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Problems in Diophantine Approximation

7.1 Introduction

In this chapter, we examine three partial manuscripts on Diophantine
approximation found in [269]. All are untitled and in rough form.

The first partial manuscript is on pages 262–265. At the top of page 262
are two appended notes. The first, possibly in the handwriting of G.H. Hardy’s
former research student, Gertrude Stanley, reads (in part) “Paper a lit-
tle difficult to understand after the first page.” The second, definitely in
the handwriting of Hardy, surmises “Odd problem. I don’t profess to know
whether there’s much to it.”

On these four pages, Ramanujan considers the problem of finding the
maximum value of a certain polynomial when the variable x is a rational num-
ber with prescribed denominator.We do not know what motivated Ramanujan
to consider this particular problem, and it is natural to ask whether Ramanu-
jan’s analysis can be extended to other algebraic numbers. Probably, this is
the case, but it appears to be complicated to state and prove a general the-
orem. Although this problem is outside the scope of contemporary research
in Diophantine approximation, because only elementary number theory and
elementary calculus are involved, we hope that readers will find Ramanujan’s
problem and its analysis to be appealing. We have decided that it would
be unwise to dwell on every inaccuracy or vague statement in Ramanujan’s
manuscript. We emphasize that the principal ideas are due to Ramanujan, but
that it took considerable effort to interpret and make them precise. The proofs
are substantially due S. Kim and the second author [56].

The second manuscript is on pages 266 and 267 of [269]. This short
manuscript is more precisely and clearly written. Ramanujan considers the
Diophantine approximation of the exponential function e2/a, where a is
a nonzero integer. Remarkably, he obtains the best possible Diophantine
approximation to e2/a, a result that was first established in the literature
by C.S. Davis [102] in 1978, probably about 60 years after Ramanujan had
proved it. Our account of this manuscript is taken from a paper [61] that
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164 7 Problems in Diophantine Approximation

Berndt coauthored with S. Kim and A. Zaharescu. This paper contains
further results. In particular, the authors examine how often the convergents
to the (simple) continued fraction of e coincide with partial sums of e. More-
over, they prove a conjecture of J. Sondow [292] asserting that only two partial
sums of the Maclaurin series for e coincide with partial quotients of the simple
continued fraction of e.

We have been unable to provide meaning to the third manuscript, which is
on page 343. Its claims are wrong, and so it remains a challenge to determine
whether something meaningful can be ascertained.

7.2 The First Manuscript

7.2.1 An Unusual Diophantine Problem

We begin by quoting Ramanujan at the beginning of his manuscript.

Let us consider the maximum of

εm(1− εm)(1− 2εm) (7.2.1)

when εm is a positive proper fraction and m and mεm are positive
integers. Let vm be the maximum of (7.2.1). If we do not assume that
mεm is rational, we get that

εm =
3−√

3

6
, vm =

1

6
√
3
. (7.2.2)

Here, as a positive proper fraction, Ramanujan intends εm to be a rational
number (not necessarily in lowest terms) with denominator m. If

f(x) := x(1− x)(1 − 2x) = x− 3x2 + 2x3, (7.2.3)

then it is easily seen that x = (3 − √
3)/6 yields a local maximum of f(x).

Ramanujan desires to find the maximum value vm of (7.2.3) when approxi-
mating (3 − √

3)/6 by a rational number εm with denominator equal to m.
He then claims that εm is either

gm(ε) :=

m ·
(
3−√

3

6

)
− ε

m
or gm(ε − 1) =

m ·
(
3−√

3

6

)
+ 1− ε

m
.

(7.2.4)
Here, we can see that ε is completely determined bym.We can assume that

0 < ε < 1, so that the two values in (7.2.4) give the two best rational approxi-
mations to (3−√

3)/6 with denominator m. In the first instance of (7.2.4), the
approximation is from below, while in the second instance, the approximation
is from above. Ramanujan then claims the following.
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Proposition 7.2.1. If

εm =

m ·
(
3−√

3

6

)
− ε

m
, then vm =

1

6
√
3
− ε2

m2

√
3− 2

ε3

m3
, (7.2.5)

and if

εm =

m ·
(
3−√

3

6

)
+1−ε

m
, then vm =

1

6
√
3
− (1−ε)2

m2

√
3+2

(1−ε)3

m3
.

(7.2.6)

Proof. With the use of (7.2.3), both of these calculations are straightforward.
��

We note that by replacing ε by ε−1 in the value of vm in (7.2.5), we obtain
the value of vm in (7.2.6).

Proposition 7.2.2.

