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Hypergeometric Series

5.1 Introduction

The purpose of this chapter is to discuss two entries on page 200 and two on
page 327 in Ramanujan’s lost notebook. All four entries fall under the purview
of hypergeometric series. We begin with the two entries on page 200.

On page 200 of his lost notebook, Ramanujan offers two results on cer-
tain bilateral hypergeometric series. As we shall see, the second follows from
a theorem of J. Dougall [113]. The first gives a formula for the derivative
of a quotient of two particular bilateral hypergeometric series. Ramanujan’s
formula needs to be slightly corrected, but what is remarkable is that such a
formula exists! This is one of those instances in which we can undauntedly
claim that if Ramanujan had not discovered the formula, no one else, at least
in the foreseeable future, would have done so. Our proofs of these two formulas
first appeared in a paper by the second author and W. Chu [50].

We first state the second formula, which requires modest deciphering,
because of Ramanujan’s use of ellipses to denote missing terms. It will be
used in the proof of Ramanujan’s first formula on page 200.

Entry 5.1.1 (p. 200). Let α, β, γ, δ, and ξ be complex numbers such that
Re(α+ β + γ + δ) > 3. Then

∞∑

n=−∞

ξ + 2n

Γ (α+ ξ + n)Γ (β − ξ − n)Γ (γ + ξ + n)Γ (δ − ξ − n)Γ (α− n)

× 1

Γ (β + n)Γ (γ − n)Γ (δ + n)

=
sin(πξ) Γ (α+ β + γ + δ − 3)

πΓ (α+ γ + ξ − 1)Γ (β + δ − ξ − 1)Γ (α+ β − 1)Γ (β + γ − 1)

× 1

Γ (γ + δ − 1)Γ (δ + α− 1)
. (5.1.1)
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132 5 Hypergeometric Series

We secondly state a corrected version of Ramanujan’s more interesting
formula, i.e., the first formula. At the end of Sect. 5.4, we indicate the mistakes
in Ramanujan’s original formula.

Entry 5.1.2 (Corrected, p. 200). Define, for real numbers s and θ, 0 < θ <
2π, and for any complex numbers α, β, γ, and δ such that Re(α+β+γ+δ) > 4,

ϕs(θ) :=
∞∑

n=−∞

e(n+s)iθ

Γ (α+ s+ n)Γ (β − s− n)Γ (γ + s+ n)Γ (δ − s− n)
. (5.1.2)

Then

d

dθ

ϕs(θ)

ϕt(θ)
=
i sin{π(s− t)}

(
2 sin θ

2

)α+β+γ+δ−4
ei(π−θ)(α−β+γ−δ+2s+2t)/2

πϕ2
t (θ)Γ (α + β − 1)Γ (β + γ − 1)Γ (γ + δ − 1)Γ (δ + α− 1)

(5.1.3)

On page 327 in his lost notebook [269], Ramanujan offers two beautiful
continued fractions connected with hypergeometric polynomials, which we
now offer.

Entry 5.1.3 (p. 327). Let

ϕ(a, x) :=
1{

1 +

(
x

a+ 1

)2
}{

1 +

(
x

a+ 3

)2
}{

1 +

(
x

a+ 5

)2
}
· · ·

.

(5.1.4)
Then, for a+ 1 > 0, b+ 1 > 0, and s not purely imaginary,

∫ ∞

0

ϕ(a, x)ϕ(b, x)
dx

1 + s2x2
= 2

√
π

Γ
(
1 +

a

2

)
Γ

(
1 +

b

2

)
Γ

(
1 +

a+ b

2

)

Γ

(
1 + a

2

)
Γ

(
1 + b

2

)
Γ

(
1 + a+ b

2

)

× 1

a+ b+ 1 +

1(a+ 1)(b+ 1)(a+ b+ 1)s2

a+ b+ 3

+

2(a+ 2)(b+ 2)(a+ b+ 2)s2

a+ b+ 5 + · · · .

Entry 5.1.4 (p. 327). If s = 1, the continued fraction in Entry 5.1.3 can be
written in the form

1

a+ b+ 1 +

1(a+ 1)(b + 1)(a+ b+ 1)

a+ b+ 3 +

2(a+ 2)(b+ 2)(a+ b+ 2)

a+ b+ 5 + · · ·

=
1

a+ b+ 1
(1−A1 +A1A2 −A1A2A3 + · · · ), (5.1.5)
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where

At =
(a+ t)(b + t)− ab cos2

πt

2

(a+ 1 + t)(b + 1 + t)− ab cos2
πt

2

. (5.1.6)

If we set α = (a + 1)/2 and β = (b + 1)/2 and replace x with 2x, then
Entry 5.1.3 can be recast in the following form.

Entry 5.1.5 (p. 327). Let

φ(α, x) :=
1

{
1 +
(x
α

)2}
{
1 +

(
x

α+ 1

)2
}{

1 +

(
x

α+ 2

)2
}
· · ·
. (5.1.7)

Then, for α > 0, β > 0, and s not purely imaginary,
∫ ∞

0

φ(α, x)φ(β, x)
dx

1 + 4s2x2
=

√
π
Γ
(
α+ 1

2

)
Γ
(
β + 1

2

)
Γ (α+ β)

Γ (α)Γ (β)Γ
(
α+ β + 1

2

) χ1(s),

where

χ1(s) :=
1

2 +

2 · 1(2α)(2β)s2
2α+ 2β + 1 +

2(2α+ 1)(2β + 1)(2α+ 2β)s2

2α+ 2β + 3

+

3(2α+ 2)(2β + 2)(2α+ 2β + 1)s2

2α+ 2β + 5 + · · · . (5.1.8)

These continued fractions are connected with the continuous Hahn poly-
nomials. In his Ph.D. thesis [318], J. Wilson found a remarkably general class
of orthogonal hypergeometric polynomials, in which all of the classical and
several additional polynomials can be expressed as special or limiting cases.
In particular, certain 3F2 polynomials with two free parameters, called the
continuous symmetric Hahn polynomials, were found by R. Askey and Wil-
son [16]. They are defined for all nonnegative integers n by

Pn(x) := Pn(x;α, β) := in 3F2

(
−n, n+ 2α+ 2β − 1, β − ix

α+ β, 2β
; 1

)
(5.1.9)

and are orthogonal with respect to the positive absolutely continuous weight
function

