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Two Partial Manuscripts on Euler’s Constant γ

6.1 Introduction

Like many mathematicians, Ramanujan was evidently fascinated with Euler’s
constant γ. He wrote only one paper on Euler’s constant [264], [267, pp. 163–
168], but published with his lost notebook [269, pp. 274–277] are two partial
manuscripts devoted to γ.

First, on pages 274 and 275 in [269], there is the beginning of a manuscript
that probably was to focus on integrals related to Euler’s constant γ and
ψ(s) := Γ ′(s)/Γ (s), and on integrals and series related to Frullani’s integral
theorem [37, p. 313, Eq. (2.15)], [142]. This fragment contains only two short
sections, comprising one and a half pages. Afterward, Ramanujan wrote “3.”
to indicate the beginning of a third section, but the manuscript ends abruptly
at this point.

The second partial manuscript is related to the first problem that Ra-
manujan submitted to the Journal of the Indian Mathematical Society [241],
[267, p. 322] and to the first six entries of Chap. 2 in his second notebook
[267], [37, pp. 25–35]. Moreover, the second partial manuscript gives Ramanu-
jan’s solution to another problem [243], [267, p. 325] that he submitted to the
Journal of the Indian Mathematical Society. No solution to this problem was
ever published in the Journal of the Indian Mathematical Society. The formula
for γ in this problem was also recorded in Ramanujan’s second notebook as
Entry 16 of Chap. 8 [268], [37, p. 196]. In [37], we gave a solution based on
material in Chap. 2 of Ramanujan’s second notebook [268], [37, pp. 25–35],
where he considers a more general series and derives several elegant theorems
and examples. The solution that Ramanujan gives in his lost notebook is not
fundamentally different from that given by the second author in [37], but
since it is more self-contained and independent of our considerations in [37,
pp. 25–35], for those readers not desiring to read the aforementioned material
in Chap. 2 and only interested in a direct route to Ramanujan’s formula for
Euler’s constant, we provide Ramanujan’s solution in this chapter. We mildly
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154 6 Euler’s Constant

correct Ramanujan’s claim and give his proof while providing a few additional
details. Lastly, we employ Ramanujan’s formula to numerically calculate γ.

The proofs in this chapter were first published in papers that Berndt wrote
with D. Bowman [46] and T. Huber [55].

6.2 Theorems on γ and ψ(s) in the First Manuscript

We first prove the primary theorem in the first section of the first-mentioned
incomplete manuscript. Applications of this result have been made by H. Alzer
and S. Koumandos [7] in deriving series representations for γ, Catalan’s con-
stant, ζ(3), π2, and other familiar constants.

Entry 6.2.1 (p. 274). Let p, q, and r be positive. Then

∫ 1

0

(
xp−1

1− x
− rxq−1

1− xr

)
dx = ψ(q/r) − ψ(p) + log r. (6.2.1)

Proof. (Ramanujan) Using the continuity of the integrand on the right side
below for 0 ≤ x, s ≤ 1, a well-known integral representation for the beta
function, the change of variable t = xr in the second part of the integrand,
and L’Hospital’s rule, we find that

∫ 1

0

(
xp−1

1− x
− rxq−1

1− xr

)
dx

= lim
s→0+

∫ 1

0

{
xp−1(1− x)s−1 − r1−sxq−1(1 − xr)s−1

}
dx

= lim
s→0

{
Γ (p)Γ (s)

Γ (s+ p)
− r−s Γ (q/r)Γ (s)

Γ (s+ q/r)

}

= lim
s→0

{
Γ (p)

Γ (s+ p)
− r−s Γ (q/r)

Γ (s+ q/r)

}
Γ (s+ 1)

s

= lim
s→0

{
−Γ (p)Γ

′(s+ p)

Γ 2(s+ p)
+ Γ (q/r)

(
r−s log r

Γ (s+ q/r)
+
r−sΓ ′(s+ q/r)

Γ 2(s+ q/r)

)}

=− ψ(p) + log r + ψ(q/r),

which completes the proof. ��
Entry 6.2.2 (p. 274). Suppose that a, b, and c are positive with b > 1. Then

