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Miscellaneous Results in Analysis

19.1 Introduction

Recall that when Ramanujan’s lost notebook [269] was published in 1988,
other fragments and partial manuscripts were also published with the lost
notebook. In the first portion of this chapter, we examine two formulas
found on page 336 of [269] that are clearly wrong. Undoubtedly, Ramanujan
realized that these results are indeed incorrect as they stand. He possibly pos-
sessed correct identities and used some unknown formal procedure to replace
certain expressions by divergent series in order to make the identities more
attractive. Ramanujan frequently enjoyed stating identities in an unorthodox
fashion in order to surprise or titillate his audience. We timorously conjecture
that Ramanujan had established correct identities in each case, but we do not
know what they are.

Following our discussion of these two intriguing but incorrect formulas, we
consider various isolated results. Perhaps the most interesting are an integral-

series identity on page 197 and a study of the integral
∫ x

0
sinu
u du, for which

Ramanujan determines the points where it achieves local maxima and minima.

19.2 Two False Claims

Entry 19.2.1 (p. 336). Let σs(n) =
∑

d|n d
s, and let ζ(s) denote the Rie-

mann zeta function. Then

Γ (s+ 1
2 )

⎧
⎨

⎩
ζ(1 − s)

(s− 1
2 )x

s− 1
2

+
ζ(−s) tan 1

2πs

2xs+
1
2

+

∞∑

n=1

σs(n)

2i

{

(x− in)−s− 1
2 − (x+ in)−s− 1

2

}}
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= (2π)s
{
ζ(1 − s)

2
√
πx

− 2π
√
πxζ(−s) tan 1

2πs

+
√
π

∞∑

n=1

σs(n)√
n
e−2π

√
2nx sin

(π
4
+ 2π

√
2nx

)
}

. (19.2.1)

Entry 19.2.2 (p. 336). Let σs(n) and ζ(s) be as in the preceding entry. If α
and β are positive numbers such that αβ = 4π2, then

α(s+1)/2

{
1

α
ζ(1 − s) +

1

2
ζ(−s) tan 1

2πs+
∞∑

n=1

σs(n) sin(nα)

}

= β(s+1)/2

{
1

β
ζ(1 − s) +

1

2
ζ(−s) tan 1

2πs+

∞∑

n=1

σs(n) sin(nβ)

}

. (19.2.2)

Each of Ramanujan’s claims is easily seen to be false in general, because
each contains divergent series. In Sects. 19.3–19.6, we examine these two for-
mulas. Formula (19.2.2) is especially intriguing because of its beautiful sym-
metry, because it appears to be a relation between Eisenstein series formally
extended to the real line, and because it appears to be an analogue of the
Poisson summation formula or a special instance of the Voronöı summation
formula.

19.3 First Attempt: A Possible Connection with
Eisenstein Series

A first examination of (19.2.2) reminds us of the transformation formulas
for Eisenstein series when s is a positive odd integer. In [29], Berndt derived
modular transformation formulas for a large class of analytic Eisenstein series.
Specializing Theorem 2 of [29] for r1 = r2 = 0 and the modular transformation
Tz = −1/z, for z ∈ H = {z : Im z > 0} we find that for any complex number s,

z−s(1 + eπis)

∞∑

n=1

σs−1(n)e
−2πin/z = (1 + eπis)

∞∑

n=1

σs−1(n)e
2πinz

− z−seπis(2πi)−s(1 + eπis)Γ (s)ζ(s) + (2πi)−s(1 + eπis)Γ (s)ζ(s)

− (2πi)−s

∫

C

us−1 1

ezu − 1

1

eu − 1
du, (19.3.1)

where ζ(s) denotes the Riemann zeta function. Here C is a loop beginning at
+∞, proceeding to the left in H, encircling the origin in the positive direction
so that u = 0 is the only zero of (ezu − 1)(eu − 1) lying “inside” the loop, and
then returning to +∞ in the lower half-plane. We choose the branch of us

with 0 < argu < 2π. Otherwise, outside the integrand, we choose the branch
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of logw such that −π ≤ argw < π. Replacing s by s + 1 in (19.3.1) and
slightly simplifying, we find that

z−s−1
∞∑

n=1

σs(n)e
−2πin/z =

∞∑

n=1

σs(n)e
2πinz

+ z−s−1eπis(2πi)−s−1Γ (s+ 1)ζ(s+ 1) + (2πi)−s−1Γ (s+ 1)ζ(s+ 1)

