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Koshliakov’s Formula and Guinand’s Formula

3.1 Introduction

In his lecture at a conference to commemorate the centenary of Ramanujan’s
birth, held on June 1–5, 1987, at the University of Illinois at Urbana-
Champaign, R. William Gosper remarked, “How can we pretend to love this
man when he is forever reaching out from the grave to snatch away our neat-
est results?” In less colorful language, Gosper was asserting that it frequently
happens that one proves an important theorem, only to discover later that it
is ensconced somewhere in Ramanujan’s writings. In other instances, we have
learned that Ramanujan anticipated important later developments in his own
inimitable way.

In this chapter, we examine two pages in Ramanujan’s lost notebook
[269, pp. 253–254], on one of which Gosper’s observation is demonstrated
once again. On page 253, Ramanujan states a version of a famous formula
of A.P. Guinand, from which N.S. Koshliakov’s equally famous formula fol-
lows as a corollary. On page 254, Ramanujan gives applications of Guinand’s
formula; these results are mostly new.

First, we discuss Koshliakov’s formula. Koshliakov is chiefly remembered
for one theorem, namely, Koshliakov’s formula [188], which we now see was
proved by Ramanujan about 10 years earlier. To state his formula, let Kν(z)
denote the modified Bessel function of order ν, defined in (2.1.3), and let d(n)
denote the number of positive divisors of the positive integer n. Then, if γ
denotes Euler’s constant and a > 0,

γ − log

(
4π

a

)
+ 4

∞∑
n=1

d(n)K0(2πan)

=
1

a

(
γ − log(4πa) + 4

∞∑
n=1

d(n)K0

(
2πn

a

))
. (3.1.1)
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94 3 Koshliakov’s Formula and Guinand’s Formula

Koshliakov’s proof, as well as most subsequent proofs, depends upon Voronöı’s
summation formula [310]

∑′

a≤n≤b

d(n)f(n) =

∫ b

a

(log x+ 2γ)f(x)dx

+
∞∑
n=1

d(n)

∫ b

a

f(x)
(
4K0(4π

√
nx)− 2πY0(4π

√
nx)

)
dx, (3.1.2)

where Yν(z) denotes the Weber–Bessel function of order ν, defined in (2.1.2).
The prime ′ on the summation sign on the left-hand side indicates that if a
or b is an integer, then only 1

2f(a) or
1
2f(b), respectively, is counted. For con-

ditions on f(x) that ensure the validity of (3.1.2), see, for example, Berndt’s
paper [28].

A.L. Dixon and W.L. Ferrar [112] also proved (3.1.1) using the Voronöı
summation formula. F. Oberhettinger and K.L. Soni [235] established a gen-
eralization of (3.1.1) using Voronöı’s formula (3.1.2), and she derived further
identities from Koshliakov’s formula [295]. In contrast to the work of these
authors, Ramanujan evidently did not appeal to Voronöı’s formula.

Koshliakov’s formula can be considered an analogue of the transformation
formula for the classical theta function, namely,

∞∑
n=−∞

e−πn2/τ =
√
τ

∞∑
n=−∞

e−πn2τ , Re τ > 0, (3.1.3)

which, as is well known, is equivalent to the functional equation of the
Riemann zeta function ζ(s) given by [306, p. 22]

π−s/2Γ
(
1
2s
)
ζ(s) = π−(1−s)/2Γ

(
1
2 (1− s)

)
ζ(1 − s). (3.1.4)

Ferrar [118] was evidently the first mathematician to prove indeed that (3.1.1)
can be derived from the functional equation of ζ2(s). Oberhettinger and
Soni [235] showed that this functional equation and Koshliakov’s formula are
equivalent.

On page 253 in his lost notebook [269], Ramanujan states (3.1.1) as a
corollary of a more general and especially beautiful formula at the top of the
same page. This more general formula is stated in an equivalent formulation
in Entry 3.1.1 below.

Entry 3.1.1 (p. 253). Let σk(n) =
∑

d|n d
k, and let ζ(s) denote the Riemann

zeta function. If α and β are positive numbers such that αβ = π2, and if s is
any complex number, then



3.2 Preliminary Results 95

√
α

∞∑
n=1

σ−s(n)n
s/2Ks/2(2nα)−

√
β

∞∑
n=1

σ−s(n)n
s/2Ks/2(2nβ)

=
1

4
Γ
(s
2

)
ζ(s){β(1−s)/2−α(1−s)/2}+1

4
Γ
(
−s
2

)
ζ(−s){β(1+s)/2−α(1+s)/2}.

