does not lead to arbitrage in the pricing model you suggest.

$10,000 invested in long positions in the bonds and a strategy for how to reinvest
any cash flow received in 1 year that maximizes the expected value of the cash
flow in 2 years.



Chapter 2
Convex Optimization

Many of the investment and hedging problems we will encounter can be formulated
as a minimization of a function over a set determined by the investor’s risk
and budget constraints and other restrictions on the type of positions that the
investor can take. Such problems become particularly tractable if both the function
to be minimized and the set over which the minimization is done are convex.
The minimization problem is in this case called a convex optimization problem.
This chapter presents basic results for solving convex optimization problems that
will be applied in subsequent chapters.

2.1 Basic Convex Optimization

Let C � R
n be a convex set. That is, for any � 2 Œ0; 1� and x; y 2 C it holds that

�x C .1 � �/y 2 C. Let f W C ! R and gk W C ! R, k D 1; : : : ; m be convex
functions. That is, for � 2 Œ0; 1� and x; y 2 C,

f .�x C .1 � �/y/ � �f .x/C .1 � �/f .y/;

and similarly for gk . Consider the optimization problem

minimizef .x/

subject to gk.x/ � gk;0; k D 1; : : : ; m;
(2.1)

where gk;0 are some constants. The optimization problem (2.1) is a convex
optimization problem. To verify this claim, we need to show that the set of points x
satisfying gk.x/ � gk;0 for all k is a convex set. Take � 2 Œ0; 1� and two points x
and y such that gk.x/ � gk;0 and gk.y/ � gk;0. Then

gk.�x C .1 � �/y/ � �gk.x/C .1 � �/gk.y/ � gk;0;

H. Hult et al., Risk and Portfolio Analysis: Principles and Methods, Springer Series
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-4103-8 2,
© Springer Science+Business Media New York 2012
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which shows that the set of x satisfying gk.x/ � gk;0 is convex. It remains to show
that the intersection C1 \ C2 of two convex sets C1;C2 is a convex set. Since the
empty set is convex, we can without loss of generality consider the case where
C1 \ C2 is nonempty. Take � 2 Œ0; 1� and x; y 2 C1 \ C2. In particular, x; y 2 Ck

for k D 1; 2, and therefore also �x C .1� �/y 2 Ck for k D 1; 2, which means that
�x C .1��/y 2 C1\C2. Summing up, we have shown that problem (2.1) is indeed
a convex optimization problem.

The following proposition gives sufficient conditions for an optimal solution
to (2.1). We write rf .x/ for the gradient of f , i.e., the column vector whose kth
component is @f .x/=@xk .

Proposition 2.1. Suppose that in (2.1) f and gk are convex and differentiable.
Suppose further that there exist x 2 C and � 2 R

m satisfying

.1/ rf .x/CPm
kD1 �krgk.x/ D 0;

.2/ gk.x/ � gk;0; k D 1; : : : ; m;

.3/ �k � 0; k D 1; : : : ; m;

.4/ �k.gk.x/� gk;0/ D 0; k D 1; : : : ; m:

Then x is an optimal solution to (2.1).

Proof. Define the function l , the Lagrangian, from C to R by

l.x/ D f .x/C
mX

kD1
�k.gk.x/� gk;0/:

It follows from condition (3) above and the assumptions on f and gk that l is convex
and differentiable. Condition (1) and Proposition 2.2 therefore imply that x is a
global minimum point of l . Condition (2) says that x is a feasible solution to (2.1),
i.e., it does not violate the constraints. We need to show that f .x/ � f .y/ for all
feasible solutions y. By condition (4), we have f .x/ D l.x/, and we have already
seen that l.x/ � l.y/. Therefore,

f .x/ D l.x/ � l.y/ D f .y/C
mX

kD1
�k.gk.y/� gk;0/ � f .y/;

where the last inequality holds because of condition (3) and because y is a feasible
solution to (2.1). �

The following result is used in the proof of Proposition 2.1.

Proposition 2.2. If l W C ! R is a convex and differentiable function and x; y 2 C,
then l.y/ � l.x/C rl.x/T.y � x/.
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Proof. Take t 2 .0; 1� and consider the inequality

l.ty C .1 � t/x/ � t l.y/C .1 � t/l.x/:

If we subtract l.x/ on both sides and divide by t then we arrive at

l.x C t.y � x//� l.x/
t

� l.y/� l.x/: (2.2)

Set �.t/ D l.x C t.y � x// and note that by the chain rule it holds that � 0.t/ D
rl.x C t.y � x//T.y � x/. In particular,

rl.x/T.y � x/ D � 0.0/ D lim
t!0

�.t/ � �.0/

t
D lim

t!0

l.x C t.y � x//� l.x/
t

:

However, l.x C t.y � x//� l.x/ D l.ty C .1 � t/x/ � l.x/ and

l.ty C .1 � t/x/ � l.x/
t

� t l.y/C .1 � t/l.x/� l.x/
t

D l.y/� l.x/;

from which the conclusion follows. �

Finally, consider the problem of maximizing a concave function over a convex
set. Let h W C ! R be a concave function (i.e., �h is convex), and consider the
optimization problem

maximize h.x/

subject to gk.x/ � gk;0; k D 1; : : : ; m;
(2.3)

where the functions gk are convex. With f D �h this is a convex optimization
problem identical to (2.1). For further reference we state a minor modification of
Proposition 2.1 for this case.

Proposition 2.3. Suppose that in (2.3) h is concave and gk are convex and that they
are all differentiable. Suppose further that there exist x 2 C and � 2 R

m satisfying

.1/ �rh.x/CPm
kD1 �krgk.x/ D 0;

.2/ gk.x/ � gk;0; k D 1; : : : ; m;

.3/ �k � 0; k D 1; : : : ; m;

.4/ �k.gk.x/� gk;0/ D 0; k D 1; : : : ; m:

Then x is an optimal solution to (2.3).
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2.2 More General Convex Optimization

We will encounter more general convex optimization problems in which the
functions f and the gk in (2.1) are replaced by real-valued functions F and Gk
that are defined on a set of functions rather than R

n. We will state and prove the
analog of Proposition 2.1 in this more abstract setting. Although proving the result
in this setting might appear to be substantially harder, it turns out not to be the case.

For k D 1; : : : ; m and �1 � a < b � 1 let 	; 	k W .a; b/ ! R be
convex and differentiable and let w;wk W Rn ! RC be nonnegative functions withR
Rn

w.x/dx D R
Rn

wk.x/dx D 1. For a function f W Rn ! .a; b/ we define

F.f / D
Z

Rn

	.f .x//w.x/dx;

Gk.f / D
Z

Rn

	k.f .x//wk.x/dx for k D 1; : : : ; m:

Finally, let F be a set of functions f for which F.f / < 1. Note that F and Gk are
convex since 	 and 	k are convex. Indeed, for � 2 Œ0; 1� and f; g 2 F,

F.�f C .1 � �/g/ D
Z

Rn

	.�f .x/C .1 � �/g.x//w.x/dx

�
Z

Rn

Œ�	.f .x//C .1 � �/	.g.x//�w.x/dx

D �F.f /C .1 � �/F.g/;

and similarly for Gk . We will consider minimizing F over a convex subset of F
that is determined by a set of inequality constraints just as in (2.1). Consider the
optimization problem

minimize F.f /

subject to Gk.f / � Gk;0; k D 1; : : : ; m:
(2.4)

As in the proof of Proposition 2.1, we introduce the Lagrangian

L.f / D F.f /C
mX

kD1
�k.Gk.f /�Gk;0/

D
Z

Rn

�
	.f .x//w.x/C

mX

kD1
�k.	k.f .x// �Gk;0/wk.x/

�
dx: (2.5)

Before we can state the analog of Proposition 2.1 in the current setting, we need an
object that plays the role of rl.x/T.y � x/ in Proposition 2.2. For f; g 2 F let
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H.f; g/ D
Z

Rn

h
	0.f .x//w.x/C

mX

kD1
�k	

0
k.f .x//wk.x/

i
.g.x/� f .x//dx:

Now we are ready to state the analog of Proposition 2.1. The following proposition
gives sufficient conditions for an optimal solution to (2.4).

Proposition 2.4. Suppose that there exist f 2 F and � 2 R
m satisfying

.1/ H.f; g/ D 0; for all g 2 F;

.2/ Gk.f / � Gk;0; k D 1; : : : ; m;

.3/ �k � 0; k D 1; : : : ; m;

.4/ �k.Gk.f /�Gk;0/ D 0; k D 1; : : : ; m:

Then f is an optimal solution to (2.4).

Proof. First note that since F and Gk are convex, (3) implies that also L is convex.
By Proposition 2.5, it holds that

L.g/ � L.f /CH.f; g/ for all g 2 F:

Therefore, it follows from (1) that f is a global minimum point of L. Condition (2)
says that f is a feasible solution to (2.4), i.e., it does not violate the constraints. We
need to show that F.f / � F.g/ for all feasible solutions g. By condition (4), we
have F.f / D L.f /, and we have already seen that L.f / � L.g/. Therefore,

F.f / D L.f / � L.g/ D F.g/C
mX

kD1
�k.Gk.g/ �Gk;0/ � F.g/;

where the last inequality holds because of condition (3) and because g is a feasible
solution to (2.4). �

Proposition 2.5. Consider the functionL in (2.5), where F andGk are convex and
�k is nonnegative. Then L has the property that for each f; g 2 F it holds that
L.g/ � L.f /CH.f; g/.

Proof. The assumptions on F , Gk , and �k imply thatL is convex. The convexity of
L implies that, by repeating the argument in the proof of Proposition 2.2,

L.f C t.g � f //� L.f /

t
� L.g/ � L.f /

for t 2 .0; 1�. In particular,

L.g/ � L.f /C lim
t!0

L.f C t.g � f // �L.f /
t

:
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It remains to show that the limit on the right-hand side is H.f; g/. Indeed,

lim
t!0

L.f C t.g � f // �L.f /
t

D lim
t!0

F.f C t.g � f //� F.f /

t
C

mX

kD1
�k lim

t!0

Gk.f C t.g � f //�Gk.f /

t

D lim
t!0

Z

Rn

	.f .x/C t.g.x/� f .x///� 	.f .x//
t

w.x/dx

C lim
t!0

mX

kD1
�k

Z

Rn

	k.f .x/C t.g.x/ � f .x///� 	k.f .x//
t

wk.x/dx

D
Z

Rn

lim
t!0

	.f .x/C t.g.x/� f .x///� 	.f .x//
t

w.x/dx

C
mX

kD1
�k

Z

Rn

lim
t!0

	k.f .x/C t.g.x/ � f .x///� 	k.f .x//
t

wk.x/dx

D
Z

Rn

�
	0.f .x//w.x/C

mX

kD1
�k	

0
k.f .x//wk.x/

�
.f .x/ � g.x//dx

D H.f; g/: �

2.3 Notes and Comments

The material presented in Sect. 2.1 can be found in most textbooks on optimization,
for instance, [7] by Stephen Boyd and Lieven Vandenberghe and [26] by David
Luenberger.



Chapter 3
Quadratic Hedging Principles

Fix a future time T and let L be the value of a liability at that time. One example of
L is the portfolio value of derivative instruments issued by a bank. Another example
is the value of future claims from insurance products sold by an insurance company.
Typically the holder of the liability does not want to speculate on a favorable
outcome of this random variable. The ideal approach to managing the risk of an
unfavorable outcome of L would be to purchase a portfolio whose value A (A for
assets) at the future time T exactly matches that of the liability. In that case, A D L,
and the risk of an unfavorable outcome of L is removed completely by purchasing
the asset portfolio. The problem with this approach is that it is not always possible
to find a portfolio of assets whose future value corresponds exactly to that of the
liability; one example is when the liability is made up of insurance claims.

The more realistic approach is to look for an asset portfolio whose value A
at time T is close to L. For instance, we could search for the portfolio value A
that minimizes the expected squared hedging error EŒ.A � L/2�. This approach to
hedging is called quadratic hedging.

So how do we determine the optimal quadratic hedging portfolio?
Let Z D .Z1; : : : ; Zn/

T be a vector whose components are the values at time T
of assets that are available on the market. Suppose that we may take A to be any
random variable of the form f .Z/ for arbitrary functions f . Then we can interpret
A as the value at time T of any derivative instrument on Z, and the choice of A that
solves the quadratic hedging problem turns out to be the conditional expectation of
L given Z. The conditional expectation is presented in Sect. 3.1.

It is quite likely that the derivative instrument corresponding to the optimal
quadratic hedge is unavailable. It could be that we simply cannot find a seller of
that derivative, that the seller is offering this derivative at a price that we consider
too high, or that we fear that the seller may not be able to deliver the derivative
payoff. In this case, it is reasonable to restrict the hedging portfolio payoff A to be
of the form h0ChTZ, corresponding to a hedging portfolio made up of a position in
a risk-free bond and a combination of positions in assets whose values at time T are
the components of Z. In this case, the choice of A that solves the optimal quadratic

H. Hult et al., Risk and Portfolio Analysis: Principles and Methods, Springer Series
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-4103-8 3,
© Springer Science+Business Media New York 2012
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hedging problem is the value at time T of the portfolio obtained by taking positions
corresponding to the regression coefficients of L onto the regressors Z1; : : : ; Zn.
The solution to the quadratic hedging problem then corresponds to solving a linear
regression problem. Linear regression is presented in Sect. 3.1.

Equipped with this machinery, we then move on to investigate a number of
examples of quadratic hedging. Examples include hedging with futures contracts,
hedging of insurance liabilities, hedging of a digital option with call options, and
delta hedging. The chapter ends with an extensive section on immunization of cash
flows. Immunization is a useful technique to make the value of a portfolio insensitive
to changes in the zero-rate curve. It is placed at the end of this chapter, although it
is based on first-order Taylor approximations rather than quadratic hedging.

3.1 Conditional Expectations and Linear Regression

Consider a random vector Z and a random variable L with EŒL2� < 1. The
conditional expectation of L given Z, written EŒL j Z�, is the random variable g.Z/,
with g a function from R

n to R such that EŒg.Z/2� < 1, satisfying the condition

EŒh.Z/g.Z/� D EŒh.Z/L� (3.1)

for all functions h from R
n to R such that EŒh.Z/2� < 1. If we take h.Z/ D 1

in (3.1), then we find that

EŒEŒL j Z�� D EŒL�:

This relation is called the law of iterated expectations. Furthermore, if we replaceL
by I fL 2 Bg, then we get

P.L 2 B/ D EŒI fL 2 Bg� D EŒEŒI fL 2 Bg j Z�� D EŒP.L 2 B j Z/�:

We denote by L
2.Z/ the set of random variables h.Z/, where h is a function from

R
n to R, satisfying EŒh.Z/2� < 1. Take Y1; Y2 2 L

2.Z/. By definition of the
conditional expectations EŒL j Z� and EŒY1L j Z�, it holds that

EŒY2Y1 EŒL j Z�� D EŒY2Y1L� D EŒY2 EŒY1L j Z��:

Since this holds for all Y2 2 L
2.Z/, we conclude that EŒY1L j Z� D Y1 EŒL j Z�,

i.e., Y1 2 L
2.Z/ is regarded as a constant when conditioning on Z.

Proposition 3.1. Consider a random vector Z and a random variable L with
EŒL2� < 1. Suppose that f is any function such that EŒf .Z/2� < 1. Then it
holds that
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E
�
.L� f .Z//2

	 � EŒ.L � EŒL j Z�/2�;

with equality for f .Z/ D EŒL j Z�.

The proof is given in Sect. 3.1.2.
We know from Proposition 3.1 that among all the random variables of the form

f .Z/, the conditional expectation EŒL j Z� is the one that best approximates the
random variable L in the sense that the expected value of the squared difference
between the two is minimized.

A commonly encountered situation is where we have access only to random
variables f .Z/ of the form h0 C hTZ, i.e., translations of linear combinations of the
components of Z. In this case we look for constants h0; h1; : : : ; hn that minimize
the expected value EŒ.h0 C hTZ � L/2�. Clearly, the expected value must exist
finitely in order for this minimization to make sense, and therefore we assume that
the covariance matrix of the vector Z,

˙Z D EŒ.Z � EŒZ�/.Z � EŒZ�/T� D

0

B@
Cov.Z1;Z1/ : : : Cov.Z1;Zn/

:::
: : :

:::

Cov.Zn;Z1/ : : : Cov.Zn;Zn/

1

CA ;

and the vector of covariances between L and Z1; : : : ; Zn,

˙L;Z D EŒ.L � EŒL�/.Z � EŒZ�/� D

0
B@

Cov.L;Z1/
:::

Cov.L;Zn/

1
CA ;

exist finitely. The solution to the minimization problem is simply a standard linear
regression of L onto the regressorsZ1; : : : ; Zn.

Proposition 3.2. For a random vector Z with an invertible covariance matrix ˙Z

and a random variableL with finite variance, the expected value EŒ.h0ChTZ�L/2�
attains its unique minimum for .h0;h/ given by

h D ˙�1
Z ˙L;Z;

h0 D EŒL� � hT EŒZ�:

For this choice of h it holds that Cov.h0 C hTZ � L;Zk/ D 0 for all k.

The proof is given in Sect. 3.1.2.
Note that Proposition 3.2 says that the minimizer OA of EŒ.A � L/2� among all

random variables of the form A D h0 C hTZ is given by

OA D EŒL�C˙T
L;Z˙

�1
Z .Z � EŒZ�/:
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We see that EŒ OA� D EŒL�, and therefore the minimal expected squared hedging
error is

EŒ. OA � L/2� D Var. OA� L/

D Var. OA/C Var.L/ � 2Cov. OA;L/
D .˙T

L;Z˙
�1
Z /˙Z.˙

T
L;Z˙

�1
Z /T C Var.L/ � 2˙T

L;Z˙
�1
Z ˙L;Z

D Var.L/ �˙T
L;Z˙

�1
Z ˙L;Z:

Moreover, the last claim in Proposition 3.2 says that the optimal hedging error OA�L
is uncorrelated with the the hedging instruments.

Not surprisingly, the worst possible situation is where Cov.L;Zk/ D 0 for all k.
That is, the hedging instruments are uncorrelated with the liability. In that case, there
is no opportunity for quadratic hedging. The optimal quadratic hedge is .h0;h/ D
.EŒL�; 0/, with EŒ. OA � L/2� D Var.L/.

The next proposition provides the solution to the similar problem of finding the
minimizer OA of Var.A� L/ among all random variables of the form A D hTZ.

Proposition 3.3. For a random vector Z with an invertible covariance matrix ˙Z

and a random variableL with finite variance, the variance Var.hTZ�L/ attains its
unique minimum for h D ˙�1

Z ˙L;Z.

The proof is given in Sect. 3.1.2.
The difference between Propositions 3.2 and 3.3 is that in the latter there is no

constant term h0, and we minimize the variance instead of the second-order moment
of the hedging error. The optimal positions h1; : : : ; hn in the hedging instruments
Z1; : : : ; Zn are identical in the two situations. The effect of the constant term, h0, in
Proposition 3.2 is simply that it centers the distribution of the hedging error at zero
to eliminate a systematic hedging error.

Proposition 3.3 says that the minimizer OA of Var.A � L/ among all random
variables of the form A D hTZ is given by OA D ˙T

L;Z˙
�1
Z Z. The minimal variance

is given by

Var. OA� L/ D Var. OA/C Var.L/ � 2Cov. OA;L/
D Var.L/ �˙T

L;Z˙
�1
Z ˙L;Z:

Finally, a brief remark on the important special case where n D 1, corresponding
to only one hedging instrument. In this case, the optimal hedge is given by

h D Cov.L;Z/

Var.Z/

and the minimal variance is
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Var. OA� L/ D Var.L/ � Cov.L;Z/2

Var.Z/

D Var.L/

�
1 � Cov.L;Z/2

Var.L/Var.Z/

�

D Var.L/.1 � Cor.L;Z/2/: (3.2)

We see that the optimal position h corresponds to the regression coefficient of L
onto Z, and the expression for the variance of the hedged position is very explicit
and easily interpreted.

3.1.1 Examples

Fix a future time T and let L be the value of a liability at time T . Proposition 3.1
says that the optimal quadratic hedge of liability L is the conditional expectation of
L given Z. The vector Z need not be a vector of future values of traded instruments.
However, we typically want EŒL j Z� to be the future value of an instrument or
portfolio that we can buy to realize the quadratic hedge. The following example
presents an application of Proposition 3.1.

Example 3.1 (Unit linked life insurance). Consider an insurance company that has
sold unit-linked life insurance contracts. If the insured dies during the current year,
then the contract pays max.ST ;K/ at time T (the end of the year). Here ST is the
value of an index and K is a guaranteed amount. Let the random number N of
insured that die during the next year be Po.�/-distributed (Poisson distributed with
mean �). We assume N is independent of ST . The value of the liability at time T
is therefore L D N max.ST ;K/. Suppose that the insurance company can invest in
the index and in any derivative on ST with payoff f .ST /. Then a good hedge of the
liability is obtained by taking

f .ST / D EŒN max.ST ;K/ j ST � D EŒN j ST �max.ST ;K/

D EŒN �max.ST ;K/ D �max.ST ;K/

D �.max.ST �K; 0/CK/:

We conclude that the insurance company should buy � call options with strikeK and
take a position in zero-coupon bonds that pay the amount�K at time T . The hedging
error is given by .� �N/max.ST ;K/, and its second-order moment is given by

EŒ.� �N/2 max.ST ;K/
2� D EŒ.N � �/2�EŒmax.ST ;K/

2�

D Var.N /EŒmax.ST ;K/2�

D �EŒmax.ST ;K/2�:

This example illustrates the use of Proposition 3.1, here with Z replaced by ST .
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The next example presents an application of Proposition 3.2. We will encounter
many more applications further on.

Example 3.2 (Whole life insurance). Consider a life insurance policy that pays 1 at
the random time 
 (at the end of the year of death of the policyholder). Suppose the
current time is 0 and, for simplicity, that 
 can only take the values 1 or 2. Suppose
also that there are 1- and 2-year risk-free zero-coupon bonds available on the market.

The value at time 1 of the insurance policy is L D I f
 D 1g C I f
 D 2ge�r1;2 ,
where r1;2 is the (random) 1-year zero-coupon rate at time 1. Notice that r1;2 is
observed at time 1. If we buy h0 units of the 1-year zero-coupon bond, and h1
units of the 2-year zero-coupon bond, then the value of our assets at time 1 is A D
h0 C h1e

�r1;2 . We seek the best possible asset portfolio in the sense that the time 1
value of the assets should match the time 1 value of the liability as well as possible.

WriteZ D e�r1;2 and note that by Proposition 3.2 there exists a unique minimizer
OA of EŒ.A�L/2� among all random variablesA of the form h0Ch1Z for coefficients
h0; h1 2 R. The hedging portfolio h0; h1 is given by

h1 D Cov.L;Z/

Var.Z/
and h0 D EŒL� � h1 EŒZ�:

Write p D P.
 D 1/ and note that

Cov.L;Z/ D EŒ.I f
 D 1g C I f
 D 2gZ/Z�� EŒI f
 D 1g C I f
 D 2gZ�EŒZ�
D p EŒZ�C .1 � p/EŒZ2� � p EŒZ� � .1� p/EŒZ�2

D .1 � p/.EŒZ2� � .EŒZ�/2/

D .1 � p/Var.Z/:

We see that h1 D 1 � p, h0 D p. In other words, we should buy P.
 D 1/ 1-year
zero-coupon bonds and P.
 D 2/ 2-year zero-coupon bonds. It is not difficult to
verify that if 
 can take any integer value from 1 to n and if zero-coupon bonds with
these maturities are available, then the solution to the problem is to buy P.
 D k/

number of k-year zero-coupon bonds.

3.1.2 Proofs of Propositions

Proof of Proposition 3.1. Take W 2 L
2.Z/. For such W it follows from (3.1) that

EŒW EŒL j Z�� D EŒWL�. The linearity of the expected value now gives

EŒW.L � EŒL j Z�/� D 0 for all W 2 L
2.Z/:
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Take Y 2 L
2.Z/ and set W D Y � EŒL j Z�. Then

E
�
.L � Y /2	 D E

�
.L � EŒL j Z� �W /2

	

D E
h
.L � E ŒL j Z�/2

i
� 2E ŒW .L � EŒL j Z�/�C E

�
W 2

	

D E
h
.L � EŒL j Z�/2

i
C EŒW 2�;

and it is clear that EŒ.L�Y /2� is minimized whenW D 0, i.e., when Y D EŒL j Z�.
This concludes the proof. �
Lemma 3.1. Let .AT; B/T be a random vector in R

mC1, where A ism-dimensional
and B is one-dimensional. Let g be a (strictly) convex function from R to R such
that the function h from R

m to R given by h.x/ D EŒg.ATx C B/� exists finitely.
Then h is (strictly) convex.

Proof. For each a 2 R
m and b 2 R the function h.a;b/ given by h.a;b/.x/Dg.aTxCb/

is (strictly) convex. Indeed, for � 2 .0; 1/,
h.a;b/ .�x C .1 � �/y/ D g

�
�
�
aTx C b

�C .1 � �/
�
aTy C b

��

� �g
�
aTx C b

�C .1 � �/g
�
aTy C b

�

D �h.a;b/.x/C .1 � �/h.a;b/.y/;

where the inequality is strict if g is strictly convex. Therefore, it follows from the
law of iterated expectations that

h .�x C .1 � �/y/ D E
�
EŒh.A;B/.�x C .1 � �/y/ j .A; B/�	

� E
�
EŒ�h.A;B/.x/C .1 � �/h.A;B/.y/ j .A; B/�	

D �h.x/C .1 � �/h.y/;

where again the inequality is strict if g is strictly convex. �

We proceed with the proofs of Propositions 3.2 and 3.3. It is somewhat easier to
prove Proposition 3.3 first. Before the proof we note that the variance of a weighted
sum of the components of Z can be expressed as a pure quadratic form in the weights
and the covariance matrix of Z. More precisely,

Var.hTZ/ D
nX

jD1

nX

kD1
Cov.hjZj ; hkZk/

D
nX

jD1

nX

kD1
hj hk.˙Z/j;k D

nX

jD1
hj

nX

kD1
.˙Z/j;khk
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D .h1 : : : hn/

0

@
.˙Z/1;1h1 C � � � C .˙Z/1;nhn

: : :

.˙Z/n;1h1 C � � � C .˙Z/n;nhn

1

A

D hT˙Zh:

Proof of Proposition 3.3. For an arbitrary portfolio h the variance of the hedging
error is

Var.hTZ �L/ D Var.hTZ/C Var.L/ � 2Cov.hTZ; L/

D hT˙Zh C Var.L/ � 2hT˙L;Z:

From Lemma 3.1, with g.y/ D y2, x D h, A D Z, and B D �L, we know that
Var.hTZ �L/ is a strictly convex function of h. Since it is differentiable, we obtain
its unique minimum by computing partial derivatives, setting the linear expressions
in h to zero, and solving the linear equation. The equation r Var.hTZ � L/ D 0,
where the differentiation is with respect to h, reads

˙Zh �˙L;Z D 0;

from which the conclusion follows. �

Proof of Proposition 3.2. For an arbitrary portfolio .h0;hT/T the second moment of
the hedging error is given by

EŒ.h0 C hTZ �L/2� D Var.h0 C hTZ � L/C .EŒh0 C hTZ �L�/2

D Var.hTZ �L/C .EŒh0 C hTZ � L�/2:

By Proposition 3.3 the variance term is minimized by

h D ˙�1
Z ˙L;Z:

The second term is always nonnegative and equal to zero for

h0 D EŒL � hTZ�:

This completes the proof. �

3.2 Hedging with Futures

Consider a coffee producer who will sell the random quantity X pounds of coffee
beans in 10months from now, time T . The outcome ofX depends on the size of the
coffee crop, which in turn depends on the weather during the next 10 months before
harvesting. The spot price ST in cents per pound of coffee beans in 10 months from
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now at which the producer can sell the coffee beans depends on the world market
price of coffee beans at that time but also on the possible difference in demand for
the producer’s kind of coffee bean compared to the overall demand for coffee beans.
Anyway, the producer will receive the random income XST if the beans are sold to
the buyers on the market 10 months from now. The variability in the spot price of
coffee beans over time represents a financial risk that the coffee producer would like
to hedge away.

One way to hedge this risk would be to find a counterpart, a buyer of coffee
beans, and write a forward contract for delivery of a certain quantity X0 of coffee
beans 10 months from now. This would give the cash flow X0G0 C .X � X0/ST
for the producer at the delivery date, whereG0 is the agreed-upon forward price and
.X �X0/ST is the income from selling the remaining part of the coffee crop on the
spot market (or the cost of buying coffee beans on the spot market in order to be
able to deliver the promised quantity). Note that if X D X0, meaning that the size
of the crop is known in advance, then the forward contract transforms the random
future income XST into the known income X0G0.

However, hedging with forward contracts has its disadvantages. There is always
the risk that one of the two parties does not fulfill its part of the agreement.
Moreover, if the producer after some time would like to change the agreed-upon
quantity X0 or simply cancel the forward contract, then this is typically difficult
since there may be no general agreement on the value of the forward contract prior
to maturity.

Fortunately for the coffee producer there is a well-functioning market for futures
contracts on coffee beans. A futures contract is similar to a forward contract: it is
an agreement to buy/sell a certain quantity of some good at a predetermined future
date for a specific price to be paid/received on that date. Many futures contracts
are liquidly traded on an exchange. Due to changes in supply and demand, the
exchange announces a new futures price each day for each futures contract. In order
not to be exposed to credit risk, that the losing party walks away from a loss,
the exchange requires the long holder of a futures contract to deposit money on
a so-called margin account in response to a price drop, and similarly for the short
holder. This means that the futures price is paid/received bit by bit through a daily
settlement procedure, unlike for the forward contract, where the forward price is
paid/received in full at maturity of the contract. A nice aspect of futures positions
is that they can be closed at any time by the long and short holders, resulting in a
profit or a loss depending on the cash flow from the daily settlement procedure. The
transactions between the long and short holders of a future contract are guaranteed
by the exchange, and a futures position closed out by one party does not affect the
other party.

Let us give a more precise description of a futures contract. We consider a futures
contract for delivery at time T of a certain quantity of some good (coffee beans,
say) and let ST denote the spot price at time T per unit of the good to be delivered.
Some futures contracts are settled in cash, and most futures contracts are closed out
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prior to delivery because many futures traders do not want delivery of the specified
good. Although it is an important practical issue here, we do not differentiate
between holding a futures contract to maturity and closing it out just before maturity.
To make the presentation clearer, we consider here a futures contract for delivery of
one single unit of the underlying good (one pound of coffee beans, say). At each
resettlement day t the futures price is Ft and the long holder receives the amount
Ft�Ft�1. A negative value ofFt�Ft�1 means that the long holder pays the amount.
The futures price Ft is determined so that the price for entering the futures contract
at any time t is zero. In particular, FT D ST . If the futures contract is held from
time 0 until T , then all cash flows before maturity can be postponed until maturity,
and interest rate effects can be ignored; then the aggregated cash flow for the long
holder is

.F1 � F0/C .F2 � F1/C � � � C .FT � FT�1/ D FT � F0 D ST � F0;

i.e., the long holder receives ST and pays F0, so the futures contract is approximated
by a forward contract. However, the very existence of well-functioning markets
with exchange-traded futures contracts relies on the inability of the losing party
in a futures contract to postpone the settling of daily losses.

It is sometimes possible to avoid having to deal with payments at different times
by adopting an appropriate futures strategy. The market participant must have access
to a money market account and be able to take both long positions (make deposits)
and short positions (receive loans) in the money market account. We denote by rt�1;t
the interest rate from time t � 1 to time t that is contracted at time t � 1 and applies
to both deposits and loans.

Consider the following strategy, which represents a combination of dynamic
strategies in a futures contract and a money market account.

• At time t D 0, the amount F0 is deposited in the money market account and a
long position of er0;1 futures contracts is taken.

• At time t D 1, the next resettlement time, the portfolio value is

er0;1F0 C er0;1.F1 � F0/ D er0;1F1;

where the first term is the value of the money market account and the second
term is the income (possibly negative) from the position in the futures contracts.
At this date, t D 1, the position in the money market account is adjusted to
er0;1F1 and the position in the futures contracts is adjusted to er0;1Cr1;2 number of
contracts.

• At time t D 2, the next resettlement time, the portfolio value is

er0;1Cr1;2F1 C er0;1Cr1;2.F2 � F1/ D er0;1Cr1;2F2;

where the first term is the value of the money market account and the second
term is the income (possibly negative) from the position in the futures contracts.
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At this date, t D 2, the position in the money market account is adjusted to
er0;1Cr1;2F2 and the position in the futures contracts is adjusted to er0;1Cr1;2Cr2;3
number of contracts.

• The procedure is repeated until and including time T � 1, and at time T the
portfolio value is

er0;1C���CrT�1;T FT�1 C er0;1C���CrT�1;T .FT � FT�1/ D er0;1C���CrT�1;T FT :

Summing up, we find that the futures strategy has an initial cost F0 and delivers the
random cash flow er0;1C���CrT�1;T FT at time T . If we combine this strategy with a
short position in the money market account of value F0 at time 0 that is closed at
time T , then a strategy is achieved that has zero initial cost and delivers the random
cash flow er0;1C���CrT�1;T .FT � F0/ at time T . The opposite strategy, in which all
long positions are replaced by short positions and vice versa, has zero initial cost
and delivers the cash flow er0;TC���CrT�1;T .F0 � FT / at time T . It will be called the
short futures strategy with unit leverage.

We now return to the hedging problem for the coffee producer described above
and assume that there is a futures contract for delivery of k pounds of coffee beans
at a future time T . Ideally, T should correspond to 10 months from now. However,
such a futures contract may not be available, and in this case the producer looks for
a contract with a delivery date that is as early as possible but not before 10 months
from now since the coffee producer does not want actual delivery of the coffee beans
specified in the futures contract. Let F0 and FT denote the futures prices now and
in 10 months’ time, respectively. The producer may hedge against the variability in
the future spot price by following the short futures strategy with leverage h futures
contracts with no initial payment, as outlined previously. The position is closed out
10 months from now, resulting in the cash flow

XST � hker0;1C���CrT�1;T .FT � F0/
at time T , which we call the hedging error. If the maturity date of the futures contract
coincides with the date on which the producer sells the coffee beans on the spot
market, then FT D ST , and therefore the hedging error equals

.X � hker0;1C���CrT�1;T /ST C hker0;1C���CrT�1;T F0:

If the interest rates are known at time 0, then R0 D er0;1C���CrT�1;T is the return of a
zero-coupon bond maturing at time T .

If the futures contract matures in more than 10 months from now or if the kind
of coffee bean produced differs from the one stated in the futures contract, then
FT ¤ ST . However, the usefulness of hedging with futures relies on FT � ST
being a good approximation. To determine the optimal hedge, i.e., the leverage of
the short futures strategy, the coffee producer needs to decide upon a model for the
random vector .X; ST ; FT / and find the number h that minimizes the variance of
the hedging error XST � hkR0.FT � F0/.
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Proposition 3.3 tells us that the more general hedging problem (with n futures
contracts, F 1; : : : ; F n, as hedging instruments) of finding the leverage of the short
futures strategy in order to minimize the variance of the hedging error XST �
h1k1R0.F

1
T � F 1

0 / � � � � � hnknR0.F
n
T � F n

0 / has the solution h D ˙�1
Z ˙XST ;Z,

where ZT D R0.k1F
1
T ; : : : ; knF

n
T /. In particular, when n D 1, the variance of the

hedging error is minimized by choosing

h D Cov.XST ; kR0FT /

Var.kR0FT /
D Cov.XST ; FT /

kR0 Var.FT /
:

The reduction in the variance of the price at which the producer sells his coffee crop
is given by [see (3.2)]

Var.XST � hkR0.FT � F0//
Var.XST /

D Var.XST /.1 � Cor.XST ; kR0FT /2/

Var.XST /

D 1 � Cor.XST ; FT /2:

In some cases, it may be reasonable to assume that the quantity X and the spot
price ST are independent and, further, that FT D ST . This gives h D EŒX�=.kR0/,
i.e., hedge by following the short futures strategy with leverage corresponding to the
expected size of the coffee crop. Moreover, the formula

Var.XST / D EŒX2S2T � � EŒXST �
2

D EŒX2�EŒS2T � � EŒX�2 EŒST �2

D Var.X/Var.ST /C EŒX2�EŒST �2 C EŒX�2 EŒS2T � � 2EŒX�2 EŒST �2

D Var.X/Var.ST /C Var.X/EŒST �
2 C Var.ST /EŒX�2

for the variance of a product of independent random variables implies that the
variance of the hedging error is given by

Var.XST � hkR0.FT � F0//

D Var.XST /.1 � Cor.XST ; FT /
2/

D Var.XST /

�
1 � Cov.XST ; FT /2

Var.XST /Var.ST /

�

D Var.XST /

�
1 � .EŒXS2T � � EŒXST �EŒST �/2

Var.XST /Var.ST /

�

D Var.XST /

�
1 � EŒX�2.EŒS2T � � EŒST �2/2

Var.XST /Var.ST /

�

D Var.XST /

�
1 � EŒX�2 Var.ST /

Var.XST /

�
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D Var.XST / � EŒX�2 Var.ST /

D Var.X/Var.ST /C Var.X/EŒST �2:

In particular, we observe that if the variance of X is much bigger than the variance
of ST , then hedging will not reduce the variance by much because

Var.XST � hkR0.FT � F0//

Var.XST /
D Var.X/Var.ST /C Var.X/EŒST �2

Var.X/Var.ST /C Var.X/EŒST �2 C Var.ST /EŒX�2

will be close to one. The opposite is also true: if Var.X/ is small compared to
Var.ST /, then variance is significantly reduced.

Example 3.3 (Hedging failures). Here we consider a stylized example illustrating
the importance of understanding the inherent risks associated with hedging with
futures contracts.

Consider a coffee producer offering to a major buyer to deliver X0 pounds of
coffee beans at time T > 0 at a price of G0 per pound to be paid at time T . In
essence, the company has a short position in a forward contract and receives the
cash flow X0.G0 � ST / at time T , where ST is the spot price at that time.

To hedge the risk of an increase in the coffee price, the producer takes a
long position in a futures contract of size k so that kFT �X0ST . The contracted
income X0G0 at time T for delivery of the coffee beans is negotiated so that
X0G0 � kF0 > 0. If the buyer of the coffee beans pays as contracted, the producer
manages to keep the balance on the margin account, and kFT D X0ST , then the
coffee produces makes the net profit X0G0 � kF0 > 0 regardless of the future price
of coffee. For simplicity we ignore the effect of interest rates.

Case 1. Suppose that at time t < T the futures price has dropped substantially from
the initial price F0 and the producer receives another margin call to deposit more
money, for simplicity assumed to be �k.Ft � Ft�1/ > 0, on the margin account.
The margin calls following the depreciation in the value of the producer’s futures
position has led to a shortage of cash for the producer, and at time t the producer
is unable to meet the latest margin call. Therefore, the futures position is closed out
and leaves the producer with a debt of size �k.Ft � Ft�1/ to his broker. Due to
the producer’s poor financial condition following the loss on the futures position,
raising capital to service the producer’s debt to his broker turns out to be costly and
results in a loss of size CT at time T . The net result at time T is therefore

X0G0 � kF0 � CT C kFt�1 �X0ST :

The intended gainX0G0 �kF0 is likely to be offset by the loss CT , and if the coffee
price increases between time t and time T , then the loss �.kFt�1 �X0ST / could be
substantial.

Case 2. Suppose that at time t � T the intended buyer of coffee beans announces a
failure to meet her contracted obligation to pay the amountX0G0 at time T , and the
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coffee producer sees no alternative but to cancel the forward contract and the futures
position, resulting in the net outcome k.Ft � F0/, which amounts to an unintended
speculation in the futures price. To avoid the negative effects of one party’s violating
its obligation in a forward contract, it is common for a so-called collateralization
agreement to be made that resembles the daily resettlement procedure in futures
markets. However, there is no guarantee that the two parties will agree on the value
of the forward contract prior to maturity, and the financially stronger party may
impose its valuation on the weaker party.

3.3 Hedging of Insurance Liabilities

We will now study hedging of insurance liabilities represented as a general cash
flow and investigate how to hedge the future value of this cash flow with a bond
portfolio. The results are then illustrated in a series of insurance examples.

Consider a discrete-time model where Ck is the random amount paid out at the
end of year k, for k D 1; : : : ; n. The value of the liabilities at the end of year 1 is
C1 plus the time 1 value of the remaining cash flow C2; : : : ; Cn. We write �1.Ck/
for the time 1 value of Ck . This is random as seen from today but known at time 1.
Hence, the value at time 1 of the liability cash flow is

L D
nX

kD1
�1.Ck/: (3.3)

We choose �j .Ck/, for j < k, to be the best estimate of Ck made at time j
discounted to money at time j . More precisely, �j .Ck/ can be chosen to be the
conditional expectation of Ck given the information available at time j , multiplied
by the discount factor e�rj;k.k�j /; rj;k is the time j zero-rate for a zero-coupon
bond maturing at time k with a face value 1. The information at time j may be
coded as a vector Ij of random variables whose outcomes become known between
now and time j . As before, we write EŒCk j Ij � for the conditional expectation. The
information at time j 0 > j can similarly be coded as the random vector Ij 0 whose
components are the components of Ij but also random variables whose outcomes
become known between times j and j 0.

We will now determine the quadratic hedge of the liability L D Pn
kD1 �1.Ck/ in

terms of time 1 prices of zero-coupon bonds maturing at times 1; : : : ; n. We assume
that, for each k, the value �1.Ck/ is the best estimate at time 1 of Ck , discounted to
the money value at time 1. That is,

�1.Ck/ D EŒCk j I1�e�r1;k.k�1/ for all k: (3.4)

Suppose further that the time 1 best estimates of Ck are uncorrelated with the time
1 bond prices. That is,

Cov.EŒCj j I1�; e�r1;k.k�1// D 0 for all j; k: (3.5)
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If we write Z D .e�r1;2.2�1/; : : : ; e�r1;n.n�1//T, then we know from Proposition 3.2
that the unique portfolio .h0;h/, which minimizes EŒ.A � L/2� among all A of the
form h0 C hTZ, is given by

h D ˙�1
Z ˙L;Z and h0 D EŒL� � hT EŒZ�;

and the corresponding value of the asset portfolio is

OA D EŒL�C˙T
L;Z˙

�1
Z .Z � EŒZ�/:

Let us compute explicitly this quadratic hedge. We have

Cov.L;Zj / D
nX

kD1
Cov

�
E ŒCk j I1� e�r1;k.k�1/; e�r1;jC1j

�

D
nX

kD1
EŒCk�Cov

�
e�r1;k.k�1/; e�r1;jC1j

�

D �
cT˙Z

�
j
;

where cT D .EŒC2�; : : : ;EŒCn�/ and ˙Z D Cov.Z/. Similarly,

EŒL� D
nX

kD1
E
�
EŒCk j I1�e�r1;k .k�1/	

D
nX

kD1
EŒEŒCk j I1��E

�
e�r1;k.k�1/	

D EŒC1�C
nX

kD2
EŒCk�E ŒZk�1�

D EŒC1�C cT EŒZ�:

If we set ˙L;Z D Cov.L;Z/, then ˙L;Z D cT˙Z, and we see that the quadratic
hedge is given by

h D ˙�1
Z ˙L;Z D c and h0 D EŒL� � hT EŒZ� D EŒC1�:

We conclude that for each k we should buy EŒCk� units of the zero-coupon bond
with maturity k. Our findings can be summarized as follows.

Proposition 3.4. Consider a stochastic cash flow .C1; : : : ; Cn/, zero-coupon bonds
maturing at times 1; : : : ; n with common face value 1, and the time 1 liability L
given by (3.3) and (3.4). If (3.5) holds, then the time 1 value of the bond portfolio



54 3 Quadratic Hedging Principles

consisting of hk D EŒCk� zero-coupon bonds maturing at time k is the optimal
quadratic hedge of the liability L among all portfolios consisting of these bonds.
The hedging error, the time 1 value of the bond portfolio minus that of the liability, is

OA� L D
nX

kD1
.EŒCk� � EŒCk j I1�/e�r1;k.k�1/:

Note that this result holds regardless of whatever view one has of the time 1 zero
rates r1;2; : : : ; r1;n.

Example 3.4 (Multiple business lines). Consider a liability consisting of N pay-
ment streams active at time 1. For instance, each payment stream could come
from a separate line of business. Think, for instance, of an insurance company
issuing motor vehicle insurance, fire insurance, property insurance, etc. If Cj;k is
the payment at time k of the j th payment stream and �1 is linear, then the value of
the liability at time 1 is

L D
nX

kD1
�1.Ck/ D

nX

kD1

NX

jD1
�1.Cj;k/:

If the valuation of Cj;k is such that �1.Cj;k/ D EŒCj;k j I1�e�r1;k .k�1/, then the value
of the liability is given by

L D
nX

kD1
e�r1;k.k�1/

NX

jD1
EŒCj;k j I1�:

Example 3.5 (Pure endowment). Consider a portfolio of nx identical T -year pure
endowment insurance contracts with sum insured equal to 1. Each such policy pays
the sum insured if the insured is alive at time T . All the nx policyholders are
assumed to be of age x at time 0. Consider the current (at time 0) mortality rate,
or force of mortality, �0 such that �0.x/ is the current death intensity of an age
x individual. The probability of survival at least t years for an insured of age x at
time 0 is

p0.t; x/ D exp



�
Z t

0

�0.x C u/du

�
:

The cash flow generated by the portfolio of the nx pure endowment contracts
consists of a single payment CT D NT at time T , where NT is the number of
survivors at time T , and Ck D 0 for all k ¤ T . Viewed from time 0, CT has
a binomial distribution with parameters nx and p0.t; x/. The value �0.CT / of the
portfolio at time 0 is given by

�0.CT / D EŒNT �e�r0;T T D p0.T; x/nxe
�r0;T T

D exp



�
Z T

0

�0.x C u/du

�
nxe

�r0;T T :
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Let N1 be the number of survivors after the first year. If the mortality rate in 1 year
is �1, then the value of the portfolio in 1 year is

�1.CT / D EŒNT j I1�e�r1;T�1.T�1/ D p1.T � 1; x C 1/N1e
�r1;T�1.T�1/

D exp



�
Z T

1

�1.x C u/du

�
N1e

�r1;T�1.T�1/:

We see that �1.CT / is the product of three random variables. The first is expressed
in terms of the mortality rate �1, which may be random, the second is the number
of survivorsN1, which has a binomial distribution with parameters nx and p0.1; x/,
and the third is the value 1 year from now of an, at that time, T �1 year zero-coupon
bond with face value 1.

Example 3.6 (Pure endowment, continued). Suppose the mortality rate is determin-
istic with �1.t/ D �0.t/ D �.t/. It is reasonable to assume that the number
of survivors N1 is independent of the zero-coupon bond prices, so (3.5) holds.
Then Proposition 3.4 implies that the optimal quadratic hedging portfolio is a long
position of d zero-coupon bonds with maturity T and face value 1, where

d D exp



�
Z T

1

�.x C u/du

�
EŒN1�

D exp



�
Z T

1

�.x C u/du

�
exp



�
Z 1

0

�.x C u/du

�
nx

D exp



�
Z T

0

�.x C u/du

�
nx:

The hedging error, that is, the value of the liability minus the hedging portfolio, is

�1.CT / � de�r1;T�1.T�1/

D exp



�
Z T

1

�.x C u/du

�
e�r1;T�1.T�1/

�
N1 � nx exp



�
Z 1

0

�.x C u/du

��
:

Example 3.7 (Whole life insurance). Consider a portfolio of nx identical whole life
insurance contracts that pays 1 at the end of the year of death of the insured. Suppose
that the times of deaths of the insured individuals are independent and that the
mortality rate is deterministic, with �1.t/ D �0.t/ D �.t/. Let Nk be the number
of survivors at the end of year k. The cash flow generated by the portfolio is

nx �N1 at the end of year 1;

N1 �N2 at the end of year 2; etc.

The amount to be paid at the end of year k is Ck D Nk�1 � Nk. At the end of
year 1 we observe N1, and we want to compute EŒCk j N1�. At time 1 the age of
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each individual is x C 1, and for any k � 2 the distribution of .C2; : : : ; Ck;Nk/
conditional on N1 is multinomial with parametersN1 and q2; : : : ; qk;eqk . That is,

P.C2 D c2; : : : ; Ck D ck;Nk D nk j N1/ D N1

c2Š : : : ckŠnkŠ
q
c2
2 : : : q

ck
k eq

nk
k

when c2 C : : : ck C nk D N1, and 0 otherwise. Here

qj D p1.j � 2; x C 1/� p1.j � 1; x C 1/

D exp



�
Z j�1

1

�.x C u/du

�
� exp



�
Z j

1

�.x C u/du

�
;

eqk D p1.k � 1; x C 1/ D exp

(
�
Z k

1

�.x C u/du

)
:

In particular, EŒCk j N1� D qkN1, and the liability L is given by

L D
X

k�1
EŒCk j N1�e�r1;k�1.k�1/

D .nx �N1/C
X

k�2
qkN1e

�r1;k�1.k�1/

D .nx �N1/

CN1
X

k�2
e�r1;k�1.k�1/

 
exp

(
�
Z k�1

1

�.x C u/du

)

� exp

(
�
Z k

1

�.x C u/du

)!
:

Assuming the number of survivorsN1 at time 1 is uncorrelated with the zero-coupon
bond prices, Proposition 3.4 gives the optimal quadratic hedge as

nx � EŒN1� D nx.1 � p0.1; x// D nx

�
1 � exp



�
Z 1

0

�.x C u/du

��

zero-coupon bonds with maturity 1 and, for each k � 2, invest in

EŒCk� D EŒN1�

 
exp

(
�
Z k�1

1

�.x C u/du

)
� exp

(
�
Z k

1

�.x C u/du

)!

D nx

 
exp

(
�
Z k�1

0

�.x C u/du

)
� exp

(
�
Z k

0

�.x C u/du

)!

zero-coupon bonds with maturity k.
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Example 3.8 (Nonlife insurance). Consider an insurance company selling basic
nonlife insurance. For simplicity we assume that there are 100,000 insureds over
the period 1 January (time 0) to 31 December (time 1). During the year there will
be a random number of claims incurred, most of which will be reported during the
year but some of which will be reported later. All incurred claims will be treated
as a liability of the insurance company to its policyholders. In this example, we
ignore the fact that there may be claims from past years that will be settled during
the current year. The insurance company invests in a simple bond portfolio to hedge
the value of its liabilities at the end of the year.

Let Zk , for k � 1, be independent and identically distributed random variables
representing claim sizes of the insurance claims. LetN be the total number of claims
incurred between time 0 and 1. We simplify the problem somewhat by assuming that
N has a Poisson distribution with parameter�, where � is approximately the number
of insureds times the probability that a randomly chosen insured will experience an
event during the year that will lead to a claim. To the kth claim there is a random
delay 
k indicating the time period when the claim is settled. Suppose that the delay
times are independent and that for each k, 
k � 1 has a geometric distribution with
parameter � , i.e.,

P.
k � 1 D l/ D �.1� �/l ; l � 0:

Then the total number of claims to be paid at time 1 is

N1 D
NX

kD1
I f
k D 1g D

NX

kD1
I f
k � 1 D 0g

and

P.N1 D j / D
1X

nDj
P.N1 D j j N D n/ P.N D n/

D
1X

nDj

 
n

j

!
�j .1 � �/n�j �n

nŠ
expf��g

D .��/j

j Š
expf��g

1X

nD0

.1 � �/n�n
nŠ

D .��/j

j Š
expf���g:

That is, N1 is Po.��/-distributed. Similarly, the number of claims to be paid in
year 2 conditional on N1 D j is given by
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P.N2 D k j N1 D j /

D P.N1 D j;N2 D k/

P.N1 D j /

D 1

P.N1 D j /

1X

nDjCk
P.N1 D j;N2 D k j N D n/ P.N D n/

D 1

.��/j

j Š
e���

1X

nDjCk

 
n

j

! 
n � j

k

!
�j .1 � �/k�k.1 � �/2.n�j�k/ �n

nŠ
e��

D 1

.��/j

j Š
e���

.��/jCk.1 � �/k
j ŠkŠ

e��
1X

nDjCk

Œ�.1 � �/2�n�j�k

.n � j � k/Š

D Œ��.1� �/�k

kŠ
e���.1��/:

Thus, the conditional distribution of N2 given N1 D j is Po.��.1 � �//, which
does not depend on j . In particular, N1 and N2 are independent. Proceeding like
this, we see that N1;N2; : : : ; are independent, with Nk having a Po.��.1 � �/k�1/
distribution. As a consequence, the amounts C1; C2; : : : to be paid in periods
1; 2; : : : from claims occurring in period 1 are independent, and each Ck can be
represented as

Ck
dD

NkX

jD1
Zj ;

where dD means that the random variables on the left- and right-hand sides have the
same distribution function (equality in distribution). In particular,

EŒCk j I1� D EŒCk� D ��.1 � �/k�1 EŒZ1�; k � 2:

Therefore, the value of the liability at time 1 is given by

L D
N1X

iD1
Zi C EŒZ1���

1X

kD2
e�r1;k .1 � �/k�1:

Since EŒCk j I1� is deterministic (known already at time 0), (3.5) is satisfied and
Proposition 3.4 implies that the quadratic hedge is to buy EŒCk� number of k bonds
at time 0. We see that the quadratic hedge completely eliminates the second term of
the liability, and the hedging error at time 1 is given by

OA �L D
nX

kD1
.EŒCk� � EŒCk j I1�/ e�r1;k.k�1/

D EŒZ1��� �
N1X

iD1
Zi :
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In this example, there is no remaining interest rate risk, only insurance risk coming
from the uncertainty in the number and severity of claims during the first year.

As a variation on this example we may assume that each claim can be settled in
one of a fixed number m of possible future time periods. Let 
i denote the period
when the i th claim is settled, and let pk D P.
i D k/. Assume further that, for
each n, the distribution of the vector .N1; : : : ; Nm/, given the total number of claims
N D n, is a multinomial distribution,

P.N1 D n1; : : : ; Nm D nm j N D n/ D nŠ

n1Š : : : nmŠ
p
n1
1 : : : p

nm
m :

Then it follows that N1; : : : ; Nm are independent, with Nk having a Po.�pk/
distribution. Indeed, with n D n1 C � � � C nm and p1 C � � � C pm D 1,

P.N1 D n1; : : : ; Nm D nm/ D P.N1 D n1; : : : ; Nm D nm j N D n/ P.N D n/

D nŠ

n1Š : : : nmŠ
p
n1
1 : : : p

nm
m

�n

nŠ
e��

D .p1�/
n1

n1Š
e��p1 � � � .pm�/

nm

nmŠ
e��pm ;

which is the product of Poisson probabilities. Moreover,

EŒCk j I1� D EŒCk� D �pk EŒZ1�; k D 2; : : : ; m:

Again, EŒCk j I1� is deterministic and (3.5) is satisfied. Proposition 3.4 tells us that
the quadratic hedge is to buy EŒCk� D �pk EŒZ1� number of k bonds. The resulting
hedging error is

OA� L D EŒZ1��p1 �
N1X

iD1
Zi

and depends only on the outcome of claims settled during the first year.

3.4 Hedging of a Digital Option with Call Options

Let today be time 0 and let S1 be the spot price of some asset at time 1. Suppose
that there are call options with payoffs .S1 �Kl/C, for some 0 < K1 < � � � < Kn,
at time 1 available on the market and that we may take arbitrary long and short
positions in these contracts. Suppose that we issue a digital option with payoff
I fS1 > Kg at time 1 and that we want to hedge its payoff at time 1 as much as
possible by forming a suitable portfolio of call options.



60 3 Quadratic Hedging Principles

First, note that I fS1 > Kg can be approximated by

.S1 � .K � ı//C � .S1 �K/C
ı

D
8
<

:

0 if S1 < K � ı;
.S1 �K C ı/=ı if S1 2 ŒK � ı;K�;

1 if S1 > K;

so we can hedge the digital option arbitrarily well if call options with strikes
arbitrarily close to K are available on the market. This is unfortunately not realistic
as it would make digital options redundant since they could then be formed as call
option portfolios. However, an approximate hedge is obtained by looking for strikes
Kl < KlC1 close to K and approximating I fS1 > Kg by

f .S1;Kl ;KlC1/ D .S1 �Kl/C � .S1 �KlC1/C
KlC1 �Kl

; (3.6)

which corresponds to taking a long position in the call option with strike Kl of
size .KlC1 � Kl/

�1 and a short position in the call option with strike KlC1 of
the same size. Note that f .S1;Kl ;KlC1/ � I fS1 > Kg if KlC1 � K , whereas
f .S1;Kl ;KlC1/ � I fS1 > Kg if Kl � K .

The accuracy of this approximate hedge depends not only on the approximation
of the payoff function but also, and possibly quite a lot, on the probability
distribution we assign to S1. For instance, if the probability distribution we assign
to S1 is such that the event fS1 > Kg has a probability of zero, whereas the event
fS1 D Kg has a positive probability, then the preceding hedge would be a rather
foolish choice.

To determine the quadratic hedge, we must compute the expected values of the
liability L D I fS1 > Kg and the hedging instruments Zl D .S1 � Kl/C, l D
1; : : : ; n as well as all the covariances. To this end we must compute the expectations

EŒI fS1 > Kg� D P.S1 > K/;

EŒ.S1 �Kl/C� D EŒI fS1 > Kl gS� �Kl P.S1 > Kl /;

EŒI fS1 > Kg.S1 �Kl/C� D EŒI fS1 > max.K;Kl /gS1� �Kl P.S1 > max.K;Kl //;

EŒ.S1 �Kl/C.S1 �Km/C� D EŒI fS1 > KmgS21 � � .Kl CKm/EŒI fS1 > KmgS1�
CKlKm P.S1 > Km/:

In the last equation, we have assumed 0 < Kl � Km.
To get any further we need a stochastic model for S1. Let us assume that S1 has a

lognormal distribution; logS1 is N.�; �2/-distributed. Then, with eKl D .logKl �
�/=� , we may write

P.S1 > Kl/ D P.�C �Z > logKl/ D 1 �˚..logKl � �/=�/ D ˚.�eKl/:
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The remaining terms are not difficult to compute:

EŒI fS1 > KlgS1� D
Z 1

eKl

e�C�ze�z2=2 1p
2�
d z

D e�C�2=2
Z 1

QKl
e�.z��/2=2 1p

2�
d z

D e�C�2=2˚.� � eKl/

and

EŒI fS1 > KlgS21 � D e2�C2�2˚.2� � eKl/:

With L D I fS1 > Kg and Zl D .S1 �Kl/C we can determine the optimal time 1
quadratic hedge by Proposition 3.2 as

h D ˙T
L;Z˙

�1
Z ;

h0 D EŒL� � hT EŒZ�:

From the preceding computations we find that EŒL� D ˚.�eK/, EŒZl � D
e�C�2=2˚.� � eKl/ �Kl˚.�eKl/,

.˙L;Z/l D EŒI fS1 > KlgS1� � EŒI fS1 > Klg�EŒS1�
D e�C�2=2˚.� � max.eK; eKl//�Kl˚.� max.eK; eKl//

�˚.�eK/.e�C�2=2˚.� � eKl/ �Kl˚.�eKl//;

and

.˙Z/l;m D EŒ.S1 �Kl/C.S1 �Km/C� � EŒ.S1 �Kl/C�EŒ.S1 �Km/C�

D e2�C2�2˚.2� � eKm/ � .Kl CKm/e
�C�2=2˚.� � eKm/

CKlKm˚.�eKm/ � .e�C�2=2˚.� � eKl/ �Kl˚.�eKl//

� .e�C�2=2˚.� � eKm/�Km˚.�eKm// for l � m:

Now we have all we need to compute the quadratic hedge. But what does it look like
in a numerical example? Our intuition tells us to expect that a good hedge is similar
to (3.6). Next follows a numerical example that investigates if the quadratic hedge
is of a similar type.

Example 3.9 (Numerical illustration). Let logS1 be N.�; �2/-distributed with � D
0:05 and � D 0:3, and consider a digital option with payoff I fS1 > Kg with
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Table 3.1 Robustness of the quadratic hedge

.�; �/ h0 h1 h2 h3 h4 h5 Var

(0.05,0.3) 0.006 �0:926 12.718 �12:975 1.469 �0:293 0.0096
(0.05,0.5) 0.003 �0:881 12.641 �12:912 1.400 �0:258 0.0058
(0.3,0.7) 0.003 �0:878 12.633 �12:890 1.375 �0:240 0.0039
.�0:05; 0:1/ 0.014 �0:995 12.844 �13:443 2.626 �1:636 0.0177

K D 1:05. Suppose that a risk-free zero-coupon bond and five call options on
S1 are available as hedging instruments, and suppose that the strikes are given
by 0:9; 1:0; 1:1; 1:2; 1:3. Let h0 be the position in the bond, and let h1; : : : ; h5
be the positions in the call options. The optimal quadratic hedge is given, with
h D .h1; : : : ; h5/

T, by

hT D ˙T
L;Z˙

�1
Z and h0 D EŒL� � hT EŒZ�:

Evaluating .h0; h1; : : : ; h5/ numerically, using the expressions above, gives
(rounded off to three decimals)

.0:006;�0:926; 12:718;�12:975; 1:469;�0:293/:

The variance of the payoff of the digital option is approximately 0:250, and the
variance of the optimally hedged position is approximately 0:0096. The optimal
quadratic hedge matches rather well to the natural hedge (3.6) withKl D K2 D 1:0

and KlC1 D K3 D 1:1. This hedge corresponds to the position .0; 0; 10;�10; 0; 0/,
i.e., a long position of 10 call options with strike 1:0 and a short position of 10
call options with strike 1:1. The variance of the hedged position using this hedge is
approximately 0:0105.

So how robust is the optimal quadratic hedge to variations in the probability
distribution assigned to S1? Table 3.1 shows the effect of varying the parameters
� and � on the positions h0; h1; : : : ; h5 of the optimal quadratic hedge and on the
variance of the hedged positions.

As we can see from Table 3.1, the quadratic hedge is not sensitive to the choice of
the parameters� and � . The portfolio weights do not change much as the parameter
values are varied.

3.5 Delta Hedging

Let S0, St , and ST be the spot prices of some pure investment asset at times 0 < t <
T , where 0 is the current time. The asset could be an exchange rate between two
currencies or a share of a non-dividend-paying stock. Consider a financial contract
with payoff g.ST / at time T , and suppose that the price of the contract at time t < T
can be expressed as a function f of St , where the function f is known at time 0
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and has a derivative f 0. The assumption that the price of the contract at time t can
be expressed as f .St / with f known at time 0 is not entirely realistic but often a
reasonable approximation if t is small.

Example 3.10 (Black’s formula). If the price of the financial contract is expressed
through Black’s formula (1.5) and time is measured in years, then

�0 D e�r0;T T
Z 1

�1
g.S0e

r0;T TC�0
p
T z��20 T=2/	.z/d z;

where r0;T is the current zero rate for a zero-coupon bond maturing at time T , �0 is
the current implied volatility for this derivative, and 	 is the standard normal density
function. The derivative price at time t is given by

�t D e�rt;T .T�t /
Z 1

�1
g.Ste

rt;T .T�t /C�t
p
T�tz��2t .T�t /=2/	.z/d z

� e�r0;T .T�t /
Z 1

�1
g.Ste

r0;T .T�t /C�0
p
T�tz��20 .T�t /=2/	.z/d z

D f .St /;

where the approximation �t � f .St / is likely to be accurate if t is small and
changes in the derivative price are most likely due to changes in the spot price of the
underlying asset and, to a lesser extent, to changes in the term structure of interest
rates and changes in the implied volatility.

Suppose that we want to hedge f .St / by taking positions h1 in the underlying
asset and h0 in a zero-coupon bond maturing at t in order to minimize EŒ.h0Ch1St�
f .St //

2�. We assume that both f .St / and St have finite and nonzero variances. We
know, from Proposition 3.2, that the optimal quadratic hedge .h0; h1/ is given by

h1 D Cov.f .St /; St /

Var.St /
and h0 D EŒf .St /�� h1 EŒSt �:

It is rather common that the optimal position .h0; h1/ is difficult to compute, both
because of the nonlinear function f and because we may have difficulties assigning
a probability distribution to St . It would greatly simplify things if we could use a
first-order Taylor approximation to approximatef .St / � f .EŒSt �/Cf 0.EŒSt �/.St�
EŒSt �/. In this case,

h1 � f 0.EŒSt �/ and h0 � f .EŒSt �/ � f 0.EŒSt �/EŒSt �:

We also observe that in this case, the hedging error is h0 C h1St � f .St / D
f .EŒSt �/C f 0.EŒSt �/.St � EŒSt �/ � f .St /, which is the approximation error when
approximating f .St / with the first-order approximation of f around the point
EŒSt �, evaluated at St . Moreover, if t is small, then it is reasonable to approximate
EŒSt � � S0, and therefore

h1 � f 0.S0/ and h0 � f .S0/ � f 0.S0/S0:
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This hedging approach is called delta hedging. Notice that for this approximative
solution to the quadratic hedging problem we do not need to assign any probability
distributions to the future spot prices. However, this nice feature of the delta hedging
approach comes at a cost: the approximation is only accurate for small t , which calls
for frequent adjustments of the hedge, which in turn produces hedging costs.

The delta hedging approach deserves more than the heuristic arguments pre-
sented so far.

Proposition 3.5. Let f be differentiable in a neighborhood of S0, and suppose that
f .St / and St have finite and nonzero variances for t sufficiently small. Then

Cov.f .St /; St /

Var.St /
D f 0.EŒSt �/C o.Var.St //: (3.7)

In particular, if limt!0 EŒSt � D S0 and limt!0 Var.St / D 0, then

lim
t!0

Cov.f .St /; St /

Var.St /
D f 0.S0/:

In the proposition, the notation o.�/ is used. A function f .x/ is in o.g.x// if
limx!0 f .x/=g.x/ D 0.

Proof. Write f .St/ D f .EŒSt �/Cf 0.EŒSt �/.St �EŒSt �/CR, where by construction
the error term is

R D
�
f .St /� f .EŒSt �/

St � EŒSt �
� f 0.EŒSt �/

�
.St � EŒSt �/:

We get Cov.f .St /; St / D f 0.EŒSt �/Var.St /C Cov.R; St /, where, for any M > 0,
we can write

Cov.R; St / D EŒ.R � EŒR�/.St � EŒSt �/I fjSt � EŒSt �j � M Var.St /g� (3.8)

C EŒ.R � EŒR�/.St � EŒSt �/I fjSt � EŒSt �j > M Var.St /g�: (3.9)

Since Cov.R; St / is a finite number, for a given small " > 0 we can take M large
enough so that the absolute value of the second term (3.9) is smaller than ". We now
deal with the first term (3.8) and first notice that its absolute value is bounded from
above by

j EŒR�EŒ.St � EŒSt �/I fjSt � EŒSt �j � M Var.St /g�j D o.Var.St //

plus the absolute value of

E

��
f .St /� f .EŒSt �/

St � EŒSt �
� f 0.EŒSt �/

�
.St � EŒSt �/

2 j jSt � EŒSt �j � M Var.St /


;
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which in turn is bounded from above by

max
jx�EŒSt �j�M Var.St /

ˇ̌
ˇ̌f .x/ � f .EŒSt �/

x � EŒSt �
� f 0.EŒSt �/

ˇ̌
ˇ̌Var.St / D o.Var.St //:

Therefore,

ˇ̌
ˇ̌Cov.f .St /; St /

Var.St /
� f 0.EŒSt �/

ˇ̌
ˇ̌ � o.Var.St //C ":

Since " > 0 was arbitrary, we conclude that

ˇ̌
ˇ̌Cov.f .St /; St /

Var.St /
� f 0.EŒSt �/

ˇ̌
ˇ̌ D o.Var.St //: �

Example 3.11 (Delta hedging of call options). Recall the Black–Scholes formula
(1.7) for call options: C0 D S0˚.d1/ � B0K˚.d1 � �

p
T /. The partial derivative

of C0 with respect to S0 is given by

@C0

@S0
D ˚.d1/C

�
S0	.d1/� B0K	.d1 � �

p
T /
� @d1
@S0

;

where 	.z/ D expf�z2=2g=p2� is the standard normal density function. Moreover,

d21 D
�

log.S0=.B0K//

�
p
T

�2
C �2T

4
C log.S0=.B0K//;

.d1 � �p
T /2 D

�
log.S0=.B0K//

�
p
T

�2
C �2T

4
� log.S0=.B0K//

D d21 � 2 log.S0=.B0K//:

Therefore,

@C0

@S0
D ˚.d1/C

�
S0	.d1/� B0K	.d1 � �

p
T /
� @d1
@S0

D ˚.d1/C
 
S0
e�d21 =2p
2�

� B0Ke
log.S0=B0K/

e�d21 =2p
2�

!
@d1

@S0

D ˚.d1/:

We conclude that delta hedging of call options in the Black–Scholes model amounts
to holding ˚.d1/ units of the underlying asset.
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3.5.1 Dynamic Hedging of a Call Option

Suppose we have issued a European call option with strike price K on the value
of a share of a stock at time T > 0 that does not pay dividends from now until
maturity of the option. We want to delta hedge the call option at times k� D kT=n

for k D 0; : : : ; n � 1 and analyze the distribution of the hedging cost.
Suppose that the market prices the call option such that the price C0 corresponds

to using the Black–Scholes formula with implied volatility �I . This means that C0
is the discounted expected option payoff given that the value of the share at time T
is lognormally distributed, LN.logS0 C .r � �2I =2/T; �

2
I T /, where r is the time-T

zero-coupon bond rate and S0 is the current share price.
Suppose also that we believe that the log-returns log.StC�t=St/ of the spot price

over nonoverlapping periods of length �t are independent and N.��t; �2S�t/-
distributed so that the spot price at maturity of the option is LN.logS0 C�T; �2ST /-
distributed. Suppose also that we believe that the implied volatility of the option will
not change from now until maturity.

To make the argument clearer, we set the interest rate to zero. We will analyze
the costs of repeated delta hedging over the lifetime of the option. Therefore, we
cannot ignore transaction costs. To make things simple, we suppose that transaction
costs only come from the bid–ask spread: when modifying the delta hedge position
in the stock we buy for the higher ask price and sell for the lower bid price. We
assume that the bid–ask spread does not vary over time. Moreover, we take the time
t share price St to be a middle price (the average of the bid and ask prices) and also
assume that the settlement price on which the option payoff is calculated is a middle
price. We take the time t bid and ask prices to be St � � and St C �, respectively,
where � is constant.

At time 0 we approximate

C�t � C0 C @C0

@S0
.S�t � S0/:

This means that we should take a position @C0=@S0 in the stock and a position
C0�.@C0=@S0/S0 in cash. The incomeC0 from issuing the option matches precisely
the initial hedging costs if there are no transaction costs. With transaction costs, the
initial hedging cost is �@C0=@S0. At time �t we approximate

C2�t � C�t C @C�t

@S�t
.S2�t � S�t/:

This means that we should modify the position in the underlying stock from
@C0=@S0 to @C�t=@S�t and modify the cash position from C0 � .@C0=@S0/S0 to
C�t � .@C�t=@S�t/S�t . The cost (possibly negative) for modifying the hedge is
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�
@C�t

@S�t
� @C0

@S0

�
S�t C C�t C

ˇ̌
ˇ̌@C�t
@S�t

� @C0

@S0

ˇ̌
ˇ̌� � @C�t

@S�t
S�t �

�
C0 � @C0

@S0
S0

�

D C�t � C0 � @C0

@S0
.S�t � S0/C

ˇ̌
ˇ̌@C�t
@S�t

� @C0

@S0

ˇ̌
ˇ̌�:

At time k�t we approximate

C.kC1/�t � Ck�t C @Ck�t

@Sk�t

�
S.kC1/�t � Sk�t

�
:

This means that we should modify the position in the stock from @C.k�1/�t=@S.k�1/�t
to @Ck�t=@Sk�t and the cash position fromC.k�1/�t�.@C.k�1/�t=@S.k�1/�t/S.k�1/�t
to Ck�t � .@Ck�t=@Sk�t /Sk�t . The cost for modifying the hedge is

�
@Ck�t

@Sk�t
� @C.k�1/�t
@S.k�1/�t

�
Sk�t C

ˇ̌
ˇ̌@Ck�t
@Sk�t

� @C.k�1/�t
@S.k�1/�t

ˇ̌
ˇ̌�C Ck�t � @Ck�t

@Sk�t
Sk�t

�
�
C.k�1/�t � @C.k�1/�t

@S.k�1/�t
S.k�1/�t

�

D Ck�t � C.k�1/�t � @C.k�1/�t
@S.k�1/�t

�
Sk�t � S.k�1/�t

�C
ˇ̌
ˇ̌@Ck�t
@Sk�t

� @C.k�1/�t
@S.k�1/�t

ˇ̌
ˇ̌�:

At time T we pay the option payoff CT D max.ST � K; 0/ in cash and receive
money from selling off the position in the stock and cash. The cost is therefore

max.ST �K; 0/�
�
@C.n�1/�t
@S.n�1/�t

.ST � �/C C.n�1/�t � @C.n�1/�t
@S.n�1/�t

S.n�1/�t
�

D Cn�t � C.n�1/�t � @C.n�1/�t
@S.n�1/�t

�
Sn�t � S.n�1/�t

�C @C.n�1/�t
@S.n�1/�t

�:

The aggregate hedging cost is therefore

max.ST �K; 0/� C0 �
nX

kD1

@C.k�1/�t
@S.k�1/�t

�
Sk�t � S.k�1/�t

�

C �

 
@C0

@S0
C @C.n�1/�t
@S.n�1/�t

C
n�1X

kD1

ˇ̌
ˇ̌@Ck�t
@Sk�t

� @C.k�1/�t
@S.k�1/�t

ˇ̌
ˇ̌
!
:

Let us investigate the performance of the delta hedge numerically. In the first
numerical, example the market’s implied volatility coincides with ours, �I D �S .
In the second example, we believe the market’s implied volatility is too high,
�I > �S , and we could make a profit if our view were correct.
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Example 3.12 (Equal volatilities). Suppose that S0 D 100, K D 110, T D 0:5,
�I D 0:2, r D 0, n D 50, �t D T=50, � D ��2I =2, and �S D �I . This means that
the distribution of the log returns coincides with the view of the market in the sense
that C0 D EŒmax.ST �K; 0/� and

Sk�t D S0

kY

jD1
exp

n
��t C �S

p
�tZj

o
D S0

kY

jD1
exp



��

2
I

2
�t C �I

p
�tZj

�
;

where Z1; : : : ; Zk are independent and N.0; 1/-distributed. In particular, EŒSk�t � D
S0. The upper left plot in Fig. 3.1 shows a histogram of the aggregate hedging result
based on 104 simulated spot price trajectories when trading costs are not included.
The upper right plot in Fig. 3.1 shows the corresponding result when trading costs
are included, � D 0:5.