− (2πi)−s−1

1− eπis

∫

C

us
1

ezu − 1

1

eu − 1
du. (19.3.2)

Next, recall the functional equation of the Riemann zeta function (3.1.4) [306,
p. 16, equation (2.1.8)],

ζ(1 − s) = 21−sπ−s cos
(
1
2πs

)
Γ (s)ζ(s). (19.3.3)

If we replace s by s+ 1 in (19.3.3), we easily see that

(2πi)−s−1Γ (s+ 1)ζ(s+ 1) =
ie−πis/2ζ(−s)
2 sin

(
1
2πs

) . (19.3.4)

Using (19.3.4) in (19.3.2), we conclude that

z−s−1
∞∑

n=1

σs(n)e
−2πin/z =

∞∑

n=1

σs(n)e
2πinz + z−s−1 ie

πis/2ζ(−s)
2 sin

(
1
2πs

)

+
ie−πis/2ζ(−s)
2 sin

(
1
2πs

) − (2πi)−s−1

1− eπis

∫

C

us
1

ezu − 1

1

eu − 1
du. (19.3.5)

Omitting n, note that the product of the arguments in the exponentials in the
two infinite series in (19.3.5) is equal to 4π2, in accordance with the condition
αβ = 4π2 prescribed by Ramanujan. Equation (19.3.5) is as close to (19.2.2)
as we can get using the chief theorem from [29].

19.4 Second Attempt: A Formula in Ramanujan’s
Paper [257]

We conjecture that Ramanujan’s formula (19.2.2) arose from the research that
produced his paper [257], [267, pp. 72–77]. On page 75 in [267], in formula
(15), Ramanujan asserts that if Re s > −1 and if α and β are positive numbers
such that αβ = 4π2, then

ζ(1 − s)

4 cos(12πs)
α(s−1)/2 +

ζ(−s)
8 sin(12πs)

α(s+1)/2

+ α(s+1)/2

∫ ∞

0

∫ ∞

0

xs sin(αxy)

(e2πx − 1)(e2πy − 1)
dx dy
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=
ζ(1 − s)

4 cos(12πs)
β(s−1)/2 +

ζ(−s)
8 sin(12πs)

β(s+1)/2

+ β(s+1)/2

∫ ∞

0

∫ ∞

0

xs sin(βxy)

(e2πx − 1)(e2πy − 1)
dx dy. (19.4.1)

Suppose that we multiply both sides of (19.4.1) by 4 cos(12πs) to deduce that

α(s+1)/2

{
1

α
ζ(1− s) +

1

2
ζ(−s) cot(12πs)

+ 4 cos(12πs)

∫ ∞

0

∫ ∞

0

xs sin(αxy)

(e2πx − 1)(e2πy − 1)
dx dy

}

=β(s+1)/2

{
1

β
ζ(1− s) +

1

2
ζ(−s) cot(12πs)

+ 4 cos(12πs)

∫ ∞

0

∫ ∞

0

xs sin(βxy)

(e2πx − 1)(e2πy − 1)
dx dy

}

. (19.4.2)

We note that the first two expressions on each side of (19.4.2) are identical to
the first two terms on each side of (19.2.2), except that tan(12πs) in (19.2.2)
has been replaced by cot(12πs) in (19.4.2). However, we are unable to make
any identification of the double integrals in (19.4.2) with the divergent sums
in (19.2.2).

19.5 Third Attempt: The Voronöı Summation Formula

Our third attempt to prove Entries 19.2.2 and 19.2.1 depends on the Voronöı
summation formula. We only briefly sketch the background and hypotheses
needed for the statement of the Voronöı summation formula. For complete
details, see the papers [26–28], and [89].