(3.1.5)

The identity (3.1.5) is equivalent to a formula established by Guinand [136]
in 1955. The series in Entry 3.1.1 are reminiscent of the Fourier expansion of
nonanalytic Eisenstein series on SL(2,Z), or Maass wave forms [219], [226,
pp. 230–232], [204, pp. 15–16], [304, pp. 208–209]. This Fourier series was
published by H. Maass [219] in the language of Eisenstein series in the same
year, 1949, that A. Selberg and S. Chowla [283], [282, pp. 367–378] published
it in the similar vein of the Epstein zeta function, but with their proof not
published until several years later [284], [282, pp. 521–545]. In the meanwhile,
P.T. Bateman and E. Grosswald [24] published a proof. These Eisenstein se-
ries were shown by Maass [219] to satisfy a functional equation for automor-
phic forms. C.J. Moreno kindly informed the authors that he was easily able
to derive Entry 3.1.1 from the aforementioned Fourier series expansion and
functional equation. One may then regard (3.1.5) as an equivalent formulation
of the functional equation for these nonholomorphic Eisenstein series or these
particular Maass wave forms. The proof of Entry 3.1.1 that we give below is
essentially the same as that of Guinand [136] and is completely independent of
any considerations of nonanalytic Eisenstein series or their closely associated
Epstein zeta functions. As is well known, Ramanujan made a large number of
original contributions to Eisenstein series, many of which can be found in his
lost notebook [13, Chaps. 11–16], [70].

On page 254, Ramanujan recorded formulas similar to Koshliakov’s for-
mula (3.1.1) or to Guinand’s formula (3.1.5). We show that each of the three
main results on this page can be deduced from Ramanujan’s (and Guinand’s)
beautiful generalization (3.1.5) of Koshliakov’s formula.

We close this introduction by mentioning two recent papers by S. Kane-
mitsu, Y. Tanigawa, H. Tsukada, and M. Yoshimoto [168] and S. Kanemitsu,
Y. Tanigawa, and M. Yoshimoto [171], in which the formulas of Koshliakov
and Guinand are used or generalized.

The content of this chapter is taken from the second author’s paper with
Y. Lee and J. Sohn [62].

3.2 Preliminary Results

Throughout pages 253 and 254 of [269], Ramanujan expresses his theorems in
terms of variants of the integral [126, p. 384, formula 3.471, no. 9]

∫ ∞

0

xν−1e−β/x−γxdx = 2

(
β

γ

)ν/2

Kν(2
√
βγ), (3.2.1)
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where ν is any complex number and Reβ > 0, Re γ > 0. Since the modified
Bessel function Kν(z) is such a well-known function and its notation is stan-
dard, it seems advisable to avoid Ramanujan’s notation for variants of (3.2.1),
which he calls φ, ψ, and χ. In summary, we have converted all of Ramanujan’s
theorems to identities involving the modified Bessel function Kν .

We use the well-known fact [126, p. 978, formula 8.469, no. 3]

K1/2(z) =

√
π

2z
e−z. (3.2.2)

Necessary for us is the asymptotic behavior [314, p. 202]

Kν(z) ∼
√

π

2z
e−z, z → ∞,

which we invoke to ensure the convergence of series and integrals and also
to justify the interchange of integration and summation several times in the
sequel. We need several integrals of Bessel functions beginning with [126,
p. 705, formula 6.544, no. 8]

∫ ∞

0

Kν

(a
x

)
Kν(bx)

dx

x2
=
π

a
K2ν(2

√
ab), Re a > 0,Re b > 0. (3.2.3)

We need the related pair [295, p. 544, Eq. (8)]

∫ ∞

0

xK0(ax)K0(bx)dx =
log(a/b)

a2 − b2
, a, b > 0, (3.2.4)

and [126, p. 697, formula 6.521, no. 3]

∫ ∞

0

xKν(ax)Kν(bx)dx =
π(ab)−ν(a2ν − b2ν)

2 sin(πν)(a2 − b2)
, |Re ν| < 1, Re(a+b) > 0.

(3.2.5)
Lastly, we need the evaluation [126, p. 708, formula 6.561, no. 16], for Re a > 0
and Re(μ+ 1± ν) > 0,

∫ ∞

0

xμKν(ax)dx = 2μ−1a−μ−1Γ

(
1 + μ+ ν

2

)
Γ

(
1 + μ− ν

2

)
. (3.2.6)

3.3 Guinand’s Formula

We begin by restating Entry 3.1.1.

Entry 3.3.1 (p. 253). As usual, let σk(n) =
∑

d|n d
k, and let ζ(s) denote the

Riemann zeta function. If α and β are positive numbers such that αβ = π2,
and if s is any complex number, then
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√
α

∞∑
n=1

σ−s(n)n
s/2Ks/2(2nα)−

√
β

∞∑
n=1

σ−s(n)n
s/2Ks/2(2nβ)

=
1

4
Γ
(s
2

)
ζ(s){β(1−s)/2−α(1−s)/2}+1

4
Γ
(
−s
2

)
ζ(−s){β(1+s)/2−α(1+s)/2}.

(3.3.1)

To prove Entry 3.3.1, we need the following lemma.

