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13.1 Introduction

Pages 219–227 in the volume [269] containing Ramanujan’s lost notebook are
devoted to material “Copied from the Loose Papers.” These “loose papers,” in
the handwriting of G.N. Watson, are housed in the Oxford University Library,
while the original pages in Ramanujan’s handwriting, from which the copy
was made, are in the library at Trinity College, Cambridge. The three partial
manuscripts on these nine pages are in rough form, with two perhaps being
drafts of papers being prepared for publication. Most of these nine pages are
connected with material in Ramanujan’s published papers.

The first manuscript on pages 219–220 is the subject of this chapter. Most
of the manuscript is discussed in the next section. Section 13.3 is reserved
for the most interesting theorem in the manuscript, namely, a beautiful series
transformation involving the logarithmic derivative of the gamma function,
which in a second formula, is related to the Riemann zeta function. Our two
proofs of this elegant transformation formula are taken from a paper by Berndt
and A. Dixit [51]. These two formulas have an interesting history that we relate
at the beginning of Sect. 13.3. Since all entries in this chapter can be found on
either page 219 or 220 in [269], we refrain from giving page numbers beside
entries in the sequel.

13.2 Fourier and Laplace Transforms

Following Ramanujan, we proceed formally without giving attention to such
matters as inverting the order of integration in double integrals. It is clear
that hypotheses are easily added to make any procedure rigorous.
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Part IV, DOI 10.1007/978-1-4614-4081-9 13,
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Entry 13.2.1. If ∫ ∞

0

f(x) sin(nx)dx =: φ(n) (13.2.1)

and ∫ ∞

0

f(x)e−nxdx =: ψ(n), (13.2.2)

then ∫ ∞

0

φ(x)e−nxdx =

∫ ∞

0

ψ(x) cos(nx)dx (13.2.3)

and ∫ ∞

0

φ

(
1

x

)
e−nxdx = −

∫ ∞

0

ψ

(
1

x

)
cos(nx)dx. (13.2.4)

Proof. We employ the elementary integral evaluations [126, p. 512, Eqs.
(3.893), no. 1, no. 2]

∫ ∞

0

e−nx sin(xt)dx =
t

n2 + t2
, n > 0, (13.2.5)

and ∫ ∞

0

e−nx cos(xt)dx =
n

n2 + t2
, n > 0. (13.2.6)

To prove (13.2.3), we use (13.2.1), (13.2.5), (13.2.6), and (13.2.2) to
deduce that ∫ ∞

0

φ(x)e−nxdx =

∫ ∞

0

∫ ∞

0

f(t)e−nx sin(xt) dt dx

=

∫ ∞

0

f(t)

∫ ∞

0

e−nx sin(xt) dx dt

=

∫ ∞

0

f(t)

∫ ∞

0

e−tx cos(nx) dx dt

=

∫ ∞

0

ψ(x) cos(nx)dx,

which completes the proof of the first claim.
Using (13.2.1) and making the substitution t = ux, we find that
∫ ∞

0

φ

(
1

x

)
e−nxdx =

∫ ∞

0

∫ ∞

0

f(t)e−nx sin(t/x) dt dx

=

∫ ∞

0

∫ ∞

0

xf(ux)e−nx sinu du dx

= − d

dn

∫ ∞

0

∫ ∞

0

f(ux)e−nx sinu dx du. (13.2.7)
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Note that upon the replacement of n by n/t and x by tu in (13.2.2),

ψ
(n
t

)
= t

∫ ∞

0

f(tu)e−nudu. (13.2.8)

Thus, from (13.2.7) and (13.2.8),

∫ ∞

0

φ

(
1

x

)
e−nxdx = − d

dn

∫ ∞

0

ψ
(n
u

) sinu

u
du

= − d

dn

∫ ∞

0

ψ

(
1

x

)
sin(nx)

x
dx

= −
∫ ∞

0

ψ

(
1

x

)
cos(nx)dx,

which completes the proof of (13.2.4). ��
Entry 13.2.2. If ∫ ∞

0

f(x) cos(nx)dx =: φ(n) (13.2.9)

and ∫ ∞

0

f(x)e−nxdx =: ψ(n), (13.2.10)

then ∫ ∞

0

φ(x)e−nxdx =

∫ ∞

0

ψ(x) sin(nx)dx (13.2.11)

and ∫ ∞

0

φ

(
1

x

)
e−nxdx =

∫ ∞

0

ψ

(
1

x

)
sin(nx)dx. (13.2.12)

Proof. The details of the proof of Entry 13.2.2 are completely analogous to
those for the proof of Entry 13.2.1, and so there is no need to give them here.

��
Suppose now that f(x) is self-reciprocal in Entries 13.2.1 and 13.2.2, that

is to say,

f(x) =

√
2

π
φ(x).

Hence, from (13.2.2),
∫ ∞

0

φ(x)e−nxdx =

√
π

2

∫ ∞

0

f(x)e−nxdx =

√
π

2
ψ(n).