Let s = σ + it, with σ and t real, and let

φ(s) :=

∞∑

n=1

a(n)λ−s
n and ψ(s) :=

∞∑

n=1

b(n)μ−s
n , 0 < λn, μn → ∞,

be two Dirichlet series with abscissas of absolute convergence σa and σ∗
a,

respectively. Let r > 0, and suppose that φ(s) and ψ(s) satisfy a functional
equation of the type

Γ (s)φ(s) = Γ (r − s)ψ(r − s). (19.5.1)

Define also

Q(x) :=
1

2πi

∫

C

φ(s)xs

s
ds, (19.5.2)

where C is a simple closed curve(s) containing the integrand’s poles in its
interior.
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The Voronöı summation formula in its original form with a(n) = d(n),
where d(n) denotes the number of positive divisors of the positive integer n,
was first proved by M.G. Voronöı in 1904 [310]. Since then, “Voronöı sum-
mation formulas” have been established for a variety of arithmetic functions
under various hypotheses. In particular, Berndt [28] established various ver-
sions of the Voronöı summation formula, including the following theorem from
[28, p. 142, Theorem 1], where several references to the literature on Voronöı
summation formulas can be found.

Theorem 19.5.1. Let f ∈ C(1)(0,∞). Then, if 0 < a < λ1 < x <∞,

∑′

λn≤x

a(n)f(λn) =

∫ x

a

Q′(t)f(t)dt (19.5.3)

+

∞∑

n=1

b(n)

∫ x

a

(
t

μn

)(r−1)/2

Jr−1(2
√
μnt)f(t)dt,

where the prime ′ on the summation sign on the left-hand side indicates that
if x = λn, for some integer n, then only 1

2a(n)f(λn) is counted, and where
Jν(x) denotes the ordinary Bessel function of order ν.

This is the simplest theorem of this sort. The two applications that we
make of Theorem 19.5.1 are formal in the sense that there are no versions of the
Voronöı summation formula that would ensure the validity of our applications;
indeed, as we remarked above, both (19.2.1) and (19.2.2) contain divergent
series. Possibly Ramanujan discovered some version of the Voronöı summation
formula for a(n) = σk(n), but if so, he apparently had established neither a
precise version nor conditions for its validity. Under this assumption, we next
see how Ramanujan might have been led to the two entries above.

In order to avoid possible confusion, we are going to replace s by k in our
attempts to prove (19.2.1) and (19.2.2). It is well known and easy to prove
that for any real number k,

ζ(s)ζ(s − k) =

∞∑

n=1

σk(n)

ns
, σ > sup{1, k + 1}. (19.5.4)

Then with the use of the functional equation (19.3.3) for ζ(s), it is not difficult
to show that if k is an odd integer [89, p. 17],

(2π)−sΓ (s)ζ(s)ζ(k − s)

= (−1)(k+1)/2(2π)−(k+1−s)Γ (k + 1− s)ζ(k + 1− s)ζ(1 − s). (19.5.5)

Thus, in the settings (19.5.1) and (19.5.5), we have

a(n) = σk(n), b(n) = (−1)(k+1)/2σk(n), k odd, (19.5.6)
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λn = μn = 2πn, n ≥ 1, r = k + 1. (19.5.7)

Furthermore, Q(x) is the sum of the residues of

(2π)−sζ(s)ζ(s − k)xs

s

taken over all its poles, which are at s = 1, s = k + 1, and s = 0. Since ζ(s)
has a simple pole at s = 1 with residue 1 and [306, p. 19]

ζ(0) = −1

2
, (19.5.8)

we find that

Q(x) = −1

2
ζ(−k) + ζ(1 − k)x

2π
+

ζ(k + 1)xk+1

(2π)k+1(k + 1)
.