If ε <
1

2
− m−√

m2 − 1

2
√
3

, then vm in (7.2.5) is greater; (7.2.7)

if ε >
1

2
− m−√

m2 − 1

2
√
3

, then vm in (7.2.6) is greater; (7.2.8)

and

if ε =
1

2
− m−√

m2 − 1

2
√
3

, then the values of vm in (7.2.5) and (7.2.6)

are identical. (7.2.9)

Proof. An elementary calculation shows that

1

6
√
3
− ε2

m2

√
3− 2

ε3

m3
>

1

6
√
3
− (1− ε)2

m2

√
3 + 2

(1− ε)3

m3
(7.2.10)

if and only if

6ε2 + (2m
√
3− 6)ε+ 2−m

√
3 < 0. (7.2.11)

It is easily checked that the roots of 6ε2 + (2m
√
3− 6)ε+ 2−m

√
3 = 0 are

r1, r2 :=
1

2
+

−m±√
m2 − 1

2
√
3

, with r2 < r1.

Thus, (7.2.10) is true if and only if r2 < ε < r1. Since the root that we seek is
r1, we see that the statements in Proposition 7.2.2 follow. ��
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Now, if

0 < ε <
1

2
− m−√

m2 − 1

2
√
3

,

then

m− 1

2
−
√

m2 − 1

12
< mεm < m

3−
√
3

6
<

m+ 1

2
−
√

m2 − 1

12
.

Also, if
1

2
− m−√

m2 − 1

2
√
3

< ε < 1,

then

m− 1

2
−
√

m2 − 1

12
< m

3−
√
3

6
< mεm <

m+ 1

2
−
√

m2 − 1

12
.

Thus, if

ε �= 1

2
− m−√

m2 − 1

2
√
3

,

we conclude that the maximum vm occurs when

εm =
1

m

[
m+ 1

2
−
√

m2 − 1

12

]
. (7.2.12)

We also note that for those values of m for which

ε =
1

2
− m−√

m2 − 1

2
√
3

, (7.2.13)

by (7.2.9), we can choose either expression from (7.2.4) for εm. Thus,

εm =
1

m

(
m− 1

2
−
√

m2 − 1

12

)
or

1

m

(
m+ 1

2
−
√

m2 − 1

12

)
. (7.2.14)

We remark that by (7.2.4) and (7.2.13), we do not need greatest integer
functions in (7.2.14). Hence, we have established the following proposition.

Proposition 7.2.3. The formula for εm in (7.2.12) is valid for all values of
m, and in the case of (7.2.13), εm can be determined by the alternative choices
in (7.2.14).

In conclusion, we use (7.2.12) to calculate εm. We then return to (7.2.3)
to determine vm.

In Table 7.1, we list the values of εm for each m, 1 ≤ m ≤ 10, which were
obtained from (7.2.12) or (7.2.14). We also add the corresponding values of ε
in the table.

Ramanujan next discusses the minimum order and maximum order of vm.
He does not define these concepts, but in different words we relate what we
think he intended.
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m εm Value of ε vm

1 0, 1
1

2
− 1

2
√
3

0

2 0,
1

2

3−√
3

3
0

3
1

3

3−√
3

2

2

27

4
1

4
2− 2

√
3

3

3

32

5
1

5

3

2
− 5

√
3

6

12

125

6
1

6
2−√

3
20

63

7
1

7
,
2

7

5

2
− 7

√
3

6

30

73

8
1

4
3− 4

√
3

3

3

32

9
2

9

7

2
− 3

√
3

2

70

36

10
1

5
3− 5

√
3

3

12

53

Table 7.1. Table of values for vm, 1 ≤ m ≤ 10

Proposition 7.2.4. For all values of m,

vm ≥ m2 − 4

6m3

√
m2 − 1

3
, (7.2.15)

with equality holding when

ε =
1

2
− m−√

m2 − 1

2
√
3

, (7.2.16)

and the corresponding value of εm is given by

εm =
1

m

(
m− 1

2
−
√

m2 − 1

12

)
or

1

m

(
m+ 1

2
−
√

m2 − 1

12

)
. (7.2.17)

Proof. From (7.2.12), we have

1

m

(
m− 1

2
−
√

m2 − 1

12

)
≤ εm ≤ 1

m

(
m+ 1

2
−
√

m2 − 1

12

)
.
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If the maximum vm occurs at εm ≤ (3−√
3)/6, then

vm ≥ f

(
1

m

(
m− 1

2
−
√

m2 − 1

12

))
=

m2 − 4

6m3

√
m2 − 1

3
,

since f(x) is increasing when x ≤ (3 − √
3)/6. On the other hand, f(x) is

decreasing when (3 − √
3)/6 ≤ x ≤ 1. Thus, if the maximum vm occurs at

εm ≥ (3 −√
3)/6, then

vm ≥ f

(
1

m

(
m+ 1

2
−
√

m2 − 1

12

))
=

m2 − 4

6m3

√
m2 − 1

3
,

which completes the proof. ��
The previous proposition gives a lower bound for vm. The next two

propositions give upper bounds, with Proposition 7.2.5 due to Ramanujan;
Proposition 7.2.6 was not given by Ramanujan in his partial manuscript.