Lemma 3.3.1. Let Kν(z) denote the modified Bessel function of order ν.
If x > 0 and Re ν > 0, then

1

4
(πx)−νΓ (ν) +

∞∑
n=1

nνKν(2πnx)

=
1

4

√
π(πx)−ν−1Γ

(
ν +

1

2

)
+

√
π

2x

(x
π

)ν+1

Γ

(
ν +

1

2

) ∞∑
n=1

(n2+x2)−ν−1/2.

(3.3.2)

Lemma 3.3.1 is due to G.N. Watson [313], who proved it by using the
Poisson summation formula. H. Kober [184] generalized Lemma 3.3.1 in two
different directions. In one of them, the index n on the left-hand side of (3.3.2)
was replaced by n+α, 0 < α < 1, and in the other, cos(2πnβ) was introduced
into the summands on the left-hand side of (3.3.2). Berndt [32] generalized
(3.3.2) by putting either an even or odd periodic sequence of coefficients in
the infinite series of (3.3.2). The proof that we give below is essentially an
elaboration of Guinand’s proof [136].

Proof of Entry 3.3.1. Setting n = kd, we find that

√
α

∞∑
n=1

σ−s(n)n
s/2Ks/2(2nα) =

√
α

∞∑
n=1

∑
d|n

d−sns/2Ks/2(2nα)

=
√
α

∞∑
d=1

∞∑
k=1

(
k

d

)s/2

Ks/2(2dkα). (3.3.3)

We now invoke Lemma 3.3.1 on the right-hand side above to deduce that for
Re s > 0,

√
α

∞∑
n=1

σ−s(n)n
s/2Ks/2(2nα)

=
√
α

∞∑
d=1

1

ds/2

(
−1

4
(dα)−s/2Γ

(s
2

)
+

1

4

√
π(dα)−s/2−1Γ

(
s+ 1

2

)

+
π3/2

2dα

(
dα

π2

)s/2+1

Γ

(
s+ 1

2

) ∞∑
n=1

1

(n2 + (dα/π)2)(s+1)/2

)
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= −1

4
α(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
α(−s−1)/2

√
πΓ

(
s+ 1

2

)
ζ(s+ 1)

+
1

2
α(s+1)/2

√
πΓ

(
s+ 1

2

) ∞∑
d=1

∞∑
n=1

1

(n2π2 + d2α2)(s+1)/2
(3.3.4)

= −1

4
α(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
α(−s−1)/2

√
πΓ

(
s+ 1

2

)
ζ(s+ 1)

+
1

2
α(−s−1)/2

√
πΓ

(
s+ 1

2

) ∞∑
d=1

∞∑
n=1

1

(n2β2/π2 + d2)(s+1)/2

= −1

4
α(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
α(−s−1)/2

√
πΓ

(
s+ 1

2

)
ζ(s+ 1)

+
1

2
β(s+1)/2

√
πΓ

(
s+ 1

2

) ∞∑
d=1

∞∑
n=1

1

(n2β2 + d2π2)(s+1)/2
, (3.3.5)

where we used the hypothesis αβ = π2. By symmetry, from (3.3.4), for
Re s > 0,

√
β

∞∑
n=1

σ−s(n)n
s/2Ks/2(2nβ)

= −1

4
β(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
β(−s−1)/2

√
πΓ

(
s+ 1

2

)
ζ(s+ 1)

+
1

2
β(s+1)/2

√
πΓ

(
s+ 1

2

) ∞∑
d=1

∞∑
n=1

1

(n2π2 + d2β2)(s+1)/2
. (3.3.6)

Reversing the roles of the summation variables d and n in (3.3.6), sub-
tracting (3.3.6) from (3.3.5), and rearranging slightly, we deduce that

√
α

∞∑
n=1

σ−s(n)n
s/2Ks/2(2nα)−

√
β

∞∑
n=1

σ−s(n)n
s/2Ks/2(2nβ)

= −1

4
α(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
α(−s−1)/2√πΓ

(
s+ 1

2

)
ζ(s+ 1)

+
1

4
β(−s+1)/2Γ

(s
2

)
ζ(s)− 1

4
β(−s−1)/2

√
πΓ

(
s+ 1

2

)
ζ(s+ 1). (3.3.7)

On the other hand, using the functional equation (3.1.4) of ζ(s) and the fact
that αβ = π2, we find that

1

4
α(−s−1)/2√πΓ

(
s+ 1

2

)
ζ(s+ 1) =

1

4
α(−s−1)/2√ππs+1/2Γ

(
−s
2

)
ζ(−s)

=
1

4
α(−s−1)/2(αβ)(s+1)/2Γ

(
−s
2

)
ζ(−s)

=
1

4
β(s+1)/2Γ

(
−s
2

)
ζ(−s). (3.3.8)
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Substituting (3.3.8) and its analogue with the roles of α and β reversed into
(3.3.7), we find that