It follows that

Q′(x) =
ζ(1 − k)

2π
+
ζ(k + 1)xk

(2π)k+1
. (19.5.9)

We first examine (19.2.2). In our formal application of (19.5.3), we clearly
should set a = 0, x = ∞, and f(t) = sin(αt/(2π)). In order to apply (19.5.3),
we need to employ the integral evaluation [126, p. 773, formula 6.728, no. 5]

∫ ∞

0

xk+1Jk(bx) sin(ax
2)dx =

bk

(2a)k+1
cos

(
b2

4a
− kπ

2

)

. (19.5.10)

Hence, using (19.5.10), we find that

∫ ∞

0

tk/2Jk(2
√
2πnt) sin

(
αt

2π

)

dt = 2

∫ ∞

0

uk+1Jk(2
√
μn u) sin

(
αu2

2π

)

du

=
(2π)3k/2+1nk/2

αk+1
cos

(
4π2n

α
− kπ

2

)

= (−1)(k−1)/2 (2π)
3k/2+1nk/2

αk+1
sin

(
4π2n

α

)

= (−1)(k−1)/2 (2π)
3k/2+1nk/2

αk+1
sin(βn),

(19.5.11)

since αβ = 4π2.
With the preliminary details out of the way, we are now ready to ap-

ply the Voronöı summation formula (19.5.3). Using the calculations (19.5.9)
and (19.5.11) and the parameters defined above, we formally find that
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∞∑

n=1

σk(n) sin(αn) =

∫ ∞

0

(
ζ(1 − k)

2π
+
ζ(k + 1)tk

(2π)k+1

)

sin

(
αt

2π

)

dt

−
(
2π

α

)k+1 ∞∑

n=1

σk(n) sin(βn). (19.5.12)

Thus, if we replace s by k in (19.2.2) and assume that k is an odd integer,
then (19.5.12) is as close as we can get in our efforts to formally derive (19.2.2).
Note that on the right side of (19.5.12) a minus sign appears, in contrast to
the right side of (19.2.2), and that a divergent integral appears on the right-
hand side of (19.5.12) in place of the expressions involving the Riemann zeta
function appearing in (19.2.2).

We now turn to (19.2.1). Observe that the infinite series on the left-hand
side are reminiscent of the finite Riesz sums

∑
n≤x σs(n)(x − n)r, for which

identities have been derived by, for example, A. Oppenheim [239] and A. Lau-
rinčikas [209]. Once more, we make an application of the Voronöı summation
formula. Note that the series on the left-hand side of (19.2.1) does not con-
verge for any real value of s, since σs(n) ≥ ns. Also note that for x sufficiently
large and for σ > 1

2 , each expression in (19.2.1) tends to 0 as x tends to ∞,
except for −2π

√
πxζ(−s) tan 1

2πs, which tends to ∞.
To effect our application of Theorem 19.5.1, we need the integral evaluation

[126, p. 709, formula 6.565, no. 2]

∫ ∞

0

xν+1Jν(bx)(x
2 + a2)−ν−1/2dx =

√
π bν−1

2eabΓ (ν + 1
2 )
, (19.5.13)

where Rea > 0, b > 0, Re ν > − 1
2 , and Jν(x) denotes the ordinary Bessel

function of order ν. Apply the Voronöı summation formula (19.5.3) twice, with
a = 0, x = ∞, and f(t) = (x ∓ it)−k−1/2, under the same conditions (19.5.6)
and (19.5.7) as in our previous application. We do not provide further details
but invite readers to consult the paper by Berndt, O.-Y. Chan, S.-G. Lim,
and A. Zaharescu [48], where the remainder of the failed proof can be found.
We eventually then arrive at the “identity”

∞∑

n=1

σk(n)
{
(x − in)−k−1/2 − (x+ in)−k−1/2

}

=

∫ ∞

0

(
ζ(1 − k)

2π
+
ζ(k + 1)tk

(2π)k+1

)(
(x− it)−k−1/2 − (x+ it)−k−1/2

)
dt

− i
√
2

Γ (k + 1
2 )

∞∑

n=1

σk(n)√
n
e−2

√
πnx sin

(

2
√
πnx+

1

4
π

)

, (19.5.14)

which should be compared with (19.2.1). Observe that the integral on the
right-hand side of (19.5.14) diverges, although it can be subdivided into two
improper integrals, one of which converges and is elementary, and the other
of which diverges.
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19.6 Fourth Attempt: Mellin Transforms

Another effort to prove Entries 19.2.1 and 19.2.2 has utilized Mellin trans-
forms. We refer readers to the aforementioned paper by Berndt, Chan, Lim,
and Zaharescu [48] for the details of this failed attempt.