Proposition 7.2.5. If εm = g(ε), then

vm ≤ m2 − 1

6m3

√
m2 + 2

3
, (7.2.18)

with equality holding above when

εm =
1

m

(
m

2
−
√

m2 + 2

12

)
. (7.2.19)

Proof. We first note that

m
3−√

3

6
=

m

2
−
√

m2

12
and

m

2
−
√

m2 + 1

12

cannot be integers, whereas

m

2
−
√

m2 + 2

12
(7.2.20)

is an integer for m = 1, 5, 19, . . . . Also, it can easily be verified that⎡
⎣m
2

−
√

m2

12

⎤
⎦ =

⎡
⎣m
2

−
√

m2 + 1

12

⎤
⎦ =

⎡
⎣m
2

−
√

m2 + 2

12

⎤
⎦ ≤ m

2
−
√

m2 + 2

12
.

Thus, we obtain

vm ≤ f

⎛
⎝ 1

m

⎛
⎝m

2
−
√

m2 + 2

12

⎞
⎠
⎞
⎠ =

m2 − 1

6m3

√
m2 + 2

3
.

��
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Proposition 7.2.6. If εm = g(ε− 1), then

vm ≤ m2 + 2

6m3

√
m2 − 4

3
, (7.2.21)

with equality holding when

εm =
1

m

⎛
⎝m

2
−
√

m2 − 4

12

⎞
⎠ . (7.2.22)

Proof. First, it can be easily verified that for 0 ≤ i ≤ 3,

m

2
−
√

m2 − i

12

does not take any integral values. So, we have⎡
⎢⎢⎢
m

2
−
√

m2

12

⎤
⎥⎥⎥ =

⎡
⎢⎢⎢
m

2
−
√

m2 − 4

12

⎤
⎥⎥⎥ ≥ m

2
−
√

m2 − 4

12
.

Thus, we obtain

vm ≤ f

⎛
⎝ 1

m

⎛
⎝m

2
−
√

m2 − 4

12

⎞
⎠
⎞
⎠ =

m2 + 2

6m3

√
m2 − 4

3
.

��
This concludes the first section of Ramanujan’s partial manuscript.

7.2.2 The Periodicity of vm

In the second and last section of his draft, Ramanujan considers the periodicity
of vm. To motivate the remainder of our paper, we move his table from the
end of the manuscript to the beginning of this section (see Table 7.2).

We observe that there exist sequences of values that are periodic, e.g.,

v5 = v10 = v15 = v20 = v25 = v30 = v35 = v40. (7.2.23)

Ramanujan then seeks to determine the maximum value of k such that

vm = v2m = v3m = · · · = vkm. (7.2.24)

Theorem 7.2.1. As in (7.2.19), consider only those values of m for which

εm =
1

m

(
m

2
−
√

m2 + 2

12

)
(7.2.25)
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v1 = 0 v26 = 0.0955849

v2 = 0 v27 = 0.0960219

v3 = 0.0740741 v28 = 0.0962099

v4 = 0.0937500 v29 = 0.0961909

v5 = 0.0960000 v30 = 0.0960000

v6 = 0.0925926 v31 = 0.0958679

v7 = 0.0874436 v32 = 0.0961304

v8 = 0.0937500 v33 = 0.0962239

v9 = 0.0960219 v34 = 0.0961734

v10 = 0.0960000 v35 = 0.0960000

v11 = 0.0946657 v36 = 0.0960219

v12 = 0.0937500 v37 = 0.0961838

v13 = 0.0955849 v38 = 0.0962239

v14 = 0.0962099 v39 = 0.0961581

v15 = 0.0960000 v40 = 0.0960000

v16 = 0.0952148 v41 = 0.0961100

v17 = 0.0952575 v42 = 0.0962099

v18 = 0.0960219 v43 = 0.0962179

v19 = 0.0962239 v44 = 0.0961448

v20 = 0.0960000 v45 = 0.0960219

v21 = 0.0954541 v46 = 0.0961617

v22 = 0.0957926 v47 = 0.0962215

v23 = 0.0961617 v48 = 0.0962095

v24 = 0.0962095 v49 = 0.0961334

v25 = 0.0960000 v50 = 0.0960960

Table 7.2. Table of values for vm, 1 ≤ m ≤ 50

is a rational number. Let k be the maximum value such that (7.2.24) holds.
Then

k �>
[ x
m

]
=
√
3m2 + 6− 1, (7.2.26)

where x is determined by
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1

x

(
x− 1

2
−
√

x2 − 1

12

)
=

1

m

(
m

2
−
√

m2 + 2

12

)
= εm. (7.2.27)

Proof. From (7.2.12), recall that for every m

εm =
1

m

[
m+ 1

2
−
√

m2 − 1

12

]
,

or in terms of the least integer function,

εm =
1

m

⌈
m− 1

2
−
√

m2 − 1

12

⌉
.