W (x) := |Γ (α+ ix)Γ (β + ix)|2, (5.1.10)

where −∞ < x <∞ and α, β > 0 or α = β̄ and Reα > 0.
In Sects. 5.7 and 5.8, we provide two entirely different proofs of Entry 5.1.3,

and in Sect. 5.9, we prove Entry 5.1.4. These proofs are due to S.-Y. Kang,
S.-G. Lim, and J. Sohn [175]. The first proof of Entry 5.1.3 is instructive,
because it relates Ramanujan’s result to Hahn polynomials and the moment
problem. The second proof is undoubtedly closer to Ramanujan’s approach
than the first, because it relies in the beginning stages on a theorem in
Ramanujan’s paper [255].
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5.2 Background on Bilateral Series

For every integer n, define

(a)n :=
Γ (a+ n)

Γ (a)
. (5.2.1)

The bilateral hypergeometric series pHp is defined for complex parameters
a1, a2, . . . , ap and b1, b2, . . . , bp by

pHp

[
a1, a2, . . . , ap;
b1, b2, . . . , bp;

z

]
:=

∞∑

n=−∞

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bp)n

zn.

With the use of D’Alembert’s ratio test, it can be checked that pHp converges
only for |z| = 1, provided that [290, p. 181, Eq. (6.1.1.6)]

Re(b1 + b2 + · · ·+ bp − a1 − a2 − · · · − ap) > 1. (5.2.2)

The series pHp is said to be well-poised if

a1 + b1 = a2 + b2 = · · · = ap + bp.

In 1907, Dougall [113] proved that a well-poised series 5H5 can be evaluated
at z = 1. In order to state this evaluation, define

Γ

[
a1, a2, . . . , am
b1, b2, . . . , bn

]
:=

Γ (a1)Γ (a2) · · ·Γ (am)

Γ (b1)Γ (b2) · · ·Γ (bn)
.

Then Dougall’s formula [290, p. 182, Eq. (6.1.2.5)] is given by

5H5

[
1 + 1

2a, b, c, d, e;
1
2a, 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e;

1

]

= Γ

[
1− b, 1− c, 1− d, 1− e, 1 + a− b, 1 + a− c, 1 + a− d,
1 + a, 1− a, 1 + a− b− c, 1 + a− b − d, 1 + a− b− e,

1 + a− e, 1 + 2a− b− c− d− e
1 + a− c− d, 1 + a− c− e, 1 + a− d− e

]
, (5.2.3)

where for convergence, by (5.2.2),

1 + Re(2a− b− c− d− e) > 0. (5.2.4)

We need one further result, namely, the bilateral binomial theorem. If a
and c are complex numbers with Re(c− a) > 1 and if z is a complex number
with z = eiθ, 0 < θ < 2π, then

1H1

[
a;
c;
z

]
=

(1− z)c−a−1

(−z)c−1

Γ (1− a)Γ (c)

Γ (c− a)
. (5.2.5)
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It would seem that Ramanujan had discovered (5.2.5), but we are unaware
of any mention of it by him in his papers or notebooks. We remark that
the bilateral binomial theorem can also be recovered from another bilateral
hypergeometric series identity [11, p. 110, Theorem 2.8.2] due to Dougall [113],
namely,

2H2

[
a, b;
c, d;

1

]
=
Γ (1− a)Γ (1− b)Γ (c)Γ (d)Γ (c+ d− a− b− 1)

Γ (c− a)Γ (c− b)Γ (d− a)Γ (d− b)
, (5.2.6)

where Re(c + d − a − b) > 1 for convergence. In fact, in the identity above,
first replacing b by dz and second, letting d→ +∞, we derive (5.2.5) in view
of Stirling’s asymptotic formula for the Γ -function.

The first appearance of (5.2.5) of which we are aware is in T.H. Koorn-
winder’s paper [187, p. 91 (middle of the page)] in 1994. When the second
author and W. Chu gave their proof of Entry 5.1.2 in [50], they used a formu-
lation of (5.2.5) given by M.E. Horn [164] in 2003. His original formulation is
incorrect, but it is corrected in the proof by J.M. Borwein, which follows the
statement of the problem, and indeed the correct version (5.2.5) was used by
Berndt and Chu in [50]. In addition to the proof accompanying the original
problem, another proof published on the aforementioned website [164] is by
G.C. Greubel.

In the sequel, we very often use the classical reflection formula

Γ (z)Γ (1− z) =
π

sin(πz)
. (5.2.7)

5.3 Proof of Entry 5.1.1

We show that (5.2.3) leads to a proof of Entry 5.1.1.

Proof. Let S denote the series on the left-hand side of (5.1.1). Define

Ω :=
sin{π(β − ξ)} sin{π(δ − ξ)} sin{πα} sin{πγ}

π4
. (5.3.1)

Using (5.2.7) and (5.3.1), we see that we can write S in the form

S = Ωξ

∞∑

n=−∞

(ξ + 2n)Γ (1 + ξ + n− β)Γ (1 + ξ + n− δ)Γ (1 + n− α)

ξΓ (α+ ξ + n)Γ (γ + ξ + n)Γ (β + n)Γ (δ + n)

× Γ (1 + n− γ)

= Ωξ
Γ (1 + ξ − β)Γ (1 + ξ − δ)Γ (1− α)Γ (1− γ)

Γ (α+ ξ)Γ (γ + ξ)Γ (β)Γ (δ)

×
∞∑

n=−∞

(1 + 1
2 ξ)n(1− α)n(1 + ξ − β)n(1− γ)n(1 + ξ − δ)n

(12ξ)n(α+ ξ)n(β)n(γ + ξ)n(δ)n
. (5.3.2)
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Note that the series (5.3.2) is well-poised, and so we can invoke (5.2.3) with
a = ξ, b = 1 − α, c = 1 + ξ − β, d = 1 − γ, and e = 1 + ξ − δ. Thus, for
Re(α+ β + γ + δ) > 3 for convergence, we deduce that

S = Ωξ
Γ (1− α)Γ (1 + ξ − β)Γ (1 − γ)Γ (1 + ξ − δ)

Γ (α+ ξ)Γ (β)Γ (γ + ξ)Γ (δ)

× Γ (α)Γ (β)Γ (γ)Γ (δ)

Γ (α+ γ + ξ − 1)Γ (β + δ − ξ − 1)

× Γ (α+ ξ)Γ (β − ξ)Γ (γ + ξ)Γ (δ − ξ)Γ (α+ β + γ + δ − 3)

