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Integral Analogues of Theta Functions
and Gauss Sums

14.1 Introduction

In this chapter we discuss a second partial manuscript of two pages
[269, pp. 221-222] as well as a related page from the original lost notebook
[269, p. 198]. As previously indicated, this manuscript does not belong to the
“official” lost notebook of Ramanujan, but instead is among the eight partial
manuscripts in G.N. Watson’s handwriting that were found in the Oxford
University library and that were published along with the lost notebook;
the original version for these two pages is in the library at Trinity College,
Cambridge. Pages 221 and 222 provide a list of theorems, with no discourse, on
integrals that are found in Ramanujan’s two papers [256, 258], [267, pp. 59-67]
and [194-199]; see also [247]. Indeed, most of the theorems can be found in
these two papers, especially [258]. Since Ramanujan did not give many details
in these two papers, we shall provide proofs for each claim, whether it is found
in these two papers or not.

The objective in the two papers cited above and in the two page fragment
is the study of the functions

* cos(mtz) __ .2
(1) = [ S —rwa? g 14.1.1
du(t) /0 cosh(wx)e v ( )
o sm(wt:v) wn?
w(t) = T dg. 14.1.2
Yult) /0 smh(ﬂ':zr) * ( )
It is clear from the definitions (14.1.1) and (14.1.2) that, respectively,

Ouw(t) = O (—1t) and 1y, (1) = —thy(—t). (14.1.3)

Page 198 of [269] is an isolated page that is actually part of the original
lost notebook, and its contents are related to pages 221-222. On this page,
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Ramanujan records theorems, much in the spirit of those for ¢.,(t) and ., (),

for the function 0 gin(nt
Fy(t) ::/ Mefﬂwzzdz.
o tanh(rz)

The theorems on page 198 are new and were first proved in a paper by Berndt
and P. Xu [69].

The functions ¢, (t), ¥w(t), and F,(t) examined in this chapter and
(for the former two functions) in [256, 258|, [267, pp. 59-67, 202-207] can
be regarded as continuous analogues of theta functions, because they each
possess a transformation formula like that for the classical theta functions.
For example, recall that the classical theta function

O5(7) == Z T Imr >0,

n=—oo

satisfies the transformation formula [306, p. 22]

(=1/7) = \/7/i0s(7) (14.1.4)

On the other hand, because of the appearance of certain sums, which are
reminiscent of Gauss sums, in the quasiperiodic relations, for example, in
Entries 14.4.2 and 14.4.3, where the quasiperiods are 27 and 2w, respectively,
Ramanujan perhaps preferred the analogy with Gauss sums. Recall that the
generalized Gauss sum S(a, b, ¢), where a, b, and ¢ are integers with ac # 0,
is defined by

le]—1

a b, C Z eﬂ'z(an +bn)/c

These sums satisfy a reciprocity theorem; namely, if ac + b is even, then
(54, p. 13]

S(a,b,c) =/ |c/a|em{sg“(“c)_b2/(“c)}/4S(—c, —b,a).

Note that on comparing the two sides of this identity, the roles of @ and ¢
are reversed. Moreover, +/|c/al takes the place of /7 in (14.1.4) or v/w in the
transformation formulas for ¢, (t), ¥, (t), and Fy,(t).

Because these functions possess quasiperiods 2¢ and 2w, they can also
be regarded as analogues of elliptic functions. For example, the Weierstrass
o-function is defined by

z z 22
o(z) == 0(z;wi,wa) := 2 H (1 _ ;) exp “-0s )
w#0

where w = mw; +nwa, —0o < m,n < 0o, and Imws /wy > 0. Set wg = w1 +wo
and n; = ((w;/2), 7 = 1,2,3, where ((t) denotes the Weierstrass ¢-function.
Then the Weierstrass o-function obeys the quasiperiodic relations [88, p. 52]
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0(z +wy) = —o(z)e®FHwilD =123

Interesting analogues of the integrals studied by Ramanujan in [256]
and [258] that involve Bessel functions have been derived by N.S. Koshliakov
[192]. Those taking the qualifying examination in mathematics at Harvard
University in fall 1998, day 2, were asked to evaluate a special case of ¢,,(t).

