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12.1 Introduction

Published with Ramanujan’s lost notebook [269, pp. 318–321] is a four-page,
handwritten fragment on infinite series. Partial fraction expansions, the Rie-
mann zeta function ζ(s), alternating sums over the odd integers, divisor sums
σk(n), Bernoulli numbers, and Euler numbers are featured in the formulas in
this manuscript. The first result has the equation number (18) attached to
it. Thus, the manuscript was likely intended to be the completion of either a
published paper or another unpublished manuscript. We conjecture that this
fragment was originally intended to be a part of Ramanujan’s paper Some
formulae in the analytic theory of numbers, [263], [267, pp. 133–135]. This
paper contains several theorems featuring ζ(s) and σk(n), and so the topics
in the unpublished manuscript mesh well with those in the published paper.
However, the last tagged equation in [263] is (22), whereas we would expect
it to be (17) if our conjecture is correct. Often Ramanujan would think of
additional results and add them to the paper as he was writing it, and so
this could easily account for the discrepancy in equation numbers. We remark
here that the manuscript does not provide any proofs, but Ramanujan usually
gives an indication (in one line) how a particular formula may be deduced.

Why did Ramanujan not include this discarded piece in his paper [263], for
the published paper is rather short, and the unpublished manuscript would
add at most four pages to the length of the paper? We think that Ramanujan
discovered that one of his claims, namely (21), was incorrect and that two
of his deductions were not corollaries of his (incorrect) formula, as he had
previously thought. Moreover, we suspect that he realized that some of his
arguments were not rigorous. Since he had abandoned his intention to publish
this portion, he did not bother to indicate that changes or corrections needed
to be made in the fragment. He probably failed to discard it because he
had wanted to return to it sometime in the future to attempt to correct his
arguments.
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Ramanujan loved partial fraction expansions. Chapter 14 in his second
notebook [38, 268], in particular, contains several such expansions, and others
are scattered throughout all three earlier notebooks. See [40, Chap. 30] for
some of these scattered partial fraction decompositions. However, Ramanu-
jan’s arguments were not always rigorous. Because of his apparent weakness
in complex analysis, he evidently did not have a firm grasp of the Mittag–
Leffler theorem, for claim (21) in his unpublished manuscript arises from an
incorrect application of the Mittag–Leffler theorem, as we detail below. After
claim (21), he then asserted several corollaries arising from this (incorrect)
partial fraction decomposition. All of the corollaries are indeed correct, but
two of them do not follow from this partial fraction expansion. Ramanujan
undoubtedly had previously been familiar with all of these corollaries and al-
most certainly had derived them by other methods. Certain correct results
were easily deduced from his expansion, and he must have been puzzled why
two further known results could not be similarly deduced. It is interesting
that the same incorrect partial fraction expansion occurs in Entry 19(i) of
Chap. 14 of his second notebook [268], [38, p. 271], where it was derived by a
different method, namely a general elementary theorem, Entry 18 of Chap. 14
[268], [38, pp. 267–268]. R. Sitaramachandrarao [289], [38, pp. 271–272] found
an alternative version of Ramanujan’s partial fraction expansion. After we
provide Ramanujan’s argument, we show that we can actually use Sitara-
machandrarao’s result to derive a corrected version of Ramanujan’s partial
fraction expansion. We shall see that Ramanujan’s defective argument missed
one expression; all other portions of Ramanujan’s formula are correct. One
of the two claims that did not follow from Ramanujan’s expansion now is a
corollary of the corrected version. However, this corrected version still does
not allow us to rigorously deduce the other result.

The most celebrated result in this manuscript is probably claim (28), which
is a famous formula for ζ(2n+1), where n is a positive integer. There is a large
number of proofs of this result and many generalizations as well. References are
given after we provide Ramanujan’s proof of (28). Ramanujan’s argument is
rigorous and ironically is independent of whether his formula or the corrected
version is used.

In (22), Ramanujan gives another partial fraction expansion, but this one
is correct. All of its corollaries claimed by Ramanujan are correct, but not all
the deductions can be rigorously established by Ramanujan’s methods. These
corollaries, like those arising from (19), are all well known, with some having
been proved in the literature several times.