Then we see that (13.2.3) and (13.2.11) easily yield the next theorem.
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Entry 13.2.3. If ∫ ∞

0

φ(x) sin(nx)dx =

√
π

2
φ(n)

and ∫ ∞

0

φ(x)e−nxdx =: ψ(n),

then ∫ ∞

0

ψ(x) cos(nx)dx =

√
π

2
ψ(n). (13.2.13)

If ∫ ∞

0

φ(x) cos(nx)dx =

√
π

2
φ(n)

and ∫ ∞

0

φ(x)e−nxdx =: ψ(n),

then ∫ ∞

0

ψ(x) sin(nx)dx =

√
π

2
ψ(n). (13.2.14)

Ramanujan then writes that (13.2.13) and (13.2.14) “enable us to find a
number of reciprocal functions of the first and second kind out of one reciprocal
function.” He does not define what he means by “the first and second kind.”
Some examples of self-reciprocal functions are next recorded.

Entry 13.2.4. For n > 0,

∫ ∞

0

(
1

e2πx − 1
− 1

2πx

)
sin(2πnx)dx =

1

2

(
1

e2πn − 1
− 1

2πn

)
. (13.2.15)

Proof. This result is well known, and we shall be content with quoting from
Titchmarsh’s Theory of Fourier Integrals [305, p. 245]:

1

e
√
2π x − 1

− 1√
2π x

=

√
2

π

∫ ∞

0

(
1

e
√
2π y − 1

− 1√
2π y

)
sin(xy)dy

= 2

∫ ∞

0

(
1

e2πu − 1
− 1

2πu

)
sin(

√
2π xu)du.

Replacing x by
√
2π n, we immediately verify Ramanujan’s claim. ��

It will be convenient to use the familiar notation [126, p. 952, formu-
las 8.360, 8.362, no. 1]
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ψ(x) :=
Γ ′(x)
Γ (x)

= −γ −
∞∑
k=0

(
1

k + x
− 1

k + 1

)
, (13.2.16)

where γ denotes Euler’s constant. The notation ψ(x) conflicts with the generic
notation that we have utilized in Entries 13.2.1 and 13.2.2, but no confusion
should arise in the sequel.

Entry 13.2.5. For n > 0,∫ ∞

0

(
1

e2πx − 1
− 1

2πx

)
e−2πnxdx =

1

2π
(logn− ψ(1 + n)) . (13.2.17)

In the manuscript in [269], a factor of −1/(2π) is missing on the right-hand
side of (13.2.17).

Proof. We begin with the evaluation [126, p. 377, formula 3.427, no. 7]
∫ ∞

0

(
e−νx

1− e−x
− e−μx

x

)
dx = logμ− ψ(ν),

where μ, ν > 0. Set ν = n+ 1 and μ = n to deduce, after simplification, that

logn− ψ(n+ 1) =

∫ ∞

0

(
1

ex − 1
− 1

x

)
e−nxdx

= 2π

∫ ∞

0

(
1

e2πu − 1
− 1

2πu

)
e−2πnudu.

Thus, (13.2.17) is apparent. ��
Entry 13.2.6. If n > 0,∫ ∞

0

(ψ(1 + x) − log x) cos(2πnx)dx =
1

2
(ψ(1 + n)− logn) . (13.2.18)

Proof. Setting u = 2πx in (13.2.15), we record that
∫ ∞

0

(
1

eu − 1
− 1

u

)
sin(nu)du = π

(
1

e2πn − 1
− 1

2πn

)
. (13.2.19)

Thus, in the notation of Entry 13.2.1,

f(x) =
1

ex − 1
− 1

x
and φ(n) = π

(
1

e2πn − 1
− 1

2πn

)
.

By (13.2.17),
∫ ∞

0

f(x)e−nxdx =

∫ ∞

0

(
1

ex − 1
− 1

x

)
e−nxdx

= 2π

∫ ∞

0

(
1

e2πu − 1
− 1

2πu

)
e−2πnudu

= logn− ψ(1 + n). (13.2.20)
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Thus, in the notation of Entry 13.2.1,

∫ ∞

0

φ(x)e−nxdx = π

∫ ∞

0

(
1

e2πx − 1
− 1

2πx

)
e−nxdx

=

∫ ∞

0

(log x− ψ(1 + x)) cos(nx)dx.

Replacing n by 2πn above, we find that

π

∫ ∞

0

(
1

e2πx − 1
− 1

2πx

)
e−2πnxdx =

∫ ∞

0

(log x− ψ(1 + x)) cos(2πnx)dx,

or, by (13.2.20),

1

2
(logn− ψ(1 + n)) =

∫ ∞

0

(log x− ψ(1 + x)) cos(2πnx)dx,

as claimed. ��
Ramanujan next quotes the following self-reciprocal Fourier cosine trans-

form [126, p. 537, formula 3.981, no. 3].

Entry 13.2.7. For real n,

∫ ∞

0

cos(12πnx)

cosh(12πx)
dx =

1

cosh(12πn)
. (13.2.21)

Then he records the following entry.

Entry 13.2.8. For n > 0,

∫ ∞

0

e−
1
2πnx

cosh(12πx)
dx =

4

π

∞∑
k=0

(−1)k

n+ 2k + 1
. (13.2.22)

This follows from the evaluation [126, p. 399, formula 3.541, no. 6]

∫ ∞

0

e−
1
2πnx

cosh(12πx)
dx =

1

π

{
ψ

(
n+ 3

4

)
− ψ

(
n+ 1

4

)}

=
4

π

∞∑
k=0

(
− 1

4k + n+ 3
+

1

4k + n+ 1

)

=
4

π

∞∑
k=0

(−1)k

2k + n+ 1
,

where we utilized (13.2.16).
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Entry 13.2.9. For n > 0,

∫ ∞

0

∞∑
k=0

(−1)k

x+ 2k + 1
sin(12πnx)dx =

∞∑
k=0

(−1)k

n+ 2k + 1
. (13.2.23)

Proof. Rewrite (13.2.21) as

∫ ∞

0

cos(nu)

coshu
du =

π

2 cosh(12πn)
.