14.2 Values of Useful Integrals

Throughout our proofs, we appeal to several integral evaluations, all of which
can be found in the Tables of I.S. Gradshteyn and I.M. Ryzhik [126]. First [126,
p. 515, formulas 3.898, nos. 1, 2], for Re 8 > 0,

/OO e~ B sin(az) sin(bx)dx = i\/g {e*(“*b)Q/(w) — ef(a+b)2/(4ﬁ)} ,
0

(14.2.1)
/oo e~ 7" cos(az) cos(bz)dx = 1T {e’(“*b)Q/(w) + e*(a+b)2/(4ﬁ)} .
0 4V B
(14.2.2)
Second [126, p. 400, formula 3.546, no. 2], for Re 8 > 0,
e 1
/ e P cosh(ax)dr = - T ea/4p), (14.2.3)
0 2V
Third [126, p. 536, formula 3.981, no. 1], for Re 8 > 0 and a > 0,
°° sin(ax) ™ am
————dr=—tanh | — | . 14.2.4
/0 sinh(fz) v 20 o <2B> ( )

Fourth [126, p. 552, formula 4.133, no. 1], for Rey > 0,

/ e~/ (4) sin(ax) sinh(Bz)dx = «/71"}/67(627(12) sin(2a/7). (14.2.5)
0

14.3 The Claims in the Manuscript

We now examine in order the claims made by Ramanujan on pages 221
and 222.

Entry 14.3.1 (p. 221). For w > 0,

bu(t) = %ew?/@wm it fw). (14.3.1)

w
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Proof. Using (13.2.21), inverting the order of integration, employing (14.2.2),
and simplifying, we find that

(2
—2/ / cos(2mz2) cos(wtw)e_”ww2dzdx
cosh (rz)

fz/ / (2m22) cos(mta)e ™ d
= ) Cosh(ﬂz) o COS T2 ) COS\TTtx )e X

9 > 1 1 1 - (27'1':*7775)2 B (27rz+7rt)2
B /0 cosh(rz) 4V w ° Teoote i

= Le*ﬂﬁ/(%ﬂ) /Oo Meﬂrz?/wd% (14.3.2)
Vw 0 cosh(rz)
which is equivalent to (14.3.1). O

A different proof of Entry 14.3.1 has been given by Y. Lee [210].

Entry 14.3.2 (p. 221). We have

1
e”(t+w)2/(4w)¢w(t+ w) = e7r,52/(4w) (5 + 1/)w(t)> . (14.3.3)

Proof.  First observe from (14.2.3) that
o 1
/ cosh(mtz /w)e ™ /" dy = 5\/56”2/(4“’) (14.3.4)
0
and from (14.2.4) that

*sin(2mzz) 1
/0 mdz - §tanh(7rx), (14.3.5)

Thus, using (14.3.2), (14.3.4), and (14.3.5), we find that

O (t + w)

_ L nttw)?/(aw) (14.3.6)

g

°° cosh(ntz/w) cosh(mx) + sinh(wta /w) sinh(mx)
0 cosh(mz)

_ e—w<t+w>2/<4w>{l\/g wt?  (4w)

N
—|—2/ / sin(2mez) 81nh(7rta:/w)67”2/wdz da:}.

smh (z)

2
e~/ vy

X

Now, by (14.2.5),
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(2
/ / sin(2rw2) 51nh(7rtx/w)e_”2/wdzd:t

smh (mz)

e d oo
= 2‘/0 @/O Sil’l(z']TfEZ) Sinh(ﬂ'tx/w)e—ﬂm2/wdx

1 1 2 2
9 wte/(dw) ,—mz w t2)d
= /0 e o ) 5 Vwe e sin(mtz)dz

_ \/Eewt2/(4w) /OO Sin(ﬂ-t’z) e—ﬂ'z2wdz

o sinh(mz)

= Vwe™ /W)y, (1),
If we use this last calculation in (14.3.6) and manipulate slightly, we complete
the proof of (14.3.3). O

Entry 14.3.3 (p. 221). We have

% + u(t+1i) = ﬁe—ﬂﬁ/@w) { — 1w (—t ) } . (14.3.7)

Proof. Rewrite (14.3.3) as

% + (1) = e (¢ + ). (14.3.8)

Thus, using (14.3.8), (14.3.1), (14.1.3), and (14.3.3) with w replaced by 1/w,
we find that

1
§+¢w(t+i) :iewt/2+ww/4¢w(t+i+w)

7rt/2+7rw/4Le—w(t+i+w)2/(4w)¢1/w(i(t_,’_i+w)/w)

=1e N
_ b (14204 2iw) / (dw) it l
\/Ee 91/ w T
[ —m(t?— 7 2w w) —n(—it/w—1i)/2—7 /(4w 1 it -
7\/_56 (t° —14-2it42iw) /(4 )6 (—it/ )/2—7/(4 ){54'1/}1/111 <_E_Z)}
_ /ey [ 1 LN
\/Ee { 2 ¢1/w w + )
where in the last step we used (14.1.3). Hence, (14.3.7) has been established.
O
Entry 14.3.4 (p. 221). We have the evaluations
buli) = 5 (14.3.9)
w - 2\/@7 J.
(i) = ——, (14.3.10)

5
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1 —mw/4
(W) = ¢ (14.3.11)

= —thy(w) = e T4, (0). (14.3.12)

and from the definition (14.1.2),

y > >~ 771'wm2 _ Z
1/1w(z)—z/() e d:z:—2\/1_u.