In the remainder of the chapter, we record all of Ramanujan’s formulas,
prove them rigorously in some cases, and “prove” them nonrigorously in other
cases, i.e., we argue as Ramanujan most likely did. Most of the results appear
in Ramanujan’s notebooks, and for all theorems we provide references where
proofs can be found. In providing references, we have adhered to the follow-
ing rules. For each principal theorem, we locate it in Ramanujan’s notebooks,
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indicate who gave the first proof, and lastly refer to the pages in the second
author’s books, primarily [38], where references to further proofs can be found.
Since the publication of [38], additional proofs have been found in some in-
stances, and so we provide references to those recent proofs of which we are
aware.

The residue of a meromorphic function f(z) at a pole z0 will be denoted
by R(f, z0) = R(z0).

12.2 Three Formulas Containing Divisor Sums

Entry 12.2.1 (p. 318, formula (18)). Let χ(n) denote the nonprincipal
primitive character of modulus 4, i.e., χ(2n) = 0 and χ(2n+ 1) = (−1)n, for
each nonnegative integer n. Let d(n) denote the number of positive divisors of
the positive integer n. Then, if x �= in, for each integer n,

∞∑

n=1

χ(n)d(n)n

n2 + x2
=

π

4

∞∑

n=1

χ(n)

n
sech

(πx
2n

)
. (12.2.1)

Proof. Recall the partial fraction expansion [126, p. 44, formula 1.422, no. 1]

sech
(πx

2

)
=

4

π

∞∑

k=1

(−1)k−1 2k − 1

(2k − 1)2 + x2
.

Thus,

π

4

∞∑

n=1

χ(n)

n
sech

(πx
2n

)
=

∞∑

n=1

χ(n)

n

∞∑

k=1

χ(k)k

k2 + x2/n2

=

∞∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2

=

∞∑

r=1

χ(r)d(r)r

r2 + x2
.

This formally completes our argument. However, observe that in the penulti-
mate line we rearranged the order of summation in the double sum, and this
needs to be justified. The following argument was kindly supplied by Johann
Thiel.

Proposition 12.2.1. Let χ(n) denote the nonprincipal primitive character of
modulus 4. Let d(n) denote the number of divisors of the positive integer n.
Then if x �= ın, for each integer n,
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∞∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2 =

∞∑

r=1

χ(r)d(r)r

r2 + x2 . (12.2.2)

Proof. By the identity theorem, it suffices to show that (12.2.2) holds for
x ∈ [0, 14 ].

We first examine the right-hand side of (12.2.2). If N is a positive inte-
ger, write

∞∑

r=1

χ(r)d(r)r

r2 + x2 =

4N2∑

r=1

χ(r)d(r)r

r2 + x2 +

∞∑

r=4N2+1

χ(r)d(r)r

r2 + x2 . (12.2.3)

We want to show that as N → ∞,

∞∑

r=4N2+1

χ(r)d(r)r

r2 + x2 = O

(
1

N

)
. (12.2.4)

To achieve this, we use the Dirichlet hyperbola method. Write

∑

n≤y

χ(n)d(n) =
∑

n≤y

χ(n)
∑

d|n
1 =

∑

d≤y

∑

n≤y
d|n

χ(n)

=
∑

d≤y

∑

m≤y/d

χ(md) =
∑

a,b≤y
ab≤y

χ(ab)

=
∑

a≤√
y

∑

b≤y/a

χ(a)χ(b) +
∑

b≤√
y

∑

a≤y/b

χ(a)χ(b)−
∑

a≤√
y

∑

b≤√
y

χ(a)χ(b)

= 2
∑

a≤√
y

χ(a)
∑

b≤y/a

χ(b)−
∑

a≤√
y

∑

b≤√
y

χ(a)χ(b)

= O(
√
y), (12.2.5)

as y → ∞, where we used the fact that each of the inner sums in the penul-
timate line is O(1). If we now apply partial summation in a straightforward
fashion with the use of (12.2.5), we easily deduce (12.2.4). Using then (12.2.4)
back in (12.2.3), we conclude that

∞∑

r=1

χ(r)d(r)r

r2 + x2 =
4N2∑

r=1

χ(r)d(r)r

r2 + x2 +O

(
1

N

)
. (12.2.6)