√
α

∞∑
n=1

σ−s(n)n
s/2Ks/2(2nα)−

√
β

∞∑
n=1

σ−s(n)n
s/2Ks/2(2nβ)

= −1

4
α(−s+1)/2Γ

(s
2

)
ζ(s) +

1

4
β(s+1)/2Γ

(
−s
2

)
ζ(−s)

+
1

4
β(−s+1)/2Γ

(s
2

)
ζ(s) − 1

4
α(s+1)/2Γ

(
−s
2

)
ζ(−s). (3.3.9)

The identity (3.3.9) is simply a rearrangement of (3.3.1), and so the proof of
(3.3.1) is complete for Re s > 0. By analytic continuation, (3.3.1) is valid for
all complex numbers s. ��

Since Ks(z) = K−s(z) [314, p. 79, Eq. (8)], we see that (3.1.5) is invariant
under the replacement of s by −s.

Ramanujan completes page 253 with two corollaries, which we now state
and prove.

Entry 3.3.2 (p. 253). Let α and β be positive numbers such that αβ = π2.
Then

∞∑
n=1

σ−1(n)e
−2nα −

∞∑
n=1

σ−1(n)e
−2nβ =

β − α

12
+

1

4
log

α

β
. (3.3.10)

Proof. Let s = 1 in Entry 3.1.1. From (3.2.2),

√
αnK1/2(2nα) =

1

2

√
πe−2nα. (3.3.11)

Using (3.3.11), the values Γ (− 1
2 ) = −2Γ (12 ) = −2

√
π and ζ(−1) = − 1

12 [306,
p. 19], and the Laurent expansion of ζ(s) about s = 1 [306, p. 16, Eq. (2.1.16)]
in (3.1.5), we find that

∞∑
n=1

σ−1(n)e
−2nα −

∞∑
n=1

σ−1(n)e
−2nβ − β − α

12

=
1

2
√
π
lim
s→1

Γ
(s
2

)
ζ(s){β(1−s)/2 − α(1−s)/2}

=
1

2
lim
s→1

(
1

s− 1
+ γ + · · ·

)

×
({

1− s− 1

2
log β + · · ·

}
−
{
1− s− 1

2
logα+ · · ·

})

=
1

4
log

α

β
. (3.3.12)

We easily see that (3.3.12) is equivalent to (3.3.10), and so the proof is
complete. ��
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Entry 3.3.2 is equivalent to the identity

∞∑
m=1

1

m(e2mα − 1)
−

∞∑
m=1

1

m(e2mβ − 1)
=
β − α

12
+

1

4
log

α

β
. (3.3.13)

To see this, expand the summands in (3.3.13) in geometric series and collect
all terms with the same exponents in the resulting double series. The for-
mula (3.3.13) (or (3.3.10)) is equivalent to the transformation formula for the
logarithm of the Dedekind eta function. Ramanujan stated (3.3.13) twice in
his second notebook [268], namely as Corollary (ii) in Sect. 8 of Chap. 14 [38,
p. 256] and as Entry 27(iii) in Chap. 16 [39, p. 43]. He also recorded (3.3.13)
in an unpublished manuscript on infinite series reproduced with Ramanujan’s
lost notebook [269]; in particular, see formula (29) on page 320 of [269]. See
also Chap. 12 in this volume or [42, p. 65, Entry 3.5].

We next demonstrate that Koshliakov’s formula (3.1.1) is a corollary of
Entry 3.3.1. Our proof is a detailed explication of that of Guinand [136].

Entry 3.3.3 (p. 253). Let α and β denote positive numbers such that
αβ = π2. Then, if γ denotes Euler’s constant,

√
α

(
1

4
γ − 1

4
log(4β) +

∞∑
n=1

d(n)K0(2nα)

)

=
√
β

(
1

4
γ − 1

4
log(4α) +

∞∑
n=1

d(n)K0(2nβ)

)
. (3.3.14)

Proof. In order to let s→ 0 in Entry 3.1.1, we need the well-known Laurent
expansions [126, p. 944, formula 8.321, no. 1]

Γ (s) =
1

s
− γ + · · · (3.3.15)

and [306, pp. 19–20, Eqs. (2.4.3) and (2.4.5)]

ζ(s) = −1

2
− 1

2
log(2π)s+ · · · . (3.3.16)

Hence, letting s→ 0 in (3.1.5) and using (3.3.15) and (3.3.16), we find that

√
α

∞∑
n=1

d(n)K0(2nα)−
√
β

∞∑
n=1

d(n)K0(2nβ) (3.3.17)

=
1

4
lim
s→0

({(
1

s/2
− γ + · · ·

)(
−1

2
− 1

2
log(2π)s+ · · ·

)