We are thus going to apply Entry 13.2.2 with

f(x) =
1

coshx
and φ(x) =

π

2 cosh(12πx)
.

From (13.2.22),

∫ ∞

0

f(x)e−nxdx =

∫ ∞

0

e−nx

coshx
dx =

π

2

∫ ∞

0

e−
1
2πnu

cosh(12πu)
du

= 2

∞∑
k=0

(−1)k

n+ 2k + 1
:= ψ(n).

Hence, by Entry 13.2.2,

π

2

∫ ∞

0

e−nx

cosh(12πx)
dx = 2

∫ ∞

0

∞∑
k=0

(−1)k

x+ 2k + 1
sin(nx)dx, (13.2.24)

or, if we replace n by 1
2πn,

π

4

∫ ∞

0

e−
1
2πnx

cosh(12πx)
dx =

∫ ∞

0

∞∑
k=0

(−1)k

x+ 2k + 1
sin(12πnx)dx.

Lastly, if we employ (13.2.22) in the foregoing equality, we conclude that

∞∑
k=0

(−1)k

n+ 2k + 1
=

∫ ∞

0

∞∑
k=0

(−1)k

x+ 2k + 1
sin(12πnx)dx, (13.2.25)

which is what we wanted to prove. ��
Next Ramanujan restates Entries 13.2.1 and 13.2.2 under the assumption

f(x) =

√
2

π
φ(x),

that is to say, φ(x) is self-reciprocal. Since his claims are identical to those in
Entry 13.2.3, we forego restating them here.
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Ramanujan then provides some examples, which are essentially ones that
he gave above. First,

∫ ∞

0

cos(nx)

cosh

(
x

√
π

2

)dx =

√
π

2

1

cosh

(
n

√
π

2

) ,

which is an easy consequence of (13.2.21). Second,

∫ ∞

0

e−nx

cosh

(
x

√
π

2

)dx = 2

∞∑
k=0

(−1)k

n+

√
π

2
(2k + 1)

.

To establish this identity, replace x by
√
2/π x and n by

√
2/π n in (13.2.22).

Third, ∫ ∞

0

∞∑
k=0

(−1)k

x+ 2k + 1
sin(12πnx)dx =

∞∑
k=0

(−1)k

n+ 2k + 1
,

which is the same as (13.2.25). Fourth,

∫ ∞

0

(
1

e
√
2π x − 1

− 1√
2π x

)
sin(nx)dx =

√
π

2

(
1

e
√
2π n − 1

− 1√
2π n

)
.

This last identity follows easily from (13.2.15) upon replacing x by x/
√
2π

and n by n/
√
2π.

The next two examples contain errors. Ramanujan’s fifth example asserts
that
∫ ∞

0

(
1

e
√
2π x − 1

− 1√
2π x

)
e−nxdx =

√
2π

{
γ + log

n√
2π

− ψ

(
1 +

n√
2π

)}
,

(13.2.26)

where γ denotes Euler’s constant and ψ(x) is defined in (13.2.16). Return to
(13.2.17) and replace x by x/

√
2π and n by n/

√
2π. Because, as we previously

noted, Ramanujan missed a factor of −1/(2π) in (13.2.17), we see that the
factor

√
2π on the right-hand side above should be replaced by −1/

√
2π. How-

ever, there is another error in (13.2.26), because of the spurious appearance
of γ on the right-hand side of (13.2.26). Lastly, Ramanujan asserts that

∫ ∞

0

{γ + log x− ψ(1 + x)} cos(2πnx)dx =
1

2
{γ + logn− ψ(1 + n)} .

(13.2.27)

To see that the claim (13.2.27) is false, we recall that [1, p. 259], as x→ ∞,
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ψ(x + 1) ∼ log x+
1

2x
+O

(
1

x2

)
. (13.2.28)

Thus, we see that the integral in (13.2.27) diverges.

13.3 A Transformation Formula

The most interesting claim made by Ramanujan in the fragment on pages 219
and 220 of [269] is the next entry. To state this claim, we need to recall the
following functions associated with Riemann’s zeta function ζ(s). Let

ξ(s) := (s− 1)π− 1
2 sΓ (1 + 1

2s)ζ(s).

Then Riemann’s Ξ-function is defined by

Ξ(t) := ξ(12 + it). (13.3.1)

Entry 13.3.1. Define

φ(x) := ψ(x) +
1

2x
− log x. (13.3.2)

If α and β are positive numbers such that αβ = 1, then

√
α

{
γ − log(2πα)

2α
+

∞∑
n=1

φ(nα)

}
=

√
β

{
γ − log(2πβ)

2β
+

∞∑
n=1

φ(nβ)

}

= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t logα

)
1 + t2

dt, (13.3.3)

where γ denotes Euler’s constant and Ξ(x) denotes Riemann’s Ξ-function.