Example 3.13 (Unequal volatilities). Suppose that S0 D 100, K D 110, T D 0:5,
�I D 0:2, r D 0, n D 50, �t D T=50, � D 0, and �S D 0:15. This means that the
distribution of the log returns is such that C0 > EŒmax.ST � K; 0/�, we expect the
spot price to fluctuate rather slowly (�S < �I ), and

Sk�t D S0

kY

jD1
expf��t C �S

p
�tZj g D S0

kY

jD1
exp

n
�S

p
�tZj

o
;

where Z1; : : : ; Zk are independent and N.0; 1/-distributed. In particular, EŒSk�t � >
S0. The lower left plot in Fig. 3.1 shows a histogram of the aggregate hedging result
based on 104 simulated spot price trajectories when trading costs are not included.
The lower right plot in Fig. 3.1 shows the corresponding result when trading costs
are included, � D 0:5.

Examples 3.12 and 3.13 show it is only wise to issue or short-sell a call option and
delta hedge the option if we consider the difference �I � �S between the implied
volatility and our subjective assessment of the volatility to be positive and large
enough. Moreover, we must take the bid–ask spread of the underlying stock into
account in order to accurately assess whether a short position in the option together
with dynamic delta hedging is a good deal. If before maturity of the option the
implied volatility changes so that �I ��S is no longer large enough, then we should
close the short position in the option and the position in the stock. Otherwise, we
are likely to start accumulating losses.

3.6 Immunization of Cash Flows

Let r D .r1; : : : ; rn/
T be a vector whose components are the current zero rates for

the maturity times 0 < t1 < � � � < tn, and let �r be a vector whose components
are instantaneous changes in the zero rates. We consider a liability whose present
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Fig. 3.1 Aggregate results of dynamic delta hedging of a short position in a call option. Upper
plots: hedging results for �I D �S D 0:2. Lower plots: hedging results for �I D 0:2 > 0:15 D �S .
The plots to the right show the hedging results when transaction costs are included

value is given by P.r/. If the liability is a deterministic cash flow f.ck; tk/ W k D
1; : : : ; ng, then

P.r/ D
nX

iD1
ci e

�ri ti :

We face the risk that the value of the liability will increase due to an unfavorable
outcome of �r. Therefore, we want to purchase a hedging portfolio that costs
P.r/ with the property that the current net value of the hedging portfolio and the
liability is zero and such that the net value is immune (or at least insensitive) to
zero rate changes �r. The hedging portfolio is made up of positions h1; : : : ; hm in
m hedging instruments whose present values are given by Pk.r/ for k D 1; : : : ; m.
The hedging instruments may be thought of as traded bonds. We will present a
widely used approach, called immunization, to the hedging of the liability over a
short time period.
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Note that a perfect hedge against an instantaneous change in the zero rates is
obtained by taking positions h1; : : : ; hm so that

mX

kD1
hkPk.r C�r/ D P.r C�r/

for all �r. We are not likely to solve this problem since it would require the
aggregate cash flow of the hedging instruments to match perfectly the liability cash
flow. For instance, if the cash flow times of the liability do not match those of
the traded cash flows, then a perfect cash flow matching cannot be constructed.
Instead we assume that�r is likely to be small, which is reasonable because we are
considering a short time period, and consider the first-order Taylor approximation:

P.r C�r/ � P.r/C rP.r/T�r; (3.10)

where rP.r/ is the gradient

rP.r/T D
�
@P

@r1
; : : : ;

@P

@rn

�
.r/;

and similarly for the hedging instruments. The resulting system of equations is
given by

mX

kD1
hkPk.r/ D P.r/ and

mX

kD1
hkrPk;.r/T�r D rP.r/T�r:

In vector notation the two equations are written as

hTP.r/ D P.r/ and hTrP.r/�r D rP.r/T�r;

where P.r/ D .P1.r/; : : : ; Pm.r//T and

rP.r/ D

0
BB@

@P1
@r1
.r/ � � � @P1

@rn
.r/

:::
: : :

:::
@Pm
@r1
.r/ � � � @Pm

@rn
.r/

1
CCA :

Instead of considering the change�r of the zero rates as a random vector, we select
a number of deterministic scenarios denoted �r1; : : : ; �rq and look for positions
h1; : : : ; hm that make the portfolio immune to these scenarios. To find such positions
h1; : : : ; hm, we must solve the following system of equations:
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mX

kD1
hkPk.r/ D P.r/; (3.11)

mX

kD1
hkrPk.r/T�rl D rP.r/T�rl for l D 1; : : : ; q: (3.12)

Since both the left- and right-hand sides are linear in �rl , only the directions
�rl =j�rl j of the scenario vectors are relevant, not their norms j�rl j.

The changes in the zero rates for different maturity times have a strong positive
dependence; typically they all move up or they all move down. Without a detailed
analysis it therefore seems wise to first consider the normalized scenario�r1 D �1,
which corresponds to a downward parallel shift of the zero-rate curve. As protection
against a parallel shift, we take positions h1; : : : ; hm, solving

hTP D P and hTrP1 D rP T1:

Here we have suppressed the dependence on the current zero rates by writing P D
P.r/ and P D P.r/. Since there are only two equations to be satisfied, immunization
against small parallel shifts requires only two hedging instruments. It suffices to pick
indices j; k and solve

. hj hk /

�
Pj
Pk

�
D P and . hj hk /

 
rP T

j 1
rP T

k 1

!
D rP T1:

The two equations may be written in matrix notation as

 
Pj PkPn
iD1

@Pj
@ri

Pn
iD1

@Pk
@ri

!�
hj
hk

�
D
 

PPn
iD1 @P@ri

!
: (3.13)

Finding a portfolio hj ; hk that is immune to parallel shifts of the zero-rate curve is
therefore simply a matter of inverting the 2�2 matrix.

Example 3.14 (Deterministic cash flows). Consider a deterministic cash flow that
produces the cash flow ck at time tk for k D 1; : : : ; n. The current value of the cash
flow is

P D P.r/ D
nX

kD1
cke

�rktk ;

and the partial derivatives are given by

@P

@rk
D @P

@rk
.r/ D �tkcke�rktk :
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We conclude that if the liability and the hedging instruments can be represented
as deterministic cash flows, then all the expressions needed to determine the
immunization portfolio are easy to compute.

Remark 3.1 (Duration). A normalized measure of sensitivity of an interest rate
security to an instantaneous change�r in the zero rate is

D.P;�r/ D �rP.r/T�r
P.r/

:

Clearly, this choice of sensitivity measure makes sense only when P.r/ ¤ 0.
The sensitivities D D D.P; 1/ and Dk D D.Pk; 1/ are called the durations
of the liability and hedging instruments, respectively. The durations measure the
sensitivities of the values of the liability and hedging instrument to a small parallel
shift in the zero-rate curve.

If P.r/ is the present value of a deterministic cash flow that produces the cash
flow ck at time tk , for k D 1; : : : ; n, then it follows from the computations in
Example 3.14 that

D D
nX

kD1
tk

cke
�rktk

Pn
jD1 cj e�rj tj :

Therefore, the durationD is the weighted mean value of the cash flow times, where
the kth weight is the fraction of the present value of the entire cash flow that refers
to the kth cash flow time. In particular, the duration of a zero-coupon bond is the
maturity time of the bond.

The immunization equation (3.13) can be written in terms of durations as follows:

�
Pj Pk
PjDj PkDk

��
hj
hk

�
D
�
P

PD

�
:

The solution is given by

�
hj

hk

�
D 1

PjPk.Dk �Dj /

�
PkP.Dk �D/
PPj .D �Dj /

�
:

In particular, choosing the bonds such that Dj < D < Dk ensures that the solution
corresponds to long positions in both bonds.

Example 3.15 (Interest rate swap). In this example we illustrate how interest rate
swaps can be useful for immunization against the effects of parallel shifts of the
zero-rate curve for an insurance company whose liability cash flows stretch far into
the future.

Many life insurers, and certain nonlife insurers, face liabilities corresponding to
payments 10, 20, and even more than 30 years into the future. If the liabilities are
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valued using a zero-rate curve corresponding to government bonds, then the assets
of the insurer should include government bonds with long maturities in order to
make the net value of assets and liabilities insensitive to changes in the zero-rate
curve. However, due to the rather limited supply of government bonds with long
maturities, it is difficult and costly to set up such a bond portfolio.

Suppose the insurer’s liabilities have the current value PL.r/ and that the asset
portfolio intended to match the liabilities has current value PA.r/. Similar to
Eqs. (3.11) and (3.12), the insurer would be immune to instantaneous parallel shifts
of the zero-rate curve if

PA.r/ D PL.r/ and rPA.r/T1 D rPL.r/T1:

Here we assume that the insurer’s asset portfolio mainly consists of long positions
in bonds with relatively short maturities, whereas it faces liabilities that may require
payments to policyholders for a very long time, so that the duration of the assets is
shorter than that of the liabilities. In this case,

PA.r/ D PL.r/ and 0 < rPA.r/T.�1/ < rPL.r/T.�1/:

The second inequality implies that if interest rates fall (by a parallel shift), then the
asset portfolio will be worth less than the liability. Moreover, the sensitivity of the
value of the liabilities to an increase or decrease in interest rates is greater than that
of the assets.

We will now show how the mismatch between the assets’ and liabilities’
sensitivities to interest rate changes can be handled by the insurer entering an interest
swap agreement as the swap’s fixed-rate receiver. Zero rates from government
bonds are not the same as zero rates from interest rate swaps in the local currency.
However, changes in the two zero-rate curves are highly correlated, and it is a
reasonable approximation to assume that, over a short time period, the swap zero
rates can be expressed as r C s, where s is a constant vector representing the credit
spreads for different maturity times (representing the fact that a commercial bank
may have a higher probability than a government to fail to deliver a contracted cash
flow).

From Example 1.3 (with the same kind of swap and notation) we know that the
initial value of the swap for the fixed-rate receiver is

L

 
c

nX

kD1
e�.rkCsk/tk C e�.rnCsn/tn � 1

!
D 0;

where c is the number for which the initial value is zero. Therefore, the value of
the asset portfolio after entering the swap remains the same, and PA.r/ D PL.r/.
However, by adding the swap to the asset portfolio, the sensitivity of the asset
portfolio value as a function of the zero rates, in the direction �1, changes from
rPA.r/T.�1/ to
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rPA.r/T.�1/C Lc

nX

kD1
tke

�.rkCsk/tk C Ltne
�.rnCsn/tn > rPA.r/T.�1/:

In particular, by entering into a swap agreement with an appropriate notional
principal as the fixed-rate receiver, the sensitivity of the insurer’s assets to parallel
shifts in the zero-rate curve can be modified to equal that of the liabilities.

3.6.1 Immunization and Principal Component Analysis

It is reasonable to consider scenarios other than a parallel shift. But how do we
select good scenarios �r1; : : : ; �rq in the sense that they correspond to likely zero
rate changes? Additionally, there should be as little redundancy as possible among
the scenarios. We now present a useful approach to finding suitable scenarios called
principal component analysis (PCA).

The symmetric and positive-definite matrix Cov.�r/ may be expressed as the
product Cov.�r/ D ODOT, where D is a diagonal matrix with the (strictly positive)
eigenvalues �1; : : : ; �n of Cov.�r/ as diagonal elements and O is an orthogonal
matrix (meaning that OOT D OTO D I is the identity matrix) whose columns
o1; : : : ; on are eigenvectors of Cov.�r/, orthogonal and of length one. We may
without loss of generality assume that the columns of D and O are ordered so that
the diagonal elements in D appear in descending order. Set�r� D OT.�r �EŒ�r�/
and note that

Cov.�r�/ D EŒOT.�r � EŒ�r�/.�r � EŒ�r�/TO� D OT Cov.�r/O D D;

i.e., the components of �r� are uncorrelated and have variances �1 � � � � � �n,
in that order. The transformation of �r into �r� D OT.�r � EŒ�r�/ has a natural
geometric interpretation. Consider a sample of independent copies of �r and its
scatter plot. The point cloud is first centered to have zero mean. Suppose that it
has the shape of an ellipsoid. Multiplication by an orthogonal matrix corresponds to
rotating the ellipsoidal point cloud. Here, it is rotated until the main axes are parallel
to the coordinate axes.

We may write, with ek being the kth standard unit vector in R
n,

nX

kD1
�rkek D �r D OOT�r D EŒ�r�C O�r� D EŒ�r�C O

nX

kD1
�r�

k ek

D EŒ�r�C
nX

kD1
�r�

k ok:
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This shows that the components of�r are correlated when expressed in terms of the
standard basis fe1; : : : ; eng for Rn; however, they are uncorrelated when expressed
in the alternative orthonormal basis fo1; : : : ; ong of Rn.

If we study

jX

kD1
�k

,
nX

kD1
�k

as a function of j , then we typically find that its value for j D 1 is close to
one. This means that the variability of �r is mainly in the direction of the first
principal component o1 and that �r � EŒ�r� C �r�

1 o1 is a reasonably accurate
approximation. To improve the accuracy of the approximation, we may pick a small
j , j D 1; 2; or 3, say, and approximate�r by

EŒ�r�C
jX

kD1
�r�

k ok:

For �r corresponding to zero rate changes over a short time interval, we typically
find that EŒ�r� � 0 and that o1 � ˙1=

p
n. In particular, the first principal

component represents the most likely scenario corresponding to a parallel shift
in the zero-rate curve. The second principal component o2 typically is a vector
whose first components are positive and whose remaining components are negative
(or vice versa). This eigenvector corresponds to an increase in zero rates for short
maturity times and a decrease in zero rates for long maturity times (or vice versa).
The arguments so far strongly indicate that a good choice for a hedging portfolio is
obtained by solving

mX

kD1
hkPk.r/ D P.r/; (3.14)

mX

kD1
hkrPk.r/Tol D rP.r/Tol for l D 1; : : : ; q; (3.15)

where ok are the principal components and q is the number of considered principal
components. It is often sufficient to take q equal to two or three.

Example 3.16 (Immunization for a nonlife insurer). Consider a nonlife insurer
who faces the random cash flow .C1; : : : ; Cn/ over the next n quarters from the
settlement of claims due to events that have already occurred and events that will
occur during the current year. The insurer has estimated the expected sizes of
the payments for the next n quarters, EŒC1�; : : : ;EŒCn�. Ideally, from a quadratic
hedging perspective, the insurer should construct a hedge against the randomness in
the cash flow .C1; : : : ; Cn/ by purchasing a portfolio of EŒCk� k-quarter zero-coupon
bonds (with face value 1) for k D 1; : : : ; n. However, from a practical perspective,
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Table 3.2 Available bonds Bond #1 #2 #3 #4

Bond price 105.14 108.45 109.98 112.39
Maturity (quarters) 1 7 18 40
Annual coupon 5.25 5.5 4.5 5.0
Face value 100 100 100 100
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Fig. 3.2 Left plot: cash flow from bond portfolio (positive) and expected cash flow from claim
settlement (negative). Time is on the x-axis and payment amounts are on the y-axis. Right plot: the
first three principal components (parallel shifts, changes in slope, and changes in curvature) explain
85%, 13%, and 1%, respectively, of the variability (variance) in quarterly zero rate changes. The
time to maturity is on the x-axis

the insurer has to hedge with whatever suitable hedging instruments are available.
Here we assume that the available hedging instruments are the risk-free bonds,
most of which are paying coupons, specified in Table 3.2. The aim of the insurer
is therefore to buy a bond portfolio whose value closely matches the ideal quadratic
hedging portfolio it cannot buy. To this end, we think of a portfolio consisting of
EŒCk� k-quarter zero-coupon bonds for k D 1; : : : ; n as the liability and try to find
a matching portfolio of available bonds that is immune to changes in the zero rates.
The expected negative cash flow for the insurer is illustrated in the left-hand plot in
Fig. 3.2 and numerically in Table 3.3. Data on quarterly changes in the zero rates
for Swedish government bonds over more than a decade for the maturity times 3
months, 6 months, 9 months, and 1 up to 10 years were used in this example. The
current zero rates are given in Table 3.4. The immunization approach is applied with
three scenarios, o1; o2; o3, that were taken to be the first three principal components
extracted as eigenvectors of the empirical covariance matrix of quarterly zero rate
changes. The scenarios o1; o2; o3 are illustrated graphically in the right-hand plot in
Fig. 3.2 and numerically in Table 3.4. The zero rates for the maturities not listed in
Table 3.4 were obtained by linear interpolation between available zero rates.

A matching bond portfolio made up of the four bonds in Table 3.2 is found by
solving the linear system of Eqs. (3.14) and (3.15), with P1.r/; : : : ; P4.r/ being the
prices of the four available bonds. Computations similar to those in Example 3.14
lead to
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Table 3.3 Expected cash flow of liability

Time 0.25 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
EŒCk� 27.20 49.47 67.70 82.63 67.65 55.39 45.35 37.13 30.40 24.89

Time 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.5 4.75 5.00
EŒCk� 20.38 16.68 13.66 11.18 9.16 7.50 6.14 5.02 4.11 3.37

Time 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50
EŒCk� 2.76 2.26 1.85 1.51 1.24 1.01 0.83 0.68 0.56 0.46

Time 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00
EŒCk� 0.37 0.31 0.25 0.20 0.17 0.14 0.11 0.09 0.08 0.06

First row: time to maturity (years) k=4; second row: expected payment EŒCk�, k D 1; : : : ; 40

P1.r/ D 105:25 e�r1=4;

P2.r/ D 5:5 e�r33=4 C 105:5 e�r77=4;

P3.r/ D 4:5 e�r22=4 C � � � C 4:5 e�r1414=4 C 104:5 e�r1818=4;

P4.r/ D 5:0 e�r44=4 C � � � C 5:0 e�r3636=4 C 105:0 e�r4040=4;

and, for l D 1; : : : ; 4,

rP1.r/Tol D �105:25e�r1=4ol1;

rP2.r/Tol D �5:52
4
e�r33=4ol1 � 105:57

4
e�r77=4oj 7;

rP3.r/Tol D �4:52
4
e�r22=4ol1 � � � � � 4:514

4
e�r1414=4ol14 � 104:5

18

4
e�r1818=4ol18;

rP4.r/Tol D �5:04
4
e�r44=4ol1 � � � � � 5:0

36

4
e�r3636=4ol36 � 105:040

4
e�r4040=4ol40:

Similarly for the liability:

P.r/ D
40X

kD1
EŒCk�e

�rkk=40;

rP.r/Tol D �
40X

kD1

k

40
EŒCk�e�rkk=40olk; l D 1; : : : ; 4:

The portfolio weights h1; : : : ; h4 can now be computed as the solution to (3.14)
and (3.15), and the result is

h1 D 1:12; h2 D 3:74; h3 D 0:46; h4 D 0:07:



78 3 Quadratic Hedging Principles

T
ab

le
3.

4
Fi

rs
tt

hr
ee

pr
in

ci
pa

lc
om

po
ne

nt
s

o 1
;o
2
;o
3

of
Sw

ed
is

h
yi

el
d

cu
rv

e
w

it
h

ti
m

e
to

m
at

ur
it

y
(y

ea
rs

)
an

d
cu

rr
en

tz
er

o
ra

te
s

(z
.r

.)
as

pe
rc

en
ta

ge
(%

)

T
im

e
0.

25
0.

5
0.

75
1

2
3

4
5

6
7

8
9

10

o 1
0.

20
36

0.
23

77
0.

26
09

0.
28

32
0.

32
07

0.
32

50
0.

31
47

0.
30

14
0.

28
76

0.
27

50
0.

26
52

0.
25

58
0.

24
77

o 2
�0

.5
16

3
�0

.4
25

2
�0

.3
65

5
�0

.2
96

1
�0

.0
90

7
0.

04
74

0.
11

85
0.

16
65

0.
19

78
0.

22
51

0.
23

95
0.

25
25

0.
26

13
o 3

�0
.5

28
9

�0
.1

25
7

0.
02

63
0.

22
78

0.
43

29
0.

37
45

0.
20

79
0.

05
78

�0
.0

51
7

�0
.1

64
2

�0
.2

23
8

�0
.2

89
4

�0
.3

38
0

z.
r.

0.
41

0.
51

0.
65

0.
82

1.
57

2.
16

2.
54

2.
82

3.
04

3.
23

3.
37

3.
49

3.
58



3.6 Immunization of Cash Flows 79

−20 −10 0 10 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Fig. 3.3 Left plot: histogram of P.r/er1=4 � P1=4.r C �r/ (without immunization). Right plot:
histogram of difference between future values of matching bond portfolio and liability (with
immunization)

The current value P.r/ of the liability, and therefore also that of the matching bond
portfolio, was found to be 582:12. The positive cash flow generated from the bonds
in the matching portfolio is illustrated in Fig. 3.2.

A small simulation study can be performed to evaluate the performance of the
immunization technique. Changes�r in the zero-rate curve were simulated 100,000
times from a multivariate normal distribution with mean � and covariance matrix
˙ estimated from the data of quarterly zero rate changes. A vector .X1; : : : ; Xn/T

with a normal distribution is drawn by first drawing independent standard normal
variablesZ1; : : : ; Zn and then setting

0

B@
X1
:::

Xn

1

CA D

0

B@
�1
:::

�n

1

CAC A

0

B@
Z1
:::

Zn

1

CA ;

where A is a matrix satisfying ˙ D AAT. For each simulated zero-rate curve,
r C �r, the value of the liability and matching bond portfolio were recalculated,
and the result is presented in Fig. 3.3. In the left-hand plot, the effect of investing the
amountP.r/ D 582:12 in a one-quarter zero-coupon bond and hoping for the best is
presented. The plot shows a histogram for the random variableP.r/er1=4�P1=4.rC
�r/ representing the difference between the asset and liability values one quarter
from now. The right-hand plot shows a histogram of the difference between the
value of a matching bond portfolio, using the immunization approach, and that of the
liability one quarter from now. Notice the difference in scale of the two probability
distributions. The matching bond portfolio gives a vast reduction of the net value
variability. Although the cash flows of the matching bond portfolio and the expected
value of the liability are quite different (left-hand plot in Fig. 3.2), the values of the
bond portfolio and the liability after one quarter are quite close.
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3.7 Notes and Comments

More material on conditional expectations and linear regression, which are the main
techniques used in this chapter, can be found in most intermediate-level books on
probability and statistics.

In Sect. 3.2 we illustrated the use of futures contracts for hedging. A much more
detailed presentation of futures contracts and futures markets can be found in the
book [21] by John Hull. Several examples in this chapter are concerned with hedging
of insurance liabilities. For an introduction to life insurance modeling we refer the
reader to Hans Gerber’s book [18]. For nonlife insurance a good reference is the
book [34] by Thomas Mikosch.

A duration measure, similar to the one presented here, was introduced in 1938
by Frederick Macaulay and was originally thought of as an empirical measure of
the length of a bond’s cash flow. The insurance mathematician Frank Redington
showed as early as 1952 how one could immunize a liability against value changes
due to zero rate changes by applying a Taylor series expansion on the net value of a
portfolio consisting of an asset portfolio and a liability. His rather general approach,
similar to the immunization approach presented here, was not based on the duration
concept. A historical account of the contributions of Macaulay and Redington is
found in [27] by Geoffrey Poitras.

3.8 Exercises

In the exercises below, it is assumed, wherever applicable, that you can take
positions corresponding to fractions of assets.

Exercise 3.1 (Annuity). Consider a life annuity contract that pays the holder a
yearly fixed amount from a certain time until the death of the holder of the contract.

(a) Suppose the value today of the random cash flow Ck in k years is EŒCk�e�rkk ,
where rk is the current k-year zero rate. All the current zero rates are assumed
to be known. Determine an expression for the current value of an annuity whose
holder is x years old, the annuity pays the yearly amount c starting from y years
from today, and the current mortality rate is given by the Gompertz–Makeham
formula �0.x/ D ACRe˛x .

(b) What is the current value of an annuity that make a yearly payment of $5,000
to an individual who is currently 65 years old if the k-year zero rate is 0:04
for all k, the parameters of the Gompertz–Makeham formula are A D 0:002,
R D e�12, and ˛ D 0:12, and the nearest yearly payment of the annuity is in
1 year.

Exercise 3.2 (Hedging with index futures). A bank has issued a European call
option with strike price 110 on the value ST of an index 1 year from today and
wants to hedge the risk from its short position in the call option. The index is not
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traded, but there is a market of index futures contracts that can be used as hedging
instruments, including a futures contract on the index value ST at time T . Moreover,
there is a zero-coupon bond available with priceB0 D 97 that matures in 1 year from
today with a face value of 100 and a money market account that pays a daily interest
rate of rt�1;t from day t � 1 to t (one unit of cash deposited on day t � 1 on the
account has increased to ert�1;t units on day t).

The bank believes that the index value ST can be modeled as ST D
100e0:035C0:1W , where W is standard normally distributed. The bank wants to use
the futures strategy, with an initial cost equal to the current futures price, presented
in Sect. 3.2 as a hedging instrument.

(a) Suppose the daily interest is deterministic and such that rt�1;t D r0;1 for
t D 1; : : : ; T . Convince yourself that r0;1 D �.1=365/ log.B0=100/, and
determine the quadratic hedge of the short position in the call option with a
zero-coupon bond and the futures strategy, i.e., determine the leverage of the
futures strategy and the number of zero-coupon bonds to buy (fractions of units
are allowed). Use the expressions computed in Exercise 1.4 to determine the
standard deviation of the hedging error.

(b) Simulate from the standard normal distribution and make a histogram of the
hedging error of the optimal portfolio in (a). Is the hedging error symmetric or
skewed?

(c) Suppose that the daily interest rate is random and such that r0;1 C � � � C rT�1;T
is N.0:0292; 0:0025/-distributed and independent of W . The money market
account can also be used as a hedging instrument to offset the additional
randomness originating from the money market account in the futures strategy.
Determine the quadratic hedge, i.e., the leverage of the futures strategy, the
initial balance on the money market account, and the number of zero-coupon
bonds to buy. Compare the result with the answer in (a).

(d) Simulate outcomes from two independent standard normally distributed random
variables and make a histogram of the hedging error of the optimal portfolio
in (c). Is the hedging error symmetric or skewed?

Exercise 3.3 (Leverage and margin calls). Suppose that a perceived arbitrage is
identified on the oil market: there are futures contracts maturing in 2 months at
a price of $99:95 per barrel of crude oil and the possibility of writing forward
contracts with a forward price of $100 per barrel for delivery of crude oil in
2 months. Here it is assumed, to simplify the analysis, that the daily resettlement
procedure for the futures contracts is replaced by a monthly resettlement procedure.
Therefore, there are only three times t D 0; 1; 2 (months) to consider. It is also
assumed that the interest rate on deposits on the margin account is zero.

(a) Determine an arbitrage portfolio.

The gain per barrel of crude oil on the arbitrage portfolio is small, and therefore
the investor needs a highly leveraged position, corresponding to a large number
of futures and forward contracts, to make a substantial amount of money on the
arbitrage opportunity. However, a highly leveraged position may require a lot of
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Table 3.5 Bond
specifications

Bond A B C D

Bond price ($) 98.51 100.71 111.55 198.96
Maturity (years) 0.5 1 1.5 2
Annual coupon ($) 0 4 12 8
Face value ($) 100 100 100 200

Half of the annual coupon is paid every 6 months from today
and including the time of maturity. The first coupon payment
is in 6 months

cash to maintain the balance on the margin account in response to changes in the
futures price and a subsequent margin call in 1 month. It is assumed that the investor
has a buffer of K D $10;000 at time t D 1, and if a margin call at t D 1 exceeds
K , then the investor experiences great difficulties with respect to borrowing money.
It is assumed that in this situation the investor may borrow money at a high interest
rate of R D 24% per year.

(b) Express the value of the portfolio in (a) in 2 months from today as a function of
the size of futures and forward contracts and a futures price of F1 at time 1.

(c) Suppose that F1 D F0 expf��2�=2C �
p
�Zg, where Z is standard normally

distributed, � D 0:6, and � D 1=12. Determine, numerically, the size h of the
position in the futures contracts that maximizes the expected portfolio value in
2 months.

(d) Illustrate the distribution of the portfolio value in 2 months in a histogram for
the portfolio in (c) that maximizes the expected payoff.

Exercise 3.4 (Immunization). Consider the bonds specified in Table 3.5. Half of
the annual coupon is paid every 6 months, until and including the time of maturity,
and the first coupon payment is in 6 months. Consider a company obliged to pay
$100,000 in 20 months. Form a bond portfolio consisting of only long positions in
(some of or all of) bonds A–D that makes the net value of the bond portfolio and
the liability immune to small parallel shifts in the zero-rate curve. The zero rates for
arbitrary maturity times are determined by linear interpolation between zero rates
for the maturity times of the four bonds.

Exercise 3.5 (Delta hedging with futures). Consider a futures contract and a
forward contract on the value ST of an asset at a future time T . Suppose that there
is a known interest rate that applies to any loans and deposits until time T and that
the cash flows of the futures and forward contracts will be delivered as contracted.

(a) Show that the current futures price equals the current forward price.
(b) Determine the delta hedge of a European call option on the future value of

a stock market index in terms of positions in a risk-free bond and a futures
contract on the future value of the stock market index, with the same time to
maturity as the call option. Use Black’s formula for call options to compute the
option’s delta.
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Project 2 (Delta hedging of stock options). Find an exchange-traded European
call option on the future value of a stock that does not pay dividends before the time
of maturity of the option. Suggest a model for the daily returns of the stock and
assume that the daily returns are independent and that the option’s implied volatility
does not change over time. Suggest a strategy for dynamic delta hedging of a short
position in the call option, taking the bid–ask spread of the stock into account, and
evaluate the distribution of the cost of the hedging strategy in a simulation study.

Project 3 (Delta hedging of index options). Find prices of traded European put
and call options of the future value of a stock market index.

(a) Choose one European call option and investigate how to dynamically delta
hedge a short position in the call option. Choose as hedging instrument an index
futures contract with the same maturity as the call option. Suggest a model for
the daily changes in the futures price; assume that the daily price changes are
independent and that the option’s implied volatility does not change over time.
Evaluate the distribution of the cost of the hedging strategy in a simulation
study.

(b) An issuer of an option typically benefits from issuing several options on the
same asset because it can hedge the portfolio of options simultaneously at a
lower cost than when hedging the options separately. Suggest a portfolio of
short positions in European put and call options that you believe is less costly
to hedge. Investigate the hedging cost for the option portfolio in a simulation
study.



Chapter 4
Quadratic Investment Principles

In this chapter, we present investment principles solely based on means and
variances of asset returns and budget restrictions. To begin with, we only consider
risky assets in the sense that the variances of the returns are strictly positive. We will
then consider the more interesting situation where we also have the possibility
to invest (or deposit) money in a risk-free asset. We consider a fixed investment
horizon. For convenience we measure time in units of the length of the investment
horizon, and therefore t0 D 0 denotes the current time and t1 D 1 the end of
the investment horizon. On the one hand, the investor wants to form a portfolio
whose expected value EŒV1� at time 1 is high. On the other hand, the investor
wants the uncertainty in the future portfolio value V1 to be as small as possible.
Here the latter requirement means that the variance Var.V1/ should be as small as
possible. The investor therefore needs to decide upon a suitable trade-off between
maximizing EŒV1� and minimizing Var.V1/.

We consider an investor with initial capital V0 and a simple asset market with
n � 2 risky assets with spot prices (the price for immediate delivery) Skt , where t D
0; 1 and k D 1; : : : ; n. Note that Sk0 is known, whereas Sk1 is not (they are random
variables as seen from today). In Sect. 4.2 we also allow positions in a risk-free
zero-coupon bond that costs B0 at time 0 and pays one unit of the chosen currency
at time 1.

A position in the risky assets is represented by a vector h D .h1; : : : ; hn/
T in

R
n, where hk is the number of units of asset number k held over the time period by

the investor. When applicable, we let h0 denote the position in the risk-free bond.
Unless stated otherwise, we assume that short-selling is allowed. This means that
hk may take negative values. The prices or market values at time t D 0 and t D 1

of an affordable portfolio are

h0B0 C
nX

kD1
hkS

k
0 � V0 and V1 D h0 C

nX

kD1
hkS

k
1 ;
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respectively. If no risk-free bond is available, then we simply set h0 D 0. It is
often convenient to take the initial monetary value of the position in the kth asset,
wk D hkS

k
0 , as the kth portfolio weight instead of the size hk of the kth position.

Similarly, w0 D h0B0 is the monetary weight in the risk-free asset. With monetary
portfolio weights the current and future portfolio values can be expressed as

w0 C
nX

kD1
wk � V0 and V1 D w0

1

B0
C

nX

kD1
wk
Sk1

Sk0
; (4.1)

from which it is seen that determining the optimal allocation of the initial capital
V0 requires the knowledge of the expected value � and covariance matrix ˙ of the
vector R of returns, where

RT D
�S11
S10
; : : : ;

Sn1
Sn0

�
:

With R0 D 1=B0 and w D .w1; : : : ;wn/T we may write V1 D w0R0 C wTR, and
therefore EŒV1� D w0R0 C wT� and Var.V1/ D wT˙ w (the latter identity was
shown in Sect. 3.1.2 of Chap. 3).

Throughout this chapter we assume that the covariance matrix ˙ D Cov.R/ D
EŒ.R � �/.R � �/T� is positive definite: xT˙ x > 0 for all x ¤ 0. By definition, any
covariance matrix is symmetric and also positive-semidefinite: for any x ¤ 0

xT˙ x D Var.xTR/ � 0:

Therefore, assuming that ˙ is positive definite is equivalent to assuming that ˙ is
invertible or, equivalently, that all the eigenvalues of ˙ are positive .> 0/.

This chapter is structured as follows. The first section considers investments
without any risk-free borrowing and lending. The opportunity to make risk-free
deposits is likely to be available to most investors, and risk-free borrowing is
possible for many investors. Therefore, we focus mainly on analyzing the invest-
ment problem in this setting and consider variations on the investment problem
with different sets of constraints. We then move on to consider investments in the
presence of liabilities and find interesting connections to the hedging problems
considered earlier. The next section considers investments when the number of
available assets is large. In particular, we contrast the risk reduction from using
quadratic hedging and exploiting dependencies among asset returns and from
cancellation effects from holding large diversified positions. The chapter ends with
a discussion of problems and pitfalls for investment principles that are based only
on expected values and variances of portfolio returns.
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4.1 Quadratic Investments Without a Risk-Free Asset

We assume that the investor wants to solve one of the following three closely
connected optimization problems. The first version of the investment problem,
called the trade-off problem, can be expressed as

maximize EŒ
Pn

kD1 hkSk1 � � const � Var.
Pn

kD1 hkSk1 /=V0
subject to

Pn
kD1 hkSk0 � V0;

(4.2)

where const > 0 corresponds to the investor’s choice of trade-off between
maximizing EŒV1� and minimizing Var.V1/. The variance term in the objective
function is normalized by dividing the variance by V0 since we want the objective
function to take values in units of our base currency and since the trade-off constant
should be related to the available capital put at risk. The trade-off between risk and
expected return does not only depend on the type of investor but also on the size of
the investment.

The second version of the investment problem, called the maximization-of-
expectation problem, can be expressed as

maximize EŒ
Pn

kD1 hkSk1 �
subject to Var.

Pn
kD1 hkSk1 / � �20 V

2
0Pn

kD1 hkSk0 � V0:

A private investor may want to formulate the investment problem in this form.
The third version of the investment problem, called the minimization-of-variance
problem, can be expressed as

minimize Var.
Pn

kD1 hkSk1 /
subject to EŒ

Pn
kD1 hkSk1 � � �0V0Pn

kD1 hkSk0 � V0:

An institutional investor whose clients demand a good enough return may want to
formulate the investment problem in this form. In a realistic investment situation,
it is likely that more constraints, e.g., restrictions on short-selling, need to be
considered. We will return to this issue later in this chapter.

We now express the investment problem (4.2) in terms of the vector w of
(monetary) portfolio weights and note that (4.2) may be formulated as

maximize wT� � c
2V0

wT˙ w
subject to wT1 � V0;

(4.3)

where the dimensionless constant c > 0 here differs from the constant in (4.2)
since the variance term here is multiplied by the factor 1=2 (to produce a nicer
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looking solution to the investment problem). Investment problem (4.3) is a convex
optimization problem, and we know from Proposition 2.3 that a solution .w; �/ to
the system of equations

r
�
c

2V0
wT˙ w � wT�

�
C �r.wT1/ D 0 and wT1 D V0 (4.4)

will determine the optimal solution if � > 0. Computing partial derivatives (the
gradients) shows that (4.4) is equal to the system of equations

w D V0

c
˙ �1.� � �1/ and wT1 D V0;

which has the unique solution

w D V0

c
˙ �1.� � �1/; � D .1T˙ �1� � c/=1T˙ �11:

Since ˙ is positive definite, also ˙ �1 is positive definite. Therefore, 1T˙ �11 > 0

and � � 0 precisely when 1T˙ �1� � c. If 1T˙ �1� < c, then we cannot conclude
from Proposition 2.3 that w above is not an optimal solution to (4.3). In this case, we
may solve the unconstrained problem, which gives w D .V0=c/˙

�1�; this is indeed
an optimal solution to (4.3) since wT1 D .V0=c/1T˙ �1� < V0. We observe that in
this case it is not optimal to invest all the initial capital. The following proposition
sums up the findings so far.

Proposition 4.1. The optimal solution w to investment problem (4.3) is

w D V0

c
˙ �1

�
� � .1T˙ �1� � c/C

1T˙ �11
1
�
;

where xC D max.x; 0/.

There is no straightforward way to choose the trade-off parameter c. A sensible
way would be for the investor to determine two investment opportunities with
returns R and eR that are considered equally attractive investment opportunities for
the capital V0 and determine c as the solution to the equation

EŒV0R�� c

2V0
Var.V0R/ D EŒV0eR� � c

2V0
Var.V0eR/;

which gives c D 2.EŒR� � EŒeR�/=.Var.R/ � Var.eR//. On the other hand, it is not
necessarily relevant to determine the value of the trade-off parameter c. If we believe
that the investment problem in terms of means and variances is relevant but we find
it difficult to specify the constant c, then we should evaluate the optimal solution w
for several values of c and pick the solution w that we feel most comfortable with.
Ideally, we should also assign a stochastic model to the vector of returns R and pick
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the solution w (corresponding to some c) that produces a histogram or density for
the optimal portfolio value V1 D wTR that we consider to be the most desirable
among those for the optimal portfolio values.

Example 4.1 (Throwing away capital). The optimal solution to investment problem
(4.3) may correspond to throwing away some or all of the initial capital. As an
example we may take n D 2 and

� D
�
1:5

1:05

�
and ˙ D

�
0:32 0:3 � 0:25 � 0:99

0:3 � 0:25 � 0:99 0:252

�
:

Proposition 4.1 gives the optimal solution

w D V0

c
˙ �1� D V0

c

�
141:0385

�150:7538
�
;

which means that, regardless of the trade-off parameter c > 0, nothing of the initial
capital is used to take the optimal position in the two risky assets. The conclusion
is that the investment problem here is not a good one unless a further safe asset is
included in which we may invest the capital that is not invested in the risky assets.

Example 4.2 (Equally distributed returns). Consider the special case with risky
assets whose returns are equally distributed, and suppose also that the linear
correlation coefficient � < 1 is the same for any pair of returns. It is clear that all
positions with the same initial cost will give the same expected portfolio return.
However, the variance of the portfolio return is minimized by distributing the
invested capital equally among the assets, and therefore this allocation should be
the optimal solution to the investment problem. Let us now verify this guess.

The assumption here of equicorrelated and equally distributed returns means that

� D �01 and ˙ D �20 f.1 � �/I C �11Tg:

The matrix identity .A C aaT/�1 D A�1 � A�1aaTA�1=.1C aTA�1a/ gives

˙ �1 D 1

�20 .1 � �/

�
I � �

1C .n � 1/�11T
�
; � 2 .�1=.n� 1/; 1/:

Proposition 4.1 gives the optimal solution

w D V0

c

�0

�20

1

1C .n � 1/�1 if
�0

�20

n

1C .n � 1/�
< c;

which means that not all capital is invested and that the invested capital (< V0)
is invested equally among the n assets. Otherwise, .V0=n/1, which means that all
initial capital is invested equally among the n assets.
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Example 4.3 (Uncorrelated returns). Consider the case with uncorrelated but not
equally distributed risky assets. Suppose that the expected value and covariance
matrix of the vector of returns are given by

� D

0
B@
�1
:::

�n

1
CA and ˙ D

0

BB@

�21 0 : : :

0
: : :

::: �2n

1

CCA :

Assume also that � D .1T˙ �1� � c/=1T˙ �11 > 0, which implies that all capital
is invested. We find that the optimal solution to the investment problem is given by

wk D V0

c�2k

 
�k �

Pn
jD1 �j ��2

j � c
Pn

jD1 ��2
j

!
:

In the special case with �k D �0 for all k, we get

wk D V0
1

�2k

,
nX

jD1

1

�2j
;

which means that the capital is distributed among the assets proportional to the
reciprocal of the variance of the return.

In the special case with �k D �0 for all k, we get

wk D V0

n
C c

�k � �
�20

; � D 1

n

nX

jD1
�j ;

which means that the capital is first evenly split among the assets and then adjusted
so that more of the capital is invested in the assets with above-average expected
returns.

Example 4.4 (Minimum variance portfolio). If the investor is forced to invest all
initial capital (corresponding to the binding budget constraint 1Tw D V0) and if the
investor cares only about minimizing variance (corresponding to c ! 1), then the
optimal solution to the modified investment problem is w D V0˙

�11=1T˙ �11.
The portfolio w is called the minimum variance portfolio and is sometimes
advocated as being a sensible choice. However, there is no trade-off parameter c
for which w is a solution to the investment problem (4.3) with a not necessarily
binding budget constraint. Therefore, a mean–variance investor would rather throw
away money than invest in this portfolio!

Empirical studies suggest that if the estimates of means and covariances are based
only on historical price data, then the minimum variance portfolio is not necessarily
a bad choice. Estimators of the mean are inaccurate, even on observations of
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independent and identically distributed random variables. Moreover, the strong
performance of an asset in the past is not necessarily a good prediction of its future
performance. On the other hand, estimates of covariances between asset returns
may vary less than estimates of means over time. Therefore, it may be reasonable
to select a set of assets that we believe will perform well—although we do not
feel comfortable with assigning them expected values—and allocate our capital to
the linear combination of these assets that gives the smallest variance of the future
portfolio value. Therefore, the minimum variance portfolio can be seen as a sensible
portfolio choice when the value of the parameter � is uncertain.

Consider the covariance matrix (expressed as a product of standard deviations
and linear correlations)

˙ D

0

BB@

0:3 0 0 0

0 0:25 0 0

0 0 0:2 0

0 0 0 0:15

1

CCA

0

BB@

1 0:6 0:5 0:4

0:6 1 �0:1 0

0:5 �0:1 1 0:6

0:4 0 0:6 1

1

CCA

0

BB@

0:3 0 0 0

0 0:25 0 0

0 0 0:2 0

0 0 0 0:15

1

CCA (4.5)

of yearly returns, say. The minimum variance portfolio weights are

w D V0
˙ �11

1T˙ �11
� V0

0

BB@

�0:31
0:45

0:37

0:49

1

CCA : (4.6)

If short sales are not allowed, then some of the minimum variance portfolio weights
will be zero since the optimal solution without the restriction to long-only positions
is no longer a feasible solution. Judging from (4.6), it seems plausible that w1 D 0

and wk > 0 for k D 2; 3; 4 in this case. The short position in (4.6) is a consequence
of the higher variance of the first asset return and the high correlation between the
first asset return and the second (and third) asset return. Indeed, if short sales are
not allowed, then the minimum variance portfolio weights are given by, with b D
.0; 1; 1; 1/T,

w D V0
˙ �1b

bT˙ �1b
� V0

0
BB@

0

0:27

0:17

0:56

1
CCA :

We saw in Proposition 4.1 and subsequent examples that the optimal solution
to investment problem (4.3) may correspond to throwing away some of the initial
capital. This seems rather strange but makes sense when considering that in the
current setting there is no risk-free savings account or zero-coupon bond in which to
put the initial capital that is not used to take positions in risky assets. The conclusion
is that formulation (4.3) of the investment problem is unrealistic. One should at least
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be allowed to put money aside for use later (corresponding to a long position in a
risk-free asset). To make the investment problem more realistic, we now consider
the investment problem when a risk-free asset has been included.

4.2 Quadratic Investments with a Risk-Free Asset

Suppose now that we are able to invest in a risk-free asset with returnR0. The return
R0 D 0 would correspond to throwing away money, and the return R0 D 1 would
correspond to storing cash in a safe if we ignore inflation. We take the risk-free asset
to be a zero-coupon bond maturing at time 1 with face value 1 and write B0 for the
current bond price. Note that R0 D 1=B0 is the return on the bond. From (4.1) we
know that the portfolio values at times 0 and 1 are

w0 C wT1 � V0 and V1 D w0R0 C wTR:

Therefore, the expected value and variance of the future portfolio value are given by
EŒwTR C w0R0� D wT� C w0R0 and Var.wTR/ D wT˙ w, respectively.

4.2.1 The Trade-Off Problem

The investment problem (4.3) modified by including a risk-free asset may now be
formulated as

maximize w0R0 C wT� � c
2V0

wT˙ w

subject to w0 C wT1 � V0:
(4.7)

A straightforward application of Proposition 2.3 gives the solution to (4.7).

Proposition 4.2. The optimal solution to investment problem (4.7) is given by
.w0;w/, where

w D V0

c
˙ �1.� �R01/ and w0 D V0 � wT1: (4.8)

Proof. Condition (1) of Proposition 2.3 here reads

c

V0
˙ w � � C �1 D 0 and � R0 C � D 0:

Since � D R0 > 0, Condition (4) of Proposition 2.3 gives w0 C wT1 D V0, from
which we find that (4.8) is indeed the optimal solution to (4.7). �
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Remark 4.1. (i) It is not surprising that not to invest all initial capital is suboptimal
here. Suppose, falsely, that .w0;w/ is an optimal solution to (4.7) for which
it holds that w0 C wT1 < V0. Then we can increase w0, which increases
the value of the objective function without violating the budget constraint—
a contradiction.

(ii) From expression (4.8) for the optimal position in the risky assets we find that if
we are given the optimal solution w� for one value c� of the trade-off parameter
c, then we know the optimal solution for all trade-off parameters (they are just
scalar multiples of the optimal solution w�). In particular, any optimal solution
.w0;w/ is a combination of a position in the portfolio w� and the risk-free asset.
This fact is often referred to as the one-fund theorem.

(iii) Note that if the optimal position in the risky assets has a positive initial value
wT1 D .V0=c/1T˙ �1.� � R01/ for some (and therefore for all) values of c,
then there is precisely one value for the risk–reward trade-off parameter c that
gives an optimal portfolio fully invested in the risky assets only. Solving the
equation wT1 D V0 for c gives c D 1T˙ �1.� � R01/.

(iv) An often-used risk-adjusted performance measure for an investment with return
R D V1=V0 is the Sharpe ratio .EŒR� � R0/=

p
Var.R/. For any value of the

trade-off parameter c > 0, the optimal solution to investment problem (4.7)
gives the Sharpe ratio

p
.� � R01/T˙ �1.� �R01/:

In particular, the Sharpe ratio for optimal portfolios does not depend on c and
V0. All feasible but suboptimal solutions to the investment problem yield lower
Sharpe ratios.

Example 4.5 (Uncorrelated returns). Suppose that all the risky assets have ex-
pected returns that are greater than the risk-free return and that the returns of the
risky assets are uncorrelated. In this case, wk D .V0=c/.EŒRk� � R0/=Var.Rk/
for k D 1; : : : ; n, and the solution has a natural interpretation: a return with a
high expected value and a small variance is an attractive investment opportunity.
If necessary (depending on the initial capital and the trade-off parameter c), money
is borrowed to afford the long positions in the risky assets.

Example 4.6 (Portfolio densities). Consider optimal investment, solutions to (4.7),
in four risky assets and a risk-free asset. Here we illustrate the probability
distribution of the random portfolio value V1 at the end of the investment period
for which

EŒV1� D V0

�
R0 C 1

c
.� � R01/T˙ �1.� � R01/

�
;

Var.V1/ D V 2
0

c2
.� �R01/T˙ �1.� �R01/:
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0Fig. 4.1 Density functions

for optimal portfolio value V1
in Example 4.6 with
EŒV1� D 1C 0:29c and
Var.V1/ D 0:29c2 for three
choices of trade-off parameter
(c � 5:82; 2:91; 0:97) under
the assumption that V1 is
normally distributed

In particular, we can achieve an arbitrary high expected value EŒV1�, but at the price
of a high variance Var.V1/. The trade-off parameter c specifies the investor’s trade-
off between maximizing EŒV1� and minimizing Var.V1/.

Suppose that the returns have expected values 1:025, 1:075, 1:1, and 1:15, stan-
dard deviations 0:1, 0:2, 0:3, and 0:4, and a pairwise linear correlation coefficient
of 0:2. Suppose further that the return is 1 for the risk-free asset and that V0 D 1.
These values imply that .� � R01/T˙ �1.� � R01/ � 0:29 and that the optimal
allocation in the risky assets is given by wT � c�1.1:04; 1:30; 0:69; 0:65/. For
instance, EŒV1� D 1:05 corresponds to c � 5:82 and wT1 � 0:63 (implying
a long position in the risk-free asset), EŒV1� D 1:1 corresponds to c � 2:91

and wT1 � 1:27 (implying a short position in the risk-free asset), EŒV1� D 1:3

corresponds to c � 0:97 and wT1 � 3:81 (implying a large short position in the
risk-free asset). Figure 4.1 shows the density functions of V1 for the three different
trade-off parameters under the assumption that the joint distribution of the returns is
a normal distribution.

Example 4.7 (Parameter uncertainty). Consider a 1-year investment problem with
two risky assets and a risk-free bond. Here we illustrate the risks that misspecified
parameters can lead to and the effect of adding a long-positions-only constraint.

Suppose that the linear correlation coefficient for the two 1-year returns of the
risky assets is � > 0. From Proposition 4.2 we find that the solution to the investment
problem is

w D V0

c.1 � �2/

 �1�R0
�21

� ��2�R0
�1�2

�2�R0
�22

� ��1�R0
�1�2

!
:

Now suppose that we are rather confident in the values we assign to .�1; �1/ but less
sure about .�2; �2/, although our best guess would be that .�2; �2/ D .�1; �1/. One
way to handle the difference in quality in our probability beliefs would be to assign
a higher value to �2. With �1 D �2 > R0 this gives
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w D V0.�1 � R0/

c.1 � �2/

 
1
�1

�
1
�1

� �

�2

�

1
�2

�
1
�2

� �

�1

�
!
:

The higher value we assigned to �2, which was intended to reflect the uncertainty
in the mean–variance characteristics of the second asset, could lead to w2 < 0,
i.e., a short position in the second asset. It certainly does not seem wise to short-sell
an asset just because we are unsure about its mean–variance characteristics. Short-
selling is often risky and should be based on good information.

If we add the constraint w1;w2 � 0 to the investment problem, thereby ruling
out short sales, then the solution behaves better. In this case, we cannot capitalize
on the positive correlation between the two asset returns. If both w1 and w2 above
are positive, then the solution stays the same. However, if the higher �2 produced
a negative w2 above, then allowing only long positions gives the optimal solution
.w0;w1;w2/ D .V0 � w1;w1; 0/, where w1 � 0 (or w1 2 Œ0; V0�) maximizes

V0R0 C w1.�1 �R0/ � c

2V0
w21�

2
1 :

Example 4.8 (Efficient frontiers). Consider four assets whose vector of returns has
the covariance matrix ˙ in (4.5) and expected value � D .1:05; 1:15; 1:1; 1:1/T.
Recall from Proposition 4.1 that the optimal solution to the investment problem
(4.3) without a risk-free asset is given by

w D V0

c
˙ �1

 
� �

�
1T˙ �1� � c�C

1T˙ �11
1

!
:

For c > 0, the pairs .�p.c/; �p.c//, where �p.c/ D .wT˙ w/1=2 and �p.c/ D wT�

(w D w.c/), constitute the so-called efficient frontier. The solid curve in Fig. 4.2
shows the efficient frontier for the values of � and ˙ considered here. For any
feasible nonoptimal solution to (4.3) the corresponding pair of standard deviation
and expected value of the future portfolio value will be a point below the efficient
frontier. For c > 1T˙ �1� the efficient frontier is a straight line (for these values of
c a fraction of the initial capital is discarded). For c � 1T˙ �1� the efficient frontier
curves down since here �2p.c/ is a second-degree polynomial in �p.c/ with nonzero
coefficients of the terms of orders 0; 1; 2.

Recall from Proposition 4.2 that the optimal solution to investment problem (4.7)
with a risk-free asset is given by

w D V0

c
˙ �1.� �R01/ and w0 D V0 � wT1:

The pairs .�p.c/; �p.c// of the efficient frontier are given by �p.c/ D .wT˙ w/1=2

and �p.c/ D w0R0 C wT�, and the efficient frontier is a straight line. The dashed
line in Fig. 4.2 shows the efficient frontier for R0 D 1:05 and the values of � and
˙ considered here. It is not surprising that the opportunity to take positions in the
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Fig. 4.2 Efficient frontiers for investment problems (4.3) and (4.7). The efficient frontiers are
made up of pairs .�p.c/; �p.c// of standard deviations and expected values of the future optimal
portfolio values. The straight line is the efficient frontier for (4.7). The points circle and filled circle
correspond to the minimum variance portfolio and the tangent portfolio, respectively

risk-free asset leads to an efficient frontier that dominates that of the investment
problem without the risk-free asset. There is one point of tangency of the two
efficient frontiers. The corresponding portfolio is called the tangent portfolio, and
it is an optimal solution to both investment problems. Setting the two expressions
for the optimal solutions to the two investment problems to be equal and solving
the equation for the trade-off parameter c gives c D 1T˙ �1.� �R01/ < 1T˙ �1�.
The standard deviation and expected value for the tangent portfolio are shown as the
point on the efficient frontiers marked by the filled circle in Fig. 4.2.

The point corresponding to the minimum variance portfolio is marked by the
circle in Fig. 4.2. The plot to the right shows that the minimum variance portfolio
is a feasible but nonoptimal solution (the point is close to but not on the efficient
frontier).

4.2.2 Maximization of Expectation and Minimization
of Variance

We now turn to the two alternative versions of the investment problem. Here we
assume that � ¤ R01 since this rules out an unrealistic degenerate form of the
investment problem. In the first version, the maximization-of-expectation problem,
one seeks to maximize the expected portfolio value given the risk (variance)
constraint

maximize w0R0 C wT�

subject to wT˙ w � �20 V
2
0

w0 C wT1 � V0:

(4.9)
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The second version of the investment problem, the minimization-of-variance prob-
lem, seeks the portfolio that has minimum risk (variance) given a lower bound on
the expected value:

minimize 1
2
wT˙ w

subject to w0R0 C wT� � �0V0
w0 C wT1 � V0:

(4.10)

Both investment problems (4.9) and (4.10) are convex optimization problems. This
is easily seen by minimizing �1 times the objective function in the former and
rewriting the constraint wT� C w0R0 � �0V0 as �wT� � w0R0 � ��0V0 in the
latter optimization problem.

Proposition 4.3. The solution to (4.9) is given by

w D �0V0
˙ �1.� �R01/p

.� �R01/T˙ �1.� �R01/
: (4.11)

The solution to (4.10) is given by

w D V0.�0 �R0/ ˙ �1.� �R01/
.� � R01/T˙ �1.� � R01/

(4.12)

if �0 > R0, and w D 0 otherwise.

Proof. The two problems (4.9) and (4.10) can be solved using Propositions 2.3
and 2.1, respectively. We begin with (4.9). From Proposition 2.3 we have the
following system of equations:

�� C 2�1˙ w C �21 D 0;

�R0 C �2 D 0;

wT˙ w D �20 V
2
0 ;

wT1 C w0 D V0:

Combining the first two equations yields w D .2�1/
�1˙ �1.��R01/ and �2 D R0.

Inserting the expression for w in the third and fourth equations gives

w0 D V0.1 � .2�1/�11T˙ �1.� � R01//;

�1 D
p
.� � R01/T˙ �1.� � R01/

2�0V0
:

In particular, the optimal solution to (4.9) is (4.11).
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Now we turn to (4.10). From Proposition 2.1 we have the following system of
linear equations:

˙ w � �1� C �21 D 0;

��1R0 C �2 D 0;

wT� C w0R0 D �0V0;

wT1 C w0 D V0:

Combining the first two equations yields w D �1˙
�1.� � R01/ and �2 D �1R0.

Inserting the expression for w in the third and fourth equations, multiplying the
fourth equation by �R0, adding the two equations, and solving for �1 give

�1 D �0 �R0
.� �R01/T˙ �1.� � R01/

:

Thus, if �0 �R0 > 0, then �1 > 0, and the optimal solution to (4.10) is

w D V0.�0 �R0/ ˙ �1.� � R01/
.� � R01/T˙ �1.� �R01/ :

If �0 � R0 � 0, then a quick look at (4.10) leads to the conclusion that the optimal
solution is to take w D 0 and w0 to be any number less than or equal to V0. If we
seek to minimize the risk and are satisfied with an expected return that is smaller
than the risk-free return, then clearly we should take a position in the risk-free asset
and stay away from the risky assets. �

Remark 4.2. (i) For the maximization-of-expectation investment problem (4.9)
we observe that, for fixed parameters �, ˙ , andR0, if w is the optimal solution
for �20 , then .e�0=�0/w is the solution for e�20. We also observe that, for fixed
parameters ˙ and �20 , if w is the optimal solution for � and R0, then w is also
the optimal solution for e� and eR0 such that � � R01 D c.e� � eR01/ for some
constant c ¤ 0.

(ii) For the minimization-of-variance investment problem (4.10) we observe that,
for fixed parameters �, ˙ , and R0, if w is the optimal solution for �0, then
.e�0 � R0/=.�0 � R0/w is the solution fore�0.

(iii) Comparing the solutions to (4.9) and (4.10) shows that if �0 � R0 > 0, then
the solutions coincide precisely when

�0 � R0

�0
D
p
.� �R01/T˙ �1.� � R01/:
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4.2.3 Evaluating the Methods on Simulated Data

Propositions 4.2 and 4.3 give the optimal solutions to the three versions of the
investment problem with n risky and one risk-free asset. However, the solutions
assume that we know the expected value � and the covariance matrix ˙ of the
vector R of returns on the risky assets. In reality, we can never be sure that the values
we assign to � and ˙ are the right ones. If we have no reliable information about the
probability distribution of R but believe strongly that the observed historical returns
on assets, over time periods of the same length as the one for R, can be seen as a
sample from the distribution of R, then the sample mean b� and sample covariance
matrix ḃ can be used as proxies for � and ˙ . Here we investigate how the optimal
solutions bw, for the three versions of the investment problem, based on estimated
parameters b� and ḃ compares to the theoretical (but unknown) solution.

Consider a vector R of returns for two risky asset whose mean vector and
covariance matrix are given by

� D
�
1:025

1:075

�
and ˙ D

�
�21 �1�20:5

�1�20:5 �22

�
; (4.13)

where �1 D 0:3 and �2 D 0:5. Suppose that there also exists a risk-free asset with
returnR0 D 1. We will compare the three versions of the investment problem under
the assumption that � and ˙ are not known but can be estimated on simulated
samples from the distribution of R, which we take to be the bivariate normal
distribution N2.�;˙ /. We draw a N2.�;˙ /-distributed vector by first drawing two
independent standard normal variables Z1 and Z2 and then setting

�
R1
R2

�
D
�
�1
�2

�
C A

�
Z1
Z2

�
;

where A is a matrix satisfying AAT D ˙ . The multivariate normal distribution is
presented in more detail in Sect. 4.5.

Suppose that we want to invest according to the solution to one of the three
versions (4.7), (4.9), and (4.10) of the investment problem that we have solved
analytically. For the minimization-of-variance problem we set �0 D 0:3, and for
the trade-off problem and the maximization-of-expectation problem we set the
parameters c � 0:50 and �0 � 1:05, so that the optimal solutions to the three
investment problems coincide. Without loss of generality we set V0 D 1, which
means that the solution w is the position in the risky assets per unit of initial
capital. The common theoretical solution w to the investment problems (trade-off,
maximization-of-expectation, and minimization-of-variance) is given by
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w D V0

c
˙ �1.� �R01/

D �0V0
˙ �1.� � R01/p

.� � R01/T˙ �1.� �R01/

D V0.�0 �R0/ ˙ �1.� �R01/
.� � R01/T˙ �1.� � R01/

�
�
0:074

0:577

�

and w0 D 1 � wT1 � 0:349. However, here we consider the situation where we do
not know � and ˙ and, hence, do not know the optimal solution .w0;w/.

Suppose that we have observed 200 outcomes of independent copies of R,
which is normally distributed with mean � and covariance matrix ˙ . From these
observations we can compute estimates b� and ḃ and obtain estimates .bw0;bw/ by
replacing � and ˙ with b� and ḃ in the preceding expressions for the solutions to
the three versions of the investment problem. Note that although the true optimal
solutions coincide here, the random variables .bw0;bw/ for the three cases do not
coincide: the effect of the random parameters b� and ḃ are not identical for the
three cases.

To determine the accuracy of the estimates .bw0;bw/ of optimal portfolio weights,
we repeat this scheme 3;000 times and plot the estimated weightsbw for the solutions
to the three investment problems. For each of the 3;000 repetitions, b� and ḃ are
estimated on a sample of size 200.

The upper left plot in Fig. 4.3 is a scatter plot of the 3;000 portfolio weights in
the risky assets for the trade-off problem. The upper right plot in Fig. 4.3 is a scatter
plot of the 3;000 points

.�.bw/; �.bw// D .
p
bwT˙bw; .1 �bwT1/R0 CbwT�/ (4.14)

for the trade-off problem. Similarly, the two scatter plots in the middle of Fig. 4.3
are the corresponding plots for the maximization-of-expectation problem. The
two scatter plots at the bottom of Fig. 4.3 are the corresponding plots for the
minimization-of-variance problem.

For the maximization-of-expectation problem the risk constraint and the estimate
ḃ force the solution bw to be a point on the ellipse bwT ḃbw D �20 . Since the
estimates ḃ vary across the 3,000 samples, the points bw of the scatter plot form
a point cloud that is concentrated near the ellipse wT˙ w D �20 . The points of the
scatter plots for the trade-off problem and the minimization-of-variance problem
are more spread out, especially for the latter. In particular, many of the the solutions
bw for the minimization-of-variance problem based on the simulated samples are
very far from the theoretical solution w D .0:074; 0:577/T. The reason for the
poor accuracy is that many of the estimated values b� � R01 are very close to 0,
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Fig. 4.3 Upper plots: 3,000 empirical optimal portfolio weights in risky assets and corresponding
standard deviation–mean pairs, based on samples of size 200, for trade-off problem; middle plots:
maximization-of-expectation problem; lower plots: minimization-of-variance problem. Parameters
� and ˙ used in the simulations are those in (4.13)
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causing the weights to “explode” due to the values very close to 0 in the denominator
in (4.12). Due to cancellation of the small values by similar small values in the
numerator in (4.11), this nonrobustness is not a problem for the maximization-of-
expectation problem. The pairs of standard deviations and expected values (4.14)
for the estimated solutions .bw0;bw/ for the maximization-of-expectation problem are
much closer to the theoretical value .�0; �0/ than for the other versions, especially
the minimization-of-variance problem. However, it is interesting to note that the
empirical Sharpe ratios

�.bw/ �R0
�.bw/

D .� �R01/T ḃ�1.b� �R01/q
.b� � R01/T ḃ�1˙ ḃ�1.b� �R01/

coincide for the three versions of the investment problem.
Figure 4.4 shows the same thing as Fig. 4.3, except that here the theoretical mean

vector is set to � D .1:1; 1:2/T. Here, the difference in accuracy for the solutions
to the three versions of the investment problem based on simulated data is much
smaller. The reason is that here we do not find estimates b� �R01 � 0 and therefore
no exploding weights bw due to “division by zero.”

Let us look a bit closer at the accuracy of the estimation of means. For the
sake of clarity we consider the univariate case. Consider the simplest possible
univariate case. Given a sample fR1; : : : ; Rmg of independent random variables with
common mean EŒRk� D � and variance Var.Rk/ D �2, we consider the problem
of estimating �. Set b� D .R1 C � � � C Rm/=m, i.e., the standard estimator. Then
EŒb�� D � and

Var.b�/ D EŒ.b� � �/2� D E

2

4
 
1

m

mX

kD1
.Rk � �/

!23

5

D 1

m2

mX

kD1
EŒ.Rk � �/2�C 1

m2

X

j¤k
EŒ.Rj � �/.Rk � �/�
„ ƒ‚ …

D0

D �2

m
:

Hence, the estimatorb� has standard deviation �=
p
m. In the simulation study above

we have, for the first component, � D 1:025, � D 0:3, and m D 200. In particular,

� �R0 D 0:025 and
p

Var.b�� R0/ D �=
p
m � 0:021;

from which we see that it is likely that b�� R0 has outcomes very close to zero.
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Fig. 4.4 Same plots as in Fig. 4.3 except that parameter � used in the simulation is � D
.1:1; 1:2/T here
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4.2.4 Different Borrowing and Lending Rates

In the investment problems above it was assumed that the same risk-free rate R0
applied to both borrowing and lending. This is often unrealistic. The borrowing rate
refers to the relevant interest rate when the investor borrows money and corresponds
to w0 < 0 (a loan from a bank or short sale of zero-coupon bonds). The lending rate
refers to the interest rate when the investor lends money and corresponds to w0 > 0
(a loan from the investor to someone else or a long position in zero-coupon bonds).

In the investment problems above it was also assumed that it was possible to
take short positions (of arbitrary sizes). This is often unrealistic. When short-selling
is not allowed, w � 0 or w0 � 0, the nature of the solutions are typically quite
different in the sense that many of the portfolio weights are zero. The investment
problem without the possibility of short-selling is still a convex optimization
problem. However, it is rather likely that the solution w to the problem without
the nonnegativity constraints has some negative components, which implies that the
solution w with the nonnegativity constraints is a point of the boundary of the convex
set of feasible solutions. In principle, for each subset I of the index set f1; : : : ; ng
we need to set wk D 0 for k in I and solve the resulting optimization problem
of lower dimension without the nonnegativity constraints and check whether the
solution is nonnegative. For those nonnegative subsolutions that are found, we pick
the solution to the original convex optimization problem to be the subsolution that
gives the smallest value to the objective function. It is a tedious task to determine all
these subsolutions manually, and therefore the investment problem must be solved
numerically in most cases.

We could also include lending fees for short sales of the risky assets. However,
such modifications lead to more constraints and, therefore, more Lagrange multipli-
ers to interpret and keep track of. Although adding such constraints would lead to
more realistic formulations of the investment problem, we do not pursue this path.

Let us consider investment problem (4.7) modified by allowing for different
borrowing and lending rates RC

0 � R�
0 . The investment problem can be formulated

as follows:

maximize w0R
C
0 I fw0 � 0g C w0R�

0 I fw0 � 0g C wT� � c
2V0

wT˙ w
subject to w0 C wT1 � V0:

(4.15)

The optimization problem looks different from what we saw previously because the
objective function includes terms that are neither linear nor quadratic in the portfolio
weights. However, the solution is simply the best solution [in terms of maximizing
the objective function in (4.15)] of the two optimal solutions to the optimization
problems

maximize w0R
C
0 C wT� � c

2V0
wT˙ w

subject to w0 C wT1 � V0
w0 � 0

(4.16)
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and

maximize w0R�
0 C wT� � c

2V0
wT˙ w

subject to w0 C wT1 � V0
w0 � 0:

(4.17)

Both (4.16) and (4.17) are convex optimization problems (write �w0 � 0 instead
of w0 � 0) and (4.16) is an investment problem without the possibility of risk-free
borrowing for the investor.

Proposition 4.4. The optimal solution to (4.16) is given by

wC D V0

c
˙ �1.� � RC

0 1/� V0

c

.1T˙ �1.� �RC
0 1/� c/C

1T˙ �11
˙ �11:

The optimal solution to (4.17) is given by

w� D V0

c
˙ �1.� �R�

0 1/C V0

c

.c � 1T˙ �1.� �R�
0 1//C

1T˙ �11
˙ �11:

The optimal solution to (4.15) is wC or w�, depending on which of the two
maximizes the objective function in (4.15).

Proof. Problem (4.16) is a convex optimization problem, and the conditions for an
optimal solution .w0;w/ are

.c=V0/˙ w � � C �11 D 0;

�RC
0 C �1 � �2 D 0;

�1.wT1 C w0 � V0/ D 0;

�2w0 D 0;

�1; �2;w0 � 0;

wT1 C w0 � V0:

We first note that wT1Cw0 D V0 since if .w0;w/were an optimal solution satisfying
wT1Cw0 < V0, then .w;w0Cı/ with ı D V0�wT1�w0 would be a better feasible
solution [therefore contradicting the assumption that .w0;w/ is an optimal solution].
Combining the first two equations above gives

w D V0

c
˙ �1.� �RC

0 1/� �2 V0
c

˙ �11; wT1 C w0 D V0:
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If �2 D 0, then the optimal solution w D .V0=c/˙
�1.� � RC

0 1/ to (4.7) turns
out to be affordable without any risk-free borrowing and, therefore, also the optimal
solution to (4.16). If �2 > 0, then w0 D 0, and we get the optimal solution

w D V0

c
˙ �1.� � RC

0 1/� �2
V0

c
˙ �11; wT1 D V0:

The optimal solution to (4.17) is determined by repeating the preceding arguments
with minor modifications. �

Remark 4.3. The optimal solutions wC to (4.16) and w� to (4.17) in Proposition 4.4
merit some explanations.

The solution wC to (4.16) is the solution w to (4.7) (with R0 D RC
0 ) if V0 �

wT1 � 0 (the portfolio is affordable without any risk-free borrowing). Otherwise,
wC is the position obtained after withdrawing money from the risky assets until no
risk-free borrowing is needed.

The solution w� to (4.17) is the solution w to (4.7) (with R0 D R�
0 ) if V0 �

wT1 � 0 (the portfolio is affordable only with risk-free borrowing). Otherwise,
w� is the position obtained after adding money to the risky assets until risk-free
borrowing is needed.

4.3 Investments in the Presence of Liabilities

We now consider optimal investments in the presence of liabilities. Let w0R0CwTR
andL denote the future values of assets and liabilities, respectively, and consider the
investment problem

maximize EŒw0R0 C wTR �L� � c
2V0

Var.w0R0 C wTR � L/

subject to w0 C wT1 � V0: (4.18)

The investment problem is clearly related to both the corresponding investment
problem (4.7) without a liability and the minimum variance hedging problem in
Proposition 3.3 in Chap. 3. The following proposition states that the optimal solution
to (4.18) is an easily interpreted combination of optimal investments and optimal
minimum variance hedging.

Proposition 4.5. The solution to investment problem (4.18) is given by

w D V0

c
˙ �1.� �R01/C ˙ �1˙L;R and w0 D V0 � wT1: (4.19)
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If risk-free borrowing is not allowed, i.e., w0 � 0, then the solution changes to

w D V0

c
˙ �1�� � R01

�C ˙ �1˙L;R � �2 V0
c

˙ �11 and wT1 D V0; (4.20)

where

�2 D 1

1T˙ �11

�
1T˙ �1.� �R01/C c

V0
1T˙ �1˙L;R � c

�

C:

We observe that the solution (4.19) to (4.18) corresponds to taking both the
optimal investment position without a liability, the solution to (4.7), and the
minimum variance hedge position. If the initial capital V0 is insufficient to take
this position, then more capital is raised by risk-free borrowing (a short position in
the risk-free bond).

If risk-free borrowing is not allowed and if the optimal solution without
borrowing restriction (4.19) is too expensive, then taking �2 > 0 large enough and
subtracting �2.V0=c/˙ �11 from the monetary portfolio weights gives a modified
position that is affordable without borrowed money: in this case the position (4.19)
is adjusted so that the adjusted position (4.20) costs precisely V0.