∫ 1

0

(
xc−1

1− x
− bxbc−1

1− xb

) ∞∑
k=0

xab
k

dx = ψ
(a
b
+ c
)
− log

a

b
.
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Proof. By Entry 6.2.1 and the facts that b > 1 and ψ(x) ∼ log x, as x tends
to ∞ (see (13.2.28)),

∫ 1

0

(
xc−1

1− x
− bxbc−1

1− xb

) n∑
k=0

xab
k

dx =

n∑
k=0

∫ 1

0

(
xc+abk−1

1− x
− bxbc+abk−1

1− xb

)
dx

=

n∑
k=0

(
ψ
(
abk−1 + c

)− ψ
(
abk + c

)
+ log b

)

= ψ
(a
b
+ c
)
− ψ (abn + c) + (n+ 1) log b

= ψ
(a
b
+ c
)
− log (abn + c) + (n+ 1) log b+ o(1)

= ψ
(a
b
+ c
)
− n log b− log a+ (n+ 1) log b+ o(1)

= ψ
(a
b
+ c
)
− log

a

b
+ o(1),

as n tends to ∞. Letting n→ ∞, we complete the proof. ��
Entry 6.2.3 (p. 275). We have

∫ 1

0

1

1 + x

∞∑
k=1

x2
k

dx = 1− γ, (6.2.2)

∫ 1

0

1 + 2x

1 + x+ x2

∞∑
k=1

x3
k

dx = 1− γ, (6.2.3)

∫ 1

0

1 + 1
2

√
x

(1 +
√
x)(1 +

√
x+ x)

∞∑
k=1

x(3/2)
k

dx = 1− γ. (6.2.4)

Proof. In Entry 6.2.2, set, respectively, c = 1, a = b = 2; c = 1, a = b = 3;
and c = 1, a = b = 3/2. Use the fact that [126, p. 954]

ψ(2) = 1− γ (6.2.5)

to complete the proof. ��
According to Bromwich [80, p. 526], (6.2.2) is due to E. Catalan. Parts

(6.2.3) and (6.2.4) may be new. H. Alzer and S. Koumandos [8] have em-
ployed (6.2.2) in deriving further representations for γ; several references to
the literature on γ can be found in [8].

Before discussing the very brief second section of Ramanujan’s fragment,
we offer some alternative proofs, references, and connections with further work
of Ramanujan, as well as others.

Lemma 6.2.1. For x > 0, x 	= 1, and any integer n > 1,

1

log x
+

1

1− x
=

∞∑
k=1

(n− 1) + (n− 2)x1/n
k

+ (n− 3)x2/n
k

+ · · ·+ x(n−2)/nk

nk(1 + x1/nk + x2/nk + · · ·+ x(n−1)/nk)
.

(6.2.6)
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Proof. It is easy to verify that

1

1− xn
=

1

n

(
(n− 1) + (n− 2)x+ (n− 3)x2 + · · ·+ xn−2

1 + x+ x2 + · · ·+ xn−1
+

1

1− x

)
.

(6.2.7)

Replacing x by x1/n and iterating m times, we find that

1

1− x
=

m∑
k=1

(n− 1) + (n− 2)x1/n
k

+ (n− 3)x2/n
k

+ · · ·+ x(n−2)/nk

nk(1 + x1/nk + x2/nk + · · ·+ x(n−1)/nk)

+
1

nm(1− x1/nm)
.

If we now let m tend to ∞ and apply L’Hospital’s rule, we complete the proof.
��

The special cases n = 2, 3 of Lemma 6.2.1 can be found in Ramanujan’s
third notebook [268, p. 364], and proofs can be found in Berndt’s book [40,
pp. 399–400]. Our proof here generalizes these proofs.

Lemma 6.2.2. For every integer n > 1,

γ =

∫ 1

0

(
n

1− xn
− 1

1− x

) ∞∑
k=1

xn
k−1dx. (6.2.8)

Proof. Integrate (6.2.6) over 0 ≤ x ≤ 1 and employ the well-known integral
representation [80, p. 507], [126, p. 955]

γ =

∫ 1

0

(
1

log x
+

1

1− x

)
dx.