Although Ramanujan does not provide a proof of (13.3.3), he does indicate
that (13.3.3) “can be deduced from” Entry 13.2.6, or (13.2.18). This remark
might lead one to believe that his proof of (13.3.3) rests upon the Poisson
summation formula. We provide below a proof of the first equality in (13.3.3)
that naturally establishes the second equality as well. Then we give a proof
of the first equality in (13.3.3) by means of the Poisson summation formula,
but, as we indicated, no connection with ζ(s) and the integral in the second
equality is obtained in this way. In both proofs, the self-reciprocal Fourier
cosine transform in (13.2.18) is an essential ingredient.

The self-reciprocal property of ψ(1 + x) − log x was rediscovered by
A.P. Guinand [133] in 1947, and he later found a simpler proof of this result
in [135]. In a footnote at the end of his paper [135], Guinand remarks that
T.A. Brown had told him that he himself had proved the self-reciprocality
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of ψ(1 + x) − log x some years ago, and that when he (Brown) communi-
cated the result to G.H. Hardy, Hardy told him that the result was also
given by Ramanujan in a progress report to the University of Madras, but
was not published elsewhere. However, we cannot find this result in any of
the three Quarterly Reports that Ramanujan submitted to the University of
Madras [35–37]. In contrast to what Hardy recalled, it would appear that he
saw (13.2.18) in the aforementioned manuscript that Watson had copied. We
surmise that Hardy once possessed the original copies of both the Quarterly
Reports and the present manuscript on pages 219–220 of [269], both of which
were most likely mailed to him on August 30, 1923, by Francis Dewsbury,
registrar at the University of Madras [64, p. 266]. It could be that the two
documents were kept together, and so it is understandable that Hardy con-
cluded that the manuscript was part of the Quarterly Reports. Unfortunately,
the only copy of Ramanujan’s Quarterly Reports that now exists is in Watson’s
handwriting.

The first equality in (13.3.3) was rediscovered by Guinand in [133] and
appears in a footnote on the last page of his paper [133, p. 18]. It is interesting
that Guinand remarks, “This formula also seems to have been overlooked.”
Here then is one more instance in which a mathematician thought that his
or her theorem was new, but unbeknownst to the claimant, Ramanujan had
beaten her/him to the punch! We now give Guinand’s version of (13.3.3).

Theorem 13.3.1. For any complex z such that | arg z| < π, we have

∞∑
n=1

(
ψ(nz)− lognz +

1

2nz

)
+

1

2z
(γ − log 2πz)

=
1

z

∞∑
n=1

(
ψ
(n
z

)
− log

n

z
+

z

2n

)
+

1

2

(
γ − log

2π

z

)
. (13.3.4)

The first equality in (13.3.3) can be easily obtained from Guinand’s version by
multiplying both sides of (13.3.4) by

√
z and then letting z = α and 1/z = β.

Although not offering a proof of (13.3.4) in [133], Guinand did remark that it
can be obtained by using an appropriate form of Poisson’s summation formula,
namely the form given in Theorem 1 in [132]. Later Guinand gave another
proof of Theorem 13.3.1 in [135], while also giving extensions of (13.3.4) involv-
ing derivatives of the ψ-function. He also established a finite version of (13.3.4)
in [137]. However, Guinand apparently did not discover the connection of his
work with Ramanujan’s integral involving Riemann’s Ξ-function.

We first provide a proof of both identities in Entry 13.3.1. Then we con-
struct a second proof of the first equality in (13.3.3), or, more precisely,
of (13.3.4), along the lines suggested by Guinand in [133]. We could have also
provided another proof of (13.3.3) employing both (13.2.18) and (13.2.17), but
this proof is similar but slightly more complicated than the first proof that we
provide below. The two proofs of Entry 13.3.1 given here are from a paper by
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A. Dixit and the second author [51]. In two further papers [107, 108], Dixit
has found further proofs of Entry 13.3.1.

Although the Riemann zeta function appears at various instances through-
out Ramanujan’s notebooks [268] and lost notebook [269], he wrote only one
paper in which the zeta function plays the leading role [257], [267, pp. 72–77].
In fact, a result proved by Ramanujan in [257], namely Eq. (13.3.18) below, is
a key to proving (13.3.3). About the integral involving Riemann’s Ξ-function
in this result, Hardy [143] comments that “the properties of this integral re-
semble those of one which Mr. Littlewood and I have used, in a paper to be
published shortly in the Acta Mathematica, to prove that

∫ T

−T

∣∣∣∣ζ
(
1

2
+ ti

)∣∣∣∣
2

dt ∼ 2T logT.” (13.3.5)

(We have corrected a misprint in Hardy’s version of (13.3.5).)
In a paper immediately following Ramanujan’s paper [257], Hardy [143]

remarks that the integral on the right-hand side in Ramanujan’s formula [257,
p. 75, Eq. (13)] can be used to prove that there are infinitely many zeros of
ζ(s) on the critical line Re s = 1

2 , and then he concludes his note by stat-
ing (13.3.6) below, which he says is not unlike the aforementioned formula of
Ramanujan. However, Hardy does not give a proof of his formula. Proofs were
independently supplied by N.S. Koshliakov [190],[193, Eq. (20)], [194, Chap. 9,
Sect. 36], [196, Eq. (34.10)] and Dixit [107]. In Hardy’s formulation, the sign
of 1

2γ should be + and not −. The sign error was corrected in the papers
by Koshliakov and Dixit, but there is an erroneous added factor of log 2 in
Koshliakov’s formulation in [196]. Koshliakov [190, 195] and Dixit [111] also
have given generalizations of Hardy’s result.