×
(√

β

{
1− 1

2
s log β + · · ·

}
−√

α

{
1− 1

2
s logα+ · · ·

})}
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+

{(
1

−s/2 − γ + · · ·
)(

−1

2
+

1

2
log(2π)s+ · · ·

)

×
(√

β

{
1 +

1

2
s log β + · · ·

}
−√

α

{
1 +

1

2
s logα+ · · ·

})})

=
1

4
γ(
√
β −√

α)− 1

2
log(2π)(

√
β −√

α) +
1

4
(
√
β log β −√

α logα)

=
1

4
γ(
√
β −√

α)− 1

4
log(4αβ)(

√
β −√

α) +
1

4
(
√
β log β −√

α logα),

where in the last step we used the equality αβ = π2. A simplification and
rearrangement of (3.3.17) yield (3.3.14) to complete the proof. ��

3.4 Kindred Formulas on Page 254 of the Lost
Notebook

Entry 3.4.1 (p. 254). If a > 0,

∫ ∞

0

dx

x(e2πx − 1)(e2πa/x − 1)
= 2

∞∑
n=1

d(n)K0(4π
√
an)

=
a

π2

∞∑
n=1

d(n) log(a/n)

a2 − n2
− 1

2
γ −

(
1

4
+

1

4π2a

)
log a− log(2π)

2π2a
. (3.4.1)

Proof. Expanding the integrand in geometric series, we find that

∫ ∞

0

dx

x(e2πx − 1)(e2πa/x − 1)
=

∞∑
m=1

∞∑
k=1

∫ ∞

0

1

x
e−2π(mx+ak/x)dx

=

∞∑
m=1

∞∑
k=1

∫ ∞

0

1

u
e−2π(u+akm/u)du

=
∞∑
n=1

d(n)

∫ ∞

0

1

u
e−2π(u+an/u)du

= 2

∞∑
n=1

d(n)K0(4π
√
an),

by (3.2.1), which proves the first part of (3.4.1).
The second identity in (3.4.1) was actually first proved in print in 1966 by

Soni [295]. Her proof is short, depends on Koshliakov’s formula (3.1.1), and
uses the integral evaluations (3.2.3) with ν = 0 and (3.2.4). We use her idea
to prove the second major claim of Ramanujan on page 254. ��

In contrast to the claims on the top and bottom thirds of page 254, the
one claim in the middle of page 254 seems to be missing one element, and so
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we shall proceed as we think Ramanujan might have done. Proceeding as we
did above and employing (3.2.1), we find that

∫ ∞

0

dx√
x(e2πx − 1)(e2πa/x − 1)

=

∞∑
m=1

∞∑
k=1

1√
m

∫ ∞

0

1√
u
e−2π(u+akm/u)du

=
∞∑

n=1

σ−1/2(n)

∫ ∞

0

1√
u
e−2π(u+an/u)du

= 2

∞∑
n=1

σ−1/2(n)(an)
1/4K1/2(4π

√
an)

=
1√
2

∞∑
n=1

σ−1/2(n)e
−4π

√
an, (3.4.2)

where we have used (3.2.2). Ramanujan’s next claim gives an identity for the
last series above, with a replaced by a/4.

Entry 3.4.2 (p. 254). For a > 0,

∞∑
n=1

σ−1/2(n)e
−2π

√
an = Ka

∞∑
n=1

σ−1/2(n)

(n+ a)(
√
n+

√
a)

+ two trivial terms.

(3.4.3)

Evidently, K on the right-hand side of (3.4.3) represents an unspecified
constant. Ramanujan does not divulge the identities of the “two trivial terms.”
Our calculation in (3.4.2), showing a discrepancy with the series on the left-
hand side of (3.4.3), actually provides a clue that this series in (3.4.3) should
be replaced by the series on the right-hand side of (3.4.2). We next state a
corrected version of Entry 3.4.2 providing the identities of the constant and
the “trivial terms.”

Entry 3.4.3 (p. 254). If a > 0, then

∞∑
n=1

σ−1/2(n)e
−4π

√
an − a

π

∞∑
n=1

σ−1/2(n)

(n+ a)(
√
n+

√
a)

=
1

2
ζ

(
1

2

)(
1

π
√
a
− 1

)
+

1

2
ζ

(
−1

2

)(
4π

√
a− 1

πa

)
. (3.4.4)

Proof. In (3.1.5), set s = 1
2 and α = x, so that β = π2/x. Then,

√
x

∞∑
n=1

σ−1/2(n)n
1/4K1/4(2nx)− π√

x

∞∑
n=1

σ−1/2(n)n
1/4K1/4(2nπ

2/x)

=
1

4
Γ

(
1

4

)
ζ

(
1

2

)( √
π

x1/4
− x1/4

)
+

1

4
Γ

(
−1

4

)
ζ

(
−1

2

)(
π3/2

x3/4
− x3/4

)
.