19.7 An Integral on Page 197

Entry 19.7.1 (p. 197). Let n > 0 and let t > 0. Then

∫ ∞

0

sin(πtx)

x cosh(πx)
e−iπnx2

dx =
π

2
− 2

∞∑

k=0

(−1)k
e−(2k+1)πt/2+(2k+1)2iπn/4

2k + 1

− π√
n
e−iπ/4

∫ ∞

0

∞∑

k=0

(−1)ke(t+u+(2k+1)i)2iπ/(4n)du. (19.7.1)

Ramanujan has a slight misprint in his formulation of (19.7.1) in [269]; he
forgot the factor π in the exponents in the summands in the first series on the
right-hand side.

Before proving Entry 19.7.1, we state the values of some integrals that we
need in our proof. For a, b > 0 [126, p. 542, formulas 3.989, nos. 5, 6],

∫ ∞

0

sin(πax2) cos(bx)

cosh(πx)
dx = −

∞∑

k=0

(−1)ke−(2k+1)b/2 sin

(
(2k + 1)2πa

4

)

+
1√
a

∞∑

k=0

(−1)ke−(2k+1)b/(2a) sin

(
π

4
− b2

4πa
+

(2k + 1)2π

4a

)

(19.7.2)

and

∫ ∞

0

cos(πax2) cos(bx)

cosh(πx)
dx =

∞∑

k=0

(−1)ke−(2k+1)b/2 cos

(
(2k + 1)2πa

4

)

+
1√
a

∞∑

k=0

(−1)ke−(2k+1)b/(2a) cos

(
π

4
− b2

4πa
+

(2k + 1)2π

4a

)

. (19.7.3)

In [126], the factor (−1)k has unfortunately been omitted from both sums
in (19.7.2) and from the latter sum in (19.7.3). These formulas, including the
mistakes, were copied from the tables of integral transforms [115, p. 36]. Next,
for a > 0 and Re b > 0 [126, p. 545, formula 4.111, no. 7],

∫ ∞

0

sin(ax)

x cosh(bx)
dx = 2 tan−1

(
exp

πa

2b

)
− π

2
. (19.7.4)
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Proof of Entry 19.7.1. Our uninspiring method of proof is undoubtedly not
that used by Ramanujan, because our proof is a verification. We show that
the derivatives of both sides of (19.7.1) as functions of t are equal. We then
show that the limits of both sides of (19.7.1) as t→ ∞ are both equal to π/2
to conclude the proof. To that end, let F (t) and G(t) denote the left- and
right-hand sides of (19.7.1). Then, using (19.7.2) and (19.7.3) with a = n and
b = πt, we find that

F ′(t) = π

∫ ∞

0

sin(πtx)

cosh(πx)
e−iπnx2

dx

= π

( ∞∑

k=0

(−1)ke−(2k+1)πt/2ei(2k+1)2πn/4 (19.7.5)

+
1√
n

∞∑

k=0

(−1)ke−(2k=1)πt/n exp

(

−i
(
π

4
− πt2

4n
+

(2k + 1)2π

4n

)))

.

On the other hand, by easily justified differentiations under the summation
and integral signs and an inversion in order of integration and summation by
absolute convergence,

G′(t) = π
∞∑

k=0

(−1)ke−(2k+1)πt/2+(2k+1)2πin/4

− 2
πi

4n

π√
n

∞∑

k=0

(−1)k
∫ ∞

0

(t+ u+ (2k + 1)i)e(t+u+(2k+1)i)2iπ/(4n)du

= π
∞∑

k=0

(−1)ke−(2k+1)πt/2+(2k+1)2πin/4

+
π√
n

∞∑

k=0

(−1)ke(t+u+(2k+1)i)2iπ/(4n). (19.7.6)

A comparison of (19.7.5) and (19.7.6) shows that indeed F ′(t) = G′(t). So, it
remains to show that F (t) and G(t) are equal for some value of t.