Γ (1 + ξ)Γ (1− ξ)Γ (α+ β − 1)Γ (β + γ − 1)Γ (γ + δ − 1)Γ (δ + α− 1)

=
sin(πξ)Γ (α + β + γ + δ − 3)

πΓ (α+ γ + ξ − 1)Γ (β + δ − ξ − 1)Γ (α+ β − 1)Γ (β + γ − 1)

× 1

Γ (γ + δ − 1)Γ (δ + α− 1)
,

where we applied (5.2.7) five times, used the value of Ω from (5.3.1), and
simplified. ��

5.4 Proof of Entry 5.1.2

We first replace the functions in Entry 5.1.2 by another pair with which it
is easier to work. With four applications of (5.2.7), we see that we can write
ϕs(θ) in the form

ϕs(θ) =
esiθHs(θ)

Γ (α+ s)Γ (β − s)Γ (γ + s)Γ (δ − s)
, (5.4.1)

where

Hs(θ) := 2H2

[
1− β + s, 1− δ + s;
α+ s, γ + s;

eiθ
]
. (5.4.2)

Thus, we prove an analogue with ϕs and ϕt replaced by Hs and Ht, respec-
tively. At the end of our proof, we convert our result to (5.1.2).

For brevity, we introduce the notation

〈s〉n :=
(1 − β + s)n(1− δ + s)n

(α+ s)n(γ + s)n
.

In particular, we can then write

Hs(θ) = 2H2

[
1− β + s, 1− δ + s;
α+ s, γ + s;

eiθ
]
=

∞∑

n=−∞
〈s〉neinθ.
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Proof. By the quotient rule for derivatives,

d

dθ

{Hs(θ)

Ht(θ)
e(s−t)iθ

}
=

Δ

e2tiθH2
t (θ)

, (5.4.3)

where

Δ = etiθHt(θ)
d

dθ

{
esiθHs(θ)

}
− esiθHs(θ)

d

dθ

{
etiθHt(θ)

}
. (5.4.4)

Using the notation above and in the previous paragraph and setting
k = m+ n in the second equality below, we find that

Δ = i
∞∑

m,n=−∞
(s− t+ n−m) 〈s〉n 〈t〉m e(s+t+n+m)iθ

= i

∞∑

k,n=−∞
(s− t− k + 2n) 〈s〉n 〈t〉k−n e

(s+t+k)iθ

= i

∞∑

k=−∞
(s− t− k) 〈t〉k e(s+t+k)iθ

∞∑

n=−∞

s− t− k + 2n

s− t− k
〈s〉n〈k + t〉−n.

(5.4.5)

Observe that the inner sum above is a well-poised 5H5, requiring that Re(α+
β+γ+δ) > 3 for convergence. Thus, we can use (5.2.3) to obtain the evaluation

5H5

[
1+1

2 (s−t− k), 1−α−t−k, 1−β+s, 1−γ−t−k, 1−δ+s;
1
2 (s−t−k), α+s, β−t−k, γ+s, δ−t−k; 1

]

= Γ

[
α+t+k, γ+t+k, β−t−k, δ−t−k

1+s−t−k, 1−s+t+k, α+γ+s+t+k−1, β + δ − s− t− k − 1

]

× Γ

[
α+ s, β − s, γ + s, δ − s, α+ β + γ + δ − 3
α+ β − 1, β + γ − 1, γ + δ − 1, δ + α− 1

]
. (5.4.6)

Using the evaluation (5.4.6) in (5.4.5) and simplifying the expressions involv-
ing gamma functions and rising factorials, we find that

Δ = iΓ

[
α+ t, β − t, γ + t, δ − t
s− t, 1− s+ t, α+ γ + s+ t− 1, β + δ − s− t− 1

]

× Γ

[
α+ s, β − s, γ + s, δ − s, α+ β + γ + δ − 3
α+ β − 1, β + γ − 1, γ + δ − 1, δ + α− 1

]

× ei(s+t)θ
∞∑

k=−∞

(s+ t− β − δ + 2)k
(s+ t+ α+ γ − 1)k

eikθ. (5.4.7)

We next apply Koornwinder’s bilateral binomial theorem (5.2.5) with
a = s+ t− β − δ + 2 and b = s + t + α + γ − 1, subject to the condition
Re(α+ β + γ + δ) > 4. Thus,



138 5 Hypergeometric Series

∞∑

k=−∞

(s+ t− β − δ + 2)k
(s+ t+ α+ γ − 1)k

eikθ = 1H1

[
s+ t− β − δ + 2;
s+ t+ α+ γ − 1;

eiθ
]

=
(
−eiθ

)2−α−γ−s−t
(1− eiθ)α+β+γ+δ−4

× Γ (α+ γ + s+ t− 1)Γ (β + δ − s− t− 1)

Γ (α+ β + γ + δ − 3)
. (5.4.8)

Now substitute (5.4.8) into (5.4.7), use (5.2.7), and cancel common gamma
function factors to arrive at

Δ = e(s+t)iθ
(
−eiθ

)2−α−γ−s−t
(1− eiθ)α+β+γ+δ−4

× iΓ

[
α+ s, β − s, γ + s, δ − s, α+ t, β − t, γ + t, δ − t

s− t, 1− s+ t, α+ β − 1, β + γ − 1, γ + δ − 1, δ + α− 1

]

=
i

π
sin{π(s− t)}

(
2 sin θ

2

)α+β+γ+δ−4
ei(π−θ)(α−β+γ−δ+2s+2t)/2

× Γ

[
α+ s, β − s, γ + s, δ − s, α+ t, β − t, γ + t, δ − t

α+ β − 1, β + γ − 1, γ + δ − 1, δ + α− 1

]
. (5.4.9)

Lastly, substituting (5.4.9) into (5.4.3) and then reformulating the result
according to the relation (5.4.1) between ϕt(θ) and Ht(θ), we derive the
identity

d

dθ

{ϕs(θ)

ϕt(θ)

}
=
i sin{π(s− t)}

(
2 sin θ

2

)α+β+γ+δ−4
ei(π−θ)(α−β+γ−δ+2s+2t)/2

πϕ2
t (θ)Γ (α + β − 1)Γ (β + γ − 1)Γ (γ + δ − 1)Γ (δ + α− 1)

,

which is (5.1.3). The proof is thus complete. ��

Let φt(θ) = e−tiθϕt(θ). We end this section with Ramanujan’s rendition
of Entry 5.1.2 given by

d

dθ

{φs(θ)
φt(θ)

}
(5.4.10)

=
i sin{π(s− t)}

∣∣2 sin θ
2

∣∣α+β+γ+δ−4
ei(α−β+γ−δ+2s−2t){(π−θ)/2+π[θ/(2π)]}

πφ2t (θ)Γ (α + β − 1)Γ (β + γ − 1)Γ (γ + δ − 1)Γ (δ + α− 1)
.