Proof of Proposition 4.5. We formulate (4.18) as the convex optimization problem

minimize c
2V0
.wT˙ w C �2L � 2wT˙L;R/� .w0R0 C wT� � �L/

subject to w0 C wT1 � V0:

Proposition 2.1 gives the sufficient conditions for an optimal solution:

w D .V0=c/˙
�1.� � �11/C ˙ �1˙L;R;

�1 � R0 D 0;

�1.w0 C wT1 � V0/ D 0;

w0 C wT1 � V0:

Therefore, the optimal solution is given by

w D V0

c
˙ �1.� � R01/C ˙ �1˙L;R and w0 D V0 � wT1:

We now turn to (4.18) modified by including the constraint w0 � 0 (or, equivalently,
�w0 � 0). The sufficient conditions for an optimal solution are

w D .V0=c/˙
�1�� � �11

�C ˙ �1˙L;R;

�1 �R0 � �2 D 0;

�1.w0 C wT1 � V0/ D 0;
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�2w0 D 0;

�1; �2;w0 � 0;

w0 C wT1 � V0:

If �2 D 0, then we have the solution above, with w0 � 0. Therefore, the interesting
case is where �2 > 0, which implies w0 D 0. In this case, wT1 D V0 since wT1 < V0
would correspond to throwing away money rather than investing it in a risk-free
bond, which is clearly suboptimal. The optimal solution is

w D V0

c
˙ �1�� � R01

�� �2
V0

c
˙ �11 C ˙ �1˙L;R and wT1 D V0:

Combining the two equations gives

.V0=c/1T˙ �1.� � R01/� �2.V0=c/1T˙ �11 C 1T˙ �1˙L;R D V0;

which can be solved for �2. �

Example 4.9. Suppose that risky assets can be divided into a set of hedging
instruments (e.g., bonds) and a set of pure investment assets (e.g., stocks), where the
values of the assets of the latter kind are uncorrelated with the liability. Suppose
further that the vectors of returns for both sets of assets have invertible covariance
matrices. Write wi and wh for the vectors of monetary weights for the investment
and hedging assets, respectively. Therefore,

˙ D
�

˙i 0

0 ˙h

�
and ˙ �1 D

�
˙ �1
i 0

0 ˙ �1
h

�
;

and the solution to the optimal investment problem with a liability and no risk-free
borrowing reads

wi D V0

c
˙ �1
i

�
�i �R01

�� �2
V0

c
˙ �1
i 1;

wh D V0

c
˙ �1
h

�
�h �R01

�� �2
V0

c
˙ �1
h 1 C ˙ �1

h ˙L;Rh ;

where �2 > 0 is the smallest number such that wT
i 1 C wT

h1 D V0; if there is no
such �2 > 0, then �2 D 0, w0 > 0, and w0 C wT

i 1 C wT
h1 D V0. We observe that

here we can divide the original investment problem with a liability into two simpler
problems, one with the liability and only the hedging instruments as risky assets,
and one without a liability and only the pure investment assets as risky assets.
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Example 4.10 (Pension arrangement). Here we consider a pension arrangement
between a company and its employees. The company has promised to pay L D
V0 max.1;R1/, where R1 is the return on some basket of exchange-traded stocks,
on a future date, to its employees. The company has decided to invest the capital
kV0 in such a way that it provides a hedge against an increase in the value L of its
liability to its employees.

Suppose that the company considers three investment and hedging instruments: a
position in a risk-free asset, a position in the basket of stocks, and a long position in
a European call option with strike price V0 on the basket of stocks. The call option
is not a traded asset, but it can be issued and sold to the company by a bank if the
bank receives a good enough price C0. The company decides to invest the capital
kV0 according to the solution to the investment problem

maximize EŒw0R0 C w1R1 C w2.V0=C0/.R1 � 1/C � L�

� c
2V0

Var.w0R0 C w1R1 C w2.V0=C0/.R1 � 1/C � L/

subject to w0 C w1 C w2 � kV0
w2 � 0:

(4.21)

Notice that .w0;w1;w2/ D .V0=R0; 0; C0/ gives

w0R0 C w1R1 C w2.V0=C0/.R1 � 1/C � L D 0;

which means a perfect hedge of the liability. However, here we assume that V0=R0C
C0 � kV0, so that the company cannot hedge the liability perfectly and make a profit
just by buying the call option from a bank.

We now consider a numerical example. The company invests 1:1V0 and is obliged
to pay V0 max.1;R1/ D V0CV0.R1�1/C, i.e., the amount V0 plus the payoff of the
amount V0 invested in an at-the-money call option on the basket of stocks, in 1 year
from now. The risk-free return is R0 D 1=0:97. The company considers the return
R1 on the basket of stocks to be LN.�; �2/-distributed with � D 0:05 and � D 0:3.

The company can purchase a call option with payoff V0.R1 � 1/C from a bank,
but the price C0 D 0:17V0 is high, corresponding to an implied volatility of
approximately 0:4. In particular, 1:1V0 < V0=R0 C C0 D 1:14V0, so there is no
risk-free profit to be made.

The expected value and variance of the return R1 are given by

EŒR1� D e�C�2=2 and Var.R1/ D e2�C�2.e�2 � 1/:

The expected value and variance of the return R2 D .V0=C0/.R1 � 1/C can
be computed as follows. Since R1 has a lognormal distribution, it has the same
distribution as expf�C �Zg, where Z has a standard normal distribution. Then

EŒ.R1 � 1/C� D EŒR1I fR1 > 1g�� P.R1 > 1/

D EŒe�C�ZI fZ > ��=�g� � P.Z > ��=�/
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D e�
Z 1

��=�
1p
2�
e� 1

2 .z��/2C 1
2 �

2

d z �˚.�=�/

D e�C�2=2 P.Z � � > ��=�/ �˚.�=�/
D e�C�2=2˚.� C �=�/� ˚.�=�/:

Multiplying by V0=C0 gives an expression for EŒR2�. Similarly, the variance of R2
can be computed from

Var..R1 � 1/C/ D EŒ.R1 � 1/2I fR1 > 1g�� EŒ.R1 � 1/C�2

D e2�C2�2˚.2� C �=�/ � 2e�C�2=2˚.� C �=�/C ˚.�=�/

� EŒ.R1 � 1/C�2:
Finally, the covariances Cov.R1;R2/ and Cov.L;R1/ can be computed from

Cov.R1; .R1 � 1/C/ D EŒR1.R1 � 1/I fR1 > 1g�� EŒR1�EŒ.R1 � 1/C�
D e2�C2�2˚.2� C �=�/ � e�C�2=2˚.� C �=�/

� EŒR1�EŒ.R1 � 1/C�:
Upon inserting numerical values we find that

� �
�
1:0997

1:0658

�
; ˙ �

�
0:1139 0:4899

0:4899 2:3704

�
; and ˙L;R � V0

�
0:0832

0:4030

�
:

From Proposition 4.5 we know that if there are no restrictions on short-selling, then
the optimal solution (in the risky assets) to (4.21) is

˙ �1
�1:1V0

c
.� � R01/C ˙L;R

�
� V0

�
1

c

�
5:3503

�1:0894
�

C
�

0

0:1700

��
: (4.22)

Therefore, w1;w2 � 0 for c � c0 � 6:4087, and w1 > 0 and w2 < 0 otherwise.
The interpretation is that to hedge the liability, the company should buy the call
option, but for an investment it should short-sell the call option and take a long
position in the basket of stocks. However, the company cannot short the call option.
In particular, the optimal solution to (4.21) is for c < c0 not given by the expression
in Proposition 4.5. We conclude that in the case c < c0, the solution is either of the
form .1:1V0�w2; 0;w2/with w2 > 0 or of the form .1:1V0�w1;w1; 0/with w1 > 0.

If we take c very large (c ! 1), then the optimal solution is approximately
w0 D 1:1V0 � C0, w1 D 0, and w2 D C0. This solution gives a zero-variance hedge
but also a certain loss:

w0R0 C w1R1 C w2R2 �L D V0..1:1 � 0:17/=0:97� 1/ � �0:04V0:
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It can be shown by computing the values of the objective function, which is plausible
given what we have seen so far, that if c � c0, then the optimal solution is of the
form .1:1V0 � w1;w1; 0/, with w1 > 0. More precisely, if c � c0, then the optimal
solution to (4.21) is given by w0 D 1:1V0 � w1,

w1 D 1:1V0

c

�1 �R0
Var.R1/

C Cov.L;R1/

Var.R1/
� V0.0:6639=c C 0:7313/ and w2 D 0:

We see that the position w1 is the sum of the position for speculation and the position
for hedging the liability, where the former depends on the trade-off parameter c.
Notice that for c D c0 � 6:4087 the solution here coincides with the solution in
(4.22). Also notice that for c � c0 the future net value of the company’s position is
a random variable distributed as

V0
1

0:97

�
1:1 � a

c
� b

�
C V0

�a
c

C b
�
e0:05C0:3Z � V0 max.1; e0:05C0:3Z/; (4.23)

where a � 0:6639, b � 0:7313, and Z is N.0; 1/-distributed. Histograms
illustrating the probability distribution of the net value in (4.23) are shown in
Fig. 4.5.

For c D 1 (the upper left plot) and c D 2 (the upper right plot) the company
wants to capitalize on its positive view of the performance of the stocks and invests
w1 > V0 in the stocks. The positions are profitable if the stocks perform well, R1 >
1, but can be rather costly if they do not. For c D 1 the net result for the company is
approximately

V0.0:39R1 � 0:29/ if R1 > 1;
V0.1:39R1 � 1:29/ if R1 � 1:

In this case, the company is short the risk-free asset to finance speculation on the
basket of stocks. For c D 2 the net result for the company is approximately

V0.0:06R1 C 0:04/ if R1 > 1;
V0.1:06R1 � 0:96/ if R1 � 1:

For c D 3 (the lower left plot) and c D 6 (the lower right plot) the situation is
different. Here the company invests w1 < V0 in the stocks and the rest 1:1V0 � w1
in the risk-free bond. For c D 3 the net result for the company is approximately

V0.0:15� 0:05R1/ if R1 > 1;
V0.0:95R1 � 0:85/ if R1 � 1;
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Fig. 4.5 Distributions of net value in (4.23) for c D 1 (upper left), c D 2 (upper right), c D 3

(lower left), and c D 6 (lower right)

and for c D 6 the net result for the company is

V0.0:26 � 0:16R1/ if R1 > 1;
V0.0:84R1 � 0:76/ if R1 � 1:

In both cases, the best outcome for the company corresponds to R1 � 1 and gives a
net result of approximately 0:1V0.

4.4 Large Portfolios

Consider the random variables R1; : : : ; Rn that represent returns for some assets
over some future time period. For any random variablesZ1; : : : ; Zm, called factors,
we write

Rk D hk;0 C hk;1Z1 C � � � C hk;mZm CWk; k D 1; : : : ; n;
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by simply setting Wk D Rk � hk;0 � hk;1Z1 � � � � � hk;mZm. We want as much
as possible of the variances of the Rks to be explained by linear combinations of
the factors. If there are good reasons to believe that Rk depends nonlinearly on
one of the factors (e.g., eZ), then we should transform this factor into a new factor
by applying a nonlinear function to the original factor (e.g., log eZ). Moreover, we
want the number of factors m to be substantially smaller than n in order to obtain a
model for the high-dimensional vector of Rk that is easily expressed in the model
for the low-dimensional vector of Zk . However, this can only be achieved if we
consider a large enough number of factors so that the residual noise terms Wk can
be considered independent and also independent of the factors Zk . We know from
Proposition 3.2 that the choice of hk;0 and hk D .hk;1; : : : ; hk;m/

T given by

hk D ˙ �1
Z ˙Rk;Z and hk;0 D EŒRk� � hT

k EŒZ�

minimizes Var.Wk/ and makes EŒWk� D 0 and Cor.Zj ;Wk/ D 0 for all j .
Suppose Rk represents returns on potentially rewarding investment opportu-

nities for which the investor does not have sufficient information to construct
an n-dimensional model. Suppose, however, that the investor feels reasonably
comfortable with assigning values to the regression coefficients of Rk onto factors
Z1; : : : ; Zm whose covariance structure can be inferred from available historical
data. The factors Z1; : : : ; Zm are selected because there are good reasons, e.g.,
economic, to believe that they should explain a substantial part of the variance of
the Rks. That is,

Rk D hk;0 C hk;1Z1 C � � � C hk;mZm CWk; k D 1; : : : ; n;

where the regression coefficients hk;1; : : : ; hk;m are considered to be known. If wk
denotes the amount invested in the kth investment opportunity, then the future
portfolio value can be expressed as

nX

kD1
wkRk D

mX

jD1

� nX

kD1
wkhk;j

�
Zj C

nX

kD1
wkhk;0 C

nX

kD1
wkWk:

For the investor the aim is to select wk such that
Pn

kD1 wkRk is likely to be large
while at the same time keeping the variance

Var

 
nX

kD1
wkRk

!
D

mX

jD1

 
nX

kD1
wkhk;j

!2
Var.Zj /

C
mX

iD1

mX

jD1

 
nX

kD1
wkhk;i

! 
nX

kD1
wkhk;j

!
Cov.Zi ; Zj /

C Var

 
nX

kD1
wkWk

!
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small. If the factors are well chosen so thatWk are uncorrelated, then the distribution
of
Pn

kD1 wkWk is probably well approximated by a normal distribution with zero
mean and variance

Var
� nX

kD1
wkWk

�
D

nX

kD1
w2k Var.Wk/:

In particular, from these expressions the investor can easily assess whether a
modification in portfolio weight wk makes sense in terms of maintaining a good
balance between risk and potential return.

The following two examples illustrate that for a large homogeneous portfolio
and a correctly specified factor model, the systematic risk factors explain most of
the randomness in the future portfolio value.

Example 4.11 (Homogeneous portfolios I). Write V1 D V0.R1 C � � � C Rn/=n for
the future value of a portfolio with capital V0 invested in equal amounts in n assets.
Note that

V1 D V0

n

nX

kD1
hk;0 C V0

n

mX

jD1

� nX

kD1
hk;j

�
Zj C V0

n

nX

kD1
Wk;

and therefore Chebyshev’s inequality (P.jX j > a/ � EŒX2�=a2) yields

P
�ˇ̌
ˇ
V1

V0
�
Pn

kD1 hk;0
n

�
mX

jD1

Pn
kD1 hk;j
n

Zj

ˇ̌
ˇ > "

�
� EŒ.

Pn
kD1 Wk/

2�

"2n2
:

If Wk are also uncorrelated, then EŒ.
Pn

kD1 Wk/
2� D Pn

kD1 EŒW 2
k � DPn

kD1 Var.Wk/, and we may write

P
�ˇ̌
ˇ
V1

V0
� h0 �

mX

jD1
hjZj

ˇ̌
ˇ > "

�
� �2

"2n
;

where hj is the average j th factor loading amongR1; : : : ; Rn, for j D 0; 1; : : : ; m,
and � is the average standard deviation among the n residuals.

Example 4.12 (Homogeneous portfolios II). Suppose that for all k, Rk D h0 C
h1Z1 C � � � C hmZm C Wk , where Wk are uncorrelated and uncorrelated with
Zj . Suppose also that Var.Wk/ does not vary with k. Write �2R D Var.Rk/,
�2Z D Var.h1Z1 C � � � C hmZm/, and �2W D Var.Wk/, and let � be the fraction
of the variance of each Rk that is explained by the factors Zk , i.e.,

� D �2Z
�2R

D �2Z
�2Z C �2W

:
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With �2V D Var.V1=V0/, V1 D V0.R1 C � � � C Rn/=n, and �n the fraction of the
variance of V1=V0 that is explained by the factorsZk , we find that

�n D �2Z
�2V

D �2Z
�2Z C �2W =n

D �n

�.n � 1/C 1
:

In particular, if n D 1,000 and only 5% of the variance of each Rk is explained
by the factors (� D 0:05), then approximately 98% of the variance of V1=V0 is
explained by the factors (�n � 0:98).

The following two examples consider two homogeneous groups of assets that can
be expressed in terms of a one-factor model, the same factor for both asset types,
where each asset of the first type is a more attractive investment opportunity than
each asset of the second type. The examples illustrate that if the number of assets is
large and if the assets of the first type have a stronger dependence on the common
factor, then the optimal investment is to invest only in the assets of the second type.
The reason for this result is simply that the benefits from diversification in large
portfolios can be substantial if the assets are weakly correlated.

Example 4.13 (Two homogeneous groups I). Here we analyze optimal investments,
long positions only, in a large set of assets whose returns can be divided into two
homogeneous groups:

Rk D h0 C h1Z CWk; k D 1; : : : ; n;

eRk Deh0 Ceh1Z C eW k; k D 1; : : : ; n;

where the set of all Wk and eW k are uncorrelated with mean zero and all of them
are uncorrelated with Z. We set �Z D EŒZ� and assume that all the Wk have the
variance �2 D Var.W1/, and all the eW k have the variance e�2 D Var.eW 1/. Each
asset of the first type is more attractive than any asset of the second type of asset
from a mean–variance perspective in the sense that

EŒRk� D h0 C h1�Z >eh0 Ceh1�Z D EŒeRk� and

Var.Rk/ D h21�
2
Z C �2 <eh21�2Z Ce�2 D Var.eRk/:

However, we assume that h1 > eh1, i.e., that the returns of the first type have a
stronger dependence on the systematic risk factor Z.

To determine how to optimally invest the available capital V0 in the 2n assets we
only need to determine how the capital is divided optimally between the to asset
types. For each of the two assets types, the optimal allocation of the capital �V0,
where � 2 Œ0; 1� is a constant to be determined, among these assets is clearly to
allocate �V0=n to each of the n assets. Therefore, the investment problem may be
formulated as follows:
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maximize E
hPn

kD1 w
n
Rk CPn

kD1ewneRk
i

� c
2V0

Var
�Pn

kD1 w
n
Rk CPn

kD1ewneRk
�

subject to w Cew D V0
w;ew � 0:

If .w;ew/ D .V0; 0/, then the value of the objective function is

V0.h0 C h1�Z/ � cV0

2

�
h21�

2
Z C �2

n

�
: (4.24)

The corresponding value for .w;ew/ D .0; V0/ is

V0.eh0 Ceh1�Z/ � cV0

2

�
eh21�2Z C e�2

n

�
: (4.25)

The expected return is higher when the capital is invested in the first type of assets.
However, if n is sufficiently large, then an investment in these assets only also gives
a higher variance for the portfolio return since the higher systematic risk (h1 >eh1)
becomes much more important than the idiosyncratic risk, which is essentially
diversified away. Therefore, it seems plausible that if both c and n are large enough,
then the assets of the second type, although not attractive on a standalone basis
compared to an asset of the first type, will form the most attractive portfolio return.
We may verify this guess by first noting that ew D V0 � w, so the solution to the
investment problem is found by first setting to 0 the derivative of the objective
function with respect to w and solving it for w. If the resulting value for w is in the
interval .0; V0/, then the solution to the original problem has been found. Otherwise,
the solution is .w;ew/ D .0; V0/ or .V0; 0/, and we can easily determine which one
by comparing the corresponding values of the objective function. Setting to 0 the
derivative of the objective function, withew D V0 � w, with respect to w and solving
it for w gives

w D
�V0
c

�h0 �eh0 C .h1 �eh1/�Z � ceh1.h1 �eh1/�2Z C ce�2=n
.h1 �eh1/2�2Z C �2=nCe�2=n

: (4.26)

Example 4.14 (Two homogeneous groups II). Consider the situation in Example
(4.13) with

h0 Deh0 D 1=2; h1 D 1; eh1 D 1=2; �Z D � D 0:25; e� D p
2�; and�Z D 1:1:

Suppose that we are indifferent to investing all capital V0 in an index fund with
returnZ or all capital in an optimally diversified portfolio of assets of the first type.
That is,

V0

�
�Z � c

2
�2Z

�
D V0

�
h0 C h1�Z � c

2

�
h21�

2
Z C �2

n

��
;
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which, after inserting the foregoing parameter values, gives c D n=�2. We now
investigate the value of w in (4.26) and find that w D V0.2:55 � n=4/=.3 C n=4/,
which is negative for values of n corresponding to a large portfolio. We conclude
that a mix of assets from the two asset types is not optimal and therefore compare
the values of (4.24) and (4.25):

(4.25) D V0

�1
2

C �Z

2
� n

2

�1
4

C 2

n

��
D V0

�1
2

C�Z�n
2

�
1C1

n
�3
4

C1C �Z

n

��

> V0

�1
2

C �Z � n

2

�
1C 1

n

��
D (4.24)

for n in the range we are considering. In particular, the optimal allocation is a
diversified position in the assets of the second type only.

4.5 Problems with Mean–Variance Analysis

The mean–variance approach to comparing investment opportunities is a
cornerstone in portfolio theory. However, many portfolios have future values
V1 D V0R whose probability distributions are not well summarized by means and
variances. Figure 4.6 shows the density functions of four probability distributions
for R with EŒR� D 1:1 and Var.R/ D 0:32. Therefore, they are identical from
a mean–variance perspective, although the density functions are quite different.
Location (mean) and dispersion (variance) are reasonable measures of likely reward
and risk, respectively, if R is approximately normally distributed (upper left plot
in Fig. 4.6). The variance Var.R/ D EŒ.R � EŒR�/2� quantifies a range of likely
deviations from the mean. Whereas deviations of R below the mean are bad for
the long holder of the asset, deviations above the mean are good. For a probability
distribution with a unimodal density function that is symmetric around the mean,
the outcomes ofR are likely to take values close to the mean; the variance quantifies
what is meant by close and also quantifies reasonably well both deviations above
and below the mean. In particular, the variance can be used to measure the riskiness
of the position.

For a bimodal probability density that is symmetric around the mean such as that
shown in the lower left plot in Fig. 4.6, the mean and variance do not give a good
summary of the probability distribution. The lower left plot in Fig. 4.6 shows the
density function of a random variable with stochastic representation

I.1:1� hC �Y1/C .1 � I /.1:1C hC �Y2/; (4.27)

where h D p
0:32 � �2 and � D 0:1 and where I is Be.1=2/-distributed (Bernoulli)

and Y1; Y2 are independent and standard normally distributed. Decreasing � pushes
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Fig. 4.6 Density functions for random variables R with EŒR� D 1:1 and Var.R/ D 0:32. Upper
left: R is N.1:1; 0:32/-distributed. Upper right: R D 0:8 C Z with Z Exp.1=0:3/-distributed.
Lower left: R D IZ1 C .1 � I /Z2, where I is Be.1=2/-distributed and Z1;Z2 are independent
with Z1 N.1 � p

0:08; 0:12/-distributed and Z2 N.1 C p
0:08; 0:12/-distributed. Lower right:

R D IZ1 C .1 � I /Z2, where I is Be.1=4/-distributed and Z1;Z2 are independent with Z1
N.0:8; 0:06/-distributed and Z2 N.1:2; 0:06/-distributed

the two scaled normal density curves apart and makes them more narrow while
preserving the overall mean and variance. The outcomes of the random variable are
not necessarily likely to take values close to the overall mean. Although each of the
probability distributions with stochastic representation (4.27) is determined by two
parameters, the mean and variance are here not the right parameters.

The asymmetric density function shown in the upper right plot in Fig. 4.6
corresponds to a translated exponentially distributed random variable, 0:8 C Z,
where Z is Exp.1=0:3/-distributed (exponential). Each translated exponentially
distributed random variable has a probability distribution that is determined by two
parameters, but again here the mean and variance are not the right parameters.

The lower right plot in Fig. 4.6 shows the density function of a random variable
with stochastic representation

I.�1 C �1Y1/C .1 � I /.�2 C �2Y2/; (4.28)
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where I is Be.1=4/-distributed and Y1; Y2 are independent and standard normally
distributed, and where �1 D 0:8, �2 D 1:2, and �21 D �22 D 0:06. In particular,
from the asymmetric unimodal density function we cannot see that it comes from a
two-point mixture of normal distributions.

In the mean–variance approach to portfolio optimization presented in this
chapter, we have chosen an allocation of the available capital to obtain the optimal
trade-off between a high mean and a low variance for the portfolio return Rp D
w0R0 C wTR, where R is the vector of returns. The approach makes perfect sense
if Rp is normally distributed but, as we have just seen, may be rather inappropriate
if Rp is far from normally distributed. However, Rp D w0R0 C wTR is normally
distributed for any vector w if and only if R has a multivariate normal distribution.
In particular, for Rp to be normally distributed for any w it is necessary but not
sufficient that R1; : : : ; Rn be normally distributed. We now present the multivariate
normal distribution, which is parameterized by the mean vector EŒR� and the
covariance matrix Cov.R/. In Chap. 9 we will study the normal distribution in more
detail and also find that the mean–variance approach is appropriate for a wider set
of multivariate distributions called elliptical distributions.

The random vector Z has a standard normal distribution if the components
Z1; : : : ; Zn of Z are independent and standard normally distributed. We denote this
multivariate distribution by Nn.0; I/, where I is the n�n identity matrix. The random
vector X has a normal distribution with mean � and covariance matrix ˙ , written
Nn.�;˙ /, if there exists a Nm.0; I/-distributed random vector Z, for m � n, and
an n �m matrix A satisfying AAT D ˙ such that

0

B@
X1
:::

Xn

1

CA dD

0

B@
�1
:::

�n

1

CAC A

0

B@
Z1
:::

Zm

1

CA :

If m < n, then ˙ D AAT does not have full rank. In particular, ˙ is not invertible.
If ˙ is invertible, which is typically the more interesting case, then we can always
take m D n and A to be invertible.

Remark 4.4. ˙ is a covariance matrix if and only if it is symmetric and positive
semidefinite. Since ˙ is symmetric, it can be expressed as ˙ D ODOT, where
D is a diagonal matrix with the eigenvalues of ˙ as diagonal elements and O is an
orthogonal matrix (meaning that O�1 D OT) with the eigenvectors of ˙ as columns.
Since ˙ is positive semidefinite, it has nonnegative eigenvalues. If ˙ is positive
definite, then it has strictly positive eigenvalues, so D is invertible. In particular, a
covariance matrix is positive definite if and only if it is invertible. In this case, we
may take A D OD1=2, which is an invertible n � n matrix. However, often A is
chosen as the so-called Cholesky decomposition of ˙ .

Any linear combination wTX D w1X1 C � � � C wnXn of the components of X
is normally distributed. The mean and variance are given by wT� and wT˙ w.
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Fig. 4.7 Simulated samples from bivariate normal distributions

To verify this claim, we recall that any sum of independent normally distributed
random variables is again normally distributed. With v D ATw (a vector in R

m)
we have

wTX
dD wT.� C AZ/ D wT� C .ATw/TZ D wT� C

mX

kD1
vkZk;

i.e., a constant plus a sum of independent normally distributed random variables.
Moreover, we see that EŒwTX� D wT� and

Var.wTX/ D
mX

kD1
v2k D vTv D .ATw/TATw D wT˙ w:

In particular, wTX and wT� C .wT˙ w/1=2Z1 have the same (normal) distribution.
Figure 4.7 shows the result of simulations from two bivariate normal

distributions. The left plot shows a simulated sample of size 1,000 from a bivariate
standard normal distribution. Each of the points .z1; z2/ in the left plot in Fig. 4.7
generates a point .x1; x2/ in the right plot given by

�
x1

x2

�
D
�
1

1

�
C
�
1 0

0:7
p
1 � 0:72

��
z1
z2

�
:

Therefore, the points shown in the right plot is a sample of size 1,000 from
N2.�;˙ /, where �1 D �2 D 1, ˙1;1 D ˙2;2 D 1, and ˙1;2 D ˙2;1 D 0:7.

Example 4.15. Consider an investor who is a mean–variance optimizer and wants
to make a 1-year investment. Suppose that the investor may invest in either an index
that does not pay dividends or in a risk-free zero-coupon bond and call options on the
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index. Suppose further that the 1-year return on the index has mean � D 1:05 and
standard deviation � D 0:2, and suppose that the index has value 1 today. The zero-
coupon bond maturing in 1 year with face value 1 costs B0 D e�0:03 today.

Buying one share of the index means buying a portfolio with the random value
S1 of the index in 1 year as payoff. The investor’s view of buying a share of the
index is determined by the mean–standard deviation pair .�; �/ D .1:05; 0:2/ of
its return. However, the portfolio, consisting of a suitable mix of a long position of
h0 zero-coupon bonds and a short position of h1 call options on S1, gives the same
mean–standard deviation pair for the portfolio return and has the same price 1 today.
This portfolio with payoff g.S1/ D h0 � h1.S1 �K/C is determined by solving the
system of equations

1 D h0B0 � h1C0.K/;

� D EŒh0 � h1.S1 �K/C� D h0 � h1 EŒ.S1 �K/C�;

�2 D Var.h0 � h1.S1 �K/C/ D h21 Var..S1 �K/C/;
where C0.K/ is the price of a call option with strike price K . For simplicity we
assume that the call option prices are given by the Black–Scholes formula (1.7)
with implied volatility � D 0:2. We find that

h0 D �C �
EŒ.S1 �K/C�p
Var..S1 �K/C/

;

h1 D �p
Var..S1 �K/C/

;

whereK solves

B0

�
�C �

EŒ.S1 �K/C�p
Var..S1 �K/C/

�
� C0.K/ �p

Var..S1 �K/C/
D 1:

If the investor considers S1 to be N.�; �2/-distributed, then the solution .h0; h1;K/
to the system of equations is (rounded off to two decimals) h0 D 1:10, h1 D 5:01,
and K D 1:30. If the investor considers S1 to be lognormally distributed, then the
solution is (rounded off to two decimals) h0 D 1:08, h1 D 3:54, and K D 1:30.
The distribution function of the portfolio value g.S1/ is

P.h0 � h1.S1 �K/C � x/ D


1; x � h0;

P.S1 � K C .h0 � x/=h1/; x < h0:

The distribution functions of S1 and g.S1/ are shown in Fig. 4.8 (for normally
and lognormally distributed S1). Note that at the point h0 � 1:1, the distribution
function of g.S1/ jumps to value 1. In particular, we see that portfolios with the
same price today but very different payoffs can be equivalent from a mean–variance
perspective.
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Fig. 4.8 Left plot: payoff functions f .s/ D s and g.s/ D h0�h1.s�K/C. Right plot: distribution
functions of payoffs S1 and g.S1/. Solid curves correspond to a normally distributed return; dashed
curves correspond to a lognormally distributed return

4.6 Notes and Comments

The investment principles presented here originate from the classic work of Harry
Markowitz on portfolio theory in [29,30]. Markowitz focused on linear portfolios of
assets rather than on individual assets and explained how the use of diversification
could make a portfolio of assets with average risk-reward characteristics more
attractive than individual assets with more attractive risk-reward characteristics than
those making up the portfolio. Although the mathematical basis of the quadratic
investment principles is very simple, essentially the formula for the variance of
a sum of correlated random variables, this approach to portfolio analysis has had
an enormous effect on research in economics and finance and the way investment
opportunities are analyzed in practice.

In Sect. 4.5 we pointed out some potential problems with the quadratic approach
to portfolio selection. For more details on problems and pitfalls in connection with
quadratic investment problems we refer the reader to Sect. 6.5 in Attilio Meucci’s
book [33]. The Sharpe ratio is due to William Sharpe, one of the key contributors to
modern portfolio theory, see e.g. [44]

4.7 Exercises

In the exercises below it is assumed, whenever applicable, that you can take
positions corresponding to fractions of assets.

Exercise 4.1 (Efficient frontiers). Consider an investor with initial capital
$10,000 who wants to make a 1-year investment in two risky assets. The mean
� and covariance matrix ˙ of the vector of returns on the risky assets are given by
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� D
�
1:05

1:12

�
and ˙ D

�
0:04 0:03

0:03 0:09

�
:

(a) Determine and plot the efficient frontier when the initial capital is invested fully
in risky assets. Both long and short positions are allowed.

(b) Determine and plot the efficient frontier when the initial capital is invested fully
in risky assets. Only long positions are allowed. Compare the efficient frontier
to the one in (a).

(c) Determine and plot the efficient frontier when the initial capital is invested in
the risky assets and in a risk-free asset with return 1:03. Both long and short
positions are allowed. Compare the efficient frontier to the one in (a).

(d) Suppose that, today, the interest rate for lending money is 3% and that the
interest rate for borrowing money is 5%. Determine and plot the efficient
frontier when the initial capital is invested in risky assets, both long and short
positions are allowed, and both lending and borrowing is allowed. Compare the
efficient frontier to the one in (c).

Exercise 4.2 (Sports betting). The odds offered by a bookmaker on a Premier
League game between Chelsea and Liverpool are: “Chelsea”: 2:50, “draw”: 3:25,
and “Liverpool”: 2:70. A gambler who believes that all outcomes are equally likely
has 100 British pounds to place on bets on the outcome of the game. Determine the
efficient frontier.

Exercise 4.3 (Uncorrelated returns). An investor with capital amounting to
$10,000 considers a repeated 1-day investment in five risky assets and a risk-
free asset. The 1-day return on the risk-free asset is 1, and the one-day returns on
the risky assets are uncorrelated with expected values �k and standard deviations
�k given by

�1 D 1:01; �1 D 0:02;

�2 D 1:02; �2 D 0:04;

�3 D 1:03; �3 D 0:06;

�4 D 1:04; �4 D 0:08;

�5 D 1:05; �5 D 0:10:

Determine the amount to be invested today in each asset to maximize the expected
portfolio value tomorrow when the standard deviation of the portfolio value
tomorrow is not allowed to exceed $30. Short-selling is allowed.

Exercise 4.4 (Hedging a zero-coupon bond). A bank has written a contract that
requires the bank to pay $10,000 in 6 months from today. In return, the bank receives
$9,700 today and wants to invest this amount to manage the liability. There are two
investment opportunities available: a long position in a 9-month zero-coupon bond
and a deposit in an account that does not pay interest. A 9-month zero-coupon bond
with a face value of $10,000 costs $9,510 today. The bank believes that the 3-month
zero rate, per year, in 6 months from today is normally distributed with mean 6%
and standard deviation 1:5%.
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(a) Determine the portfolio, among those whose initial value does not exceed
$9,700, that minimizes the variance of the value of the assets minus that of
your liability 6 months from today, subject to the constraint that the expectation
of the portfolio value in 6 months from today is nonnegative. Determine the
expected value and the standard deviation of the value in 6 months of the
optimal portfolio.

(b) Determine and plot the efficient frontier.

Exercise 4.5 (Hedging stocks with options). Consider an investor liable to deliver
1,000 shares of a stock 1 year from now. The share price S1 at that time is modeled
as S1 D S0e

���2=2C�Z , where Z is standard normally distributed. The investor
believes the share price will go down and that � D �0:05 and � D 0:2. Therefore,
the investor is reluctant to hedge the liability by buying shares. Instead, the investor
wants to hedge by buying at-the-money call options with payoff .S1 � S0/C 1 year
from now and investing in a risk-free 1-year zero-coupon bond with return 1:05.
The current share price is S0 D $87 and the current price of the call option is
C0 D $9:04.

(a) Determine the quadratic hedge.
(b) Determine the solution to the trade-off problem when the initial capital is

$87,000 and the trade-off parameter c D 5.

Exercise 4.6 (Credit rating migration). Consider two corporate bonds with
different issuers. Both bonds have a face value of $100 and mature in 2 years. The
values of the bonds after 1 year depend on the 1-year risk-free zero rate at that
time, the credit ratings of the issuers, and the credit spreads of the issuers’ rating
classes. Suppose that the possible credit ratings are “Excellent,” “Good,” “Poor,”
and “Default.” The credit spreads corresponding to the rating classes are 0:5, 2:0,
9:0, and 80%. For instance, if an issuer after 1 year has a rating of “Good,” then the
associated bond’s 1-year zero rate is the risk-free zero rate at that time plus 2:0%.

The 1-year risk-free zero rate in 1 year is assumed to be normally distributed
with mean 6% and standard deviation 1:2%. Table 4.1 shows the probabilities of the
pairs of credit ratings of the two bond issuers in 1 year (the probability that the first
issuer has the rating “Good” and the second issuer has the rating “Excellent” is 0:6,
etc.). The 1-year risk-free zero rate in 1 year is assumed to be independent of the
credit ratings at that time. The current price of the bond issued by the first issuer is
$83.68, and the price of the bond issued by the second issuer is $87.50.

Consider an investment of $10,000 fully invested in positions in the two bonds.

(a) Determine and plot the efficient frontier.
(b) Select two efficient portfolios, one rather risky and one conservative. For both

portfolios, illustrate the distribution of the portfolio value in 1 year, for instance
by simulating from the distribution of the portfolio value, and construct a
histogram.
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Table 4.1 Probabilities for pair of credit ratings in 1 year for two issuers in
Exercise 4.6

Excellent Good Poor Default Sum

Excellent 0.098736 0.001056 0.000050 0 0.099842
Good 0.632718 0.097799 0.019020 0.000921 0.750458
Poor 0.064579 0.043802 0.019078 0.002226 0.129703
Default 0.004582 0.007243 0.006436 0.001736 0.019997
Sum 0.80063 0.149900 0.044584 0.004883

The first issuer’s rating corresponds to the rows, whereas the second issuer’s
rating corresponds to the columns

Exercise 4.7 (Insurer’s asset allocation). Let L be the value of an insurer’s
liabilities 1 year from today. The liability value L represents the aggregate claim
amount and is positively correlated with the return on a price index measuring
inflation. The insurer wants to choose an asset portfolio to hedge the liability and to
generate a good return on the assets. The investor considers three assets. The first is
an inflation-linked asset with return R1. The second is a pure investment asset with
return R2. The third is a bond portfolio with return R3. The expected values and
covariances are given by

E
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The insurer invests according to the solution to the investment problem

minimize Var.w1R1 C w2R2 C w3R3 �L/
subject to EŒw1R1 C w2R2 C w3R3� � 1:3EŒL�

w1 C w2 C w3 D 1:2EŒL�
w1;w2;w3 � 0:

Determine the solution .w1;w2;w3/. Compare the solution to the corresponding
solution in the case where the first asset is uncorrelated with the liability.

Project 4 (Repeated investments). Consider a pair of assets whose vectors of
weekly log returns .log.S1tC1=S1t /; log.S2tC1=S2t //T are assumed to be independent
and N2.�;˙ /-distributed, where

� D
�
1

1

�
� 10�3 and ˙ D

�
9 3

3 9

�
� 10�4:

An investor with initial capital of $1,000,000 considers the following investment
strategies with weekly rebalancing of the portfolio for 50 weeks.



126 4 Quadratic Investment Principles

(a) Rebalance weekly to hold half of the portfolio value in each asset at the
beginning of each week.

(b) Rebalance weekly to reinvest the portfolio value according to the minimum-
variance portfolio based on the computed mean vector and covariance matrix
for the asset return vector based on estimates of � and ˙ from the 50 most
recent log-return vectors.

(c) Rebalance weekly to reinvest the portfolio value fully in the two assets
according to the solution to the trade-off problem without a risk-free asset and
with trade-off parameter c D 1, with parameters estimated as in (b).

Simulate n samples of 100 weekly log returns, where the first 50 log-return
vectors are considered as historical data and the remaining 50 log-return vectors are
considered as future data within the investment period. Evaluate the distributions
of the 50-week returns for investment strategies (a)–(c) by generating histograms
based on n simulated 50-week returns. Choose n sufficiently large and use the same
simulated samples for the evaluation of strategies (a)–(c).

Suppose that the investor is allowed, at the start of each week, to invest some
of the portfolio value in a 1-week risk-free bond that pays no interest. Suggest
and evaluate an investment strategy that includes the risk-free bonds as investment
opportunities with the aim of generating an attractive distribution for the 50-week
return.



Chapter 5
Utility-Based Investment Principles

In the previous chapter we measured the quality of an investment in terms of the
expected value EŒV1� and the variance Var.V1/ of the future portfolio value V1
and determined portfolio weights (subject to constraints) that maximize a suitable
trade-off EŒV1� � c Var.V1/=.2V0/ between a large expected value and a small
variance. Attractive features of this approach are that the probability distribution
of V1 does not have to be specified in detail and that explicit expressions for the
optimal portfolio weights are found that have intuitive interpretations. We saw
that this approach makes perfect sense if we consider portfolio values V1 that can
be expressed as linear combinations of asset returns whose joint distribution is a
multivariate normal distribution. However, unless there are good reasons to assume
a multivariate normal distribution (or, more generally, as will be made clear in
Chap. 9, an elliptical distribution), solutions provided by the quadratic investment
principles can be rather misleading. Here we want to allow for a probability
distribution of any kind, and this calls for more general investment principles that
are not only based on the variance and expected value of V1.

This chapter consists of three sections. In Sect. 5.1, we introduce concepts such as
subjective expected utility and risk aversion and derive a flexible parametric family
of utility function. We also formulate investment problems in terms of maximization
of expected utility of future portfolio values and analyze the consequences of this
approach in a series of examples. In Sect. 5.2, we take a closer look at a special case,
corresponding to a horse race with a given set of odds, of the general investment
problem. For this special case explicit computations are possible, and from the
explicit solutions we arrive at important conclusions about investment approaches
may be drawn. In Sect. 5.3 we consider the future value of a single asset but
assume that we may purchase any derivative contract on this value, as long as the
derivative price does not violate our budget constraints. We show how to determine
the optimal derivative contract given a utility function capturing our attitude toward
risk, subjective probability beliefs, and market prices. The problem considered in
Sect. 5.3 can be viewed as a limiting case of the problem considered in Sect. 5.2 as

H. Hult et al., Risk and Portfolio Analysis: Principles and Methods, Springer Series
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-4103-8 5,
© Springer Science+Business Media New York 2012
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the number of horses tends to infinity and the bookmaker’s odds take the form of a
forward probability density determined by the market.

5.1 Maximization of Expected Utility

We consider an investor who at time 0 has capital V0 and invests it until time 1 by
taking positions in a risk-free asset with value 1 at time 1 and in n risky assets with
future random values S11 ; : : : ; S

n
1 . At the end of the investment horizon the aggregate

value of the investor’s positions is

V1 D h0 C h1S
1
1 C � � � C hnS

n
1 �L;

where h0; h1; : : : ; hn are the positions in the nC1 assets and L is the future value of
the investor’s liabilities. Often we will consider the case L D 0, which corresponds
to a pure investment problem. If the current values B0; S10 ; : : : ; S

n
0 of the risk-free

and risky assets are positive, then we may consider monetary portfolio weights w0 D
h0B0 and wk D hkS

k
0 and returns R0 D 1=B0 and Rk D Sk1 =S

k
0 and write V1 D

w0R0 C wTR �L, where w D .w1; : : : ;wn/T and R D .R1; : : : ; Rn/
T.

A good approach for an investor to measuring the quality of a portfolio with
future value V1 would be to plot the distribution function or density function of
V1, compare it to the corresponding plots for alternative investments, and consider
how the shape of the plots relate to the investor’s attitude toward the riskiness and
potential reward of the investment. However, it is often necessary to simplify the
decision process by summarizing the quality of a future portfolio value by a single
number. In the previous chapter, the investor summarized the quality of the portfolio
value V1 by the number EŒV1� � cVar.V1/=.2V0/ and compared this number to the
corresponding values for alternative portfolios. A more general approach that can
handle possible deviations from the normality of V1 is obtained by considering the
number EŒu.V1/� for an appropriate choice of the function u. The function u is called
a utility function and should measure the utility of the random portfolio value V1
from the investor’s perspective. The number EŒu.V1/� is the investor’s subjective
expected utility of the portfolio value V1 at time 1. For two attainable future portfolio
values V1 and V 0

1 , the investor prefersV1 to V 0
1 if EŒu.V1/� > EŒu.V 0

1 /�. The investor’s
investment principle here is the maximization of expected utility of the future
portfolio value. Since more money is preferred to less, u is an increasing function.
The increase in utility from an additional monetary unit is typically assumed to
decrease with increasing wealth. Therefore, we assume that u is a concave function:

u.�x C .1 � �/y/ � �u.x/C .1 � �/u.y/; � 2 Œ0; 1�:

If u is concave and twice differentiable, then u0.x/ � 0 and u00.x/ � 0.
That maximization of expected utility is a sound investment principle is sup-

ported by many classical mathematical results that form the basis of the well-
established theory of decision under uncertainty. The famous theorems of Leonard
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Savage, for example (stripped of their details and in their simplest form), state
that as long as an investor ranks portfolios according to certain axioms of rational
behavior, there exist a bounded utility function u and a subjective probability
distribution for .S11 ; : : : ; S

n
1 ; L/ such that the investor’s preferences are consistent

with expected utility maximization. In principle, from the rational investor’s ranking
of all available portfolios one can determine the subjective probability distribution
and the utility function u up to positive affine transformations (au Cb for a > 0). In
this chapter, we assume that utility functions are concave. This assumption makes
sense from an economic point of view and leads to natural parametric families
of utility functions and to convex optimization problems. Although concavity is
a convenient assumption, it should be stressed that it is not a consequence of the
axioms of rational behavior proposed by Savage.

An investor with a utility function u and a subjective probability distribution
assigned to the vector R of returns seeks to determine the optimal solution .w0;w/
to the investment problem

maximize E
�
u
�
w0R0 C wTR � L

�	

subject to w0 C wT1 � V0;
(5.1)

where w D .w1; : : : ;wn/T and R D .R1; : : : ; Rn/
T. Depending on the particular

investment problem considered, it is likely that more constraints, such as restrictions
on short-selling, have to be included. It is assumed that the utility function u and the
probability distribution assigned to .R; L/ are chosen such that the expected utility
in (5.1) exists finitely, at least for some subset of portfolio weights .w0;w/. Since
u is assumed to be concave, the investment problem (5.1) is a convex optimization
problem of the kind considered in Chap. 2. Indeed, it follows from Lemma 3.1 that
the objective function EŒu.w0R0 C wTR � L//� is a concave function in .w0;w/
since u is concave. Therefore, Proposition 2.3 applies, and it follows that if we find
a number w0, a vector w, and a nonnegative number � such that

E
�
u0 �w0R0 C wTR � L

�
R0
	 D �;

E
�
u0 �w0R0 C wTR � L

�
R
	 D �1;

w0 C wT1 D V0;

(5.2)

then .w0;w/ is an optimal solution to investment problem (5.1). If a risk-free asset
is not available, then we set w0 D 0 and omit the second equation in (5.2).

Remark 5.1. For investment problem (5.1) to make sense, an obvious requirement
is that the expected utility must exist finitely. If u is bounded on an interval that
contains all the values that the random variables w0R0 C wTR � L can take, then
the finiteness of the expected value is guaranteed. However, if u is concave and a
probability distribution is assigned to .R; L/ that allows w0R0 C wTR � L to take
any value on the real line, then the expected value in (5.1) may fail to exist finitely. A
(nontrivial) concave function defined on the entire real line is necessarily unbounded
from below, and many of the parametric families of concave utility function
defined on the positive real line that are tractable for analytical computations are
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unbounded from above. The standard textbook probability distributions that seem to
be reasonable model choices for the components of vector R and for L are defined
on the entire positive real line, which may cause problems here. For instance, if
u.x/ D �
e�x=
 and L is lognormally distributed, then the expected value in (5.1)
does not exist finitely.

If L D 0 and only long position (nonnegative portfolio weights) in the risky
assets are allowed, then the situation is better. However, if u is unbounded from
above or below, then the probability mass that the return distribution assigns to
intervals of the form .x;1/ or .0; x/ must decay sufficiently fast as x ! 1 or
x ! 0 to ensure that the expected value in (5.1) exists finitely.

Summing up, we may run into technical difficulties when combining unbounded
utility functions with typical textbook probability distributions that allow random
variables to take arbitrary large values. Moreover, it is not easy to find examples
that demonstrate the necessity of allowing for strictly positive probabilities of
arbitrary large utility values (with plus or minus sign). However, from a pragmatic
point of view parametric models that are computationally tractable but give rise
to unbounded utilities may be acceptable if they give rise to useful procedures for
decision making.

Example 5.1 (Arbitrage). If the utility function u is strictly increasing, then a
necessary condition for the existence of an optimal solution to (5.1) is the absence of
arbitrage opportunities. We now verify this claim. In the current setting, an arbitrage
opportunity is a position .w0;w/ such that

w0 C wT1 D 0; w0R0 C wTR � 0; and w0R0 C wTR>0 with positive probability:

The claim follows if we show that the existence of a solution to problem (5.1)
implies the absence of arbitrage opportunities. Suppose that .w�

0 ;w
�/ is an optimal

solution to (5.1) and that an arbitrage opportunity .w0;w/ exists. Then also .w�
0 C

w0;w� C w/ is a feasible solution since w0 C wT1 D 0. However,

E
�
u
�
.w�

0 C w0/R0 C .w� C w/TR � L
�	
> E

h
u
�

w�
0R0 C w�TR � L

�i
;

which contradicts the claim that .w�
0 ;w

�/ is an optimal solution to (5.1).

The axioms of rational behavior underlying expected utility maximization have
been criticized for not reflecting many peoples’ observed preferences among
choices. One such illustration of irrational preferences is called the Allais paradox
and is presented below.

Example 5.2 (Allais paradox). Consider four contracts with payoffs, in millions of
dollars given by

A D 1; B D
8
<

:

1 w. p. 0:89
0 w. p. 0:01
5 w. p. 0:10

; C D


0 w. p. 0:89
1 w. p. 0:11

; D D


0 w. p. 0:90
5 w. p. 0:10

;
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where w. p. stands for “with probability.” Suppose that the payoffs (contracts)A and
B have the same price and that the payoffs (contracts)C andD have the same price.
Empirical investigations show that many people tend to prefer A to B and also D
to C . If a person with these preferences is maximizing expected utility, then there
must exist a utility function u such that

u.1/ > 0:10u.5/C 0:89u.1/C 0:01u.0/; (5.3)

0:10u.5/C 0:90u.0/ > 0:11u.1/C 0:89u.0/: (5.4)

Combining (5.3) and (5.4) gives 0:10u.5/C 0:90u.0/ > 0:10u.5/C 0:90u.0/, from
which we conclude that preferring A to B and also D to C is inconsistent with
expected utility maximization. The conclusion is, however, likely to be perceived
as rather irrelevant to someone who has these preferences and does not care much
about mathematical theories. To demonstrate more clearly the irrationality of these
preferences, consider payoff F , which takes the value 0 with probability 1=11 and
the value 5 with probability 10=11 and has the same price as A (and B). Suppose
that A is preferred to F (the argument below is identical if the converse is true).
Consider an indicator variable I that is independent of F and takes the value 1 with
probability 0:89. We notice that

IAC .1 � I /A D A;

IAC .1� I /F D B;

I0C .1 � I /A D C;

I0C .1� I /F D D:

One of the axioms of rational behavior, called the independence axiom or the sure-
thing principle, says that ifA is preferred to F , then, for any probabilityp, receiving
Awith probabilityp and a fixed amount otherwise must be preferred to receiving F
with probability p and the same fixed amount otherwise. Most people would agree
that preferences violating the independence axiom are irrational. Here, preferring
A to B and also D to C is clearly a violation of the independence axiom. It seems
likely that once confronted with the consequences of preferringA toB and alsoD to
C , a person that initially held these preferences would modify them into preferences
that are consistent with expected utility maximization.

The Allais paradox is not really a paradox but rather an illustration of the
fact that people do not always make rational decisions when the alternatives
are somewhat complicated. However, here we are not focusing on describing
observations of preferences but rather on presenting sound decision tools that lead to
preferences between complicated alternatives that are not modified after analyzing
the alternatives in more detail.

Consider an asset, portfolio, or financial contract that has the random value V1 at
time 1. For each investor there should be some fixed amount C of money at time 1
such that the investor is indifferent to receiving the fixed amount C or the random
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amount V1 at time 1. For an expected-utility-maximizing investor the amount C is
given by

u.C / D EŒu.V1/�

and is called the investor’s certainty equivalent of random value V1. The certainty
equivalent could be seen as an upper bound on the forward price of V1 that would
make the investor want to enter into a forward contract with a counterparty that
promises to deliver V1 at time 1. What can be said about C ? If the utility function u
is strictly increasing and continuous, then C D u�1.EŒu.V1/�/, where the inverse
u�1 is strictly increasing. In particular, maximizing the certainty equivalent is
tantamount to maximizing the expected utility. The utility functions that we consider
are concave, and therefore Proposition 2.2 in Chap. 2 implies that u.EŒV1�/ �
EŒu.V1/� (this inequality is called Jensen’s inequality). Since u is also increasing,
the relation

u.C / D EŒu.V1/� � u.EŒV1�/

tells us thatC � EŒV1�. The investor is said to be risk averse since the certain amount
C , which is preferred to investing and receiving the random value V1, is less than
or equal to the expected future portfolio value EŒV1�. A risk-averse expected-utility
maximizer may find it rational to pay a risk premium to an insurer.

The certainty equivalent is illustrated in Fig. 5.1. Along the x-axis, the density of
V1 is illustrated along with the graph of the utility function. The density on the y-
axis is the density of u.V1/. It is obtained by reflecting the density of V1 in the graph
of the utility function, f.x; u.x//; x > 0g. The concavity of the utility function leads
to a skew to the right in the density of u.V1/. The expected value EŒV1� is illustrated
by the solid line segment orthogonal to the x-axis. The value u.EŒV1�/ is illustrated
by the solid line segment orthogonal to the y-axis. The expected utility EŒu.V1/� is
illustrated by the dashed line segment orthogonal to the y-axis. Note that, because
of the concavity of u, we have the inequality EŒu.V1/� � u.EŒV1�/. The certainty
equivalent C D u�1.EŒu.V1/� is illustrated by the dashed line segment orthogonal
to the x-axis. Notice that C � EŒV1�.

Closely related to the certainty equivalent is the absolute risk premium, which is
the fixed amount �ŒV1� of money at time 1 such that

EŒu.V1/� D u.EŒV1� � �ŒV1�/: (5.5)

We see that the risk premium is the certain amount that the investor requires as
compensation to become indifferent to the choice between the risky investment and
its expected value. Note also that EŒV1���ŒV1� is the certainty equivalent of V1 and
that �ŒV1� � 0 since u is concave.

The degree of risk aversion for a twice-differentiable utility function may be
measured in terms of the Arrow–Pratt absolute risk aversion coefficient, which is
given by
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Fig. 5.1 Density of portfolio
value V1 (x-axis) and density
of u.V1/ (y-axis). The solid
line segment orthogonal to
the x-axis represents EŒV1�,
whereas that orthogonal to
the y-axis represents
u.EŒV1�/. The dashed line
segment orthogonal to the
y-axis represents EŒu.V1/�,
whereas that orthogonal to
the x-axis represents the
certainty equivalent C

A.x/ D �u00.x/
u0.x/

:

It measures the investor’s risk aversion locally as a function of the wealth level
and does not depend on the investor’s probability beliefs. Clearly, the absolute
risk aversion coefficient A is defined only for strictly increasing utility functions
u, u0.x/ > 0. Moreover, the concavity of u implies that A.x/ � 0. The reason for
looking at this coefficient rather than just u00 is that the measure A is invariant under
a positive affine transformation of u (au C b with a > 0).

There are infinitely many potentially useful parametric families of utility func-
tions. To understand how properties of an investor’s utility function affect the
investor’s portfolio choice, we consider only one parametric family. The popular
and flexible family of utility functions called HARA (hyperbolic absolute risk
aversion) utility functions follows from a natural parameterization of the Arrow–
Pratt absolute risk aversion coefficient A. If x and h have the dimension money,
then it follows from the definitions u0.x/ D limh!0.u.x C h/ � u.x//=h and
u00.x/ D limh!0.u0.x C h/ � u0.x//=h that A.x/ has the dimension money to the
power �1. Therefore, a natural parameterization is

A.x/ D �u00.x/
u0.x/

D 1


 C �x
; 
 C �x > 0;

where � is a dimensionless constant and the constant 
 has the dimension money.
The rightmost foregoing equality is a differential equation for u that can be solved
as follows. With y.x/ D u0.x/ we solve the linear homogeneous equation y0.x/ D
�y.x/=.
 C �x/ by separation of variables:

Z
dy

y
D �

Z
dx


 C �x
C C1
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for some constant C1, which gives

y D C2 �


.
 C �x/�1=� ; � ¤ 0;

e�x=
 ; � D 0;

for some positive constant C2. Integrating y.x/ D u0.x/ with respect to x gives
solutions that are positive affine transformations of

u.x/ D

8
<̂

:̂

1
��1 .
 C �x/1�1=� ; � ¤ 1; 0I
log.
 C x/; � D 1I
�
e�x=
 ; � D 0

(5.6)

for 
 C �x > 0. This utility function is called a HARA utility function. The three
cases correspond to power, logarithmic, and (negative) exponential utility functions.
As a limit of the HARA utility function as � ! 1 we obtain the linear utility
function

lim
�!1 u.x/ D lim

�!1
1

� � 1
.
 C �x/1�1=� D x:

The HARA utility function with � D �1 is the quadratic utility function

u.x/ D �1
2
.
 � x/2; x � 
;

which is seen to be strictly increasing and strictly concave for x < 
 . The expected
utility of a future portfolio value bounded from above by 
 here takes the form

EŒu.V1/� D 
 EŒV1� � 1

2

�
Var.V1/C EŒV1�2

�
� 
2

2
;

which indicates that maximizing the expected quadratic utility is closely connected
with solving the mean–variance trade-off problem (4.7) [or (4.3)]. Example 5.4
below shows that this is indeed true.

So which utility function is the right utility function for a rational investor? This
question is not particularly relevant. It is quite possible that the decisions over time
of a rational decision maker are such that each of the decisions is consistent with
expected utility maximization but also such that no utility function is consistent
with all of the decisions: the degree of risk aversion and the subjective probabilities
assigned to future events are likely to vary over time.

Example 5.3 (Fire insurance). Consider a company that is contemplating buying
fire insurance on a factory for the following year. For simplicity we assume that the
company will have the known net wealth V 1 year from now if there is no fire and
V � f V , for some f 2 .0; 1/, if there is a fire. Therefore, without fire insurance
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the random net wealth for the company in 1 year is V1 D V.1� If /, where I takes
the value 1 if there is a fire during the year and 0 otherwise. The company estimates
that the probability of a fire in its factory during the following year is p and that the
company’s attitude toward risk can be captured by a HARA utility function u with
� ¤ 0; 1 and 
 D 0, i.e.,

u.x/ D 1

� � 1�
1�1=�x1�1=� ; x > 0:

Therefore, the certainty equivalent C of V1 is

C D V
�
p.1 � f /.��1/=� C 1 � p

��=.��1/
:

If we assume that buying fire insurance makes the company immune to any financial
consequences of a fire and only affects the company’s future net wealth by reducing
it from V to V �cV , where cV discounted to money today can be interpreted as the
fire insurance premium, then the number c, given by EŒu.V .1�If //� D u.V .1�c//,
that makes the company indifferent to buying fire insurance is

c.f; p; �/ D 1 �
�
p.1 � f /.��1/=� C 1 � p

��=.��1/
:

Computing the partial derivative of c with respect to � gives

� 1

�.� � 1/

�
p.1 � f /.��1/=� C 1 � p

�1=.��1/
p.1 � f /.��1/=� log.1 � f / < 0;

so the premium that the company is willing to pay for fire insurance is decreasing
in � : the more risk averse the company is, the higher the fire insurance premium
it is willing to accept. Notice that lim�!1 u.x/ D x, which is the utility function
of a risk-neutral decision maker, and that lim�!1 c.f; p; �/ D pf , which is the
expected fire loss. The case � ! 1 corresponds to setting the expected net wealth
without insurance equal to the net wealth with insurance and solving the equation
for c. We now compute the limits for c.p; f; �/ as � tends to 1 and 0, respectively.

lim
�!1

c.f; p; �/ D 1� exp
�

� lim
x!0

1

x
log.p.1 � f /�x C 1� p/

�

D
n
l’Hôpital’s rule; da�x=dx D �a�x log a

o

D 1� exp

�
lim
x!0

.1 � f /�xp log.1� f /

p.1 � f /�x C 1 � p

�

D 1� .1 � f /p:
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Fig. 5.2 Graph of c.f; p; �/ as a function of � for .f; p/ D .0:5; 0:01/ (solid curves) and the level
pf D 0:005 (dashed line)

We also find that

lim
�!0

c.f; p; �/ D 1 � lim
x!�1.p.1 � f /x C 1 � p/1=x

D 1 � lim
x!�1.p.1 � f /x/1=x

D f;

which is extremely risk averse and does not take the (probably rather small)
probability p into account. Figure 5.2 shows a graph of c.f; p; �/ as a function
of � for .f; p/ D .0:5; 0:01/.

Example 5.4 (Quadratic utility). Consider an investor with a quadratic utility
function u.x/ D 
x�x2=2who wants to find the optimal solution to the investment
problem

maximize EŒu.w0R0 C wTR/�
subject to w0 C wT1 � V0:

Since u.x/ is increasing and concave only for x � 
 , the possible outcome of the
future portfolio value w0R0 C wTR should be bounded from above by 
 . Here we
ignore this restriction.

The sufficient conditions for an optimal solution in (5.2) here take the form

EŒ
R � .w0R0 C wTR/R� D �1;

EŒ
R0 � .w0R0 C wTR/R0� D �;

w0 C wT1 D V0;

or, equivalently, since EŒRRT� D Cov.R/C EŒR�EŒR�T,
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.
 � w0R0/� � .˙ C ��T/w D �1;

.
 � w0R0/R0 � wT�R0 D �;

w0 C wT1 D V0:

Inserting the expression of � from the second equation into the first equation leads to

�.˙ C ��T/w D Œ.
 � w0R0/R0 � wT�R0�1 � .
 � w0R0/�:

Since w0 D V0 � wT1, the equation in the last display may be rewritten in the form

.˙ C .� � R01/.� � R01/T/w D .� � R01/.
 � V0R0/:

The identity

.˙ C vvT/�1 D ˙�1 � ˙�1vvT˙�1

1C vT˙�1v

now leads to the solution

w D 
 � V0R0

1C .� � R01/T˙�1.� � R01/
˙�1.� � R01/:

In particular, the solution to the maximization of the expected quadratic utility is the
solution to the trade-off version (4.7) of the quadratic investment problems studied
in Chap. 4 with trade-off parameter

c D 1C .� �R01/T˙�1.� �R01/

=V0 �R0 :

Example 5.5 (Exponential utility and multivariate normal returns). Suppose that
R is Nn.�;˙ /-distributed, which implies that w0R0 C wTR is N.w0R0 C
wT�;wT˙ w/-distributed. In particular, we may write

E
�
u
�
w0R0 C wTR

�	 D E
h
u
�

w0R0 C wT� C
p

wT˙ wZ
�i

for a standard normally distributed Z. If u.x/ D �
e�x=
 , then u.w0R0 C wTR/ is
lognormally distributed and

EŒu.w0R0 C wTR/� D �
e�.w0R0CwT�/=
CwT˙w=.2
2/: (5.7)

Since �
 log.�x=
/ is an increasing function of x for x < 0, maximizing (5.7) over
all w satisfying the budget constraint w0 C wT1 � V0 is equivalent to solving
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maximize w0R0 C wT� � 1

2

wT˙w

subject to w0 C wT1 � V0:

This is the kind of quadratic optimization problem that we encountered earlier in
Chap. 4. Its solution .w0;w/ is given by w D 
˙�1.� �R01/ and w0 D V0 � wT1.

5.2 A Horse Race Example

Consider an investment situation where bets can be placed on the occurrence of one
out of n mutually exclusive events that are assigned strictly positive probabilities.
Simultaneous bets on the occurrence of different events are allowed. The situation
corresponds to a horse race with n horses where bets can be placed on the winner
and where simultaneous bets on different horses are allowed. Alternatively, the
investment situation corresponds to the opportunity to buy digital options on the
future value of an asset where only one digital option will give a nonzero payoff and
where there is zero probability that none of them will. Let Xk be a random variable
that takes the value 1 if the kth outcome occurs (the kth horse wins) and 0 otherwise,
and let qk > 0 be the price of the payoff Xk . Then 1=qk can be interpreted as the
odds for the kth horse winning the race or alternatively the nonzero outcome of the
return of the kth digital option. Since X1 C � � � CXn D 1 and precisely one Xk will
take the value 1, investing the amount qk on each payoff Xk gives the payoff 1 for
sure. In particular, this investment corresponds to buying a synthetic zero-coupon
bond with face value 1. In the horse-race setting, when the time value of money can
be neglected, a fair bookmaker who does not demand profits for offering the game
would set the odds so that q1 C � � � C qn D 1. We assume that q1 C � � � C qn � 1 in
order to rule out opportunities to make a risk-free profit.

Here we consider an investor with an amount V0 to invest in a combination of
bets on the n outcomes in order to maximize the expected utility of the sum of the
payoffs. Let pk 2 .0; 1/ be the subjective probability that the investor assigns to
the event Xk D 1. An amount wk invested in the payoff Xk corresponds to buying
wk=qk number of contracts, which results in a time 1 value of .wk=qk/Xk. The
investment problem we consider is how much the investor should invest in each Xk ,
i.e., the expected utility maximization problem

maximize E
�
u
�
w1q

�1
1 X1 C � � � C wnq

�1
n Xn

�	

subject to w1 C � � � C wn � V0


 C �wk=qk > 0; k D 1; : : : ; n:

(5.8)

The requirement 
 C �wk=qk > 0 for all k ensures that the expected value exists
finitely. The sufficient condition (5.2) for an optimal solution w here translates into
the existence of a nonnegative � such that

� D pku0
�

wk
1

qk

�
1

qk
for k D 1; : : : ; n and wT1 D V0: (5.9)
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We write 1=qk in (5.9) since 1=qk is a dimensionless constant, which is the nonzero
outcome of the return Xk=qk. As a comparison, q�1

k in (5.8) has the dimension
money to the power �1.

We will now investigate the effect of different parameterizations of the HARA
utility function on the optimal solution to (5.8).

Logarithmic utility. Let u.x/ D log.
Cx/, the HARA utility function for � D 1,
and consider the problem

maximize EŒlog.
 C w1q�1
1 X1 C � � � C wnq�1

n Xn/�

subject to w1 C � � � C wn � V0

 C wk=qk > 0; k D 1; : : : ; n:

The requirement 
 C wk=qk > 0 for all k ensures that the expectation is finite.
Combining the first and second parts of (5.9) gives 1=� D V0 C 


P
j qj and

wk D V0pk C 

�
pk

nX

jD1
qj � qk

�
for k D 1; : : : ; n: (5.10)

In particular, if V0C
Pj qj > 0, then � > 0 and wk D pk=��
qk > �
qk for all
k, so the optimal solution is given by (5.10). For 
 D 0 the solution is wk D V0pk ,
which means that for each k the invested amount in the kth possible outcome is
proportional to the subjective probability pk assigned to the event fXk D 1g and
does not depend on the price qk . The solution corresponds to a rather extreme view
in the sense that it is irrelevant how the probability pk compares to the price qk .

Exponential utility. Let u.x/ D �
e�x=
 . The investment problem (5.8) is solved
by verifying that there is a nonnegative � and a vector w that solve (5.9) with
u0.x/ D e�x=
 . Straightforward, but somewhat tedious, calculations show that � > 0
and

wk D V0
qkPn
jD1 qj

C 


0

@qk log

�
pk

qk

�
� qkPn

jD1 qj

nX

jD1
qj log

�
pj

qj

�1

A : (5.11)

Power utility. Here we consider the HARA utility function

u.x/ D 1

� � 1
.
 C �x/1�1=� ; for � ¤ 0; 1 and 
 C �x > 0:

Investment problem (5.8) takes the form

maximize 1
��1 E

h�

 C �.w1q

�1
1 X1 C � � � C wnq

�1
n Xn/

�1�1=�i

subject to w1 C � � � C wn � V0


 C �wk=qk > 0; k D 1; : : : ; n;

(5.12)



140 5 Utility-Based Investment Principles

and is solved by verifying that there is a nonnegative � and a vector w with 
 C
�wk=qk > 0 that solve (5.9) with u0.x/ D .
 C �x/�1=� . After a bit of algebra, one
arrives at

� D
 
�V0 C 


Pn
jD1 qjPn

jD1 qj .pj =qj /�

!�1=�

and

wk D V0
qk.pk=qk/

�

Pn
jD1 qj .pj =qj /�

C 


�

0

@ qk.pk=qk/
�

Pn
jD1 qj .pj =qj /�

nX

jD1
qj � qk

1

A : (5.13)

In particular, if �V0 C 

Pn

jD1 qj > 0, then � > 0,


 C �wk=qk D qk.pk=qk/
�

Pn
jD1 qj .pj =qj /�

0

@�V0 C 


nX

jD1
qj

1

A > 0;

and the optimal solution to (5.12) is given by (5.13).
One would expect that if we let � ! 1, then the solution wk in (5.13) should

converge to the solution (5.10) for the logarithmic utility function. Indeed, simply
setting � D 1 in expression (5.13) gives expression (5.10).

Similarly, one would expect that if we let � ! 0, then the solution wk in (5.13)
should converge to the solution (5.11) for the exponential utility function. Applying
l’Hôpital’s rule and the relation .d=dx/ax D ax log.a/ shows that the limit of (5.13)
as � ! 0 is the expression (5.11).

Suppose that 
 D 0, and consider the optimal solution (5.13) to (5.12). Notice
that for each k, the money invested in the derivative paying one unit if the kth
outcome occurs is the price qk of the derivative times the number of derivatives
bought, which is .pk=qk/� times a normalizing constant that does not depend on k.
In particular, the number of derivatives bought is large if the subjective probability
pk assigned to the kth outcome is large in comparison to the price qk of this
derivative, and if � is large (corresponding to an investor who is not very risk averse).

For the HARA utility function with 
 D 0, u.x/ ! x as � ! 1. Therefore,
one would expect that the optimal solution (5.13) to investment problem (5.12) as
� ! 1 converges to the solution to

maximize EŒw1q�1
1 X1 C � � � C wnq

�1
n Xn�

subject to w1 C � � � C wn � V0

wk � 0; k D 1; : : : ; n:

(5.14)

The solution to (5.14) is simply wk D V0 for the k that maximizes the ratio pk=qk ,
i.e., the index k of the bet with the highest expected payoff. On the assumption that
there is an index k� for which pk�

=qk�
> pk=qk for all k ¤ k�, we find that
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Fig. 5.3 Left and middle plots: optimal investments for investment problem in Example 5.6. Left
plot: fractions of initial capital placed on bets on “Chelsea,” “draw,” and “Liverpool” as functions
of � . For a given value of � , the value of the lower curve is the fraction of V0 that is invested in the
outcome “Chelsea,” the difference in values between the upper and the lower curve is the fraction
invested in the outcome “draw,” and the remaining fraction is invested in the outcome “Liverpool.”
Middle plot: fractions of initial capital invested in synthetic risk-free asset, in “Liverpool,” and in
“draw, in that order, as functions of � . The plot to the right refers to Example 5.7 and shows the
fractions of the initial capital kept for later use (kept in the “pocket”) and placed on the bet “draw”

lim
�!1V0

qk.pk=qk/
�

Pn
jD1 qj .pj =qj /�

D


V0 if k D k�;
0 if k ¤ k�;

i.e., the guess turned out to be correct.

Example 5.6 (Online sports betting II). Consider Example 1.8, where a bookmaker
offers odds on the outcome of a game between Chelsea and Liverpool. The odds
correspond to the price q1 D 1=2:50 for a digital option that pays 1 if the outcome
of the game is “Chelsea,” qX D 1=3:25 for the outcome “draw,” and q2 D 1=2:70

for the outcome “Liverpool.” We now consider optimal bets for an investor with a
HARA utility function with 
 D 0 who assigns the probabilities p1 D pX D p2 D
1=3 to the three possible outcomes of the game. From the investor’s perspective,
the bet “draw” is relatively cheap, whereas “Chelsea” and “Liverpool” are relatively
expensive. The optimal bets are

wk D V0
q
1��
k

q
1��
1 C q

1��
X C q

1��
2

for k D 1;X; 2:

The optimal bets as a function of � are shown in the left plot in Fig. 5.3. For each �
the interval Œ0; 1� is divided into three parts. For a given value of � , the value of the
lower curve is the fraction of V0 that is invested in the first outcome, “Chelsea,” the
difference in values between the upper and the lower curve is the fraction invested
in the second outcome, “draw,” and the remaining fraction is invested in the third
outcome, “Liverpool.” We see that betting on “draw” is the most attractive bet from
the investor’s point of view (perceived as underpriced), whereas betting on the other
possible outcomes are less attractive (perceived as overpriced). However, the left
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plot in Fig. 5.3 also shows that an optimal bet includes reducing the risk by investing
money in the occurrence of unlikely outcomes. It is also shown that the optimal bet
corresponds to a bold play if � is large.

Notice that holding long positions of equal size h0 (D h1 D hX D h2) in the three
bets corresponds to having a number h0 of zero-coupon bonds with face value 1 (an
overpriced synthetic zero-coupon bond since its price is q1 C qX C q2 > 1). Notice
also that regardless of the value of the parameter � , of the three possible outcomes,
the smallest amount of money is allocated to the least favorable bet, “Chelsea.”
Therefore, the investment problem can equivalently be formulated as an investment
problem with a risk-free asset with return 1=.q1 C qX C q2/ and with the bets on
“Liverpool” and “draw” as risky assets. The middle plot in Fig. 5.3 shows the money
(as fractions of the initial capital V0) invested in the synthetic bond, in the outcome
“Liverpool,” and in the outcome “draw” as functions of � . For a given value of � ,
the value of the lower curve is the fraction of V0 that is invested in the synthetic
bond, the difference in values between the upper and the lower curve is the fraction
invested in the outcome “Liverpool,” and the remaining fraction is invested in the
outcome “draw.”