Accordingly, replacing x by xn
k

, we find that

γ =

∫ 1

0

∞∑
k=1

(n− 1) + (n− 2)x1/n
k

+ (n− 3)x2/n
k

+ · · ·+ x(n−2)/nk

nk(1 + x1/nk + x2/nk + · · ·+ x(n−1)/nk)
dx

=

∞∑
k=1

∫ 1

0

1

nk

(n− 1) + (n− 2)x1/n
k

+ (n− 3)x2/n
k

+ · · ·+ x(n−2)/nk

1 + x1/nk + x2/nk + · · ·+ x(n−1)/nk dx

=

∞∑
k=1

∫ 1

0

(n− 1) + (n− 2)x+ (n− 3)x2 + · · ·+ xn−2

1 + x+ x2 + · · ·+ xn−1
xn

k−1dx

=

∫ 1

0

(
n

1− xn
− 1

1− x

) ∞∑
k=1

xn
k−1dx,

by (6.2.7). This completes the proof. ��
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Lemma 6.2.2 is equivalent to Entry 6.2.2 in the case c = 1, a = b = n.
To see this, first make these substitutions in Entry 6.2.2 and use (6.2.5) to
deduce that

1− γ =

∫ 1

0

(
1

1− x
− nxn−1

1− xn

) ∞∑
k=1

xn
k

dx. (6.2.9)

Adding (6.2.8) and (6.2.9) and simplifying, we readily find that

1 = (n− 1)

∫ 1

0

∞∑
k=1

xn
k−1dx,

which is trivially verified by termwise integration.
The arguments in the proof of Lemma 6.2.2 lead to another formula for γ.

A proof of this formula can be found in the paper by Berndt and Bowman
[46] and in the Master’s Thesis of C.S. Haley [140].

Theorem 6.2.1. If b is an integer exceeding 1, let

εr =

{
b− 1, if b | r,
−1, if b � r.

(6.2.10)

Then

γ =

∞∑
r=1

εr
r

[
log r

log b

]
,

where [x] denotes the greatest integer ≤ x.

Corollary 6.2.1. We have

γ =

∞∑
r=1

(−1)r

r

[
log r

log 2

]
. (6.2.11)

Proof. Let b = 2 in Theorem 6.2.1. ��
The representation for γ given in (6.2.11) was discovered in 1909 by

G. Vacca [307] and is known as Dr. Vacca’s series for γ. Corollary 6.2.1
was rediscovered by H.F. Sandham, who submitted it as a problem [274].
M. Koecher [185] obtained a generalization of (6.2.11) that includes a for-
mula for γ submitted by Ramanujan as a problem [243], [267, p. 325] to the
Journal of the Indian Mathematical Society, and found in his notebooks [268],
[37, p. 196]. Further series in the spirit of those of Ramanujan and Koecher
were found by F.L. Bauer [25]. A result similar to that of Bauer was found by
A.W. Addison [2], with a simpler version later established by I. Gerst [121].
For alternative versions of Vacca’s series for γ, for generalizations, and for
approximations to γ, see papers by J. Sondow [293], Sondow and W. Zudilin
[294], and Kh. Hessami Pilehrood and T. Hessami Pilehrood [154–156].

J.W.L. Glaisher [123] generalized Theorem 6.2.1. We offer a theorem that
is equivalent to his theorem. For a proof, we refer to the paper by Berndt and
Bowman [46]. Another proof has been found by Haley [140].
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Theorem 6.2.2. Let a and b be positive integers with b > 1, and let εr be
defined by (6.2.10). Then

log a+ γ −
a−1∑
n=1

1

n
=

∞∑
r=a

εr
r

[
log(r/a)

log b

]
.

We complete this section with a remark about Entry 6.2.1. After replacing
x by e−x in (6.2.1), we obtain an integral of Frullani type. In his third quarterly
report, Ramanujan found a beautiful generalization of Frullani’s theorem.
In particular, the formula∫ ∞

0

(1 + ax)−p − (1 + bx)−q

x
dx = ψ(q)− ψ(p) + log

b

a
, (6.2.12)

where a, b, p, q > 0, is a special instance of Ramanujan’s theorem [37, p. 314].
In view of the right sides of (6.2.1) and (6.2.12), one might surmise that (6.2.1)
can be derived from (6.2.12), or Ramanujan’s generalization of Frullani’s the-
orem, and this was accomplished by J.-P. Allouche [3].