Theorem 13.3.2 (Correct version). For real n,

∫ ∞

0

Ξ(12 t)

1 + t2
cosnt

cosh 1
2πt

dt =
1

4
e−n

(
2n+

1

2
γ +

1

2
log π + log 2

)

+
1

2
en

∫ ∞

0

ψ(x+ 1)e−πx2e4n dx. (13.3.6)

Inexplicably, this short note [143] is not reproduced in any of the seven
volumes of the Collected Papers of G.H. Hardy!

First Proof of Entry 13.3.1. We first collect several well-known theorems
that we use in our proof. First, from [99, p. 191], for t �= 0,

∞∑
n=1

1

t2 + 4n2π2 =
1

2t

(
1

et − 1
− 1

t
+

1

2

)
. (13.3.7)

Second, from [315, p. 251], we find that for Re z > 0,
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φ(z) = −2

∫ ∞

0

t dt

(t2 + z2)(e2πt − 1)
. (13.3.8)

Third, we require Binet’s integral for logΓ (z), i.e., for Re z > 0 [315, p. 249],
[126, p. 377, formula 3.427, no. 4],

logΓ (z) =

(
z − 1

2

)
log z − z +

1

2
log(2π) +

∫ ∞

0

(
1

2
− 1

t
+

1

et − 1

)
e−zt

t
dt.

(13.3.9)

Fourth, from [126, p. 377, formula 3.427, no. 2], we find that

∫ ∞

0

(
1

1− e−x − 1

x

)
e−xdx = γ, (13.3.10)

where γ denotes Euler’s constant. Fifth, by Frullani’s integral [126, p. 378,
formula 3.434, no. 2],

∫ ∞

0

e−μx − e−νx

x
dx = log

ν

μ
. (13.3.11)

Our first goal is to establish an integral representation for the far left side
of (13.3.3). Replacing z by nα in (13.3.8) and summing on n, 1 ≤ n <∞, we
find that

∞∑
n=1

φ(nα) = −2

∞∑
n=1

∫ ∞

0

t dt

(t2 + n2α2)(e2πt − 1)

= − 2

α2

∫ ∞

0

t

(e2πt − 1)

∞∑
n=1

1

(t/α)2 + n2 . (13.3.12)

Invoking (13.3.7) in (13.3.12), we see that

∞∑
n=1

φ(nα) = −2π

α

∫ ∞

0

1

(e2πt − 1)

(
1

e2πt/α − 1
− α

2πt
+

1

2

)
dt. (13.3.13)

Next, setting x = 2πt in (13.3.10), we readily find that

γ =

∫ ∞

0

(
2π

e2πt − 1
− e−2πt

t

)
dt. (13.3.14)

By Frullani’s integral (13.3.11),

∫ ∞

0

e−t/α − e−2πt

t
dt = log

(
2π

1/α

)
= log(2πα). (13.3.15)

Combining (13.3.14) and (13.3.15), we arrive at
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γ − log (2πα) =

∫ ∞

0

(
2π

e2πt − 1
− e−t/α

t

)
dt. (13.3.16)

Hence, from (13.3.13) and (13.3.16), we deduce that

√
α

(
γ − log(2πα)

2α
+

∞∑
n=1

φ(nα)

)
(13.3.17)

=
1

2
√
α

∫ ∞

0

(
2π

e2πt − 1
− e−t/α

t

)
dt

− 2π√
α

∫ ∞

0

1

(e2πt − 1)

(
1

e2πt/α − 1
− α

2πt
+

1

2

)
dt

=

∫ ∞

0

( √
α

t(e2πt − 1)
− 2π√

α(e2πt/α − 1)(e2πt − 1)
− e−t/α

2t
√
α

)
dt.

Now from [257, p. 260, Eq. (22)] or [267, p. 77], for n real,

∫ ∞

0

Γ

(−1 + it

4

)
Γ

(−1− it

4

)(
Ξ

(
1

2
t

))2
cosnt

1 + t2
dt

=

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(−1 + it

4

)∣∣∣∣
2
cosnt

1 + t2
dt

= π3/2

∫ ∞

0

(
1

exe
n − 1

− 1

xen

)(
1

exe
−n − 1

− 1

xe−n

)
dx. (13.3.18)

Letting n = 1
2 logα and x = 2πt/

√
α in (13.3.18), we deduce that

− 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(−1 + it

4

)∣∣∣∣
2 cos(12 t logα)

1 + t2
dt (13.3.19)

= − 2π√
α

∫ ∞

0

(
1

e2πt − 1
− 1

2πt

)(
1

e2πt/α − 1
− α

2πt

)
dt

=

∫ ∞

0

( −2π/
√
α

(e2πt/α−1)(e2πt−1)
+

√
α

t(e2πt−1)
+

1

t
√
α(e2πt/α − 1)

−
√
α

2πt2

)
dt.