Note that Ramanujan’s function φs(θ) does not have the factor esiθ in ϕs(θ),
defined in (5.1.2). The second major difference between the two formulas is
in the exponent of e on the right-hand sides. One would guess that [x] in
Ramanujan’s exponent denotes the greatest integer less than or equal to x.
The powers of 2 sin(12θ) in both (5.1.3) and (5.4.10) are the same, except that
Ramanujan has absolute values around 2 sin(12θ). In conclusion, except for
multiplicative expressions of absolute value equal to 1, the other parts of the
formulas (5.4.10) and (5.1.3) are identical.
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5.5 Background on Continued Fractions
and Orthogonal Polynomials

Any set of polynomials {pn(x)} that is orthogonal with respect to a positive
measure satisfies a three-term recurrence relation

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x), (5.5.1)

where αn, βn, and γn are real and αn−1γn > 0, n = 1, 2, . . . . Conversely,
Farvard’s theorem informs us that if a set of polynomials {pn(x)} satisfies
(5.5.1) with αn, βn, and γn real and with αn−1γn > 0, n = 1, 2, . . . , then
there is a positive measure dψ(x) such that [10, 17]

∫ ∞

−∞
pn(x)pm(x) dψ(x) =

⎧
⎨

⎩

0, m 	= n,
γ1 · · · γn
α0 · · ·αn−1

∫ ∞

−∞
dψ(x), m = n.

(5.5.2)

We next review some basic properties of continued fractions. For the con-
tinued fraction

b0 +
a1
b1 +

a2
b2 + · · · +

an
bn + · · · ,

the nth approximant fn is given by

fn = b0 +
a1
b1 +

a2
b2 + · · · +

an
bn

=:
Un

Vn
.

We call Un and Vn the nth numerator and denominator, respectively, of the
continued fraction. If we define U−1 = 1, V−1 = 0, U0 = b0, and V0 = 1, then,
for n = 1, 2, 3, . . . , the recurrence relations

bnUn−1 + anUn−2 = Un, bnVn−1 + anVn−2 = Vn, (5.5.3)

are valid [312, p. 15], [218, p. 8]. Using the recurrence relations in (5.5.3)
and mathematical induction, one can easily deduce the following equivalence
transformation [312, p. 19].

Proposition 5.5.1. Let c0 = 1 and ci 	= 0 for i > 0. Then the two continued
fractions

b0 +
a1
b1 +

a2
b2 +

a3
b3 + · · ·

and
c0b0 +

c0c1a1
c1b1 +

c1c2a2
c2b2 +

c2c3a3
c3b3 + · · ·

have the same sequence of approximants.
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The continuous symmetric Hahn polynomials Pn(x), defined in (5.1.9),
satisfy a three-term recurrence relation [16]

xPn(x) = αnPn+1(x) + γnPn−1(x), (5.5.4)

where

αn =
(n+ 2β)(n+ 2α+ 2β − 1)

2(2n+ 2α+ 2β − 1)
and γn =

n(n+ 2α− 1)

2(2n+ 2α+ 2β − 1)
. (5.5.5)

Hence, by (5.5.3) and Proposition 5.5.1, the continued fraction corresponding
to the orthogonal polynomials Pn(x) with γ0 = −1 is given by

χ(x) : =
1

x −
α0γ1
x −

α1γ2
x −

α2γ3
x − · · ·

=
1

x −
1 · (2α)(2β)

4x(2α+ 2β + 1) −
2 · (2α+ 1)(2β + 1)(2α+ 2β)

x(2α+ 2β + 3)

−
3 · (2α+ 2)(2β + 2)(2α+ 2β + 1)

4x(2α+ 2β + 5) − · · · . (5.5.6)

In other words, Pn(x) is the nth denominator of χ(x).
On the other hand, (5.5.2) along with (5.5.4) and (5.5.5) provides the

L2-norm of the continuous symmetric Hahn polynomials [16, p. 653], namely,

∫ ∞

−∞
[Pn(x;α, β)]

2W (x) dx =
(1)n(2α)n(α+ β − 1

2 )n

(2β)n(2α+ 2β − 1)n(α+ β + 1
2 )n

WI ,

where

WI =

∫ ∞

−∞
W (x) dx =

√
π
Γ (α)Γ (α+ 1

2 )Γ (β)Γ (β + 1
2 )Γ (α+ β)

Γ (α+ β + 1
2 )

, (5.5.7)

where W (x) is defined by (5.1.10). The integral in (5.5.7) is a special case of
Barnes’s beta integral [22]. This particular evaluation was also established by
Ramanujan [255], [267, pp. 53–58], and R. Roy [273] using Fourier transforms
and Mellin transforms, respectively.

It follows from (5.5.7) that the normalized weight function of the contin-
uous symmetric Hahn polynomials Pn(x) is given by

WN(x) :=
Γ (α+ β + 1

2 )|Γ (α+ ix)Γ (β + ix)| 2√
π Γ (α)Γ (α+ 1

2 )Γ (β)Γ (β + 1
2 )Γ (α+ β)

. (5.5.8)

Since [255], [267, p. 54]

φ(α, x) =
|Γ (α+ ix)|2

Γ 2(α)
, (5.5.9)

Entry 5.1.5 is equivalent to the following entry.
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Entry 5.5.1 (p. 327). For α > 0 and β > 0,

∫ ∞

0

WN(x) dx

1 + 4s2x2
=

1

2 +

2(2α)(2β)s2

2α+ 2β + 1 +

2(2α+ 1)(2β + 1)(2α+ 2β)s2

2α+ 2β + 3 + · · · .

Entry 5.5.1 gives a representation for the Stieltjes transform of the weight
function of the continuous symmetric Hahn polynomials in terms of a contin-
ued fraction. A more general continued fraction with five free parameters was
found by M.E.H. Ismail, J. Letessier, G. Valent, and J. Wimp [165]. Using
contiguous relations for generalized hypergeometric functions of the type 7F6,
they derived explicit representations for the associated Wilson polynomials
and computed the corresponding continued fraction.