6.3 Integral Representations of log x

Section 2 in Ramanujan’s first unpublished fragment is devoted solely to the
statements of the following theorem and (6.3.1) below.

Entry 6.3.1 (p. 275). If a, b, and c are positive with b > 1, then
∫ 1

0

xc−1 − xbc−1

log x

∞∑
k=0

xab
k

dx = − log

(
1 +

bc

a

)
.

Proof. As indicated by Ramanujan, we begin with the equality [126, p. 575]∫ 1

0

xp−1 − xq−1

log x
dx = − log

q

p
, (6.3.1)

where p, q > 0. Thus, since b > 1,

−
∫ 1

0

xc−1 − xbc−1

log x

n∑
k=0

xab
k

dx =

n∑
k=0

∫ 1

0

xc+abk−1 − xbc+abk−1

log x
dx

=

n∑
k=0

log
bc+ abk

c+ abk

=
n∑

k=0

(
log b+ log(c+ abk−1)− log(c+ abk)

)

= (n+ 1) log b+ log(c+ a/b)− log(c+ abn)

= (n+ 1) log b+ log(c+ a/b)− n log b− log a+ o(1)

= log(1 + bc/a) + o(1),

as n tends to ∞. Letting n tend to ∞, we complete the proof. ��
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Entry 6.3.2 (p. 275). We have

∫ 1

0

1− x

log x

∞∑
k=1

x2
k

dx = − log 2.

Proof. Set c = 1 and a = b = 2 in Entry 6.3.1. ��
Observe that if x is replaced by e−x in (6.3.1), we obtain an example

of Frullani’s integral theorem. Ramanujan’s ideas can be extended to other
examples of Frullani-type integrals found by, among others, Ramanujan in his
quarterly reports [37] and Hardy [142], [151, pp. 195–226]. For example, we
note the integral [142, Eq. (29)], [267, p. 200]

∫ ∞

0

e−ax cos(αx)− e−bx cos(βx)

x
dx = −1

2
log

a2 + α2

b2 + β2
, (6.3.2)

where a, b, α, β > 0.

6.4 A Formula for γ in the Second Manuscript

At the top of page 276 in [269], Ramanujan writes

γ = log 2− 2

33 − 3
− 4

(
1

63 − 6
+

1

93 − 9
+

1

123 − 12

)

− 6

(
1

153 − 15
+

1

183 − 18
+ · · ·+ 1

393 − 39

)
− · · · ,

the last term of the nth group being
1(

3n+3
2

)3 − 1
3n+3

2

. (6.4.1)

Ramanujan’s assertion (6.4.1) needs to be slightly corrected. The first, not

the last, term of the nth group is
1(

3n+3
2

)3 − 1
3n+3

2

. We give a more precise

statement of Ramanujan’s claim.

Entry 6.4.1 (p. 276).

γ = log 2−
∞∑
n=1

2n

3n−1
2∑

k=
3n−1+1

2

1

(3k)3 − 3k
. (6.4.2)

Proof. It is easily checked that for each positive integer k,

1

3k − 1
+

1

3k
+

1

3k + 1
=

1

k
+

2

(3k)3 − 3k
. (6.4.3)
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Set k = 1, 2, . . . , n in (6.4.3) and add the n equalities to find that

3n+1∑
k=2

1

k
=

n∑
k=1

1

k
+

n∑
k=1

2

(3k)3 − 3k
,

i.e.,
2m+1∑
k=1

1

m+ k
= 1 +

m∑
k=1

2

(3k)3 − 3k
. (6.4.4)

The first three cases, m = 1, 2, 3, of (6.4.4) are, respectively,

1

2
+

1

3
+

1

4
= 1 +

2

33 − 3
,

1

5
+

1

6
+ · · ·+ 1

13
= 1 +

2

33 − 3
+

2

63 − 6
+

2

93 − 9
+

2

123 − 12
,

1

4
+

1

15
+ · · ·+ 1

40
= 1 +

2

33 − 3
+ · · ·+ 2

393 − 39
.