Example 5.7 (Online sports betting III). A more realistic version of the sports
betting problem in Example 5.6 is obtained by including a risk-free asset with return
R0 D 1, corresponding to keeping some of the initial capital for use later (keeping
it in the “pocket,” say). With this modification the sufficient conditions (5.2) for
an optimal solution .w0;w1;wX ;w2/ to the investment problem yields the condition
q1 C qX C q2 D 1, which is violated here. In particular, no optimal solution is
obtained from (5.2) when all investment opportunities are considered. The left plot
in Fig. 5.3 indicates that to find the optimal solution, we should set w1 D 0 (omit
bets on the outcome “Chelsea”) and apply (5.2) to the modified problem. Since a
position with w1;wX ;w2 > 0 can be interpreted as an investment in a synthetic risk-
free asset with a return of less than one, it is hardly surprising that such a position
can never be optimal here. The investment problem we consider here is as follows:

maximize �1�1=�

��1
�
p1w

1�1=�
0 C pX.w0 C wXq�1

X /1�1=� C p2.w0 C w2q�1
2 /

1�1=�
�

subject to w0 C wX C w2 � V0

wX ;w2 � 0:

If we temporarily ignore the nonnegativity condition wX ;w2 � 0, then the sufficient
conditions (5.2) translate into

��1=� pX
qX
.w0 C wXq

�1
X /�1=� D �;

��1=� p2
q2
.w0 C w2q

�1
2 /�1=� D �;

��1=�
�
p1w

�1=�
0 C pX.w0 C wXq

�1
X /

�1=� C p2.w0 C w2q
�1
2 /

�1=�
�

D �;

w0 C wX C w2 D V0:
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Solving for .w0;wX ;w2; �/ yields

� D .�V0/
�1=�

�
p
�
1 .1 � qX � q2/

1�� C p
�
Xq

1��
X C p

�
2 q

1��
2

�1=�
> 0;

w0 D 1

�

� p1

�.1 � qX � q2/
��
;

wX D qX

� 1
�

� pX
�qX

�� � w0
�
;

w2 D q2

� 1
�

� p2
�q2

�� � w0
�
:

It remains to check whether or not the solution is feasible for the full problem
with the condition wX ;w2 � 0 included. Here p1 D pX D p2 D 1=3 and
qX D 1=3:25, q2 D 1=2:75, which leads to an infeasible solution because w2 < 0

(other values of the parameters may lead to a feasible solution). We conclude
that the optimal solution must be obtained at the boundary of the set of triplets
.w0;wX ;w2/ satisfying wX ;w2 � 0. The least attractive bet is “Liverpool,” so
removing “Liverpool” as a possible bet (setting w2 D 0) leaves us with the
possibility of putting some initial money in the pocket and using the remaining
money to bet on “draw.” The maximization problem therefore reduces to

maximize �1�1=�

��1
�
.p1 C p2/w

1�1=�
0 C pX.w0 C wXq�1

X /1�1=�
�

subject to w0 C wX � V0
wX � 0:

If we temporarily ignore the nonnegativity condition wX � 0, then the sufficient
conditions (5.2) translate into

��1=� pX
qX
.w0 C wXq

�1
X /

�1=� D �;

��1=�
�
.p1 C p2/w

�1=�
0 C pX.w0 C wXq

�1
X /

�1=�
�

D �;

w0 C wX D V0:

Solving for .w0;wX ; �/ yields

� D .�V0/
�1=��.p1 C p2/

� .1 � qX/
1�� C p

�
Xq

1��
X

�1=�
> 0;

w0 D 1

�

� p1 C p2

�.1 � qX/

��
;

wX D qX

� 1
�

� pX
�qX

�� � w0
�

D qX

���

��pX
qX

�� �
�p1 C p2

1 � qX

���
:
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Since � > 0 and wX � 0, we have found the optimal solution. The optimal bets as
a function of � are shown in the right plot in Fig. 5.3. For each � , the value of the
curve is the fraction of V0 that is kept “in the pocket.” The remaining capital is used
to bet on “draw.”

5.3 The Optimal Derivative Position

In this section we consider a problem that can be viewed as the continuous limit of
the horse-race problem, as the number of horses tends to infinity. We will consider
the problem of how to design the optimal derivative on the future value X of
some asset, e.g., a stock market index, given subjective views, risk profiles, budget
constraints, and possibly the presence of liabilities.

We consider an investor who can formulate his subjective view on the random
value X at time 1 in terms of a probability density p.x/. The investor’s attitude
toward risk and potential reward at time 1 is described by a strictly concave utility
function u whose derivative u0 can take any value in .0;1/. We assume that the
investor can observe or ask for the price of an arbitrary derivative onX and that this
price can be represented as a discounted expected value of the derivative payoff,
where the expected value is computed as an integral with respect to a probability
density q.x/. More precisely, the price of a derivative that pays h.X/ at time 1 is
B0
R
h.x/q.x/dx, where B0 is the price of a zero-coupon bond maturing at time 1

with face value 1. The density functions p and q are assumed to satisfy the property
p.x/=q.x/ 2 .0;1/ for all x 2 .0;1/.

Our aim here is to determine a function h that solves the optimization problem

maximize EŒu.h.X//�

subject to
R
h.x/q.x/dx � V0=B0:

(5.15)

We set w.x/ D B0h.x/q.x/ and note that
R b
a

w.x/dx is the amount of money that is
invested in the occurrence of the event fX 2 .a; b/g by holding a derivative contract
with payoff function h. Similarly,

R
w.x/dx is the total invested amount. Since �u

is convex, the optimization problem is equivalent to

minimize � EŒu.h.X//�
subject to

R
h.x/q.x/dx � V0=B0:

We may write � EŒu.h.X//� D � R u.h.x//p.x/dx, and it is easily verified that this
is a convex function of h. Proposition 2.4 gives sufficient conditions for an optimal
solution h to our optimization problem (5.15).

The first condition in Proposition 2.4 here takes the form

Z �
u0.h.x//p.x/ � �q.x/

�
.g.x/ � h.x//dx D 0 for all g:
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This means that u0.h.x//p.x/ � �q.x/ D 0 for all x, which implies that, for
p.x/ > 0,

h.x/ D .u0/�1
�
�
q.x/

p.x/

�
: (5.16)

Note that u0 is a strictly decreasing function that can take any value in .0;1/, and
therefore .u0/�1 is well defined as a function on .0;1/, and in particular the right-
hand side of (5.16) is well defined. The remaining conditions in Proposition 2.4 areR
h.x/q.x/dx � V0=B0, �

� R
h.x/q.x/dx � V0=B0

� D 0, and � � 0.
If there is a positive � such that

V0

B0
D
Z
.u0/�1

�
�
q.x/

p.x/

�
q.x/dx; (5.17)

then (5.16) is the unique optimal solution to the optimization problem (5.15). If the
right-hand side of (5.17) exists finitely for some positive �0, then it is a continuous
and strictly decreasing function of � on .�0;1/.

Under the assumption of a positive � solving (5.17), the amount of money
invested in the outcome of X in the interval .a; b/ is

Z b

a

w.x/dx D B0

Z b

a

h.x/q.x/dx D B0

Z b

a

.u0/�1
�
�
q.x/

p.x/

�
q.x/dx: (5.18)

Before proceeding with some examples, let us comment on the expression for
the optimal payoff function h.x/. Since the utility function u is concave, u0 is
decreasing, and therefore .u0/�1 is also decreasing. Thus, the investor seeks a higher
payoff in states where q.x/=p.x/ is small, that is, in states where p.x/ > q.x/, and
a lower payoff in states where p.x/ < q.x/. Since both p.x/ and q.x/ integrate to
one, both cases will occur, unless p D q.

Example 5.8 (Risk-neutral beliefs). Suppose that p D q, i.e., that the investor’s
beliefs coincide with those reflected in the prices. From (5.16) we see that h is
constant. Therefore, the budget constraint implies that f D B0=V0, which is the
payoff function of a risk-free bond. The conclusion is that, in this case, we value all
payoffs equally, and therefore it only makes sense to invest in the safest one.

Let u be a HARA utility function with � ¤ 0. If � D 1, then u.x/ D log.
 C x/

for 
 C x > 0, and otherwise

u.x/ D 1

� � 1
.
 C �x/1�1=� for 
 C �x > 0:

We find that u0.x/ D .
 C �x/�1=� , which gives .u0/�1.y/ D .y�� � 
/=� .
Therefore,
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w.x/ D B0q.x/h.x/ D B0q.x/.u
0/�1

�
�
q.x/

p.x/

�

D B0

�
q.x/

�
���

�p.x/
q.x/

�� � 

�
: (5.19)

Solving the equation
R

w.x/dx D V0 for ��� gives

��� D
� Z

q.x/
�p.x/
q.x/

��
dx
��1��V0

B0
C 


�
;

which, inserted into (5.19), gives

h.x/ D V0

�
p.x/

q.x/

��

B0
R
q.y/

�
p.y/

q.y/

��
dy

C 


�

0

B@

�
p.x/

q.x/

��

R
q.y/

�
p.y/

q.y/

��
dy

� 1

1

CA (5.20)

and

w.x/ D V0

q.x/
�
p.x/

q.x/

��

R
q.y/

�
p.y/

q.y/

��
dy

C B0


�

0
B@

q.x/
�
p.x/

q.x/

��

R
q.y/

�
p.y/

q.y/

��
dy

� q.x/

1
CA : (5.21)

Notice that (5.21) is the analog of expression (5.13) in the context considered here.
In addition, if � D 1, corresponding to logarithmic utility, then (5.21) takes the form

w.x/ D V0p.x/C B0
.p.x/ � q.x//;

which is the analog of (5.10).

Example 5.9 (Exponential utility). If u.x/ D �
e�x=
 , then u0.x/ D e�x=
 and
.u0/�1.y/ D �
 log.y/ for y > 0. The optimal payoff function is given by

h.x/ D 

�

logp.x/ � log q.x/ � log�
�
:

Solving the equation
R

w.x/dx, where w.x/ D B0h.x/q.x/, for log� gives

log� D � V0

B0

C
Z
q.x/ log

�p.x/
q.x/

�
dx;

and therefore

h.x/ D V0

B0
C 


�
log

�p.x/
q.x/

�
�
Z
q.y/ log

�p.y/
q.y/

�
dy

�
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and

w.x/ D V0q.x/C 
B0q.x/

�
log

�
p.x/

q.x/

�
�
Z
q.y/ log

�
p.y/

q.y/

�
dy

�
:

5.3.1 Examples with Lognormal Distributions

To better understand the interplay between subjective views, prices, and degrees of
risk aversion, we now turn to explicit examples on the assumption that both densities
p and q are densities of lognormal probability distributions.

Suppose the subjective probability is that of a LN.�p; �2p/ distribution and that
the probability derived from prices is that of a LN.�q; �2q / distribution. That is,

p.x/ D 1

x�p
p
2�

exp
�

� 1

2�2p
.logx � �p/

2
�
;

q.x/ D 1

x�q
p
2�

exp
�

� 1

2�2q
.logx � �q/2

�
;

p.x/

q.x/
D �q

�p
exp

� 1

2�2q
.logx � �q/

2 � 1

2�2p
.logx � �p/

2
�
:

Because of the lognormal densities, it is convenient to write z D logx, which makes
L.z/ D logp.ez/�logq.ez/ a second-order polynomial in z andp.x/=q.x/ D eL.z/.
Indeed,

L.z/ D logp.ez/� logq.ez/

D log
��q
�p

�
C 1

2�2q
.z � �q/2 � 1

2�2p
.z � �p/

2

D
�

log
��q
�p

�
C �2q

2�2q
� �2p

2�2p

�
C
��p
�2p

� �q

�2q

�
z C

� 1

2�2q
� 1

2�2p

�
z2

D a0 C a1z C a2z
2;

where

a0 D log
� �q
�p

�
C �2q

2�2q
� �2p

2�2p
;

a1 D �p

�2p
� �q

�2q
;

a2 D 1

2�2q
� 1

2�2p
:
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The optimal payoff function can be written as a function of z as

h.x/ D .u0/�1
�
�
q.x/

p.x/

�
D .u0/�1.�e�L.z// D 1

�
.���e�L.z/ � 
/: (5.22)

To determine �, we solve the equation B0
R
q.x/h.x/dx D V0 for �.

V0

B0
D
Z 1

0

q.x/h.x/dx

D
Z 1

�1
q.ez/h.ez/ezd z

D � 

�

C ���

�

Z 1

�1
1

�q
p
2�

exp
n

� 1

2�2q
.z � �q/

2 C �L.z/
o
d z: (5.23)

The exponent in the integrand in (5.23) can be written as

�
�a0 � �2q

2�2q

�
C
�
�a1 C �q

�2q

�
z �

� 1

2�2q
� �a2

�
z2 D b0 C b1z � b2z

2;

and we notice that the integral in (5.23) exists finitely if

b2 D 1

2�2q
� �a2 D �

2�2p
� � � 1

2�2q
> 0:

On the assumption that b2 > 0, we may write

b0 C b1z � b2z
2 D � 1

2.2b2/�1
�

z � b1

2b2

�2 C b21
4b2

C b0:

Since the integral of any normal density over the entire real line equals one, the
integral in (5.23) can be computed as

1

�q
p
2b2

exp
n b21
4b2

C b0

o

D 1q
1 � 2�2q �a2

exp

(
�a0�

�2q

2�2q
C
 
.�q�a1/

2

2
C �q�a1C

�2q

2�2q

!
1

1 � 2�2q �a2

)

D c.a0; a1; a2; �; �q; �q/:

Putting everything together yields

� D
��V0
B0

C 

��1=�

c.a0; a1; a2; �; �q; �q/
1=� : (5.24)
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If �p D �q , then a2 D 0 and (5.24) simplifies into

� D
�
�V0

B0
C 


��1=�
exp



a0 C �qa1 C �

.�qa1/
2

2

�
: (5.25)

Example 5.10 (Equal volatilities). Suppose that �p D �q , which gives a2 D 0 and,
therefore, from (5.22) that

h.x/ D 1

�
.��� e�a0x�a1 � 
/;

where � is given by (5.25).
If further�p > �q , then the investor agrees with the market view on the volatility

but is overall more optimistic about the future value of the underlying asset. In
this case, a1 > 0, and the payoff function h.x/ is large for large values of x and
small for small values of x. Two examples of such payoff functions are shown in
Fig. 5.4. An investor who holds this derivative is betting on a market up-swing. This
type of payoff may be achieved by, for instance, a long position in the underlying
asset, possibly combined with long positions in call options and possibly also short
positions in put options.

If �p < �q , then the investor agrees with the market view on the volatility but is
overall more pessimistic about the future value of the underlying asset. In this case,
a1 < 0, and the payoff function h.x/ is large for small values of x and small for
large values of x. An example of such a payoff function is shown in Fig. 5.4. An
investor who holds this derivative is betting on a market down-swing.

If �a1 > 1, or equivalently �p > �q C �2p=� , then h is strictly convex and
increasing, whereas if �a1 2 .0; 1/, or equivalently �q < �p < �q C �2p=� , then h
is strictly concave and increasing. If �a1 D 1, then h grows linearly.

Example 5.11 (Different volatilities). Suppose that the expected future value EŒS1�,
from the investor’s point of view, of the underlying asset equals the current forward
price G0:

e�qC�2q =2 D G0 D EŒS1� D e�pC�2p=2: (5.26)

Suppose also that the investor believes that the volatility in the market will differ
from the implied volatility �q .

In the case �p > �q , it follows from (5.26) that �p < �q , and therefore the
optimal payoff function is given by

h.x/ D 1

�
.���e�.a0Ca1 log xCa2.log x/2/ � 
/; (5.27)

with a1 < 0 and a2 > 0 and � given by (5.24). Here h.x/ is large for small and
large values of x and small for intermediate values of x. An example of such a
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Fig. 5.4 Optimal derivative payoff functions for investment problem considered in Example 5.10.
Here V0 D 1, 
 D 0, B0 D e�0:05, and �p D �q D 0:2. In each plot the graphs of the payoff
functions correspond to �p D 0:02 � �2p=2, �p D 0:05 � �2p=2, �p D 0:08 � �2p=2, and
�p D 0:11 � �2p=2. The values of � considered are � D 1 (upper left), � D 1=2 (upper right),
and � D 2 (lower left). Lower-right plot: four lognormal densities

payoff function is shown in Fig. 5.5. An investor holding this derivative is betting
on large price fluctuations. This type of investment can be achieved by purchasing
both at-the-money puts and at-the-money calls.

Similarly, if �p < �q , then it follows from (5.26) that �p > �q , and the optimal
payoff function is given by (5.27) with a1 > 0 and a2 < 0. An example of such a
payoff function is shown in Fig. 5.5. An investor holding this derivative is betting
on small price fluctuations.

5.3.2 Investments in the Presence of Liabilities

Here we make the investment problem more complicated by assuming that the
investor faces a random liability L at time 1. In this more general setting, the
investor must take into account the distribution of L and its dependence with X
when designing the optimal derivative payoff h.X/. More precisely, the investor
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Fig. 5.5 The plot to the left shows optimal derivative payoff functions for the investment problem
considered in Example 5.11. Here V0 D 1, 
 D 0, B0 D e�0:05, �q D 0:2, and � D 1. In each plot
the graphs of the payoff functions correspond to �p D 0:05� 0:172=2, �p D 0:05� 0:202=2 D
�q , and �p D 0:05� 0:232=2. The plot to the right shows the three lognormal densities

wants to determine the payoff function h that does not cost more than the available
capital V0 and that maximizes the subjective expected utility of the future net worth
h.X/ � L.

The investor therefore searches for a function h that solves the optimization
problem

maximize EŒu.h.X/ �L/�
subject to

R
h.x/q.x/dx � V0=B0:

(5.28)

We set w.x/ D B0h.x/q.x/ and note that
R b
a

w.x/dx is the amount of money
invested in the occurrence of the event fX 2 .a; b/g by holding a derivative contract
with payoff function h. Similarly,

R
w.x/dx is the total invested amount. Since

v D �u is convex, the optimization problem is equivalent to

minimize � EŒu.h.X/ �L/�
subject to

R
h.x/q.x/dx � V0=B0:

We assume that the conditional distribution of L, given an outcome x of X has a
density function p.l j x/, and we write

� EŒu.h.X/� L/� D � EŒEŒu.h.X/� L/ j X��

D �
Z

EŒu.h.X/�L/ j X D x�p.x/dx

D
Z �

�
Z

u.h.x/� l/p.l j x/d l
�
p.x/dx;
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and it is easily verified that the expression in parentheses is a convex function
of h. Proposition 2.4 gives sufficient conditions for an optimal solution h to our
optimization problem (5.28). The first condition in Proposition 2.4 here takes the
form
Z �

EŒu0.h.X/� L/ j X D x�p.x/ � �q.x/
�
.g.x/ � h.x//dx D 0 for all g:

The remaining conditions are
R
h.x/q.x/dx � V0=B0, �

� R
h.x/q.x/dx �

V0=B0
� D 0, and � � 0. With

 x.y/ D EŒu0.y � L/ j X D x�;

the first condition in Proposition 2.4 can be formulated as

Z �
 x.h.x//p.x/ � �q.x/

�
.g.x/ � h.x//dx D 0 for all g:

This means that  x.h.x//p.x/ � �q.x/ D 0 for all x, which implies that, for
p.x/ > 0,

h.x/ D  �1
x

�
�
q.x/

p.x/

�
: (5.29)

Note that  x is a strictly decreasing function that can take any value in .0;1/, and
therefore  �1

x is well defined as a function on .0;1/, and in particular the right-
hand side of (5.29) is well defined.

If there is a positive � such that

V0

B0
D
Z
 �1
x

�
�
q.x/

p.x/

�
q.x/dx; (5.30)

then (5.29) is the unique optimal solution to optimization problem (5.28). Note
that if the right-hand side of (5.30) exists finitely for some positive �0, then it is
a continuous and strictly decreasing function of � on .�0;1/.

Under the assumption of a positive � solving (5.30), the amount of money
invested in the outcome of X in the interval .a; b/ is

Z b

a

w.x/dx D B0

Z b

a

h.x/q.x/dx D B0

Z b

a

 �1
x

�
�
q.x/

p.x/

�
q.x/dx: (5.31)

Example 5.12 (Perfect hedge). Suppose L D g.X/ for some function g. Then it is
possible to hedge the liability perfectly. In this case,  x D u0.h.x/ � g.x//, which
implies that
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h.x/ D g.x/C .u0/�1
�
�
q.x/

p.x/

�
: (5.32)

If there is a positive � such that

V0=B0 D
Z
g.x/q.x/dx C

Z
.u0/�1

�
�
q.x/

p.x/

�
q.x/dx;

then (5.32) with this � is the optimal solution.
If you can afford to buy the hedge, the optimal payoff function h is such

that the investor first buys the perfect hedge g.x/ for the price B0
R
g.x/q.x/dx

and then solves the optimal investment problem for the remaining capital V0 �
B0
R
g.x/q.x/dx.

Example 5.13 (Qualitative interpretations). Consider a first-order approximation
of  x.z/ of the form

 x.z/ D EŒu0.z � EŒL j X D x�C EŒL j X D x� � L/ j X D x�

� u0.z � EŒL j X D x�/

C EŒu00.z � EŒL j X D x�/.EŒL j X D x� � L/ j X D x�

D u0.z � EŒL j X D x�/:

Using this approximation of  x in place of  x , we find that

h.x/ � EŒL j X D x�C .u0/�1
�
�
q.x/

p.x/

�
:

We see that the optimal position is approximately to buy the quadratic hedge EŒL j
X D x� for the liability and invest the remaining capital according to the optimal
payoff function without the liability.

Example 5.14 (Exponential utility). Consider the utility function u.x/ D �
e�x=

and a liability of the form L D g.X/Y , where X and Y are independent. Then

 x.h.x// D EŒu0.h.x/ � g.x/Y /� D e�h.x/=
 EŒeg.x/Y=
 � D e�h.x/=
MY .g.x/=
/;

where MY .s/ D EŒesY � is the moment-generating function of Y . Since
 x.h.x//p.x/ � �q.x/ D 0, we find that

h.x/ D 

�

logp.x/ � log q.x/ � log�C logMY .g.x/=
/
�
:
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We may compare this expression for h to that in Example 5.9,

h.x/ D 

�

logp.x/ � log q.x/ � log�
�
;

in the case of no liability. In the presence of the liability g.X/Y , the investor first
buys the derivative with payoff function 
 logMY .g.x/=
/, which can be viewed as
protection against uncertainty in the value of the liability, and invests the remaining
capital as if there were no liability.

Solving the equation
R

w.x/dx, where w.x/ D B0h.x/q.x/, for log� gives

log� D � V0

B0

C
Z
q.x/ log

�p.x/
q.x/

�
dx C

Z
q.x/ logMY .g.x/=
/dx;

and therefore

h.x/ D V0

B0
C 


�
log

�p.x/
q.x/

�
�
Z
q.y/ log

�p.y/
q.y/

�
dy
�

C 

�

logMY .g.x/=
/ �
Z
q.y/ logMY .g.y/=
/dy

�
:

5.4 Notes and Comments

The theory of decision under uncertainty is important to any structured approach
to decision making for individuals and organizations. Financial decision making
is just one out of many possible applications of this theory, and the presentation
here is incomplete, to say the least, for readers who seek a good overview of the
ideas and mathematical results that have been developed by influential researchers
in this area. The work of Leonard Savage is a cornerstone in the theory of decision
under uncertainty, and very readable presentations of his and related work are
the books [43] by Savage and [19] by Itzhak Gilboa. Both books combine deep
mathematics with interesting nontechnical discussions. Expected utility theory has
played a prominent role in the development of the modern theory of economics and
finance.

Our brief presentation of risk premia and coefficients of risk aversion consists of
selected topics from the work of John Pratt in [36] and the work of Kenneth Arrow,
see, e.g., [3].

Many different approaches to asset allocation problems for nonnormally dis-
tributed returns, including expected utility maximization, are presented in Attilio
Meucci’s book [33].

The material in Sect. 5.3 is based on the work of Peter Carr and Dilip Madan
in [8]. We only considered the investment problem from an individual investor’s
perspective, whereas Carr and Madan also considered an economy with multiple
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investors that simultaneously optimize their positions and studied the effects of
the heterogeneity of preferences and probability beliefs on prices and derivative
positions held at equilibrium.

5.5 Exercises

In the exercises below it is assumed, wherever applicable, that you can take positions
corresponding to fractions of assets.

Exercise 5.1 (Credit default swap). Consider an investor who is an expected-
utility maximizer with a utility function u.x/ D p

x, x > 0. The investor has
$100 to invest in long positions in a defaultable bond, a credit default swap on this
bond, and in a risk-free government bond. One defaultable bond costs $96 today
and pays $100 6 months from today if the issuer does not default and 0 in case
the issuer defaults. The credit default swap costs $2 today and pays $100 6 months
from today if the bond issuer defaults, and nothing otherwise. The risk-free bond
costs $99 today and pays $100 6 months from now.

(a) The investor believes that the default probability is 0:02. How much of the $100
does the investor invest in the defaultable bond, in the risk-free bond, and in the
credit default swap?

(b) Another investor is an expected-utility maximizer with a utility function u.x/ D
xˇ for ˇ in .0; 1/. Also, this investor believes that the default probability is 0:02
and decides not to buy the bond. What can be said about ˇ?

Exercise 5.2 (Bets on the credit rating). A credit rating agency gives a credit
rating to every large company and country. Suppose the following credit ratings:
Excellent, Good, Poor, and Default. Consider a bond issued by the Belgian
government with a current credit rating of Good. In 6 months, Belgium will receive
an updated credit rating. You have access to a market where you can buy the
following contracts on the credit rating of Belgium:

1. A contract that costs $1,150 today that pays $10,000 in 6 months if the credit
rating at that time is Excellent.

2. A contract that costs $8,100 today that pays $10,000 in 6 months if the credit
rating at that time is Good.

3. A contract that costs $700 today that pays $10,000 in 6 months if the credit rating
at that time is Poor.

4. A contract that costs $50 today that pays $10,000 in 6 months if the credit rating
at that time is Default.

Your subjective probabilities of the credit rating in 6 months are

P.Excellent/ D 0:11; P.Good/ D 0:80;

P.Poor/ D 0:08; P.Default/ D 0:01:
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Determine how to optimally invest the initial $10,000 capital in the four contracts
if the objective is to maximize expected utility of your capital in 6 months; use a
HARA utility function with 
 D 0 and � D 2:5.

Exercise 5.3 (Hedging with electricity futures). Consider a company whose
assets consist of a power-intensive aluminum smelter and processing facilities. The
value of the company’s assets 1 year from today and the income from sales during
the year is modeled as the random variableX1. The value of the company’s liabilities
and the production costs during the year is modeled as the random variable X2.
The company decides to take a position in electricity futures contracts to hedge
its production costs during the year but also to capitalize on its knowledge of
the electricity market. The profit (possibly negative) from a long position in an
electricity futures strategy of a size corresponding to the predicted energy usage in
production is modeled as the random variable X3. Assume that X D .X1;X2;X3/

T

is normally distributed with mean � and covariance matrix ˙ , where

� D
0

@
20

10

�1

1

A and ˙ D
0

@
22 �3 �2

�3 32 5

�2 5 22

1

A :

Determine the maximizer h of the expected utility EŒu.X1 � X2 C hX3/�, where
u.x/ D �
e�x=
 .

Exercise 5.4 (Optimal payoff function). A model q for the implied forward
density has been determined from option prices with a common maturity. An agent
considers a model for the subjective probability density p of the form, for some real
number � ,

p.x/

q.x/
D e�x�.�/; where .�/ D log

Z
e�xq.x/dx:

Determine the optimal payoff function h for an agent who is maximizing expected
utility using a HARA utility function.

Project 5 (Subjective volatility smile). Consider prices of a number of liquidly
traded call/put options written on a common future value of some asset. Determine
the implied volatility smile �I .K/ by fitting a second-degree polynomial as in
Example 1.9, and derive the resulting implied forward density q.

A market participant’s subjective view of the distribution of the asset value on
which the options are written can be expressed in terms of a subjective volatility
smile �S.K/. The subjective probability densityp is obtained by the same procedure
as in Example 1.9, with the exception that the market smile �I is replaced by �S .

Investigate how different subjective volatility smiles affect the optimal derivative
payoff function h when using a HARA utility function.

(a) Determine the optimal derivative payoff function h when the volatility smile �S
is a parallel shift, up or down, of the implied volatility smile �I .
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(b) Determine the optimal derivative payoff function h when the volatility smile �S
has a higher/lower slope compared to the implied volatility smile �I .

(c) Determine the optimal derivative payoff function h when the volatility smile �S
has more/less curvature than the implied volatility smile �I .

In (a)–(c), be aware that a careless choice of the function �S may lead to a
function p that is not a probability density.



Chapter 6
Risk Measurement Principles

In this chapter, we take a close look at the principles of risk measurement. We
argue that it is natural to quantify the riskiness of a position in monetary units
so that the measurement of the risk of a position can be interpreted as the size of
buffer capital that should be added to the position to provide a sufficient protection
against undesirable outcomes. In the investment problems in Chap. 4, variance was
used to quantify the riskiness of a portfolio. However, variance, being just the
expected squared deviation from the mean value, does not differentiate between
good positive deviations and bad negative deviations and cannot easily be translated
into meaningful monetary values unless the future value we consider is close to
normally distributed. The risk premium considered in Chap. 5 is more natural than
the variance as a summary of the riskiness and potential reward of a position.
However, the risk premium is difficult to use effectively to control the risk taking of
a financial institution or to determine whether the aggregate position of a company
or business unit is acceptable from a risk perspective. In this chapter, we will
present measures of risk, including the widely used value-at-risk and expected
shortfall, analyze their properties, and evaluate their performance in a large number
of examples.

6.1 Risk Measurement

We now turn to the topic of how to measure risk. Consider two times, time 0, which
is now, and a future time �t > 0. We may choose to measure time in units of �t
and therefore take the future time to be 1.

Let V1 represent the random value at time 1 of a portfolio. The precise meaning
of portfolio is left unspecified but may include assets, liabilities, and any kind of
contract that can be assigned a monetary value. To measure the risk of the portfolio,
we analyze the probability distribution of V1. The probability distributions assigned
to V1 are likely to vary among a group of individuals or organizations for which the

H. Hult et al., Risk and Portfolio Analysis: Principles and Methods, Springer Series
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-4103-8 6,
© Springer Science+Business Media New York 2012
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future portfolio value is of relevance. Moreover, the way the probability distribution
of V1 is transformed into a measurement of the riskiness of the portfolio may depend
on the context.

An asset manager, whose main objective is to generate profits while controlling
the risk of and size of losses, needs to consider the whole range of possible
outcomes of V1 together with possible externally imposed risk constraints and
profitability requirements. A risk controller analyzes the part of the distribution
of V1 corresponding to unfavorable outcomes. In particular, the portfolio may be
considered acceptable by the risk controller but not by the asset manager if it is
not likely to produce a good return. Similarly, a portfolio that has good potential of
producing high returns may be unacceptable to the risk controller who finds that the
probabilities of large losses are too high and have been overlooked (or ignored) by
the asset manager.

A regulator of a finance or insurance market wants to impose rules on risk
taking that on the one hand prevents banks or insurance companies from taking
too much risk, and thereby threatening financial stability, but on the other hand
allows companies to be profitable. The rules must enable the supervisory authority
to classify the overall position of a company as either acceptable or unacceptable.
Moreover, the supervisor must be able to inform a company with an unacceptable
position of suitable actions to obtain an acceptable position, for instance, the
minimum additional capital that the company must raise and invest prudently in
order to be allowed to continue its business.

Many properties of a portfolio can be understood in terms of the probability
distribution (e.g., the density function or distribution function) of its future value
V1. However, probability distributions are difficult objects to compare. Therefore,
it is tractable to come up with a good way to summarize, from a risk measurement
perspective, the entire probability distribution in a single number. We now discuss
how this can be done.

Suppose there is a reference instrument with percentage return R0 from time 0
to 1. The precise meaning of the reference instrument may depend on the context
in which we are quantifying risk. For simplicity, here we take it be risk-free zero-
coupon bonds maturing at time 1. If B0 is the current spot price of the bond with
face value 1 at time 1, then R0 D 1=B0 is the percentage return on the risk-free
zero-coupon bond.

Consider a linear vector space X of random variablesX representing the values at
time 1 of portfolios. We denote by � a function that assigns a real number (or C1)
to each X in X, representing a measurement of the risk of X . The number �.X/ is
interpreted as the minimum capital that needs to be added to the portfolio at time 0
and invested in the reference instrument in order to make the position acceptable.
If �.X/ � 0, then X is the value at time 1 of an acceptable portfolio; no capital
needs to be added. In principle, a risk measure � could assign different values to
two equally distributed future portfolio valuesX1 andX2. Throughout the book, we
will only consider risk measures � for which �.X/ depends on X only through its
probability distribution.
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Next we list and comment upon some properties that have been proposed as
natural requirements for good risk measures.

Translation invariance. �.X C cR0/ D �.X/� c for all real numbers c.
This property says that adding a certain amount c of cash (and buying zero-

coupon bonds for this amount) will reduce risk by the same amount. In particular,
for an unacceptable portfolio X , adding the amount �.X/ makes the position
acceptable: �.X C �.X/R0/ D �.X/ � �.X/ D 0.

Monotonicity. If X2 � X1, then �.X1/ � �.X2/.
This property says that if the first position has a greater value than the second

position at time 1 for sure, then the first position must be considered less risky.
A risk measure satisfying the properties translation invariance and monotonicity is
called a monetary measure of risk.

It is often suggested that a risk measure should reward diversification. Loosely
speaking, it is wise not to put all your eggs in the same basket. The following
property describes how diversification should be rewarded.

Convexity. �.�X1 C .1� �/X2/ � ��.X1/C .1� �/�.X2/ for all real numbers �
in Œ0; 1�.

In particular, if �.X1/ � �.X2/ and � has the convexity property, then

�.�X1 C .1 � �/X2/ � ��.X1/C .1 � �/�.X2/ � �.X2/:

For example, investing a fraction of the initial capital in one stock and the remaining
capital in another stock, rather than everything in the more risky stock, reduces
the overall risk. A risk measure satisfying the properties translation invariance,
monotonicity, and convexity is called a convex measure of risk.

Normalization. �.0/ D 0.
The normalization property says that it is acceptable not to take any position at

all. Note that convexity and normalization imply that for � in Œ0; 1�

�.�X/ D �.�X C .1 � �/0/ � ��.X/;

which in turn implies that for � � 1

��.X/ D ��

�
1

�
�X

�
� �

1

�
�.�X/ D �.�X/:

We conclude that the risk increases at least linearly in the size of the position.
A strict inequality for large � would reflect the well-known difficulty of selling off
a large position within a short amount of time without affecting the price too much.

Positive homogeneity. �.�X/ D ��.X/ for all � � 0.
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This property means that if we double the size of the position, then we double the
risk. Moreover, taking � D 0 we find that �.0/ D 0, i.e., the positive homogeneity
property implies the normalization property.

Subadditivity. �.X1 CX2/ � �.X1/C �.X2/.
This property says that diversification should be rewarded. A bank consisting of

two units should be required to put aside less buffer capital than the sum of the
buffer capital for the two units considered as separate entities. In particular, if the
regulator enforces the use of a subadditive risk measure, then it does not encourage
companies to break up into parts in order to reduce the buffer capital requirement.
Note that convexity together with positive homogeneity implies subadditivity.

A risk measure � satisfying the properties of translation invariance, monotonicity,
positive homogeneity, and subadditivity is called a coherent measure of risk.
Whereas a coherent risk measure is also a convex risk measure, a convex risk
measure need not be coherent.

It may seem unintuitive at first to define the risk measure � on the value of a
portfolio at time 1. Suppose R0 D 1 and consider a fund manager who at time 0
invests V0 D $10 million in a giveaway portfolio with a value of V1 D $1 million
.at time 1 ($9 million is given away). If the risk measure � satisfies the translation
invariance and normalization properties, then the risk measure applied to the future
value of the portfolio yields �.$1 million/ D �$1 million, which corresponds to an
acceptable investment. How can giving away money be an acceptable investment?
The explanation lies in the interpretation of the future value X . Let us consider
two stylized cases. In the first case, the fund manager is managing his own money,
X D V1, and there is nothing unacceptable about letting the fund manager give
away some or all of his capital. In the second case, the money of the fund belongs
to the fund’s investors. In this case, the initial capital should be viewed as a liability
to the fund’s investors and X D V1 � V0. Therefore, �.X/ D $9 million, which
corresponds to an unacceptable investment.

Example 6.1 (Solvency capital requirement). In the Solvency II framework, which
is a regulatory framework for the insurance industry, a company is considered
solvent if �.A1 � L1/ � 0, where A1 and L1 are the values of its assets and
liabilities 1 year from now and � a monetary (translation invariant and monotone)
risk measure. It is quite common to illustrate the solvency graphically in terms of a
picture of the balance sheet of the insurance company with the current value of assets
to the left and the current value of liabilities to the right, and with the insurer being
solvent if the height of the left column exceeds that of the right column (Fig. 6.1).

Let A0 be the current market value of the assets, and let L0 be the current market
value (or best estimate) of the liabilities. Since � is translation invariant, we may
write

�.A1 � L1/ D �.ŒA0 �L0�R0 C ŒA1 � A0R0� � ŒL1 � L0R0�/

D L0 �A0 C �.ŒA1 �A0R0� � ŒL1 �L0R0�„ ƒ‚ …
�

/:
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Fig. 6.1 Balance sheet. Left:
present value of assets (gray).
Right: present value of
liabilities (gray). The
solvency capital requirement
is illustrated in white. The
company is solvent if the
present value of the assets is
greater than the present value
of the liabilities plus the
solvency capital requirement

The quantity �.�/ is called the solvency capital requirement and is denoted by SCR.
A portfolio with a future value A1 � L1 is acceptable if �.A1 � L1/ � 0, which is
equivalent to A0 � L0 C SCR. The latter says that the current value of the assets
exceeds the current value of the liabilities plus the solvency capital requirement.
The balance sheet illustration of solvency may give the false impression, if not
correctly interpreted, that solvency is about current asset and liability values,
whereas solvency is really about future asset and liability values.

Example 6.2 (An absolute lower bound). Suppose that acceptable portfolios are
those that are certain not to be below a fixed number c. This gives the risk measure

�.X/ D minfm W mR0 CX � cg:

Define x0 to be the smallest value that X can take (if no such value exists, then take
x0 to be the largest value smaller than all the values thatX can take), and notice that

�.X/ D minfm W mR0 CX � cg D c � x0
R0

; (6.1)

i.e., the discounted difference between the required capital c at time 1 and the worst
possible outcome for the value of the portfolio at time 1. In particular, we note that
if the portfolio contains short positions in some asset with an unbounded value at
time 1 so that x0 D �1, then �.X/ D C1.

We claim that the risk measure � given by (6.1) is a convex measure of risk.
To verify this claim, we need to show the translation invariance, monotonicity, and
convexity. Translation invariance is shown by noticing that for all real numbers a,

�.X C aR0/ D c � .x0 C aR0/

R0
D �.X/ � a:
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To show monotonicity, we notice that if X2 � X1, then the corresponding lower
bounds satisfy x02 � x01, and therefore

�.X1/ D c � x01
R0

� c � x02
R0

D �.X2/:

Finally, we verify that the convexity property holds. IfX1 andX2 have lower bounds
x01 and x02, then, for � 2 Œ0; 1�, the corresponding lower bound y0 for Y D �X1 C
.1 � �/X2 is greater than or equal to �x01 � .1 � �/x02. Therefore,

�.�X1 C .1 � �/X2/ D c � y0
R0

� c � �x01 � .1 � �/x02
R0

D �
c � x01
R0

C .1 � �/
c � x02

R0

D ��.X1/C .1 � �/�.X2/:

Example 6.3 (Mean–variance risk measures). Consider portfolios whose future
values X have finite variances and a risk measure of the form

�.X/ D � EŒX=R0�C c
p

Var.X=R0/; c > 0: (6.2)

By standard properties of the expected value and variance, it follows that � is
translation invariant and positively homogeneous. Moreover, � is subadditive. This
follows from the fact that

Var.X1 CX2/ D Var.X1/C Var.X2/C 2Cor.X1;X2/
p

Var.X1/Var.X2/

�
�p

Var.X1/C
p

Var.X2/
�2
;

i.e., the standard deviation of the sum is less than or equal to the sum of the
standard deviations for the two terms. Since � is both positively homogeneous and
subadditive, it is also convex. However, the monotonicity condition is in general
not satisfied, so � in (6.2) is not a convex measure of risk. The following example
illustrates the lack of monotonicity. Let X1 D �R0 with probability one and let X2
be a random variable that may take the values R0 and �R0, each with probability
1=2. Then X1 � X2, and if c > 1 in (6.2), then

�.X2/ D c
p

Var.X2=R0/ D c > 1 D � EŒX1=R0� D �.X1/:

The lack of monotonicity is a serious flaw and limits the use of the mean–
variance risk measure. However, for normally distributed random variables the
mean–variance risk measure is canonical. If X is normally distributed, then we may
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write X dD EŒX�Cp
Var.X/Z, whereZ is a standard normally distributed random

variable. For any translation-invariant, positively homogeneous risk measure � we
find that

�.X/ D �.EŒX�Cp
Var.X/Z/

D � EŒX=R0�C
p

Var.X=R0/R0�.Z/:

We conclude that as long as X is normally distributed, any translation-invariant,
positively homogeneous risk measure satisfies the defining property (6.2) of mean–
variance risk measures.

6.2 Value-at-Risk

The value-at-risk (VaR) at level p 2 .0; 1/ of a portfolio with value X at time 1 is

VaRp.X/ D minfm W P.mR0 CX < 0/ � pg; (6.3)

whereR0 is the percentage return of a risk-free asset. In words, the VaR of a position
with value X at time 1 is the smallest amount of money that if added to the position
now and invested in the risk-free asset ensures that the probability of a strictly
negative value at time 1 is not greater than p.

From (6.3) we see that X � 0 implies that VaRp.X/ � 0. In order for VaRp to
be a sensible choice of risk measure for typical asset portfolios with mainly long
positions, it is common to take the following view: at the current time 0 one starts
from scratch and takes a risk-free loan of size V0 (which is the current portfolio
value), uses the capital to purchase the asset portfolio, and ends up with the net
value X D V1 � V0R0 at time 1. Therefore, the portfolio is classified as acceptable
if the difference between the actual future portfolio value and the value that would
be obtained by instead investing the current portfolio value in a risk-free asset is
VaRp-acceptable.

Before investigating the properties of VaR we first need to make sure that the
minimum in (6.3) is attained so the definition really makes sense. To this end,
note that

fm W P.mR0 CX < 0/ � pg
D fm W P.�X=R0 > m/ � pg
D fm W 1 � P.�X=R0 � m/ � pg
D fm W P.�X=R0 � m/ � 1 � pg: (6.4)

Since a distribution function F is right continuous (F.x/ # F.x0/ as x # x0) and
increasing, fm W F.m/ � 1�pg D Œm0;1/ for somem0, and therefore there exists
a smallest element.
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SetL D �X=R0. IfX D V1�V0R0 is the net gain from the investment, where the
current portfolio value V0 is viewed as a liability, then L D �X=R0 D V0 � V1=R0
has a natural interpretation as the discounted loss. The identities in (6.4) give an
alternative (equivalent) formulation of VaRp.X/ in terms of L:

VaRp.X/ D minfm W P.L � m/ � 1 � pg: (6.5)

We may interpret VaRp.X/ as the smallest value m such that the probability of the
discounted portfolio loss L D �X=R0 being at most m is at least 1 � p. Expressed
differently, VaRp.X/ is the smallest amount of money that, if put aside and invested
in a risk-free asset at time 0, will be sufficient to cover a potential loss at time
1 with a probability of at least 1 � p. Commonly encountered values for p are
5%, 1%, and 0:5%, which shows that VaRp.X/ describes (to some extent) the right
tail of the probability distribution of the discounted loss L. The length in physical
time of the time period over which the discounted loss is modeled is often taken
to reflect the time it may take to move out of an unfavorable position in the face
of adverse price movements. In market risk measurement (e.g., stocks, bond and
financial derivatives), the length of the time period is typically 1 day or 10 days,
whereas 1 year is typical for credit and insurance risk measurement (e.g., retail
or corporate loans or the aggregate value of assets and liabilities of an insurance
company).

In statistical terms, VaRp.X/ is the .1 � p/-quantile of L. The u-quantile of a
random variable L with distribution function FL is defined as

F �1
L .u/ D minfm W FL.m/ � ug;

and F�1
L is just the ordinary inverse if FL is strictly increasing. If FL is both

continuous and strictly increasing, then F�1
L .u/ is the unique value m such that

FL.m/ D u. For a general FL, the quantile value F�1
L .u/ is obtained by plotting the

graph of FL and setting F�1
L .u/ to be the smallest value m for which FL.m/ � u.

With this notation it follows that

VaRp.X/ D F�1
L .1 � p/: (6.6)

To better understand the properties of the risk measure VaRp , we first study the
quantile function in more detail. We denote the uniform distribution on the interval
.0; 1/ by U.0; 1/, i.e., the probability distribution of a random variable U satisfying
P.U � u/ D u for u in .0; 1/.

Proposition 6.1. Let F be a distribution function on R. Then:

(i) u � F.x/ if and only if F �1.u/ � x.
(ii) If F is continuous, then F.F �1.u// D u.

(iii) (Quantile transform) IfU isU.0; 1/-distributed, then P.F�1.U / � x/ D F.x/.
(iv) (Probability transform) IfX has distribution functionF , thenF.X/ isU.0; 1/-

distributed if and only if F is continuous.
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Proof. (i): Suppose F�1.u/ � x. By definition, F.F�1.u// D F.minfy W
F.y/ � ug/ � u. Since F is nondecreasing, u � F.F�1.u// � F.x/.
Suppose now that u � F.x/. Since F is nondecreasing, F �1.F.x// D
minfy W F.y/ � F.x/g � x. Since F�1 also is nondecreasing, F�1.u/ �
F�1.F.x// � x.

(ii): As in (i) we have u � F.F �1.u//. Take y < F �1.u/ and note that by (i) this is
equivalent to F.y/ < u. Now, if F.y/ D P.X � y/ < u for all y < F�1.u/,
then P.X < F�1.u// � u. Then

u � F.F�1.u// D P.X < F�1.u//C P.X D F�1.u//

� u C P.X D F �1.u//:

The continuity of F implies that P.X D F �1.u// D 0. We conclude that
u D F.F�1.u//.

(iii): U � F.x/ if and only if F �1.U / � x by (i). Hence, P.F �1.U / � x/ D
P.U � F.x// D F.x/.

(iv): Suppose F is continuous. By the quantile transform and (ii),

P.F.X/ D u/ D P.F.F�1.U // D u/ D P.U D u/ D 0:

Hence, by (i)

P.F.X/ � u/ D P.F.X/ < u/C P.F.X/ D u/

D P.F.X/ < u/

D 1 � P.F.X/ � u/

D 1 � P.X � F�1.u//

D P.X < F �1.u//

D F.F �1.u//:

It now follows from (ii) that F.X/ is U.0; 1/-distributed.
To show the converse we show the equivalent statement, that if F is not

continuous, then F.X/ is not U.0; 1/-distributed. If F is discontinuous at x,
then 0 < P.X D x/ � P.F.X/ D F.x//. Hence, F.X/ has a point mass and
therefore cannot be U.0; 1/-distributed. �

It is not difficult to see that the quantile function, and therefore also VaR, is
translation invariant and positive homogeneous. For constants c1; c2 with c2 > 0,

F�1
c1Cc2L.p/ D minfm W P.c1 C c2L � m/ � pg

D minfm W FL..m � c1/=c2/ � pg
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D fputm0 D .m� c1/=c2g
D minfc1 C c2m

0 W FL.m0/ � pg
D c1 C c2 minfm0 W FL.m0/ � pg
D c1 C c2F

�1
L .p/: (6.7)

Moreover, the quantile function, and therefore also VaR, satisfies the monotonicity
condition. This follows from the fact that L2 � L1 implies FL1.m/ � FL2.m/ and
therefore

F�1
L1
.p/ D minfm W FL1.m/ � pg

� minfm W FL2.m/ � pg D F �1
L2
.p/:

Here we summarize the properties for VaR that have been established up to this
point.

Proposition 6.2. The properties translation invariance, monotonicity, and positive
homogeneity hold for VaRp .

Examples of the lack of subadditivity of VaRp can be found even for sums
of independent and identically distributed random variables. One such example is
obtained by combining Examples 6.9 and 6.10.

Example 6.4 (A crude upper bound). Sometimes we need to estimate the quantile
F�1
L .p/ for p 2 .0; 1/ close to one, although the distribution of L is far from

being well understood. Suppose, for instance, that only the mean EŒL� and the
variance Var.L/ are available to us. Cantelli’s inequality, the one-sided version of
Chebyshev’s inequality, says that

P.L� EŒL� � y/ � Var.L/

y2 C Var.L/

or equivalently that

P.L � y/ � Var.L/

.y � EŒL�/2 C Var.L/
:

Now we can turn this upper bound for the tail probability into an upper bound for
the p-quantile of the distribution of L:

F�1
L .p/ � min

n
y W Var.L/

.y � EŒL�/2 C Var.L/
� 1 � p

o
D EŒL�C

�
Var.L/p

1 � p

�1=2
:
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The upper bound on the quantile is not necessarily a good estimate, but it is
the smallest upper bound (best conservative estimate) if no information about the
distribution of L is available besides the mean and the variance.

Example 6.5 (Lognormal distribution). Consider a stock with spot price S0 today
and random spot price S1 tomorrow, and assume that the 1-day interest rate is
zero. We want to compute VaRp.S1 � S0/ under the assumption that the log return
log.S1=S0/ is normally distributed. Note that VaRp.S1 � S0/ D F�1

S0�S1.1� p/ and
that

S0 � S1 D �S0.elog.S1=S0/ � 1/
dD �S0.e�C�Z � 1/;

where Z is standard normally distributed. Write L D S0 � S1 and notice that
L D �g.Z/, where g is a continuous and strictly increasing function. To compute
VaRp.S1 � S0/ D F�1

L .1 � p/, we will combine the two relations

F�1�g.Z/.1 � p/ D �F �1
g.Z/.p/; (6.8)

F�1
g.Z/.p/ D g.F �1

Z .p//; (6.9)

to obtain

VaRp.S1 � S0/ D �g.F �1
Z .p// D S0.1 � e�C�˚�1.p//:

Let us first show relation (6.8). Since P.g.Z/ D x/ D 0 for every x, it holds that

F�g.Z/.x/ D P.�g.Z/ � x/ D P.g.Z/ � �x/ D 1 � Fg.Z/.�x/;

and therefore solving F�g.Z/.x/ D 1�p for x is equivalent to solving Fg.Z/.�x/ D
p, which in turn is equivalent to x D �F�1

g.Z/.p/. Let us now show relation (6.9).
We notice that

Fg.Z/.x/ D P.g.Z/ � x/ D P.Z � g�1.x// D FZ.g
�1.x//;

and therefore solving Fg.Z/.x/ D p for x is equivalent to solving g�1.x/ D
F�1
Z .p/, which in turn is equivalent to x D g.F �1

Z .p//.

As the previous example illustrates, a common situation is when we want to
compute VaRp.X/ when X D g.Z/ for a continuous and monotone function g
and a random variable Z. In the preceding example, g was continuous and strictly
increasing and Z had a normal distribution. The payoff function of a call option,
.S1�K/C, is nondecreasing but not strictly increasing, so the preceding calculation
does not apply. The following two results show that also the more general situation
can be handled without too much difficulty.
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Proposition 6.3. If g W R ! R is nondecreasing and left continuous, then for any
random variable Z it holds that F �1

g.Z/.p/ D g.F �1
Z .p// for all p 2 .0; 1/.

Proof. First we show that, with X D g.Z/, F�1
X .p/ � g.F �1

Z .p//. To see this,
first observe that since g is nondecreasing, Z � F�1

Z .p/ implies that g.Z/ �
g.F �1

Z .p//. Moreover, since FZ is right continuous, it holds that FZ.F�1
Z .p// � p.

Therefore,

P.X � g.F �1
Z .p/// D P.g.Z/ � g.F �1

Z .p/// � P.Z � F�1
Z .p// � p:

Since F�1
X .p/ is the smallest number m such that P.X � m/ � p, we have shown

that F�1
X .p/ � g.F�1

Z .p//.
To show the reverse inequality F �1

X .p/ � g.F �1
Z .p//, we use the left continuity

of g. Since g is nondecreasing and left continuous, there exists for each y 2 R and
" > 0 a ı > 0 such that

fz W z 2 .y � ı; y�g � fz W g.z/ 2 .g.y/ � "; g.y/�g:
Moreover, since g is nondecreasing, we have

fz W g.z/ � g.y/g D fz W z � yg [ fz W g.z/ D g.y/; z > yg;
fz W g.z/ � g.y/ � "g � fz W z � yg:

Combining the preceding three set relations yields

fz W g.z/ � g.y/ � "g � fz W z � y � ıg:
Therefore,

P.X � g.F �1
Z .p// � "/ D P.g.Z/ � g.F �1

Z .p//� "/

� P.Z � F �1
Z .p/ � ı/

< p;

where in the last step we used the fact that the right continuity of FZ implies that for
every ı > 0we haveFZ.F �1

Z .p/�ı/ < p. It follows that g.F �1
Z .p//�" < F�1

X .p/.
Since " > 0 was arbitrary, we conclude that g.F �1

Z .p// � F �1
X .p/. This completes

the proof. �

The following proposition, combined with Proposition 6.3, enables efficient
computations of VaRp.X/ in a wide range of applications. We denote by

F�1
X ..1 � p/C/ D lim

"#0
F�1
X .1 � p C "/

the limit from the right of the quantile function of X , F�1
X , at the point 1 � p.
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Proposition 6.4. For any random variable X , F �1�X.p/ D �F �1
X ..1�p/C/ for all

p 2 .0; 1/. In particular, if FX is continuous and strictly increasing, then F�1�X.p/ D
�F�1

X .1 � p/.
The best way to verify the equality F �1�X.p/ D �F�1

X ..1 � p/C/ is by selecting
a random variable X whose distribution function FX has both a flat part and a jump
and to draw and inspect the graphs of FX , F�X , F�1

X , and F�1�X . Without loss of
generality we may choose a random variable with distribution function x 7! FX.x/

whose graph is shown in the upper left plot in Fig. 6.2. To draw the graph of p 7!
�F�1

X ..1 � p/C/, we proceed as follows. The graph of p 7! F�1
X .p/ (lower left

plot in Fig. 6.2) is obtained by reflecting the graph of FX in the line y D x. Note
that the quantile function F�1

X is left continuous. Finally, we draw the graph of
p 7! �F�1

X ..1 � p/C/ (lower right plot in Fig. 6.2) by first reflecting the graph of
F�1
X in x-axis, then reflecting the resulting graph in the line p D 1=2, and finally

taking limits from the left of the resulting function of p (which corresponds to taking
limits from the right if the function is viewed as a function of 1 � p). To draw the
graph of p 7! F�1�X.p/, we proceed as follows. First draw the graph of x 7! F�X.x/
(upper right plot in Fig. 6.2). Then draw the graph of p 7! F �1�X.p/ (lower right plot
in Fig. 6.2) by reflecting the previous graph in the line y D x.

A formal proof of Proposition 6.4 goes as follows.

Proof. First note that

F�1�X.p/ D minfm W P.�X � m/ � pg
D minfm W P.X � �m/ � pg
D minfm W P.X < �m/ � 1 � pg
D � maxfm W P.X < m/ � 1 � pg:

It remains to show that maxfm W P.X < m/ � 1�pg D lim"#0 F �1
X .1�pC"/. Let

m1�p D maxfm W P.X < m/ � 1 � pg, and note that it follows from the definition
of the quantile F�1

X that FX.F�1
X .u// D FX.minfm W FX.m/ � ug/ � u. Therefore,

for " 2 .0; p/,
P.X < m1�p/ � 1 � p < 1 � p C " � P.X � F �1

X .1 � p C "//;

from which it follows that m1�p � F�1
X .1 � p C "/. Since the inequalities hold for

any " 2 .0; p/, we may take the limit as " # 0 and therefore conclude that

m1�p � lim
"#0

F�1
X .1 � p C "/:

To show the reverse inequality, we first take an arbitrary ı > 0 and note that the
definition of m1�p implies that P.X < m1�p C ı/ > 1 � p, which in turn implies
that

P.X < m1�p C ı/ > 1 � p C "
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Fig. 6.2 Upper left plot: distribution functions FX.x/; upper right plot: distribution function
F�X.x/. Lower left plot: quantile function F�1

X .p/; lower right plot: function �F�1
X ..1� p/C/

for all sufficiently small " > 0. Therefore, m1�p C ı � F�1
X .1 � p C "/ for all

sufficiently small " > 0, and taking the limit as " # 0 gives

m1�p C ı � lim
"#0
F �1
X .1 � p C "/:

Since ı > 0 was arbitrary, it follows that

m1�p � lim
"#0

F�1
X .1 � p C "/:

This completes the proof. �

Example 6.6 (Put spread). Consider a portfolio with a value at time 1 given by

.K2 � S1/C � .K1 � S1/C for K1 < K2:
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This is the value at maturity of a put spread; a long position in a put option with
strike K2 and price C2 and a short position of the same size in a put option with a
lower strike K1 and price C1. The net value X at time 1, considering the cost of the
put spread as a risk-free loan to be paid at time 1, is

X D .K2 � S1/C � .K1 � S1/C � .C2 � C1/R0:

We write L D �X=R0 D g.S1/, where

g.y/ D 1

R0

�
.K1 � y/C � .K2 � y/C

�
C C2 � C1

and note that the function g is continuous and nondecreasing. By Proposition 6.3 it
follows that

VaRp.X/ D F�1
L .1 � p/ D F�1

g.S1/
.1� p/ D g.F�1

S1
.1 � p//

D 1

R0

�
.K1 � F�1

S1
.1� p//C � .K2 � F�1

S1
.1 � p//C

�
C C2 � C1:

Example 6.7 (Structured product). Financial contracts that are combinations of a
bond, giving the buyer a guaranteed return on investment, and a derivative contract,
giving the buyer the possibility of a high return, are often called structured products.
The simplest form of a structured product with maturity in 1 year is a portfolio
consisting of a long position of size h0 in a risk-free bond that pays 1 to its holder
1 year from now and a long position of size h1 in a European call option on the
value S1 of a stock index 1 year from now with a strike price K . Suppose that S1
is lognormally distributed, LN.�; �2/. If the current spot prices of the bond and
option are B0 and C0, respectively, then the current value of the portfolio is V0 D
h0B0 C h1C0.

To evaluate the riskiness of this portfolio, we want to compute VaRp.X/, where
X D V1 � V0=B0 and V1 D h0 C h1.S1 � K/C is the value of the portfolio at
maturity. Write

VaRp.X/ D F�1�B0V1CV0.1 � p/ D F�1�g.Z/.1 � p/;

where Z is standard normally distributed and g is given by

g.Z/ D B0.h0 C h1.e
�C�Z �K/C/� V0:

Note that g is continuous and nondecreasing. Applying first Proposition 6.4 and
then Proposition 6.3 gives

F�1�g.Z/.1 � p/ D �F �1
g.Z/.pC/ D �g.F �1

Z .pC//:
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Since Z is standard normally distributed with strictly increasing distribution
function ˚ , we find that F�1

Z .pC/ D ˚�1.p/ and conclude that

VaRp.X/ D �B0.h0 C h1.e
�C�˚�1.p/ �K/C/C V0

D h1

�
C0 � B0.e

�C�˚�1.p/ �K/C/
�
:

Suppose value X at time 1 of a portfolio can be expressed as X D f .Z/ for
a smooth nonlinear function f and Z having a standard distribution. If f is not
monotone, then it is difficult (or impossible) to express the quantiles of X in terms
of the quantiles of Z. One way to overcome this difficulty is by approximating f
by a first-order Taylor expansion and then approximateX by

X � f .EŒZ�/C df

d z
.EŒZ�/.Z � EŒZ�/:

This approach is referred to as linearization. The following example gives an
illustration of linearization in a simple example where explicit calculations are
possible and linearization is not really needed. The example also shows that
linearization (like any other approximation) must be used wisely; careless use may
result in serious errors.

Example 6.8 (Linearization). You hold a portfolio consisting of a long position of 5
shares of stock A. The stock price today is S0 D 100, and we assume a zero interest
rate. The daily log returns

Y1 D log.S1=S0/; Y2 D log.S2=S1/; : : :

of stock A are assumed to have a normal distribution with zero mean and standard
deviation � D 0:01. Let V0 be the current value of the portfolio, and let V1 D
S0e

Y1 D S0e
0:01Z , where Z D Y1=0:01 is standard normally distributed, be the

value of the portfolio tomorrow.
We first consider the effect of linearization over a 1-day horizon. We start by

explicitly computing VaR0:01.V1�V0/ and then compute the approximation obtained
by replacing V1 by its first-order Taylor approximation with respect toZ. Notice that
VaR0:01.V1�V0/ D F�1

V0�V1 .0:99/ and V0�V1 D �500.eY1�1/ D �500.e0:01Z�1/.
Therefore, as in Example 6.5,

VaR0:01.V1 � V0/ D 500.1� e0:01˚
�1.0:01// D 11:5:

The first-order Taylor approximation of V1 is V1 D 500e0:01Z � 500.0:01Z C 1/,
which gives
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VaR0:01.V1 � V0/ � VaR0:01.5Z/ D 5˚�1.0:99/ � 11:6:

The relative error of the VaR approximation is 1:2%, which is rather small.
We now consider the effect of linearization over a longer time horizon and

illustrate that the error due to linearization may be substantial. We make the
simplifying assumption that log returns over nonoverlapping time periods are
independent. We consider the effect of holding the aforementioned portfolio for 100
(trading) days and let V100 be the value of the portfolio 100 days from now. We start
by explicitly computing VaR0:01.V100 � V0/ and then compute the approximation
obtained by replacing V100 seen as a function of a standard normal variable Z by
its first-order Taylor approximation with respect to Z. As previously, we ignore
interest rates. We may write VaR0:01.V100�V0/ D F�1

V0�V100.0:99/, where V0�V100 D
�500.eY100 � 1/ with Y100 denoting the 100-day log return. Note that

Y100 D logS100=S0 D logS1=S0 C � � � C logS100=S99;

which shows that Y100 is a sum of 100 independent N.0; 0:012/-distributed random
variables. Therefore, Y100

dD 0:1Z, where Z is standard normally distributed. In
particular, V0 � V100 dD �500.e0:1Z � 1/ and

VaR0:01.V100 � V0/ D 500.1� e0:1˚
�1.0:01// � 103:8:

Using a first-order Taylor approximation gives V100
dD 500e0:1Z � 500.0:1Z C 1/,

which gives the approximation

VaR0:01.V100 � V0/ � VaR0:01.50Z/ D 50˚�1.0:99/ � 116:3:

The relative error of the VaR approximation is 12:1%.

Next follows the first two in a series of four examples on credit default swaps
(CDSs). The examples treat portfolios containing defaultable bonds and CDSs.
There are two general messages communicated by these examples. The first
message is that VaR at levelp does not provide any information about the worst-case
outcomes corresponding to an event whose probability is less than p. Using VaR,
therefore, enables investors to hide risk in the right tail of the distribution of L. The
second message is that, besides not investing at all, there are essentially two ways
to reduce risk. One way is to hedge a risk by buying protection against undesired
events. Hedging may be viewed as buying insurance. In the following examples,
hedging amounts to buying credit default swaps. Another way to reduce risk is by
diversification. A well-diversified position has a future value that depends on many
independent sources of randomness such that the exposure to each one of them is
small. Diversification is the key principle for an insurer and the opposite of buying
insurance.
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A problem with VaR is that it does not necessarily reward diversification. In
Example 6.10 it is shown that a diversified portfolio may have higher risk, measured
by VaR, than a comparable nondiversified portfolio. The example also shows that
VaR is not subadditive in general.

Example 6.9 (Credit default swap I). Consider an investor with $100 who has the
opportunity to take long positions in a defaultable bond and a credit default swap
(CDS) on this bond. One bond costs $97 now and pays $100 6 months from now
if the issuer does not default and 0 if the issuer defaults. The CDS costs $4 and
pays $100 6 months from now if the bond issuer defaults and nothing otherwise.
For simplicity we assume that a risk-free bond with maturity in 6 months has zero
interest rate, so B0 D 1. The investor believes that the default probability is 0:02 and
wants to maximize the expected value of V1, the value in dollars of the investor’s
position at the maturity of the bond, subject to the risk constraint VaR0:05.V1 �
100/ � 10 and a budget constraint. It is assumed throughout that the investor can
only take long positions. Otherwise, with the prices given previously, there would
be an arbitrage opportunity. Why? How much of the $100 does the investor invest
in the bond? How much in the CDS?

Let w1 and w2 be the amounts invested in bonds and CDSs in the portfolio,
respectively. Let c1 D 97 and c2 D 4 be the prices of the bond and the CDS,
respectively. Then the value at time 1 (after 6 months) is V1 D w1c�1

1 100.1� I /C
w2c�1

2 100I , where I is the default indicator, I D 1 if the issuer defaults, and I D 0

otherwise, with P.I D 1/ D 0:02. Then

EŒV1� D 98w1c
�1
1 C 2w2c

�1
2 D 98

97
w1 C 1

2
w2;

from which it is clear that the investor wants to invest as much as possible in the
bond without violating the constraints. Moreover,

VaRp.V1 � 100/ D 100C VaRp
�
100w1c

�1
1 C 100

�
w2c

�1
2 � w1c

�1
1

�
I
�
;

which gives

VaRp.V1 � 100/ D100� 100w1c
�1
1

C
(
100.w2c�1

2 � w1c�1
1 /VaRp.I / if w2c�1

2 � w1c�1
1 ;

100.w1c�1
1 � w2c�1

2 /VaRp.�I / if w2c�1
2 < w1c�1

1 :

By (6.6) we have VaRp.I / D F�1�I .1�p/ and VaRp.�I / D F�1
I .1�p/ where, by

Proposition 6.4,

F�1�I .1 � p/ D �F�1
I .pC/ D


 �1 if p 2 Œ0:98; 1�;
0 if p 2 Œ0; 0:98/;
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and

F�1
I .1 � p/ D



0 if p 2 Œ0:02; 1�;
1 if p 2 Œ0; 0:02/:

This implies that

VaRp.V1 � 100/ D 100�
8
<

:

100max.w1c�1
1 ;w2c�1

2 / if p 2 Œ0:98; 1�;
100w1c�1

1 if p 2 Œ0:02; 0:98/;
100min.w1c�1

1 ;w2c�1
2 / if p 2 Œ0; 0:02/:

In particular, VaR0:05.V1 � 100/ D 100� 100w1c�1
1 , and therefore w2 D 100� w1,

together with VaR0:05.V1 � 100/ � 10, is equivalent to w1 � 87:3. Since a dollar
invested in the bond gives a much better expected return than a dollar invested in the
CDS, the investor wants to maximize w1 subject to the constraints. Therefore, the
solution to the optimization problem with the VaR constraint is .w1;w2/ D .100; 0/.
That is, buy defaultable bonds only. The catch here is that VaR at level 0:05 does
not take into account the possibility of default, which occurs with probability 0:02.
This enables the investor to hide the default risk in the tail.

Example 6.10 (Credit default swap II). Let us look a bit closer at the optimal
solution .w1;w2/ D .100; 0/ to the investment problem in Example 6.9. The optimal
weights give the optimal portfolio value V1 D .1002=97/.1 � I / at maturity.
Moreover, we have seen that

VaR0:05.V1 � 100/ D VaR0:05

�
1002

97
.1 � I /� 100

�

D 100� 1002

97
C 1002

97
VaR0:05.�I /

D 100
�
1 � 100

97

�
< 0: (6.10)

The negative value highlights the fact that at the 5% level VaR does not pick up
the default risk. In particular, it treats the defaultable bond as a risk-free bond.
Suppose, in contrast, that we have 100 identical bonds whose default events are
independent and that the investor invests one dollar in each of them (which gives
the same expected portfolio value as for the optimal solution in Example 6.9). The
risk of the new portfolio, in terms of VaR0:05, is

VaR0:05.V1 � 100/ D VaR0:05

 
100

97

100X

kD1
.1 � Ik/ � 100

!

D 100� 1002

97
C 100

97
VaR0:05

 
�

100X

kD1
Ik

!
:
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Since Z D P100
kD1 Ik is Bin.100; 0:02/-distributed and VaR0:05.�Z/ D F�1

Z .0:95/,
it follows that

VaR0:05.V1 � 100/ D 100� 1002

97
C 100

97
F�1
Z .0:95/:

We can compute P.Z � 4/ � 0:949 and P.Z � 5/ � 0:985. Therefore,
F�1
Z .0:95/ D minfm W P.Z � m/ � 0:95g D 5, which implies that

VaR0:05.V1 � 100/ D 100C 100

97
.�100C 5/

D 100
�
1 � 95

97

�
> 0: (6.11)

That is, in this example diversification increases the risk! The reason is that
diversification here makes VaR0:05 take into account the default risk that for the
nondiversified investment was hidden in the tail. In particular, we conclude that
VaR is not subadditive since (6.10) and (6.11) imply

VaR0:05

 
100X

kD1
.1 � Ik/

!
>

100X

kD1
VaR0:05.1 � Ik/:

6.3 Expected Shortfall

Although VaR is probably the most commonly used risk measure for risk control
in the financial industry, it has several limitations. Its biggest weakness is that it
ignores the left tail (beyond level p) of the distribution of X . (The fact that it is just
a quantile value means that it ignores most of the distribution of X .) In particular, it
allows a careless/dishonest risk manager to miss/hide unlikely but catastrophic risks
in the left tail.

A natural remedy for not considering catastrophic loss events with small
probabilities would be to consider the average VaR values below the level p. This
average of VaR values gives the risk measure expected shortfall (ES) at level p,
which is defined as

ESp.X/ D 1

p

Z p

0

VaRu.X/du:

With minor technical modifications, ES is also called Average VaR (AVaR),
Conditional VaR (CVaR), Tail VaR (TVaR), or Tail Conditional Expectation (TCE).

ES is often proposed as a superior alternative to VaR because it considers all
of the left tail of the probability distribution of X and because it is a coherent
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measure of risk. The coherence of ES, Proposition 6.6, implies that it is also convex,
and the latter property is essential for ensuring that investment problems with ES
constraints are convex optimization problems. To show the coherence of ES and
also to use it effectively in optimization problems, we first present useful alternative
representations of ES.

Proposition 6.5. (i) ES has the following representations:

ESp.X/ D 1

p

Z 1

1�p
F �1
L .u/du; L D �X=R0; (6.12)

ESp.X/ D � 1
p

Z p

0

F �1
X=R0

.u/du; (6.13)

ESp.X/ D � 1
p

EŒX=R0I fX=R0 � F�1
X=R0

.p/�

� F�1
X=R0

.p/

 
1 � FX=R0.F

�1
X=R0

.p//

p

!
; (6.14)

ESp.X/ D min
c

�c C 1

p
EŒ.c �X=R0/C�: (6.15)

(ii) If X has a continuous distribution function, then, with L D �X=R0,

ESp.X/ D EŒL j L � VaRp.X/� D EŒL j L � F�1
L .1 � p/�: (6.16)

The right-hand side of (6.15) is often called CVaR. This representation is useful
in portfolio optimization problems. From (6.16) we find that if X has a continuous
distribution function, then ES is the average loss conditional on the loss being larger
than or equal to the VaR at the level p. This expression motivates the name ES.

Proof. (i) From the definition we see that ES is simply an average of quantile values
of L:

ESp.X/ D 1

p

Z p

0

F �1
L .1 � u/du D 1

p

Z 1

1�p
F�1
L .u/du:

This proves the first representation (6.12). To prove the second representation, recall
from Proposition 6.4 that F�1�X=R0.1 � u/ D �F �1

X=R0
.uC/. But F�1

X=R0
.uC/ is not

equal to F�1
X=R0

.u/ in general. However, we do have equality for almost all u in the

sense that if we draw U uniformly on .0; 1/, then F�1
X=R0

.UC/ D F �1
X=R0

.U / with
probability one. In particular, when U has a uniform distribution on .0; p/, it holds
that

ESp.X/ D 1

p

Z p

0

F�1
L .1� u/du
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D EŒF �1
L .1 � U /�

D � EŒF �1
X=R0

.UC/�
D � EŒF �1

X=R0
.U /�

D � 1
p

Z p

0

F�1
X=R0

.u/du;

which proves (6.13). Let us prove (6.14). The only difficulty is when FX=R0 has
a jump at F �1

X=R0
.p/ and FX=R0.F

�1
X=R0

.p// > p. Using statements (i) and (iii) of
Proposition 6.1 shows that

EŒX=R0I fX=R0 � F�1
X=R0

.p/g�
D EŒF �1

X=R0
.U /I fF�1

X=R0
.U / � F�1

X=R0
.p/�

D EŒF �1
X=R0

.U /I fU � FX=R0.F
�1
X=R0

.p//�

D EŒF �1
X=R0

.U /I fU � pg�C EŒF�1
X=R0

.U /I fp < U � FX=R0.F
�1
X=R0

.p//g�

D
Z p

0

F�1
X=R0

.u/du C F �1
X=R0

.p/
�
FX=R0.F

�1
X=R0

.p//� p
�
:

Therefore,

� 1

p
EŒX=R0I fX=R0 � F �1

X=R0
.p/� � F �1

X=R0
.p/

 
1 � FX=R0.F

�1
X=R0

.p//

p

!

D � 1
p

Z p

0

F �1
X=R0

.u/du;

from which the conclusion follows from (6.13). To prove (6.15) we consider the
function

G.c/ D �c C 1

p
EŒ.c �X=R0/C� D �c C 1

p

Z c

�1
FX=R0.x/dx

and note that G is convex. Since

EŒ.c �X=R0/C� D EŒ.c � X=R0/I fc � X=R0 > 0g�

D
Z 1

0

P.c � X=R0 > t/dt

D
Z c

�1
P.X=R0 < u/du;
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we find that G is differentiable except at the points where FX=R0 has jumps and,
except for those points,

G0.c/ D �1C 1

p
FX=R0.c/:

It follows that G0.c/ � 0 for c such that FX=R0.c/ � p and that G0.c/ � 0 for c
such that FX=R0.c/ � p. Therefore, G has a (not necessarily unique) minimum at
minfc W FX=R0.c/ � pg D F�1

X=R0
.p/. EvaluatingG at this point gives

G.F �1
X=R0

.p// D �F �1
X=R0

.p/C 1

p
EŒ.F �1

X=R0
.p/� X=R0/C�

D �F �1
X=R0

.p/C 1

p
E
h�
F�1
X=R0

.p/�X=R0
�
I
n
X=R0 � F�1

X=R0
.p/

oi

D � 1
p

E
h
X=R0I

n
X=R0 � F�1

X=R0
.p/

oi

� F�1
X=R0

.p/

 
1 � FX=R0.F

�1
X=R0

.p//

p

!
;

from which the conclusion follows from (6.14).
(ii) Suppose thatX has a continuous distribution function. Recall from point (iii)

of Proposition 6.1 that if U is uniformly distributed on .0; 1/, then F �1
L .U / has

distribution function FL. In particular, the random variables L, F�1
L .U /, and

F�1
L .1 � U / all have the same distribution function FL. Moreover, if FL is

continuous, then FL.F�1
L .u// D u by Proposition 6.1(ii). Therefore,

EŒL j L � F�1
L .1 � p/� D EŒL I fL � F�1

L .1� p/g�
P.L � F �1

L .1 � p//

D 1

p
EŒF �1

L .1 � U / I fF�1
L .1 � U / � F �1

L .1 � p/g�

D 1

p
EŒF �1

L .1 � U / I f1� U � 1 � pg�

D 1

p
EŒF �1

L .1 � U / I fU � pg�

D 1

p

Z p

0

VaRu.X/du:
�

We are now well equipped to prove that ES is a coherent measure of risk.