Next, by the functional equation (14.3.1),

1 —Tw . 1 —Tw
D (w) = \/_Ee /4¢l/w(l) = 56 /4,

upon the use of (14.3.9). Lastly, by (14.3.3) with t = —w and by (14.1.3),

T at ER O ST}

and so the final assertion (14.3.12) of our entry has been proved. O

Entry 14.3.5 (p. 221). We have

buwlw £1) = (ﬁ T %) e mw/4 (14.3.13)
Yo(w+14) = % + 2\%(”’/4, (14.3.14)
1 1 1
Puw <§w) + Yw <§w) =5 (14.3.15)

Proof. Using (14.3.3), (14.1.3), and (14.3.10) and then simplifying, we find
that

| 1 1
o (ki) = ¢~ G+ (4) =/ (4w) {5 N %(ﬂ)} — {% N 2\/@}7

which completes the proof of (14.3.13).
Appealing to (14.3.7) with ¢ = £w and using (14.1.3), we find that

1

%iww(wii) = ﬁem/‘l{% —wl/w(ii+i)}. (14.3.16)
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We need to distinguish two cases in (14.3.16). First,

°° sinh(27z)

e—fr;n2/w dx
sinh(7z)

o= |
0
= Zi/ cosh(rz)e ™ /" dx = iv/we™/4, (14.3.17)

0

by (14.2.3). Using the calculation from (14.3.17) in (14.3.16) and simplifying,
we find that

) 1
N —mw/4 -
(W +17) 2\/66 + %

as claimed in (14.3.14). Second, we observe that trivially 11 ,,(0) = 0, and so
in the second case, (14.3.16) reduces to

1 ] 1
5 ww(w - Z) = ﬁeiﬂwﬂlgv

which immediately gives the other evaluation in (14.3.14). Third, return
to (14.3.3) and set ¢ = — 1w to deduce that

1 1 1
5 - 1/}71) <§w> = (bw <§’LU) ,

which is what we wanted to prove. a

Entry 14.3.6 (p. 221). We have

Gu(t +1) + du(t —1) = %e—”z“‘*w), (14.3.18)
Yoo (t A1) — b (t — 1) = ﬁe—””(‘*w). (14.3.19)

Proof. Using the definition (14.1.1), elementary trigonometric identities,
and (14.2.2), we find that

> 2 1 2
Gu(t + 1) + Pt — i) =2 / cos(mtz)e ™ dp = —— e/ (w)
0 Vw

as claimed in (14.3.18).
Next, employing (14.1.2), further elementary trigonometric identities,
and (14.2.2) once again, we see that

o 2 Z 2
Yt +1) — Yyt — i) = 2i/ cos(mta)e ™ dp = ——e ™ /(W)
0 Vuw

which is (14.3.19). O
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Entry 14.3.7 (p. 221). We have
em(HHw)/Gw) g 4y 4 T B0 g ) = T/ wW) - (14.3.20)

Proof. Employing the identity (14.3.3) and the oddness of ¢ (t) noted in
(14.1.3), we readily find that

e7r(iEer)2/(4w)(Jﬁw (t + w) + e7r(157w)2/(4w)¢w (t _ w)
_ ewt2/(4w) {% + ww(t)} + emg2/(4w) {% + ww(_t)} _ emg2/(4w),
which is identical to (14.3.20). O

Entry 14.3.8 (p. 221). We have

eﬂ(t+w)2/(4u}) {% _ 7/Jw(t + ’LU)} _ eﬂ'(tfw)z/(4w) {% + 1/}71} (t _ w)} )
(14.3.21)

Proof. Appealing to (14.3.3) and then using (14.1.3), we find that
eﬂ't2/(4w) {% + ww(t)} _ ew(t+w)2/(4w)¢w (t + ,w)
= Tt/ w) gy ). (14.3.22)
Replacing ¢ by —t — w above and using (14.1.3), we arrive at
1
ew(t+w)2/(4w) {5 _ ww(t + w)} _ eﬁt2/(4w)¢w (t)
Replacing ¢ by ¢t — w in (14.3.22) and using (14.1.3), we deduce that
1
e7r(t—w)2/(4w) {5 + 1/)w(t _ ’LU)} _ emg2/(4w)¢w (t)

The identity (14.3.21) is now an immediate consequence of the last two
identities. ad

Entry 14.3.9 (p. 221). If n is any positive integer, then

|
—

n

bu(t) 4+ (=1)" by (t + 2n4) = (—1)ke m(t+2hHD?/(4w) (14 3 93)