(3.4.5)
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Multiply both sides of (3.4.5) by

1

x5/2
K1/4(2aπ

2/x)

and integrate over (0,∞). Inverting the order of summation and integration
by absolute convergence, we find that

∞∑
n=1

σ−1/2(n)n
1/4

∫ ∞

0

1

x2
K1/4(2nx)K1/4(2aπ

2/x)dx (3.4.6)

− π

∞∑
n=1

σ−1/2(n)n
1/4

∫ ∞

0

1

x3
K1/4(2nπ

2/x)K1/4(2aπ
2/x)dx

=
1

4
Γ

(
1

4

)
ζ

(
1

2

)(√
πI3 − I1

)
+

1

4
Γ

(
−1

4

)
ζ

(
−1

2

)(
π3/2I5 − I−1

)
,

where

Ij =

∫ ∞

0

uj/4K1/4(2aπ
2u)du, (3.4.7)

and where to obtain the four integrals on the right-hand side of (3.4.6), we
made the change of variable x = 1/u in each one.

We examine each of the six integrals in (3.4.6) in turn. First, using (3.2.3)
and (3.2.2), we find that

∫ ∞

0

1

x2
K1/4(2nx)K1/4(2aπ

2/x)dx =
1

2aπ
K1/2(4π

√
an)

=
1

4
√
2a5/4n1/4π

e−4π
√
an. (3.4.8)

Second, making the change of variable u = π2/x and using (3.2.5), we deduce
that∫ ∞

0

1

x3
K1/4(2nπ

2/x)K1/4(2aπ
2/x)dx =

1

π4

∫ ∞

0

uK1/4(2nu)K1/4(2au)du

=
1

π4

π(4na)−1/4(
√
2n−√

2a)

2 sin(π/4)(4n2 − 4a2)

=

√
2(an)−1/4

8π3(n+ a)(
√
n+

√
a)
. (3.4.9)

In our calculations of Ij , j = 3, 1, 5,−1, we employ (3.2.6). Thus,

I3 = 2−1/4(2aπ2)−7/4Γ (1)Γ

(
3

4

)
=

1

4a7/4π7/2
Γ

(
3

4

)
, (3.4.10)

I1 = 2−3/4(2aπ2)−5/4Γ

(
3

4

)
Γ

(
1

2

)
=

1

4a5/4π2
Γ

(
3

4

)
, (3.4.11)
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I5 = 21/4(2aπ2)−9/4Γ

(
5

4

)
Γ (1) =

1

4a9/4π9/2
Γ

(
5

4

)
, (3.4.12)

I−1 = 2−5/4(2aπ2)−3/4Γ

(
1

2

)
Γ

(
1

4

)
=

1

4a3/4π
Γ

(
1

4

)
. (3.4.13)

Using (3.4.8)–(3.4.13) in (3.4.6) and making frequent use of the reflection
formula

Γ (z)Γ (1− z) =
π

sin(πz)
,

we deduce that

1

4
√
2a5/4π

∞∑
n=1

σ−1/2(n)e
−4π

√
an − 1

4
√
2a1/4π2

∞∑
n=1

σ−1/2(n)

(n+ a)(
√
n+

√
a)

=

√
2

16
ζ

(
1

2

)(
1

a7/4π2
− 1

a5/4π

)
+

√
2

16
ζ

(
−1

2

)(
− 1

a9/4π2
+

4

a3/4

)
.

(3.4.14)

If we multiply both sides of (3.4.14) by 4
√
2a5/4π and rearrange slightly, we

obtain (3.4.4) to complete the proof. ��
We record the last two results on page 254 as Ramanujan wrote them,

except that we express the results in terms of Bessel functions. The constant
K and the “two trivial terms” are not the same as they are in Entry 3.4.2.

Entry 3.4.4 (p. 254). If a > 0, then

∫ ∞

0

dx

(e2πx − 1)(e2πa/x − 1)
= 2

√
a

∞∑
n=1

σ−1(n)
√
nK1(4π

√
an) (3.4.15)

= Ka2
∞∑

n=1

σ−1(n)

n(n+ a)
+ two trivial terms.

(3.4.16)

Proof. We prove (3.4.15). Expanding the integrand in geometric series,
setting mx = u, and invoking (3.2.1), we find that

∫ ∞

0

dx

(e2πx − 1)(e2πa/x − 1)
=

∞∑
m=1

∞∑
k=1

1

m

∫ ∞

0

e−2π(u+akm/u)du

=

∞∑
n=1

σ−1(n)

∫ ∞

0

e−2π(u+an/u)du

= 2
√
a

∞∑
n=1

σ−1(n)
√
nK1(4π

√
an).

��
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Lastly, we provide and prove a more precise version of (3.4.16) giving the
identities of the missing terms.