Proposition 6.6. ES is a coherent measure of risk.
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Proof. It follows immediately from the definition that ES inherits the properties
translation invariance, monotonicity, and positive homogeneity from VaR. It only
remains to prove subadditivity. Consider two future portfolio values X1 and X2 and
write Yk D Xk=R0 for k D 1; 2. We will use representation (6.15) of ES to prove
subadditivity, i.e., that ESp.X1 C X2/ � ESp.X1/C ESp.X2/. For k D 1; 2 let c�

k

be a minimizer of

�c C 1

p
EŒ.c � Yk/C�:

Note that

ESp.X1 CX2/ D min
c

�c C 1

p
EŒ.c � Y1 � Y2/C�

� �.c�
1 C c�

2 /C 1

p
E
�
.c�
1 C c�

2 � Y1 � Y2/C
	
:

The proof is complete if we show the nonnegativity of the difference

ESp.X1/C ESp.X2/� ESp.X1 CX2/

� �c�
1 C 1

p
EŒ.c�

1 � Y1/C� � c�
2 C 1

p
EŒ.c�

2 � Y2/C�

C .c�
1 C c�

2 /� 1

p
EŒ.c�

1 C c�
2 � Y1 � Y2/C�

D 1

p
EŒ.c�

1 � Y1/.I fY1 � c�
1 g � I fY1 C Y2 � c�

1 C c�
2 g/�

C 1

p
EŒ.c�

2 � Y2/.I fY2 � c�
2 g � I fY1 C Y2 � c�

1 C c�
2 g/�:

We claim that the last two terms above are nonnegative. Indeed,

EŒ.c�
1 � Y1/.I fY1 � c�

1 g � I fY1 C Y2 � c�
1 C c�

2 g/�
D EŒ.c�

1 � Y1/.I fY1 � c�
1 g � I fY1 C Y2 � c�

1 C c�
2 g/I fY1 � c�

1 g�
C EŒ.c�

1 � Y1/.I fY1 � c�
1 g � I fY1 C Y2 � c�

1 C c�
2 g/I fY1 > c�

1 g�
� EŒ.c�

1 � Y1/I fY1 � c�
1 g�� EŒ.c�

1 � Y1/I fY1 > c�
1 g�

� 0;

which shows the nonnegativity of the first term. An identical argument shows that
the second term is nonnegative too. The proof is complete. �
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Next we continue the sequence of examples on defaultable bonds and CDSs.
Here the risk measure VaR is replaced by ES, and this changes the portfolio selection
problem substantially.

Example 6.11 (Credit default swap III). Consider the investor and the investment
opportunities in Example 6.9. Here the risk constraint VaR0:05.V1 � 100/ � 10 is
replaced by ES0:05.V1 � 100/ � 10.

Recall that VaRp.V1 � 100/ was computed in Example 6.9:

VaRp.V1 � 100/ D 100�
8
<

:

100max.w1c�1
1 ;w2c�1

2 / if p 2 Œ0:98; 1�;
100w1c�1

1 if p 2 Œ0:02; 0:98/;
100min.w1c�1

1 ;w2c�1
2 / if p 2 Œ0; 0:02/:

Then ES0:05.V1 � 100/ can be computed as

ES0:05.V1 � 100/ D 1

0:05

Z 0:05

0

VaRp.V1 � 100/dp

D


100� 100w1c�1

1 if w1c�1
1 < w2c�1

2 ;

100� 1003
5
w1c�1

1 � 1002
5
w2c�1

2 if w1c�1
1 � w2c�1

2 :

Recall that c1 D 97 and c2 D 4. With w2 D 100 � w1 we find that w1c�1
1 < w2c�1

2

is equivalent to w1 < 96:0396. We want to take w1 as large as possible and therefore
consider the case w1 � 96:0396. In this case, ES0:05.V1 � 100/ � 10, together with
w2 D 100� w1, is equivalent to w1 � 97. Since a dollar invested in the bond gives a
much better expected return than a dollar invested in the CDS, the investor wants to
maximize w1 subject to the constraints. Therefore, the solution to the optimization
problem with the ES constraint is .w1;w2/ D .97; 3/. Since ES takes into account
the entire tail, there is no way to hide the default risk in the tail. This is reflected in
the optimal portfolio.

Example 6.12 (Credit default swap IV). Consider an investor who has $100 and
may invest the capital in long positions in 100 bonds and CDSs that are identical to
those in Example 6.10. It is assumed that the corresponding indicator variables Ik
(Ik takes the value 1 if the kth bond issuer defaults) are independent. The value of
the investor’s portfolio at the maturity of the bonds is

V1 D
100X

kD1

100

97
wk.1 � Ik/C

100X

kD1

100

4
w100CkIk;

where w1; : : : ;w100 is the capital invested in the bonds and w101; : : : ;w200 is the
capital invested in the CDSs. The investor wants to maximize the expected value

EŒV1� D
100X

kD1

98

97
wk C

100X

kD1

1

2
w100Ck;



184 6 Risk Measurement Principles

from which it is seen that the investor wants to invest as much as possible in the
bonds. The risk constraint is given by ES0:05.V1 � 100/ � 10. In Example 6.11, we
saw that with only one bond and one CDS the optimal solution was .w1;w2/ D
.97; 3/. Here it seems plausible that a diversified position in the bonds leads to
lower risk and therefore that it will be possible to invest less capital in the CDSs
with the low expected returns. We now verify that this is indeed the case. Just as in
Example 6.10 we have

VaRp.V1 � 100/ D 100� 1002

97
C 100

97
F�1
Z .1 � p/;

where Z D P100
kD1 Ik is Bin.100; 0:02/-distributed. This gives

ESp.V1 � 100/ D 100� 1002

97
C 100

97

�
1

0:05

Z 0:05

0

F �1
Z .1 � p/dp

�
;

where

1

0:05

Z 0:05

0

F �1
Z .1 � p/dp D 20

�
.P.Z � 5/� 0:95/5

C
100X

kD6
k.P.Z � k/ � P.Z � k � 1//

�

� 5:41416;

and therefore ES0:05.V1 � 100/ � 2:488825 < 10. We conclude that the investor
may invest the entire capital in the bonds without violating the risk constraint. Thus,
an optimal portfolio is w1 D � � � D w100 D 1, w101 D � � � D w200 D 0.

Next we study some standard models for log returns of asset prices where ES can
be explicitly computed.

Example 6.13 (Normal and Student’s t distribution). Consider a 1-day investment
in a risky asset. Suppose the influence of interest rates for such a short time period
can be neglected. Let X D V1 � V0 D � C �Z, where Z is a standard normally
distributed random variable, and let ˚ and 	 denote the distribution and density
function of Z, respectively. Then VaRp.X/ D ��C �˚�1.1 � p/ and

ESp.X/ D ��C �

p

Z 1

1�p
˚�1.u/du

D fset l D ˚�1.u/g

D ��C �

p

Z 1

˚�1.1�p/
l	.l/dl
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D ��C �

p

Z 1

˚�1.1�p/
l
1p
2�
e�l2=2dl

D ��C �

p

h
� 1p

2�
e�l2=2

i1
˚�1.1�p/

D ��C �
	.˚�1.1 � p//

p
:

Now let Z have a standard Student’s t distribution with � > 0 degrees of freedom.
Then Z has a density

g�.x/ D C
�
1C x2

�

��.�C1/=2
; where C D � ..� C 1/=2/p

��� .�=2/
:

If t� is the distribution function of Z, then VaRp.X/ D ��C �t�1� .1 � p/ and, if
� > 1, then

ESp.X/ D ��C �

p

Z 1

t�1� .1�p/
lg�.l/d l

D ��C �

p

"
C�=2

�.� C 1/=2C 1

�
1C l2

�

��.�C1/=2C1#1

t�1� .1�p/

D ��C �
g�.t

�1
� .1 � p//

p

�� C .t�1� .p//2

� � 1
�
:

Example 6.14 (Normal and Student’s t: a comparison). The normal distribution
and the Student’s t distribution are simple and popular distributions for modeling
log returns of asset prices. An important difference between the two is that Student’s
t distributions have heavier tails, i.e., they place more mass far away from the mean.
This can be observed directly from the density function. The standard Student’s t
distribution with � degrees of freedom has a density that decays roughly as jxj��
for large jxj (called polynomial decay), whereas the standard normal density decays
much faster, as e�x2=2. This implication of heavy tails is that there is a higher
probability of extreme outcomes. Let us compare the risk measures VaR and ES
for the two distributions.

First we compare VaRp.X/ and ESp.X/ as a function of p (left plot in Fig. 6.3).
The plot shows the ratio ESp.X/=VaRp.X/ as a function of p for the standard
normal distribution (lower graph) and the standard Student’s t distribution with
3, 2, and 1:1 degrees of freedom (second lowest to upper graph). For the normal
distribution the ratio is slightly above one, indicating that for small values of p most
of the remaining probability mass in the tail to the left of ˚�1.p/ is concentrated
very close to ˚�1.p/. Note that for heavier tails, i.e., smaller degree of freedom
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Fig. 6.3 Left plot: graphs of ESp.X/=VaRp.X/ as a function of p for X standard normal
distribution (lowest graph) and Student’s t -distribution for � D 3; 2; 1:1. Right plot: graphs of
VaRp.X/=VaRp.Y / (lower graph) and ESp.X/=ESp.Y / (upper graph) as functions of p, where
X is t -distributed with � D 3 and variance 1, and Y is standard normally distributed

parameters �, the ratio is higher, indicating that the probability mass to the left of
t�1� .p/ is spread out to the left of this value and spread out more the smaller the
value of � is.

In the right plot in Fig. 6.3, we compare VaR for a t3-distribution and a
normal distribution with unit variance, and similarly for ES by plotting the ratios
VaRp.X/=VaRp.Y / and ESp.X/=ESp.Y / as functions of p, where X is t-
distributed with � D 3 and variance 1, and Y is standard normally distributed. If
Z has a standard t�-distribution, then its variance is �.� � 2/�1, so in this example,
X D Z=

p
3, which implies that X and Y both have unit variance. We observe that

for small p the ratios are greater than one. This is a result of the heavier tails of the
t3-distribution.

Example 6.15 (Lognormal distribution). Consider the current and future values V0
and V1 of an asset. By borrowing the amount V0 to finance the long position in the
asset, the future net value of the position is X D V1 � V0R0, where V0R0 is the
future value of the debt. If Z1 D log.V1=V0/ is the log return of the asset, then
X D V0.expfZ1g � R0/.

We will analyze ESp.X/ under the assumption that Z1 has either a normal
distribution or a Student’s t distribution. Applying Proposition 6.3, with g.z/ D
V0.e

z � R0/, and Proposition 6.4 gives

VaRu.X/ D F�1�g.Z1/=R0.1 � u/ D �g
�
F �1
Z1
.u/
�

D V0

�
1 � 1

R0
e
F�1
Z1
.u/
�
:

If Z1 is N.�; �2/-distributed, then F�1
Z1
.u/ D �C �˚�1.u/

ESp.X/ D 1

p

Z p

0

VaRu.X/du D V0

�
1 � 1

pR0

Z p

0

e�C�˚�1.u/du

�
:
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With q.u/ D ˚�1.u/ we have dq.u/=du D 1=	.˚�1.u//, and the integral to the
right above can be written as

Z p

0

e�C�˚�1.u/du D
Z ˚�1.p/

�1
1p
2�
e�C�q�q2=2dq

D e�C�2=2
Z ˚�1.p/

�1
1p
2�
e�.q��/2=2dq

D ˚.˚�1.p/� �/e�C�2=2:

We have found that if Z1 is N.�; �2/-distributed, then

ESp.X/ D V0

 
1 � ˚.˚�1.p/ � �/e�C�2=2

pR0

!
:

Similarly, if Z1 is distributed as � C �Y , where Y has a standard Student’s t
distribution with � degrees of freedom, then F �1

Z1
.u/ D �C �t�1� .u/ and

ESp.X/ D V0

�
1 � 1

pR0

Z p

0

e�C�t�1� .u/du

�
:

The integral expression can be evaluated by numerical integration.

6.4 Risk Measures Based on Utility Functions

Consider a concave and strictly increasing function u, that is, a utility function.
Suppose that we consider a portfolio with value X at time 1 acceptable if it satisfies
EŒu.X/� � u.C / for a predetermined number C , i.e., if its certainty equivalent is at
least C . Let

�u.X/ D minfm W EŒu.mR0 CX/� � u.C /g; (6.17)

and note that �u.X/ is the smallest amount of money that needs to be added and
invested in a risk-free asset to make the corresponding position acceptable. In fact,
�u.X/ is the unique number m satisfying EŒu.mR0 C X/� D u.C /. Let us prove
this claim. Since u is strictly increasing, the function m 7! EŒu.mR0 C X/� is also
strictly increasing, so there is at most one such numberm. Sincem 7! u.mR0Cx/ is
concave, thenm 7! EŒu.mR0CX/� is also concave and, therefore, also continuous.
Therefore, there is at least one such numberm.

Proposition 6.7. The risk measure �u in (6.17) is a convex measure of risk.
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Before proving the proposition we remark that �u is in general not a coherent
measure of risk. If C D 0, then the normalization property holds, but �u will
typically not be positively homogeneous.

Proof. We have

�u.X C yR0/ D minfm W EŒu..mC y/R0 CX/� � u.C /g
D minfk W EŒu.kR0 CX/� � u.C /g � y
D �u.X/ � y;

which shows that �u is translation invariant. Since u is increasing, X2 � X1 implies
that EŒu.mR0 CX2/� � EŒu.mR0 CX1/�, and therefore

�u.X2/ D minfm W EŒu.mR0 CX2/� � u.C /g
� minfm W EŒu.mR0 CX1/� � u.C /g
D �u.X1/;

which proves the monotonicity of �u. By the definition of �u, it holds that

�u.�X1 C .1 � �/X2/ D minfm W EŒu.mR0 C �X1 C .1 � �/X2/� � u.C /�g:

Therefore, the convexity of �u follows if we show that m0 D ��u.X1/ C .1 � �/

�u.X2/ satisfies EŒu.m0R0 C �X1 C .1 � �/X2/� � u.C /. Indeed,

EŒu.Œ��u.X1/C .1 � �/�u.X2/�R0 C �X1 C .1 � �/X2/�
� �EŒu.�u.X1/R0 CX1/�C .1� �/EŒu.�u.X2/R0 CX2/�

D �u.C /C .1 � �/u.C /
D u.C /;

where the first inequality holds because u is concave and where the second to last
equality holds because EŒu.�u.Xk/R0CXk/� D u.C / by definition of �u. The proof
is complete. �

6.5 Spectral Risk Measures

Consider a random variable X representing the value at time 1 of a portfolio.
Let R0 be the return of a zero-coupon bond maturing at time 1, and let FX=R0
be the distribution function of X=R0, i.e., the discounted future portfolio value.
A natural set of risk measures consists of risk measures that can be written as
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�1 times a weighted average of the quantile values F �1
X=R0

.p/. We have seen that

VaRp.X/ D �F �1
X=R0

.p/ for those x where FX=R0.x/ is neither flat nor has a jump
and that

ESp.X/ D � 1
p

Z p

0

F �1
X=R0

.u/du:

In particular, ESp puts equal weight on all the quantiles F�1
X=R0

.u/ for u < p. It is not
at all evident that this is the most natural choice. Consider a nonnegative function 	
on .0; 1/ that is decreasing and integrates to 1, and define

�	.X/ D �
Z 1

0

	.u/F�1
X=R0

.u/du: (6.18)

A risk measure �	 with this representation is called a spectral risk measure, and the
function 	 is called the risk aversion function. A tractable property of spectral risk
measures is that, like risk measures based on utility functions, all quantile values
of the probability distribution of the considered portfolio value can be taken into
account—not just those corresponding to the left tail. We see that ESp is a spectral
risk measure with risk aversion function p�1I.0;p/. This risk aversion function says
that the worst fractions p of quantile values are weighted equally as they enter
only through their mean value. In particular, extreme losses are not considered
worse (receive higher weights) than less extreme losses. In general, the risk aversion
function lets you specify your attitude toward risk. In spirit, it is similar to a utility
function. The difference is that the utility function relates how much you value x
units of cash over y units of cash, whereas the risk aversion function relates how
highly you penalize the quantile at level p over the quantile at level q. Two examples
of risk aversion functions are the polynomial and exponential risk aversion functions
given by

	pol;ˇ.p/ D 1

ˇ
.1 � p/ˇ�1; ˇ � 1;

	exp;� .p/ D � expf��pg
1 � expf��g ; � > 0:

Note that both functions are decreasing and integrate to 1. For the most part we
will in the sequel assume that the risk aversion function 	 is differentiable. This
assumption is made purely for convenience. The results presented below hold also
without this assumption.

We begin with two useful representations of a spectral risk measure. The first one
shows, using integration by parts, that �	 can be viewed as a weighted average of ES.
The second representation is similar to representation (6.15) for ES but requires the
more general convex optimization from Sect. 2.2.
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Proposition 6.8. If 	 is differentiable, then �	 in (6.18) satisfies

�	.X/ D �
Z 1

0

d	

du
.u/u ESu.X/du � 	.1/EŒX=R0�; ; (6.19)

�	.X/ D min
f

Z 1

0

d	

du
.u/fuf .u/� EŒ.f .u/ �X=R0/C�du � 	.1/EŒX=R0�;

(6.20)

where the minimum is taken over all functions f .

Proof. First observe that

Z 1

0

F �1
X=R0

.u/du D EŒX=R0�:

This follows, for instance, from (6.14) with p D 1. Then, upon changing the order
of integration in the third equality below, we find that

�	.X/ D �
Z 1

0

	.v/F�1
X=R0

.v/dv

D
Z 1

0

�Z 1

v

d	

du
.u/du � 	.1/


F�1
X=R0

.v/dv

D
Z 1

0

d	

du
.u/

�Z u

0

F�1
X=R0

.v/dv


du � 	.1/

Z 1

0

F �1
X=R0

.v/dv

D �
Z 1

0

d	

du
.u/u

��
�1

u

�Z u

0

F�1
X=R0

.v/dv


du � 	.1/EŒX=R0�

D �
Z 1

0

d	

du
.u/u ESu.X/du � 	.1/EŒX=R0�:

This proves (6.19). Informally, the second representation (6.20) follows from the
representation of ESu.X/ in (6.15). Write

ESu.X/ D min
f .u/

�f .u/C 1

u
EŒ.f .u/� X=R0/C�;

insert this expression into (6.19), and finally move the coordinatewise minimum
inside the integral out of the integral to get (6.20). Now we consider a more formal
argument, in the context of Sect. 2.2. Let

F.f / D
Z 1

0

d	

du
.u/fuf .u/� EŒ.f .u/� X=R0/C�du � 	.1/EŒX=R0�:
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Since there are no constraints on f , here we have

H.f; g/ D
Z 1

0

d	

du
.u/fu � FX=R0.f .u//g.g.u/� f .u//du:

If H.f; g/ D 0 for each g, then f must satisfy FX=R0.f .u// D u for each u.
However, for such a function f it follows, as in the proof of (6.15), that

�f .u/C 1

u
EŒ.f .u/� X=R0/C� D ESu.X/;

and therefore it follows from (6.19) that the minimum of F.f / is given by

�
Z 1

0

d	

du
.u/u ESu.X/du � 	.1/EŒX=R0� D �	.X/:

The proof is complete. �

From representation (6.19) we observe that many properties of spectral risk
measures follow from properties of ES. In particular, spectral risk measures are
coherent.

Proposition 6.9. The spectral risk measure �	 in (6.18) is a coherent measure of
risk.

Proof. Since 	 is nonnegative and integrates to 1, the properties of the quantile
function imply that �	 is translation invariant, monotone, and positively homo-
geneous. To prove subadditivity, we make the additional assumption that the risk
aversion function 	 is differentiable. Then the subadditivity of �	 follows from the
subadditivity of ES. Indeed, for two future portfolio values X1 and X2 we have

�	.X1 CX2/ D �
Z 1

0

d	

du
.u/u ESu.X1 CX2/du � 	.1/EŒ.X1 CX2/=R0�

� �
Z 1

0

d	

du
.u/u

�
ESu.X1/C ESu.X2/

�
du � 	.1/EŒ.X1 CX2/=R0�

D �	.X1/C �	.X2/: �

6.6 Notes and Comments

An extensive account of VaR for financial risk management is given in the book [24]
by Philippe Jorion. The concept of coherent measures of risk was proposed by
Philippe Artzner, Freddy Delbaen, Jean-Marc Eber and David Heath [4]. For an
extensive account of convex and coherent measures of risk see the book [17]
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by Hans Föllmer and Alexander Schied. The coherence of ES was proved by
Carlo Acerbi and Dirk Tasche in [2]. An introduction to and properties of spectral
risk measures can be found in Acerbi’s work [1]. Portfolio optimization with ES
constraints was considered by Tyrrell Rockafellar and Stan Uryasev in [38] and
extended to so-called generalized deviations, which are closely related to spectral
risk measures, in works by Rockafellar, Uryasev, and Michael Zabarankin [39–41].

6.7 Exercises

In the exercises below, it is assumed, wherever applicable, that you can take
positions corresponding to fractions of assets.

Exercise 6.1 (Convexity and subadditivity). Show that a positively homogeneous
risk measure is convex if and only if it is subadditive.

Exercise 6.2 (Stop-loss reinsurance). Suppose that the total claim amount S in
1 year for an insurance company has a standard exponential distribution. The
insurance company can buy so-called stop-loss reinsurance so that a claim amount
exceeding F �1

S .0:95/ is paid by the reinsurer. In this case, the insurance company
has to pay L D min.S; F�1

S .0:95//C p, where p is the premium paid for the stop-
loss reinsurance. Determine the premium p for which F�1

S .0:99/ D F �1
L .0:99/.

Exercise 6.3 (Quantile bound). Let Z denote the daily log return of an asset.
Empirical studies suggest that Z has zero mean, standard deviation 0:01, and
a symmetric density function. Someone claims that F�1

Z .0:99/ D 0:1. Use
Chebyshev’s inequality P.jZ � EŒZ�j > x/ � x�2 Var.Z/, for x > 0, to show
that this claim is false.

Exercise 6.4 (Tail conditional median). The tail conditional median TCMp.X/ D
medianŒL j L � VaRp.X/�, where L D �X=R0, has been proposed as a more
robust alternative to ESp.X/ since TCMp.X/ is not as sensitive as ESp.X/ to the
behavior of the left tail of the distribution of X .

Let Y have a standard Student’s t distribution with � degrees of freedom, and
set X D e0:01Y � 1. Compute and plot the graphs of ES0:01.X/ and TCM0:01.X/ as
functions of � 2 Œ1; 15�.
Exercise 6.5 (Production planning). Consider a company that has the option to
start production of a volume t � 0 of a certain good during the next year. The
company has capital of $10,000 to use for the production. Any capital not spent
on production is deposited in a bank account that does not pay interest. The cost
for producing a volume t > 0 of the good is t thousand dollars plus a startup cost
of $5,000. The income from selling a volume t of the good is 5t thousand dollars.
The unknown demand for the good (the maximum volume the company can sell) is
modeled as a random variable with distribution function 1 � x�2, x � 1.
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(a) How much should the company produce to maximize EŒV1.t/�, where V1.t/ is
the income from sales plus money in the bank account at the end of next year
when producing volume t of the good?

(b) Compute VaRp.V1.t/ � 10;000/ with V1.t/ as in (a) and where t is the
maximizer of EŒV1.t/�.

Exercise 6.6 (Risky bonds). Consider a market with an asset with a risk-free 1-
year return of R0 D 1:05. There are also two defaultable bonds on the market
whose issuers can be assumed to default independently of each other. Both bonds
have maturity in 1 year and a face value of $100,000, which is paid in the case of
no default before the end of the year. For each bond a default event makes the bond
worthless. Both bonds have the same price of 100;000.1 � q/=R0 dollars today,
where q D 0:025 can be interpreted as the market’s implied default probability. You
believe that the market is overestimating the default probability, which you believe
is p D 0:024. You have V0 D $1 million to invest in the risky bonds and in the
risk-free asset.

(a) Determine the portfolio that maximizes your expected return given that the
standard deviation of your portfolio does not exceed $25,000. You are not
allowed to take short positions in the risky bonds or in the risk-free asset.

(b) Determine the expected value and the standard deviation of the value at the end
of the year of the optimal portfolio in (a).

(c) Compute VaR0:05.V1 � V0R0/ and ES0:05.V1 � V0R0/, where V1 is the value of
the optimal portfolio in (a) at the end of the year.

(d) Shortly after you buy the portfolio, a financial crisis breaks out and you realize
that one of the issuers is in serious financial distress. You update the default
probability to 0:91 for one of the bonds. The other bond is unaffected by the
crisis, and its default probability remains 0:024. You can assume that the default
events are independent. Compute VaR0:05.V1 � V0R0/ and ES0:05.V1 � V0R0/,
where V1 is the value of the optimal portfolio in (a) at the end of the year.

Exercise 6.7 (Leverage and margin calls). Consider the portfolio in Exercise
3.3(c).

(a) Compute VaRp.V2/ for p � 0:05, where V2 is the value in 2 months of the
portfolio in Exercise 3.3 (c) that maximizes the expected payoff in 2 months.

(b) Compute ESp.V2/ for p � 0:05, where V2 is as in (a).

Exercise 6.8 (Risk and diversification). Consider the setup in Example 6.10 with
100 identical bonds whose default events are independent. Consider an investor with
initial capital of V0 D $1 million who invests this capital in long positions of equal
size in n � 100 of the bonds. The value of the bond portfolio at maturity of the
bonds is denoted by V1.n/.

(a) Plot VaR0:05.V1.n/ � V0/ as a function of n, where n ranges from 1 to 100.
(b) Plot ES0:05.V1.n/ � V0/ as a function of n, where n ranges from 1 to 100.
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Project 6 (Collar options). A private investor owns a large quantity of shares of a
single stock and is worried about the position being too risky in the near future. A
bank offers the investor the opportunity to implement a collar option as protection
against falling share prices. The collar option considered here is a long position in a
European put option on the future share price with a strike price below the current
share price and a short position of the same size in a European call option with
strike price above the current share price with the same time to maturity as for the
put option.

Suppose that the investor holds 1,000 shares and the current share price is $100.
Suppose further that the strike prices of the put and call options are $95 and $105,
respectively, and both options expire in 2 months. Suppose that the stock pays no
dividends within the next 2 months, that all interest rates are zero, and that the put
and call prices correspond to implied volatilities of 0:25 and 0:2, respectively, per
year if the Black–Scholes formulas for European put and call options are used.

Suppose that the log return of the share price from today until half a month from
today is 0:04X , where X has a standard Student’s t distribution with 4 degrees of
freedom, and that the implied volatilities in half a month from today are the same as
today.

(a) The investor decides to take a collar option position corresponding to 1,000 puts
and calls. The investor’s collar option position is financed by a zero-interest-
rate loan if the initial value is positive. If the value is negative, then the investor
receives cash that is deposited in an account that pays no interest. Express V1,
the value in half a month from today of the shares and the collar option position
minus the current value of the collar option position, as a function of the log
return 0:04X .

(b) Consider the same situation as in (a) and compute VaR0:05.V1�V0/, where V0 is
the current value of the shares. Compare the result to the corresponding result in
a situation where the investor decides not to take a collar option position (only
shares).

(c) The investor decides to take a collar option position corresponding to h 2
Œ0; 1;000� puts and calls. Vary h and study the effect on the density function
of V1, where V1 is the value in half a month from today of the shares and the
collar option position minus the current value of the collar option position.
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Chapter 7
Empirical Methods

In this chapter we consider a modeling approach that uses a set of historical data,
such as bond prices, share prices, claim sizes, or exchange rates, to model the value
at a future time T > 0 of portfolios whose values depend on a given set of assets and
possibly also liabilities. Here we want the data to speak for themselves in the sense
that the model for the future values should only be based on information available
in the given historical data samples. The assumption we make is therefore that the
information in the samples is representative of future values and that no additional
probability beliefs of the modeler are relevant.

Historical share prices S�n; : : : ; S0 of a stock over the last nC1 time periods are
not necessarily good representatives of possible values for the future share price S1.
But the sample of historical returns R�k D S�kC1=S�k, for k D n � 1; : : : ; 1,
may be assumed to be a good representative of possible values for the future
return R1 D S1=S0 over the next time period. Similarly, the historical zero
rates r�n; : : : ; r0, corresponding to a given time to maturity, may be transformed
into zero rate changes r�kC1 � r�k, for k D n � 1; : : : ; 1, that can be viewed
as good representatives of the possible zero rate change r1 � r0 over the next
time period. If we believe in this approach, then appropriate transformations of
the historical samples produce samples of the random values, e.g., returns, that
determine the future portfolio values. If the generated sample of returns or value
changes can be viewed as samples from independent and identically distributed
random variables, then standard statistical techniques can be used to investigate the
probability distribution of future portfolio values, expressed as known functions of
future returns or value changes.

In this chapter, we will investigate this approach to modeling the future.
This is a subjective approach just as any other approach (such as assigning a
parametric probability distribution to the future portfolio value). However, it is fully
nonparametric and is a reasonable approach if we believe that the mechanism that
produced the returns in the past is the same as the mechanism that will produce
returns in the future, even if the mechanism is unknown to us.

H. Hult et al., Risk and Portfolio Analysis: Principles and Methods, Springer Series
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-4103-8 7,
© Springer Science+Business Media New York 2012
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The first topic of this chapter is how to turn historical prices into a sample from
the distribution of the future portfolio value under the assumption that returns over
the next time period will be similar to those returns. This material is presented in
Sect. 7.1. In Sect. 7.2 we consider the empirical distribution, which is the probability
distribution derived from a data sample. The quantile function of the empirical
distribution is the empirical quantile studied in Sect. 7.3. The main objective in
these two sections is to investigate how the accuracy of empirical probabilities
and quantiles, relative to the true unknown quantities they are measuring, varies
with the sample size and characteristics of the unknown distribution from which the
sample of observations is generated. Empirical distributions and quantiles provide
natural estimators of value-at-risk (VaR) and expected shortfall (ES), which are
presented in Sect. 7.4. Point estimates of risk measures are not particularly useful
unless they are accompanied by estimates of their accuracy. Therefore, we analyze
in detail methods for constructing confidence intervals for the quantities estimated
by empirical estimators. In Sect. 7.5, we present a method for constructing exact
confidence intervals for quantiles and a method for constructing approximative
confidence intervals using the nonparametric bootstrap procedure. The latter method
is further studied in Sect. 7.6, which deals with the uncertainty in estimates for
solvency capital requirements for a nonlife insurer.

7.1 Sample Preparation

Denote the current time by 0, and consider a future time that we call time 1. Let V1
be the random value of some portfolio at time 1 that we can express as a function
of the vector S1 of asset prices at time 1. For the sake of clarity of presentation we
take S1 to be the share prices of some stocks. It is assumed that we have access to
a sample fS�n;S�nC1; : : : ;S0g of vectors of historical prices from the n previous
equally spaced points in time (e.g., days, weeks) and from the current time. It is
clear that the sample points may be strongly dependent (the share price on any
given day is strongly dependent on the previous day’s price). Moreover, it is likely
that the asset prices S�k , from k time periods ago, are quite different from what can
be anticipated for S1, at least if k is large. The sample of historical asset prices may,
however, be transformed into a sample of vectors of returns R�nC1; : : : ;R0, where

R�k D �
R1�k; : : : ; Rd�k

�T
with Rl�k D Sl�k=Sl�k�1

for k D 0; : : : ; n � 1, and l D 1; : : : ; d . It is often reasonable to assume, supported
by statistical analysis, that the points of the sample fR�nC1; : : : ;R0g are weakly
dependent and close to identically distributed and have distributional characteristics
that are representative also for R1, the vector of percentage returns for the next
time period. The portfolio value at time 1 is V1 D f .R1/ for some function f that
depends on information available at time 0 such as the current asset prices S0. Then
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the sample fR�nC1; : : : ;R0g of return vectors can be transformed into the sample
ff .R�nC1/; : : : ; f .R0/g from the probability distribution of V1 D f .R1/. If the
vectors in the former sample are approximately independent copies of R1, then the
vectors in the latter sample are approximately independent copies of V1.

The transformation of historical prices into historical returns is not essential for
the sample preparation scheme to work. Returns could, for instance, be replaced
by something else, such as price differences. The essential point is that the original
sample fS�n;S�nC1; : : : ;S0g is transformed into a sample fZ�nC1; : : : ;Z0g, which
in turn could be transformed into a sample ff .Z�nC1/; : : : ; f .Z0/g whose points
may be viewed as independent copies of the future portfolio value V1. This situation
is the desired starting point for statistical analysis. From a sample of independent
and identically distributed random variables drawn from the unknown probability
distribution of V1, statistical methods can be applied to investigate the probability
distribution of the future portfolio value V1.

The approach presented for generating a sample from the probability distribution
of the future portfolio value is based on the assumption that changes in values in
the past contain relevant information for assessing the probability distribution of
changes in value from now until the future time we are considering. Determining
the extent to which this assumption is reasonable requires some serious thinking.
Big changes in the legal or political environment, monetary policies of governments
or central banks, or other events may make it hard to justify this assumption.

Throughout the book we write fS�n;S�nC1; : : : ;S0g for the random vectors of
historical prices (and similarly for the sample of returns) and s�n; s�nC1; : : : ; s0 for
the actual observations of the historical prices. The following example illustrates the
sample preparation approach.

Example 7.1 (Sample preparation). Consider a portfolio consisting of long posi-
tions in two different assets, one unit of the first asset and two units of the second
asset. The daily prices per unit of the two assets over the last 20 days are given by
S1t and S2t for t D �20; : : : ; 0. Suppose the corresponding pairs of returns

Rt D .R1t ; R
2
t / D .S1t =S

1
t�1; S2t =S2t�1/; t D �19; : : : ; 0;

are independent and identically distributed. If V1 is the value of the portfolio at
time 1, then

V1 D S11 C 2S21 D S10
S11
S10

C 2S20
S21
S20

D S10R
1
1 C 2S20R

2
1 D f .R1/;

where f .x; y/ D S10 xC2S20 y. The random variables ff .R�20C1/; : : : ; f .R0/g can
be viewed as a sample of independent copies of V1.

It may happen that we have access to daily historical prices and want to use the
data to investigate the probability distribution of the value of a portfolio a week
(month or year) from now. Then there are different options available. Consider the



200 7 Empirical Methods

sample fS�n;S�nC1; : : : ;S0g of vectors of historical prices and suppose we want to
investigate the distribution of VT , where T > 1. We assume that the original sample
can be transformed into a sample fR�nC1; : : : ;R0g of vectors of returns such that the
vectors are approximately independent copies of R1 and that VT D f .R1 � � � RT /,
where R1 � � � RT is interpreted as componentwise multiplication and R1 � � � RT is the
vector of returns over the next period of length T .

Example 7.2 (Thinning of the sample). One way of obtaining a sample of vectors
of returns over time periods of length T would be to start with the sample
fS�T Œn=T �; : : : ;S�T ;S0g and set

R.T /

�k D ..R.T //1�k; : : : ; .R.T //d�k/T with .R.T //l�k D Sl�T k=Sl�T .kC1/

for k D 0; : : : ; Œn=T � � 1, and l D 1; : : : ; d . Here Œy� denotes the largest integer
smaller than or equal to y, i.e., Œy� D maxfk 2 N W k � yg. The sample
fR.T /

�Œn=T �C1; : : : ;R
.T /
0 g is a sample of vectors of returns over nonoverlapping time

periods of length T . If these return vectors are independent copies of R1 � � � RT ,
then f .R.T /

�Œn=T �C1/; : : : ; f .R
.T /
0 / are independent copies of VT . The problem with

this approach is that much of the possibly relevant information in the original sample
fS�n;S�nC1; : : : ;S0g is ignored and the sample size is reduced from n to Œn=T �.

Example 7.3 (Historical simulation). An approach that, unlike the approach in
Example 7.2, uses the entire original sample is to draw with replacement T vectors
from the sample fR�nC1; : : : ;R0g and form the componentwise product of these
vectors, denoted by R�.T /

1 . Repeat the procedure m times to obtain the sample

fR�.T /
1 ; : : : ;R�.T /

m g of fictive return vectors over time periods of length T . If the
original return vectors R�nC1; : : : ;R0 are independent and identically distributed,
then the vectors R�.T /

1 ; : : : ;R�.T /
m are identically distributed but not independent

since some of the random indices may take the same index value, but they are
conditionally independent given R�nC1; : : : ;R0.

The sample ff .R�.T /
1 /; : : : ; f .R�.T /

m /g is a sample of size m, where the sample
points are approximately distributed as VT . This approach to generating a sample
from the distribution of VT is called a historical simulation. On the one hand, all
the original sample points are used and the sample size m can be chosen arbitrarily
large. On the other hand, the original return vectors appear as factors in more than
one of the fictive return vectors R�.T /

k , so there may be substantial redundancy in the
constructed sample of return vectors over periods of length T .

7.2 Empirical Distributions

Consider observations x1; : : : ; xn of independent and identically distributed
d -dimensional random vectors X1; : : : ;Xn with a common unknown distribution
function F.x/ D P.X � x/, where X is an independent copy of Xk and X � x is
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interpreted as an inequality for all the components; X � x if and only if Xj � xj
for j D 1; : : : ; d . Suppose that we want to compute some quantity � D �.F / that
depends on F , for instance, the mean, the variance, a quantile, or a risk measure.
It is impossible to compute � since F is unknown, but the observations x1; : : : ; xn
allow us to approximate the unknown distribution by that obtained from assigning a
probability weight 1=n to each of the xk. That is, approximating the unknown F.x/
by the fraction Fn.x/ of the xk that are smaller than or equal to x,

Fn.x/ D 1

n

nX

kD1
I fxk � xg:

The distribution function Fn is called the empirical distribution function of
x1; : : : ; xn. The random counterpart, which is the empirical distribution associated
with the random sample fX1; : : : ;Xng, is given by

Fn;X.x/ D 1

n

nX

kD1
I fXk � xg:

Note that Fn;X is a random object whose outcome Fn is a distribution function.
The (strong) law of large numbers says that if Z1;Z2; : : : is a sequence of

independent copies of a random variableZ for which the expected value EŒZ� exists
finitely, then

1

n

nX

kD1
Zk ! EŒZ� with probability 1 as n ! 1:

If we choose Zk D I fXk � xg, then EŒZk� D P.Xk � x/ D F.x/ and the law
of large numbers implies that, with probability one, limn!1 Fn;X.x/ D F.x/. In
particular, the empirical distribution function Fn;X is a good approximation of the
unknown distribution function F as long as the sample size n is sufficiently large.
Similarly, if we choose Zk D h.Xk/, then EŒZk� D EŒh.Xk/� D EŒh.X/� and the
law of large numbers implies that, with probability one,

Z
h.x/dFn;X.x/ D 1

n

nX

kD1
h.Xk/ ! EŒh.X/� D

Z
h.x/dF.x/ as n ! 1: (7.1)

In particular, the expression on the left-hand side of (7.1) is a good approximation
of the expression on the right-hand side as long as the sample size n is sufficiently
large.

Example 7.4 (Sample mean and variance). Consider a sample fx1; : : : ; xng
and the corresponding empirical distribution function Fn. The sample mean
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x D .x1 C � � � C xn/=n is simply the expected value of a random variable with the
distribution function Fn:

Z
xdFn.x/ D 1

n

nX

kD1
xk D x:

We know from (7.1) that X D .X1 C � � � CXn/=n ! EŒX� with probability one as
n ! 1, and it is easy to see that EŒX� D EŒX�. The variance of Fn is

Z
x2dFn.x/ �

�Z
xdFn.x/

�2
D 1

n

nX

kD1
x2k � 1

n2

 
nX

kD1
xk

!2

D 1

n

 
nX

kD1
x2k � nx2

!

D 1

n

 
nX

kD1
x2k � 2

nX

kD1
xxk C

nX

kD1
x2

!

D 1

n

nX

kD1
.xk � x/2:

We know from (7.1) that, with probability one,

lim
n!1

1

n

nX

kD1
.Xk �X/2 D Var.X/:

However, the expected value of the variance estimator is not equal to Var.X/.
Therefore, the variance is typically estimated by the sample variance

S2 D 1

n � 1

nX

kD1
.Xk �X/2;

which satisfies EŒS2� D Var.X/.

Consider a subset B of Rd and suppose that we want to estimate the probability
P.B/ D P.X 2 B/. Similarly to the empirical distribution function, we form the
empirical estimator

Pn;X.B/ D 1

n

nX

kD1
I fXk 2 Bg: (7.2)
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Notice that Pn;X.B/ D Fn;X.x/ if B D fy W y � xg and that the sum in (7.2)
is Bin.n; P.B//-distributed. In particular, from the expected value nP.B/ and
variance nP.B/.1 � P.B// of the binomially distributed sum in (7.2) we find that

EŒPn;X.B/� D P.B/ and Var.Pn;X.B// D 1

n
P.B/.1 � P.B//:

Moreover, it follows from the law of large numbers that limn!1Pn;X.B/ D P.B/

with probability one.

Example 7.5 (Estimation of small probabilities). In this example, we investigate the
sample size needed for accurate empirical estimation of a small probabilityP.B/. A
common measure of the accuracy of an estimator is the relative error—the standard
deviation of the estimator divided by the estimated quantity. In this context, the
relative error is given by

Var.Pn;X.B//1=2

P.B/
D n�1=2

� 1

P.B/
� 1

�1=2
:

It is natural to require that the standard deviation of the estimator must be at least no
greater than the probability to be estimated. Under this requirement, since P.B/ is
assumed to be small, we find that n � 1=P.B/, which corresponds to a very large
required sample size if P.B/ is small.

The accuracy of the estimator can be investigated by considering the probability

P
�ˇ̌
ˇ
Pn;X.B/ � P.B/

P.B/

ˇ̌
ˇ < "

�
D P

�
1 � " < Pn;X.B/

P.B/
< 1C "

�
:

Since the sum in (7.2) is Bin.n; P.B//-distributed, we find that

P
�Pn;X.B/
P.B/

< 1C "
�

D
Œn.1C"/P.B/�X

kD0

 
n

k

!
P.B/k.1 � P.B//n�k;

and similarly with 1 � " instead of 1C ".
Another approach to investigating the accuracy of the estimator when the sample

size n is large is to apply the central limit theorem. If Z1;Z2; : : : is a sequence
of independent copies of a random variable Z with finite expected value � and
standard deviation � , then

lim
n!1 P

�Z1 C � � � CZn � n�
n1=2�

� x
�

D ˚.x/ for all x;

where ˚ denotes the standard normal distribution function. Taking Zk D I fXk 2
Bg=n we find that
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lim
n!1 P

�� n

P.B/.1 � P.B//

�1=2
.Pn;X.B/ � P.B// � x

�
D ˚.x/ for all x:

In particular, Pn;X.B/ is approximately N.P.B/; P.B/.1�P.B//=n//-distributed
if n is large.

7.3 Empirical Quantiles

Here we consider observations x1; : : : ; xn from independent and identically dis-
tributed random variables X1; : : : ; Xn with a common unknown distribution func-
tion F defined on the real line R. The empirical quantile functionF�1

n is the quantile
function of the empirical distribution function Fn and therefore given by

F�1
n .p/ D minfx W Fn.x/ � pg:

Similarly, the empirical quantile function F�1
n;X is the quantile function of Fn;X . We

will now show that the empirical quantile F�1
n;X .p/ is the kth largest of the sample

points X1; : : : ; Xn (and therefore the same holds for F �1
n in terms of the sample

points x1; : : : ; xn), where k D k.n; p/ depends on n and p. It turns out to be useful
to order the sample fX1; : : : ; Xng such that X1;n � � � � � Xn;n (if F is continuous,
then with probability one there are no j ¤ k such that Xj D Xk , i.e., no ties). Note
that

minfx W Fn;X .x/ � pg D min

(
x W

nX

kD1
I fXk;n � xg � np

)
: (7.3)

Since the sum
Pn

kD1 I fXk;n � xg can only take integer values, we see that the
right-hand side of (7.3) is equal to Xj;n for some j . Which j ? Note that for any j
in the set f1; : : : ; ng,

nX

kD1
I fXk;n � Xj;ng D

nX

kDj
I fXk;n � Xj;ng D n � j C 1;

and we must look for the largest j such that the last expression is greater than or
equal to np. If we take j D Œn.1 � p/�C 1, then

n � j C 1 D n � Œn.1 � p/� � n � n.1 � p/ D np;

with equality if and only if np is an integer. In particular, every j � Œn.1 � p/�C 2

gives n� j C 1 < np. We conclude that the empirical quantile function is given by

F�1
n;X .p/ D XŒn.1�p/�C1;n; p 2 .0; 1/;
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a piecewise constant function on .0; 1/ with

XŒn.1�p/�C1;n D Xk;n if p 2 .1 � k=n; 1� .k � 1/=n�: (7.4)

It can be shown that if F is strictly increasing, then P.limn!1 F �1
n;X .p/ D

F�1.p// D 1 for all p 2 .0; 1/. Therefore, the empirical quantile is an arbitrary
good approximation of the true but unknown quantile if the sample size n is
sufficiently large. We prove the following slightly weaker statement.

Proposition 7.1. Let X1;X2; : : : be a sequence of independent and identically
distributed random variables with common distribution function F , and let Fn;X
be the empirical distribution function of the first n elements of the sequence. If
F is strictly increasing in a neighborhood of F �1.p/, then limn!1 P.jF�1

n;X .p/ �
F�1.p/j > "/ D 0 for every " > 0.

Proof. From the quantile transform, Proposition 6.1, we know that F�1.U / has
distribution function F if U is uniformly distributed on .0; 1/. Therefore, we
may consider a sequence of independent random variables U1; U2; : : : uniformly
distributed on .0; 1/ and represent X1; : : : ; Xn as F�1.U1/; : : : ; F �1.Un/. Write
U1;n � � � � � Un;n for the ordered Uk. Note that F�1

n;X .p/ D F�1.UŒn.1�p/�C1;n/,
and since F is strictly increasing in a neighborhood of F �1.p/, it follows that F�1
is continuous at p. Note also that

fu W jF�1.u/� F �1.p/j > "g D fu W jF�1.u/� F�1.p/j > "; ju � pj � ıg
[ fu W jF�1.u/� F�1.p/j > "; ju � pj < ıg

� fu W ju � pj � ıg
[ fu W jF�1.u/� F�1.p/j > "; ju � pj < ıg;

and the continuity at p implies that

lim
ı!0

fu W jF�1.u/� F�1.p/j > "; ju � pj < ıg

is the empty set. Therefore, for all ı > 0,

P.jF�1
n;X .p/� F�1.p/j > "/ � P.jUŒn.1�p/�C1;n � pj � ı/C Cı;

and since limı!0 Cı D 0, to complete the proof it only remains to show that
limn!1 P.jUŒn.1�p/�C1;n � pj � ı/ D 0 for every ı > 0.

We claim that Uk;n is Beta.n � k C 1; k/-distributed. To verify this claim, we
first recall that the Beta.a; b/ distribution is a probability distribution on .0; 1/ with
density function
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f .x/ D � .a C b/

� .a/� .b/
xa�1.1 � x/b�1;

where� .n/ D .n�1/Š. The Beta.a; b/ distribution has mean a=.aCb/ and variance
ab.aC b/�2.aC b C 1/�1. The density function fUk;n of Uk;n can be expressed as

fUk;n .x/ D d

dx
P.Uk;n � x/ D lim

�!0

P.Uk;n 2 Œx; x C��/

�
:

We want to compute the limit on the right-hand side above. To this end, we introduce
the notation

Ax D ˚
n � k of the Uj are in .0; x/ and

1 of the Uj is in Œx; x C�� and

k � 1 of the Uj are in .x C�; 1/
�

and notice that

P.Uk;n 2 Œx; x C��/ D P.Ax/C o.�/

D nŠ

.n � k/Š.k � 1/Šx
n�k�1.1 � x ��/k�1 C o.�/;

where o.�/ is the probability of the event fUk;n 2 Œx; xC��g when two or more of
the Uj are in Œx; x C��. Letting � ! 0 gives

fUk;n .x/ D nŠ

.n � k/Š.k � 1/Š
xn�k.1 � x/k�1

D � .nC 1/

� .n � k C 1/� .k/
xn�kC1�1.1 � x/k�1;

which confirms the claim that Uk;n is Beta.n � k C 1; k/-distributed. In particular,

EŒUk;n� D n � k C 1

nC 1
D 1 � k

nC 1
; (7.5)

EŒU 2
k;n� D .n � k C 1/.n � k C 2/

.nC 1/.nC 2/
: (7.6)

Finally, take p 2 .0; 1/ and k.n/ D Œn.1 � p/� C 1. Then from (7.5) and (7.6) we
find that

EŒUk.n/;n� D 1 � Œn.1 � p/�C 1

nC 1
! 1 � .1� p/ D p as n ! 1
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and further that

nEŒ.Uk.n/;n � p/2� ! p.1 � p/ as n ! 1: (7.7)

The conclusion now follows from an application of Markov’s inequality together
with (7.7): for every ı > 0

P.jUk.n/;n � p j � ı/ � ı�2 EŒ.Uk.n/;n � p/2� ! 0 as n ! 1: �

But how good is the empirical quantile as an approximation of the true quantile
for finite sample sizes? It turns out that this question can be answered, at least in the
sense that for a given distribution function F we can express the distribution of the
empirical quantile in terms of F .

Let Yx be the number of sample points exceeding x, i.e., the number of indices
k for which Xk > x. It follows immediately that Yx is Bin.n; q/-distributed, where
q D P.Xk > x/ D 1 � F.x/. We have

P.X1;n � x/ D P.Yx D 0/;

P.X2;n � x/ D P.Yx � 1/;

:::

P.Xj;n � x/ D P.Yx � j � 1/:

Since F�1
n;X .p/ D XŒn.1�p/�C1;n, we have found that

P.F�1
n;X .p/ � x/ D P.Yx � Œn.1 � p/�/ D

Œn.1�p/�X

kD0

 
n

k

!
.1 � F.x//kF.x/n�k:

For a given F these probabilities are easily evaluated on a computer. In particular,
we can compute probabilities of the kind

P

 ˇ̌
ˇ̌
ˇ
F�1
n;X .0:95/� F �1.0:95/

F�1.0:95/

ˇ̌
ˇ̌
ˇ < "

!
D P

 
1 � " <

F�1
n;X .0:95/

F�1.0:95/
< 1C "

!
;

i.e., the probability that the relative error is at most ". Graphs showing these
probabilities for different sample sizes and distributions can be found in Fig. 7.1.

The graph of the density function gives information about the concentration of
the probability mass that is more easily interpreted than the graph of the distribution
function. Differentiating the distribution function of the empirical quantile
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Fig. 7.1 Probabilities P.1 � " < F�1
n;X .0:95/=F

�1.0:95/ < 1 C "/ for " in .0; 0:25/ for sample
sizes n D 100; 200; 400; 800 (lower to upper curve), where F is the standard normal distribution
function in the left plot and standard lognormal in the right plot
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Fig. 7.2 Density functions of empirical quantile estimators F�1
n;X .0:95/ for sample sizes n D

100; 200; 400; 800, where F is the standard normal distribution function in the left plot and
standard lognormal in the right plot

P.F�1
n;X .p/ � x/ D

Œn.1�p/�X

kD0

 
n

k

!
.1 � F.x//kF.x/n�k;

i.e., the right-hand expression above, gives the density function of the empirical
quantile (assuming that F has a density f ). It is given by

nŠ

Œn.1 � p/�Š.n � Œn.1 � p/� � 1/Š .1 � F.x//Œn.1�p/�F .x/n�Œn.1�p/��1f .x/: (7.8)

The graphs of density function (7.8) of the empirical quantile for different sample
sizes and distributions are shown in Fig. 7.2.

Now we consider another approach to investigating the accuracy of the empirical
quantile estimator F�1

n;X .p/ D XŒn.1�p/�C1;n based on the sample fX1; : : : ; Xng of
independent copies of X with distribution function F . The approach considered
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here is appropriate for rather large sample sizes n. Here we want to determine the
sample size n required for bounding the root mean square error (RMSE) of the
empirical quantile by 10�dF�1.p/ for some d � 1. More precisely, we want to
determine the smallest integer n such that

EŒ.XŒn.1�p/�C1;n � F�1.p//2�1=2 � 10�dF �1.p/: (7.9)

From Proposition 6.1 we know that we can represent X1; : : : ; Xn in terms of F
and independent random variables U1; : : : ; Un uniformly distributed on .0; 1/ as
F�1.U1/; : : : ; F �1.Un/. In particular,XŒn.1�p/�C1;n D F�1.UŒn.1�p/�C1;n/.

Under the assumption that F is differentiable with a density function f we may
use a Taylor expansion of F �1 around point p to approximate

XŒn.1�p�C1;n D F�1.UŒn.1�p�C1;n/

D F�1.p/C d

dp
F �1.p/.UŒn.1�p�C1;n � p/C remainder term

D F�1.p/C 1

f .F �1.p//
.UŒn.1�p�C1;n � p/C remainder term:

If we ignore the remainder term and use (7.6), then we may approximate the mean
square error of the empirical quantile estimator by

E
h�
XŒn.1�p/�C1;n � F�1.p/

�2i � 1

f .F �1.p//2
E
h�
UŒn.1�p/�C1;n � p

�2i

D 1

f .F �1.p//2
p.1 � p/

n
: (7.10)

Can we ignore the error term? By Taylor’s formula we find that if f does not vary
that much in a neighborhood of F�1.p/, then, as n ! 1,

E
�
.XŒn.1�p/�C1;n � F�1.p//2

	 1

f .F �1.p//2
p.1 � p/

n
CO.n�2/:

The notation O.n�2/ as n ! 1 means that the remainder term divided by n�2 is
bounded as n ! 1.

If we want the bounded RMSE in (7.9) and approximate the mean square error
by (7.10), then we find that the sample size n should be

n � p.1 � p/

f .F �1.p//2F �1.p/2
102d :
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We illustrate the size of n for the exponential and the Pareto distribution. The
following example shows that large sample sizes are required to obtain small relative
errors for the empirical estimator of high quantiles.

Example 7.6 (Bound on the RMSE). Consider an exponential distribution with
F.x/ D 1 � e�x for x > 0. Then F�1.p/ D � log.1 � p/ and f .F�1.p// D
expflog.1 � p/g D 1 � p. If p D 0:99 and d D 2 (RMSE of 1% of F�1.p/), then
we need a sample size n such that

n � p

.1 � p/Œlog.1 � p/�2
104 � 4:7 � 104:

Consider a Pareto distribution with F.x/ D 1 � x�3 for x > 1. Then F �1.p/ D
.1 � p/�1=3 and f .F �1.p// D 3.1 � p/4=3. If p D 0:99 and d D 2 (a RMSE of
1% of F�1.p/), then we need a sample size n such that

n � p

9.1� p/
104 D 1:1 � 105:

7.4 Empirical VaR and ES

If X is the value at time 1 of a financial portfolio, then VaRp.X/ D F�1
L .1 � p/,

where L D �X=R0, where R0 is the return on the reference instrument (a risk-free
zero-coupon bond, say). Given a sampleL1; : : : ; Ln of independent copies of L, the
empirical estimate of VaRp.X/ is therefore given by

bVaRp.X/ D LŒnp�C1;n;

where L1;n � � � � � Ln;n is the ordered sample. Note that bVaRp.X/ is simply the
empirical .1 � p/-quantile of Lk .

To compute the empirical VaR estimate from a sample of historical prices, we
first transform the prices into a sample fL1; : : : ; Lng and then compute the VaR
estimate as an empirical quantile. The following example illustrates this procedure.

Example 7.7 (Empirical VaR). Consider a portfolio consisting of long positions in
two different assets, one unit of the first asset and two units of the second asset.
Historical daily prices per unit of the two assets over the last 20 days are given by
S1t and S2t for t D �20; : : : ; 0. Assume the corresponding pairs of returns

Rt D .R1t ; R
2
t / D .S1t =S

1
t�1; S2t =S2t�1/; t D �19; : : : ; 0;

are independent and identically distributed. The value of the portfolio at time 0 is
given by V0 D S10 C 2S20 , and the value at time 1 is V1 D S11 C 2S21 . Suppose
we want to compute the empirical VaR0:05 estimate of X D V1 � V0R0, where for



7.4 Empirical VaR and ES 211

simplicity we set R0 D 1. We may express X as the value of a function evaluated at
the point R1:

X D V1 � V0 D .S11 � S10 /C 2.S21 � S20 /

D S10 .R
1
1 � 1/C 2S20 .R

2
1 � 1/ D g.R1/:

Under the assumption that the Rt , for t D �19; : : : ; 0, are independent copies of
R1, we can easily construct independent copies of X by setting Xk D g.R�20Ck/
for k D 1; : : : ; 20. Setting Lk D �Xk and ordering the sample of Lk as L1;20 �
� � � � L20;20, we compute the empirical estimate of VaR0:05.X/ as bVaR0:05.X/ D
LŒ20�0:05�C1;20 D L2;20.

Example 7.8 (Thinning versus historical simulation). Suppose today is November
3, 2010, and we have just invested an amount of 100 in the Dow Jones Industrial
Average (DJIA) stock market index. We want to analyze the risk we face from
holding the position over a period of 20 trading days. The value of the position
20 trading days from today is V20 D 100R1 � � �R20, where R1; : : : ; R20 are
the daily returns over the time period under consideration. We want to estimate
VaRp.V20�100/ (the effect of interest rates are ignored) based on the 801 historical
index values of DJIA from August 30, 2007 to November 2, 2010.

If the thinning approach in Example 7.2 is used, then we use every 20th value
of the sample of historical DJIA values to obtain the sample fR.20/�39; : : : ; R

.20/
0 g of

historical 20-day returns. We set

Xk D 100.R
.20/

�40Ck � 1/ and Lk D �Xk for k D 1; : : : ; 40

and estimate VaRp.V20 � 100/ as LŒ40p�C1;40.
If the historical simulation approach in Example 7.3 is used, then we may choose

m D 5;000 in Example 7.3 and use the sample of historical DJIA values to obtain
the sample fR�.20/

1 ; : : : ; R
�.20/
5000 g of fictive 20-day returns. We set

Xk D 100.R
�.20/
k � 1/ and Lk D �Xk for k D 1; : : : ; 5000

and estimate VaRp.V20 � 100/ as LŒ5000p�C1;5000.
The left plot in Fig. 7.3 shows the left tail of the empirical distribution function

of Xk for the two approaches. Because the thinning approach gives a sample of
small size 40, the staircase shape is pronounced and the tail estimate is unreliable.
The historical simulation approach gives a much smoother, and likely more reliable,
estimate of the left tail of the distribution function of V20 � 100. The right plot in
Fig. 7.3 shows the estimates of VaRp.V20 � 100/ as a function of p for the two
approaches.

We now present the empirical ES estimator. Recall that the ES at level p of a
portfolio with value X at time 1 is given by
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Fig. 7.3 Above: observed upper triangle of paid claims; Below: unobserved triangle of outstanding
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ESp.X/ D 1

p

Z p

0

VaRu.X/du:

The empirical ES estimator is obtained by simply replacing VaRp.X/ by its
empirical estimator bVaRp.X/ D LŒnp�C1;n, where Lk D �Xk=R0 and L1;n � � � � �
Ln;n is the ordered loss sample. This implies

cESp.X/ D 1

p

Z p

0

LŒnu�C1;ndu

D 1

p

0

@
Œnp�X

kD1

Lk;n

n
C
�
p � Œnp�

n

�
LŒnp�C1;n

1

A : (7.11)

If Œnp� is an integer, then the expression in the last display reduces to the sample
mean of the Œnp� largest losses. To clarify how one arrives at the expression in (7.11),
suppose that Œnp� � 2, and notice that in this case

Z p

0

LŒnu�C1;ndu

D
Z 1=n

0

L1;ndu C � � � C
Z Œnp�=n

.Œnp��1/=n
LŒnp�;ndu C

Z p

Œnp�=n

LŒnp�C1;ndu

D 1

n
L1;n C � � � C 1

n
LŒnp�;n C

�
p � Œnp�

n

�
LŒnp�C1;n:

Example 7.9 (Empirical ES). Consider the historical daily prices of two assets
A and B, listed in Table 7.1. You are considering taking a position correspond-
ing to a long position of two units of asset A and three units of asset B.
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Table 7.1 Historical daily prices of two assets A and B

Day �20 �19 �18 �17 �16 �15 �14

Asset A 81.75 81.35 80.4 81.05 83.35 83.00 83.30
Asset B 81.25 81.00 81.5 81.50 81.85 81.25 81.45

Day �13 �12 �11 �10 �9 �8 �7

Asset A 86.0 85.5 84.50 84.00 84.05 82.35 83.45
Asset B 83.5 83.5 83.75 86.00 85.75 84.60 83.85

Day �6 �5 �4 �3 �2 �1 0

Asset A 83.50 84.4 86.9 85.90 82.55 83.75 84.75
Asset B 84.55 84.0 84.3 84.75 85.35 87.00 85.75

Table 7.2 Sample of Xk values and corresponding ordered Lk values

Sample of Xk-values: transformation of historical prices

�1.62 �0.39 1.37 5.91 �2.60 1.25 11.97 �0.99 �1.21 5.91
�0.65 �6.88 �0.02 2.25 0.15 5.94 �0.58 �4.79 7.44 �1.67

Ordered sample of corresponding Lk values

6.88 4.79 2.60 1.67 1.62 1.21 0.99 0.65 0.58 0.39
0.02 �0.15 �1.25 �1.37 �2.25 �5.91 �5.91 �5.94 �7.44 �11.97

To evaluate the riskiness of this investment, you want to compute the empirical
ES estimate ESp.X/, where p D 0:06 and X is the difference between the value of
the position tomorrow and its current value. We may express X as a function of the
vector R1 D .RA

1 ; R
B
1 / of returns over the next day as

X D V1 � V0 D 2SA
0 .R

A
1 � 1/C 3SB

0 .R
B
1 � 1/ D f .R1/:

From Table 7.1 we can compute the corresponding vectors of historical returns. The
function f then transforms these vectors into the sample of Xk values shown in
Table 7.2 (rounded off to two decimal points). Setting Lk D �Xk and ordering the
Lk gives the ordered sample of Lk values in Table 7.2. From (7.11) we find that the
ES estimate based on the values l1;n � � � � � ln;n is

1

p

0

@
Œnp�X

kD1

lk;n

n
C
�
p � Œnp�

n

�
lŒnp�C1;n

1

A :

Here, with n D 20 and p D 0:06 and the values lk;n in Table 7.2 we get

1

0:06

�
6:88

20
C .0:06� 0:05/4:79

�
� 6:53:



214 7 Empirical Methods

7.5 Confidence Intervals

Suppose we have observations x1; : : : ; xn of independent and identically distributed
random variablesX1; : : : ; Xn from an unknown distribution functionF and we want
to know the value � D �.F / of some quantity that is determined by the unknown
F . Examples include the mean, the variance, some quantile, or some risk measure
that depends on F . We may estimate � by the empirical estimator b� D �.Fn;X /

obtained by computing � from Fn;X instead of F . However, a point estimate is
not meaningful unless we have some way of assessing its accuracy. Since we can
never know whether the observations x1; : : : ; xn are representative outcomes from
the unknown distribution F , we can never know whether the empirical estimate
b�obs D �.Fn/ based on these observations is close to the true value � . What we can
do is compute a confidence interval for � .

Let us first recall what a confidence interval is. Given q 2 .0; 1/, we want to form
a stochastic interval .A;B/, where A D fA.X1; : : : ; Xn/ and B D fB.X1; : : : ; Xn/

for some functions fA and fB such that

P.A < � < B/ D q;

i.e., the stochastic interval .A;B/ covers the value � with probability q. Clearly, we
want q to be close to 1, e.g., q D 0:95, and at the same time we want that the length
of the interval is likely to be small. The interval .a; b/, where a D fA.x1; : : : ; xn/

and b D fB.x1; : : : ; xn/, is a confidence interval for � with confidence level q. We
may say that we feel confident at level q that the interval .a; b/ covers the value � .
Note that q is not the probability that the specific interval .a; b/ covers � (either it
does or it does not), but q is the probability that the procedure generating the interval
will produce an interval covering � if fed with a new random sample of the same
size from the same probability distribution. Often we want to find a double-sided
interval so that

P.A < � < B/ D q; P.A � �/ D P.B � �/ D .1� q/=2:

Since F is unknown, we do not know the functions fA; fB , but we can construct
approximate confidence intervals. If � is a quantile of F , i.e., � D F �1.p/, then we
can actually find exact confidence intervals for � , but not for arbitrary confidence
levels q.

7.5.1 Exact Confidence Intervals for Quantiles

Suppose we have observations x1; : : : ; xn of outcomes of independent and identi-
cally distributed random variables X1; : : : ; Xn with common unknown continuous
distribution function F . Suppose further that we want to construct a confidence
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interval .a; b/ for the quantile F�1.p/, where a D fA.x1; : : : ; xn/ and b D
fB.x1; : : : ; xn/ such that

P.A < F �1.p/ < B/ D q; P.A � F�1.p// D P.B � F�1.p// D .1 � q/=2;

where q is a confidence level, A D fA.X1; : : : ; Xn/, and B D fB.X1; : : : ; Xn/.
Since F is unknown, we cannot find a and b. However, we can look for i > j and
the smallest q0 � q such that

P.Xi;n < F
�1.p/ < Xj;n/ D q0;

P.Xi;n � F�1.p// � .1 � q/=2; P.Xj;n � F �1.p// � .1 � q/=2: (7.12)

It remains to compute the probabilities in (7.12). Let YF�1.p/ be the number of
sample points exceeding F�1.p/, i.e., the number of indices k for which Xk >
F�1.p/. It follows immediately that YF�1.p/ is Bin.n; r/-distributed, where r D
P.Xk > F �1.p// D 1 � F.F�1.p//. From Proposition 6.1 we know that the
continuity of F implies that F.F�1.u// D u for all u 2 .0; 1/. In particular, YF�1.p/

is Bin.n; 1�p/-distributed. The probabilities in (7.12) are easily expressed in terms
of the probabilities of YF�1.p/, which are very easily computed (with the assistance
of some appropriate software). We have

P.X1;n � F�1.p// D P.YF�1.p/ D 0/;

P.X2;n � F�1.p// D P.YF�1.p/ � 1/;

:::

P.Xj;n � F�1.p// D P.YF�1.p/ � j � 1/:

Similarly, P.Xi;n � F �1.p// D 1� P.YF�1.p/ � i � 1/. We may now can compute
the probabilities P.Xj;n � F�1.p// and P.Xi;n � F �1.p// for different i and j
until we find indices that satisfy (7.12).

Example 7.10 (Exact intervals for quantiles). Suppose we have a sample
fX1; : : : ; X200g of independent and identically distributed random variables with
common unknown continuous distribution function F and we want a confidence
interval for F�1.0:95/ with confidence level q0 � q D 0:95. Since YF�1.0:95/ is
Bin.200; 0:05/-distributed, we find that

P.X5;200 � F�1.0:95// D P.YF�1.0:95/ � 4/ � 0:0264;

P.X17;200 � F�1.0:95// D 1 � P.YF�1.0:95/ � 16/ � 0:0238:

Therefore, P.X17;200 < F�1.0:95/ < X5;200/ � 0:95, so .x17;200; x5;200/ is a
confidence interval for F �1.0:95/ with a confidence level of approximately 95%.
The length of the confidence interval depends on the sample points, which in turn
depends on the unknown distribution function F . Figure 7.4 shows 100 outcomes
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Fig. 7.4 Each plot shows empirical confidence intervals .x17;200; x5;200/ for F�1.0:95/ with
confidence level 95% for 100 samples of size 200. Left plot: empirical confidence intervals for
F the standard normal distribution; right plot: for F the standard lognormal distribution function

.x17;200; x5;200/ of the empirical confidence interval for F�1.0:95/ for F standard
normal (left plot) and for F standard lognormal (right plot). Notice that the 25th
confidence interval for the lognormal F says that if we had the 25th lognormal
sample, then we could only say that we are rather sure that the 95% quantile of
the unknown distribution lies somewhere between 4 and 11:8. This illustrates the
difficulty of accurately estimating quantile values.

7.5.2 Confidence Intervals Using the Nonparametric Bootstrap

For quantiles we have seen how to construct exact confidence intervals. However,
for risk measures, which unlike VaR are not simply quantile values, and for other
quantities such as moments and loss probabilities this approach does not work.
We will here investigate a useful method for constructing approximate confidence
intervals called the nonparametric bootstrap method.

Suppose we have observations x1; : : : ; xn of independent and identically dis-
tributed random variables X1; : : : ; Xn and we want to estimate some quantity
� D �.F / that depends on the unknown distribution F of Xk . For instance, �
could be the p-quantile � D F �1.p/ giving b�obs D xŒn.1�p/�C1;n or the mean

� D R
xdF.x/ givingb� obs D .x1 C � � �Cxn/=n. We want to construct a confidence

interval for � with confidence level q.
If F were known, we could compute the value � analytically or approximate it

numerically. Alternatively, we could simulate a large sample from F to approxi-
mately compute � as the empirical estimate. The problem here is that we do not
know F and we only have one sample fx1; : : : ; xng of size n from F .
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One way to produce more samples is to randomly draw with replacement n times
from the set of observations x1; : : : ; xn to produce a sample fX�

1 ; : : : ; X
�
n g. The

sample points X�
k are independent and Fn-distributed (uniformly distributed on the

set of the original observations x1; : : : ; xn). Some of the X�
k are likely to be equal,

even if the xk are all different. The probability that X�
j ¤ X�

k for all j ¤ k is
very small; the probability that none of the xks is drawn twice among the n tries is
nŠ=nn. Write F �

n for the empirical distribution of X�
1 ; : : : ; X

�
n andb�� D �.F �

n / for
the estimate of � based on the sample fX�

1 ; : : : ; X
�
n g. Even though fX�

1 ; : : : ; X
�
n g is

not a sample from F , it has most of the characteristics of a sample from F as long
as n is sufficiently large. In particular, the probability distribution of b�� is likely
to be close to the probability distribution ofb� . Whereas the probability distribution
ofb� is unknown (since F is not known), the probability distribution ofb�� can be
approximated arbitrarily well by repeated resampling N times for N large enough.

An approximative confidence interval I�;q for � of confidence level q using the
nonparametric bootstrap method is constructed as follows.

• For each j in the set f1; : : : ; N g draw with replacement n times from the sample
fx1; : : : ; xng to obtain the sample fX�.j /

1 ; : : : ; X
�.j /
n g and the corresponding

empirical distribution function F �.j /
n .

• Compute the estimatesb��
j D �.F

�.j /
n / of � and the residualsR�

j Db�obs �b��
j for

j D 1; : : : ; N .
• Form the interval

I�;q D .b�obs CR�
ŒN.1Cq/=2�C1;N ;b�obs CR�

ŒN.1�q/=2�C1;N /;

where R�
1;N � � � � � R�

N;N is the ordering of the sample fR�
1 ; : : : ; R

�
N g.

Why is the interval I�;q a reasonable approximative confidence interval for �? Here
is one way of motivating the procedure.

Let G denote the distribution function of � �b� . Then

q D P.G�1..1 � q/=2/ < � �b� < G�1..1C q/=2//

D P.b� CG�1..1 � q/=2/ < � <b� CG�1..1C q/=2//:

Therefore, .b�obs CG�1..1�q/=2/;b�obs CG�1..1Cq/=2// is a confidence interval
for � of level q. The problem is that we do not know the distribution functionG.

The success of the bootstrap relies on the validity of the bootstrap principle,
which says that G can be well approximated by the empirical distribution G�

N of
R�
1 ; : : : ; R

�
N . Then the quantiles G�1..1 � q/=2/ and G�1..1 C q/=2/ can be well

approximated by the empirical counterparts R�
ŒN..1Cq/=2/�C1;N and R�

ŒN.1�q/=2�C1;N ,
which leads to the interval I�;q . We need n to be sufficiently large to make it

plausible that the bootstrap principle holds so � �b� andb�obs �b�� are approximately
equally distributed. This requirement is investigated in the following example.
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Example 7.11 (Bootstrap intervals for quantiles). Suppose we want to construct
confidence intervals for � D VaR0:05.V1 � V0/, where V0 and V1 are respectively
the current value and the value tomorrow of a long position in some stock index.
Since the time period here is only 1 day, we ignore the impact of interest rates. We
may express V1 in terms of the return R1 of the stock index as V1 D V0R1, and we
assume that logR1 is normally distributed with zero mean and standard deviation
0:01. For simplicity we also assume that V0 D 1. This implies that

VaR0:05.V1 � V0/ D F�1
V0�V1 .0:95/ D V0

�
1 � F�1

R1
.0:05/

� � 0:016314:

In reality we would not know with certainty the return distribution or, therefore, the
value of VaR0:05.V1 � V0/. However, we may—under the right circumstances—
believe that the past n index returns can be seen as sample points from the
distribution of the future return R1 and in that case transform the historical returns
into outcomes l1; : : : ; ln of L1; : : : ; Ln that are independent copies of L D V0 � V1.
The problem we investigate here is how to construct and evaluate confidence
intervals for F�1

L .0:95/ given the sample fl1; : : : ; lng. We have already seen how we
can construct confidence intervals for quantiles, and this approach is applicable here
since VaR0:05.V1 � V0/ D F �1

L .0:95/. However, the aim here is to investigate the
nonparametric bootstrap approach to construct approximative confidence intervals
and evaluate it by comparing it to the approach for quantiles.