==
I

0

Proof. We employ (14.3.18) with ¢ successively replaced by t+14,t+3i,...,t+
(2n — 1)i to deduce the array
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1 .
G (t+20) + P () = ﬁe*ﬂ'(t+l)2/(4w)7
1 .
G (t + 41) + o (t + 21) = ﬁefﬂtwoz/(m),
1 .
bu(t + 2n8) + du(t + (2n — 2)i) = —— e "EFE=1)D)?/(4w)
Vw
Alternately adding and subtracting the identities above, we immediately
deduce (14.3.23). O

Entry 14.3.10 (p. 221). If n is any positive integer,
. n—1
2 2
Y (t) = Pu(t + 2mi) = ——= e TIFERFDIY/ () (14.3.24)
Vi i

Proof. 'We employ (14.3.19) with ¢ successively replaced by t+14,t+3i,...,t+
(2n — 1)i, and so record the identities

e—fr(t+i)2/(4w),

ww(t + 22) - ww(t) =

§|| -.

Dot + 40) — o (t + 20) = —— e~ TEH3D?/(4w)

g

Yoy (t 4 2n8) — 1y (t + (2n — 2)1) = ﬁefw(tﬂ%fl)i)?/@w)_

Adding the identities above, we deduce (14.3.24) forthwith. O
Entry 14.3.11 (p. 221). For any positive integer n,

eﬂ't2/(4w)¢w(t) + (_1)n+leﬂ(t+2nw)2/(4w)¢w (t + 271’[1))

|
-

(—1)kem(tHkt1w)?/ (4w) (14.3.25)

o

=0

Proof. We return to (14.3.20) and successively replace t by t+w, t+3w, ..., t+
(2n — 1)w to deduce the n equations

eﬂ'(t+2w)2/(4w)¢w (t + 2’[1)) + eﬂtz/(4w)¢w (t) _ efr(t+w)2/(4w),
ew(t+4w)2/(4w)¢w (t + 4’[1}) + eﬂ(t+2w)2/(4w)¢w(t + 2’LU) — efr(t+3w)2/(4w)’

eﬂ'(t+2nw)2/(4w)¢w(t + an) + eﬂ'(t+(2n—2)w)2/(4w)¢w(t + (2n _ 2)w)

_ eﬂ'(t+(2nfl)w)2/(4w) )
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If we now alternately add and subtract the identities above, we readily deduce
(14.3.25). O

Entry 14.3.12 (p. 221). For any positive integer n,

et/ (4w) {% bt )} + (— 1) emt )/ () {% +Yu(t+ 2nw)}
Z YhmLem (i 2kw)?/ (4w) (14.3.26)
k=1

Proof. We apply (14.3.21) with ¢ successively replaced by t+w, t+3w, ..., t+
(2n — 1)w in order to derive the set of equations

err(t-i-Zw) /(4w){ _ T/Jw(t‘F 210)} _ emg2/(4w) {% +7/1w(t)},

e‘rr(t+4w) /(4w){ _ 1/)w(t—|—4’w)} — eﬂ-(t+2w)2/(4w) {% _|_1/}w(t_|_ 211))},

eﬁ(t+2nw)2/(4w) {% — Py (t + 2nw)}
— o (t+(2n—2)w)?/(4w) {% + p(t+ (2n — 2)w)} .

We now alternately add and subtract these identities to achieve (14.3.26). O

Entry 14.3.13 (p. 222). Let m and n denote any positive integers and set
s =t+2mw £ 2ni. Then

wa(s) + (_1)(m+1)(n+1) 7rm s+t)¢ ( )

m—1
e s/ (4w) Z Yrem(s= (2k+1)w)?/ (4w)
k=0
(_1)(m+1)(n+1) m(s+t) Yee (t£(2k+1)i)% / (4w)
(=1)tmH et ks i w 14.3.27
L Z ( )

Proof. We first observe that an analogue to Entry 14.3.9 can be obtained by
beginning the proof with the relation

I e
¢w(t)+¢w(t—2l):ﬁe (t )/(4 )

Proceeding as before, we can then deduce that

n—1

Z(_l)ke—w(t—(2k+1)i)2/(4’w)- (14328)

Guw(t) + (=1)" Ly, (t — 2ni) = %
k=0
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We apply Entry 14.3.11 with n replaced by m, where m is a positive
integer, and then with ¢ replaced by t + 2ni, where n is a positive integer.
After rearranging and using the definition of s, we find that

w(s) + (—1)m+16_”ms+”m2w¢)w(t + 2n4)
— ¢w(s) + (_1)m+1 —ws2/(4w)+ﬂ'(ti2ni)2/(4w)¢w(t:l: 21”)