Hence, combining (13.3.17) and (13.3.19), in order to prove that the far left
side of (13.3.3) equals the far right side of (13.3.3), we see that it suffices to
show that

∫ ∞

0

(
1

t
√
α(e2πt/α − 1)

−
√
α

2πt2
+
e−t/α

2t
√
α

)
dt

=
1√
α

∫ ∞

0

(
1

u(eu − 1)
− 1

u2
+
e−u/(2π)

2u

)
du = 0, (13.3.20)
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where we made the change of variable u = 2πt/α. In fact, more generally, we
show that

∫ ∞

0

(
1

u(eu − 1)
− 1

u2
+
e−ua

2u

)
du = −1

2
log(2πa), (13.3.21)

so that if we set a = 1/(2π) in (13.3.21), we deduce (13.3.20).
Consider the integral, for t > 0,

F (a, t) : =

∫ ∞

0

{(
1

eu − 1
− 1

u
+

1

2

)
e−tu

u
+
e−ua − e−tu

2u

}
du

= logΓ (t)−
(
t− 1

2

)
log t+ t− 1

2
log(2π) +

1

2
log

t

a
, (13.3.22)

where we applied (13.3.9) and (13.3.11). Upon the integration of (13.2.16), it
is easily gleaned that as t→ 0+,

logΓ (t) ∼ − log t− γt,

where γ denotes Euler’s constant. Using this in (13.3.22), we find, upon sim-
plification, that as t→ 0+,

F (a, t) ∼ −γt− t log t+ t− 1

2
log(2π)− 1

2
log a.

Hence,

lim
t→0+

F (a, t) = −1

2
log(2πa). (13.3.23)

Letting t approach 0+ in (13.3.22), taking the limit under the integral sign on
the right-hand side using Lebesgue’s dominated convergence theorem, and em-
ploying (13.3.23), we immediately deduce (13.3.21). As previously discussed,
this is sufficient to prove the equality of the first and third expressions in
(13.3.3), namely,

√
α

{
γ − log(2πα)

2α
+

∞∑
n=1

φ(nα)

}

= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t logα

)
1 + t2

dt. (13.3.24)

Lastly, using (13.3.24) with α replaced by β and employing the relation
αβ = 1, we conclude that

√
β

{
γ − log(2πβ)

2β
+

∞∑
n=1

φ(nβ)

}

= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t log β

)
1 + t2

dt
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= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t log(1/α)

)
1 + t2

dt

= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t logα

)
1 + t2

dt.

Hence, the equality of the second and third expressions in (13.3.3) has been
demonstrated, and so the proof is complete. ��

We next give our second proof of the first identity in (13.3.3) using
Guinand’s generalization of Poisson’s summation formula in [132]. We em-
phasize that this route does not take us to the integral involving Riemann’s
Ξ-function in the second identity of (13.3.3). First, we reproduce the needed
version of the Poisson summation formula from Theorem 1 in [132].

Theorem 13.3.3. If f(x) has a Fourier integral representation, f(x) tends
to zero as x → ∞, and xf

′
(x) belongs to Lp(0,∞), for some p, 1 < p ≤ 2,

then

lim
N→∞

(
N∑

n=1

f(n)−
∫ N

0

f(t) dt

)
= lim

N→∞

(
N∑

n=1

g(n)−
∫ N

0

g(t) dt

)
,

where

g(x) = 2

∫ ∞

0

f(t) cos(2πxt) dt. (13.3.25)

We first state a lemma1 that will subsequently be used in our proof of
(13.3.3).

Lemma 13.3.1. If ψ(x) is defined by (13.2.16), then

∫ ∞

0

(
ψ(t+ 1)− 1

2(t+ 1)
− log t

)
dt =

1

2
log 2π. (13.3.26)

Proof. Let I denote the integral on the left-hand side of (13.3.26). Then,

I =

∫ ∞

0

d

dt

(
log

etΓ (t+ 1)

tt
√
t+ 1

)
dt

= lim
t→∞ log

etΓ (t+ 1)

tt
√
t+ 1

− lim
t→0

log
etΓ (t+ 1)

tt
√
t+ 1

= log lim
t→∞

etΓ (t+ 1)

tt
√
t+ 1

− log
(
lim
t→0

etΓ (t+ 1)
)
− lim

t→0
t log t− lim

t→0

1

2
log(t+ 1)

= log lim
t→∞

etΓ (t+ 1)

tt
√
t+ 1

. (13.3.27)

1 The authors are indebted to M.L. Glasser for the proof of this lemma. The authors’
original proof of this lemma was substantially longer than Glasser’s given here.



300 13 A Partial Manuscript on Fourier and Laplace Transforms

Next, Stirling’s formula [126, p. 945, formula 8.327] tells us that

Γ (z) ∼
√
2π zz−1/2e−z, (13.3.28)

as |z| → ∞ for | arg z| ≤ π− δ, where 0 < δ < π. Hence, employing (13.3.28),
we find that

etΓ (t+ 1)

tt
√
t+ 1

∼
√
2π

e

(
1 +

1

t

)t

, (13.3.29)

so that

lim
t→∞

etΓ (t+ 1)

tt
√
t+ 1

=
√
2π. (13.3.30)

Thus, from (13.3.27) and (13.3.30), we conclude that

I =
1

2
log 2π. (13.3.31)

��
Second Proof of the first equality of (13.3.3), or of (13.3.4). We first prove
(13.3.3) for Re z > 0. Let

f(x) = ψ(xz + 1)− log xz. (13.3.32)