Recall that the accuracy of the nonparametric bootstrap approach for constructing
confidence intervals is likely to be good if � � b� , where b� D LŒ0:05n�C1;n, and
b�obs �b�� have approximately the same probability distribution. The upper left plot
in Fig. 7.5 shows a histogram from 2,000 simulations of � �b� . The upper right and
middle plots in Fig. 7.5 show histograms of 2,000 bootstrap simulations ofb�obs �b��
based on resampling from three different outcomes of L1; : : : ; L500. Based on these
plots, we definitely see a resemblance between the distribution of ��b� andb�obs�b��,
but it is clear that much information has been lost in the bootstrap world. One might
suspect that increasing the numberN of resampling runs could improve things. The
middle left and lower left plots show bootstrap simulations ofb�obs �b�� based on
the same sample fl1; : : : ; l500g, where the numberN is 2,000 for the middle left plot
and 10,000 for the lower left plot. The same comparison is shown in the middle right
and the lower right plots but based on another sample fl1; : : : ; l500g. We observe that
increasing the number N of bootstrap simulations to a very large number does not
improve things much.

Finally, we compute 50 confidence intervals for � of confidence level 0:95 with
the exact method (left plot in Fig. 7.6) and with the nonparametric bootstrap method
(right plot in Fig. 7.6). We observe that the results are very similar. The differences
among the confidence intervals are to a much greater extent due to the differences
among the 50 outcomes of the random sample fL1; : : : ; L500g than to the particular
method used. We conclude that here the bootstrap method performs rather well.
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Fig. 7.5 Upper left plot: histogram of 2,000 outcomes of � � O� based on 2,000 outcomes of
fL1; : : : ; L500g. Each of the remaining plots shows centered bootstrap estimates O�obs � O��. Upper
right and middle plots: histograms based on N D 2,000 resampling runs for three different
outcomes of the sample fL1; : : : ; L500g. Middle and lower left plots: based on the same original
sample, the number of resampling runs is 10,000 for the lower left plot instead of 2,000. Similarly
for middle and lower right plots
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Fig. 7.6 Each plot shows 50 confidence intervals for VaR0:05.V1�V0/ based on simulated samples
of size 500. Left plot: result for the exact method for quantiles; right plot: result for nonparametric
bootstrap method

7.6 Bootstrapping in Nonlife Insurance

This section is devoted to an application of the nonparametric bootstrap in an
insurance context. Consider a nonlife insurer who is about to quantify risk with
a 1-year horizon. The risk is quantified in terms of a solvency capital requirement
(SCR). The SCR is, as in Example 6.1, given by

SCR D �.A1 � A0R0 �L1 C L0R0/;

where time is measured in years, A0 and A1 are the values of the assets at times
0 and 1, L0 and L1 are the values of the liabilities at times 0 and 1, and � is a
risk measure, e.g., VaR or ES. To compute the SCR, the insurer must determine the
distribution of A1 � L1—the value of the assets minus the value of the liabilities
1 year from now.

To compute L0, the current value of the liabilities, the insurer adopts a claim
reserving technique called the chain ladder, which will be explained below.L0 con-
sists of two parts: the value of the outstanding payments of incurred but not yet
settled claims and the total value of the payments due to claims that will occur over
the next year. The current value of the liabilities is computed as the sum of the
discounted predicted future payment amounts.

7.6.1 Claims Reserve Prediction Via the Chain Ladder

The prediction of the future payment amounts is based on a historical record of
paid claims. It is assumed that all claims that occurred at least n C 1 years ago
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Development year

Origin 0 1 2 � � � n� 1 n

�n� 1 C�n�1;0 C�n�1;1 C�n�1;2 � � � C�n�1;n�1 C�n�1;n

�n C�n;0 C�n;1 C�n;2 � � � C�n;n�1

:
:
:

:
:
:

:
:
:

�2 C�2;0 C�2;1

�1 C�1;0

0

Development year

Origin 0 1 2 � � � n� 1 n

�n� 1

�n C�n;n

�nC 1 C�nC1;n�1 C�nC1;n

:
:
:

:
:
:

:
:
:

�1 C�1;1 C�1;2 � � � C�1;n�1 C�1;n

0 C0;0 C0;1 C0;2 � � � C0;n�1 C0;n

The insurer relies on the assumption that the payment pattern over the develop-
ment years is repetitive. Even if the number of accidents and claim amounts may
differ significantly from year to year, the payment patterns over the development
years look similar. Based on this assumption the upper triangle of paid claims
can be used to predict unobserved future payments. The unknown future payments
are represented in the lower triangle of outstanding claims, with entries C�k;l for
l D k; : : : ; n. The lower triangle is illustrated in the bottom half of Table 7.3.

To formulate the idea that the payment patterns are repetitive, one possibility,
which is the one we follow here, is to assume a multiplicative structure for the
cumulative claims. Consider, for k D 1; : : : ; n C 1 and l D 0; : : : ; k � 1, the
cumulative amounts paid for claims that occurred in year �k,

D�k;l D
lX

jD0
C�k;j :

Suppose the expected cumulative payments can be written as

EŒD�k;lC1� D EŒD�k;l �fl ; l D 0; : : : ; n � 1;

Table 7.3 Above: observed upper triangle of paid claims; below: unobserved
triangle of outstanding claims

are completely settled, but all claims that occurred at most n years ago are not
completely settled. The historical record of paid claims is displayed in the form of
a claims triangle. The triangle of paid claims, called the upper triangle, displays on
each row the amounts of paid claims for claims incurred with the same origin year.
The columns represent the development years—the difference between the year a
claim was settled and the year it was incurred. The entryC�k;l represents the amount
paid for claims that were incurred in year �k and paid l year later, in year �k C l ,
for l D 0; : : : ; k � 1. The upper triangle is illustrated in the top half of Table 7.3.
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where f0; : : : ; fn�1 are called development factors. Then the expected amounts paid
are given by

EŒC�k;0� D EŒD�k;0�;

EŒC�k;l � D EŒD�k;l �D�k;l�1� D EŒC�k;0�f0 � � �fl�2.fl�1 � 1/; l D 1; : : : ; n:

A simple model for C�k;l is obtained by assuming that the observed payments have
the representation C�k;l D EŒC�k;l �R�k;l , where fR�k;lgnk;lD0 are independent and
identically distributed with EŒR�k;l � D 1.

A standard method for predicting the lower triangle (outstanding claims) is called
the chain ladder method. In the chain ladder method, the development factors are
estimated by

bf l D
PnC1

kDlC2 D�k;lC1
PnC1

kDlC2 D�k;l
; l D 0; : : : ; n � 1: (7.13)

The expected amounts of paid claims, EŒC�k;l �, in the upper triangle can be
estimated by

bC�k;0 D bD�k;0 D D�k;k�1
bf 0 : : :bf k�2

; (7.14)

bC�k;l D bD�k;l � bD�k;l�1 D D�k;k�1
bf l : : :bf k�2

�
1 � 1

bf l�1

�
(7.15)

for k D 1; : : : ; nC 1; l D 1; : : : ; k � 1, and the residuals are computed as

R�k;l D C�k;l
bC�k;l

; k D 1; : : : ; nC 1; l D 0; : : : ; k � 1:

The predictions for the unobserved cumulative claim amounts in the lower triangle
are given by

bD�k;l D D�k;k�1bf k�1 � � �bf l�1 (7.16)

for k D 1; : : : ; n and l D k; : : : ; n. The corresponding predictions for the
unobserved future payments in the lower triangle are

bC�k;l D bD�k;lC1 � bD�k;l : (7.17)

The last row in the lower triangle of outstanding payments, corresponding to k D 0,
represents amounts for claims that will occur during the next year. Therefore, it does
not contain any observations in the upper triangle and cannot be predicted with the
standard chain ladder. We will predict this row by predicting the initial payment
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D0;0 by the mean of the predictions for the previous years and then apply the chain
ladder method for the predictions of D0;l for l � 1. More precisely, the predictions
for the last row may be constructed as follows:

bD0;0 D 1
nC1

PnC1
kD1

D�k;k�1

bf 0:::bf k�2

; bD0;l D bD0;0
bf 0 � � �bf l�1;

bC0;0 D bD0;0; bC0;l D bD0;lC1 � bD0;l :

When the prediction of all future payments bC�k;l , k D 0; : : : ; n, l D k; : : : ; n, is
completed, the present value L0 of the outstanding claims is computed as

L0 D
nX

kD0

nX

lDk
bC�k;l e�rl�kC1.l�kC1/;

where rT D .r1; : : : ; rn/ is the vector of current zero rates.
At time 1, new information is available as the values of the diagonal entriesC�k;k ,

for k D 0; : : : ; n, are observed. The value L1 of the liabilities at time 1 will be
computed similarly to L0. First, the new observations C�k;k , for k D 0; : : : ; n, are
entered into the upper triangle of observed payments. Then, the development factors
are updated by

bf .1/

l D
PnC1

kDlC1 D�k;lC1
PnC1

kDlC1 D�k;l
for l D 0; : : : ; n � 1;

and the predictions, denoted by bC .1/

�k;l , are updated accordingly by entering the
updated development factors in (7.16) and (7.17). Assuming the zero rates at time 1
are r C�r, the value of the liabilities at time 1 can be expressed as

L1 D
nX

kD0
C�k;k C

n�1X

kD0

nX

lDkC1
bC.1/

�k;l e
�.rl�kC�rl�k/.l�k/:

Note that L1 is completely determined by the random variables C�k;k , for k D
0; : : : ; n, and�r, all observed at time 1.

To protect the value of the liabilities against changes in the zero rates, it is
assumed that the insurer has purchased a bond portfolio. Rewrite the current value
of the liabilities by summing along the diagonals as

L0 D
nC1X

mD1

0

@
n�mC1X

jDm�1
bC�.m�j�1/;j

1

A e�rmm:



224 7 Empirical Methods

Then we see that a good choice of the bond portfolio is obtained by buyingPn�mC1
jDm�1 bC�.m�j�1/;j zero-coupon bonds with maturity m years from now. If the

zero rate changes are independent of the claim amounts C�k;k, for k D 0; : : : ; n,
then this bond portfolio is the quadratic hedge of the value of the liabilities at time 1.

To compute the SCR, we need to apply the risk measure � to the quantity
A1 � A0R0 � L1 C L0R0. Under the assumption that A0 D L0, it is sufficient to
consider the distribution ofA1�L1. If the true development factors were known, the
distribution of L1 could be sampled by sampling the diagonal elements C�k;k , for
k D 0; : : : ; n, updating the prediction of the lower triangle, sampling the zero rate
changes�r, and computing the outcome of L1 by discounting the future payments
in each simulated scenario. When adopting an empirical approach, the diagonal
elements are sampled by sampling the residuals R�k;k , for k D 0; : : : ; m, from the
empirical distribution of the residuals and putting C�k;k D bC�k;kR�k;k . Similarly,
the zero rate changes may be sampled from the empirical distribution of historical
zero rate changes.

A problem with the empirical approach is that it does not account for parameter
uncertainty in the development factors. The development factors, used for predicting
the diagonal means bC�k;k , are not known but merely estimated from the upper
triangle. Since the amount of data is rather limited, the parameter uncertainty may
be substantial. To account for the parameter uncertainty, a bootstrap procedure can
be implemented as outlined below. The algorithm below generates a sample from
the so-called predictive distribution of A1 �L1, in which the parameter uncertainty
is taken into account. The input to the algorithm is an upper triangle of amounts
paid, as in the left table in Table 7.3. The algorithm proceeds as follows.

1. Compute the estimates bf 0; : : : ;bf n�1 of the development factors by (7.13).
2. Compute the estimates bC�k;l of EŒC�k;l � for k D 1; : : : ; nC 1, l D 0; : : : ; k� 1,

by (7.14) and (7.15).
3. Compute the residuals R�k;l D C�k;l=bC�k;l , for k D 1; : : : ; n C 1, l D
0; : : : ; k � 1.

4. For each bootstrap iteration, j D 1; : : : ; N , repeat the following:

(a) Draw with replacement bootstrapped residuals R��k;l , for k D 1; : : : ; nC 1,
l D 0; : : : ; k � 1, from the set fR�k;l ; k D 1; : : : ; nC 1; l D 0; : : : ; k � 1g.

(b) Compute a bootstrapped upper triangle with entries C ��k;l D bC�k;lR��k;l for
k D 1; : : : ; nC 1, l D 0; : : : ; k � 1.

(c) Compute the development factors f �
0 ; : : : ; f

�
n�1 of the bootstrapped upper

triangle as in (7.13).
(d) Compute one-step predictions bC ��k;k , for k D 0; : : : ; n, using the boot-

strapped upper triangle.
(e) Draw with replacement the outcomes of diagonal residuals R���k;k , for k D

0; : : : ; n, from the set of residuals fR�k;l ; k D 1; : : : ; nC1; l D 0; : : : ; k�1g.
(f) Add the diagonal C ���k;k D bC ��k;kR���k;k , for k D 0; : : : ; n, to the boot-

strapped upper triangle to form a sample of the upper triangle at time 1.
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Table 7.4 Current zero rates used in Example 7.12

Maturity (years) 1 2 3 4 5 6 7 8 9 10
Zero rate (%) 0.82 1.57 2.16 2.54 2.82 3.04 3.23 3.37 3.49 3.58

(g) Compute the development factors bf ��
0 ; : : : ;

bf ��
n�1 of the upper triangle at

time 1.
(h) Compute the predictions bC ���k;l , for k D 1; : : : ; n, l D k; : : : ; n, for the lower

triangle at time 1.
(i) Draw one outcome �r of zero rate changes from the set of historical zero

rate changes.
(j) Compute the value of the liabilities at time 1 as

L1 D
nX

kD0
C ���k;k C

n�1X

kD0

nX

lDkC1
bC ���k;l e�.rl�kC�rl�k/.l�kC1/

and the value of the bond portfolio as

A1 D
nX

kD0
bC�k;k C

n�1X

kD0

nX

lDkC1
bC�k;l e�.rl�kC�rl�k/.l�kC1/

and store the difference A1 � L1.

Example 7.12 (Sampling from the predictive distribution). Consider a nonlife in-
surer with upper triangle of paid claim amounts as in Table 7.5. The claims are
assumed to be completely settled 9 years after the incident year. The objective
is to determine the predictive distribution of the value of the assets minus the
value of the liabilities, A1 � L1, 1 year from now. The bootstrapping algorithm
outlined above is run. A historical sample of quarterly zero rate changes serves as
the basis for generating annual zero rate changes�r. Each annual zero rate scenario
is constructed by sampling four quarterly scenarios, with replacement, and adding
them up. The current zero rates are given in Table 7.4.

A histogram ofN D 10;000 samples from the predictive distribution of A1 �L1
is given in Fig. 7.7.

7.7 Notes and Comments

An introduction to the bootstrap and related resampling procedures, including
statistical applications, is given in the classic book [11] by Bradley Efron and Robert
Tibshirani.

Stochastic claims reserving techniques, extending the chain ladder, have been
developed in the actuarial literature in recent decades by Thomas Mack [28] and
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Fig. 7.7 Histogram in
Example 7.12 for predictive
distribution of the value of
assets minus the value of the
liabilities in 1 year from now

many others. A comprehensive treatment of such techniques is the book [46] by
Mario Wütrich and Michael Merz. Our approach to bootstrapping the chain ladder
method is a slight variation of the method presented by Peter England and Richard
Verrall [14]. The upper claims triangle in Table 7.5 used in Example 7.12 originates
from a paper by G.C. Taylor and F.R. Ashe [45].

7.8 Exercises

Exercise 7.1 (Empirical VaR). A unit within a bank is required to report an
empirical estimate of VaR0:01.X/, where X is the portfolio value the next day from
its trading activities. The empirical estimate bVaR0:01.X/ is based on market prices
from the previous n C 1 days that are transformed into a sample of size n from
the distribution of X and the sample points are assumed to be independent and
identically distributed. Compute the probability

P
�
bVaR0:01.X/ > VaR0:01.X/

�

as a function of n and determine its minimum and maximum for n in f100; : : : ; 300g.

Exercise 7.2 (Empirical tail conditional median). The tail conditional median
TCMp.X/ D medianŒL j L � VaRp.X/�, where L D �X=R0, has been proposed
as a more robust alternative to ESp.X/ since TCMp.X/ is not as sensitive as
ESp.X/ to the behavior of the left tail of the distribution of X .

Let Y have a standard Student’s t distribution with � degrees of freedom, and set
X D e0:01Y �1. Consider the empirical estimators 1TCM0:05.X/ and cES0:05.X/ based
on a sample of size 200 from the distribution of L D �X . Generate histograms
based on samples of size 105 from the distributions of 1TCM0:05.X/ and cES0:05.X/
for � D 2 and � D 10.
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Exercise 7.3 (Empirical expected shortfall). Let fZ1; : : : ; Zng be a sample of
independent and identically distributed historical log returns that are distributed as
the log return log.ST =S0/ of an asset from today until time T > 0. Show that if
the risk-free return over the investment period is 1, then the empirical estimator of
ESp.ST � S0/ is given by

min
c

�c C 1

np

nX

kD1
.c C S0 � S0e

Zk /I fZk � log.1C c=S0/g:

Exercise 7.4 (Empirical spectral risk measure). Let fZ1; : : : ; Zng be a sample
of independent and identically distributed historical log returns that are distributed
as the log return log.ST =S0/ of an asset from today until time T > 0. Show that
if the risk-free return over the investment period is 1 and if �	 is a spectral risk
measure with risk aversion function 	, then the empirical estimator of �	.ST � S0/
is given by

S0

�
1 �

nX

kD1
	ke

Zk;n
�
; where 	k D

Z .n�kC1/=n

.n�k/=n
	.u/du:

Project 7 (Total returns). Consider a 5-year investment in a portfolio of dividend-
paying stocks. The yearly portfolio returnsStC1=St and dividendsDtC1 paid at time
t C 1 are modeled as

StC1
St

D e�C0:2XtC1 and
DtC1
St

D 0:05e�0:052=2C0:05YtC1 ;

where X1; : : : ; X5; Y1; : : : ; Y5 are independent and standard normally distributed.

(a) Consider the value in 5 years of investing $1 million in a portfolio of stocks and
reinvesting the dividends in the portfolio of stocks. Determine the function f
such that the value V5 in 5 years of the investment strategy can be expressed as
V5 D f .�;X1; : : : ; X5; Y1; : : : ; Y5/.

(b) Simulate a sample of suitable size from the distribution of .X1; : : : ; X5;
Y1; : : : ; Y5/ and use this sample to determine the empirical distribution of V5
for a range of values of the parameter �. Estimate the smallest value of � for
which the probability that V5 exceeds the value in 5 years of an investment of
$1 million in a 5-year zero-coupon bond with zero rate 5% per year is 0:75.

Project 8 (Pension savings). Consider a yearly investment of $1,000 in long
positions in a portfolio of stocks and a risk-free, 1-year, zero-coupon bond over
a 30-year period. The yearly returns on the portfolio of stocks in year k is modeled
as Rk D e�C�Zk , where Zk is standard normally distributed. The yearly returns are
assumed to be independent. The yearly return on the risk-free bond is assumed to
be e0:01. The fraction of the yearly amount invested in the portfolio of stocks at the
beginning of year k is p.1 � c.k � 1/=30/, where p; c 2 Œ0; 1�.
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(a) Determine a function f such that the value of the pension savings in 30 years
can be expressed as V30 D f .�; �; p; c;Z1; : : : ; Z30/.

(b) Set � D 0:06 and � D 0:2 and investigate the effects on the empirical
distribution Fn.p; c/ of V30 of varying p and c. Suggest a suitable criterion
for selecting the optimal empirical distribution Fn.p; c/ and determine the
optimizer .p; c/.

Simulate a sample of suitable size n from the distribution of .Z1; : : : ; Z30/ and
use this sample to determine the empirical distribution Fn of V30 for a range of
values of the parameters �; �; p; c.



Chapter 8
Parametric Models and Their Tails

In this chapter we consider approaches to selecting a parametric family of
distributions for a random variable and approaches to estimating the parameters. We
also present techniques for analyzing the tails of the chosen probability distribution
and the effect of the tails on the estimation of risk measures. Finally, we consider
a semiparametric approach to the estimation of tail probabilities. It provides an
alternative to relying on a full parametric model in order to produce estimates of
tail probabilities beyond the range of the sample data.

A common situation is that we want to model the future value V of a portfolio
of financial instruments and that we may express this random value as V D g.Z/,
where Z is, for instance, a vector of log returns of financial assets or changes in
zero rates over the next time period and g is a known function that depends only on
the current positions and the prices of the different instruments. Even when Z D Z
is univariate, the problem of assigning a good parametric model to Z is far from
straightforward. Therefore, we only consider the univariate problem here and return
to the multivariate case in the following chapter.

A parametric family of distribution functions is a set fF� W � 2 �g of distribution
functions, where � is the parameter and � � R

k the parameter space. One example
is the family of normal distribution functions with parameter .�; �2/, parameter
space R � .0;1/ � R

2, and distribution function ˚..x � �/=�/. Another example
is Student’s t location-scale family with parameter .�; �; �/, parameter space R �
.0;1/ � .0;1/ � R

3, and distribution function t�..x � �/=�/, where t�.x/ is
the distribution function for a standard Student’s t distribution with � degrees of
freedom.

In most cases, the parameter � is at least partly estimated from past observations
z�nC1; : : : ; z0 that are obtained by transforming historical prices of the relevant
asset. If we feel comfortable assuming that the z�k are observations of random
variables Z�nC1; : : : ; Z0 with the same distribution as the random variable Z1
that we want to model, then we may assign the distribution function Fb� to Z1,

where the parameterb� is estimated from the observations z�k . Maximum-likelihood
estimation or least-squares estimation are natural choices of estimation techniques

H. Hult et al., Risk and Portfolio Analysis: Principles and Methods, Springer Series
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-4103-8 8,
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that often perform well. The quality of the parameter estimation is best if we know
the correct time series model for Z�nC1; : : : ; Z0 and use this knowledge in the
estimation procedure. Here we will not go deeper into time series models. It will be
assumed that Z�nC1; : : : ; Z0 are roughly independent and identically distributed.
Of course, there may be situations where we choose the parameter partly based on
the historical observations and partly based on other relevant information that is not
present in the historical data.

In an attempt to be objective, it is common to take the parametric family as given
and to estimate the parameters of the model based on historical data. Although this
may be both sensible and useful, it is important to note that this is nevertheless not
an objective approach to choosing a model. The choice of the parametric family,
the belief in the explanatory power of the historical data, and the choice of sample
size of the historical data sample used to fit the parameters are some of the factors
that influence the results, and they are always subjective choices by the modeler.
Parametric modeling usually consists of three steps:

1. Select a parametric family of distributions.
2. Estimate the parameters.
3. Validate the resulting distribution.

If in the third step the validation fails (for instance, we assumed a normal family
but the estimated normal distribution gave a poor fit to the historical data), then
we start over from the first step with a different parametric family. If the validation
is considered successful, then the fitted parametric distribution may be used as a
subjective model for future values.

Model selection, parameter estimation, and model validation are presented and
analyzed in Sect. 8.1.

The choice of parametric model will be crucial for quantifying the riskiness of a
portfolio by a risk measure such as value-at-risk (VaR) or expected shortfall (ES).
Of particular importance to a risk manager is the probability of extreme outcomes,
as these outcomes may lead to large portfolio losses. Therefore, model selection
cannot only be based on the data in the center of the distribution, but one must
take into account the effect of the modeling of the tails. Throughout the chapter we
will emphasize the tail behavior of the parametric models. That is, the shape of the
distribution far from the center, where few observations are available. Section 8.2
presents different kinds of tail behavior and analyzes their effects on the potential
benefits from diversification for a financial or insurance portfolio. A key message is
that if the probability mass of the distribution decays slowly, then the idea of diver-
sification, that works so well in the presence of, for example, normal distributions,
may work poorly in the sense that the risk is not reduced by much, if at all.

8.1 Model Selection and Parameter Estimation

In this section, we review some useful techniques for selecting a parametric
model to a data sample. It will be assumed that the historical data have been
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transformed into n observations z�nC1; : : : ; z0 that are the outcomes of the random
variablesZ�nC1; : : : ; Z0, which we believe are close to independent and identically
distributed. A standard approach to selecting an appropriate model is the three-step
procedure of first selecting a parametric family, then estimating the parameters, and
finally validating the chosen parametric model.

The starting point for model selection is to plot the raw data, make a histogram,
and inspect the plots. Based on this graphical inspection, the next step is to
compare the empirical quantiles of the data with the quantiles of a few reference
distributions that may be suitable by making so-called quantile–quantile (q–q) plots.
This approach is presented below. Once a good candidate for a parametric family has
been chosen, the next step is to estimate the parameters of the model. The aim here
is to find the distribution function F� (or density f� ) in the family fF� W � 2 �g
that best represents the distribution of the historical data.

The methods presented below differ in the notion of “best.” There is not a single
criterion that is always best, but one must understand the properties of the different
model selection and estimation techniques and select one that is appropriate for the
problem at hand.

8.1.1 Examples of Parametric Distributions

In this section we list some commonly encountered one-dimensional parametric
probability distributions used to model financial and insurance data. There are
definitely many more distributions that may be considered, but here we restrict
ourselves to a short list. In Sect. 8.1.6, a method for constructing new parametric
models that provide a good fit to the data is described.

A standard model for financial data is the normal distribution N.�; �2/ with
density

1

�
	
�x � �

�

�
D 1p

2��
exp



� .x � �/2

2�2

�
for all x: (8.1)

The normal distribution typically gives a poor fit to financial log-return data
regardless of how one sets the parameters. The reason for the poor fit is that its
probability mass decays faster as one moves away from its mean than what is
indicated by data of daily log returns. An approach to overcoming this problem
is to replace the standard deviation parameter � in the representationX dD �C �Z

by the random variable �.�=S�/1=2, where S� has a �2-distribution with � degrees of
freedom. Recall that if � is an integer, then S� is distributed as the sum of � squared
independent standard normals. The density function of Y D � C �.�=S�/

1=2Z is
given by

� ..� C 1/=2/p
��� .�=2/

�
1C .x � �/2

��2

��.�C1/=2
for all x; (8.2)

where � denotes the gamma function. This can be recognized as the density of a
Student’s t distribution with � degrees of freedom, and location and scale parameters
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� and � , written t�.�; �2/. The standard t� distribution corresponds to .�; �2/ D
.0; 1/. For a standard t-distributed random variable, the expected value is 0 (if � >1)
and the variance is �=.� � 2/ (if � > 2).

We now take a look at some models for random variables taking only positive
values. A random variableX with a lognormal distribution is simply the exponential
function of a normally distributed random variable, X is LN.�; �2/-distributed if
logX is N.�; �2/-distributed and the density function of X is given by

1p
2��x

exp



� .logx � �/2

2�2

�
for x > 0:

The random variable Y has an exponential distribution with parameter � > 0,
written Exp.�/, if it has distribution function P.Y � x/ D 1 � e��x for x � 0.
The random variable X has a Pareto distribution with parameters ˛ > 0, written
Pa.˛/, if it has distribution function P.X � x/ D 1 � x�˛ for x � 1. Since

P.logX > y/ D P.X > ey/ D e�˛y ;

we find that the logarithm of a Pa.˛/-distributed X is Exp.˛/-distributed. There
are two two-parameter versions of the Pareto distribution corresponding to the
distribution functions 1 � .c=x/˛ for c > 0 and x � c and the distribution function
1 � k˛=.k C x/˛ for k > 0 and x � 0. We now turn to the Gamma distribution
� .˛; ˇ/ whose density function is given by

ˇ˛

� .˛/
x˛�1 expf�ˇxg for x; ˛; ˇ > 0:

If ˛ is an integer, then � .˛; ˇ/ is the distribution of the sum of ˛ independent
Exp.1=ˇ/-distributed random variables. Finally, the Weibull distribution
WBL.˛; ˇ/ allows for a wide range of tail probabilities by varying the parameter ˛.
That a random variable X is WBL.˛; ˇ/-distributed is equivalent to ˇX˛ having a
standard exponential distribution Exp.1/. Note that all the probability distributions
presented here are related in some rather simple way to the standard normal or the
exponential distribution.

Example 8.1 (Normal tails). Let Y be N.�; �2/-distributed. We want to investigate
the behavior of its left tail F�;� .x/ D ˚..x � �/=�/ as x ! �1. In other words,
we want to understand how the normal model for a log return assigns probability
mass to events corresponding to negative log returns with very large absolute values.
We claim that, as x ! �1,

˚
�x � �

�

�
	 �

.�x/	
�x � �

�

�
D 1p

2�.�x/ exp



� .x � �/2

2�2

�
;
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where 	 is the standard normal density and 	 means that the quotient of the left-
and right-hand sides tends to one. An application of l’Hôpital’s rule gives

lim
x!�1

˚..x � �/=�/
	..x � �/=�/�=.�x/ D lim

x!�1

d
dx
˚..x � �/=�/

d
dx
	..x � �/=�/�=.�x/ ;

provided that the right-hand side converges to some positive limit. We need to show
that the limit is one. Computing the derivatives and using the relation 	0.y/ D �y
	.y/ give

d

dx
˚
�x � �

�

�
D 1

�
	
�x � �

�

�
;

d

dx

�

.�x/	
�x � �

�

�
D �

x2
	
�x � �

�

�
C 1

.�x/	
0 �x � �

�

�

D 1

�
	
�x � �

�

��
1C �

.�x/ C �2

x2

�
;

from which the claim follows.
The tail F�;� .x/ D ˚..x � �/=�/ decays faster than an exponential rate in the

sense that

lim
x!�1

F�;� .x/

e��.�x/ D 0 for every � > 0:

In addition, the location parameter � matters for the asymptotic behavior of the tail
in the sense that F�;� .x/=F Q�;� .x/ does not converge as x ! �1 ife� ¤ �.

Example 8.2 (Student’s t tails). Consider a random variable Y with a location-scale
Student’s t distribution with � degrees of freedom. The distribution function of Y is
given by t�..x � �/=�/, and the density function is given by

g�

�x � �
�

�
D C

�
1C .x � �/2

��2

��.�C1/=2
with C D � ..� C 1/=2/p

��� .�=2/
:

Applying l’Hôpital’s rule gives

lim
x!�1

t�..x � �/=�/
.�x/�� D lim

x!�1
g�..x � �/=�/=�

�.�x/�.�C1/

D C

�
lim

x!�1

�
1

x2

�
1C x2 � 2�x C �2

��2

���.�C1/=2

D C�.��1/=2��C1:

We conclude that

t�

�x � �

�

�
	 � ..� C 1/=2/p

��� .�=2/
�.��1/=2��C1.�x/�� as x ! �1:



236 8 Parametric Models and Their Tails

The polynomial rate of decay .�x/�� is slow in the sense that it is slower than any
exponential:

lim
x!�1

t�..x � �/=�/

e��.�x/
 D 1 for every �; 
 > 0:

8.1.2 Quantile–Quantile Plots

In this section, we will consider some useful practical methods to study the
distributional properties of a data set. In particular, we will emphasize the extreme
values of the data.

Suppose that we have observations z1; : : : ; zn of independent and identically
distributed random variables Z1; : : : ; Zn with an unknown common distribution
function that we would like to determine. A common approach is to suggest a
candidate reference distribution F and to test whether it is reasonable to assume
that the observations form a sample from F . The q–q plot provides a useful
graphical test. First recall that we write z1;n � � � � � zn;n for the ordered sample.
A q–q plot is a plot of the points


�
F�1

�
n � k C 1

nC 1

�
; zk;n

�
W k D 1; : : : ; n

�
: (8.3)

This is a plot of the empirical quantiles against the quantiles of the reference
distribution. At first sight this is not quite clear. However, notice that with p D
.n � k C 1/=.nC 1/ we have F�1

n .p/ D zŒn.1�p/�C1;n, where

Œn.1 � p/� D
�
n

�
1 � n � k C 1

nC 1

�
D
�
nk

nC 1


< k;

n.1 � p/ D nk

nC 1
>

nk

nC 1
C k � 1
nC 1

� n

nC 1
D k � 1:

Therefore, (8.3) may equivalently be written as

�
F�1

�
n � k C 1

nC 1

�
; F �1

n

�
n � k C 1

nC 1

��
W k D 1; : : : ; n

�
:

If the data are generated by a probability distribution similar to the reference
distribution, then the q–q plot is approximately linear. An important property is
that the q–q plot remains approximately linear if the data are transformed by an
affine transformation, i.e., if the distribution of the data is approximately in the same
location-scale family as the reference distribution. If the data form a sample from
the reference distribution F , then the q–q plot should be approximately linear with
intercept 0 and slope 1. If the data form a sample from F�;� .x/ D F..x � �/=�/,
then the q–q plot is still approximately linear since F�1

�;� .p/ D � C �F�1.p/.
Moreover, the parameters � and � can be estimated from the intercept and slope
of the q–q plot.
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Fig. 8.1 Left plot: q–q plot of standard Student’s t distribution with two degrees of freedom (y-
axis) against standard normal distribution (x-axis). Right plot: q–q plot of Nasdaq Composite log-
return data (y-axis) against standard Student’s t distribution with three degrees of freedom (x-axis)

The q–q plot is particularly useful for studying the tails of a distribution.
Suppose that a reference distribution F is given. If the empirical distribution
of the data has a heavier right tail than the reference distribution, meaning that
.1 � Fn.x//=.1 � F.x// is increasing for x sufficiently large, then the q–q plot will
curve up (convex shape) for large values on the x-axis. If the empirical distribution
of the data has a heavier left tail than F , meaning that Fn.x/=F.x/ is increasing
for x sufficiently small, then the q–q plot will curve down (concave shape) for small
values on the x-axis. This behavior is illustrated in the left plot in Fig. 8.1. If the
empirical tails are lighter than those of the reference distribution, then the q–q plot
shows the opposite behavior (an S-shaped q–q plot).

Quantile–quantile plots are often used to analyze the goodness of fit of a
reference distribution. If a parametric family has been selected and parameters
estimated with some statistical technique, then a q–q plot can be used to check that
the suggested distribution actually gives a good fit; the q–q plot should look linear.
If it does not look linear, then one should reconsider the choice of parametric family
or the estimation technique.

8.1.3 Maximum-Likelihood Estimation

Consider observations z1; : : : ; zn of independent and identically distributed random
variables Z1; : : : ; Zn with the density function f�0 , where the parameter �0 is
unknown. In maximum-likelihood estimation (MLE), the unknown parameter �0
is estimated as the parameter value � that maximizes the probability of the observed
data. More precisely, the maximum-likelihood estimatorb� is given by

b� D argmax�

nY

kD1
f� .Zk/:
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Strictly speaking, the probability of any outcome z1; : : : ; zn is zero. However,

P.Zk 2 .zk � "; zk C "/ for all k/ D
nY

kD1

Z zkC"

zk�"
f�.xk/dxk � .2"/n

nY

kD1
f� .zk/;

and by taking " > 0 arbitrarily small, the parameter value that maximizes the right-
hand side also maximizes the probability on the left-hand side. Since the logarithm
is a strictly increasing function

b� D argmax� log
nY

kD1
f� .Zk/ D argmax�

nX

kD1
logf�.Zk/:

The sum on the right-hand side is the log-likelihood function logL.�IZ1; : : : ; Zn/.
To see that the maximum-likelihood estimator is a good estimator, we wantb� D

argmax� L.�IZ1; : : : ; Zn/ to converge to �0 with probability one as n ! 1. We
do not give a full proof here but an argument that can be refined into a rigorous
proof (under additional rather mild assumptions). It follows from the law of large
numbers that, with probability one,

1

n
logL.�IZ1; : : : ; Zn/ � 1

n
logL.�0IZ1; : : : ; Zn/ D 1

n

nX

kD1
log

f�.Zk/

f�0 .Zk/

! E
h

log
f� .Z1/

f�0 .Z1/

i

as n ! 1. Notice thatb� is the maximizer of the left-hand side. We claim that �0 is
the maximizer of the right-hand side. Indeed, from Jensen’s inequality,

E
h

log
f� .Z1/

f�0 .Z1/

i
� log E

h f�.Z1/

f�0 .Z1/

i
D log

Z
f�.x/dx D 0;

with equality if and only if f� D f�0 .

Example 8.3 (MLE for the normal distribution). For the normal distribution
N.�; �2/ the log-likelihood function is given by

logL.�; �2I z1; : : : ; zn/ D
nX

kD1

�
� log.2��2/1=2 � 1

2�2
.zk � �/2

�

D �n
2

log.2�/ � n

2
log.�2/ � 1

2�2

nX

kD1
.zk � �/2:

For notational convenience write g.�; �2/ for the log-likelihood function. It can be
checked that g.�; �2/ is concave in .�; �2/. Therefore, the maximum-likelihood
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Fig. 8.2 Left plot: values of Nasdaq Composite index from November 11, 2008 until November 4,
2010. Right plot: corresponding log returns

estimator is obtained by computing the partial derivatives of g with respect to � and
with respect to �2, setting these two expressions to zero, and solving the equation
system for .�; �2/. We obtain

@g

@�
.�; �2/ D 1

�2

nX

kD1
.zk � �/ D n

�2
.z � �/

@g

@�2
.�; �2/ D � n

2�2
C 1

2.�2/2

nX

kD1
.zk � �/2

D 1

2.�2/2

 
nX

kD1
.zk � �/2 � n�2

!
;

from which it follows that the maximum-likelihood estimator for .�; �2/ is

.b�;b�2/ D
 

z;
1

n

nX

kD1
.zk � z/2

!
: (8.4)

[It would be more appropriate to write 2.�; �2/ instead of .b�;b�2/ but that hurts the
eye.] The optimization procedure ignored the constraint �2 � 0, but this turned out
not to be a problem.

Example 8.4 (Nasdaq data I). Consider a sample consisting of n D 500 log returns
z1; : : : ; zn from the Nasdaq Composite index (index values from November 11, 2008
through November 4, 2010). Here we want to fit a parametric probability distribution
to the log-return data and use this distribution as a model for future log returns. The
historical index values and the log returns are shown as time series in Fig. 8.2. An
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Fig. 8.3 Upper left plot: histogram for Nasdaq Composite log returns and density for fitted normal
distribution. Upper right plot: q–q plot of Nasdaq Composite log returns (y-axis) against fitted
normal quantiles (x-axis). Lower left plot: histogram for Nasdaq Composite log returns and density
for fitted Student’s t distribution. Lower right plot: q–q plot of Nasdaq Composite log returns
(y-axis) against fitted Student’s t quantiles (x-axis)

initial eyeball inspection leaves it unclear as to whether the observed log returns can
be seen as outcomes of independent and identically distributed random variables
Z1; : : : ; Zn. For instance, we observe a somewhat higher volatility in the beginning
of the sample representing a time period of financial turmoil. Nevertheless, we
make the assumption that the observed log returns are outcomes of independent
and identically distributed random variables. First we propose a normal distribution
N.�; �2/ as a model for the log returns. The density is given by (8.1), and the
maximum-likelihood estimator of .�; �2/ is given in (8.4). Inserting the numerical
values gives the estimate

.b�;b�/ � .9:33 � 10�4; 1:82 � 10�2/:

The upper left plot in Fig. 8.3 of the density with estimated parameters shows that
the fit to the log-return data is not particularly good. There is too little mass in the
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center and the tails. The q–q plot in the upper right of Fig. 8.3 also confirms that
the center and the tails are not well modeled by the normal distribution. Due to the
poor fit of the normal distribution, we consider fitting a location-scale Student’s t
distribution, t�.�; �2/, to the log-return data. The density function is given by (8.2),
and the parameter vector to be estimated is � D .�; �; �/. Numerical maximization
of the likelihood function gives

.b�;b�;b�/ � .1:57 � 10�3; 1:12 � 10�2; 2:65/:

The lower left plot in Fig. 8.3 shows the Student’s t density with estimated parame-
ters. The plot shows a better, but not perfect, fit than for the normal distribution, and
the q–q plot in the lower right shows that the center and the tails are better modeled
with the location-scale Student’s t than with the normal distribution. One should not
take the numerical estimates too seriously. The log-likelihood function is typically
rather flat, and small changes in the data can result in big changes in the parameter
estimates. Moreover, for typical financial log-return data two different numerical
optimizers may produce rather different parameter estimates. For Student’s t model
increasing both the scale parameter � and the degrees of freedom parameter �
(the latter corresponds to making the tails lighter) may give the same value for the
log-likelihood function as the obtained optimal parameters.

There is another problem with MLE in this context: maximizing the log-
likelihood function is not the same as choosing the parameters so that the q–q plot
is as linear as possible.

It is important to realize that the model selection can have a dramatic impact on
the estimate of a quantity such as a risk measure that depends on the shape of the tail
of the distribution. This is a problem because usually we have very little information
about the shape of the tail. By definition, there are few observations there. In the
following example, we illustrate the sensitivity of ES to model selection. We fit
three models to log-return data: an empirical distribution, a normal distribution, and
a Student’s t distribution. Although all three give a reasonable fit and very similar
values of the VaR at level 0:05, the estimates for ES are quite different. This is
because ES depends heavily on the shape of the tail in regions far out where we
have no data. Consequently, methods of portfolio optimization, where the optimal
portfolio allocations are largely determined by the tail of the distribution, should be
regarded with some skepticism.

Example 8.5 (Nasdaq data II, continutation of Example 8.4). Consider a long
position of value 100 in the Nasdaq Composite index. We want to analyze the risk
we face by holding this position until tomorrow by comparing the estimates of VaR
and ES at the 5% level for the position held over 1 day (due to a change in the
closing price from today until tomorrow).

We begin with VaR and consider the change X in the value of the position over
the next day (the effect of interest rates is ignored). Recall that X D V1 � V0R0 is
seen as the net value tomorrow of a position obtained by borrowing V0 today, taking
the index position with value V1 tomorrow. The value of the loan does not change
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much over 1 day, so we approximate V0R0 � V0. IfZ1 is the log return on the index
from today until tomorrow, then we may write

X D V1 � V0 D 100.expfZ1g � 1/:
Proposition 6.3, with g.z/ D 100.expfzg � 1/, and Proposition 6.4 imply that

VaR0:05.X/ D F �1�g.Z1/.1 � 0:05/

D �g.F �1
Z1
.0:05//

D �100.expfF�1
Z1
.0:05/g � 1/;

whereZ1 is either normally or Student’s t distributed. If Z1 is normally distributed,
then F�1

Z1
.0:05/ D � C �˚�1.0:05/ and if Z1 is t distributed, then F�1

Z1
.0:05/ D

� C �t�1� .0:05/. The estimates of VaR0:05.X/ for the two models are obtained by
plugging in the estimated parameters from Example 8.4. The empirical estimate of
VaR0:05.X/ is obtained by setting lk D �100.expfzkg � 1/, ordering the lk , and
finally taking lŒ500�0:05�C1;500 D l26;500 as the empirical estimate. The estimates are

bVaR0:05.X/ �
8
<

:

3:01; empirical;
2:85; normal;
2:59; Student’s t :

We now turn to estimation of ES. The empirical estimate of ES0:05.X/ is obtained
by setting lk D �100.expfzkg � 1/, ordering the lk, and finally taking .l1;500 C
� � � C l25;500/=25 as the empirical estimate. If Z1 is normally distributed, then
Example 6.15 provides the formula

ESp.X/ D V0

 
1 � ˚.˚�1.p/ � �/e�C�2=2

p

!
:

For the location-scale Student’s t model Example 6.15 provides the formula

ESp.X/ D V0

�
1 � 1

p

Z p

0

expf�C �t�1� .u/g/du

�
:

With p D 0:05 and �; �; � replaced by the estimates in Example 8.4, numerical
integration gives the result. The ES estimates are

cES0:05.X/ �
8
<

:

4:20; empirical;
3:59; normal;
4:52; Student’s t :

Note that the estimate for ES for the Student’s t model is approximately 25% larger
than that for the normal model, even though the VaR estimate for the Student’s t
model is approximately 10% smaller than that for the normal model. An explanation
for the sizes of the estimates follows from the plot in Fig. 8.4. The left plot shows



8.1 Model Selection and Parameter Estimation 243

−9 −8 −7 −6 −5 −4 −3 −2

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.00 0.02 0.04 0.06 0.08 0.10 0.12

2
3

4
5

6
7

8
9

Fig. 8.4 Left plot: tail of net worth X in Example 8.4. The empirical tail is the staircase curve.
The fitted normal tail is the solid curve, and the fitted Student’s t tail is the dashed curve. Right
plot: VaRp.X/ as a function of p. The estimate of ES0:05.X/ is the “area under the graph” from 0

to 0:05 divided by 0:05

the left tail of the distribution of X for the three models (empirical, normal, t). We
see that for x0 � �3

˚..x �b�n/=b�n/ > tO�..x �b�t/=b�t / for x > x0;
˚..x �b�n/=b�n/ < tO�..x �b�t/=b�t / for x < x0;

where the subscripts indicate the model (normal or t). The fitted normal tail
dominates the fitted Student’s t tail for moderate x-values, whereas the opposite
holds in the far-out tail. The right plot in Fig. 8.4 shows VaRp.X/ as a function of p
for the three models. Since the Student’s t VaRp.X/ estimates are much larger than
those for the normal model for small values of p, the estimates of ESp.X/ for the
Student’s t model dominate those for the normal model for rather moderate values
of p. It looks like the Student’s t distribution gives a much better fit to the tail and
the quantile function than the normal distribution. But one should be aware that the
limited amount of data available in the tail makes it is impossible to say how the
true distribution looks beyond the range of the data.

8.1.4 Least-Squares Estimation

Consider observations z1; : : : ; zn of independent and identically distributed random
variables Z1; : : : ; Zn with the distribution function F�0 , where the parameter �0 is
unknown. The least-squares estimatorb� of the unknown parameter �0 is given by

b� D argmin�

nX

kD1

�
zk;n � F �1

�

�
n � k C 1

nC 1

��2
:
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The least-squares estimate is therefore the parameter value that minimizes the sum
of the squared deviations between the empirical quantiles and the quantiles of the
parametric distribution chosen as reference distribution.

The least-squares estimation (LSE) approach is particularly nice if F�1
� .p/ is a

linear function of the components of the parameter vector � D .�0; : : : ; �d /
T,

F �1
�

�
n � k C 1

nC 1

�
D �0 C �1ck;1 C � � � C �d ck;d ;

since in this case the estimation problem is a standard linear regression problem
(possibly subject to constraints, which we ignore here, on the range of parameter
values). Suppose we want to determine

b� D argmin�

nX

kD1
.zk;n � �0 � �1ck;1 � � � � � �d ck;d /

2 ;

where ck;l are some given numbers. Write

z D

0

B@
z1;n
:::

zn;n

1

CA and C D

0

B@
1 c1;1 : : : c1;d
:::

:::

1 cn;1 : : : cn;d

1

CA :

We look for the minimizerb� of .z�C�/T.z�C�/, which is a convex function of � .
We know from Chap. 2 that a solution to the linear equation system r.z�C�/T.z�
C�/ D 0 is the least-squares estimatorb� . Computing the partial derivatives of .z �
C�/T.z�C�/ with respect to �0; : : : ; �d gives r.z�C�/T.z�C�/ D CT.z�C�/,
which in turn gives the solution

b� D .CTC/�1CTz (8.5)

if CTC is invertible.

Example 8.6 (LSE for a normal distribution). Here we consider the normal distri-
bution N.�; �2/ and take � D .�; �/ and

F �1
�

�
n � k C 1

nC 1

�
D �C �˚�1

�
n � k C 1

nC 1

�
:

With the notation above we have d D 1, �0 D �, �1 D � , and ck;1 D ˚�1..n�kC
1/=.nC 1//. Moreover,

.CTC/�1 D
 
n

Pn
kD1 ˚�1 � n�kC1

nC1
�

Pn
kD1 ˚�1 �n�kC1

nC1
� Pn

kD1 ˚�1 � n�kC1
nC1

�2

!�1

D
 
n 0

0
Pn

kD1 ˚�1 � n�kC1
nC1

�2

!�1
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and

CTz D
 Pn

kD1 zkPn
kD1 zk;n˚�1 �n�kC1

nC1
�
!
:

Therefore, the least-squares estimator of .�; �/ is given by

.b�;b�/ D
 

z;

Pn
kD1 zk;n˚�1. n�kC1

nC1 /Pn
kD1 ˚�1. n�kC1

nC1 /2

!
:

Example 8.7 (LSE for Student’s t distribution). Here we consider Student’s t
distribution t�.�; �2/ and take � D .�; �; �/ and

F �1
�

�
n � k C 1

nC 1

�
D �C �t�1�

�
n � k C 1

nC 1

�
:

The least-squares estimate .b�;b�;b�/ is the parameter triple that minimizes the sum
of the squared deviations between the empirical and Student’s t quantiles:

.b�;b�;b�/ D argmin.�;��/

nX

kD1

�
zk;n � � � �t�1�

�
n � k C 1

nC 1

��2

subject to the constraint �; � > 0. Since the model quantiles are nonlinear functions
of the parameter �, the estimation problem cannot be reduced to linear regression
and must be solved numerically.

Example 8.8 (Nasdaq data III, continuation of Example 8.5). In Example 8.4
we fitted a normal distribution and a location-scale Student’s t distribution to
the log returns of the Nasdaq Composite index using maximum likelihood. The
corresponding least-squares estimate is

.b�;b�/ � .9:33 � 10�4; 1:79 � 10�2/

for the normal distribution and

.b�;b�;b�/ � .9:33 � 10�4; 1:28 � 10�2; 3:51/

for Student’s t distribution. The least-squares parameter estimates lead to different
estimates of VaR0:05.X/ and ES0:05.X/ compared to the case in Example 8.5 with
maximum-likelihood parameter estimates. Here the VaR0:05.X/ estimates are

bVaR0:05.X/ �
8
<

:

3:01; empirical;
2:80; normal;
2:71; Student’s t ;
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and the ES0:05.X/ estimates are

cES0:05.X/ �
8
<

:

4:20; empirical;
3:52; normal;
4:22; Student’s t :

We can compare the estimates of VaR and ES when the parametric model is
estimated using least squares, as in the last example, to those in Example 8.5,
where maximum likelihood was used. We observe that the parameter estimation
method has an impact on the estimates of VaR0:05.X/ and ES0:05.X/. To evaluate the
accuracy of the estimation method, we may apply the parametric bootstrap to obtain
approximate confidence intervals for VaR and ES. The procedure is illustrated in the
following section.

8.1.5 Parametric Bootstrap

The parametric bootstrap works similarly to the nonparametric bootstrap presented
in Sect. 7.5.2, with the difference that the parametric form of the distribution is taken
into account. Let us illustrate how the method works to construct an approximate
confidence interval for a quantile.

Suppose we have a sample fx1; : : : ; xng of size n from a distribution F� , which
depends on an unknown parameter � . We have an estimator b� D b�.X1; : : : ; Xn/,
which is used to estimate � , andb�obs Db�.x1; : : : ; xn/ is the point estimate of � . An
approximative confidence interval I�;q for F�1

� .p/ of confidence level q using the
parametric bootstrap method is constructed as follows:

• For each j in the set f1; : : : ; N g draw with replacement n times from the sample
fx1; : : : ; xng to obtain the sample fX�.j /

1 ; : : : ; X
�.j /
n g.

• Compute the estimates b��
j D b�.X�.j /

1 ; : : : ; X
�.j /
n / of � and the corresponding

quantiles F�1
b��

j

.p/ for j D 1; : : : ; N .

• Form the residuals R�
j D F �1

b�obs
.p/ � F�1

b��

j

.p/.

• Compute the interval

I�;q D .F �1
b�obs

.p/CR�
ŒN.1Cq/=2�C1;N ; F�1

b�obs
.p/CR�

ŒN.1�q/=2�C1;N /;

where R�
1;N � � � � � R�

N;N is the ordering of the sample fR�
1 ; : : : ; R

�
N g.

Example 8.9 (Nasdaq data IV, cont. of Example 8.8). In Examples 8.4, 8.5, and 8.8
we estimated VaR and ES at level 0:05 for an investment in the Nasdaq Composite
stock index using two different estimation methods. To evaluate the accuracy of
the estimates, the parametric bootstrap is applied, where in the procedure outlined
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Fig. 8.5 Upper plots: residuals R�

j , for j D 1; : : : ; 1;000, from parametric bootstrap for
computing ES at level 0:05 based on a normal distribution (upper left: residuals when maximum
likelihood is used; upper right: residuals when LSE is used). Lower plots: residuals when ES is
computed using Student’s t distribution (lower left: maximum likelihood; lower right: LSE)

previously the quantile F �1
� .p/ is replaced by ES0:05. The parametric bootstrap

procedure is performed with 1,000 resamples to compute approximate confidence
intervals for the ES. The residuals R�

j , for j D 1; : : : ; 1000, from the parametric
bootstrap procedure are illustrated in Fig. 8.5. The resulting confidence intervals at
level q D 0:95 are

IN,MLE � .3:22; 3:99/ and IN,LSE � .3:17; 3:90/

for the normal distribution and

It ,MLE � .3:70; 5:29/ and It ,LSE � .3:80; 4:79/

for Student’s t distribution. We observe that for the normal model estimating the
parameters with maximum likelihood or least squares does not make much of a
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difference. The variance of the estimates appear to be similar, and the confidence
intervals are also quite similar. In contrast, for Student’s t distribution MLE of the
parameters seems to lead to less precise estimates of the ES in comparison with
the LSE procedure. The standard deviation of the estimation error using maximum
likelihood is almost twice as high as for LSE.

8.1.6 Constructing Parametric Families with q–q Plots

To determine a suitable parametric model, a common approach is to make q–q plots
of the data against a variety of reference distributions, select a reference distribution
for which the q–q plot looks roughly linear, and finally estimate the parameters of
the reference distribution by a statistical procedure such as maximum likelihood
or least squares. One of the problems with this approach is deciding whether the
q–q plot looks sufficiently linear. More precisely, what are acceptable deviations
from linearity? One way to evaluate the linearity of q–q plots is to do simulations.
Say we make 100 repeated simulations from the reference distribution, where in
each simulation the same sample size as the original sample is used. Then we make
the 100 q–q plots, in the same figure, to get a sense of how linear q–q plots from an
ideal sample would look. Finally, we may plot the empirical quantiles on top to see
if it looks like the original sample is a typical sample from the reference distribution.

Simulations of repeated q–q plots as just described may be good for the purpose
of getting a feel for the variability of q–q plots. However, this approach does not
provide ways to improve the modeling. One possibility for finding a model that fits
the data better would be to consider a parametric family with more parameters. More
parameters implies more flexibility and typically gives a better fit. We prefer to keep
models as simple as possible and keep the number of parameters small.

An alternative approach starts with the observation that if Z D g.Y / for a
nondecreasing left-continuous function g, then F �1

Z .p/ D g.F �1
Y .p// (this is the

statement of Proposition 6.3). Assign some simple standard distribution to Y ; for
instance, a standard normal if the data take both positive and negative values or a
standard exponential if the data take only positive values. Make a q–q plot of the
empirical quantiles against the quantiles for Y . Then find a suitable function g such
that F �1

n .p/ � g.F �1
Y .p//. The quality of the fit certainly depends on the choice of

g. If g.x/ D F�1
n .FY .x//, then the probability distribution of g.Y / is the empirical

distribution of the zk . In particular, the q–q plot is linear and a perfect fit is obtained.
However, we have obtained a model with too many parameters, � D .z1; : : : ; zn/.
Loosely speaking, we want the simplest model that gives a sufficiently good fit to
the data.

Example 8.10 (Polynomial normal model). Consider the 500 observed log returns
from the Nasdaq Composite index. The lower left plot in Fig. 8.7 shows a q–q plot
of the empirical quantiles against the quantiles of the standard normal distribution.
The q–q plot looks like the graph of a third-degree polynomial. Therefore, it seems
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plausible that the log-return sample can be seen as outcomes of the random variable
g.Y I �/, where Y is standard normally distributed, � D .�0; �1; �2; �3/, and

g.yI �/ D �0 C �1y C �2y
2 C �3y

3:

We call this model the polynomial normal model. Since a third-degree polynomial
g.yI �/ that fits a q–q plot of empirical quantiles against the standard normal
quantiles is an increasing function, Proposition 6.3 implies that the quantile function
of g.Y I �/ is given by

F�1
g.Y I�/.p/ D �0 C �1˚

�1.p/C �2˚
�1.p/2 C �3˚

�1.p/3:

In particular, LSE of � is given by

.b�0; : : : ;b�3/ D argmin.�1;:::;�4/

nX

kD1

 
zk;n �

3X

lD0
�l˚

�1
�
n � k C 1

nC 1

�l!2
;

subject to the constraint g0.yI �/ D �1 C 2�2y C 3�3y
2 � 0. Except for the

constraint, this is just ordinary linear regression. We may ignore the constraint
g0.yI �/ � 0, solve the linear regression problem, and verify that g0.yIb�/ � 0.
The solutionb� to the linear regression problem is given by (8.5), which here yields
b� D .CTC/�1CTz, where

C D

0

B@
1 c1;1 c1;2 c1;3
:::

:::

1 cn;1 cn;2 cn;3

1

CA with ck;l D ˚�1
�
n � k C 1

nC 1

�l
:

Notice that g0.yI �/ D �1C2�2yC3�3y2 � 0 for all y if �3 � 0 and if g0.y�I �/ � 0

for the minimizer y� of g0.yI �/. The minimizer y� solves g00.yI �/ D 0 and is
given by y� D ��2=.3�3/. Therefore, g.yI �/ is an increasing function if �3 � 0

and 3�1�3 � �22 � 0.
If 3�1�3 � �22 > 0 so that g.yI �/ is a strictly increasing function, then

P.g.Y I �/ � x/ D P.Y � g�1.xI �// D ˚.g�1.xI �//;

from which the chain rule gives the density function

fg.Y I�/.x/ D d

dx
˚.g�1.xI �// D 	.g�1.xI �//

d

dx
g�1.xI �/

D 	.g�1.xI �//

g0.g�1.xI �/I �/
:
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Fig. 8.6 Density functions for polynomial normal model. Parameter vectors: .�0; �1; �2; �3/ D
.�3; 5; 3; 1:19089/ � 10�3 (left plot, solid curve), .�0; �1; �2; �3/ D .3; 5;�3; 1:19089/ � 10�3

(left plot, dashed curve), .�0; �1; �2; �3/ D .0; 5; 0; 1:44949/ � 10�3 (right plot, solid curve),
.�0; �1; �2; �3/ D .0; 3; 0; 2:038181/ � 10�3 (right plot, dashed curve)

The number g�1.xI �/ is the unique real root of the (strictly increasing) third-order
polynomial �3y3 C �2y

2 C �1y C �0 � x for which an explicit formula exists. In
particular, we may study the effect on the density fg.Y I�/ of varying the parameter
vector � . If �2 D 0, then the density is symmetric around �0. If �2 is negative, then
the density is left-skewed, whereas it is right-skewed if �2 is positive. To study the
effect of the parameters on the density, we fix the mean and standard deviation and
vary the parameter values. Notice that

EŒg.Y I �/� D �0 C �2;

EŒg.Y I �/2� D �20 C .2�0�2 C �21 /EŒY 2�C .2�1�3 C �22 /EŒY 4�C �23 EŒY 6�:

and therefore, since EŒY 2� D 1, EŒY 4� D 3, and EŒY 6� D 15,

Var.g.Y I �// D �21 C 2�22 C 6�1�3 C 15�23 :

Figure 8.6 shows densities for the polynomial normal model with zero mean and
standard deviation 0:01. The left plot illustrates how the value of �2 affects the
skewness. The right plot illustrates the effect of simultaneously increasing �3 and
decreasing �1.

Example 8.11 (Nasdaq data V, continuation of Example 8.5). Consider the poly-
nomial normal model in Example 8.10. For the Nasdaq log returns we get the
least-squares parameter estimate

.b�0;b�1;b�2;b�3/ � .1:46; 12:3;�0:54; 1:98/ � 10�3:
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Fig. 8.7 Upper plots, lower left plot: q–q plots for Nasdaq log returns: empirical quantiles
against fitted Student’s t quantiles (upper left), empirical quantiles against a fitted third-degree
polynomial of standard normal quantiles (upper right), and empirical quantiles against standard
normal quantiles and graph of fitted third-degree polynomial (lower left). Lower right plot:
empirical/normal/Student’s t VaRp.X/ estimates divided by those of the polynomial normal model
(jagged/solid/dotted)

The q–q plots of the empirical quantiles against those of the least-squares-fitted
Student’s t distribution and against the polynomial normal quantiles are shown in
Fig. 8.7. Both models give a good fit, and it is difficult to see any difference between
the two. The estimates of VaR0:05.X/ and ES0:05.X/ for the polynomial normal
model are

bVaR0:05.X/ � 2:87 and cES0:05.X/ � 4:44:

The ratios of the VaRp.X/ estimates for the normal, Student’s t , and empirical
method against those of the polynomial normal model as functions of p in .0; 0:05/
are shown in Fig. 8.7. Only for very small values of p is there a significant difference
between the VaRp.X/ estimates of the Student’s t model and the polynomial normal
model.

Example 8.12 (Polynomial normal tails). Let Y be standard normally distributed
and consider the polynomial normal random variable g.Y / D �0 C �1Y C
�2Y

2 C �3Y
3 with �3 > 0. We want to investigate the behavior of its left tail
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F�.x/ D P.g.Y / � x/ as x ! �1. The distribution function F� is hard
to analyze analytically. However, we may select a simpler function G such that
limp!0 G.F

�1
� .p//=p D 1 since this convergence implies that

lim
x!�1

G.x/

F� .x/
D lim

p!0

G.F�1
� .p//

F� .F
�1
� .p//

D 1;

from which we conclude that F� .x/ � G.x/ for negative values x such that jxj is
sufficiently large. The quantile function of the polynomial normal model is given by

F�1
� .p/ D �0 C �1˚

�1.p/C �2˚
�1.p/2 C �3˚

�1.p/3:

Therefore, G.x/ D ˚.�.�x/1=3=�3/ satisfies limp!0 G.F
�1
� .p//=p D 1. The left

tail of G is not explicitly given, but it is easier to analyze than that of F� .
We claim that, as x ! �1,

˚.�.�x/1=3=�3/ 	 	..�x/1=3=�3/.�x/�1=3�3

D �3p
2�.�x/1=3 exp



� .�x/

2=3

2�23

�
:

To show this relation, we use l’Hôpital’s rule, which implies that

lim
x!�1

˚.�.�x/1=3=�3/
	..�x/1=3=�3/.�x/�1=3�3 D lim

x!�1

d
dx
˚.�.�x/1=3=�3/

d
dx
	..�x/1=3=�3/.�x/�1=3�3

:

If we compute the derivatives and use that 	0.y/ D �y	.y/ and 	.�y/ D 	.y/,
then we have

d

dx
˚.�.�x/1=3=�3/ D 	..�x/1=3=�3/.�x/�2=3=.3�3/;

d

dx
	..�x/1=3=�3/.�x/�1=3�3 D �	0..�x/1=3=�3/.�x/�1=3

C	..�x/1=3=�3/.�x/�4=3�3=3
D 	..�x/1=3=�3/.�x/�2=3=.3�3/

C	..�x/1=3=�3/.�x/�4=3�3=3:

Since

	..�x/1=3=�3/.�x/�2=3
�
1

3�3
C �3

3
.�x/�2=3

�
	 	..�x/1=3=�3/.�x/�2=3=.3�3/
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Fig. 8.8 Quantiles 0:012˚�1.p/C 0:002˚�1.p/3 (y-axes) of polynomial normal model against
Student’s t quantiles 0:012t�1

3:15.p/ (x-axes) for p D 1=201; : : : ; 200=201 (left plot) and p D
1=1;001; : : : ; 1;000=1;001 (right plot)

as x ! �1, we have verified the claim. We conclude that the distribution function
F of the polynomial normal random variable �0 C �1Y C �2Y

2 C �3Y
3 satisfies

F�.x/ 	 �3p
2�.�x/1=3 exp



� .�x/

2=3

2�23

�
as x ! �1:

Notice that the asymptotic behavior of the left tail of F� depends on � only via the
coefficient �3 > 0 of the third-degree term. Notice also that F� decays slower than
an exponential rate in the sense that

lim
x!�1

F� .x/

e��.�x/ D 1 for every � > 0:

From Example 8.2 we know that the tail probabilities of Student’s t distribution
has a slower rate of decay compared to the polynomial normal model. However,
Fig. 8.8 shows that this difference in tail behavior cannot be observed by comparing
a few hundred sample points from the two distributions. Given a sample of daily log
returns that shows no signs of asymmetry, the preference of one of the two models
in favor of the other is ultimately a subjective choice of the modeler that cannot be
justified by only the log-return data.

8.2 Extreme Values and Tail Probabilities

Given historical loss data, a risk manager typically wants to estimate the probability
of future large losses and extreme events in order to assess the risk of holding a
certain portfolio. It is rather common that a risk manager is asked to compute risk
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measures and loss probabilities corresponding to losses of a magnitude that is not
present in the historical samples. Clearly, empirical estimates are useless in such
situations. If the available data are representative of future values, then it seems
reasonable that we could use some extrapolation method to estimate the tail of the
distribution beyond the range of the available data. One such extrapolation method
is rather straightforward: fit a parametric model to the data and use it to compute
risk measures and other quantities that depend strongly on the tail probabilities.
However, we may feel uneasy about using the whole data sample to fit a model
that is used primarily to assess tail probabilities beyond the range of the sample. It
seems more reasonable to use a suitable part of the tail of the empirical distribution
to extrapolate the tail further.

Another related topic that is relevant for managing risk is to understand qualita-
tively and quantitatively the effect of different kinds of tail probabilities for models
of returns or log returns on the tail of a distribution for the future value of a portfolio.
For example, we should understand the interplay between the characteristics of the
tails of claim size distributions and the potential benefits from diversification by
pooling independent risks.

8.2.1 Heavy Tails and Diversification

Empirical investigations such as that for the Nasdaq log returns have shown that
daily log returns of financial assets typically have distributions with heavy left tails.
A log-return distribution with a distribution function F has a heavy left tail if the
tail probabilityF.x/ decays slowly as x decreases (x ! �1). Although there is no
definition of “heavy tail,” it is common to consider the left tail F.x/, for �x large,
heavy if

lim
x!�1

F.x/

e��.�x/ D 1 for every � > 0:

From Examples 8.1, 8.2, and 8.12 we know that the polynomial normal and
Student’s t distributions have heavy tails, whereas the normal distribution has light
tails.

Sometimes we consider random variables representing losses or claim sizes that
take only positive values. For such random variables we want to understand the
behavior of the right tail F .x/ D 1 � F.x/, where x is large and F denotes the
distribution function. The distribution function has a heavy right tail if

lim
x!1

F .x/

e��x D 1 for every � > 0; (8.6)

i.e., if it is heavier than the right tail of every exponential distribution.

Example 8.13 (Indications of heavy tails). Suppose we have observations of inde-
pendent and identically distributed random variables with an unknown distribution.
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Fig. 8.9 Simulated samples of size 1;000 from Pa.2/-distribution (upper left), lognormal distri-
bution (upper right), exponential distribution (lower left), and distribution of absolute value of
standard normally distribution random variable (lower right)

The first step in trying to make sense of the tail behavior of the unknown distribution
is to look at the plot of the sample points. Figure 8.9 shows plots of simulated
samples of size 1;000 from the Pa.2/-distribution (upper left plot), the standard
lognormal distribution (upper right plot), the standard exponential distribution
(lower left plot), and the distribution of the absolute value of a standard normally
distributed random variable (lower right plot). If the largest handful of sample points
is substantially larger than the remaining sample points (upper two plots in Fig. 8.9),
then we have reasons to believe that the unknown distribution has heavy tails.

We will now study the family of heavy-tailed distributions called subexponential
distributions. Consider a nonnegative random variable X , n � 2, and independent
copies X1; : : : ; Xn of X . If

lim
x!1

P.X1 C � � � CXn > x/

P.X > x/
D n; (8.7)
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then X is said to have a subexponential distribution. If this limit relation holds
for some n � 2, then it holds for all n � 2. Subexponential distributions have
distribution functions for which (8.6) holds, hence the name of this family of
probability distributions. It is not necessary to only consider nonnegative random
variables. A random variable Y that can take both positive and negative values is
subexponential if there exists a nonnegative random variable X that is subexponen-
tial such that limx!1 P.Y > x/= P.X > x/ D 1. Examples of subexponential
distributions are the (third-degree) polynomial normal, Student’s t , lognormal, and
Pareto. Examples of distributions that are not subexponential are the normal and
exponential distributions.

What can we say qualitatively about the approximation P.X1C� � �CXn > x/ �
nP.X > x/ in (8.7)? For any nonnegative independent and identically distributed
random variables X;X1; : : : ; Xn it holds that

P.X1 C � � � CXn > x/ D nP.X > x/ P.X � x/n�1

C P.Xk > x and Xl > x for some k ¤ l/

C P.X1 C � � � CXn > x and Xk � x for every k/

D nP.X > x/ P.X � x/n�1

C
 
n

2

!
P.X > x/2

C P.X1 C � � � CXn > x and Xk � x for every k/:

We find that for a not too large n and a large x

P.X1 C � � � CXn > x/

P.X > x/
� nC P.X1 C � � � CXn > x and Xk � x for every k/

P.X > x/
:

Moreover, we find that typically P.X1 C � � � CXn > x/ > nP.X > x/. Notice that
subexponentiality implies that

lim
x!1

P.X1 C � � � CXn > x and Xk � x for every k/

P.X > x/
D 0:

However, subexponentiality does not say anything about the speed of convergence,
which may be rather slow.

Notice also that max.X1; : : : ; Xn/ > x implies that X1 C � � � CXn > x and that

P.max.X1; : : : ; Xn/ > x/ D P.X1 > x/C P.X1 � x;X2 > x/

C � � � C P.X1 � x; : : : ; Xn�1 � x;Xn > x/

D P.X > x/

n�1X

mD0
P.X � x/m:
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Therefore,

n�1X

mD0
P.X � x/m � P.X1 C � � � CXn > x/

P.X > x/

� nC P.X1 C � � � CXn > x and Xk � x for every k/

P.X > x/
;

where the last inequality follows from the inequality P.Xk > x for some k/ �
nP.X > x/.

Finally, if the random variables X1; : : : ; Xn are subexponential, then
limx!1 P.Xk > x j X1 C � � � CXn > x/ D 1=n (which follows immediately from
the definition) and

lim
x!1

P.max.X1; : : : ; Xn/ > x/

P.X1 C � � � CXn > x/
D 1:

The interpretation is that the sum takes a very large value due to precisely one of the
terms taking a very large value and the sum of the remaining terms being small.

The following proposition states that we may add a constant to a random
variable with a subexponential distribution without affecting the tail probabilities
asymptotically. The situation here is quite different from a light-tailed distribution
like the normal distribution (Example 8.1).

Proposition 8.1. If X is a nonnegative random variable with a subexponential
distribution, then limx!1 P.X > x � y/= P.X > x/ D 1 for every y.

Proof. Denote by F the distribution function of X and let X1 and X2 be two
independent copies of X . For x � y > 0,

P.X1 CX2 > x/

P.X > x/
D 1

F .x/

Z 1

0

P.X1 C t > x/dF.t/

D
Z y

0

F .x � t/

F .x/
dF.t/C

Z x

y

F .x � t/

F .x/
dF.t/

C
Z 1

x

F .x � t/
F .x/

dF.t/

� F.y/C F .x � y/
F .x/

.F.x/ � F.y//C 1:

Therefore,

1 � F .x � y/
F .x/

�
�

P.X1 CX2 > x/

P.X > x/
� 1 � F.y/

�
1

F.x/ � F.y/
:
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Since the right-hand side converges to 1 as x ! 1, we conclude that
limx!1 P.X > x � y/= P.X > x/ D 1 for y > 0. For y < 0, z D �y, and
v D x C z,

1 D
 

lim
v!1

F .v � z/

F .v/

!�1
D
 

lim
x!1

F .x/

F .x C z/

!�1
D lim

x!1

 
F .x/

F .x C z/

!�1

D lim
x!1

F .x � y/
F .x/

;

which shows that limx!1 P.X > x � y/= P.X > x/ D 1 for y < 0. �

We will now introduce the family of heavy-tailed distributions with regularly
varying tails. A distribution function F has a regularly varying right tail F D 1�F
if there exists a number � such that

lim
t!1

F .tx/

F .t/
D x� for every x > 0: (8.8)

Since F .x/ is decreasing in x, it necessarily holds that � � 0, and we may set
� D �˛ for ˛ � 0. We may formulate the regular variation property (8.8) as

lim
t!1 P.X > tx j X > t/ D x�˛ for every x > 1:

The regular variation property for the left tail of F is defined similarly to (8.8).

Example 8.14 (Pareto and Student’s t tails). The canonical example of a distribu-
tion with a regularly varying right tail is the Pareto distribution with distribution
function F.x/ D 1 � .c=x/˛ for c > 0 and x � c. If tx; t > c, then

F .tx/

F .t/
D x�˛:

Example 8.2 shows that the Student’s t distribution function has a regularly varying
left tail with index ��:

lim
t!�1

F.tx/

F.t/
D x�� :

Since Student’s t distribution is symmetric, the same holds for the right tail.

Proposition 8.2. Consider a nonnegative random variable X with distribution
function F . If F has a regularly varying right tail, then X has a subexponential
distribution.
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Proof. Consider two independent copies X1 and X2 of X . If " 2 .0; 1=2/, then

P.X1 CX2 > x/ D 2 P.X1 CX2 > x;X1 � "x/

C P.X1 CX2 > x;X1 > "x;X2 > "x/

� 2 P.X2 > .1 � "/x/C P.X1 > "x/
2:

Moreover,

P.X1 CX2 > x/ � P.X1 > x or X2 > x/ D 2 P.X1 > x/ � P.X1 > x/2:

Therefore,

2 P.X1 > x/ � P.X1 > x/2

P.X1 > x/„ ƒ‚ …
g.˛;�;x/

� P.X1 CX2 > x/

P.X1 > x/

� 2 P.X2 > .1 � "/x/C P.X1 > "x/2

P.X1 > x/„ ƒ‚ …
h.˛;�;x/

:

We have limx!1 g.˛; �; x/ D 2 and

lim
x!1h.˛; �; x/ D 2 lim

x!1
P.X1 > .1 � "/x/

P.X1 > x/
D 2.1� "/�˛:

Since " > 0 can be chosen arbitrary small, we conclude that

lim
x!1

P.X1 CX2 > x/

P.X1 > x/
D 2: �

Example 8.15 (Diversification and heavy tails). Consider two independent nonneg-
ative random variables X1 and X2 with common distribution function F with a
regularly varying right tail F D 1 � F . The random variables represent aggregate
claim amounts during a 1-year period for an insurance product sold to two groups of
customers in different geographical areas. The insurance company wants to compare
the risk of shutting down its business in one geographical area and doubling its
business in the other area versus the status quo. The right tail of the aggregate claim
amount distribution in the former case is P.2X1 > x/ and P.X1 C X2 > x/ in the
latter case.