5.6 Background on the Hamburger Moment Problem

Let {μn}, 0 ≤ n <∞, be a sequence of real numbers. The Hamburger moment
problem seeks to find a bounded, nondecreasing function ψ(x) on the interval
(−∞,∞) satisfying the equations

μn =

∫ ∞

−∞
xn dψ(x), n = 0, 1, 2, . . . . (5.6.1)

Throughout this section, it is assumed that a solution ψ(x) of the Hamburger
moment problem (5.6.1) is increasing on an infinite number of points. If this
solution is unique, the moment problem is said to be determinate; otherwise,
it is indeterminate.

For any solution ψ(x) of the moment problem (5.6.1), let

I(z, ψ) :=

∫ ∞

−∞

dψ(x)

z − x
, (5.6.2)

where z ∈ H := {z : Im z > 0}. The following two lemmas show that there is a
one-to-one correspondence between the elements of a certain class of functions
to which I(z, ψ) belongs and those in the class of solutions ψ(x) of the moment
problem (5.6.1).

Lemma 5.6.1. [286, Theorem 2.1] The function I(z, ψ) is analytic, Im I(z, ψ)
≤ 0 on H, and

I(z, ψ) ∼
∞∑

n=0

μn

zn+1
, 0 < ε ≤ arg z ≤ π − ε, 0 < ε < π/2, (5.6.3)

where μn, n ≥ 0, is defined by (5.6.1).
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Lemma 5.6.2. [286, Theorem 2.1] If F (z) is analytic, ImF (z) ≤ 0 on H,
and

F (z) ∼
∞∑

n=0

μn

zn+1
, 0 < ε ≤ arg z ≤ π − ε, 0 < ε < π/2, (5.6.4)

where μn, n ≥ 0, is defined by (5.6.1), then there exists a unique solution ψ(x)
of the moment problem (5.6.1) such that F (z) = I(z, ψ).

The integral I(z, ψ) is also closely related to a continued fraction.

Lemma 5.6.3. [286, Theorem 2.4] There exists a function F (z) such that
F (z) is analytic, ImF (z) ≤ 0, and F (z) has a representation (5.6.4) if and
only if there exists an associated continued fraction

b0 +
a0

b1 + z −
a1

b2 + z −
a2

b3 + z − · · · (5.6.5)

such that an > 0, n ≥ 0, bn ∈ R for n ≥ 0, and

F (z) = b0 +
a0

b1 + z −
a1

b2 + z − · · · −
an

Fn+1(z) + z
,

where Fn+1(z) is an arbitrary analytic function, ImFn+1(z) ≤ 0, and Fn+1(z)
= o(z) as z → ∞ on H.

In fact, the nth approximant, say qn(z)/pn(z), of the continued fraction
(5.6.5) can be expanded in the form [286, p. 35]

qn(z)

pn(z)
=
μ0

z
+
μ1

z2
+ · · ·+ μ2n−1

z2n
+

μ′
2n

z2n+1 +
μ′
2n+1

z2n+2 + · · · , (5.6.6)

where μj , 0 ≤ j ≤ 2n− 1, is defined in (5.6.1). (The definitions of μ′
n can be

found in [286, p. 35]. Because their definitions are somewhat complicated and
are not important in the present context, we do not give them here.) As we
have seen in Sect. 5.5, the denominators pn(z) comprise a set of orthogonal
polynomials of degree n by (5.5.3), and by (5.5.1) and (5.5.2) in Farvard’s
theorem. Moreover, the orthogonality relation

∫ ∞

−∞
pn(x)pm(x) dψ(x) =

{
0, m 	= n,

hn, m = n,
(5.6.7)

is satisfied by the solution ψ(x) of the moment problem (5.6.1), [286, p. 35].
Next, we state two lemmas that provide, respectively, a sufficient and a

necessary condition for a unique solution to the moment problem (5.6.1).

Lemma 5.6.4. [286, Theorem 2.9] The moment problem (5.6.1) is determi-
nate if

∞∑

n=0

|pn(z)|2

diverges at a nonreal number z.
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Lemma 5.6.5. [286, Theorem 2.10] If the moment problem (5.6.1) is determi-
nate, then the associated continued fraction (5.6.5) converges for all complex
numbers z.

5.7 The First Proof of Entry 5.1.5

Using the lemmas in Sect. 5.6, we prove the following theorem.

Theorem 5.7.1. Let α > 0, β > 0, and let z be nonreal. Then

∫ ∞

−∞

WN(x) dx

z−x =
1

z −
1(2α)(2β)

4z(2α+2β+1) −
2(2α+1)(2β+1)(2α+2β)

z(2α+2β+3) − · · · ,

where WN(x) is defined in (5.5.8).

Since ∫ ∞

−∞

WN(x)

z − x
dx = 2z

∫ ∞

0

WN(x)

z2 − x2
dx,

Theorem 5.7.1 is equivalent to

∫ ∞

0

WN(x)

z2 − x2
dx =

1

2z2 −
2(2α)(2β)

4(2α+ 2β + 1) −
2 · (2α+ 1)(2β + 1)(2α+ 2β)

z2(2α+ 2β + 3)

−
3 · (2α+ 2)(2β + 2)(2α+ 2β + 1)

4(2α+ 2β + 5) − · · · , (5.7.1)

from which Entry 5.1.5 or Entry 5.5.1 immediately follows after replacing z
by i/2s. Therefore, Theorem 5.7.1 implies that Theorem 5.1.5 holds for every
complex number s except when s is purely imaginary.

In order to complete the proof of Theorem 5.7.1, we need a lemma of
Stieltjes that gives the power series representation of a continued fraction of
the type in (5.6.5).

Lemma 5.7.1. [312, Theorem 53.1] The coefficients in the J-fraction

1

b1 + z −
a1

b2 + z −
a2

b3 + z − · · ·

and its power series expansion

∞∑

n=0

(−1)ncn

zn+1

are connected by the relations

cp+q = k0,pk0,q + a1k1,pk1,q + a1a2k2,pk2,q + · · · ,
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where k0,0 = 1, kr,s = 0 if r > s, and kr,s, for s ≥ r, is recursively given by
the matrix equations

⎛

⎜⎜⎜⎝

k00 0 0 0 · · ·
k01 k11 0 0 · · ·
k02 k12 k22 0 · · ·
...

...
...

... · · ·

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝

b1 1 0 0 · · ·
a1 b2 1 0 · · ·
0 a2 b3 1 · · ·
...