We show that f(x) satisfies the hypotheses of Theorem 13.3.3. From (13.2.18),
we see that f(x) has the required integral representation. Next, we need two
formulas for ψ(x). First, from [1, p. 259, formula 6.3.18], for | arg z| < π, as
z → ∞,

ψ(z) ∼ log z − 1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · · . (13.3.33)

Second, from [315, p. 250],

ψ
′
(z) =

∞∑
n=0

1

(z + n)2
. (13.3.34)

Using the easily verified equality

ψ(x+ 1) = ψ(x) +
1

x
, (13.3.35)

(13.3.32), and (13.3.33), we see that

f(x) ∼ 1

2xz
− 1

12x2z2
+

1

120x4z4
− 1

252x6z6
+ · · · , (13.3.36)
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so that

lim
x→∞ f(x) = 0. (13.3.37)

Next, we show that xf
′
(x) belongs to Lp(0,∞) for some p such that 1 <

p ≤ 2. Using (13.3.36), we find that as x→ ∞,

xf
′
(x) ∼ − 1

2xz
, (13.3.38)

so that |xf ′
(x)|p ∼ (2x|z|)−p. Thus, for p > 1, we see that xf

′
(x) is locally

integrable near ∞. Also, using (13.3.35) and (13.3.34), we have

lim
x→0

xf
′
(x) = lim

x→0

(
xz

∞∑
n=0

1

(xz + n)2
− 1

xz
− 1

)

= lim
x→0

(
xz

∞∑
n=1

1

(xz + n)2
− 1

)

= −1. (13.3.39)

This proves that xf
′
(x) is locally integrable near 0. Hence, we have shown

that xf
′
(x) belongs to Lp(0,∞) for some p such that 1 < p ≤ 2.

Now from (13.3.25) and (13.3.32), we find that

g(x) = 2

∫ ∞

0

(ψ(tz + 1)− log tz) cos (2πxt) dt.

Employing the change of variable y = tz and using (13.2.18), we find that

g(x) =
2

z

∫ ∞

0

(ψ(y + 1)− log y) cos (2πxy/z)dy

=
1

z

(
ψ
(x
z
+ 1

)
− log

(x
z

))
. (13.3.40)

Substituting the expressions for f(x) and g(x) from (13.3.32) and (13.3.40),
respectively, in Theorem 13.3.3, we find that

lim
N→∞

(
N∑

n=1

(ψ(nz + 1)− lognz)−
∫ N

0

(ψ(tz + 1)− log tz) dt

)
(13.3.41)

=
1

z

[
lim

N→∞

(
N∑

n=1

(
ψ
(n
z
+ 1

)
− log

n

z

)
−
∫ N

0

(
ψ

(
t

z
+ 1

)
− log

t

z

)
dt

)]
.

Thus, with the use of (13.3.35),



302 13 A Partial Manuscript on Fourier and Laplace Transforms

lim
N→∞

(
N∑

n=1

(
Γ

′

Γ
(nz) +

1

2nz
− lognz

)

+

N∑
n=1

1

2nz
−
∫ N

0

(ψ(tz + 1)− log tz) dt

)

=
1

z

[
lim

N→∞

(
N∑

n=1

(
Γ

′

Γ

(n
z

)
+

z

2n
− log

n

z

)

+

N∑
n=1

z

2n
−
∫ N

0

(
ψ

(
t

z
+ 1

)
− log

t

z

)
dt

)]
. (13.3.42)

Now if we can show that

lim
N→∞

(
N∑

n=1

1

2nz
−
∫ N

0

(ψ(tz + 1)− log tz) dt

)
=
γ − log 2πz

2z
, (13.3.43)

then replacing z by 1/z in (13.3.43) will give us

lim
N→∞

(
N∑

n=1

z

2n
−
∫ N

0

(
ψ

(
t

z
+ 1

)
− log

t

z

)
dt

)
=
z(γ − log(2π/z))

2
.

(13.3.44)

Then substituting (13.3.43) and (13.3.44) in (13.3.42) will complete the proof
of Theorem 13.3.1. To that end,

lim
N→∞

(
N∑

n=1

1

2nz
−

∫ N

0

(ψ(tz + 1)− log tz) dt

)

= lim
N→∞

(
1

2z

(
N∑

n=1

1

n
− logN

)
+

logN

2z
−
∫ N

0

(ψ(tz + 1)− log tz) dt

)

=
γ

2z
+ lim

N→∞

(
− log z

2z
+

logNz

2z
−
∫ N

0

(ψ(tz + 1)− log tz) dt

)

=
γ

2z
− log z

2z
+ lim

N→∞

(
log(Nz + 1)

2z
− 1

z

∫ Nz

0

(ψ(t+ 1)− log t) dt

− 1

2z
log

(
1 +

1

Nz

))

=
γ

2z
− log z

2z
+

1

z
lim

N→∞

(
log(Nz + 1)

2
−
∫ Nz

0

(ψ(t+ 1)− log t) dt

)