With these values in mind, we first examine, for x > 1, the two functions

f1(x) :=
1

x

(
x+ 1

2
−
√

x2 − 1

12

)
and f2(x) :=

1

x

(
x− 1

2
−
√

x2 − 1

12

)
.

An elementary calculation shows that

f ′
1(x) = − 1

2x2
− 1

12x2

(
x2 − 1

12

)−1/2

< 0,

f ′
2(x) =

1

2x2
− 1

12x2

(
x2 − 1

12

)−1/2

> 0,

provided that x > 2/
√
3. Thus, f1(x) is monotonically decreasing and f2(x)

is monotonically increasing for x > 2/
√
3. Also, we see that

f2(x) =
1

2
− 1

2x
−
√

1

12
− 1

12x2 <
3−

√
3

6
< f1(x) =

1

2
+

1

2x
−
√

1

12
− 1

12x2 .

(7.2.28)

Now we verify (7.2.26). Suppose that we have the sequence of equal val-
ues (7.2.24), which, in turn, implies that

εm = ε2m = ε3m = · · · = εkm.

Since εm = εkm, by (7.2.12) and (7.2.27),

1

x

⎛
⎝x− 1

2
−
√

x2 − 1

12

⎞
⎠ =

1

km

[
km+ 1

2
−
√

k2m2 − 1

12

]

≥ 1

km

(
km− 1

2
−
√

k2m2 − 1

12

)
.

Since f2(x) is monotonically increasing, it follows that x ≥ km, which
proves the first equality in (7.2.26).
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Now we solve (7.2.27). Let

α =
1

m

⎛
⎝m

2
−
√

m2 + 2

12

⎞
⎠ .

Then, a straightforward calculation shows that

x =
3(1− 2α)±

√
1 + 12α− 12α2

3(1− 2α)2 − 1
. (7.2.29)

Since α = 1
2 − 1

m

√
m2 + 2

12 , we easily find that

1 + 12α− 12α2 = 4− 12
(1
2
− α

)2
=

3m2 − 2

m2 ,

3(1− 2α) =

√
3m2 + 6

m
,

3(1− 2α)2 − 1 = 2− 12α+ 12α2 = 12
(
α− 1

2

)2
− 1 =

2

m2 .

Hence, by (7.2.29), we deduce that

x

m
=

√
3m2 + 6 +

√
3m2 − 2

2
.

However, by (7.2.25), we see that (m2 + 2)/3 is a perfect square, which is
equivalent to 3m2 + 6 being a perfect square. Thus,

k ≤
[ x
m

]
=
√
3m2 + 6− 1, (7.2.30)

which verifies the second equality in (7.2.26). ��
In the next result, Ramanujan removes the restriction on (7.2.25) from

Theorem 7.2.1 and claims a formula that is valid for all m.

Theorem 7.2.2. Assume that x is chosen so that either

1

x

(
x+ 1

2
−
√

x2 − 1

12

)
=

1

m

[
m+ 1

2
−
√

m2 − 1

12

]
>

3−√
3

6
(7.2.31)

or

1

x

(
x− 1

2
−
√

x2 − 1

12

)
=

1

m

[
m+ 1

2
−
√

m2 − 1

12

]
<

3−
√
3

6
. (7.2.32)
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Then

k =
[ x
m

]
. (7.2.33)

Moreover, if 3m2 + 6 is a perfect square, then

k =
√
3m2 + 6− 1. (7.2.34)

Proof. Observe that the last statement in Theorem 7.2.2 follows from (7.2.33)
and (7.2.30).

In order to prove (7.2.33), we first need to show that k ≤ [x/m] for
arbitrary m. In the case of (7.2.32), we can use the same argument from the
proof of (7.2.26). For the case of (7.2.31), if we assume εm = ε2m = · · · = εkm,
then we have

1

x

(
x+ 1

2
−
√

x2 − 1

12

)
=

1

km

[
km+ 1

2
−
√

k2m2 − 1

12

]

≤ 1

km

(
km+ 1

2
−
√

k2m2 − 1

12

)
.