Entry 3.4.5 (p. 254). If a > 0 and γ denotes Euler’s constant, then

2
√
a

∞∑
n=1

σ−1(n)
√
nK1(4π

√
an)

= − a2

2π

∞∑
n=1

σ−1(n)

n(n+ a)
+
a

2π
((log a+ γ)ζ(2) + ζ′(2))+

1

4π
(log 2aπ+γ)+

1

48aπ
.

(3.4.17)

Proof. In (3.3.10), set α = x, so that β = π2/x. Recalling (3.2.2), we find
that

2√
π

∞∑
n=1

σ−1(n)
√
nxK1/2(2nx)

=

( ∞∑
n=1

σ−1(n)e
−2nπ2/x − x

12

)
+

1

2
log

x

π
+

π2

12x

=: I1 + I2 + I3. (3.4.18)

Next, multiply both sides of (3.4.18) by

1

x5/2
K1/2(2aπ

2/x)

and integrate over (0,∞).
Consider first the series arising on the left-hand side of (3.4.18). Inverting

the order of summation and integration on the left-hand side by absolute
convergence, we arrive at

2√
π

∞∑
n=1

σ−1(n)
√
n

∫ ∞

0

1

x2
K1/2(2nx)K1/2(2aπ

2/x)dx

=
1

aπ3/2

∞∑
n=1

σ−1(n)
√
nK1(4π

√
an), (3.4.19)

where we have employed (3.2.3).
Second, the contribution from I3 in (3.4.18) is given by

π2

12

∫ ∞

0

x−7/2K1/2(2aπ
2/x)dx =

π2

12

∫ ∞

0

u3/2K1/2(2aπ
2u)du =

1

96a5/2π5/2
,

(3.4.20)
where we used (3.2.6) in the last step with μ = 3

2 , ν = 1
2 , and a replaced by

2aπ2.
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Third, using (3.2.2), we find that the contribution from I2 in (3.4.18) is
equal to

1

2

∫ ∞

0

x−5/2 log(x/π)K1/2(2aπ
2/x)dx

=
1

4
√
aπ

∫ ∞

0

x−2 log(x/π)e−2aπ2/xdx

=
1

8a3/2π5/2

∫ ∞

0

log(2aπ/u)e−udu

=
1

8a3/2π5/2

{∫ ∞

0

e−u log(2aπ)du−
∫ ∞

0

e−u log u du

}

=
1

8a3/2π5/2

{
log(2aπ)−

∫ ∞

0

e−u log u du

}

=
1

8a3/2π5/2
{log(2aπ) + γ} , (3.4.21)

since [126, p. 602, formula 4.331, no. 1]

γ = −
∫ ∞

0

e−u log u du.

Finally, the contribution from I1 in (3.4.18) is given by

J :=

∫ ∞

0

( ∞∑
n=1

σ−1(n)e
−2nπ2/x − 1

12
x

)
x−5/2K1/2(2aπ

2/x)dx. (3.4.22)

Recall that ζ(2) = π2/6. Thus, we can write

∞∑
n=1

σ−1(n)e
−2nπ2/x − 1

12
x =

∞∑
n=1

∑
d|n

1

d
e−2nπ2/x − 1

12
x

=

∞∑
d=1

∞∑
m=1

1

d
e−2mdπ2/x − 1

12
x

=
∞∑
d=1

1

d

1

e2dπ2/x − 1
−
( ∞∑

n=1

1

n2

)
x

2π2
. (3.4.23)

Using (3.4.23) and (3.2.2) in (3.4.22), we see that

J =

∫ ∞

0

( ∞∑
n=1

1

n

1

e2nπ2/x − 1
−
( ∞∑

n=1

1

n2

)
x

2π2

)
1

2
√
aπ
e−2aπ2/x dx

x2

=
1

2
√
aπ

∫ ∞

0

∞∑
n=1

1

n

(
1

e2nπ2/x − 1
− 1

2nπ2/x

)
e−2aπ2/x dx

x2
. (3.4.24)
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Since for z > 0,
1

ez − 1
− 1

z
< 0,

we can change the order of summation and integration by the monotone
convergence theorem. Hence,

J =
1

2
√
aπ

∞∑
n=1

1

n

∫ ∞

0

(
1

e2nπ2/x − 1
− 1

2nπ2/x

)
e−2aπ2/x dx

x2

=
1

4
√
aπ5/2

∞∑
n=1

1

n2

∫ ∞

0

(
1

eu − 1
− 1

u

)
e−au/ndu. (3.4.25)

Consider now two different expressions for the logarithmic derivative of
the gamma function, namely [126, p. 952, formula 8.362, no. 1; formula 8.361,
no. 8],

Γ ′(z)
Γ (z)

= −γ − 1

z
+

∞∑
n=1

z

n(n+ z)

= log z − 1

z
−
∫ ∞

0

(
1

et − 1
− 1

t

)
e−tzdt,

where Re z > 0. Hence,∫ ∞

0

(
1

eu − 1
− 1

u

)
e−au/ndu = log(a/n) + γ −

∞∑
m=1

a

m(mn+ a)
. (3.4.26)