Next, we examine the first sum on the right-hand side of (12.2.3), or the
sum on the right-hand side in (12.2.6). Hence,
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4N2∑

r=1

χ(r)d(r)r

r2 + x2 =
∑

nk≤4N2

χ(nk)nk

n2k2 + x2

=

2N∑

n=1

2N∑

k=1

χ(nk)nk

n2k2 + x2 + 2

2N−1∑

n=1

⌊
4N2

n

⌋
∑

k=2N+1

χ(nk)nk

n2k2 + x2

=
2N∑

n=1

2N∑

k=1

χ(nk)nk

n2k2 + x2 + 2
2N−1∑

n=1

χ(n)

n

⌊
4N2

n

⌋
∑

k=2N+1

χ(k)k

k2 + (x/n)2
.

(12.2.7)

Observe that the inner sum in the second series on the far right side of (12.2.7)
is an alternating series and is consequently O(1/N), as N → ∞. Using this
bound in (12.2.7) and then (12.2.7) in (12.2.6) gives

∞∑

r=1

χ(r)d(r)r

r2 + x2 =

2N∑

n=1

2N∑

k=1

χ(nk)nk

n2k2 + x2 +O

(
logN

N

)
. (12.2.8)

We now examine the left-hand side of (12.2.2) and readily find that

∞∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2 =
2N∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2 +
∞∑

n=2N+1

∞∑

k=1

χ(nk)nk

n2k2 + x2

=

2N∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2 +

∞∑

n=2N+1

χ(n)

n

∞∑

k=1

χ(k)k

k2 + (x/n)2
.

(12.2.9)

If we set

f(y) :=
1

y

∞∑

k=1

χ(k)k

k2 + (x/y)2
,

for y ∈ [1,∞), by a straightforward calculation we see that f ′(y) < 0 and
consequently limy→∞ f(y) = 0. Therefore, we can apply the alternating series
test to conclude that the inner sum of the second sum on the far right side of
(12.2.9) is an alternating series that is O(1/N), as N → ∞. Therefore,

∞∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2 =

2N∑

n=1

∞∑

k=1

χ(nk)nk

n2k2 + x2 +O

(
1

N

)

=

2N∑

n=1

2N∑

k=1

χ(nk)nk

n2k2 + x2 +

2N∑

n=1

∞∑

k=2N+1

χ(nk)nk

n2k2 + x2 +O

(
1

N

)

=

2N∑

n=1

2N∑

k=1

χ(nk)nk

n2k2 + x2 +O

(
logN

N

)
, (12.2.10)
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where the last equality follows by an argument similar to the one used to
deduce (12.2.8).

Taking the difference of (12.2.10) and (12.2.8), we complete the proof of
(12.2.2). ��
This then completes a rigorous proof of Entry 12.2.1. ��

Entry 12.2.1 is a simple example of a large class of formulas involv-
ing the sech function and arithmetic functions. See papers by Berndt [34,
Example 3] and P.V. Krishnaiah and R. Sita Rama Chandra Rao [201] for
further examples.

Entry 12.2.2 (p. 318, formula (19)). Let σk(n) =
∑

d|n d
k. Then, for

Re s > 1 and Re(s− r) > 1,

ζ(s)ζ(s − r) =

∞∑

n=1

σr(n)

ns
. (12.2.11)

The formula (12.2.11) is classical and simple to prove. Ramanujan [263],
[267, pp. 133–135] found beautiful extensions of it. See also Titchmarsh’s text
[306, p. 8].

Entry 12.2.3 (p. 318, formula (20)). Let χ be defined as in Entry 12.2.1,
and let σk(n) be as in Entry 12.2.2. Then, for Re s > 1 and Re(s− r) > 1,

∞∑

m=1

χ(m)

ms

∞∑

n=1

χ(n)

ns−r
=

∞∑

n=1

χ(n)σr(n)

ns
.

Proof. For Re s > 1 and Re(s− r) > 1,

∞∑

m=1

χ(m)

ms

∞∑

n=1

χ(n)

ns−r
=

∞∑

m,n=1

χ(mn)nr

(mn)s
=

∞∑

k=1

χ(k)σr(k)

ks
,

which completes the proof for Re s > 1 and Re(s− r) > 1. We expect that the
domain of validity can be extended to Re s > sup{0,Re r}, but we are unable
to prove this. ��

There are many results in the literature generalizing or extending the last
two results. The two most extensive papers in this direction are perhaps those
by S. Chowla [91, 92], [95, pp. 92–115, 120–130].