=
γ

2z
− log z

2z
+

1

z
lim

N→∞

(
1

2

∫ Nz

0

1

t+ 1
dt−

∫ Nz

0

(ψ(t+ 1)− log t) dt

)
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=
γ

2z
− log z

2z
− 1

z
lim

N→∞

∫ NZ

0

(
ψ(t+ 1)− 1

2(t+ 1)
− log t

)
dt

=
γ

2z
− log z

2z
− 1

z

∫ ∞

0

(
ψ(t+ 1)− 1

2(t+ 1)
− log t

)
dt

=
γ

2z
− log z

2z
− log 2π

2z

=
γ − log 2πz

2z
, (13.3.45)

where in the antepenultimate line we have made use of Lemma 13.3.1. This
completes the proof of (13.3.43) and hence the proof of Theorem 13.3.1 for
Re z > 0. But both sides of (13.3.4) are analytic for | arg z| < π. Hence,
by analytic continuation, the theorem is true for all complex z such that
| arg z| < π. ��

Y. Lee [210] has also devised a proof of Entry 13.3.1.

13.4 Page 195

On page 195 in [269], Ramanujan defines

φ(x) := ψ(x) +
1

2x
− γ − log x (13.4.1)

and then concludes that

√
α

{
γ − log(2πα)

2α
+

∞∑
n=1

φ(nα)

}
=

√
β

{
γ − log(2πβ)

2β
+

∞∑
n=1

φ(nβ)

}

(13.4.2)

= −√
α

∫ ∞

0

(
1

ex − 1
− 1

x

)(
1

exα − 1
− 1

xα

)
dx (13.4.3)

= − 1

π3/2

∫ ∞

0

∣∣∣∣Ξ
(
1

2
t

)
Γ

(−1 + it

4

)∣∣∣∣
2 cos

(
1
2 t logα

)
1 + t2

dt. (13.4.4)

First, in view of the asymptotic expansion (13.2.28) and the definition (13.4.1),
the series in (13.4.2) do not converge. Second, the equality of the expressions
in (13.4.3) and (13.4.4) does not hold. For equality to exist, the expression in
(13.4.3) must be replaced by (see equation (22) of [257])

−
∫ ∞

0

(
1

ex
√
β − 1

− 1

x
√
β

)(
1

ex
√
α − 1

− 1

x
√
α

)
dx.
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13.5 Analogues of Entry 13.3.1

A. Dixit [108, 109] has established two beautiful analogues of Entry 13.3.1.
Previously, a finite analogue of Theorem 13.5.1 was established by L. Car-
litz [86].

Theorem 13.5.1. Let ζ(z, a) denote the Hurwitz zeta function defined for
a > 0 and Re z > 1 by

ζ(z, a) =

∞∑
n=0

1

(n+ a)z
.

If α and β are positive numbers such that αβ = 1, then for Re z > 2 and
1 < c < Re z − 1,

α−z/2
∞∑
k=1

ζ

(
z, 1 +

k

α

)
= β−z/2

∞∑
k=1

ζ

(
z, 1 +

k

β

)

=
αz/2

2πiΓ (z)

∫ c+i∞

c−i∞
Γ (s)ζ(s)Γ (z − s)ζ(z − s)α−s ds

=
8(4π)(z−4)/2

Γ (z)

∫ ∞

0
Γ

(
z − 2 + it

4

)
Γ

(
z − 2− it

4

)

× Ξ

(
t+ i(z − 1)

2

)
Ξ

(
t− i(z − 1)

2

)
cos

(
1
2 t logα

)
z2 + t2

dt,

where Ξ(t) is defined in (13.3.1).

Theorem 13.5.2. Let 0 < Re z < 2. Define ϕ(z, x) by

ϕ(z, x) = ζ(z, x)− 1

2
x−z +

x1−z

1− z
,

where ζ(z, x) denotes the Hurwitz zeta function. Then if α and β are any
positive numbers such that αβ = 1,

αz/2

( ∞∑
n=1

ϕ(z, nα)− ζ(z)

2αz − ζ(z − 1)

α(z − 1)

)

= βz/2

( ∞∑
n=1

ϕ(z, nβ)− ζ(z)

2βz − ζ(z − 1)

β(z − 1)

)

=
8(4π)(z−4)/2

Γ (z)

∫ ∞

0

Γ

(
z − 2 + it

4

)
Γ

(
z − 2− it

4

)

× Ξ

(
t+ i(z − 1)

2

)
Ξ

(
t− i(z − 1)

2

)
cos

(
1
2 t logα

)
z2 + t2

dt, (13.5.1)

where Ξ(t) is defined in (13.3.1).
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If we let z → 1 in (13.5.1), then we obtain Ramanujan’s transformation
(13.3.3). Thus Theorem 13.5.2 is a generalization of Entry 13.3.1. In [109],
Dixit also obtained an analogue of Theorem 13.5.2 for −3 < Re z < −1.
Another generalization of the first identity in Entry 13.3.1 has been found by
O. Oloa [237]. Another proof, employing a theorem on the double cotangent
function, has been given by H. Tanaka [299].

13.6 Added Note: Pages 193, 194, 250

On pages 193 and 194 in [269], Ramanujan offers several Fourier and Laplace
transforms, most of which are found in Entries 13.2.1 and 13.2.2. Since all
of the results are standard in the theory of Fourier transforms, there is no
need to repeat them here. On page 250 there appears some scratch work on
Laplace transforms; no identities are recorded. The third integral on the page
appears to be related to [255, Eq. (16)], [267, p. 56].
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