...
...

... · · ·

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

k01 k11 0 0 · · ·
k02 k12 k22 0 · · ·
k03 k13 k23 k33 · · ·
...

...
...

... · · ·

⎞

⎟⎟⎟⎠ .

Proof of Theorem 5.7.1. Note that the continued fraction in Theorem 5.7.1
is χ(z) in (5.5.6), the continued fraction corresponding to the continuous sym-
metric Hahn polynomials Pn(z). In the case of χ(z), an = αn−1γn > 0 and
bn = 0 for n ≥ 1. It is therefore easy to see that kij = 0 when i+ j is odd, and
thus c2n+1 = 0 and c2n > 0. Let Qn(z) be the nth numerator of χ(z). Then
for positive real numbers c2n obtained from Lemma 5.7.1,

Qn(z)

Pn(z)
=

1

z
+
c2
z3

+ · · ·+ c2n−2

z2n−1
+

c2n
z2n+1

· · · .

Consider the moment problem

cn =

∫ ∞

−∞
xn dψ(x) (n = 0, 1, 2, . . . ) (5.7.2)

for the sequence of real numbers cn given above.
Observe that P0(βi) = 1 and that more generally, by the Chu–Vander-

monde theorem [11, p. 67, Corollary 2.2.3], P4n(βi) = 1 for n ≥ 0. Hence,

∞∑

n=0

|P4n(βi)|2

diverges, and thus the moment problem (5.7.2) has a unique solution WN(x)
by (5.6.7) and Lemma 5.6.4. It now follows from Lemmas 5.6.1–5.6.3, Lemma
5.6.5, and (5.6.6) that the continued fraction χ(z) converges to I(z, ψ), for
every nonreal number z, where dψ(x) =WN(x)dx. ��

5.8 The Second Proof of Entry 5.1.5

Recalling the definition of φ(α, x) from either (5.1.7) or (5.5.9), set, for t > 0,

Φ(α, β, t) :=

∫ ∞

0

φ(α, x)φ(β, x) cos(tx) dx. (5.8.1)

Then, with the use of the elementary evaluation, for x > 0 and s > 0,

∫ ∞

0

cos(xt)e−st dt =
s

s2 + x2
,
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the integral in Entry 5.1.5 can be rewritten in the form

I : =

∫ ∞

0

φ(α, x)φ(β, x)

(
1

2s

∫ ∞

0

e−t/(2s) cos(xt) dt

)
dx

=
1

2s

∫ ∞

0

e−t/(2s)

(∫ ∞

0

φ(α, x)φ(β, x) cos(tx) dx

)
dt

=
1

2s

∫ ∞

0

e−t/(2s)Φ(α, β, t) dt, (5.8.2)

where we inverted the order of integration by absolute convergence.
Ramanujan [255], [267, p. 53] showed that by integrating termwise the

partial fraction decomposition of the integrand,
∫ ∞

0

φ(α, x) cos(yx) dx =

√
π

2

Γ (α+ 1
2 )

Γ (α)
sech2α

(y
2

)
, y > 0.

Hence, from the theory of Fourier cosine transforms,
∫ ∞

0

sech2α
(y
2

)
cos(xy) dy =

√
π

Γ (α)

Γ (α+ 1
2 )
φ(α, x), x > 0. (5.8.3)

Consequently,

φ(α, x) =
1√
π

Γ (α+ 1
2 )

Γ (α)

∫ ∞

0

sech2α
(y
2

)
cos(xy) dy. (5.8.4)

Applying (5.8.4) to (5.8.1), we deduce that

Φ(α, β, t) =
1

π

Γ (α+ 1
2 )

Γ (α)

Γ (β + 1
2 )

Γ (β)
T , (5.8.5)

where T is the triple integral

T :=

∫ ∞

0

∫ ∞

0

∫ ∞

0

sech2α
(y
2

)
sech2β

(z
2

)
cos(xy) cos(xz) cos(tx) dz dy dx.

(5.8.6)

Using the elementary trigonometric identity 2 cos(xy) cos(xz) = cos(y + z)x
+cos(y− z)x, replacing −z by z in the integral involving cos(y− z)x, setting
u = y+z in the second equality, inverting the order of integration with respect
to x and y, and then replacing −u by u in the integral over −∞ < u ≤ 0, we
find that

T =
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
sech2α

(y
2

)
sech2β

(z
2

)
cos((y + z)x) cos(tx) dz dy dx

=
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
sech2α

(y
2

)
sech2β

(
y − u

2

)
cos(ux) cos(tx) du dy dx

=
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

0

sech2α
(y
2

)(
sech2β

(
y + u

2

)

+ sech2β
(
y − u

2

))
cos(ux) cos(tx) du dx dy. (5.8.7)
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Utilize the Fourier integral formula [305, p. 2]

∫ ∞

0

cos(nx) dx

∫ ∞

0

f(u) cos(ux) du =
π

2
f(n)

in (5.8.7) to deduce that

T =
π

4

∫ ∞

0

sech2α
(y
2

)(
sech2β

(
y + t

2

)
+ sech2β

(
y − t

2

))
dy. (5.8.8)

In summary, so far, we have shown from (5.8.1), (5.8.5), and (5.8.8) that

Φ(α, β, t) =
1

4

Γ (α+ 1
2 )

Γ (α)

Γ (β + 1
2 )

Γ (β)
(5.8.9)

×
∫ ∞

0

sech2α
(y
2

)(
sech2β

(
y + t

2

)
+ sech2β

(
y − t

2

))
dy.

The equality (5.8.9), which is a generalization of the integral of W (x) in
(5.5.7), was established also in [38, p. 226] as a consequence of Parseval’s
theorem, (5.8.3) above, and Legendre’s duplication formula. In [38, p. 226],
it was mentioned that M.L. Glasser [124] evaluated integrals like that on the
right side in (5.8.9). Glasser used contour integration, but we use the binomial
theorem and Euler’s beta integral below.

Using the elementary identity

sech2β
(
y + t

2

)
+ sech2β

(
y − t

2

)
= sech2β

(
t

2

)
sech2β

(y
2

)

×

⎧
⎨

⎩

(
1

1 + tanh
(
1
2y
)
tanh

(
1
2y
)
)2β

+

(
1

1− tanh
(
1
2y
)
tanh

(
1
2y
)
)2β
⎫
⎬

⎭

and the binomial theorem in (5.8.8), we find that

T =
π

2
sech2β

(
t

2

)∫ ∞

0

sech2α+2β
(
y

2

) ∞∑

n=0

(2β)2n
(2n)!

tanh2n
(
t

2

)
tanh2n

(
y

2

)
dy.