From the subexponential property (8.7) and the regular variation property (8.8)
we find that

lim
x!1

P.X1 CX2 > x/

P.2X1 > x/
D lim

x!1
P.X1 CX2 > x/

P.X1 > x/

P.X1 > x/

P.2X1 > x/
D 21�˛:
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The interpretation is that for ˛ < 1 (very heavy tails) diversification does not give a
portfolio with smaller probability of large losses. However, for ˛ > 1 (the aggregate
claim amount distribution has finite mean) diversification reduces the probability of
large losses and the diversification effect increases with ˛. How can we interpret
the findings for ˛ < 1? As an example we may consider proportional reinsurance
of nuclear power plants. The potential loss from a loss-generating event may be
enormous, and insuring twice as much of the potential losses from one nuclear
power plant may be less risky than insuring two different power plants.

Example 8.16 (Nonsubadditivity of the quantile function). Take ˛ 2 .0; 1/ and
let X1 and X2 be as in the previous example. We saw that for x sufficiently large
P.X1 CX2 > x/ > P.2X1 > x/. Therefore, for p 2 .0; 1/ sufficiently large

F �1
X1
.p/C F�1

X2
.p/ D 2F�1

X1
.p/ D F�1

2X1
.p/

D minfx W P.2X1 > x/ � 1 � pg
< minfx W P.X1 CX2 > x/ � 1 � pg
D F�1

X1CX2.p/:

We conclude that the sum of the quantiles for two independent and identically
distributed random variables is not necessarily greater than the quantile of the sum.

The last example can be modified to show that VaR is not subadditive, which we
already know from Example 6.10.

Example 8.17 (The heavier tail wins). Let X and Y be random variables represent-
ing, for example, losses in two lines of business (losses due to fire and car accidents,
say) of an insurance company. Suppose that X has a distribution function with a
regularly varying right tail with index ˛ > 0 and that jY j has a finite moment of
order ˛ C ı for some ı > 0, i.e., EŒjY j˛Cı� < 1. The insurance company wants to
investigate the probability P.X C Y > x/ of very large aggregate losses.

For every " 2 .0; 1/ and x > 0,

P.X C Y > x/ D P.X C Y > x;X > .1 � "/x/

C P.X C Y > x;X < �.1 � "/x/
C P.X C Y > x; jX j � .1 � "/x/

� P.X > .1 � "/x/

C P.Y > .2 � "/x/

C P.jY j > "x/
� P.X > .1 � "/x/C 2 P.jY j > "x/:
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Therefore,

1 � P.X C Y > x/

P.X > x/

� P.X > .1 � "/x/
P.X > x/

C 2 P.jY j > "x/
P.X > x/

� P.X > .1 � "/x/
P.X > x/

C 2EŒjY j˛Cı�
."x/˛Cı P.X > x/

! .1 � "/�˛ C 0

as x ! 1, where Markov’s inequality was used in the second-to-last step above.
Choosing " arbitrarily small gives

lim
x!1

P.X C Y > x/

P.X > x/
D 1;

which shows that only the loss variable with the heaviest right tail matters for
probabilities of very large losses.

Example 8.18 (Diversification in proportional reinsurance). Diversification is the
key principle for insurers to deal with risks in large portfolios. Here we investigate
potential diversification benefits for a reinsurance company selling proportional
excess loss reinsurance. Let Y1; : : : ; Yn be independent and identically distributed
random variables representing aggregate losses of some kind during a 1-year period
for some insurers. The reinsurer offers to pay �k.Yk �yk/C, the fraction �k 2 Œ0; 1�
of the aggregate claim amount .Yk � yk/C exceeding the so-called retention level
yk , and in return demands a certain premium from the insurer buying the protection.
For simplicity we set yk D y for all k and compare the aggregate claim amount

XD D 1

n

nX

kD1
.Yk � y/C

for the reinsurer, corresponding to a presumed optimally diversified reinsurance
portfolio, to the aggregate claim amount X1 D .Y1 � y/C, corresponding to
a concentrated reinsurance portfolio. We want to compare the quantiles F�1

XD
.p/

and F �1
X1
.p/ under the assumption that the common distribution of the Yk is

subexponential. Proposition 8.1 implies that

lim
x!1

P..Yk � y/C > x/

P.Yk > x/
D lim

x!1
P.Yk > x C y/

P.Yk > x/
D 1;
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which in turn implies that Xk D .Yk � y/C has a subexponential distribution (see
Sect. 8.3 for details). From the subexponentiality of the Xk we find that, for p large,

F�1
XD
.p/ D minfx W FXD.x/ � pg

D minfx W FXD.x/ � 1 � pg
� minfx W nF X1.nx/ � 1 � pg
D minfx W nF Y1.nx C y/ � 1� pg
� minfx W nF Y1.nx/ � 1 � pg

D 1

n
F �1
Y1

�
1 � 1 � p

n

�
; (8.9)

where the last equality assumes that there exists an x such that nF Y1.nx/ D 1 � p

(this is not a major problem since we could always increase p until we found an
x solving the equation). The approximation of F �1

XD
.p/ by (8.9) for p large can be

made precise in the sense that F �1
XD
.p/ divided by (8.9) converges to one as p ! 1.

If F Y1 is regularly varying with index �˛, then limx!1 F Y1.nx/=F Y1.x/ D
n�˛ , which yields the approximation

F �1
XD
.p/ � F�1

Y1

�
1� 1 � p

n1�˛

�
: (8.10)

From (8.10) we observe that for p large and ˛ close to 1 there is no diversification
benefit since F�1

XD
.p/ � F �1

Y1
.p/.

What can we say qualitatively about the approximation of F�1
XD
.p/ by (8.9)?

On the one hand, FXD.x/ � nF X1.nx/, which contributes to underestimating
F�1
XD
.p/ by (8.9). On the other hand F Y1.nx C y/ � F Y1.nx/, which contributes to

overestimating F�1
XD
.p/ by (8.9) if y is large.

To test the accuracy of the approximation, we let n D 10 and consider Yk that
are Pa.2/-distributed, F Y1.x/ D x�2 for x > 1, simulate samples of size 106

from the distribution of XD for different values of y, and approximate F �1
XD
.p/ by

the empirical quantile. The quotients of the empirical quantiles estimates and the
estimates from (8.10) are shown in Fig. 8.10.

Example 8.19 (The central limit theorem and heavy tails). The central limit theo-
rem says that the sum of n independent and identically distributed random variables
Sn D X1 C � � � CXn is approximately normally distributed in the sense that

lim
n!1 P

�
Sn � n�p

n�
� x

�
D ˚.x/;
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where� and � denote the mean and standard deviation of theXk . On the other hand,
if the distribution function of the Xk has a regularly varying left tail with index �˛,
then, as x ! �1,

P

�
Sn � n�p

n�
� x

�
	 nP.X1 � p

n�x C n�/ 	 n1�˛=2��˛ P.X1 � x/;

so the far-out left tail is unaffected by the summation and stays regularly varying
with index �˛.

For n and �x large and �˛ small but greater than 2, it is not obvious
a priori which one of the two approximations yields the best estimate for the tail
probabilities P.X1 C � � � C Xn � x/ of the sum. One possible interpretation of
the sum X1 C � � � C Xn would be an n-day log return, which is the sum of n 1-
day log returns. Empirical investigations show that the empirical distribution of log
returns of stock prices and index values over longer time periods tends to be better
approximated by the normal distribution, whereas this is not true for log returns
over shorter time periods. However, empirical investigations also show that there is
nonnegligible dependence between the absolute values of log returns for consecutive
1-day periods, so this interpretation is not necessarily consistent with data.

The convergence toward the normal distribution as the number of terms n
increases for Student’s t-distributed Xk with three degrees of freedom is illustrated
in Fig. 8.11. The upper left plot shows the empirical quantiles of S1 D X1 based on
a sample of size 500 (y-axis) against the standard normal quantiles (x-axis). The
upper right plot shows the empirical quantiles of S10 D X1 C � � � C X10 based on
a sample of size 500 (y-axis) against the standard normal quantiles (x-axis). The
lower left plot shows the empirical quantiles of S20 D X1 C � � � C X20 based on
a sample of size 500 (y-axis) against the standard normal quantiles (x-axis). The
lower right plot shows the empirical quantiles of S40 D X1 C � � � C X40 based on a
sample of size 500 (y-axis) against the standard normal quantiles (x-axis).
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Fig. 8.11 Simulations of 40 samples of size 500 from Student’s t distribution with three degrees
of freedom are illustrated in four q–q plots. Upper left: empirical quantiles based on first sample
against standard normal quantiles. Upper right/lower left/lower right: empirical quantiles based on
cumulative sum of first 10/20/40 samples against standard normal quantiles

Consider the lower right plot in Fig. 8.11. We see that the smallest value is
approximately �60. Denote the sample points by Y1; : : : ; Y500 and note that Yk
and X1 C � � � C X40 are equally distributed. The subexponentiality of Student’s t
distribution yields the approximation

P.min.Y1; : : : ; Y500/ < �60/ � 500 P.Y1 < �60/
D 500 P.X1 C � � � CX40 < �60/
� 500 � 40 P.X1 < �60/
� 0:102:

This estimate is an overestimate of the true probability but is reasonably close. The
central limit theorem yields the approximation

P.min.Y1; : : : ; Y500/ < �60/ D 1 � P.Y1 � �60/500
D 1 � P.X1 C � � � CX40 � �60/500
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D 1 � P.X1 C � � � CX40 � 60/500

� 1 �˚.60=p120/500
� 1:08 � 10�5:

This estimate is an underestimate of the true probability and is far from the true
value.

8.2.2 Peaks Over Threshold Method

The asymptotic properties of the tail of a distribution function can never be
determined from a sample of the distribution. Every sample has a finite sample size,
and the tail behavior outside the range of the sample is a subjective assessment
of the modeler. However, if the sample is made up of outcomes of independent and
identically distributed random variables with an unknown distribution, then the large
values contain relevant information that may be used to extrapolate the empirical tail
outside the range of the sample. Here we present one such extrapolation approach.
It is important to bear in mind that if there is significant dependence between the
random variables whose outcomes form the sample, then it may be impossible to
use this approach.

Suppose we have observations of independent and identically distributed ran-
dom variables X1; : : : ; Xn with common unknown distribution function F with a
regularly varying right tail F .x/ D P.Xk > x/. It turns out that the distribution
of appropriately scaled excesses Xk � u over a high threshold u is typically well
approximated by a distribution called the generalized Pareto distribution. This fact
can be used to construct estimates of tail probabilities and quantiles.

For � > 0 and ˇ > 0 the generalized Pareto distribution functionG�;ˇ is given by

G�;ˇ.x/ D 1 � .1C �x=ˇ/�1=� for x � 0:

Suppose thatX is a random variable with distribution functionF that has a regularly
varying right tail so that limu!1 F .�u/=F .u/ D ��˛ for all � > 0 and some ˛ > 0.
Then

lim
u!1 P

�
X � u

u=˛
> x j X > u

�
D lim

u!1
P.X > u.1C x=˛//

P.X > u/

D .1C x=˛/�˛

D G1=˛;1.x/:

The excess distribution function of X over the threshold u is given by

Fu.x/ D P.X � u � x j X > u/ for x � 0:
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Notice that

Fu.x/ D F .u C x/

F .u/
D F .u.1C x=u//

F .u/
: (8.11)

Since F is regularly varying with index �˛ < 0, it holds that F .�u/=F .u/ ! ��˛
uniformly in � � 1 as u ! 1, i.e.,

lim
u!1 sup

��1
jF .�u/=F .u/� ��˛j D 0:

Hence, from expression (8.11) we see that

lim
u!1 sup

x>0

jFu.x/ �G�;ˇ.u/.x/j D 0; (8.12)

where � D 1=˛ and ˇ.u/ 	 u=˛ as u ! 1. We now demonstrate how these
findings lead to natural tail and quantile estimators based on the sample points
X1; : : : ; Xn. Choose a high threshold u and let

Nu D #fi 2 f1; : : : ; ng W Xi > ug
be the number of exceedances of u by X1; : : : ; Xn. Recall from (8.11) that

F .u C x/ D F .u/F u.x/: (8.13)

If u is not too far out into the tail, then the empirical approximationF .u/ � Fn.u/ D
Nu=n is accurate. Moreover, (8.12) shows that the approximation

F u.x/ � G�;ˇ.u/.x/ � Gb�;b̌.x/ D
 
1Cb� xb̌

!�1=b�
;

where b� and b̌ are the estimated parameters, makes sense. Relation (8.13) then
suggests estimating the tail of F by estimating F u.x/ and F .u/ separately. We
consider the estimator for F .u C x/ given by

3F .u C x/ D Nu

n

 
1Cb� xb̌

!�1=b�
: (8.14)

Expression (8.14) immediately leads to the following estimator of the quantile
F�1.p/:

bF �1.p/ D minfx W 1F .x/ � 1 � pg
D minfu C x W 3F .u C x/ � 1 � pg
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D u C min

8
<

:x W Nu

n

 
1Cb� xb̌

!�1=b�
� 1 � p

9
=

;

D u C
b̌
b�

0

@
�
n

Nu
.1 � p/

��b�
� 1

1

A : (8.15)

The peaks over threshold (POT) method for estimating tail probabilities and quan-
tiles can be summarized by the following procedure. Each step will be discussed
further below.

(i) Choose a high threshold u using some statistical method and count the number
Nu of exceedancesXk > u.

(ii) Given the sample Y1; : : : ; YNu of excesses Xk � u if Xk > u, estimate the
parameters � and ˇ.

(iii) Combine steps (i) and (ii) to get estimates of the form (8.14) and (8.15).

The rest of this section will be devoted to steps (i) and (ii). How do we choose
a high threshold u in a suitable way? How should we estimate the parameters �
and ˇ?

The choice of a suitable high threshold u is important but difficult. If we choose
u too large, then we will have few observations to use for parameter estimation,
resulting in poor estimates with large variance. If the threshold is too low, then we
have more data, but on the other hand, the approximation F u.x/ � G�;ˇ.u/.x/ will
be questionable. The main idea when choosing the threshold u is to look at the tail
of the empirical distribution tail and choose u such that the tail above this level
looks somewhat like the tail of a Pareto distribution. Many different algorithmic
approaches to the problem of choosing the suitable threshold value have been
suggested. Here we take a less formal approach to this problem:

• Inspect q–q plots for the empirical quantiles against the quantiles of suitable
reference distributions (different Pareto distributions, say).

• Select a not-too-high threshold value u and make a q–q plot of the empirical
quantiles of the Nu excesses against the quantiles of a generalized Pareto
distribution whose parameters are estimated by maximum likelihood. From the
expression for the distribution function of the generalized Pareto distribution we
get the quantile function

G�1
�;ˇ.p/ D ˇ

�
..1 � p/�� � 1/ :

• Try a slightly larger threshold value u, repeat the procedure above, and observe
whether the smaller sample of excesses gives a better fit to a generalized Pareto
distribution.
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Given the threshold u, we may estimate the parameters � and ˇ based on the
observations of excesses Y1; : : : ; YNu over u. Denote the observations by y1; : : : ; ynu .
The parameters � and ˇ can be estimated by least squares by minimizing

nuX

kD1

�
yk;nu �G�1

�;ˇ

�
nu � k C 1

nu C 1

��2

D
nuX

kD1

�
yk;nu � ˇ

�

��
1 � nu � k C 1

nu C 1

���
� 1

��2
;

where y1;nu � � � � � ynu;nu are the ordered excesses.
Alternatively, the parameters of the generalized Pareto distribution can be

estimated by maximum likelihood. The likelihood function is given by

L.�; ˇIy1; : : : ; ynu/ D
nuY

kD1
g�;ˇ.yk/; g�;ˇ.y/ D 1

ˇ

�
1C �

y

ˇ

��1=��1
;

which gives the log-likelihood function

logL.�; ˇIy1; : : : ; ynu/ D �nu lnˇ �
�
1

�
C 1

� nuX

kD1
log

�
1C �

ˇ
yk

�
:

To understand the difference between the maximum-likelihood and least-squares
approaches to fitting the generalized Pareto distribution to the excesses over the
threshold u, we simulate 1,000 samples of size 1;000 from the Pa.3/ distribution,
and for each sample we estimate the parameters using both least squares and maxi-
mum likelihood with the threshold u chosen as the 101st largest outcome X101;1000.
The theoretical values are .�; ˇ/ � .0:33; 0:72/ in the sense that � D 1=˛ D 1=3

and ˇ D �X101;1000 D �F�1
n;X.0:9/, where �F�1.0:9/ D .1 � 0:9/�1=3=3 � 0:72.

For the least-squares estimator the sample mean and covariance matrix of

 
b�
b̌

!
are

�
0:44

0:66

�
and

�
8:60 �5:35

�5:35 4:71

�
� 10�2:

The corresponding correlation coefficient is �0:841. The estimator appears to be
biased. The estimated median values for .�; ˇ/ are .0:41; 0:68/. For the maximum-
likelihood estimator the sample mean and covariance matrix of

 
b�
b̌

!
are

�
0:31

0:74

�
and

�
2:21 �1:17

�1:17 1:59

�
� 10�2:
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Fig. 8.12 Each scatter plot shows 1,000 pairs of parameter estimates. Left plot: least-squares
estimates; right plot: maximum-likelihood estimates. The 101st largest outcome of each sample
was used as the threshold value

The corresponding correlation coefficient is �0:622. The estimated median values
for .�; ˇ/ are .0:31; 0:73/. The maximum-likelihood estimator performs much better
here than the least-squares estimator. This is also clear from Fig. 8.12, which shows
scatter plots of the 1,000 outcomes of .b�; b̌/ for the two estimation approaches.

There is another reason for preferring MLE in this context. LSE is a natural
choice for parameter estimation if the tails of the model have significant influence
on the estimates. Here we want all of the samples of excesses to fit nicely to the
generalized Pareto distribution, not primarily the tails.

8.3 Notes and Comments

Parameter estimation and principles of statistical inference are treated in many
books; see, for instance, the book [9] by George Casella and Roger Berger. A more
comprehensive treatment of parameter estimation, including robust and Bayesian
techniques, with an emphasis on applications to financial asset allocation, is found
in Attilio Meucci’s book [33].

There is an extensive literature on statistical inference for and modeling of
extreme events and heavy-tailed phenomena. Three comprehensive yet accessible
accounts are the books [13] by Paul Embrechts, Claudia Klüppelberg, and Thomas
Mikosch, [20] by Laurens de Haan and Ana Ferreira, and [37] by Sidney Resnick.
Here we only touched upon a few select topics from the wide variety of topics
and applications considered in these books. Our presentation in Sect. 8.2 is to a
large extent based on [13]. The POT method is much more general than the version
presented here. See [13, 20], or [37] for a more general version of the method with
a wider range of possible applications.

In Example 8.18 we used the fact that if random variable X is subexponentially
distributed and if Y is a random variable such that
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lim
x!1

P.Y > x/

P.X > x/

is a nonzero and finite number, then Y is also subexponentially distributed. This fact
is stated and proved on p. 572 in [13] (Lemma A3.15).

8.4 Exercises

Exercise 8.1 (Mixture of normal distributions). The distribution function
F.x/ D p˚.x=�1/C .1� p/˚.x=�2/ of a mixture of the two normal distributions
N.0; �21 / and N.0; �22 / corresponds to drawing a value with probability p from the
N.0; �21 / distribution and with probability 1 � p from the N.0; �22 / distribution.

(a) Use maximum likelihood to estimate the parameters p; �1; �2 based on the
sample ft�14 .k=201/ W k D 1; : : : ; 200g.

(b) Plot the density function of the mixture distribution with the parameters
estimated in (a) and compare it to the density function of the standard Student’s
t distribution with four degrees of freedom.

(c) Plot the quantiles of the Student’s t distribution with four degrees of freedom
against the quantiles of the mixture distribution with the parameters estimated
in (a).

(d) Determine the asymptotic behavior of F.x/ as x ! �1 in terms of an
explicitly given functionG such that limx!�1 F.x/=G.x/ D 1.

Exercise 8.2 (Parameter estimation). Consider Student’s t location-scale family
with parameter vector .�; �; �/.

(a) Determine the log-likelihood function and estimate the parameters based on the
sample ft�14 .k=201/ W k D 1; : : : ; 200g.

Simulate 3,000 samples of size 200 from the standard Student’s t distribution
with four degrees of freedom.

(b) For each sample compute the maximum-likelihood estimate of the parameter
vector .�; �; �/. Make a scatter plot of the 3,000 parameter estimates .b�;b�/ and
interpret the plot.

(c) For each sample compute the least-squares estimate of the parameter vector
.�; �; �/. Make a scatter plot of the 3,000 parameter estimates .b�;b�/, interpret
the plot, and compare the plot to that in (b).

(d) For each sample compute the sample standard deviation and divide the sample
by the sample standard deviation. Consider each rescaled sample to be a sample
from a Student’s t distribution with unit variance and estimate the degrees-
of-freedom parameter by maximum likelihood. Transform the estimates into
estimates of the parameter pair .�; �/ for a centered Student’s t distribution
with scale parameter � . Make a scatter plot of the 3,000 parameter estimates
.b�;b�/, interpret the plot, and compare the plot to that in (b).
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Exercise 8.3 (Lognormal tail). Let X be LN.�; �2/-distributed.

(a) Show that, as x ! 1,

P.X > x/ 	 �p
2�.logx � �/ exp



� .logx � �/2

2�2

�
:

(b) Use the result in (a) to show that, for any �; ˛ > 0,

lim
x!1

P.X > x/

e��x D 1 and lim
x!1

P.X > x/

x�˛ D 0:

Project 9 (Estimation of high quantiles). Consider the following four random
variables:

X1 D e˚
�1.t5.Y //; X2 D a.4C Y /2; X3 D ebY ; X4 D c.1 � t5.Y //

�2=5;

where Y has a standard Student’s t distribution with five degrees of freedom. All
three have distributions with heavy right tails.

(a) Determine a, b, and c such that F�1
Xk
.0:995/ D F�1

X1
.0:995/ for k D 2; 3; 4.

(b) Determine which of the random variables X1; : : : ; X4 have a regularly varying
right tail.

(c) Simulate a sample of size 500 from the distribution of Y and transform this
sample into samples from the distributions of X1; : : : ; X4. For each k estimate
the quantile F�1

Xk
.0:995/ based on the sample from the distribution of Xk .

For each k use the POT method to estimate the quantile F�1
Xk
.0:995/ based on

the sample from the distribution ofXk using the empirical estimate of F �1
Xk
.0:9/

as the threshold value.
Repeat the procedure until the samples of quantile estimators are sufficiently

representative of the unknown distributions of the quantile estimators. Illustrate
the results in histograms.



Chapter 9
Multivariate Models

In this chapter, we consider multivariate models for the joint distribution of several
risk factors such as returns or log returns for different assets, zero rate changes for
different maturity times, changes in implied volatility, and losses due to defaults
on risky loans. Our aim is to specify a good model for the future value g.X/ of a
portfolio, where the function g is known and its argument X is a random vector
of, for instance, log returns and zero rate changes over a given future time period.
Since the function g is known, what remains is to make a good choice of probability
distribution for random vector X.

The first sections, Sects. 9.1–9.3, present spherical and elliptical distributions
and their applicability in a wide range of problems in risk management. Elliptical
distributions provide convenient and flexible multivariate models. This set of models
includes the multivariate normal model but allows for a much wider range of tail
behavior and dependence properties.

Elliptical distributions have the following important property: if X has an
elliptical distribution, then the distribution of any linear combination wTX of its
components is known. This property is useful because if X represents the returns
of the financial assets in a portfolio, then we know the distribution of every linear
portfolio. The property is useful even if we do not model the returns directly with
an elliptical distribution. Suppose that X represents a vector of log returns, zero rate
changes, etc. and is modeled by an elliptical distribution. If the portfolio value at
some future time is given by g.X/, then a first order Taylor approximation of g
around the mean vector � D EŒX� leads to the first-order approximation

g.X/ � g.�/C
dX

kD1

@g

@xk
.�/.Xk � �k/:

The right-hand side is a linear combination of the components of X whose
distribution therefore is known. Thus, whenever linearization of the nonlinear
function g is justified, we can approximate the probability distribution of g.X/
analytically.

H. Hult et al., Risk and Portfolio Analysis: Principles and Methods, Springer Series
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-4103-8 9,
© Springer Science+Business Media New York 2012
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An important property of spherically distributed random vectors is that they can
be decomposed into a product of a radial part and an independent angular part
that is uniformly distributed on a sphere. This property makes it easy to simulate
from a spherical (elliptical) distribution in any dimension. In particular, we can
approximate the probability distribution of g.X/ arbitrarily well by simulating a
large enough sample from X and consider the resulting empirical distribution of the
simulated outcomes of g.X/.

A series of applications of elliptical distribution in risk management, including
risk aggregation, solvency computations for an insurance company, and hedging of
options, is presented in Sect. 9.3.

Then we turn our attention to multivariate models for random vectors that do
not show signs of elliptical symmetry, and the notion of copula is introduced in
Sect. 9.4. On the one hand, the copula is just a multivariate distribution function
appearing in the representation of a multivariate distribution function in terms of its
(continuous) marginal distribution functions. On the other hand, the copula may be
identified as the dependence structure of a multivariate distribution, and by varying
the copula for a random vector X for which the distributions of the components
Xk are held fixed, we may understand better the effect of the dependence between
the Xk on the distribution for the future portfolio value g.X/. We rarely have
sufficient information to accurately specify the copula of a random vector X, and
by varying the copula within a set of copula functions, we may study the robustness
of the distribution of the portfolio value g.X/ to misspecifications of the dependence
between the components of X. Moreover, the representation of a multivariate model
for X in terms of a copula and distribution functions for the Xk is useful for
simulation from the distribution of X: an outcome from X is constructed as an
outcome from the copula together with an application of the quantile transform.

Finally, in Sect. 9.5, we consider the effect of dependence modeling for large
homogeneous portfolios. We consider a high-dimensional random vector X with
equally distributed components and study the effect of the dependence between the
components on the distribution of the sum of the components of X.

9.1 Spherical Distributions

A random vector Y has a spherical distribution in R
d if its distribution is spherically

symmetric. In other words, its distribution is invariant under rotations and reflec-
tions. Linear transformations that represent rotations and reflections correspond to
multiplication by orthogonal matrices. Recall that a matrix O is orthogonal if it has
real entries and OOT D I, where I is the identity matrix. Formally, Y has a spherical
distribution if

OY dD Y for every orthogonal matrix O: (9.1)

Figure 9.1 shows scatter plots of samples from two spherical distributions.
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Fig. 9.1 Left plot: sample of size 3,000 from bivariate standard normal distribution. Right plot:
sample of size 300 from uniform distribution on the unit circle

Three examples of spherical distributions are presented below. Before presenting
the examples, let us recall the definition of the multivariate normal distribution.

(1) A random vector Z has standard normal distribution Nd .0; I/ if Z D
.Z1; : : : ; Zd /

T, where Z1; : : : ; Zd are independent and N.0; 1/-distributed.
(2) A random vector X is Nd .�;˙ /-distributed if X dD � C AZ, where AAT D ˙

and Z is Nd .0; I/-distributed.

Example 9.1 (Standard normal distribution). The first example of a spherical
distribution is the standard normal distribution Nd .0; I/. Let Z have a Nd .0; I/
distribution, and let O be an arbitrary orthogonal matrix. By property (2) above, OZ
has the distribution Nd .0;OOT/. Since OOT D I, we conclude that Z satisfies (9.1).
The left plot in Fig. 9.1 shows a scatter plot of a sample from Nd .0; I/.

Example 9.2 (Standard normal variance mixture). Another example of a spherical
distribution is obtained by multiplying a Nd .0; I/-distributed random vector Z by
an independent nonnegative random variable W . Notice that, for any orthogonal
matrix O,

OW Z D WOZ dD W Z;
where the last equality follows since Z is spherically distributed.

The uniform distribution on the unit sphere S
d�1 D fx 2 R

d W jxj D 1g, where
jxj2 D xTx, assigns equal probability to any two subsets of S

d�1 with the same
surface area.

Example 9.3 (Uniform distribution on the unit sphere). A third example of a spher-
ical distribution is the uniform distribution on the unit sphere, i.e., the probability
mass is distributed uniformly on the unit sphere Sd�1. Let U be uniformly distributed
on the unit sphere and consider a subset A of the unit sphere. For any orthogonal
matrix O it holds that

P.OU 2 A/ D P.U 2 O�1A/ D P.U 2 OTA/ D P.U 2 A/;
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where the last equality holds because O is an orthogonal matrix and thereforeA and
OTA have the same surface area. Therefore, U is spherically distributed. The right
plot in Fig. 9.1 shows a sample from the uniform distribution on the unit circle.

The following property is a key property of spherical distributions.

Proposition 9.1. If a is an arbitrary vector in R
d and Y is spherically distributed

and of the same dimension, then aTY dD jajY1.
Proof . Take a ¤ 0, let u D a=jaj, and pick an orthogonal matrix O whose first
row is equal to uT. Since OY dD Y, it follows that aTY D jajuTY D jaj.OY/1

dD
jajY1. �

The following property is another key property of spherical distributions.

Proposition 9.2. If Y is spherically distributed, then Y dD RU, where R dD jYj, U
is uniformly distributed on the unit sphere andR and U are independent. Moreover,
P.Y=jYj 2 � j jYj > 0/ D P.U 2 � /.

The proposition provides a way to simulate from a spherical distribution. First
draw a vector from the uniform distribution on the unit sphere by sampling from a
standard normal distribution and dividing by its norm. Then draw the radial part by
sampling from the distribution of jYj.

To prove Proposition 9.2, we first state and prove the following lemma.

Lemma 9.1. The uniform distribution on the unit sphere is the unique spherical
distribution on the unit sphere.

Proof . Let Z have a spherical distribution on the unit sphere. For any orthogonal
matrix O and subset A of Sd�1 it holds that P.Z 2 OA/ D P.OTZ 2 OTOA/ D
P.Z 2 A/ since Z is spherically distributed and OT is an orthogonal matrix. If
Z were not uniformly distributed on S

d�1, then there would exist a subset A0 of
S
d�1 and an orthogonal matrix O0 such that P.Z 2 A/ ¤ P.Z 2 O0A0/, which

contradicts that Z is spherically distributed. �

Proof of Proposition 9.2. It is sufficient to show that P.jYj > r;Y=jYj 2 A/ D
P.jYj > r/ P.U 2 A/ for any r � 0 and any subsetA of Sd�1, where U is uniformly
distributed on the unit sphere.

We claim that, for any r � 0, I fjYj > rgY=jYj is spherically distributed. To
prove the claim, note that for any orthogonal matrix O it holds that jOYj D jYj and
OY dD Y and therefore

OI fjYj > rgY=jYj D I fjOYj > rgOY=jOYj dD I fjYj > rgY=jYj:

To complete the proof of Proposition 9.2, we may without loss of generality take r
such that P.jYj > r/ > 0 and note that
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P.Y=jYj 2 A j jYj > r/ D P.I fjYj > rgY=jYj 2 A/= P.jYj > r/
D P.I fjYj > rgY=jYj 2 OA/= P.jYj > r/
D P.Y=jYj 2 OA j jYj > r/:

It now follows from Lemma 9.1 that P.Y=jYj 2 A j jYj > r/ D P.U 2 A/, and
therefore P.jYj > r;Y=jYj 2 A/ D P.jYj > r/ P.U 2 A/. �

9.2 Elliptical Distributions

The multivariate normal distribution is very useful in the construction of multivariate
models. Its popularity derives primarily from the fact that it is tractable, allowing
for explicit calculations, and it that can be motivated asymptotically by the central
limit theorem. For univariate data that show clear signs of symmetry the univariate
normal distribution does not necessarily give a good fit to the data. Typically
normal tails do not match empirical tails particularly well. Similarly, the multivariate
normal distribution is often at best a reasonable first approximation for samples of
multivariate observations with clear signs of elliptical symmetry.

A random vector X has a Nd .�;˙ / distribution if

X dD � C AZ; (9.2)

where AAT D ˙ and Z has a Nd .0; I/ distribution. An easy way to obtain a richer
class of multivariate distributions, which share many of the tractable properties
of the multivariate normal distribution, is to replace the standard normal vector Z
in (9.2) by an arbitrary spherically distributed random vector Y. Formally, a random
vector X has an elliptical distribution if there exist a vector �, a matrix A, and a
spherically distributed vector Y such that

X dD � C AY: (9.3)

The matrix A and the spherical distribution of Y in (9.3) are not determined by
the distribution of X: we may replace the pair .A;Y/ in (9.3) by .cA; c�1Y/ for
any constant c 2 .0;1/. A matrix ˙ satisfying ˙ D AAT is called a dispersion
matrix of the elliptically distributed vector X. If the covariance matrix Cov.X/ exists
finitely, then Cov.X/ D c˙ for some constant c 2 .0;1/. To verify this claim, we
note that, by (9.3) and Proposition 9.2,

Cov.X/ D EŒ.X � �/.X � �/T� D EŒR2�A EŒUUT�AT D EŒR2�

d
˙ :

The last equality above can be proven as follows. Consider a standard normally
distributed vector Z and recall that Z=jZj is uniformly distributed on the unit sphere
and EŒjZj2� D d . Therefore,

I D Cov.Z/ D EŒjZj2�EŒUUT� D d EŒUUT�:
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For a dispersion matrix ˙ with nonzero diagonal entries we define the linear
correlation parameter �ij D ˙ij =.˙ii˙jj /

1=2. If Cov.X/ exists finitely, then �ij D
Cor.Xi ; Xj /, i.e., the linear correlation parameter coincides with the ordinary linear
correlation coefficient.

The normal variance mixture distributions are the distributions of random vectors
with stochastic representation

X dD � CW AZ; (9.4)

where A and Z are the same as in (9.2) and W is a nonnegative random variable
independent of Z. From Example 9.2 it follows that a normal variance mixture
distribution is an elliptical distribution. By conditioning on W D w, we see that
XjW D w is Nd .�;w2˙ /-distributed, which explains the name normal variance
mixture. If EŒW 2� < 1, then X has a well-defined mean vector � D EŒX� and
covariance matrix

Cov.X/ D EŒ.X � �/.X � �/T� D EŒW 2�A EŒZZT�AT D EŒW 2�˙ :

Example 9.4 (Multivariate Student’s t). If we take W 2 dD �=S� , where S� has a
Chi-square distribution with � degrees of freedom, then the resulting distribution of
X D � C W AZ is called a multivariate Student’s t distribution with � degrees of
freedom, written td .�;˙ ; �/. Note that ˙ is not the covariance matrix of X. Since
EŒW 2� D �=.� � 2/ if � > 2, it follows that Cov.X/ D .�=.� � 2//˙ .

For a normally distributed random vector X dD � C AZ, where AAT D ˙ , any
linear combination of the components of X is again normally distributed. That is,
for any nonrandom vector w of the same dimension,

wTX dD wT� C wTAZ

D wT� C .ATw/TZ
dD wT� C .wT˙ w/1=2Z1:

A similar property holds for arbitrary elliptical distributions.

Proposition 9.3. If X has an elliptical distribution with stochastic representation
X dD � C AY, where Y is spherically distributed, then for any vector a of the same
dimension aTX dD aT� C .aT˙ a/1=2Y1, where ˙ D AAT.

The proof is omitted since the result follows immediately from Proposition 9.1 and
the defining property (9.3) of elliptical distributions.

As was previously mentioned, normal variance mixture distributions and, more
generally, elliptical distributions share many of the attractive properties of normal
distributions. However, there are important exceptions. Recall that the components
of the Nd .�;˙ /-distributed vector �CAZ are independent if and only if AAT D ˙

is a diagonal matrix, that is, if the components are uncorrelated. This property does
not hold for arbitrary normal variance mixture distributions. If X dD � C W AZ
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with AAT D ˙ a diagonal matrix, then the components of X are uncorrelated.
If ˙ is a diagonal matrix with strictly positive diagonal entries, then .Xk;Xl/

dD
.�k CWAk;kZk; �l CWAl;lZl /, where Ak;k; Al;l > 0. Clearly, Xk and Xl are not
independent unless W is a constant.

The sum of independent elliptically distributed random vectors with the same (up
to a constant factor) dispersion matrix is elliptically distributed.

Proposition 9.4. If the random vectors X1 and X2 in R
d are independent and

elliptically distributed with common dispersion matrix ˙ , then X1 C X2 is ellip-
tically distributed.

Proof . For a matrix A such that AAT D ˙ we may write X1 C X2
dD �1 C �2 C

A.Y1 C Y2/ for some independent spherically distributed vectors Y1 and Y2. It
remains to show that Y1CY2 is spherically distributed. For every orthogonal matrix
O and y in R

d ,

P.O.Y1 C Y2/ � y/ D
Z

P.OY1 C z � y j OY2 D z/dFOY2 .z/dz

D
Z

P.Y1 C z � y/dFY2 .z/dz

D P.Y1 C Y2 � y/;

i.e., O.Y1 C Y2/
dD Y1 C Y2, from which the conclusion follows. �

Example 9.5 (Summation of log returns). Consider a set of identically distributed
and uncorrelated random variablesX1; : : : ; Xn that represent future daily log returns
for some asset. Suppose that each log return has a finite mean � and standard
deviation � . If the log returns are independent, then by the central limit theorem,
X1 C � � � C Xn is approximately N.n�; n�2/-distributed for n large. If the vector
X D .X1; : : : ; Xn/

T of log returns has an elliptical distribution, then Proposition 9.3
implies that

X1 C � � � CXn D 1TX dD n�C n1=2.X1 � �/:

We see that the n-day log return and the 1-day log return belong to the same
location-scale family of distributions. For instance, if the 1-day log return has a
heavy-tailed Student’s t distribution with a low-degree-of-freedom parameter, then
so does the n-day log return.

9.2.1 Goodness of Fit of an Elliptical Model

Consider a random vector X with an elliptical distribution with representation X D
� C AY, where Y has a spherical distribution and ˙ D AAT is invertible. By
Proposition 9.3,

wTX dD wT� C .wT˙ w/1=2Y1 for all nonrandom vectors w ¤ 0
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or, equivalently,

wTX � wT�

.wT˙ w/1=2
dD Y1 for all nonrandom vectors w ¤ 0: (9.5)

The property (9.5) can be used to investigate whether or not a multivariate sample
is likely to come from an elliptical distribution. Let us illustrate the procedure by an
example.

Example 9.6 (Estimation and fit of an elliptical model). Consider a sample of size
500 of pairs of daily log returns for the Dow Jones Industrial Average (DJIA) and
Nasdaq Composite indices (index values from November 11, 2008 until November
4, 2010). The scatter plot of the pairs of log returns is shown in the upper left plot
in Fig. 9.2. The log-return sample is denoted fx1; : : : ; x500g. We assume initially
that the sample can be seen as outcomes from an elliptically distributed vector X
and investigate whether this assumption can be rejected or not. If it is not rejected,
then we also want to determine the elliptical distribution of X. We assume that the
location parameter � and a scalar multiple of the shape parameter C D c˙ , which
is assumed invertible, can be estimated. Note that (9.5) can be expressed as

wTX � wT�

.wTCw/1=2
dD c�1=2Y1 for all nonrandom vectors w ¤ 0:

If the covariance matrix Cov.X/ exists finitely, then � D EŒX�, and we may
take C D Cov.X/. Here we estimate � and C by the sample mean and sample
covariance, respectively. The estimates are denoted b� and bC. Consider a large
set of vectors fw1; : : : ;wng of unit length. For each wk we construct the sample
fyk;1; : : : ; yk;500g by

yk;l D wT
kxl � wT

kb�
.wT

k
bCwk/1=2

for k D 1; : : : ; n; l D 1; : : : ; 500:

Each such sample can be viewed as a sample from c�1=2Y1. If the data were
generated by the elliptical distribution of X, then all the n constructed samples
must come from the same distribution, the distribution of c�1=2Y1. By overlaying
the n q–q plots of the empirical quantiles for the n samples against the quantiles of
a chosen reference distribution, we can check graphically whether the data appear
to be consistent with an elliptical distribution or not. Moreover, the distribution of
c�1=2Y1 can be estimated from the q–q plots.

Here we take n D 100 and sample the wk randomly from the uniform distribution
of the unit sphere by setting wk D zk=jzkj, where the zk are outcomes of
independent N2.0; I/-distributed random vectors. The upper left plot in Fig. 9.2 is
a scatter plot of the sample fx1; : : : ; x500g. The upper right plot in Fig. 9.2 shows
the n D 100 q–q plots of the empirical quantiles of the samples fyk;1; : : : ; yk;500g
(y-axis) against the quantiles of the standard normal distribution (x-axis). The
q–q plots indicate a reasonable fit to a common distribution with heavier tails than
the normal distribution.
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Fig. 9.2 Scatter plot showing pairs .xD; xN / of DJIA and Nasdaq log returns. Upper right plot:
100 overlaid q–q plots for empirical quantiles for each of 100 samples fyk;1; : : : ; yk;500g (y-axis)
against standard normal quantiles (x-axis). The solid curve in the lower plot shows the quantiles of
the model for the Nasdaq log returns based on the fitted bivariate Student’s t model (y-axis) against
standard normal quantiles (x-axis). The dashed curve in the lower plot shows the polynomial
normal quantiles (Example 8.11) fitted to the Nasdaq log returns (y-axis) against the standard
normal quantiles (x-axis)

Under the assumption that fx1; : : : ; x500g is a sample from the bivariate Student’s
t� distribution with � > 2 (otherwise it does not make sense to use the sample
covariance matrix) and under the assumption that b� D � and bC D Cov.X/, it
holds that all the samples fyk;1; : : : ; yk;500g are samples from the distribution of
..��2/=�/1=2Z, whereZ is standard t� -distributed. Least-squares estimation based
on all 100 univariate samples gives the estimateb� � 4:09. The selected model for
the sample fx1; : : : ; x500g is the distribution t2.b�; ..b� � 2/=b�/bC;b�/.

The second marginal distribution (a univariate Student’s t distribution) of the
bivariate Student’s t distribution for the pair of DJIA and Nasdaq log returns
provides a model for the Nasdaq log returns. In the lower plot in Fig. 9.2, we
compare this model to the polynomial normal model in Example 8.11. The solid
curve in the lower plot is a q–q plot of the quantiles for the model for the Nasdaq
log returns (y-axis) against standard normal quantiles (x-axis). The quantiles of the
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fitted polynomial normal model in Example 8.11 are plotted against the standard
normal quantiles as the dashed curve in the lower plot in Fig. 9.2. It is hard to
distinguish between the two models.

9.2.2 Asymptotic Dependence and Rank Correlation

We now introduce general notions of dependence and study them in the context of
elliptical distributions.

The first notion of dependence measures the dependence of extreme values and
is called tail dependence or asymptotic dependence. Consider a pair .X1;X2/ of
random variables with equally distributed components. We say that X1 and X2
are asymptotically dependent in the lower left tail if the limit limx!�1 P.X2 �
x j X1 � x/, the coefficient of lower tail dependence, is strictly positive and
asymptotically independent if the limit is zero.

Proposition 9.5. If .X1;X2/ has a bivariate standard normal distribution with
linear correlation coefficient � < 1, then limx!�1 P.X2 � x j X1 � x/ D 0.

Proof . First note that P.X2 � x j X1 � x/ D P.X1 � x;X2 � x/=˚.x/ and that
.X1;X2/

dD .Z1; �Z1C .1��2/1=2Z2/, whereZ1;Z2 are independent and standard
normally distributed. If � D �1, then the statement of the proposition holds, so we
may without loss of generality assume that j�j < 1. We may write

P.X1 � x;X2 � x/ D
Z 1

�1
P
�
Z1 � x; �Z1 C .1 � �2/1=2t � x

�
	.t/dt

D
Z a.x/

�1
˚.x/	.t/dt C

Z 1

a.x/

˚..x � .1 � �2/1=2t/=�/	.t/dt;

where a.x/ D ..1� �/=.1C �//1=2x. Therefore,

lim
x!�1 P.X2 � x j X1 � x/ D lim

x!�1

 
˚.a.x//C

R1
a.x/ ˚..x�.1��2/1=2t/=�/	.t/dt

˚.x/

!

D lim
x!�1

R1
a.x/ ˚..x�.1��2/1=2t/=�/	.t/dt

˚.x/
:

Applying l’Hôpital’s rule gives

lim
x!�1 P.X2�x j X1�x/

D� lim
x!�1

˚.x/

	.x/

�
1��
1C�

�1=2
C lim

x!�1
1

�	.x/

Z 1

a.x/

	..x�.1��2/1=2t/=�/	.t/dt:
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We saw in Example 8.1 that ˚.x/ 	 �	.x/=x as x ! �1, so we only need to
compute the last limit given above. By writing up explicitly the standard normal
densities and making a substitution of integration variable, we arrive at

1

�	.x/

Z 1

a.x/

	..x � .1 � �2/1=2t/=�/	.t/dt D
Z a.x/

�1
	.u/du D ˚.a.x//;

which tends to 0 as x ! �1. �

Unlike the components of a normally distributed random vector, the components
of a vector with a bivariate Student’s t distribution are asymptotically dependent.
We omit the proof of the following proposition and refer the reader to Sect. 9.6 for
further details.

Proposition 9.6. Let .X1;X2/ have an elliptical distribution with linear correlation
parameter �. If X1 and X2 are equally distributed, and if P.X1 � x/ is regularly
varying at �1 with index �˛, then

lim
x!�1 P.X2 � x j X1 � x/ D

R �=2
.�=2�arcsin �/=2.cos t/˛dt

R �=2
0

.cos t/˛dt
:

Zero correlation does not imply asymptotic independence, and covariances and
correlations do not provide sufficient information to assess dependence between
extreme values. For example, a quadratic hedge—based on a covariance structure—
may perform poorly when it matters the most if the liability and the hedging
instruments are asymptotically dependent. There are many examples from financial
markets of simultaneous extreme price movements for assets whose log returns are
weakly correlated between the assets.

Consider an elliptically distributed random vector .X1;X2/ with a dispersion
matrix ˙ . Recall that any matrix ˙c D c˙ is a dispersion matrix for .X1;X2/.
However, the linear correlation parameter � D ˙1;2=.˙1;1˙2;2/

1=2 is uniquely
determined by the elliptical distribution. Since � D Cor.X1;X2/, whenever
Cor.X1;X2/ exists [the variances Var.X1/ and Var.X2/ are nonzero and finite],
we may estimate � as the sample correlation coefficient. However, for heavy-tailed
data (corresponding to distributions with finite variances) the sample correlation
coefficient is an estimator of � with a large—or infinite—variance. An alternative
approach to estimating the linear correlation parameter � is based on estimating
another (rank) correlation coefficient called Kendall’s tau, whose value for an
elliptical distribution can be expressed in terms of the linear correlation parameter
�. This approach allows for estimation of � also for elliptical distributions whose
marginal distributions have infinite variances.

Kendall’s tau for the random vector .X1;X2/ is defined as


.X1;X2/ D P..X1 � X 0
1/.X2 �X 0

2/ > 0/� P..X1 �X 0
1/.X2 � X 0

2/ < 0/; (9.6)

where .X 0
1; X

0
2/ is an independent copy of .X1;X2/.
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Proposition 9.7. Let .X1;X2/ have an elliptical distribution with location param-
eter .�1; �2/ and linear correlation parameter �. If P.X1 D �1/ D P.X2 D �2/ D
0, then


.X1;X2/ D 2

�
arcsin �: (9.7)

Proof . Without loss of generality we may consider the case j�j < 1. Since P..X1 �
X 0
1/.X2 �X 0

2/ D 0/ D 0, we find that


.X1;X2/ D 2 P..X1 �X 0
1/.X2 � X 0

2/ > 0/ � 1:

The independence of X D .X1;X2/
T and X0 D .X 0

1; X
0
2/

T and representation (9.3)
imply that

.X;X0/ dD .�;�/C A.RU; R0U0/;

where R;R0;U;U0 are independent. From Proposition 9.4 we know that X � X0 dD
AR�U�, where R� and U� are independent, and the assumption P.X1 D �1/ D
P.X2 D �2/ D 0 implies that P.R� D 0/ D 0. With W D AU� we have found that


.X1;X2/ D 2 P.R�W1W2 > 0/ � 1 D 2 P.W1W2 > 0/� 1:

Write

˙ D
�
�21 �1�2�

�1�2� �22

�
; A D

�
�1.1 � �2/1=2 �1�

0 �2

�
; U� dD

�
cosU
sinU

�
;

where U is uniformly distributed on Œ��; �/. Then

P.W1W2 > 0/ D 2 P.W1 > 0;W2 > 0/

D 2 P.�1.1 � �2/1=2 cosU C �1� sinU > 0; �2 sinU > 0/

D 2 P..1 � �2/1=2 cosU C � sinU > 0; sinU > 0/

D 2 P.cosy cosU C sin y sinU > 0; sinU > 0/;

where y D arcsin � 2 Œ��=2; �=2�. Clearly, sinU > 0 is here equivalent to U 2
.0; �/. Since cosy cosU C siny sinU D cos.U � y/ and cos.U � y/ > 0 is here
equivalent to U 2 .y � �=2; y C �=2/, we find that

P.cosy cosUC sin y sinU>0; sinU>0/ D P.U2.y��=2; yC�=2/\ .0; �//
D P.U2.0; yC�=2//:

Putting the pieces together gives


.X1;X2/ D 4
arcsin �C �=2

2�
� 1 D 2

�
arcsin �: �
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Consider the function sign.x/ with value 0 for x D 0 and the value x=jxj
otherwise. Kendall’s tau in (9.6) can be written as


.X1;X2/ D E
�
sign

�
.X1 �X 0

1/.X2 � X 0
2/
�	
: (9.8)

Given a sample fX1; : : : ;Xng of identically distributed vectors Xk D .Xk;1; Xk;2/
T,

we estimate (9.8) by the number of index pairs .j; k/, where j < k such that
.Xj;1 � Xk;1/.Xj;2 � Xk;2/ > 0 minus the number of index pairs such that
.Xj;1 �Xk;1/.Xj;2 �Xk;2/ < 0 divided by the total number of index pairs:

b
 D
 
n

2

!�1X

j<k

sign
�
.Xj;1 � Xk;1/.Xj;2 � Xk;2/

�
:

Finally, if the Xk are elliptically distributed such that the condition in Proposition 9.7
holds, then the estimator of the linear correlation parameter � is chosen as

b� D sin
��
2
b

�
: (9.9)

To assess the accuracy of the estimator in (9.9) and compare it to the sample
correlation coefficient, we consider a simulation study that is summarized in
Fig. 9.3. For samples from a bivariate normal distribution the two estimators perform
similarly. For samples from a bivariate Student’s t distribution with three degrees of
freedom we find that the estimator in (9.9), a nonlinear transformation of Kendall’s
tau estimator, performs much better than the sample correlation coefficient and
similarly to its performance on data from a bivariate normal distribution.

9.2.3 Linearization and Elliptical Distributions

Suppose that the future value of a financial portfolio can be expressed as g.X/,
where the function g is a known function and X is a random vector whose
components represent, e.g., log returns for a given set of assets over a given future
time period. If the time period is rather short and if X is likely to take a value that is
not too far from its expected value � D EŒX�, then the first-order approximation

g.X/ � g.�/C rgT.�/.X � �/ D g.�/C
dX

kD1

@g

@xk
.�/.Xk � �k/

can be assumed to be accurate. The approximation replaces the nonlinear expression
in the components of X by a weighted sum of the components translated by a
constant. However, it is typically hard to determine the probability distribution of a
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Fig. 9.3 Histograms based on 10,000 estimates of linear correlation parameter, where each
estimate is based on a sample of size 100 from a bivariate elliptical distribution with linear
correlation parameter 0:5. Plots to left show estimates based on samples from a bivariate normal
distribution. Plots to right show estimates based on sample from a bivariate Student’s t distribution
with three degrees of freedom. The estimates in the upper plots are ordinary sample correlations.
The estimates in the lower plots are transformations of Kendall’s tau estimates as in (9.9)

sum of dependent random variables. An important exception is when X is elliptically
distributed. In this case, X has the stochastic representation X dD � C AY, where Y
has a spherical distribution, so Proposition 9.3 gives

g.X/ � g.�/C rgT.�/.X � �/
dD g.�/C �rgT.�/˙ rg.�/�1=2 Y1; (9.10)

where ˙ D AAT or, more explicitly,

g.X/
d� g.�/C

0

@
dX

j;kD1

@g

@xj
.�/

@g

@xk
.�/˙j;k

1

A
1=2

Y1:

The accuracy of this approximation clearly depends strongly on how concentrated
the probability mass of X is around its expected value �. We illustrate the accuracy
of the linearization with an example for one-dimensional elliptical distributions and
a specific function g.
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Fig. 9.4 These four q–q plots illustrate the approximation error from linearization. The plots show
the quantiles of eX (y-axis) against the quantiles of 1 C X (x-axis). The upper plots correspond
to X’s being N.0; 0:022/-distributed (left) and N.0; 0:32/-distributed (right). The lower plots
correspond to X’s having a Student’s t distribution with three degrees of freedom and standard
deviation 0:02 (left) and 0:3 (right)

Example 9.7 (Linearization). Let g.x/ D ex and consider a random variable X
with a spherical distribution with distribution function F . The quantile function of
g.X/ is g.F�1.p//, whereas the that of g.0/ C g0.0/X D 1 C X is 1 C F�1.p/.
Figure 9.4 plots the quantiles of eX (y-axis) against the quantiles of 1CX (x-axis)
together with the dashed straight line corresponding to a perfect fit. The upper plots
correspond to X ’s being normally distributed with standard deviation 0:02 (left)
and 0:3 (right). The lower plots correspond to X ’s having a Student’s t distribution
with three degrees of freedom and standard deviation 0:02 (left) and 0:3 (right). We
see that the smaller the standard deviation is and the lighter the tails are, the more
accurate is the linear approximation.

Example 9.8 (Linearization and risk measures). Suppose that g.X/ represents the
value at time T of a portfolio of financial assets, where X has an elliptical
distribution with stochastic representation X dD � C AY. Consider a risk measure
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� and the approximation of g.X/ in (9.10). If B0 is the discount factor giving the
current value of money at time T , and if � is translation invariant and positively
homogeneous, then

�.g.X// � �
�
g.�/C �rgT.�/˙ rg.�/�1=2 Y1

�

D �B0g.�/C �rgT.�/˙ rg.�/�1=2 �.Y1/:

For � chosen as value-at-risk (VaR) or expected shortfall (ES) and for Y1 normally
distributed or Student’s t-distributed, the quantity �.Y1/ can be computed as in
Example 6.13. If Y1 is standard normally distributed, then

VaRp.Y1/ D B0˚
�1.1 � p/ and ESp.Y1/ D B0

	.˚�1.1 � p//

p
:

If Y1 has a standard Student’s t distribution with � degrees of freedom, then

VaRp.Y1/DB0t�1� .1�p/ and ESp.Y1/DB0 g�.t
�1
� .1�p//
p

�
�C.t�1� .p//2

��1
�
;

where g� and t� are the density and distribution functions, respectively, of Y1.
If � is a monotone risk measure and g is a convex function, then it follows from

Proposition 2.2 that

�.g.X// � �
�
g.�/C rgT.�/.X � �/

�
;

i.e., linearization overestimates the risk. If � is also translation invariant and
positively homogeneous, then

�.g.X// � �
�
g.�/C rgT.�/.X � �/

�

D �B0g.�/C �rgT.�/˙ rg.�/�1=2 �.Y1/:

As an illustration, let X be a vector of log returns of d assets and consider a linear
portfolio consisting of a long position of current value wk � 0 in the kth asset, for
every k. Then the future portfolio value is g.X/ D w1eX1 C � � � C wd eXd and g is
convex.

Example 9.8 illustrates how linearization and an elliptical approximation can be
used to construct explicit approximation formulas for risk measures. This approach
must be used with caution. The accuracy of the first-order approximation of g
around � evaluated at X is best around �. However, risk measures of g.X/, such as
VaR and ES, typically depend on the behavior of X far from �.

Example 9.9 (Linearization over a short time horizon). Considering a portfolio of
shares of two stocks. The portfolio contains h1 and h2 shares of the two stocks.
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The spot prices at time t are given by S1t and S2t , respectively. Suppose that we want
to compute VaRp.VT � V0=B0/, where VT � V0=B0 is the change in portfolio value
from now until time T , measured in money at time T . We have

VT � V0=B0 D h1.S
1
T � S10 =B0/C h2.S

2
T � S20 =B0/

D h1S
1
0 .e

X1 � 1=B0/C h2S
2
0 .e

X2 � 1=B0/

D g.X1;X2/;

where .X1;X2/ D .log.S1T =S
1
0 /; log.S2T =S

2
0 // is the log-return pair from now until

time T . If T is small (a couple of days, say), then it may be reasonable to set �1 D
�2 D 0 and B0 D 1, which yields

g.X1;X2/ � g.�1; �2/C
2X

kD1

@g

@xk
.�1; �2/.Xk � �k/

D
2X

kD1
hkS

k
0 .e

�k � 1=B0/C
2X

kD1
hkS

k
0 e

�k .Xk � �k/

D h1S
1
0X1 C h2S

2
0X2:

If X D .X1;X2/
T has an elliptical distribution with representation X D AY, where

AAT D ˙ , then

VaRp.V1 � V0=B0/ � V0 C VaRp..wT˙ w/1=2Y1/

D V0 C .wT˙ w/1=2F�1
Y1
.1 � p/;

where wT D .h1S
1
0 ; h2S

2
0 /.

Example 9.10 (Linearization over a long time horizon). Suppose that we want to
compute VaRp.VT � V0=B0/ for a portfolio over a T -day period. Suppose further
that VT can be expressed as a function g of the T -day log returns and that the
vectors X1; : : : ;XT of 1-day log returns are independent and identically elliptically
distributed with mean � D EŒX1� and covariance matrix ˙ D Cov.X1/. Set W D
X1C� � �CXT and note that W, with EŒW� D T� and Cov.W/ D T˙ , is the vector
of log returns for the entire T -day period. From Proposition 9.4 we know that W
is elliptically distributed, however, in general (unless W is normally distributed) of
a different type than X1. The elliptical distribution of W is not easily inferred from
the distribution of X1. However, if T is sufficiently large, then it may be reasonable
(based on the central limit theorem) to assume that W is approximately normally
distributed. However, one should be aware that the convergence in distribution to
the normal distribution in the central limit theorem is slow in the tail regions.
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Linearization, together with the normal approximation, gives

g.W/ D
dX

kD1
hkS

k
0 .e

Wk � 1=B0/

�
dX

kD1
hkS

k
0 .e

T�k � 1=B0/C
dX

kD1
hkS

k
0 e

T�k .Wk � T�k/

d�
dX

kD1
hkS

k
0 .e

T�k � 1=B0/C T 1=2

0

@
dX

j;kD1
hj hkS

j
0 S

k
0 e

T .�jC�k/˙j;k

1

A
1=2

Z;

where Z is standard normally distributed. In particular,

VaRp.VT�V0=B0/ �
dX

kD1
hkS

k
0

�
1�B0eT�k

�

CT 1=2B0
0

@
dX

j;kD1
hj hkS

j
0 S

k
0 e

T .�jC�k/˙j;k

1

A1=2˚�1.1�p/:

If B0eT�k � 1 for all k, then the estimate of VaRp.VT � V0=B0/ is approximately
proportional to the square root of the length T of the time period.

As an illustration, we consider the situation where X1 has a ten-dimensional
Student’s t distribution with three degrees of freedom, with zero mean and standard
deviations 0:01 and pairwise linear correlation coefficients of 0:4. Moreover, we
assume that we hold one share of each stock (hk D 1), that the current share price is
10 for each stock (Sk0 D 10), and that interest rates can be ignored (B0 D 1). This
gives

VaRp.VT � V0=B0/ � T 1=2.d.1C 0:4.d � 1///1=2˚�1.1� p/

D .27T /1=2˚�1.1 � p/:

We now compare this estimate to the empirical estimate based on a large simulated
sample of independent copies of VT �V0=B0. The results are shown in Fig. 9.5. It is
interesting to note that for T small, the underestimation of VaRp.VT �V0=B0/ for p
small due to the lighter tails of the normal distribution is offset by the overestimation
of VaRp.VT � V0=B0/ due to linearization.
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Fig. 9.5 Illustration of
accuracy of estimates of
VaR0:05.VT � V0/ and
VaR0:01.VT � V0/ based on
linearization and a normal
approximation, as functions
of T 2 f1; : : : ; 100g (dashed
curves). The solid curves
show the empirical VaR
estimates based on simulated
samples of size 105

9.3 Applications of Elliptical Distributions
in Risk Management

In this section, we consider five applications of elliptical distributions in risk
management. In the first application, we derive a risk-aggregation formula that
relates the risk, in terms of a translation-invariant and positively homogeneous risk
measure, for a sum of jointly elliptically distributed random values to the risk of
the terms in the sum. The second application shows how linearization and a normal
approximation can be used to approximate the risk measure VaR0:005.A�L/ used to
determine the solvency of an insurance company. This application presents the idea
behind the so-called standard formula that is used in the measurement of risk in the
insurance industry. The third application suggests a hedging approach to European
call options that is more appropriate than delta hedging if the joint distribution for
the log return of the underlying asset value and the change in the implied volatility
can be assumed to be elliptical. The fourth application presents how a trader might
design a bet on changes in implied volatility for two maturity times and considers
ways to investigate the risk of such a bet. The fifth application illustrates that if the
vector of returns on a set of risky assets can be assumed to be elliptically distributed,
then portfolio investment problems can often be reduced to the trade-off investment
problem (4.7).

9.3.1 Risk Aggregation with Elliptical Distributions

Consider a company divided into n business units with future net values of assets
and liabilities given by X1; : : : ; Xn. Suppose that each business unit is able to
accurately estimate EŒXk� and �.Xk/, where � is some translation-invariant and
positively homogeneous risk measure. The company wants to compute �.X1 C
� � � C Xn/ to get a measurement on the aggregate risk for the whole company.
There is no straightforward way to combine the individual risk estimates �.Xk/
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and the expected values EŒXk� into an aggregate risk estimate. However, there
is a convenient risk-aggregation formula that is valid under the assumption that
.X1; : : : ; Xn/

T has an elliptical distribution.
Suppose that X D .X1; : : : ; Xn/

T has an elliptical distribution so that X dD � C
AY, with AAT D ˙ , and Y has a spherical distribution. Matrix ˙ can always be
expressed as the product DCD, where D is a diagonal matrix with diagonal entries
Dk;k D ˙

1=2

k;k and C is a correlation matrix (the linear correlation matrix of X if it
exists). Note that

�.X1 C � � � CXn/ D �B0
nX

kD1
�k C �

 
nX

kD1
.Xk � �k/

!
;

where B0 is the discount factor between now and the considered future time, and

nX

kD1
.Xk � �k/ D 1TAY dD .1T˙ 1/1=2Y1:

Since 1T˙ 1 D ˙1;1 C˙1;2 C � � � C˙n;n and ˙j;k D Dj;j Cj;kDk;k , it holds that

�

 
nX

kD1
.Xk � �k/

!
D �

0
B@

0

@
X

j;k

˙j;k

1

A
1=2

Y1

1
CA

D
0

@
X

j;k

Cj;kDj;jDk;k

1

A
1=2

�.Y1/

D
0

@
X

j;k

Ck;lDj;jDk;k�.Y1/
2

1

A
1=2

D
0

@
X

j;k

Cj;k�.Dj;j Yj /�.Dk;kYk/

1

A
1=2

D
0

@
X

j;k

Cj;k�.Xj � �j /�.Xk � �k/

1

A
1=2

:

We have found that if X D .X1; : : : ; Xn/
T has an elliptical distribution and if � is a

translation-invariant and positively homogeneous risk measure, then

�.X1C� � �CXn/ D
0

@
X

j;k

Cj;kfB0�j C �.Xj /gfB0�k C �.Xk/g
1

A
1=2

�B0
X

k

�k:

The only additional input needed, besides the individual risk estimates �.Xk/ and
the means �k , are the linear correlation coefficients Cj;k.
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9.3.2 Solvency of an Insurance Company

In this section, we present another example of linearization and normal approxima-
tion in the context of the solvency of an insurance company.

Consider an insurance company with assets and liabilities. Let A and L denote
the time 1 (1 year from now) values of the assets and liabilities, respectively. We
consider the insurance company to be solvent if

VaR0:005.A �L/ � 0:

If r1 is the current risk-free, 1-year zero rate, then we may write

VaR0:005.A �L/ D F �1
e�r1 .L�A/.0:995/:

We consider a stylized model for the assets and liabilities and assume that the
liabilities correspond to the stochastic cash flow .C1; : : : ; Cn/, where Ck is the
amount the insurer has to pay at the end of year k due to the occurrence of claims
before the end of year 1. Each written contract offers a protection for the insured
over a 1-year period. Operating expenses for the insurer could be included in
the Ck or dealt with in other ways. The expectation EŒCk� is the expected claim
amount to be paid at time k, and e�rk EŒCk� is the present value of this amount.
The expected claim amount EŒCk� could be determined by some stochastic claim-
reserving method, such as the chain ladder method presented in Sect. 7.6.1. The best
estimate, at time 0, of the present value of the liabilities is

L0 D
nX

kD1
EŒCk�e�rkk:

At time 1we observeC1 and receive new information about the future paymentsCk .
If I1 denotes the information available at time 1, then EŒCk j I1� is the updated
prediction of the payment due at time k. The time 1 value of the liabilities is
therefore given by

L D
nX

kD1
EŒCk j I1�e�.rk�1C�rk�1/.k�1/;

where�r is the vector of zero rate changes from time 0 to 1. Suppose for simplicity
that the assets of the insurer consist of a bond portfolio designed to match future
claim payments and K units of cash on a bank account. The time 0 value A0 of the
assets and the time 1 value A of the assets are given by

A0 D
nX

kD1
EŒCk�e�rkk CK;

A D
nX

kD1
EŒCk�e�.rk�1C�rk�1/.k�1/ CKer1:
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The time 0 value of the bond portfolio precisely matches the time 0 value of the
liability, A0 �K D L0. Moreover,

e�r1 .L � A/ D e�r1
nX

kD1
.EŒCk j I1� � EŒCk�/e

�.rk�1C�rk�1/.k�1/ �K

D
nX

kD1
e�rkk EŒCk�YkeXk �K

D g.X1; : : : ; Xn; Y1; : : : ; Yn/;

whereXk D �r1� .rk�1C�rk�1/.k�1/C rkk, Yk D .EŒCk j I1�� EŒCk�/=EŒCk�
for k D 1; : : : ; n, and

g.x; y/ D
nX

kD1
e�rkk EŒCk�ykexk �K:

The quantity Y1 D .C1�EŒC1�/=EŒC1�measures the relative deviation of the actual
amount paid at the end of the year from the current prediction. For k � 2, Yk D
.EŒCk j I1��EŒCk�/=EŒCk�measures the relative deviation of the updated prediction
at the end of the year of the claim payments at time k, for claims incurred before
the end of the year, from the current prediction.

Since g is a nonlinear function of the risk factors .X1; : : : ; Xn; Y1; : : : ; Yn/, the
computation of VaR is simplified substantially by linearization. Let �k D EŒXk�,
and note that EŒYk� D 0. Therefore, it makes sense to consider the first-order
approximation of g around .�1; : : : ; �n; 0; : : : ; 0/, which gives

g.X1; : : : Xn; Y1; : : : ; Yn/ � g.�1; : : : ; �k; 0; : : : ; 0/C
nX

kD1
e�rkk EŒCk�Yke

�k

D �K C
nX

kD1
e�rkk EŒCk�Yke�k

D �K C wTY;

where wk D e�rkk EŒCk�e�k . Because of the linearization, the effect of the Xk
vanishes. The contributions to the risk coming from changes in the zero rates are
second-order effects and do not show up in the linearized version of g. Although
ignoring second-order effects is convenient for explicit computations, it leads to a
crude approximation.

If Y is N.0;˙ /-distributed, then we find that

VaR0:005.A �L/ � F �1
�KCwTY.0:995/ D �K C .wT˙ w/1=2˚�1.0:995/:
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Taking this approximation as an equality we find that the solvency condition
VaR0:005.A� L/ � 0 is equivalent to

K � .wT˙ w/1=2˚�1.0:995/:

The outlined procedure is the basic idea behind the standard formula in the Solvency
II framework for the computation of sufficient buffer capital for an insurance
company. Of course, in practice, many more risk factors need to be included and the
insurer’s asset portfolio is more complex. Nevertheless, the linearization approach
and the normal approximation is at the heart of the standard formula. To compensate
for the inaccuracies of linearization and the normal approximation, the covariance
matrix ˙ is not estimated from data but given exogenously by the regulators.

9.3.3 Hedging of a Call Option When the Volatility
Is Stochastic

Suppose that now at time 0 we have issued a European call option with strike price
K on the value ST of a stock market index at time T . Suppose also that we want to
hedge against changes in the option price from now until time t < T by taking a
position in the underlying index and deposit cash to minimize

EŒ.h0 C h1St � Ct/2�;
where Ct is the call option price at time t . If t is small, then the delta-hedging
approach in Sect. 3.5 gives an approximative solution to the quadratic hedging
problem. Suppose that the option price is expressed in terms of the Black–Scholes
formula (1.7) as a function Ct D C.St ; �t ; rt ; t; T � t/, where the arguments
correspond to the value of the underlying index at time t , the option’s implied
volatility at time t , interest rate prevailing between time t and the maturity time
T of the option, and the remaining time to maturity. The delta-hedging approach
relies on the first-order approximation

Ct � C0 C @C0

@S0
.St � S0/;

which gives the delta-hedge position .hı0; h
ı
1/ � .h0; h1/, where

hı1 D @C0

@S0
and hı0 D C0 � @C0

@S0
S0:

The Black–Scholes formula reads

Ct D St˚.d1/ �Ke�rt .T�t /˚.d2/;

d1 D log.St=K/C .rt C �2t =2/.T � t/

�t
p
T � t and d2 D d1 � �t

p
T � t
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and gives
@C0

@S0
D ˚.d1/; d1 D log.S0=K/C .r0 C �20 =2/T

�0
p
T

:

The hedging error at time t is

hı0 C hı1St � Ct D C0 � Ct C˚.d1/.St � S0/:

The change in the interest rate from r0 to rt typically does not contribute much to
the hedging error, and therefore we may approximate rt � r0. We may therefore
view the hedging error as a function of the changes in the index value and in the
implied volatility or, equivalently, as a function g.z/ evaluated at Z D .Z1;Z2/,
where Z1 D log.St=S0/ and Z2 D �t � �0. Therefore, a model for .Z1;Z2/
implies a model for the hedging error and the latter model can be analyzed by,
e.g., simulation from .Z1;Z2/. The sample from .Z1;Z2/ can then be converted
to a sample from the distribution of the hedging error whose empirical distribution
can be studied. Alternatively, we could linearize the nonlinear function g.z/ and
evaluate the linear approximation at Z D .Z1;Z2/. The linearization approach may
give an approximation of the distribution for the hedging error that can be analyzed
analytically, without simulation. Consider the first-order approximation

Ct � g.0/C @g

@z1
.0/Z1 C @g

@z2
.0/Z2;

where g.z/ D g1.g2.z1/; g3.z2// with g2.z1/ D S0e
z1 , g3.z2/ D z2 C �0, and

g1.s; �/ D s˚.d1/�Ke�r0.T�t /˚.d2/;

d1 D log.s=K/C .r0 C �2=2/.T � t/

�
p
T � t

and d2 D d1 � �
p
T � t :

The chain rule, together with the expressions for the partial derivatives of the Black–
Scholes formula (Sect. 1.2.2), gives

@g

@z1
.0/ D @g1

@s
.S0; �0/

dg2

d z1
.0/ D ˚.d1/S0;

@g

@z2
.0/ D @g1

@�
.S0; �0/

dg3

d z2
.0/ D 	.d1/S0

p
T � t :

Summing up, we arrive at the following approximation of the hedging error:

hı0 C hı1St � Ct D C0 � Ct C ˚.d1/.St � S0/
� C0 � C0 �˚.d1/S0Z1 � 	.d1/S0

p
T � tZ2

C˚.d1/.S0.1CZ1/� S0/

D �	.d1/S0
p
T � t.�t � �0/:
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We see that the position, the delta hedge and the issued call option, is immune
against changes in the index value (approximately, over a short time period) and
that the hedging error is due to changes in the implied volatility. We also find that
the variance of the hedging error is

Var.hı0 C hı1St � Ct/ � 	.d1/
2S20 .T � t/Var.�t /:

We now want to reduce the hedging error by replacing the delta hedge by a similar
hedge that also takes changes in the implied volatility into account. The position in
the underlying index and in cash for the optimal quadratic hedge is

h1 D Cov.St ; Ct /

Var.St /
and h0 D EŒCt � � h1 EŒSt �:

Here we approximate

Cov.St ; Ct / � Cov.S0Z1; ˚.d1/S0Z1 C 	.d1/S0
p
T � tZ2/

D S20˚.d1/Var.Z1/C S20	.d1/
p
T � t Cov.Z1;Z2/;

Var.St / � S20 Var.Z1/;

EŒCt � � C0;

EŒSt � � S0:

This gives the hedge .h�
0 ; h

�
1 / � .h0; h1/, where

h�
1 D ˚.d1/C 	.d1/

p
T � t

Cov.Z1;Z2/

Var.Z1/

D ˚.d1/C 	.d1/
p
T � t

�Z2
�Z1

�;

h�
0 D C0 � h�

1 S0;

where �Zk D Var.Zk/1=2 and � D Cor.Z1;Z2/. We observe that the position h�
1

in the underlying index corresponds to the delta-hedge position hı1 plus a correction
term. We get the following approximation of the hedging error:

h�
0 C h�

1 St � Ct � C0 C
�
˚.d1/C 	.d1/

p
T � t �Z2

�Z1
�

�
S0Z1

�C0 � ˚.d1/S0Z1 � 	.d1/S0
p
T � tZ2

D 	.d1/S0
p
T � t

�
�Z2
�Z1

�Z1 �Z2

�
:
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In particular, the variance of the hedging error is approximately

Var.h�
0 C h�

1 St � Ct/ � Var

�
	.d1/S0

p
T � t

�
�Z2
�Z1

�Z1 �Z2

��

D 	.d1/
2S20 .T � t/Var.�t /.1 � �2/;

where the last equality can be verified by straightforward computations of the
variance of the sum of two correlated terms. Notice that taking changes in implied
volatility into account when computing the approximation of the quadratic hedge
makes the variance of the hedging error smaller by a factor of .1 � �2/.