Putting (3.4.26) in (3.4.25), we find that

J =
1

4a1/2π5/2

∞∑
n=1

1

n2

(
log(a/n) + γ −

∞∑
m=1

a

m(mn+ a)

)

=
1

4a1/2π5/2

(
(log a+ γ)ζ(2)−

∞∑
n=1

logn

n2
−

∞∑
n=1

∞∑
m=1

a

n2m(mn+ a)

)

=
1

4a1/2π5/2

(
(log a+ γ)ζ(2) + ζ′(2)− a

∞∑
n=1

σ−1(n)

n(n+ a)

)

= − a1/2

4π5/2

∞∑
n=1

σ−1(n)

n(n+ a)
+

1

4a1/2π5/2
((log a+ γ)ζ(2) + ζ′(2)). (3.4.27)

We now combine all our calculations that arose from (3.4.18), namely,
(3.4.19)–(3.4.22), and (3.4.27), to deduce that

1

aπ3/2

∞∑
n=1

σ−1(n)
√
nK1(4π

√
an) =

1

96a5/2π5/2
+

1

8a3/2π5/2
{log(2aπ) + γ}

− a1/2

4π5/2

∞∑
n=1

σ−1(n)

n(n+ a)
+

1

4a1/2π5/2
((log a+ γ)ζ(2) + ζ′(2)). (3.4.28)
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Finally multiply both sides of (3.4.28) by 2π3/2a3/2 to deduce (3.4.17) and
complete the proof. ��

Analogues of Guinand’s formula in Entry 3.3.1 and Watson’s lemma
(Lemma 3.3.1) have been derived by Berndt [27]. These analogues are also dis-
cussed in the paper [62] on which this chapter is based. Analogues of Guinand’s
and Koshliakov’s formulas with characters in the summands have been derived
by Berndt, A. Dixit, and Sohn [52]. A different character analogue of Koshli-
akov’s formula along with a connection to integrals of Dirichlet L-functions
that are analogues of Ramanujan’s famous integrals involving Riemann’s Ξ-
function [257] has been derived by Dixit [110]. H. Cohen [98] has continued
the line of investigation represented by Entry 3.4.5 and has derived several
interesting formulas of the same sort.

Dixit [107] has derived a beautiful extension of Koshliakov’s formula.
Recall that Riemann’s ξ-function is defined by

ξ(s) := (s− 1)π−s/2Γ (1 + 1
2s)ζ(s), (3.4.29)

and that his Ξ-function is defined by

Ξ(t) := ξ(12 + it). (3.4.30)

We now state Dixit’s extension [107].

Theorem 3.4.1 (Extended version of Koshliakov’s formula). Let Ξ(t)
be defined by (3.4.30). If α and β are positive numbers such that αβ = 1, then

√
α

(
γ − log(4πα)

α
− 4

∞∑
n=1

d(n)K0(2πnα)

)

=
√
β

(
γ − log(4πβ)

β
− 4

∞∑
n=1

d(n)K0(2πnβ)

)

= −32

π

∫ ∞

0

(
Ξ
(
1
2 t
))2

cos
(
1
2 t logα

)
dt

(1 + t2)2
. (3.4.31)

Dixit first showed that the far left side of (3.4.31) is equal to the integral on
the far right-hand side. Next observe that if we put α = 1/β in this equality,
then the first equality in (3.4.31) easily follows. Koshliakov [191] derived a
formula similar to (3.4.31). Essentially, his formula arises from taking the
Fourier cosine transform of both sides of (3.4.31).

Dixit [109] has also extended Guinand’s formula.

Theorem 3.4.2 (Extended version of Guinand’s formula). If α and β
are positive numbers such that αβ = 1, then for −1 < Re z < 1,
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√
α
(
αz/2−1π−z/2Γ

(z
2

)
ζ(z) + α−z/2−1πz/2Γ

(
−z
2

)
ζ(−z) (3.4.32)

−4
∞∑
n=1

σ−z(n)n
z/2Kz/2 (2nπα)

)

=
√
β
(
βz/2−1π−z/2Γ

(z
2

)
ζ(z) + β−z/2−1πz/2Γ

(
−z
2

)
ζ(−z)

−4

∞∑
n=1

σ−z(n)n
z/2Kz/2 (2nπβ)

)

= −32

π

∫ ∞

0

Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos

(
1
2 t logα

)
(t2 + (z + 1)2)(t2 + (z − 1)2)

dt.

As with Dixit’s extension of Koshliakov’s formula, suppose that we can
show that the far left side of (3.4.32) is equal to the far right side above. Then
if we set α = 1/β in this equality, the first equality of (3.4.32) follows. Dixit
[109] has obtained a companion theorem to Theorem 3.4.2 for |Re z| > 1.
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