Since f1(x) is monotonically decreasing, we conclude that km ≤ x, or k ≤
[x/m] .

We now show that for every 1≤ t≤ [x/m] , εm = εtm, which proves (7.2.33).
We first consider those values of m for which (7.2.31) holds. Since all the
rational numbers with denominator tm include the rational numbers with
denominator m, we have vtm ≥ vm. Since εm > (3 −√

3)/6 and the function
f(x) = x(1− x)(1− 2x) is decreasing on the interval [(3−√

3)/6, 1], we have
εtm ≤ εm. On the other hand, since f1(x) is decreasing, by (7.2.31),

εm =
t

tm

[
m+ 1

2
−
√

m2 − 1

12

]
≤ 1

tm

(
tm+ 1

2
−
√

t2m2 − 1

12

)
.

Thus,

t

[
m+ 1

2
−
√

m2 − 1

12

]
≤
[
tm+ 1

2
−
√

t2m2 − 1

12

]
,

which implies that εm ≤ εtm, upon dividing both sides above by tm. Hence, the
inequalities εm ≥ εtm and εm ≤ εtm imply that εm = εtm for all 1 ≤ t ≤ [x/m] .

For those values of m that satisfy (7.2.32), we apply a similar argu-
ment. Since vtm ≥ vm and the function f(x) is increasing on the interval
[0, (3−√

3)/6], we have εm ≤ εtm. Since f2(x) is increasing, by (7.2.32),

εm =
t

tm

[
m+ 1

2
−
√

m2 − 1

12

]
≥ 1

tm

(
tm− 1

2
−
√

t2m2 − 1

12

)
.
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Thus,

t

[
m+ 1

2
−
√

m2 − 1

12

]
≥
⌈
tm− 1

2
−
√

t2m2 − 1

12

⌉
,

which implies that εtm ≤ εm, upon dividing both sides above by tm. Thus,
since we also had observed that εm ≤ εtm, we conclude that εm = εtm, which
completes the proof of (7.2.33). ��

In summary, if 3m2 + 6 is a perfect square, then we use (7.2.34) to calcu-
late the length k of the period. If 3m2 + 6 is not a perfect square, then we
use (7.2.33), with x defined by (7.2.31) or (7.2.32), to calculate the period
length k.

If m = 1, then by (7.2.34), k = 2. In our initial calculations above, we
had observed that v1 = v2 = 0, but v3 �= 0, and so Ramanujan’s periodic
assertion is corroborated in this case. Ramanujan then gives seven peri-
odic sequences corresponding to the values m = 5, 9, 14, 19, 71, 265, 989, with
periods 8, 5, 12, 32, 122, 458, 1,712, respectively, namely,

v5 = v10 = v15 = · · · = v40,

v9 = v18 = v27 = · · · = v45,

v14 = v28 = v42 = · · · = v168,

v19 = v38 = v57 = · · · = v608,

v71 = v142 = v213 = · · · = v8,662,

v265 = v530 = v795 = · · · = v121,370,

v989 = v1,978 = v2,967 = · · · = v1,693,168.

The first, fourth, fifth, sixth, and seventh sequences arise from (7.2.34), but
for the second and third, we must use (7.2.33) and (7.2.31) to determine the
values k = 5 and k = 12, respectively.

It is interesting to examine how often 3m2 + 6 is a perfect square. If we
let 3m2 + 6 = n2 or n2 − 3m2 = 6, then n + m

√
3 is an element of Z[

√
3]

with norm 6. Since 3 +
√
3 is such an element with positive smallest values

of n and m, and 2 +
√
3 is the fundamental unit of Z[

√
3], all the values of

n and m generated by (3 +
√
3)(2 +

√
3)r with r ∈ Z are solutions. In fact,

we can also show that they are the only solutions, using the LMM algorithm
as described by K. Matthews [221], for example. We remark that the values
m = 5, 19, 71, 265, 989 are generated by (3 +

√
3)(2 +

√
3)r with 1 ≤ r ≤ 5.

We complete our discussion of this first manuscript by adding an
explanation for those readers who are reading this chapter in conjunction
with Ramanujan’s original manuscript. In fact, instead of (7.2.27) in Theorem
7.2.1, Ramanujan had written

1

x

(
x+ 1

2
−
√

x2 − 1

12

)
=

1

m

(
m

2
−
√

m2 + 2

12

)
. (7.2.35)
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Now, the right-hand side of (7.2.35) is

1

m

(
m

2
−
√

m2 + 2

12

)
=

1

2
−
√

1

12
+

1

6m2 <
3−

√
3

6
, (7.2.36)

while the left-hand side of (7.2.35), by (7.2.28), is equal to

1

2
+

1

2x
−
√

1

12
− 1

12x2 = f1(x) >
3−√

3

6
. (7.2.37)

Clearly, (7.2.36) and (7.2.37) are incompatible. This mistake caused confu-
sion for the writer of the first note appended to Ramanujan’s manuscript.
She (or he) writes, “I don’t see where eqn (7.2.26) (the second equality) comes
from, e.g., m = 5, k = 8 does not come from the value of k given [x/m], as x
is negative.”