= (_1)m+1€—ﬂ'82/(4w Z ] 1om(tt2nit+ (25— Dw)?/ (4w)
j=1
m—1
_ —71'.92/(4111 Z 7‘ TI'(S 27‘-1—1)111)2/(4111)7 (14329)

where we changed the index of summation by setting j = m — r.
Next, we apply Entry 14.3.9 and its analogue (14.3.28) to see that

n—1
(= 1) o (¢ + 20d) + G (£) = 1 Z Y21 ()
Vw &=

Upon multiplying both sides by
(_1)(m+1)(n+1)e—%ﬂ'm(s+t)7
we find that
(_1)n+1+(m+1)(n+1) 71ﬂm(s+t)¢w(ti2ni)+ (_1)(m+1)(n+1) 7'rm s+t)¢ ( )

1
m—+1)(n+1) ,—5mm(s+t) n—1
_ )t hen " (—1)FemUEERDDY W) (14 3.30)

\/E k=0

We now add (14.3.29) and (14.3.30) and observe, with the aid of the definition
of s, that the coefficient of ¢.,(t £ 2ni) is equal to

1
(_1)m+lefﬂ'ms+ﬂ'm2w + (_1)m(n+1)e—§7rm(s+t) —0. (14331)
We thus immediately obtain (14.3.27) to complete the proof. O

Entry 14.3.14 (p. 222). Let m and n denote positive integers. Then, if
§ = 2mw = 2na,

= vl + (st {0y ]

_ 771'32/(471) Z J 1671'(5*2]-“1)2/(4“’)
Jj=1

(_1)mn+m+1i

R

o~ 3mmls o) i m(EEQ+DD?/(0) | (14.3.32)
7=0
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Proof. If we examine the proof of Entry 14.3.10, we see that we can obtain
an analogue of (14.3.24), just as we previously obtained (14.3.28), except that
now the right-hand side is multiplied by —1. Hence,

Y (t) — Yu(t £ 2ni) \/_ Z —r (25D (dw), (14.3.33)

We apply Entry 14.3.12 with n replaced by m, and then with ¢ replaced
by t & 2ni. Next multiply both sides by (—1)™*+le=7"/(4v) Setting also j =
m + 1 — r below, we find that

1 ; 1
3 T %uls) + (—1)mHLem(tami)?/ (dw) —ms*/ (4w) {5 + P (t 2m’)}
— (_1)m+1€7ﬂ'52/(4w Z J 1 e (t£2ni+2jw)? / (4w)
Jj=1

_ 7775 4w)z r e (s+2(1—r)w)?/(4w)
_ TS 2/ (4w) Z 7“ e™ (s+2(1—r)w)? /(4w)

Rearranging, we deduce that

% . 1/}71)(8) _ (_1)m+1efr(t:thi)Q/(4w)77r52/(4w) {% + Y (t + 27”)}
_ —71'.92/(4111 Z 7‘ ﬂ'(5+2 (1— r)w)2/(4’w)' (14334)
r=2

Observe that with the definition of s,

(_1)m+leﬂ(ti2ni)2/(4w)—7rs2/(4w) _ (_1)m+1€—ﬂ'ms+ﬂ'm2w_ (14335)

We also observe that if » = m + 1, the corresponding expression (including
e~™s"/(4w)) o the right-hand side of (14.3.34) is also equal to the right-hand
side of (14.3.35). We add this expression to both sides of (14.3.34) and replace
r by 7 + 1, so that we can rewrite (14.3.34) in the form

1 1
5~ Yuls) + (—1)mHlgmmetamiu {5 — hu(t + 2m’)}
— s/ (4w) Z(_l)r—lew(s—2rw)2/(47ﬂ)_ (14.3.36)

Multiply both sides of (14.3.33) by
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_(_1)mn+m+1e—%ﬂ'm(s+t)

to deduce that

(—1)m"+m+1e—%m<s+t> ({% - ww(t)} — {% — o (t + 2m‘)})

mn+m+1; n—1
4 D™ (s > e~ 2D/ (w) - (14.3.37)
Vw =

We now add (14.3.36) and (14.3.37). Observe that, with the definition of s,
the coefficient of § — 1, (¢ + 2ni) equals

(_1)m+lefﬂ'ms+ﬂ'm2w _ (_1)mn+m+1e—%ﬂm(s+t) _ 07

by the same calculation as in (14.3.31). We thus immediately deduce (14.3.32)
to complete the proof. O

Entry 14.3.15 (p. 222). Let t = mw + ni, where m and n are positive
integers. If m is odd and n is odd, or if m is even and n is odd, or if m is
odd and n is even, then

¢w(t) _ 77rt2 /(4w) Z j 7'r(t (25+1)w)?/(4w)