We let t tend to ∞ to deduce the desired equality. Because of absolute
and uniform convergence with respect to t in a neighborhood of ∞, we can let
t → ∞ under the integral and summation signs on the right side of (19.7.1)
and readily deduce that

lim
t→∞G(t) =

π

2
. (19.7.7)

On the other hand, write, with the use of (19.7.4),

F (t) =

∫ ∞

0

(
sin(πtx)

x cosh(πx)
e−iπnx2 − sin(πtx)

x cosh(πx)

)

dx+

∫ ∞

0

sin(πtx)

x cosh(πx)
dx
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=

∫ ∞

0

sin(πtx)

(
1

x cosh(πx)
e−iπnx2 − 1

x cosh(πx)

)

dx

+ 2 tan−1
(
eπt/2

)
− π

2
. (19.7.8)

Clearly, the function

1

x cosh(πx)
e−iπnx2 − 1

x cosh(πx)

is in L(−∞,∞). Hence, by (19.7.8) and a standard theorem from the theory
of Fourier integrals [305, p. 11],

lim
t→∞F (t) = 0 + 2

π

2
− π

2
=
π

2
. (19.7.9)

Thus, we see from (19.7.7) and (19.7.9) that limt→∞ F (t) = limt→∞G(t), and
so the proof is complete. 
�

19.8 On the Integral
∫ x

0
sinu
u du

On page 256 in [269], Ramanujan obtains explicit representations for the val-
ues of the local maxima and minima of the integral

S(x) :=
∫ x

0

sinu

u
du, (19.8.1)

when x > 0. The integral S(x) is intimately connected with the sine and
cosine integrals defined for x > 0 by [126, p. 936, formulas 8.230, nos. 1,2]

si(x) := −
∫ ∞

x

sin t

t
dt and ci(x) :=

∫ ∞

x

cos t

t
dt. (19.8.2)

Ramanujan first defines r, r > 0, and θ, 0 < θ < 1
2π, by

r cos θ :=

∫ ∞

0

e−xt

1 + t2
dt and r sin θ :=

∫ ∞

0

te−xt

1 + t2
dt, (19.8.3)

where x > 0. His first claim is the following identity.

Entry 19.8.1 (p. 256). If r is defined by (19.8.3), then

r2 =

∫ ∞

0

e−xt

t
log(1 + t2)dt.
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Proof. From [126, p. 359, formula 3.354, nos. 1,2],

∫ ∞

0

e−xt

1 + t2
dt = ci(x) sin x− si(x) cos x (19.8.4)

and

∫ ∞

0

te−xt

1 + t2
dt = −ci(x) cosx− si(x) sin x, (19.8.5)

where ci(x) and si(x) are defined by (19.8.2). Using the definitions (19.8.3) in
conjunction with the foregoing identities, we easily see that

r2 = r2 cos2 θ + r2 sin2 θ

= {ci(x) sin x− si(x) cos x}2 + {−ci(x) cos x− si(x) sinx}2
= ci2(x) + si2(x)

=

∫ ∞

0

e−xt

t
log(1 + t2)dt,

where we have used another integral evaluation from the Tables [126, p. 609,
formula 4.366, no. 1]. This completes the proof. 
�
Entry 19.8.2 (p. 256). If r and θ are defined by (19.8.3) and x > 0, then

∫ x

0

sinu

u
du =

π

2
− r cos(x− θ) (19.8.6)

and

∫ x

0

1− cosu

u
du = γ + log x− r sin(x− θ), (19.8.7)

where γ denotes Euler’s constant.