7.3 A Manuscript on the Diophantine
Approximation of e2/a

In this section, we discuss the partial manuscript on pages 266–267 of [269],
in which Ramanujan examines the Diophantine approximation of e2/a when
a is a nonzero integer. At the top of page 266 is a note, “See Q. 784(ii) in vol-
ume. This goes further,” which is in G.H. Hardy’s handwriting. Question 784
is a problem on the Diophantine approximation submitted by Ramanujan to
the Journal of the Indian Mathematical Society [261] [267, p. 334]; “volume”
evidently refers to Ramanujan’s Collected Papers [267]. It took more than
a decade before A.A. Krishnaswami Aiyangar [203] published a partial so-
lution and T. Vijayaraghavan and G.N. Watson [309] published a complete
solution to Question 784. In Question 784, Ramanujan improved upon the
classical approximation. But in the partial manuscript on pages 266 and 267,
Ramanujan made a further improvement and moreover derived the best pos-
sible Diophantine approximation for e2/a. As remarked in the introduction,
such a theorem was first proved in print by C.S. Davis [102] in 1978, approxi-
mately 60 years after Ramanujan discovered it. Of course, Davis was unaware
that his theorem was ensconced in Ramanujan’s lost notebook. As we indicate
in the sequel, Ramanujan’s proof is different, and considerably more elemen-
tary, than Davis’s proof. Thus, Hardy’s remark is on the mark. Using methods
similar to those of Ramanujan (but of course, without knowledge of Ramanu-
jan’s work), B.G. Tasoev [300] established a general result, for which Davis’s
theorem is a special case. In regard to Ramanujan’s original problem, readers
might find a letter from S.D. Chowla to S.S. Pillai, written on August 25,
1929, of interest [20, p. 612].



176 7 Problems in Diophantine Approximation

7.3.1 Ramanujan’s Claims

Ramanujan established three different, but related, results, which we relate in
a moderately more contemporary style. As customary, [x] denotes the greatest
integer in x.

Entry 7.3.1 (p. 266). Let ε > 0 be given. If a is any nonzero integer, then
there exist infinitely many positive integers N such that

Ne2/a − [Ne2/a] <
(1 + ε) log logN

|a|N logN
. (7.3.1)

Moreover, for all sufficiently large positive integers N ,

Ne2/a − [Ne2/a] >
(1 − ε) log logN

|a|N logN
. (7.3.2)

Entry 7.3.1 might be compared with a theorem of P. Bundschuh established
in 1971 [84]. If t is a nonzero integer, then there exist positive constants c1
and infinitely many rational numbers p/q such that∣∣∣∣e1/t − p

q

∣∣∣∣ < c1
log log q

q2 log q
;

and there exists a positive constant c2 such that for all rational numbers p/q,∣∣∣∣e1/t − p

q

∣∣∣∣ > c2
log log q

q2 log q
.

In his next theorem, Ramanujan considers two cases, – a even and a
odd. His result for a even is identical to that for Entry 7.3.1, except that
he formulates his conclusion in terms of 1 + [Ne2/a] − Ne2/a. We therefore
state Ramanujan’s claim only in the case that a is odd.

Entry 7.3.2 (p. 266). If a is any odd integer and ε > 0 is given, then there
exist infinitely many positive integers N such that

1 + [Ne2/a]−Ne2/a <
(1 + ε) log logN

4|a|N logN
. (7.3.3)

Furthermore, given ε > 0, for all positive integers N sufficiently large,

1 + [Ne2/a]−Ne2/a >
(1− ε) log logN

4|a|N logN
. (7.3.4)

It will be seen, from the proofs of these entries below, that the constants
multiplying

log logN

N logN

on the right-hand sides of (7.3.1)–(7.3.4) are optimal.
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We now provide a precise statement of Davis’s theorem [102, Theorem 2],
which readers will immediately see is equivalent to Ramanujan’s Entries 7.3.1
and 7.3.2. In his paper, Davis, in fact, proves his theorem only in the special
case of e, indicating that the proof of the more general result follows along
the same lines. Although both the proofs of Davis and Ramanujan employ
continued fractions, they are quite different. Davis uses, for example, inte-
grals, hypergeometric functions, and Tannery’s theorem. On the other hand,
Ramanujan utilizes only elementary properties of continued fractions.