) em(F 2319/ (4w)
+3 \/_ Z . (14.3.38)

Proof. In Entry 14.3.13, replace ¢t by —t and then set s = t. Thus, ¢ has the
form stated in the present entry. In all three cases, (14.3.27) readily reduces
o0 (14.3.38). O

Entry 14.3.16 (p. 222). Let t = mw =+ ni, where m and n are positive
integers. If m is odd and n is odd, or if m is even and n is odd, or if m is
even and n is even, then

’@[Jw( ) _ 771't 2/(4w) Z j 1 7'r (t—2jw)? /(4w)
. n—1
v Z o (T (2741)0)? /(4w) (14.3.39)

Proof. The proof is similar to the previous proof. In Entry 14.3.14, replace ¢
by —t and then set s = ¢. In all three cases, (14.3.32) simplifies to (14.3.39).
O
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We quote Ramanujan for the last claim on page 222 of [269]. If ¢ = mw=+ni,
then
B =c-rmmte LD L rgmimn) G Lo 14.3.40
duw(t) =€ 3 ﬁ—l—e sin 57Tm?. (14.3.40)

Evidently, the presence of the question mark indicates that Ramanujan was
unsure of his claim and that further terms (possibly unknown to Ramanujan)
were needed to complete the identity. As (14.3.40) is presently stated, it is
not true in general. For example, if m = 2 and n = 1, (14.3.40) is false.

14.4 Page 198

Page 198 in the lost notebook is devoted to properties of the function

[ sin(mtz) .2
F,(t) .—/0 tanh(mv)e dx. (14.4.1)

The formulas claimed by Ramanujan on page 198 are difficult to read, partly
because the original page was perhaps a thin, colored piece of paper, for
example, a piece of parchment paper, that was difficult to photocopy.

It is clear from the definition (14.4.1) that

F,(t) = —Fy(—t). (14.4.2)
Entry 14.4.1 (p. 198). We have

F,(t) = —ﬁefﬂz /@ By (it w). (14.4.3)

Proof. Write

Fu(t) = / sin(riz) Cosh(rr) ,—ruwa? g,
0 sinh(7x)
_ / sm(w.tx) cos(imx) oW g
0 sinh(7x)
1 /°° sin(t + 4)mx + sin(t — )7
2 Jo sinh(7z)

_ 2

5 (Wl +)+ Yl — ), (14.4.4)

by (14.1.2). Recall from (14.3.7) that

1 . L a2 (4w | 1 it
5—!—#@@—!—1)2\%6 t/ >{§—w1/w (%4—1)} (14.4.5)
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Since 1(t) is odd, we find from (14.4.5) that

1 N _ i e 1 it
—§+1/)w(t—l) = —§—¢w(—t+l) = _ﬁe ¥/ ) {§—¢1/w <_E+Z> } -
Hence, from (14.4.4)—(14.4.6),

1

Fy(t) = 3 {% + Yy (t+1) — 1 +¢w(t—i)}

(e (oo (229)
S i (249)
o o (2 (£2)
A O

= _ﬁeiﬂtZ/MW)Fl/w(it/w)a

by (14.4.4), and this completes the proof. O

Entry 14.4.2 (p. 198). If n is any positive integer, then
Fou(t) — Fy(t + 2n4) Z m(t+2§)* /(4w) (14.4.7)

where the prime ! on the summation sign indicates that the terms with j = 0,n
are to be multiplied by %

Proof. Recall from (14.4.4) that

Fult) = g (bl +) +vult — i)} (14.4.5)
and so

Fo(t) — Fy(t + 2ni)

= S+ ) — Gl + o+ D0} + 3 {0t — i) — (i + (2n— 1))},
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Applying Entry 14.3.10 on the right side above, we see that

Fo(t) — Fult + 2m')

. . n—1
1 2
- - E —7r(t+(2k+2)z) /(4w) _ E —m(t+2ki)= /(4w)
2 { k 0 w ’ }

k=0
E t+2]1 4w)

This concludes the proof. a

Entry 14.4.3 (p. 198). If n is a positive integer, then

n

Fw(t) _ errn(tJrnw)Fw (t + 2nw) _ _effrtz/(4w) Z/ eﬂ(t+2jw)2/(4w)7 (1449)
j=0

where the prime on the summation sign has the same meaning as in Entry
14.4.2.