Proof. Again using (19.8.3)–(19.8.5), we easily find that

r cos(x− θ) = r cosx cos θ + r sinx sin θ

= cosx {ci(x) sin x− si(x) cos x}
+ sinx {−ci(x) cos x− si(x) sinx}

= − si(x). (19.8.8)

The result (19.8.6) now follows from the definition (19.8.2) of si(x).
Next, from [126, p. 936, formula 8.230, no. 2],

∫ x

0

1− cosu

u
du = γ + log x− ci(x). (19.8.9)
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A comparison of (19.8.9) with (19.8.7) indicates that in order to prove (19.8.7),
all we need to do is to show that

r sin(x− θ) = ci(x). (19.8.10)

The demonstration of (19.8.10) follows along the same lines as the calculation
in (19.8.8), and so this completes the proof. 
�
Entry 19.8.3 (p. 256). The function S(x) defined in (19.8.1) has local max-
ima at x = (2n+ 1)π, n ≥ 0, with the maximum values being

S(2n+ 1) =
π

2
+

∫ ∞

0

e−(2n+1)πt

1 + t2
dt, (19.8.11)

while the local minima are at x = 2nπ, n ≥ 1, with the minimum values being

S(2n) = π

2
−
∫ ∞

0

e−2nπt

1 + t2
dt. (19.8.12)

Proof. From elementary calculus, it is trivial to see that the critical points of
S(x) are at x = nπ, n > 0, when x is positive. Furthermore, it is easy to see
that when n is odd, a local maximum is reached, and when n is even, a local
minimum is obtained. Furthermore, from (19.8.6) and (19.8.3),

S(2n+ 1) =
π

2
− r cos((2n+ 1)π − θ) =

π

2
+ r cos θ

=
π

2
+

∫ ∞

0

e−(2n+1)πt

1 + t2
dt,

and so (19.8.11) is established. Similarly, (19.8.6) and (19.8.3) immediately
yield (19.8.12). 
�

19.9 Two Infinite Products

Entry 19.9.1 (p. 370). If |Re β| < 1, | Imα| < 1, and

cosh
(
1
2πβ

)
= sec

(
1
2πα

)
, (19.9.1)

then
∞∏

n=0

(
(2n+ 1)2 + α2

(2n+ 1)2 − β2

)(−1)n(2n+1)

= e
1
2παβ . (19.9.2)

With the roles of α and β reversed, Entry 19.9.1 is identical to equation
(17) in Ramanujan’s paper [250], [267, p. 41]. See also (17.2.13) of the present
volume. In fact, in place of the condition (19.9.1), Ramanujan wrote the hy-
pothesis
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πα

2
= gd

(
πβ

2

)

.

(Possibly, gd denotes the Gudermannian function.) Since Ramanujan only
sketched a proof of (19.9.2) in [250], the editors of [267, pp. 336–337] supplied
a more detailed proof. An equivalent form of Entry 19.9.1 can be found on
page 286 in Ramanujan’s second notebook [268], and a proof of Entry 19.9.1
in this form can be found in Berndt’s book [41, p. 461, Entry 30]. Lastly,
Ramanujan also submitted Entry 19.9.1 as a problem to the Journal of the
Indian Mathematical Society [248].

Entry 19.9.2 (p. 370 (incorrect)). For |x| < 1,

∞∏

n=1

{(
1 +

x

n2

)n2

e−x

}

= e
1
2x, (19.9.3)

provided that

x =

{
1

π
log

(
1 +

√
5

2

)}2

. (19.9.4)

If we take the logarithm of both sides of (19.9.3), employ the Maclaurin
series for log(1− z), and interchange the order of summation, we deduce that

∞∑

j=2

(−1)j−1

j
ζ(2j − 2)xj =

x

2
, (19.9.5)

where ζ(s) denotes the Riemann zeta function. Since ζ(0) = − 1
2 [306, p. 19],

we can rewrite (19.9.5) in the form

∞∑

j=0

(−1)j

j + 1
ζ(2j)xj = 0. (19.9.6)

Hence, combining (19.9.6) with (19.9.4), we see that Ramanujan claimed that
a root of (19.9.6) is (19.9.4), which, if true, would be a remarkable result.