Theorem 7.3.1. Let a = ±2/t, where t is a positive integer, and set

c =

{
1/t, if t is even,

1/(4t), if t is odd.

Then, for each ε > 0, the inequality∣∣∣∣ea − p

q

∣∣∣∣ < (c+ ε)
log log q

q2 log q

has an infinity of solutions in integers p, q. Furthermore, there exists a number
q′, depending only on ε and t, such that∣∣∣∣ea − p

q

∣∣∣∣ > (c− ε)
log log q

q2 log q

for all integers p, q, with q ≥ q′.

7.3.2 Proofs of Ramanujan’s Claims on Page 266

Proof. We begin with the continued fraction

tanhx =
x

1 +

x2

3 +

x2

5 +

x2

7 + · · · , x ∈ C, (7.3.5)

first established by J.H. Lambert, and rediscovered by Ramanujan, who
recorded it in his second notebook [268, Chap. 12, Sect. 18], [38, p. 133, Corol-
lary 3]. Write

tanhx = 1− 2

e2x + 1

in (7.3.5), solve for 2/(e2x + 1), take the reciprocal of both sides, and set
x = 1/a, where a is any nonzero integer. Hence,

1

2

(
e2/a + 1

)
=

1

1 −
1

a +

1

3a +

1

5a +

1

7a + · · · . (7.3.6)
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Now consider the nth approximant un/vn of (7.3.6) [218, pp. 8–9], [38,
p. 105, Entry 1], i.e., for n ≥ 3,

1

1 −
1

a +

1

3a +

1

5a +

1

7a + · · · +
1

(2n− 3)a
=

un

vn
.

Then, provided that |a| ≥ 2,

u1 = 1, v1 = 1; u2 = |a|, v2 = |a− 1|. (7.3.7)

Also, from standard recurrence relations [218, pp. 8–9],

un+1 − un−1 = (2n− 1)|a|un; vn+1 − vn−1 = (2n− 1)|a|vn. (7.3.8)

From the second equality in (7.3.8), we can deduce that

vn+1 ∼ 2|a|nvn and log vn ∼ n logn, (7.3.9)

as n → ∞.
Now in general, if we define v0 = 1, then [38, p. 105, Entry 1] [312, p. 18]

a1
b1 +

a2
b2 + · · · +

an
bn

=: a1
un

vn
=

n∑
k=1

(−1)k+1a1a2 · · ·ak
vk−1vk

.

If we use the formula above in (7.3.6), we easily find that

1

2

(
e2/a + 1

)
=

un

vn
+ (−1)n

(
1

vnvn+1
− 1

vn+1vn+2
+ · · ·

)
. (7.3.10)

It follows from (7.3.9) and (7.3.10) that as n tends to ∞,

e2/a + 1− 2un

vn
∼ (−1)n

|a|nv2n
. (7.3.11)

We now subdivide our examination of (7.3.11) into two cases. First, sup-
pose that a is even. Then, using the fact that v1 and v2 in (7.3.7) are odd, the
recurrence relation for vn in (7.3.8), and induction, we easily find that vn is odd
for all n ≥ 1. Now chooseN = vn. By (7.3.9), we see that n ∼ logN/ log logN ,
as N → ∞. Hence, by (7.3.11), as N → ∞,

N(e2/a + 1)− 2un ∼ (−1)n log logN

|a|N logN
. (7.3.12)

Second, suppose that a is odd. Ramanujan then claims that if n is odd,
then vn is odd, while if n is even, then vn is even. However, these claims are
incorrect. By (7.3.7), (7.3.8), and induction, we find, instead, that

v3m and v3m+1 are odd; v3m+2 is even.
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Thus, choose N = vn, when n = 3m or n = 3m + 1. In these cases, as
in (7.3.12), we conclude that

N(e2/a + 1)− 2un ∼ (−1)n log logN

|a|N logN
. (7.3.13)

However, if n = 3m+ 2, we can choose N = 1
2v3m+2. Hence, in this case,

N(e2/a + 1)− un ∼ (−1)m log logN

4|a|N logN
. (7.3.14)

Turning to Ramanujan’s claims in Entries 7.3.1 and 7.3.2, from the asymp-
totic formulas (7.3.12) and (7.3.14), we see that all of Ramanujan’s claims in
these entries readily follow. This completes the proof. ��

7.4 The Third Manuscript

Page 343 in the volume [269] containing Ramanujan’s lost notebook is devoted
to an unusual kind of approximation to certain algebraic numbers. Ramanu-
jan’s claims are surprising, and, indeed they do not appear to be valid. We
copy page 343 verbatim below, and afterward we briefly discuss Ramanujan’s
claims:

�,m, n are any integers including 0.