9.3.4 Betting on Changes in Volatility

Suppose that a trader is betting on changes in implied volatility from time 0 today
until time t > 0 in the future for two future maturity times and that we want to
analyze the riskiness of this volatility bet. Consider two call options on the values
of an index at two future times 0 < T1 < T2. The trader believes that over a short
period of time the change in implied volatility �1t � �10 for the nearer maturity time
T1 will be greater than that for the more distant maturity time T2, �2t � �20 . The
trader wants to capitalize on this belief but at the same time not bet on other potential
movements of the underlying index value. We first determine the particular portfolio
corresponding to the volatility bet.

Consider a long position of size h2 in a call option with strike K1 maturing at
time T1 and a short position of size h3 in a call option with strike K2 maturing at
time T2. The future value of this position is, to a first-order approximation and with
the expressions for the partial derivatives of the Black–Scholes formula,

h2C
1
t � h3C

2
t � h2C

1
0 � h3C 2

0

Ch2
�
˚.d11 /.St � S0/C 	.d11 /S0

p
T1.�

1
t � �10 /

�

�h3
�
˚.d21 /.St � S0/C 	.d21 /S0

p
T2.�

2
t � �20 /

�
;

where

d
j
1 D log.S0=Kj /C .rj C .�

j
0 /
2=2/Tj

�
j
0

p
Tj

for j D 1; 2:

With Z1 D log.St=S0/, Z2 D �1t � �10 , and Z3 D �2t � �20 , and the approximation
St � S0 � S0Z1, we get

h2C
1
t � h3C 2

t � h2C
1
0 � h3C

2
0 C .h2˚.d

1
1 /� h3˚.d

2
1 //S0Z1

Ch2S0	.d11 /
p
T1Z2 � h3S0	.d21 /

p
T2Z3:
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The volatility bet is a bet on the occurrence of the event Z2 > Z3, and on nothing
else. Therefore, the trader chooses h2 and h3 so that

h2	.d
1
1 /
p
T1 � h3	.d21 /

p
T2 D 0;

meaning that the impact of a parallel shift in the implied volatility should be
approximately zero. Moreover, the trader wants the bet to be immune to changes
in the value of the underlying index. Therefore, the trader takes the position

h1 D �.h2˚.d11 /� h3˚.d
2
1 //

in the index and a position

h0 D �h1S0 � h2C 1
0 C h3C

2
0

in cash. Summing up, we find that the volatility bet corresponds to the portfolio
weights h0; h1; h2; h3 and the future portfolio value

h0 C h1St C h2C
1
t � h3C

2
t � h2S0	.d

1
1 /
p
T1Z2 � h2 	.d

1
1 /

p
T1

	.d21 /
p
T2
S0	.d

2
1 /
p
T2Z3

D h2S0	.d
1
1 /
p
T1.Z2 �Z3/:

To estimate the risk of holding this portfolio until time t , we could now assign a
bivariate elliptical distribution to .Z2;Z3/, determine the corresponding univariate
elliptical distribution of Z2 �Z3, and finally compute �.h2S0	.d11 /

p
T1.Z2 �Z3//

for a suitable choice of risk measure �. However, this apparent straightforward
approach to measuring the riskiness of the volatility bet is not unproblematic.
Assigning a bivariate model to .Z2;Z3/ can at best be guided by historical data on
implied volatility changes but will to a large extent be based on subjective beliefs.
Moreover, if the sizes of the option positions are large, then it may be unrealistic to
assume that the positions can be closed at time t if t is small. In that case, we need
a longer time period for the risk modeling, and this makes the whole linearization
approach questionable.

9.3.5 Portfolio Optimization with Elliptical Distributions

Suppose vector R of returns on a collection of risky assets can be modeled by a
normal variance mixture distribution so that R dD � CW AZ, where Z is Nd .0; I/-
distributed and independent of W � 0, and AAT D ˙ . If R0 is the return on a
risk-free asset, then the future value of a portfolio with monetary portfolio weights
w in the risky assets and w0 in the risk-free asset can be expressed as

V1 D w0R0 C wTR
dD w0R0 C wT� C .wT˙ w/1=2WZ1: (9.11)
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Suppose the variance Var.V1/ D �2wT˙ w, where �2 D Var.WZ1/, exists. Then
the solution to the investment problem

maximize w0R0 C wT� � c
2V0
�2wT˙ w

subject to w0 C wT1 � V0

follows from the solution to the trade-off investment problem (4.7) by replacing ˙

in (4.7) by �2˙ and is given by

w D V0

c
.�2˙ /�1.� �R01/ and w0 D V0 � wT1:

A convenient feature of having an elliptical distribution for vector R of returns
is that portfolio optimization problems often reduce to the trade-off investment
problem (4.7). Consider the problem of portfolio optimization in the context of a
spectral risk measure.

Example 9.11 (Spectral risk measures). Portfolio optimization with respect to a
spectral risk measure (Sect. 6.5) amounts to minimizing a spectral risk measure
�	.X/, where X denotes a future portfolio value, under a budget constraint (and
possibly additional constraints). By the stochastic representation (9.11), we can
express the quantile function of V1 as

F�1
V1
.p/ D w0R0 C wT� C .wT˙ w/1=2F�1

WZ1
.p/:

Therefore, the spectral risk measure

�	.X/ D �
Z 1

0

	.p/F�1
X=R0

.p/dp;

applied to X D V1 � V0R0, can be expressed as

�	.V1 � V0R0/ D �
Z 1

0

	.p/F�1
V1=R0

.p/dp C V0

D 1

R0

�
�w0R0 � wT� � .wT˙ w/1=2

Z 1

0

	.p/F�1
WZ1

.p/dp

�
C V0:

In particular, we can formulate the portfolio optimization problem

minimize �	.w0R0 C wTR � V0R0/

subject to w0 C wT1 � V0

as the trade-off problem

maximize w0R0 C wT� � c
2V0
.wT˙ w/1=2

subject to w0 C wT1 � V0;
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where

c D �2V0
Z 1

0

	.p/F�1
WZ1

.p/dp:

We conclude that, for an elliptical model for vector R of returns, minimizing the
spectral risk measure of the future portfolio value subject to a budget constraint is
equivalent to solving a trade-off problem with the trade-off parameter given above.

9.4 Copulas

A rather common situation arises when we search for a multivariate model for a
set of random variables Y1; : : : ; Yd whose univariate distributions are rather well
understood but whose joint distribution is only partially understood. A useful
approach to the construction of a multivariate distribution for Y D .Y1; : : : ; Yd /with
specified univariate marginal distribution functions G1; : : : ; Gd , the distribution
functions of the vector’s components, is obtained by combining the so-called
probability and quantile transforms. The probability transform says that if X is a
random variable with a continuous distribution function F , then F.X/ is uniformly
distributed on the interval .0; 1/. The quantile transform says that if U is uniformly
distributed and if G is any distribution function, then G�1.U / has distribution
function G. This implies that for any random vector X D .X1; : : : ; Xd / whose
components have continuous distribution functions F1; : : : ; Fd , the random vector
Y D .G�1

1 .F1.X1//; : : : ; G
�1
d .Fd .Xd /// corresponds to a multivariate model with

prespecified univariate marginal distributions. If all Fk and Gk are both continuous
and strictly increasing, then the preceding statement is actually straightforward to
verify:

P.G�1
k .Fk.Xk// � y/ D P.Fk.Xk/ � Gk.y// D Gk.y/;

which shows that Yk has distribution function Gk . The difficulty when it comes to
constructing a good multivariate model for Y using this approach clearly lies in the
choice of the distribution for vector X since the dependence between the Xk will be
inherited by the Yk.

Example 9.12. Consider the two scatter plots in Fig. 9.6. The left scatter plot shows
a sample of size 2,000 from a bivariate standard normal distribution with linear
correlation 0:5. The right scatter plot shows a sample of size 2,000 from a bivariate
distribution with standard normal marginal distributions and a dependence structure
inherited from a bivariate Student’s t distribution with one degree of freedom. The
points of the right scatter plot were obtained from the points of the left scatter plot as
follows. Write Z1; : : : ;Z2000 for the independent bivariate normal random vectors
whose outcomes are shown in the left plot. Let S1; : : : ; S2000 be independent �21-
distributed random variables independent of the sample from the bivariate normal
distribution. A sample of independent bivariate Student’s t1-distributed vectors was
obtained by setting Xk D S

�1=2
k Zk for k D 1; : : : ; 2000. Finally, the random

vectors whose outcomes are shown in the plot to the right were constructed as
Yk D .˚�1.t1.Xk;1//; ˚�1.t1.Xk;2///T for k D 1; : : : ; 2000.
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Fig. 9.6 Samples of size 2,000 from two bivariate distributions with standard normal marginal
distributions. Left plot: sample from a bivariate standard normal with linear correlation 0:5. Right
plot: sample from a bivariate standard Student’s t distribution with one degree of freedom, with
marginal distributions transformed to a standard normal

Suppose that we want to build a multivariate model corresponding to a random
vector X D .X1; : : : ; Xd / with a nontrivial dependence between its components and
certain marginal distribution functionsF1; : : : ; Fd . Then the quantile transform says
that we may start with a suitable vector U D .U1; : : : ; Ud / whose components are
uniformly distributed on .0; 1/ and specify X as

X D .F�1
1 .U1/; : : : ; F

�1
d .Ud//:

The random vector X inherits the dependence among its components from vector U.
The distribution function C of a random vector U whose components Uk are
uniformly distributed on .0; 1/ is called a copula, i.e.,

C.u1; : : : ; ud / D P.U1 � u1; : : : ; Ud � ud /; .u1; : : : ; ud / 2 .0; 1/d :

Let .X1; : : : ; Xd / be a random vector with distribution function F.x1; : : : ; xd / D
P.X1 � x1; : : : ; Xd � xd / and suppose that Fk.x/ D P.Xk � x/ is a
continuous function for every k. The probability transform, statement (iv) of
Proposition 6.1, implies that the components of the vector U D .U1; : : : ; Ud/ D
.F1.X1/; : : : ; Fd .Xd // are uniformly distributed on .0; 1/. In particular, the distri-
bution function C of U is a copula and we call it the copula of X. Using statement
(i) of Proposition 6.1 we find that

C.F1.x1/; : : : ; Fd .xd // D P.U1 � F1.x1/; : : : ; Ud � Fd.xd //

D P.F�1
1 .U1/ � x1; : : : ; F

�1
d .Ud/ � xd /

D F.x1; : : : ; xd /:
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This representation of the joint distribution function F in terms of the copula C
and the marginal distribution functions F1; : : : ; Fd explains the name “copula”:
a function that “couples” the joint distribution function to its univariate marginal
distribution functions.

Example 9.13 (Gaussian and Student’s t copulas). The copula CGa
R of a

d -dimensional standard normal distribution, with linear correlation matrix R, is
the distribution function of the random vector .˚.X1/; : : : ; ˚.Xd //, where ˚ is
the univariate standard normal distribution function and X is Nd .0;R/-distributed.
Hence,

CGa
R .u/ D P.˚.X1/ � u1; : : : ; ˚.Xd / � ud / D ˚d

R .˚
�1.u1/; : : : ; ˚�1.ud //;

where˚d
R is the distribution function of X. Copulas of the preceding form are called

Gaussian copulas.
The copula C t

�;R of a d -dimensional standard Student’s t distribution with � > 0
degrees of freedom and linear correlation matrix R is the distribution of the random
vector .t�.X1/; : : : ; t�.Xd //, where X has a td .0;R; �/ distribution and t� is the
univariate standard Student’s t� distribution function. Hence,

C t
�;R.u/ D P.t�.X1/ � u1; : : : ; t�.Xd / � ud / D td�;R.t

�1
� .u1/; : : : ; t

�1
� .ud //;

where td�;R the distribution function of X. Copulas of the preceding form are called
Student’s t copulas.

Consider a random vector .Y1; Y2/ with continuous strictly increasing marginal
distribution functions G1 and G2 and the copula of a Student’s t distribution with
linear correlation parameter �. We consider here the question of how � can be
estimated from a sample from the distribution of .Y1; Y2/. We may write .Y1; Y2/ D
.G�1

1 .F1.X1//; G
�1
2 .F2.X2///, where .X1;X2/ has a Student’s t distribution with

linear correlation parameter �. In particular, the functions T1 and T2 given by
Tk.x/ D G�1

k .Fk.x// are continuous and strictly increasing, so for an independent
copy .X 0

1; X
0
2/ of .X1;X2/ it holds that


.Y1; Y2/ D 
.T1.X1/; T2.X2//

D 2 P..T1.X1/� T1.X
0
1//.T2.X2/� T2.X

0
2// > 0/ � 1

D 2 P..X1 � X 0
1/.X2 �X 0

2/ > 0/� 1
D 
.X1;X2/:

It follows immediately from (9.7) that � D sin.�
.Y1; Y2/=2/. Therefore, the
estimateb
 of 
.Y1; Y2/ from the sample from the distribution of .Y1; Y2/ gives an
estimateb� D sin.�b
=2/ of �.

Example 9.14 (Investments in foreign stocks). Consider a Swedish investor about to
invest Swedish kronor (SEK) in foreign telecom stocks. The current share prices of
British Telecom (BT) and Deutsche Telekom (DT) are 185:5 British pounds (GBP)
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Fig. 9.7 Scatter plot to left shows log-return pairs, British Telecom in pounds on the x-axis and
Deutsche Telekom in euros on the y-axis. The scatter plot to the right shows log-return pairs,
SEK/GBP on the x-axis and SEK/EUR on the y-axis

and 9:26 euros (EUR), respectively. The current SEK/GBP exchange rate is 0:0942
(x kronor can be exchanged for 0:0942x pounds). The current SEK/EUR exchange
rate is 0:1098.

The investor has obtained a sample of four-dimensional vectors of share prices,
in the local currencies, and exchange rates from the 249 most recent (trading) days.
We assume that the investor believes that the information in the data is relevant for
assessing future portfolio values, and that no additional information on which to
base model selection is available. The scatter plots for the stock log-return pairs and
for the exchange-rate log-return pairs are shown in Fig. 9.7.

The investor is about to invest the amounts w1 and w2 kronor in the two foreign
telecom stocks and wants to model the portfolio value V1 in kronor tomorrow.
Let At ; Bt ; Ct ;Dt denote the time t share prices (BT and DT) and exchange rates
(SEK/GBP and SEK/EUR). Let XA D log.A1=A0/ be the log return from today
until tomorrow for BT in GBP and similarly for XB;XC ;XD. If h1 and h2 are the
number of shares of BT and DT bought, then

A0

C0
h1 D w1 and

B0

D0

h2 D w2:

The portfolio value in kronor tomorrow is therefore

V1 D h1
A1

C1
C h2

B1

D1

D w1
A1

A0

�
C1

C0

��1
C w2

B1

B0

�
D1

D0

��1

D w1 expfXA � XC g C w2 expfXB � XDg:
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If the investor has already decided on a particular portfolio, i.e., has chosen the
portfolio weights w1 and w2, then the log-return data may be used to generate a sam-
ple from the distribution of V1 by viewing V1 as a function of .XA;XB;XC ;XD/.
This sample can be transformed into a sample from the distribution of the portfolio
log return log.V1=V0/, where V0 D w1 C w2, and a parametric model can be chosen
for the portfolio log return.

Here we want to allow the investor to vary the portfolio weights in order to choose
an optimal (according to some criterion left unspecified) portfolio. Therefore,
instead of setting up a model for V1 directly, we set a model for the joint log-return
distribution of .XA;XB;XC ;XD/ from which the model for V1 is easily inferred.

The Student’s t location-scale family of distributions is a natural choice of
parametric family for log returns. Maximum-likelihood estimation of the parameter
triple .�; �; �/ of the Student’s t location-scale family on the samples of daily log
returns gives the following estimates:

.�6 � 10�4; 0:013; 3:7/ (British Telecom in pounds);
.2 � 10�4; 0:015; 7:7/ (Deutsche Telekom in euros);
.2 � 10�4; 0:006; 9:6/ (SEK/GBP);
.8 � 10�5; 0:004; 8:6/ (SEK/EUR):

There is no a priori reason for the log-return distributions to be symmetric; the
polynomial normal model in Example 8.10 is also a natural model for the log
returns. The estimated parameters .�0; �1; �2; �3/ based on the samples of daily log
returns are

.3:1; 142:6; �1:4; 15:5/ � 10�4 (British Telecom in pounds);
.�8:8; 120:1; 9:2; 22:1/ � 10�4 (Deutsche Telekom in euros);
.4:0; 53:5; �3:7; 3:6/ � 10�4 (SEK/GBP);
.1:9; 31:1; �2:0; 3:5/ � 10�4 (SEK/EUR):

The conditions �3 > 0 and 3�1�3��22 > 0 ensuring that the third-degree polynomial
is strictly increasing is satisfied for estimated parameter vectors. Figure 9.8 shows
the empirical quantiles of the log returns of BT and DT against those of the fitted
parametric distributions. By comparing the two upper q–q plots we find that the
polynomial normal model captures the asymmetry between the left and right tails in
BT log-return data, whereas the Student’s t model does not.

We now proceed to the modeling of the dependence between the log returns.
The sample correlations between log returns of the stocks and log returns of the
exchange rates is approximately zero, and there are no obvious economic reasons
not to assume independence between the log-return pairs .XA;XB/ and .XC ;XD/
of stocks and exchange rates, respectively. We therefore assume that the log-return
pairs .XA;XB/ and .XC ;XD/ are independent and that the distribution functions
of the two log-return pairs are of the form, with subscripts s for stocks and e for
exchange rates,

P.XA � xA;XB � xB/ D C t
�s;�s

.FA.xA/; FB.xB//;

P.XC � xC ;XD � xD/ D C t
�e;�e

.FC .xC /; FD.xD//;
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Fig. 9.8 Upper plots: empirical quantiles of British Telecom log-return data (y-axes) against
quantiles of fitted distributions (x-axes): Student’s t model to the left and polynomial normal model
to the right. Lower plots: empirical quantiles of Deutsche Telekom log-return data (y-axes) against
quantiles of fitted distributions (x-axes): Student’s t model to the left and polynomial normal model
to the right

where FA; FB; FC ; FD denote the distribution functions of XA;XB;XC ;XD . Stu-
dent’s t copula is a flexible parametric family for the dependence structure of the
log-return pairs. Set UA D FA.XA/ and similarly for UB;UC ; UD . The assumption
of Student’s t copulas as models for the dependence structure for the log-return pairs
requires that .UA; UB/

dD .1 � UA; 1 � UB/ and .UC ; UD/
dD .1 � UC ; 1 � UD/.

Whatever choice of models for the individual log returns XA;XB;XC ;XD among
the sets of models given above, the log-return data give no reasons to reject the
hypothesis that .UA; UB/

dD .1 � UA; 1 � UB/ and .UC ; UD/
dD .1 � UC ; 1 � UD/

(Fig. 9.9).
We may now estimate �s and �e by b�s D sin.�b
 s=2/ and b�e D sin.�b
e=2/,

and the estimate of .�s; �e/ is approximately .0:62; 0:61/. Under the assumption
that the marginal distribution functions FA; FB; FC ; FD of the joint log-return
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Fig. 9.9 Left scatter plot: sample points in (9.12) obtained by componentwise transformation of
original log-return pairs for stocks by fitted Student’s t location-scale distribution functions. Right
scatter plot: with corresponding sample points for componentwise transformation by distribution
functions of fitted polynomial normal models added, marked by times symbol, to illustrate the
effect of the componentwise transformations

distribution equal the estimated marginal distribution functions bFA;bFB;bFC ;bFD ,
we may transform the samples

f.X1
A;X

1
B/; : : : ; .X

248
A ;X248

B /g and f.X1
C ;X

1
D/; : : : ; .X

248
C ;X248

D /g

into the samples

f.U 1
A; U

1
B/; : : : ; .U

248
A ; U 248

B /g and f.U 1
C ; U

1
D/; : : : ; .U

248
C ; U 248

D /g (9.12)

from Student’s t copulas, where U k
A D bFA.X

k
A/, and similarly for U k

B; U
k
C ; U

k
D . In

the case of a polynomial normal model choice, dropping subscripts for notational
convenience, bF .x/ D ˚.bg�1.x//, andbg�1.x/ is obtained as the (here unique real)
solution y to the polynomial equationb�0 Cb�1y Cb�2y2 Cb�3y3 D x. Under the
further assumption that the linear correlation parameters �s; �e equal the estimates
b�s;b�e , the two samples in (9.12) are samples from two Student’s t copulas whose
parameters are known except for the degree-of-freedom parameters �s and �e . The
unknown parameters can be estimated by maximum likelihood, and the bivariate
density function of Student’s t copula corresponding to the pair of log returns for
stocks is given by

ct
�s ;b�s .u1; u2/ D @2

@u1@u2
t2
�s;b�s .t

�1
�s
.u1/; t

�1
�s
.u2// D

g2
�s ;b�s .t

�1
�s
.u1/; t�1�s .u2//

g�s .t
�1
�s
.u1//g�s .t�1�s .u2//

;
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where t2
�s ;b�s and g2

�s ;b�s denote the distribution and density function, respectively,

of the bivariate Student’s t distribution with degree-of-freedom parameter �s and
linear correlation parameterb�s , and t�s and g�s denote the distribution and density
function, respectively, of the univariate Student’s t distribution with degree-of-
freedom parameter �s . The procedure is similar for the pair of log returns for the
exchange rates.

The samples in (9.12) depend on the choice of parametric models for the log
returns and the corresponding parameter estimates. Therefore, we will here obtain
two pairs of estimates .b�s;b�e/ of the copula parameters �s and �e . If the log-return
distributions are assumed to be Student’s t distributions and the parameters are
estimated by maximum likelihood, then we obtain the copula parameter estimates
.b�s;b�e/ � .5:1; 6:8/. If the log-return distributions are assumed to be given by
the polynomial normal model, then we obtain the copula parameter estimates
.b�s;b�e/ � .3:6; 5:5/.

Now that the two models for the joint log-return distribution of the vector
.XA;XB;XC ;XD/ are set up and their parameters estimated, we evaluate the
models in terms of how close the resulting distribution of the portfolio log return

log.V1=V0/; V1 D V0

2
expfXA � XC g C V0

2
expfXB �XDg

is to the empirical distribution of the portfolio log return. The joint log-return
models do not give closed-form expressions for the distributions of the portfolio
log return. However, the portfolio log-return distributions are straightforward to
simulate from. We simulate 105 outcomes of log.V1=V0/, according to the chosen
model, by simulating outcomes .ZA;ZB/ and .ZC ;ZD/ of independent Student’s t-
distributed random vectors and using the formula

log

�
1

2
expfbF�1

A .tb�s .ZA/�bF
�1
C .tb�e .ZC //gC

1

2
expfbF�1

B .tb�s .ZB/�bF
�1
D .tb�e .ZD//g

�
;

where .ZA;ZB/ has a bivariate standard Student’s t distribution with degree-of-
freedom parameter b�s and linear correlation parameter b�s , and .ZC ;ZD/ has a
bivariate standard Student’s t distribution with degree-of-freedom parameter b�e and
linear correlation parameterb�e . Finally, we compare the empirical distributions of
the simulated samples of size 105 to the empirical distribution based on the original
log-return sample. The result is shown in Fig. 9.10. Both models give a good fit to
the log-return data.

If X D .X1; : : : ; Xd / is a random vector with continuous marginal distribution
functions F1; : : : ; Fd , and if G1; : : : ; Gd are any given distribution functions,
then the random vector Y D .G�1

1 .F1.X1//; : : : ; G
�1
d .Fd .Xd /// has marginal

distribution functions G1; : : : ; Gd and has inherited the dependence structure or
copula from vector X. However, it may happen that the distribution functions
F1; : : : ; Fd cannot be determined explicitly. Another option is to consider a family
of models for vectors .U1; : : : ; Ud / with components that are uniformly distributed
on .0; 1/ and consider models of the form Y D .G�1

1 .U1/; : : : ; G
�1
d .Ud//.
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Fig. 9.10 These two q–q plots show the empirical quantiles of the portfolio log returns (y-axes)
for w1 D w2 D V0=2 against the quantiles of two models for log.V1=V0/ (x-axes). The plot to
the left corresponds to the model for .XA;XB;XC ;XD/ with Student’s t marginal distributions,
and the plot to the right corresponds to the model for .XA;XB ;XC ;XD/ with polynomial normal
marginal distributions

Example 9.15 (Archimedean copulas). Consider a strictly positive random variable
X with a density f and Laplace transform �.t/ D EŒe�tX �. A useful family
of copulas called Archimedean copulas is based on the fact that �.� log.V /=X/
is uniformly distributed on .0; 1/ if V is uniformly distributed on .0; 1/ and
independent of X . To verify this claim we first note that

�.t/ D
Z 1

0

e�txf .x/dx and � 0.t/ D �
Z 1

0

xe�txf .x/dx < 0;

so � is nonnegative, continuous, and strictly decreasing on Œ0;1/. For any u 2
.0; 1/ we can now verify that

P

�
�

�� logV

X

�
� u

�
D E

�
P

�
�

�� logV

X

�
� u j X

�

D E
h
P
�
V � e���1.u/X j X

�i

D E
h
e���1.u/X

i

D �.��1.u// D u:

It follows that if V1; : : : ; Vd are uniformly distributed on .0; 1/ and independent of
X , then the distribution function C of

U D
�
�

�� logV1
X

�
; : : : ; �

�� logVd
X

��
(9.13)
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is a copula. We should always aim to understand a multivariate model through its
stochastic representation. Here � is decreasing with �.0/ D 1 and limt!1 �.t/ D
0. Therefore, we observe that if X takes a small value, then the random variables
� log.Vk/=X , for k D 1; : : : ; d , are all likely to take large values, which implies
small values for the random variables Uk D �.� log.Vk/=X/. In particular,
choosing a random variable X that has a relatively high probability of taking very
small values is likely to lead to asymptotic dependence, in the sense that small
values for one component are likely to imply small values for other components, for
a model with the stochastic representation .G�1

1 .U1/; : : : ; G
�1
d .Ud//. Simulation

from an Archimedean copula C as above is straightforward: just independently
simulate standard uniform variates V1; : : : ; Vd andX , and set U according to (9.13).
Note that the copula can be expressed explicitly as

C.u1; : : : ; ud / D P.U1�u1; : : : ; Ud�ud /

D E
h
P
�
V1 � e���1.u1/X ; : : : ; Vd�e���1.ud /X j X

�i

D E
h
e�.��1.u1/C���C��1.ud //X

i

D �.��1.u1/C � � � C ��1.ud //: (9.14)

Example 9.16 (Clayton copula). If X has a Gamma.1=�; 1/ distribution, then X
has density function f .x/ D x1=��1e�x=� .1=�/ and Laplace transform

�.t/ D EŒe�tX � D
Z 1

0

e�tx 1

� .1=�/
x1=��1e�xdx D .t C 1/�1=� :

This choice of � gives the Clayton copula. Solving �.��1.u// D u for ��1.u/
gives ��1.u/ D u�� � 1. Therefore, the copula expression (9.14) takes the form

CCl
� .u/ D .u��

1 C � � � C u��
d � d C 1/�1=� :

Applying l’Hôpital’s rule shows that the Clayton copula has lower tail dependence
in the sense that

lim
u!0

P.Uk � u j Uj � u/ D lim
u!0

.2u�� � 1/�1=�
u

D lim
u!0

d
du .2u�� � 1/�1=�

d
du u

D lim
u!0

2u���1.2u�� � 1/�1=��1

D 2�1=� :
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If � D 1, then bothX , and the random variables � logVk are standard exponentially
distributed. In particular, we may write

.U1; : : : ; Ud /
dD
�

E0

E0 C E1
; : : : ;

E0

E0 C Ed

�
;

where E0;E1; : : : ; Ed are independent and standard exponentially distributed. We
see that for all the Uk to take small values, we need E0 to take a small value.
However, for all the Uk to take large values, we need E0 to take a large value and
for all E1; : : : ; Ed to take small values. The latter is less likely, and therefore a
reasonable guess is that the Clayton copula does not have upper tail dependence:
limu!0 P.Uk > u j Uj > u/ D 0. An application of l’Hôpital’s rule verifies this
claim. Samples from the Clayton copula are illustrated graphically in Fig. 9.11.

9.4.1 Misconceptions of Correlation and Dependence

Now we turn to common misconceptions of linear correlation. We have seen that
given any two univariate distribution functions F1 and F2 and copula function C ,
F.x1; x2/ D C.F1.x1/; F2.x2// is a bivariate distribution function with marginal
distribution functions F1 and F2. It is typically hard to know which copula C
to choose, and it is therefore tempting to ask for a bivariate distribution with
given marginal distribution functions F1 and F2 and a given linear correlation
coefficient �. However, we will see that this question is ill-posed in the sense that
the set of bivariate distributions fulfilling the requirement may be empty.

To this end we first consider an integral representation of the covariance between
two random variables in terms of their joint distribution function and their marginal
distribution functions.

Proposition 9.8. If .X1;X2/ has distribution function F and marginal distribution
functions F1 and F2 and the covariance Cov.X1;X2/ exists finitely, then

Cov.X1;X2/ D
Z 1

�1

Z 1

�1
.F.x1; x2/ � F1.x1/F2.x2//dx1dx2:

Proof . Let .Y1; Y2/ be an independent copy of .X1;X2/, and note that

EŒ.X1�Y1/.X2�Y2/� D EŒX1X2��EŒX1Y2�CEŒY1Y2��EŒY1X2� D 2Cov.X1;X2/:

Writing

.X1 � Y1/ D
Z 1

�1
.I fY1 � x1g � I fX1 � x1g/dx1;
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Fig. 9.11 The upper two scatter plots show samples of size 2,000 from two bivariate distributions
with standard normal marginal distributions. The left plot shows a sample from the bivariate
standard normal distribution with linear correlation coefficient 0:5 and the right plot shows a
sample from a bivariate Clayton copula with parameter � D 1, componentwise transformed to
standard normal marginal distributions. The two lower scatter plots show samples of size 2,000
from two bivariate distributions with Gamma.3; 1/marginal distributions. The left plot corresponds
to the copula of a bivariate standard normal distribution with linear correlation 0:5, and the right
plot corresponds to the copula of the vector .U1; U2/ such that .1 � U1; 1 � U2/ has a bivariate
Clayton copula with parameter � D 1

and similarly for .X2 � Y2/, we find that

EŒ.X1�Y1/.X2�Y2/�

D E

�Z 1

�1
.I fY1�x1g�I fX1�x1g/dx1

Z 1

�1
.I fY2�x2g�I fX2�x2g/dx2



D E

�Z 1

�1

Z 1

�1
.I fY1�x1g�I fX1�x1g/.I fY2�x2g�I fX2�x2g/dx1dx2





9.4 Copulas 313

D
Z 1

�1

Z 1

�1
EŒI fY1�x1g�I fX1�x1g�EŒI fY2�x2g�I fX2�x2g�dx1dx2

D 2

Z 1

�1

Z 1

�1
.F.x1; x2/� F1.x1/F2.x2//dx1dx2;

from which the conclusion follows. �

To determine which joint distribution function gives the minimal and maximal
covariance (and therefore also linear correlation), we need to determine sharp upper
and lower bounds on F in terms of F1 and F2. Note that

min.P.X1 � x1/;P.X2 � x2// � P.X1 � x1;X2 � x2/

D 1 � P.X1 > x1 or X2 > x2/

� 1 � .P.X1 > x1/C P.X2 > x2//

D P.X1 � x1/C P.X2 � x2/� 1;

so

max.F1.x1/C F2.x2/� 1; 0/ � F.x1; x2/ � min.F1.x1/; F2.x2//: (9.15)

If .X1;X2/ D .F�1
1 .U /; F �1

2 .U //, then statement (i) of Proposition 6.1 implies that

F.x1; x2/ D P.F�1
1 .U / � x1; F

�1
2 .U / � x2/

D P.U � F1.x1/; U � F2.x2//

D min.F1.x1/; F2.x2//;

so the upper bound is attained. In this case, X1 and X2 are said to be comonotonic.
If .X1;X2/ D .F�1

1 .U /; F �1
2 .1�U //, then statement (i) of Proposition 6.1 implies

that

F.x1; x2/ D P.F �1
1 .U / � x1; F

�1
2 .1 � U / � x2/

D P.U � F1.x1/; 1 � U � F2.x2//

D max.F1.x1/C F2.x2/ � 1; 0/;
so the lower bound is also attained. In this case, X1 and X2 are said to be
countermonotonic.

Proposition 9.9. Let F1 and F2 be distribution functions for random variables with
nonzero finite variances. The set of linear correlation coefficients �.F / for the set
of bivariate distribution functions F with marginal distribution functions F1 and F2
form a closed interval Œ�min; �max� with 0 2 .�min; �max/ such that �.F / D �min if
and only if F.x1; x2/ D max.F1.x1/C F2.x2/ � 1; 0/ and � D �max if and only if
F.x1; x2/ D min.F1.x1/; F2.x2//.
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Proof . The existence of attainable minimum and maximum linear correlation values
�min; �max follows immediately from Proposition 9.8 and the bounds in (9.15).
Taking F.x1; x2/ D F1.x1/F2.x2/ shows that 0 2 Œ�min; �max�. By Proposition 9.8,
�max D 0 would imply that min.F1.x1/; F2.x2// D F1.x1/F2.x2/ for all x1; x2,
which in turn implies that either F1 or F2 takes only the values 0 and 1. Such
distribution functions correspond to constant random variables for which the
variance is zero. We conclude that �max >0. A similar argument shows that �min < 0.
It remains to show that any value in Œ�min; �max� is attainable. For � 2 Œ0; 1� the
function

F�.x1; x2/ D �max.F1.x1/C F2.x2/� 1; 0/C .1 � �/min.F1.x1/; F2.x2//

is a distribution function since it is the distribution function of the random vector

I.F�1
1 .U /; F�1

2 .1 � U //C .1 � I /.F �1
1 .U /; F �1

2 .U //;

where I and U are independent, I takes the value 1 with probability � and the value
0 otherwise, andU is uniformly distributed on .0; 1/. Moreover,F�.x1; 1/ D F1.x1/

and F�.1; x2/ D F2.x2/. Varying � 2 Œ0; 1� shows that all values in the interval
Œ�min; �max� are attainable correlation values. �
Example 9.17 (A bad stress test). Consider potential aggregate losses X and Y
in two lines of business for an insurance company. Suppose that X is Exp.˛/-
distributed and that Y is Pa.˛/-distributed with an unspecified dependence structure.
To perform a stress test, the chief risk officer asks an actuary to assign a high linear
correlation to the pair .X; Y / and study the effect on the quantile values for the
sum X CY . This problem is ill-posed. The correlation coefficient does not exist for
˛ � 2 since

EŒY 2� D lim
x!1

Z x

1

y2˛y�˛�1dy D lim
x!1

˛

2 � ˛ .x
2�˛ � 1/

does not exist finitely for ˛ � 2. Moreover, for ˛ > 2 not all correlation values
are possible for the pair .X; Y /, and for each attainable correlation value there
are infinitely many possible joint distributions for .X; Y / that may produce very
different distributions for X C Y .

To compute the upper bound �max of the attainable correlation values, we note
that Y dD eX and that X and Y are comonotonic if Y D eX . In particular, �max D
Cor.X; eX/. The means and variances of the Exp.˛/ and Pa.˛/ distributions are
given by

EŒX� D 1

˛
; Var.X/ D 1

˛2
; EŒeX � D ˛

˛ � 1
; Var.eX/ D ˛

.˛ � 1/2.˛ � 2/
;
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Fig. 9.12 The upper two plots show histograms of the distribution of X C Y , based on samples
of size 106 and with the values corresponding to very high quantiles omitted, where X is Exp.˛/-
distributed and Y is Pa.˛/-distributed with ˛ D 2:1. The left histogram corresponds to Y D eX ,
and the right histogram corresponds toX and Y independent. Lower right plot: empirical quantiles
of X C eX divided by empirical quantiles of X C Y withX and Y independent. Lower right plot:
�max as a function of ˛

and integration by parts can be used to compute the covariance

Cov.X; eX/ D EŒXeX �� EŒX�EŒeX � D
Z 1

0

x˛e.1�˛/xdx � 1

˛ � 1
D 1

.˛ � 1/2
:

We find that

�max D Cov.X; eX/

Var.X/1=2 Var.eX/1=2
D .˛2 � 2˛/1=2

˛ � 1 :

The lower right plot in Fig. 9.12 shows �max as a function of ˛. For instance, ˛ D 2:1

gives �max � 0:4, which may indicate weak dependence, although it corresponds to
comonotonicity. The histograms in Fig. 9.12 show the distribution of X C Y in the
case of comonotonicity (left plot) and independence (right plot) for X and Y for
˛ D 2:1.
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Example 9.18 (Correlation and causality). If we analyze quarterly data of changes
in the 3-month, zero-coupon bond rate for government bonds and quarterly data
of log returns of the country’s stock market index, then it is likely that a bivariate
autoregressive model of order 1, AR(1), gives a rather good fit. With X1

t and X2
t

denoting the change in the 3-month rate and the index log return, respectively, from
quarter t � 1 to t , consider the model

�
X1
t

X2
t

�
D
�
0:45 0:02

�9:2 0:35
��

X1
t�1

X2
t�1

�
C
�
Z1
t

Z2
t

�
;

or in matrix form Xt D AXt�1 C Zt , where the Zk are independent and identically
distributed and

Cov.Zt / D
�
2 � 10�5 0

0 10�2
�
:

We find that

Xt D AXt�1 C Zt D A.AXt�2 C Zt�1/C Zt D � � � D
1X

kD0
AkZt�k:

In particular,

Cov.Xt / D
1X

kD0
Ak Cov.Zt /.Ak/T �

�
3:18 � 10�5 �2:82 � 10�5

�2:82 � 10�5 1:47 � 10�2
�
;

which corresponds to a linear correlation coefficient Cor.X1
t ; X

2
t / � �0:04.

However,

Cov.X2
t ; X

1
t�1/ D Cov.�9:2X1

t�1 C 0:35X2
t�1 CZ2

t ; X
1
t�1/

D �9:2Var.X1
t /C 0:35Cov.X1

t ; X
2
t /;

which gives

Cor.X2
t ; X

1
t�1/ D �9:2

�
Var.X1

t /

Var.X2
t /

�1=2
C 0:35Cor.X1

t ; X
2
t / � �0:44

reflecting the fact that the stock market typically reacts negatively to increasing
interest rates (the present value of future dividends decreases) and positively to
decreasing interest rates. Similarly, Cor.X1

t ; X
2
t�1/ � 0:41, which may reflect the

fact that central banks raise interest rates to cool down an overheated economy and
lower interest rates to boost a struggling economy. The main point is that the linear
correlation coefficient Cor.X1

t ; X
2
t / � �0:04 that could be estimated on the pairs

of interest rate changes and index log returns says very little about the dependencies
between interest rate changes and index log returns. Here we have two rather strong
causal dependencies that essentially net out when only considering the dependence
among the components of the random vector .X1

t ; X
2
t /.
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Fig. 9.13 q–q plots of simulated samples of size 2;000 against a normal distribution with zero
mean and variance 55. The first distribution (left) is the sum of the components of a ten-dimensional
standard normal distributed vector with pairwise linear correlation 0:5. The second distribution
(right) is the sum of the components on a ten-dimensional random vector with standard normal
univariate marginal distributions and the dependence structure of a ten-dimensional Student’s t
distribution with one degree of freedom and pairwise linear correlation 0:5

Example 9.19 (Asymptotic dependence). We know from Proposition 9.5 that the
components of a bivariate standard normally distributed vector .X1;X2/ with linear
correlation � < 1 are asymptotically independent in the sense that limx!�1 P.X2 �
x j X1 � x/ D 0. In this case, an extreme value for one component is not likely
to make the other component take an extreme value. Combining Proposition 9.6
and Example 8.2 implies that the components of a bivariate standard Student’s
t�-distributed vector .Y1; Y2/ with linear correlation � 2 .0; 1/ are asymptotically
dependent in the sense that limx!�1 P.Y2 � x j Y1 � x/ D � > 0. In this case, an
extreme value for one component makes it likely that the other component will take
an extreme value.

Consider the random vector .U1; U2/D .˚.X1/; ˚.X2//, whose distribution
function is called a Gaussian copula, and the random vector .V1; V2/ D
.t�.Y1/; t�.Y2//, whose distribution function is called a t� copula. If G is a
distribution function and p 2 .0; 1/ is small, then the probability that both
components of the vector .Z1;Z2/ D .G�1.V1/; G�1.V2// take values smaller
than G�1.p/ is approximately

P.Z1 � G�1.p/;Z2 � G�1.p// D P.V1 � p/ P.V2 � p j V1 � p/ � �p;

whereas the corresponding probability of joint extremes for the vector .W1;W2/ D
.G�1.U1/; G�1.U2// is of the order p2. As a consequence, the left tail of Z1 C Z2
will be heavier than that of W1 C W2. The influence of the (lack of) asymptotic
dependence of the (Gaussian) t� copula of a random vector on the tail behavior of
the sum of its components is valid for vectors of arbitrary dimension. Figure 9.13
illustrates this effect graphically in terms of q–q plots for 10-dimensional random
vectors Z and W, whereG D ˚ is the standard normal distribution function and the
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underlying multivariate standard normally distributed X and Student’s t1-distributed
Y both have pairwise linear correlation parameter � D 0:5. With R denoting the
linear correlation matrix with off-diagonal entries 0:5,

Z1 C � � � CZ10
dD .1TR1/1=2Z1

is N.0; 55/-distributed.

Example 9.20 (Default risk). Consider a portfolio of corporate loans of a retail
bank. Suppose there are n loans and let, for k D 1; : : : ; n, Xk be an indicator that
takes the value 1 if the kth obligor has defaulted on its loan at the end of the year,
and 0 otherwise. Suppose also that the default probabilities pk D P.Xk D 1/ can
be accurately estimated and may be considered as known. A common estimation
approach is to divide the obligors into m homogeneous groups so that all obligors
belonging to the same group have the same default probability. The estimates of
default probabilities can then be based on the relative frequencies of defaults over
the years for the different groups.

The random variable N D X1 C � � � C Xn, representing the total number of
defaults within the current year, is likely to be of interest to the bank. However,
the default probabilities only determine the marginal distributions and not the
full multivariate distribution of the random vector .X1; : : : ; Xn/. To specify a
multivariate model for the default indicators, it is common to consider a vector
.Y1; : : : ; Yn/ of so-called latent variables. The latent variable Yk may represent the
difference between the values of the assets and liabilities of the kth obligor at the
end of the year, and a threshold dk is determined so that Yk � dk corresponds to
default for obligor k. We may now express the probability that the first k among the
n loans default as, assuming that the Yk have continuous distribution functions,

p1:::k D P.Y1 � d1; : : : ; Yk � dk/

D C.P.Y1 � d1/; : : : ;P.Yk � dk/; 1; : : : ; 1/

D C.p1; : : : ; pk; 1; : : : ; 1/;

where C denotes the copula of .Y1; : : : ; Yn/. Joint default probabilities of this type
will depend heavily on the choice of copula C . To illustrate this point, we consider
a numerical example.

Consider a loan portfolio with n D 1;000 obligors, and suppose that the default
probability of each obligor is equal to p D 0:05, i.e., pk D 0:05 for each k.
We consider four different copula models for the latent variable vector: (a) C is
a Gaussian copula with pairwise correlation parameter � D 0, (b) C is a Gaussian
copula with pairwise correlation parameter � D 0:1, (c) C is a Student’s t3 copula
with pairwise correlation parameter � D 0, and (d) C is a Student’s t3 copula with
pairwise correlation parameter � D 0:1.

For each model we generate a sample of size 105 from the resulting model for
N , the total number of defaults, and illustrate the distribution of N in terms of the
histograms shown in Fig. 9.14. The histograms show clearly that zero correlation for
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Fig. 9.14 The distribution of the number of defaults is illustrated in histograms based on samples
of size 105 for the sum of 103 default indicators. The histograms correspond to the following latent
variable models: Gaussian with � D 0 (upper left), Gaussian with � D 0:1 (upper right), Student’s
t3 with � D 0 (middle and lower left), Student’s t3 with � D 0:1 (middle and lower right)

the underlying Student’s t distribution is far from independence. For the Gaussian
copula, zero correlation is equivalent to independence. The histograms also show
the impact on the distribution of N of the small change in the correlation parameter
� from 0 to 0:1.
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9.5 Models for Large Portfolios

In this section we investigate models for the aggregated loss Sn D X1C� � �CXn for
a large homogeneous portfolio over a specified time period. Here Xk represent the
loss from an investment in the kth asset. As an example we consider the aggregate
loss of a bank’s portfolio of loans to small and medium size firms due to failure of
borrowers to honor their contracted obligations to the lender (the bank). The number
of assets, n, is thought of as very large, and we do not have enough information to
accurately specify an n-dimensional distribution for .X1; : : : ; Xn/. We will present
a cruder approach based on conditional independence.

In many cases, it is not reasonable to assume that theXk are independent because
the losses may depend on the state of the economy. However, it may be reasonable
to assume that the Xk are conditionally independent, given the values of a set of
economic indicators (e.g., current and future values of interest rates for different
maturities, capacity utilization in the industry, GDP growth). Let the components
of random vector Z represent the future values of the economic indicators, and let
fn.Z/ D EŒSn=n j Z� be the expected average loss conditional on the economic
indicators. When n is large, it seems plausible that the diversification effect causes
the idiosyncratic risks to be small and the main risk drivers are captured by vector Z.
This motivates the approximation Sn � nfn.Z/. A mathematical motivation for the
approximation Sn � nfn.Z/ is given in the following result.

Proposition 9.10. Let X1; : : : ; Xn be random variables that are conditionally
independent given random vector Z. Write Sn D X1 C � � � C Xn and fn.Z/ D
EŒSn=n j Z�. Then

P.jSn=n� fn.Z/j > "/ �
Pn

kD1 EŒVar.Xk j Z/�
.n"/2

; " > 0:

If, in addition, the Xk are identically distributed, then f D fn does not depend on
n and

P.jSn=n� f .Z/j > "/ � EŒX2
1 � � EŒf .Z/2�
n"2

; " > 0:

If, further, the Xk take values in f0; 1g, then

P.jSn=n� fn.Z/j > "/ � EŒf .Z/� � EŒf .Z/2�
n"2

:

Proof . An application of Chebyshev’s inequality gives

P.jSn=n� fn.Z/j > "/ D EŒP.jSn � nfn.Z/j > n" j Z/�

� EŒVar.Sn j Z/�
n2"2

:
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Because the Xk are conditionally independent given Z, it follows that

EŒVar.Sn j Z/� D
nX

kD1
EŒVar.Xk j Z/�;

which proves the first claim. The second claim follows from the first claim because

EŒVar.Xk j Z/�D EŒVar.X1 j Z/�D EŒEŒX2
1 j Z��.EŒX1 j Z�/2�D EŒX2

1 �� EŒf .Z/2�:

Moreover, if X1 takes a value in f0; 1g, then EŒX2
1 j Z� D EŒX1 j Z� D f .Z/. This

completes the proof. �

Proposition 9.10 not only motivates the approximation Sn � nfn.Z/; it also
provides an upper bound for tail probabilities for the aggregated loss Sn. For
instance, combining Proposition 9.10 and the inequality

P.Sn > s/ D P.Sn > s; jSn � nfn.Z/j � "n/C P.Sn > s; jSn � nfn.Z/j > "n/
� P.nfn.Z/ > s � "n/C P.jSn � nfn.Z/j > "n/; " > 0;

gives an upper bound for P.Sn > s/. The upper bound for the tail probability
gives an upper bound for the quantile. If the Xk are identically distributed and
conditionally independent given Z, then, with C D EŒX2

1 � � EŒf .Z/2�,

F�1
Sn
.q/ D minfs W FSn.s/ � qg

D minfs W P.Sn > s/ � 1 � qg
� minfs W P.nf .Z/ > s � "n/C C=."2n/ � 1 � qg
D n."C F�1

f .Z/.q C C=."2n///; " > 0:

In particular,

F�1
Sn
.q/ � nmin

">0

�
"C F �1

f .Z/.q C C=."2n//
�
; C D EŒX2

1 �� EŒf .Z/2�: (9.16)

The upper bound for quantile (9.16) can be used to derive upper bounds for risk
measures such as VaR and ES.

Example 9.21 (A large homogeneous loan portfolio). Consider a large portfolio of
loans to small and medium size firms and suppose that we want to analyze the
distribution of aggregate losses from now until 1 year from now due to defaults.
WriteXk for the loss on the kth loan and Sn D X1C� � �CXn for the aggregated loss.
In this case, Xk can be written as Xk D LkIk, where Ik is the default indicator that
takes the value 1 if the kth obligor defaults and 0 otherwise, and Lk is the amount
of money lost if the kth obligor defaults. If the default probabilities P.Ik D 1/ are
of similar size and the loss given default variables Lk are statistically similar, then
the loan portfolio can be considered homogeneous.
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A particularly nice situation is where the Lk are identical and deterministic,
Lk D l , for each k D 1; : : : ; n. In this case

fn.Z/ D E

�
Sn

n
j Z


D E

"
1

n

nX

kD1
LkIk j Z

#
D l E

�
Nn

n
j Z

;

where Nn D I1 C � � � C In is the number of defaults. The fraction of defaults,
given the economic indicators, is written as pn.Z/ D EŒNn=n j Z�. That is,
fn.Z/ D lpn.Z/, and the aggregated loss can be approximated by Sn � nlpn.Z/.
If, in addition, the default indicators are identically distributed, then pn.Z/ D p.Z/
does not depend on n, and the last statement of Proposition 9.10 leads to

P.jNn=n� p.Z/j > "/ � EŒp.Z/.1 � p.Z//�
n"2

:

9.5.1 Beta Mixture Model

In this section, we will illustrate the modeling approach presented in the previous
example for a specific choice of model for N D Nn defaults and p.Z/ fraction
of defaults. Write N D I1 C � � � C In, where the Ik are identically distributed,
independent, and Bernoulli distributed with parameterZ conditional on the random
variableZ D f .Z/, which we take to be Beta.a; b/-distributed. We do not give any
economic interpretation of the Beta.a; b/-distributedZ and choose this model only
because it is a particularly simple model to work with in terms of both analytical
and numerical computations.

The assumption that Z is Beta.a; b/-distributed implies that Z has the density
function

g.z/ D 1

ˇ.a; b/
za�1.1 � z/b�1; a; b > 0; z 2 .0; 1/;

where ˇ.a; b/ can be expressed in terms of the Gamma function as

ˇ.a; b/ D
Z 1

0

za�1.1 � z/b�1dz D � .a/� .b/

� .a C b/
:

Using the property � .z C 1/ D z� .z/ of the Gamma function we find that

EŒZ� D 1

ˇ.a; b/

Z 1

0

za.1 � z/b�1dz D ˇ.aC 1; b/

ˇ.a; b/
D a

aC b
;

EŒZ2� D ˇ.aC 2; b/

ˇ.a; b/
D a.aC 1/

.aC b/.aC b C 1/
:
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Fig. 9.15 Distribution functions (left) and quantile functions (right) for beta-binomial distribu-
tions with n D 104 , p D 0:05, and .a; b/ D ..1�c/=c/.p; 1�p/ for c D 0; 0:001; 0:01; 0:05; 0:1

(c D 0 gives the Bin.n; p/ distribution)

Conditional on Z, the number of defaults N has a Bin.n;Z/ distribution, and
therefore the distribution of N is given by

P.N D k/ D
 
n

k

!Z 1

0

zk.1 � z/n�kg.z/dz

D
 
n

k

!
1

ˇ.a; b/

Z 1

0

zaCk�1.1 � z/n�kCb�1dz

D
 
n

k

!
ˇ.a C k; b C n � k/

ˇ.a; b/
;

which is called the beta-binomial distribution. The distribution function of the beta-
binomial distribution is illustrated in Fig. 9.15. The expected number of defaults is
easily computed:

EŒN � D EŒEŒN j Z�� D EŒnZ� D n
a

a C b
:

In addition, the individual default probability is P.I1 D 1/ D EŒEŒI1 j Z�� D
EŒZ�, the pairwise default probability is P.I1 D I2 D 1/ D EŒZ2�, and the default
correlation is

Cor.I1; I2/ D EŒI1I2� � EŒI1�2

EŒI 21 � � EŒI1�2
D EŒZ2� � EŒZ�2

EŒZ� � EŒZ�2
D 1

a C b C 1
:

To analyze the model, we fix the common individual default probability at p D
P.I1 D 1/. This implies that we allow only parameter pairs .a; b/ for which p D
a=.aC b/, i.e., pairs .a; b/ satisfying

.a; b/ D 1 � c
c

.p; 1 � p/; c 2 .0; 1/;
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where c are possible values for the default correlation Cor.I1; I2/. We can now study
the beta-binomial distribution and compare the quantile F�1

N .q/ with its estimate
nF �1

Z .q/. We find that for q 2 Œ0:9; 0:99�, the values of F�1
N .q/=F�1

nZ .q/ are in the
intervals

F�1
N .q/=F�1

nZ .q/ 2

8
ˆ̂<

ˆ̂:

.1:006675; 1:015625/ for c D 0:001;

.1:001286; 1:003138/ for c D 0:01;

.1:000199; 1:000966/ for c D 0:05;

.1:000023; 1:000610/ for c D 0:1:

In particular, the approximationN � nZ is very accurate. We also find that a small
change in the common default correlation coefficient between the Ik has a huge
effect on the distribution of N D I1 C � � � C In. This is seen in Fig. 9.15, which
shows distribution functions and quantile functions for beta-binomial models with
p D 0:05, n D 104, and different correlation coefficients. Figure 9.15 illustrates
clearly that only specifying the individual default probabilityp says very little about
the distribution of N . Every choice of .a; b/ D ..1 � c/=c/.p; 1 � p/, c > 0, gives
default probability p. Let Zc;p be Beta-distributed with the parameters a; b above.
Then, for every " > 0,

P.jZc;p � pj > "/ � Var.Zc;p/

"2
D p.1 � p/c

"2
:

In particular, if Nc;p is beta-binomially distributed with mixture variable Zc;p , then

P.Nc;p D k/ D E

" 
n

k

!
Zk
c;p.1 �Zc;p/

n�k
#

D E

" 
n

k

!
Zk
c;p.1 �Zc;p/

n�k I jZc;p � pj � c1=3

#

C E

" 
n

k

!
Zk
c;p.1 �Zc;p/

n�k I jZc;p � pj > c1=3
#

� max
jt j�c1=3

 
n

k

!
.p C t/k.1 � .p C t//n�k C p.1 � p/c1=3

!
 
n

k

!
pk.1 � p/n�k as c ! 0:

The lower bound is constructed similarly. We conclude that Nc;p converges in
distribution to Bin.n; p/ as c ! 0. This is also seen in Fig. 9.15.



9.7 Exercises 325

9.6 Notes and Comments

Much more material on elliptical distributions can be found in the book [16] by
Kai-Tai Fang, Samuel Kotz, and Kai Wang Ng.

For further material on multivariate elliptical and copula-based models, depen-
dence concepts, and applications in financial risk management we refer the reader
to the book [31] by Alexander McNeil, Rüdiger Frey, and Paul Embrechts. Much
material on models and methods for portfolio credit risk, which we have only
touched upon here, can be found in [31]. Moreover, techniques for parameter
estimation for copula models, a topic we have not considered at all, are presented
and illustrated in [31].

A statement equivalent to Proposition 9.6 appears in the book Chap. [12] by
Paul Embrechts, Alexander McNeil and Daniel Straumann It can be proved by
considering the conditional density of one component of a bivariate Student’s t-
distributed vector given a value of its other component. However, the asymptotic
dependence (or tail dependence) property of the Student’s t distribution is a conse-
quence of a more general fact that says that pairs of components of an elliptically
distributed random vector are asymptotically dependent if the distribution functions
of its components are regularly varying. A proof of this more general fact, which
also applies to Proposition 9.6, can be found in the article [22] by Henrik Hult and

Hong-Bin Fang, Kai-Tai Fang, and Samuel Kotz.
The reader seeking more information about copulas in general is encouraged to

consult the books [23] by Harry Joe and [35] by Roger Nelson.

9.7 Exercises

In the exercises below, it is assumed, whenever applicable, that you can take
positions corresponding to fractions of assets.

Exercise 9.1 (Risk minimization). Consider the value L of a liability and values
X1; : : : ; Xd of assets at time T > 0 that may be used to hedge the liability. Suppose
that L and the Xk have finite variances, and let � be a translation-invariant and
positively homogeneous risk measure.

(a) Show that if .X1; : : : ; Xd ; L/ has an elliptical distribution, then the portfolio
weights h0; h1; : : : ; hd minimizing

EŒ.h0 C h1X1 C � � � C hdXd �L/2�;
i.e., the optimal quadratic hedge, minimize �.h0 C h1X1 C � � � C hdXd �L/.

(b) Show, by an explicit example, that the conclusion in (a) does not hold in general
when .X1; : : : ; Xd ; L/ does not have an elliptical distribution.

Filip Lindskog. The statement in Proposition 9.7 appears in the book Chap. [25] by
Filip Lindskog, Alexander McNeil, and Uwe Schmock. and in the article [15] by
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Exercise 9.2 (Allocation invariance). Let X D .X1; : : : ; Xd /
T and Y D

.Y1; : : : ; Yd /
T be random vectors having normal variance mixture distributions

with identical dispersion matrices and identical location vectors R01, where R0 is
the return on a risk-free asset. Vectors X and Y represent returns on 2d risky assets.
Let VX.w/ and VY.w/ denote the values at the end of the investment horizon for
an investment of the capital V0 in positions in the risk-free asset and in the assets
with return vectors X and Y, respectively, where w is a vector of monetary portfolio
weights corresponding to the positions in the risky assets.

(a) Show that if � is a translation-invariant and positively homogeneous risk
measure, then

�.VX.w/ � V0R0/
�.VY.w/ � V0R0/ (9.17)

does not depend on the allocation of the initial capital or on the common
dispersion matrix of the return vectors.

(b) Suppose that X has a Student’s t distribution with four degrees of freedom, that
Y has a normal distribution, and that � D VaRp , and compute the expression
in (9.17) as a function of p for p � 0:05.

Exercise 9.3 (Asymptotic dependence). Consider a random vector .X1;X2/

whose components are equally distributed and use Propositions 9.5 and 9.6 to
compute limx!1 P.X2 > x j X1 > x/ in the following two cases:

(a) X1 and X2 are Student’s t-distributed with four degrees of freedom, and
.X1;X2/ has a Gaussian copula with linear correlation parameter 0:5.

(b) X1 and X2 are Student’s t-distributed with four degrees of freedom, and
.X1;X2/ has a Student’s t copula with linear correlation parameter 0:5 and
degrees of freedom parameter 6.

Exercise 9.4 (Comonotonic additive risk). Show that if X1 and X2 are comono-
tone random variables, then VaRp.X1 C X2/ D VaRp.X1/ C VaRp.X2/ and
�	.X1CX2/ D �	.X1/C�	.X2/ for any spectral risk measure �	 defined in (6.18).

Exercise 9.5 (Kendall’s tau). Let � be the Laplace transform of a strictly positive
random variable, and consider the random pair .U1; U2/ whose distribution function
is the copula C.u1; u2/ D �.��1.u1/C ��1.u2//.

(a) Show that 
.U1; U2/ D 4EŒC.U1; U2/� � 1.
(b) It can be shown that P.C.U1; U2/ � v/ D v ���1.v/=.��1/0.v/ for v in .0; 1/.

Use this relation to show that


.U1; U2/ D 1C 4

Z 1

0

��1.v/
.��1/0.v/

dv:

(c) Compute 
.U1; U2/ when C D CCl
� is a Clayton copula.
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Exercise 9.6 (Credit rating migration). Consider the two corporate bonds in
Exercise 4.6. Let the credit ratings be numbered from 1 to 4 and correspond to
the ratings Excellent, Good, Poor, and Default in Exercise 4.6. Let .X1;X2/ denote
the pair of credit ratings of the two issuers after 1 year with the distribution given in
Table 4.1.

(a) Find a copulaC such that P.X1 � x1;X2 � x2/ D C.P.X1 � x1/;P.X2 � x2//

for all .x1; x2/.
(b) The copulaC of .X1;X2/ in (a) can be well approximated by a Gaussian copula.

Investigate numerically what value of the correlation parameter in the Gaussian
copula gives a good approximation of the copula of .X1;X2/ in (a).

Exercise 9.7 (Portfolio default risk). Consider a latent variable model for a
homogeneous portfolio of n risky loans. Let p be the default probability for each
loan, let Y; Y1; : : : ; Yn be independent and standard normally distributed, and let
� 2 .0; 1/ be a parameter. The default indicators are modeled as

Xk D


1 if

p
�Y C p

1 � �Yk � ˚�1.p/;
0 otherwise;

(9.18)

where ˚ denotes the standard normal distribution function.

(a) Determine the random variable � D g.Y / such that the default indicators are
conditionally independent and Be.�/-distributed given� D � .

(b) Show that the following formula holds for the q-quantile of �:

F�1
� .q/ D ˚

�
˚�1.q/

p
�p

1 � �
C ˚�1.p/

1p
1 � �

�
:

(c) Consider a loan portfolio of a bank consisting of one thousand loans, each of
size one million dollars. Suppose that, for each of the loans, the probability of
default within 1 year is 3%, and in case of default the bank makes a loss equal
to 25% of the size of the loan. Suppose further that the bank makes a profit of
$10,000 per year from interest payments on each loan that does not default and
nothing on those that do. The bank decides to set aside an amount of buffer
capital that equals its estimate of ES0:01.S/, where S is the profit from interest
income minus the loss from defaults over a 1-year period. Estimate the size
of the buffer capital under the assumption that the default indicators are given
by (9.18) with � D 0:2 and that the bank may invest in a risk-free, 1-year,
zero-coupon bond with a zero rate of 3%.

Exercise 9.8 (Potential death spiral). Consider a life insurance company with a
liability cash flow with long duration. The value of the liability 1 year from now
is denoted by L and increases in value when interest rates decline. The premium
received for insuring the liability is V0 D 1:1EŒL�. The insurer invests its capital
in a fixed-income portfolio with 1-year return R1 and in a stock market portfolio
with 1-year return R2. The vector .R1;R2; L/ is, for simplicity, assumed to have a
multivariate Student’s t distribution with four degrees of freedom. Its mean vector
and correlation matrix are given by
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E

0

@
R1
R2

L

1

A D
0

@
1:02

1:10

1:2 � 107

1

A and Cor

0

@
R1
R2

L

1

A D
0

@
1 0:3 0:9

0:3 1 0:2

0:9 0:2 1

1

A :

The standard deviations of R1;R2, and L are given by 0:005, 0:05, and 1:2 � 105,
respectively.

Let w1;w2 be the amount invested in the fixed-income portfolio and the stock
market portfolio, respectively. The insurer invests the initial capital V0 in the two
portfolios so that the expected value of its asset portfolio has an expected return of
1:06.

(a) Determine w1 and w2.
(b) Is the insurer solvent in the sense that VaR0:005.A� L/ � 0?
(c) Suppose there is an instantaneous decline of 15% in the value of the stock

market portfolio. Does the insurer remain solvent? If not, determine how the
insurer must adjust the asset portfolio weights w1 and w2 simply to become
solvent in the sense that VaR0:005.A� L/ D 0.

(d) Compute the expected return of the insurer’s adjusted asset portfolio determined
in (c).

Comment: A simultaneous decline in the value of stocks and in interest rates
is particularly dangerous to an insurer with a liability having a long duration.
The reduction in the value of the insurer’s capital forces the insurer to adjust its
asset allocation away from stocks to less risky fixed-income instruments to remain
solvent. The adjusted allocation has a lower expected return, which makes it difficult
for the insurer to make up for the suffered losses. Moreover, insurance companies
often have large amounts of capital invested in the stock market, and a forced sale
of large positions in stocks and an increase in the demand for safe bonds could
reduce both the prices of stocks and the interest rates even more. This phenomenon,
sometimes referred to as a death spiral, makes the insurer stuck in a near-insolvent
state with an asset portfolio that is unlikely to generate good returns.

Project 10 (Scenario-based risk analysis). Consider a stylized model of a life
insurer. The insurer faces a liability cash flow of 100 each year for the next 30
years. The current zero rates are given in Table 9.1, from which the current value
of the liability can be computed. In the market there is a short supply of bonds
with maturities longer than 10 years. Therefore, the insurer has purchased a bond
portfolio with payments only within the next 10 years. The bond portfolio has the
cash flow given in Table 9.1. The insurer has also invested in a stock portfolio. The
initial capital of the insurer is 30% more than the current value of the liability. The
insurer invests 70% of the initial capital in the bond portfolio and 30% of the initial
capital in the stock portfolio. The objective in this project is to identify the most
dangerous extreme scenario.

Suppose that there are two risk factors in the model, the log return Y1 of the stock
portfolio and the size Y2 of a parallel shift of the zero-rate curve. The risk factors are
assumed to have a bivariate normal distribution, means �1; �2, standard deviations
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Table 9.1 Annual cash flow of bond portfolio and current zero rates

Time 1 2 3 4 5 6 7 8 9 10
Bond payment 4 2 3 1 4 2 3 1 5 5
Zero rate (%) 2.86 3.24 3.55 3.93 4.27 4.62 4.96 5.30 5.55 5.80

Time 11 12 13 14 15 16 17 18 19 20
Bond payment 0 0 0 0 0 0 0 0 0 0
Zero rate (%) 6.05 6.30 6.45 6.60 6.74 6.90 7.00 7.21 7.32 7.32

Time 21 22 23 24 25 26 27 28 29 30
Bond payment 0 0 0 0 0 0 0 0 0 0
Zero rate (%) 7.40 7.48 7.56 7.64 7.70 7.77 7.83 7.90 7.95 8.00

�1; �2, and linear correlation coefficient � given by

�1 D 0:08; �2 D 0; �1 D 0:2; �2 D 0:01; � D 0:1:

Consider equally likely extreme scenarios in the following sense. The risk factors
can be represented via two independent standard normally distributed random
variablesZ1 and Z2 as

Y1 D �1 C �1Z1;

Y2 D �2

�
�Z1 C

p
1 � �2Z2

�
:

All scenarios with
q
Z2
1 CZ2

2 D 3 can be viewed as equally likely extreme scenar-
ios corresponding to three-standard-deviation movements. The extreme scenarios
for Z1;Z2 translate into extreme scenarios for the risk factors Y1; Y2 by the relation
above.

(a) Plot the value of the insurer’s portfolio, assets minus liabilities, in 1 year for all
the equally likely extreme scenarios.

(b) Identify which scenario for Y1; Y2 leads to the worst outcome for the value of
the insurer’s assets minus that of the liabilities in 1 year.

(c) Repeat the analysis outlined above and find the most dangerous scenario when
.Y1; Y2/ has another bivariate elliptical distribution.

Project 11 (Tail dependence in large portfolios). Let Z1; : : : ; Z50 represent log
returns from today until tomorrow for 50 hypothetical financial assets. Suppose
that Zk has a Student’s t distribution with three degrees of freedom and standard
deviation 0:01 for each k and that 
.Zj ;Zk/ D 0:4 for j ¤ k.

Consider an investment of $20,000 in long positions in each of the assets. Let
V0 and V1 be the portfolio value today and tomorrow, respectively. Investigate the
effect of tail dependence on the distribution of the portfolio value V1 tomorrow
and the distribution of the portfolio log return log.V1=V0/ by simulating from the
distribution of V1. Simulate from the distribution of V1 under the assumption that
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(a) .Z1; : : : ; Z50/ has a Gaussian copula.
(b) .Z1; : : : ; Z50/ has a t4-copula.
(c) .Z1; : : : ; Z50/ has a Clayton copula.
(d) How large a sample size is needed to get stable estimates of VaR0:01.V1 � V0/

and ES0:01.V1�V0/? Explain the differences in the estimates of VaR0:01.V1�V0/
and ES0:01.V1 � V0/ in the three cases (a)–(c).

(e) Compare the results in (a)–(d) to the results when $1 million is invested in only
one of the assets.

(f) Suppose that the Zk are equally distributed and have a left-skewed polynomial
normal distribution with zero mean and standard deviation 0:01. Study and
explain the effect of the log-return distribution of the Zk on the distribution
of V1 and the portfolio risk by simulating from the distribution of V1 under
assumptions (a)–(c).
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A
absolute risk premium, 132
Allais paradox, 130
annuity, 80
arbitrage, 6, 15, 29, 30, 130
Archimedian copula, 309
Arrow–Pratt risk aversion coefficient, 132
ask price, 24
asymptotic dependence, 282, 317
autoregressive model, 316

B
beta mixture model, 322
bid price, 24
binary option, 18
Black’s formula, 21
Black–Scholes formula, 22
bootstrap, 10
bootstrap, nonparametric, 216
bootstrap, parametric, 246

C
central limit theorem, 262
certainty equivalent, 132
chain ladder, 220
Clayton copula, 310
coherent measure of risk, 162
collar, 29, 194
comonotonic, 313
conditional expectation, 40
confidence intervals, 214
continuous compounding, 4
convex function, 33
convex measure of risk, 161
convex set, 33

copula, 301
countermonotonic, 313
credit default swap, 155, 176, 177, 183
credit risk, 14, 30, 124, 193, 327
credit spread, 73
CVaR, 179

D
default correlation, 323
default risk, 30, 176, 318, 327
delta hedging, 62, 82, 83
deterministic cash flow, 4
digital option, 18
discount factor, 5
dispersion matrix, 277
diversification, 259, 261
dividend, 228
duration, 72

E
efficient frontier, 95, 122
elliptical distribution, 277
empirical distribution, 201
empirical expected shortfall, 211, 228
empirical quantile, 204
empirical spectral risk measure, 228
empirical tail conditional median,

226
empirical Value-at-Risk, 210, 226
European call option, 14
European derivative, 14
European put option, 14
excess distribution, 265
expected shortfall, 178
exponential distribution, 234
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exponential utility, 146, 153
extreme values, 253

F
forward price, 11
forward probability, 15
futures contract, 47, 80

G
gamma distribution, 234
Gaussian copula, 303, 317
generalized Pareto distribution, 265
goodness of fit, 237, 279

H
HARA utility function, 133
heavy tails, 254
historical simulation, 200, 211
homogeneous groups, 115, 116
homogeneous portfolio, 114

I
immunization, 68, 82
implied volatilities, 23
independence axiom, 131
interest rate swap, 13, 72

K
Kendall’s tau, 283

L
Lagrangian, 34
Laplace transform, 309
large portfolio, 112
large portfolios, 320
least squares, 243
linear correlation coefficient, 278
linear correlation parameter, 278
linear regression, 41
linearization, 174, 285
log return, 66
lognormal model, 20

M
maximization of expected utility, 128
maximization-of-expectation problem, 87, 96
maximum likelihood, 237

mean-variance risk measure, 164
minimization-of-variance problem, 87, 97
minimum variance portfolio, 90
monetary risk measure, 161
multivariate normal distribution, 119, 275
multivariate Student’s t distribution, 278

N
nonlife insurance, 57, 220
nonparametric bootstrap, 216
normal distribution, multivariate, 119, 275
normal variance mixture, 275, 278

O
one-fund theorem, 93
online sports betting, 19
optimal derivative position, 144, 156

P
parametric bootstrap, 246
Pareto distribution, 234
peaks over threshold method, 265
pension arrangement, 109
pension savings, 228
polynomial normal model, 249
principal component analysis, 74
probability transform, 166
pure endowment, 54
put spread, 172
put–call parity, 18

Q
quadratic hedging principles, 39
quadratic investment principles, 85
quantile transform, 166, 301
quantile-quantile plot, 236

R
rank correlation, 282
regular variation, 258
reinsurance, 192, 261
return, 86
risk aggregation, 291
risk aversion, 132
risk aversion function, 189
risk measurement principles, 159
risk neutral, 145
risk reversal, 30
risk-free bond, 4
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S
scenario-based risk analysis, 328
Sharpe ratio, 93
short-selling, 6
solvency, 162, 293
spectral risk measure, 188, 300
spherical distribution, 274
sports betting, 30, 141, 142
spot rate, 5
stochastic volatility, 295
stress test, 314
structured product, 173
Student’s t copula, 303
Student’s t distribution, multivariate,

278
subadditive, 162, 260
subexponential distribution, 255
swap rate, 14
swap zero rate, 14

T
tail conditional median, 192
tail dependence, 282, 329

thinning, 200, 211
trade-off problem, 87, 92

U
uniform distribution on a sphere, 275
unit-linked insurance, 43
utility-based investment principles, 127
utility function, 128

V
Value-at-Risk, 165
volatility, 149, 295, 298
volatility smile, 24, 156

W
Weibull distribution, 234
whole life insurance, 44, 55

Z
zero rate, 5
zero-coupon bond, 4
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