More generally, taking m = 1, 2, . . . , n in (6.4.4) and adding the n equalities,
we find that

3n−1
2∑

k=1

1

k
= n+ (n− 1)

2

33 − 3
+ (n− 2)

(
2

63 − 6
+

2

93 − 9
+

2

123 − 12

)

+ (n− 3)

(
2

153 − 15
+

2

183 − 18
+ · · ·+ 2

393 − 39

)
, (6.4.5)

where there are n expressions on the right-hand side of (6.4.5). Now, from the
standard definition of Euler’s constant, as n→ ∞,

3n−1
2∑

k=1

1

k
= log

(
3n − 1

2

)
+ γ + o(1) = n log 3− log 2 + γ + o(1). (6.4.6)

If we use (6.4.6) in (6.4.5), divide both sides of the resulting equality by n,
and then let n→ ∞, we deduce that

log 3 = 1 +
∞∑
k=1

2

(3k)3 − 3k
. (6.4.7)

(The identity (6.4.7) is also found in Sect. 2 of Chap. 2 in Ramanujan’s second
notebook [268]; see also [37, p. 27].) Lastly, using (6.4.6) in (6.4.5), letting
n→ ∞ while invoking (6.4.7), and rearranging, we readily arrive at (6.4.2) to
complete the proof. ��



6.5 Numerical Calculations 161

6.5 Numerical Calculations

Define

Sj :=

j∑
n=1

2n

3n−1
2∑

k=
3n−1+1

2

1

(3k)3 − 3k
. (6.5.1)

The first 14 values of −γ + log 2− Sj are given in the following table.

j −γ + log 2− Sj j −γ + log 2− Sj

1 3.25982× 10−2 8 3.14043× 10−8

2 5.66401× 10−3 9 3.87176× 10−9

3 8.37419× 10−4 10 4.72684× 10−10

4 1.15710× 10−4 11 5.72414× 10−11

5 1.53668× 10−5 12 6.88472× 10−12

6 1.98621× 10−6 13 8.23230× 10−13

7 2.51665× 10−7 14 6.05812× 10−14

These calculations were carried out using Mathematica 5.2. The partial
sums in (6.5.1) are taken with respect to the index n of the outer sum.
Thus, (6.4.2) converges quite rapidly, with only 14 terms needed to deter-
mine γ up to an error of order 10−14. If we regard (6.5.1), or (6.4.2), as a
single sum, i.e., each partial sum contains only one additional term from the
inner sum, then the computations take much longer.

Ramanujan’s series for γ converges much more rapidly than the standard
series definition for γ, namely,

γ = lim
n→∞Cn, Cn :=

⎛
⎝ n∑

j=1

1

j
− logn

⎞
⎠ . (6.5.2)

To compare the use of (6.5.2) with that of (6.5.1), which we used in computing
the previous table, we list the first 14 values of Cn − γ in the following table.
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n Cn − γ n Cn − γ

1 0.42278 8 0.061200

2 0.22964 9 0.054528

3 0.15751 10 0.049167

4 0.11982 11 0.044766

5 0.09668 12 0.041088

6 0.081025 13 0.037969

7 0.069731 14 0.035289

For several years, the most effective algorithm for computing γ has been
that of R.P. Brent and E.M. McMillan [77]. The current world record, at the
writing of this book, for calculating the digits of

γ = 0.57721566490153286060651209008240243104215933593992 . . .

is held by Alexander J. Yee and R. Chan [320], who calculated 29,844,489,545
digits.

Another representation for γ can be found in Entry 44 of Chap. 12 in
Ramanujan’s second notebook [268], [38, p. 167]. Asymptotic expansions for
γ are located in Corollaries 1 and 2 in Sect. 9 of Chap. 4 in his second note-
book [268], [37, p. 98]. An extension of these results along with an interesting
discussion of them has been given by R.P. Brent [75, 76].
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