Unfortunately, Entry 19.9.2 is incorrect. This entry also appears in Ra-
manujan’s third notebook [268, p. 365], and in [41, pp. 488–490] Berndt showed
that Ramanujan’s claim in Entry 19.9.2 is false. In particular, Ramanujan also
claimed on the same page in [268] that for |x| < 1,

∞∑

j=0

(−1)j

j + 1
ζ(2j)x2j+2 = − 1

π2

∫ πx

0

t2 coth t dt. (19.9.7)

If we set

x =
1

π
log

(
1 +

√
5

2

)
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above, Ramanujan’s claim in Entry 19.9.2 would be equivalent to asserting
that the integral on the right side of (19.9.7) equals 0, which is obviously
untrue.

19.10 Two Formulas from the Theory of Elliptic
Functions

We recall some needed notation from the theory of elliptic functions [39,
Chaps. 17, 18, in particular, pp. 101–102]. The incomplete elliptic integral
of the first kind is defined, for 0 < ϕ ≤ 1

2π, by

∫ ϕ

0

dt
√
1− k2 sin2 t

, (19.10.1)

where k, 0 < k < 1, is the modulus. The complementary modulus k′ is defined
by k′ =

√
1− k2. For brevity, we set x = k2. The complete elliptic integral of

the first kind is given by (19.10.1) when ϕ = 1
2π and is denoted by K = K(k).

Define K ′ := K ′(k) := K(k′). Then in the theory of elliptic functions, we set

q := exp

(

−πK
′

K

)

=: e−y. (19.10.2)

Define, for 0 < θ ≤ 1
2π,

θ =
1

z

∫ ϕ

0

dt
√
1− k2 sin2 t

.

Incomplete elliptic integrals satisfy Jacobi’s imaginary transformation. If 0 <
ϕ < 1

2π, then

∫ i log(tan(π/4+ϕ/2))

0

dt
√
1− x sin2 t

= i

∫ ϕ

0

dt
√
1− (1 − x) sin2 t

. (19.10.3)

Entry 19.10.1 (p. 346). Set, in the notation above,

2Kθ

π
=

∫ ϕ

0

dt
√
1− k2 sin2 t

. (19.10.4)

Then

log tan

(
π

4
+
θ

2

)

+ 4

∞∑

n=0

(−1)n
q2n+1 sin{(2n+ 1)θ}
(2n+ 1)(1− q2n+1)

= log tan
(π
4
+
ϕ

2

)
.

(19.10.5)

Entry 19.10.1 coincides with Entry 16(v) of Chap. 18 of Ramanujan’s
second notebook [268], and a proof can be found in [39, p. 175].
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Entry 19.10.2 (p. 346). In addition to the notation set above, also put

2Kθ′

π
=

∫ ϕ

0

dt
√
1− k′2 sin2 t

. (19.10.6)

Then,

θ′ + 2

∞∑

n=1

qn sinh(2nθ′)
n(1 + q2n)

= log tan
(π
4
+
ϕ

2

)
. (19.10.7)

Proof. In the notation above, in particular (19.10.2), in Entry 15(iv) in
Chap. 18 of his second notebook [268], Ramanujan claims that

θ +

∞∑

n=1

sin(2nθ)

n cosh(ny)
= ϕ; (19.10.8)

see [39, pp. 172–173] for a proof. Now in the notation of (19.10.4) and (19.10.6),
we will restate (19.10.3) in greater detail, inserting the arguments of the func-
tions θ and θ′. To that end,

θ
(
i log tan

(π
4
+
ϕ

2

))
= i θ′(ϕ). (19.10.9)

Next, in (19.10.8), we substitute (19.10.9) in the form θ = iθ′. Keeping in
mind that ϕ is defined by (19.10.6), we see from (19.10.9) that we must also
replace ϕ with i log tan (π/4 + ϕ/2). Hence,

i θ′ +
∞∑

n=1

sin(2niθ′)
n cosh(ny)

= i log tan
(π
4
+
ϕ

2

)
. (19.10.10)

Dividing both sides of (19.10.10) by i and recalling from (19.10.2) that
q = e−y, we deduce (19.10.7). 
�

Slightly more complicated proofs of the two preceding entries were given
by the authors in Part II [13, pp. 238–240].
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