Proof. Replacing t by t+4 and t — 7 in Entry 14.3.8, we deduce, respectively,
that
ew(t+i+w)2/(4w)ww(t +i+w)+ ew(t+i7w)2/(4w)ww(t +i—w)
_1 (ew<t+z'+w>2/<4w> N ew<t+z‘—w>2/<4w>) (14.4.10)
2

and

T W0y () 4 eI W)y ()
B % (eﬂt*”wf J(dw) eﬁ<t+w>2/<4w>) , (14.4.11)

Now observe that e4mi(t+w)/(4w) — edmi(t—w)/(4w) We multiply e™(t—i+w)*/(4w)
in its two appearances in (14.4.11) by etmilttw)/(4w) = and we multiply
em(t=i=w)*/(4w) ip jts two appearances in (14.4.11) by edmi(t=w)/(4w) Thyg,
(14.4.11) can be recast in the form
eﬂ(t+i+w)2/(4w)¢w(t —i+w)+ ew(t+i7w)2/(4w)ww(t —i—w)
= % (e”(HHw)z/(‘m) — e”(tﬂ'*w)z/(m)) . (14.4.12)
Using (14.4.8), (14.4.10), and (14.4.12), we find that
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G A C Oy S W GO CR) o
_ % {ew(t+i+w)2/(4w)¢w (t+ i+ w) + emtFiTw) /)y, )
e () W0y (44§ — ) T 0y, g w)}

— % (eﬁ<t+i+w>2/<4w> - eﬂm,w)z/(m)) . (14.4.13)

We now apply (14.4.13) with ¢ successively replaced by t +w, t + 3w, ...,
t+ (2n — 1)w to deduce the n equations

efr(t+i+2w)2/(4w)Fw (t + 2’(1}) + eﬂ(t+i)2/(4w)Fw (t)

. |
— 5 (eﬂ-(t+z+2w)2/(4w) o eﬂ(t+l)2/(4w)) ,
eﬂ(t+i+4w)2/(4UJ)Fw (t + 4’LU) + eﬂ'(t+i+2w)2/(4w)Fw (t + 2w)
1 , .
— 5 (eﬂ(t+l+4w)2/(4w) _ eﬂ(t+1+2w)2/(4w)) ,

eﬂ(t+i+2nw)2/(4w)Fw (t + 2nw) + eﬂ(t+i+(2n—2)w)2/(4w)Fw (t+ (2n — 2)w)
1 (eﬂ(t+i+2nw)2/(4w) _ eﬂ'(t+i+(2n72)w)2/(4w)) _

2

Alternately adding and subtracting the identities above, we conclude that
e‘rr(tJrz /(4w (t) +( )n+1 7 (t+i+2nw)? /(4w) (t—|—2nw)

j:0

/ _]+1 7r(t+z+2]w) /(4w)
)

that is to say,

Fo(t) — e™ 0 B (4 4 2pa0) = o2/ (4w) Z’ e (t2jw)? /(4w)
j=0
which completes our proof. O

Entry 14.4.4 (p. 198). Let s = t + 2mymw + 2n2ni, where n? =n3 =1, and
where m and n are positive integers. Then

Fw(S) + ( l)mn 16—;7r771m(s+t)Fw(t) _ ,'71677752/(410) Z/ 671'(5723'77110)2/(471))

(=)™ \/Lﬁe Frmm s+t)z m(t+2n259)* / (4w) (14.4.14)
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where the primes on the summation signs have the same meaning as in the
two previous entries.

Proof. If we examine the proof of Entry 14.4.3, we see that we can similarly
obtain an expression for Fy,(t) — e~ ™= "), (t — 2nw), but with the right-
hand side multiplied by —1 and the exponents j in the summands being
replaced by —j. Thus, we shall apply Entry 14.4.3 and its just described
analogue with n replaced by m and ¢ replaced by t + 2mani. Note that the
right-hand side will be multiplied by 7;, and so we obtain

Fo(t + 2npni)—emmmt+2manitmme) o (4 4 9poni 4 9 maw)
m

o)/ () S gt 22 juw)® ()

J=0

=

Using the definition of s, we can reformulate the foregoing equality as
Fou(t + 2mgni) — emmms—mmw) (g

—r(s—2n1mw)?/(4w) Z’ (5= 2mmuw+2n1jw)? / (4w)

= —’[716
=0

_ _nle—ﬂ'(s—27}1mw)2/(4w) Z/ eﬂ(s—2n1jw)2/(4w)- (14415)
=0

If we examine the proof of Entry 14.4.2, we see that we can obtain an
analogue for Fy,(t) — Fy, (t —2ni) with the right-hand side now being multiplied
by —1 and with the summand exponents j replaced by —j. Then if we apply
Entry 14.4.2 and its analogue that we just described above to F, (t+2n2ni), we
must multiply the right-hand side by 7. Hence, using (14.4.7), its analogue,
and (14.4.15), we find that

Fw(t)—eﬂnlm(57nlmw)F ( )

_ _7716777(57277177171; 4w)z m(s—2m1jw)?/(4w) 2_2 e~ 7 (t4+2n251)> /(4w)