θ =
5
√
2.

a =
1

5
√
2− 1

, b =

√
5

(1 + 5
√
4)5/2

ambnθ = pm,n + εm,n

where − 1
2 < εm,n < 1

2 and pm,n is an integer. Then

εm,n = O

(
5n/2

( 5
√
4−2 5

√
2 cos 2πs

5 +1)m/2( 5
√
16+2 5

√
4 cos 4πs

5 +1)5n/4

)

(7.4.1)

where s is the most unfavorable of the integers 1, 2, 3, 4.
—————

θ =
7
√
2

a =
1

7
√
2− 1

, b =
7

( 7
√
8− 1)7

, c =
7
√
2 + 1

7
√
4− 7

√
2 + 1

,

a�bmcnθ = p�,m,n + ε�,m,n
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ε�,m,n = O

(
7m( 7

√
4 + 2 7

√
2 cos 2πs

5 + 1)2n

( 7
√
64− 2 7

√
8 cos 2πs

7 + 1)�/2

× 1

( 7
√
64− 2 7

√
8 cos 6πs

7 + 1)7m/2( 7
√
64 + 2 7

√
8 cos 6πs

7 + 1)n/2

)
,

(7.4.2)

where s is the most unfavorable of the integers 1, 2, 3, 4, 5, 6.

We do not know for certain what Ramanujan meant by the term
“unfavorable.” We think that Ramanujan was indicating that we should
choose that value of s that makes the displayed error term the largest. It is
unclear why Ramanujan listed s = 1, 2, 3, 4 below (7.4.1) instead of just
writing s = 1, 2, because cos 2πs

5 = cos 8πs
5 and cos 4πs

5 = cos 6πs
5 . Of course,

a similar remark holds for the corresponding phrase below (7.4.2). It is also
unclear what roles θ play in Ramanujan’s thinking.

In order for Ramanujan’s claims to have some validity, the numbers ambnθ
and a�bmcnθ would need to become close to integers as �, m, and n become
large. It would be astounding if such were the case. Table 7.3 provides some
calculations of pm,n, εm,n, and the error terms for s = 1, 2. We first notice that
with increasing m and n, the remainders εm,n do not appear to be tending to
0, but, as we might expect, appear to be randomly distributing themselves in
the interval [− 1

2 ,
1
2 ]. Also, note that if we set m = 0 and choose s = 1, then

the error terms in these apparently “unfavorable” instances actually tend to
infinity as n tends to infinity. In other words, in order to obtain a meaningful
claim in the case s = 1, both m and n would both need to tend to infinity.
Thus, Ramanujan’s claim is meaningless in these cases. Moreover, if we set
m = 0, then p0,n ≡ 0 and ε0,n → 0. Thus, for another reason, to obtain a
meaningful claim, both m and n would need to tend to infinity.

If Ramanujan’s assertions were correct, then �, m, and n would need to
tend to infinity on very special sequences. However, it is doubtful that such
sequences exist.
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m,n ambnθ pm,n εm,n Error, s = 1 Error, s = 2

1, 0 7.725 8 −0.27 0.7882 0.4892

2, 0 51.951 52 −0.05 0.6213 0.2393

3, 0 349.372 349 +0.37 0.4897 0.1171

4, 0 2,349.532 2, 350 −0.47 0.3860 0.0573

5, 0 15,800.658 15, 801 −0.34 0.3042 0.0280

6, 0 106,259.805 106, 260 −0.19

7, 0 714,599.734 714, 600 −0.27

8, 0 4,805,700.336 4, 805, 700 +0.34

9, 0 32,318,449.897 32, 318, 450 −0.10

10, 0 217,342,349.872 217, 342, 350 −0.13

0, 1 0.2729 0 +0.27 4.1813 0.4578

0, 2 0.0745 0 +0.07 17.4833 0.2096

0, 3 0.0203 0 +0.02 73.1028 0.0960

0, 4 0.0055 0 +0.01

1, 1 2.108 2 +0.11 3.2958 0.2240

2, 2 3.869 4 −0.13 10.8621 0.0502

3, 3 7.100 7 +0.10 35.7988 0.0112

4, 4 13.031 13 +0.03 117.9842 0.0025

5, 5 23.914 24 −0.09

6, 6 23.887 24 −0.11

7, 7 80.543 81 −0.46

8, 8 147.815 148 −0.18

9, 9 271.274 271 +0.27

10, 10 497.849 498 −0.15

Table 7.3. Values of pm,n and εm,n
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