(5.8.10)

Setting v = tanh2(12y) in (5.8.10), we arrive at

T =
π

2
sech2β

(
t

2

) ∞∑

n=0

(2β)2n
(2n)!

tanh2n
(
t

2

)∫ 1

0

(1− v)α+β−1 vn−1/2 dv.

(5.8.11)

Using Euler’s beta integral B(x, y) = Γ (x)Γ (y)/Γ (x+ y), we deduce that
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T =
π

2
sech2β

(
t

2

) ∞∑

n=0

(2β)2n
(2n)!

tanh2n
(
t

2

)
Γ (n+ 1

2 )Γ (α+ β)

Γ (α+ β + n+ 1
2 )

(5.8.12)

=
π

2

Γ (12 )Γ (α+ β)

Γ (α+ β + 1
2 )

sech2β
(
t

2

) ∞∑

n=0

(2β)2n(
1
2 )n

(2n)!(α+ β + 1
2 )n

tanh2n
(
t

2

)

=
π

2

Γ (12 )Γ (α+ β)

Γ (α+ β + 1
2 )

sech2β
(
t

2

)
2F1

(
β, β +

1

2
;α+ β +

1

2
; tanh2

(
t

2

))
.

Set w = tanh
(
1
4 t
)
, so that

F (t) : = sech2β
(
t

2

)
2F1

(
β, β +

1

2
;α+ β +

1

2
; tanh2

(
t

2

))

=

(
1− w2

1 + w2

)2β

2F1

(
β, β +

1

2
;α+ β +

1

2
;

4w2

(1 + w2)2

)
. (5.8.13)

Using the quadratic transformation [11, p. 128, Eq. (3.1.9)]

2F1 (a, b; a− b+ 1; z) = (1 + z)−a
2F1

(
a

2
,
a+ 1

2
; a− b+ 1;

4z

(1 + z)2

)

with z = w2, a = 2β, and b = β − α+ 1
2 , we find that

F (t) = (1 − w2)2β2F1

(
−α+ β +

1

2
, 2β;α+ β +

1

2
;w2

)
,

and using Pfaff’s transformation formula [11, p. 68, Theorem 2.2.5]

(1− z)a 2F1 (a, b; c; z) = 2F1

(
a, c− b; c;

z

z − 1

)

with a = 2β, b = −α+ β + 1
2 , c = α+ β + 1

2 , and z = w2, we find that

F (t) = 2F1

(
2α, 2β;α+ β +

1

2
;

w2

w2 − 1

)
. (5.8.14)

Therefore, by (5.8.12)–(5.8.14),

T =
π

2

Γ (12 )Γ (α+ β)

Γ (α+ β + 1
2 )

2F1

(
2α, 2β;α+ β +

1

2
;− sinh2

t

4

)
. (5.8.15)

From (5.8.5) and (5.8.15), we now see that

Φ(α, β, t) =

√
π

2

Γ (α+ 1
2 )Γ (β + 1

2 )Γ (α + β)

Γ (α)Γ (β)Γ (α + β + 1
2 )

× 2F1

(
2α, 2β;α+ β +

1

2
;− sinh2

t

4

)
. (5.8.16)
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Then, it follows from (5.8.2) and (5.8.16) that

I =

√
π

4s

Γ (α+ 1
2 )Γ (β + 1

2 )Γ (α+ β)

Γ (α)Γ (β)Γ (α + β + 1
2 )

×
∫ ∞

0
2F1

(
2α, 2β;α+ β +

1

2
;− sinh2

t

4

)
e−t/(2s) dt. (5.8.17)

Recall the continued fraction expansion of Stieltjes [297], [298, pp. 282–291],
∫ ∞

0
2F1

(
a, b;

a+ b+ 1

2
;− sinh2 t

)
e−tz dt

=
1

z +

1 · ab · 4
(a+ b+ 1)z +

2 · (a+ 1)(b+ 1)(a+ b) · 4
(a+ b+ 3)z

+

3 · (a+ 2)(b+ 2)(a+ b+ 1) · 4
(a+ b + 5)z + · · · , Re z > 0, (5.8.18)

from which, upon replacing t by 4t and setting a = 2α and b = 2β, we deduce
that, for s > 0,
∫ ∞

0
2F1

(
2α, 2β;α+ β +

1

2
;− sinh2

t

4

)
e−t/(2s) dt (5.8.19)

=
4

2/s +

1 · (2α)(2β) · 4
(2α+ 2β + 1)2/s +

2 · (2α+ 1)(2β + 1)(2α+ 2β) · 4
(2α+ 2β + 3)2/s + · · · .

By (5.8.17) and (5.8.19), we finally deduce that

I =
√
π
Γ (α+ 1

2 )

Γ (α)

Γ (β + 1
2 )

Γ (β)

Γ (α+ β)

Γ (α+ β + 1
2 )

×
(
1

2 +

2 · 1 · (2α)(2β)s2
(2α+ 2β + 1) +

2 · (2α+ 1)(2β + 1)(2α+ 2β)s2

(2α+ 2β + 3) + · · ·

)
,

which completes the proof of Entry 5.1.5 for s > 0. By (5.5.7), Entry 5.1.5
holds for s = 0. Since both sides of Theorem 5.1.5 are even functions of s,
Theorem 5.1.5 is valid for all real s.

5.9 Proof of Entry 5.1.2

We use the recurrence relation (5.5.3) and induction to prove that for all
integers n ≥ 1,

fn =
1

a+ b+ 1 +

1 · (a+ 1)(b+ 1)(a+ b+ 1)

a+ b+ 3 + · · · (5.9.1)

+

n · (a+ n)(b+ n)(a+ b+ n)

a+ b+ (2n+ 1)

=
1

a+ b+ 1
(1−A1 +A1A2 −A1A2A3 + · · ·+ (−1)nA1A2 · · ·An) := Rn,
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where An is defined in (5.1.6). Entry 5.1.2 then readily follows from (5.9.1).
First, observe from (5.1.6) that

At =

⎧
⎪⎪⎨

⎪⎪⎩

(a+ t)(b+ t)

(a+ 1 + t)(b+ 1 + t)
, if t is odd,

t(a+ b+ t)

(a+ b+ t+ 1)(t+ 1)
, if t is even.