Upon multiplying both sides above by e~ ™nm(s=mmw) and simplifying, we

find that

Fw(S) + ( 1)mn 1675ﬂn1m(5+t)Fw(t) _ _7716—71'52/(410) ZI eﬂ'(s—?jnlw)2/(4w)
j=0

b L im(st) N r(t4-2020)? / (dw)
+772(_1)mn_6 5 mmm(s+ Z e (t+2n25i w),
Vw =
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where we used the fact that

1
(_1)mne—§7rn1m(s+t) —Trnlm(s—nlmw)'

=e
This completes our proof. a
14.5 Examples

If we set s = t in Entry 14.4.4, it follows that w = —(noni)/(mm). If we

further suppose that both m and n are odd, then (14.4.14) reduces to the
identity

m !
(1 + efﬂ-mmt)Fw(t) _ 771677”2/(41”)2 eﬂ(t72jn1w)2/(4w)
7=0

. n /!
1 SN2
_ efﬂ'nlmt e*ﬂ(t+2n231) /(471)).
7=0
In the identity above, first let n; = 1,72 = —1 and multiply both sides by

™. Second, let 71 = —1,72 = 1 and multiply both sides by e=™!. Replace ¢
by 2t/m in each identity. We then respectively obtain the two identities

sin(2tr) _mnz?,

2COSh(mt)/0 me m Zd.f
_ %emt+e(m72)t+%i+e(m74)t+4;ni+.“_*_ %e_mtJﬂrmm
e E e (R el ()]
n
t? ™Tm |
+ 16’””[(7"2)7“]1} (14.5.1)
and
* sin(2tx) _mna®,
2cosh(mt)/0 Me m dx
= —1 —mt _ (27m)t+%i _ (47m)t+4:'nni . _1 mt+mrmni
- 26 e € + 26
T, 2 ™m
B m{%emtJr(ﬁJrZ)z_'_e(lE)mt+[<fr—21>7+z]z
n

R le‘m”[(%‘"z)%ﬁ}i}, (14.5.2)
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Next add (14.5.1) and (14.5.2), divide both sides by 2, and equate the real
and imaginary parts on both sides to obtain the two identities
2

in(2t
sin(2tx) cos T

2 cosh(mt

cosh(mt) /0 tanh(mz) m

1

—sinh{mt} + sinh{(m — 2)t} cos ™, sinh{(m — 4)t} cos i
m m

1
S 5 sinh{—m¢t} cos(mmn)

+\/§{%smh{ mt}cos(—-i- )+smh{(——1> }
ceos((5 1) 0T
_22 . ) ™ g)} (14.5.3)

4
1
+- 4 B sinh{mt} cos ( (

and

oo M 2t 2
—2cosh(mt)/ sin(2tz) sin % gy
o tanh(mz) m

™ 4mn
= sinh — 2)t} sin — + sinh — 4)t} sin —
sinh{(m — 2)t} sin - + sinh{(m — 4)t} sin -

1
R 3 sinh{—mt} sin(ﬂmn)
fm (1 . (mt® 7 . 2
+ E{ 581Hh{_mt}81n <R+Z> +81nh{<5 _1) mt}
s 2 1 ™m n T
in — — — t+ =
7'(2 n 4

1 . . t2 o\ ™M T
4+ B sinh{mt} sin ( <P -n > o + Z) } (14.5.4)

e can evaluate several definite integrals.

Using (14.5.3) and (14.5.4)
For example, if we set m = n = 1 in (14.5.3) and (14.5.4), we find that,
respectively,
°° sin(2tx) 9 sinh ¢ 2
i ke dr = 1— 4z
/0 tanh(mx) cos(ma”)da 2 cosht O\ T * 4
and
 sin(2tx) . 9 sinht . [t® =«
—— d = — - .
/0 tanh(mx) sin(ma”)da 2cosht o\ 7 * 4

These evaluations can be found in [126, p. 542, formulas 3.991, nos. 1, 2]
respectively. No further cases of (14.5.3) and (14.5.4) can be found in [126].
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14.6 One Further Integral

There is one further integral, namely,

o [T ) e
Gy (t) .—/0 coth(mv)e dx,

that can be placed in the theory of ¢, (t), ¥y (t), and Fy,(t). Note that

Gult) = / sin(rtx) sinh(7x) o g
0 cosh(rmz)
_ —i/ sin(mtx) sin(imx) o mwa? g
0 cosh(rmz)
i /°° cos{mz(t+14)} — cos{ma(t — i)} __, .2
= — e d.’L‘
2 Jo cosh(mz)

327

= 30wl +1) — dult =)} (14.6.1)

by (14.1.1). The formula (14.6.1) should be compared with (14.3.18).
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