(5.9.2)

From the recurrence relations (5.5.3), we find that

f1 =
U1

V1
=

1

a+ b+ 1
= R1,

f2 =
U2

V2
=

a+ b+ 3

(a+ b+ 1)(a+ 2)(b+ 2)
=

1

a+ b+ 1
(1−A1) = R2,

f3 =
U3

V3
=

3(a+ b+ 3)2 + 2(a+ 1)(b+ 1)(a+ b + 2)

3(a+ b+ 1)(a+ b+ 3)(a+ 2)(b+ 2)

=
1

a+ b+ 1
(1 −A1 +A1A2) = R3,

f4 =
U4

V4
=

3(a+ b+ 3)2(a+ 4)(b+ 4) + 2(a+ 1)(b + 1)(a+ b+ 2)(a+ b+ 7)

3(a+ b + 1)(a+ b+ 3)(a+ 2)(b+ 2)(a+ 4)(b+ 4)

=
1

1 + a+ b
(1 −A1 +A1A2 −A1A2A3) = R4.

Assume that (5.9.1) holds up to k. Then by (5.5.3),

fk+1 =
Uk+1

Vk+1
=

(a+ b+ (2k + 1))Uk + k(a+ k)(b+ k)(a+ b+ k)Uk−1

(a+ b + (2k + 1))Vk + k(a+ k)(b+ k)(a+ b+ k)Vk−1
.

By the induction hypothesis, the numerator above equals

a+ b+ (2k + 1)

a+ b+ 1
(1−A1 +A1A2 + · · ·+ (−1)k−1A1A2 · · ·Ak−1)Vk

+
k(a+ k)(b + k)(a+ b+ k)

a+ b+ 1

× (1−A1 +A1A2 + · · ·+ (−1)k−2A1A2 · · ·Ak−2)Vk−1.

Hence, we may write

fk+1 =
1

a+ b+ 1
(1−A1 +A1A2 + · · ·+ (−1)k−1A1A2 · · ·Ak−1)

− (−1)k−1A1A2 · · ·Ak−1

a+ b+ 1

× k(a+ k)(b + k)(a+ b+ k)Vk−1

(a+ b+ (2k + 1))Vk + k(a+ k)(b+ k)(a+ b+ k)Vk−1
.
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It therefore suffices to prove that

k(a+ k)(b+ k)(a+ b+ k)Vk−1

(a+ b+ (2k + 1))Vk + k(a+ k)(b + k)(a+ b+ k)Vk−1
= Ak. (5.9.3)

We claim that

Vk =

{
Vk−1(a+ b+ 2k − 1 + (k − 1)(a+ b+ k − 1)), if k is odd,

Vk−1(a+ b+ 2k − 1 + (a+ k − 1)(b+ k − 1)), if k is even.

(5.9.4)

We shall defer the proof of the claim above until the end of the proof (5.9.1).
Assuming the truth of (5.9.4) for the moment, let k be odd. Then the left

side of (5.9.3) is equal to

k(a+ k)(b + k)(a+ b+ k)Vk−1(
(a+ b+ 2k + 1)Vk−1{a+ b+ 2k − 1 + (k − 1)(a+ b+ k − 1)}

+k(a+ k)(b+ k)(a+ b+ k)Vk−1

)

=
k(a+ k)(b+ k)(a+ b+ k)

(a+ b + 2k + 1)(ak + bk + k2) + k(a+ k)(b+ k)(a+ b+ k)

=
(a+ k)(b+ k)

a+ b+ 2k + 1 + (a+ k)(b+ k)
=

(a+ k)(b+ k)

(a+ 1 + k)(b+ 1 + k)
= Ak,

as desired. When k is even, the left-hand side of (5.9.3) takes the shape

k(a+ k)(b + k)(a+ b+ k)Vk−1(
(a+ b+ 2k + 1)Vk−1{a+ b+ 2k − 1 + (a+ k − 1)(b+ k − 1)}

+k(a+ k)(b+ k)(a+ b+ k)Vk−1

)

=
k(a+ k)(b + k)(a+ b+ k)

(a+ b+ 2k + 1)(a+ k)(b+ k) + k(a+ k)(b + k)(a+ b+ k)

=
k(a+ b+ k)

(a+ b+ k + 1)(k + 1)
= Ak,

which again is what we wanted to prove. It remains to prove the claim.
We can recast (5.9.4) in the equivalent form

Vk
Vk−1

=

{
(a+ k)(b+ k), if k is even,

k(a+ b + k), if k is odd.
(5.9.5)

We now prove (5.9.5). The first few instances of (5.9.5) are

V2
V1

=
(a+ 2)(b+ 2)(a+ b + 1)

a+ b+ 1
= (a+ 2)(b+ 2),

V3
V2

=
3(a+ 2)(b + 2)(a+ b+ 1)(a+ b+ 3)

(a+ 2)(b+ 2)(a+ b+ 1)
= 3(a+ b+ 3),

V4
V3

= (a+ 4)(b+ 4).
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Assume that (5.9.5) is true up to 2k. Then, by (5.5.3) and the induction
hypothesis,

V2k+1

V2k
=

(a+ b + 4k + 1)V2k + 2k(a+ 2k)(b+ 2k)(a+ b+ 2k)V2k−1

V2k

= (a+ b+ 4k + 1) + 2k(a+ 2k)(b+ 2k)(a+ b+ 2k) · 1

(a+ 2k)(b+ 2k)

= (2k + 1)(a+ b+ 2k + 1),

which is in agreement with (5.9.5). Assuming that (5.9.5) is valid up to 2k+1
and using (5.5.3) again, we find, upon the use of the induction hypothesis,
that

V2k+2

V2k+1

= (a+ b+ 4k + 3)V2k+1 + (2k + 1)(a+ 2k + 1)(b+ 2k + 1)(a+ b+ 2k + 1)

× V2k
V2k+1

= (a+ b+ 4k + 3) + (2k + 1)(a+ 2k + 1)(b+ 2k + 1)(a+ b+ 2k + 1)

× 1

(2k + 1)(a+ b+ 2k + 1)

= (a+ 2k + 2)(b+ 2k + 2),

which again is in harmony with (5.9.5). This then completes the proof of
Ramanujan’s assertion in (5.9.1) and Entry 5.1.2. As mentioned in the intro-
duction, this proof is due to S.-Y. Kang.
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