12.3 Ramanujan’s Incorrect Partial Fraction Expansion
and Ramanujan’s Celebrated Formula for ζ(2n + 1)

Prior to this next claim, Ramanujan writes, “By the theory of residues it can
be shown that”. Evidently, Ramanujan implied that he used the residue the-
orem to calculate the partial fraction decomposition that followed. His formal
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calculations should depend upon an application of the Mittag–Leffler theorem,
which cannot be applied in this situation. We first state the incorrect expan-
sion, indicate Ramanujan’s probable approach, and then offer a correct ver-
sion. Ramanujan used n to denote a complex variable; we replace it with the
more natural notation w = z2.

Entry 12.3.1 (p. 318, formula (21)). If α and β are positive numbers such
that αβ = π2, then

1

2w
+

∞∑

m=1

{
mα coth(mα)

w +m2α
+

mβ coth(mβ)

w −m2β

}
=

π

2
cot(

√
wα) coth(

√
wβ).

(12.3.1)

Proof. (We emphasize that the following argument is not rigorous.) Consider

f(z) :=
π

2
cot(z

√
α) coth(z

√
β),

which has simple poles at z = mπ/
√
α, −∞ < m < ∞, m �= 0, with residues

R(mπ/
√
α) =

π

2
√
α
coth(mβ), (12.3.2)

and simple poles at z = mπi/
√
β,−∞ < m < ∞,m �= 0, with residues

R(mπi/
√
β) = − πi

2
√
β
coth(mα), (12.3.3)

where we used the fact αβ = π2 in our calculations. Clearly f(z) also has a
double pole at z = 0. Using (12.3.2) and once again the relation αβ = π2,
we find that the contributions of the poles z = mπ/

√
α and z = −mπ/

√
α,

1 ≤ m < ∞, to the partial fraction expansion of f(z) are

π

2
√
α

(
coth(mβ)

z −mπ/
√
α
+

coth(−mβ)

z +mπ/
√
α

)
=

mβ coth(mβ)

z2 −m2β
. (12.3.4)

Using (12.3.3) and once again the relation αβ = π2, we find that the sum of
the contributions of the poles z = mπi/

√
β and z = −mπi/

√
β, 1 ≤ m < ∞,

to the partial fraction decomposition of f(z) equals

− πi

2
√
β

(
coth(mα)

z −mπi/
√
β
− coth(mα)

z +mπi/
√
β

)
=

mα coth(mα)

z2 +m2α
. (12.3.5)

That part of the partial fraction decomposition arising from the double pole
at z = 0 clearly equals

π

2
√
αβz2

=
1

2z2
, (12.3.6)
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upon again using the relation αβ = π2. Employing (12.3.4)–(12.3.6) and ap-
plying the Mittag–Leffler theorem, we find that there exists an entire function
g(z) such that

π

2
cot(z

√
α) coth(z

√
β) =

1

2z2
+

∞∑

m=1

{
mα coth(mα)

z2 +m2α
+

mβ coth(mβ)

z2 −m2β

}
+ g(z).

(12.3.7)

Here Ramanujan probably assumed that g(z) ≡ 0 and so completed his
“proof” of (12.3.1). ��

Normally, in applications of the Mittag–Leffler theorem, one lets z → ∞
to conclude that g(z) ≡ 0. However, such an argument is invalid here, because
cot(z

√
α) coth(z

√
β) oscillates and does not have a limit as z → ∞. Moreover,

one cannot justify taking the limit as z → ∞ under the summation sign in
(12.3.7).

In attempting to find a corrected version of (12.3.1), Sitaramachandrarao
[289], [38, pp. 271–272] proved that

π2xy cot(πx) coth(πy) = 1 +
π2

3
(y2 − x2)

− 2πxy

∞∑

m=1

(
y2 coth(πmx/y)

m(m2 + y2)
+

x2 coth(πmy/x)

m(m2 − x2)

)
.

(12.3.8)

Using the elementary identities

y2

m(m2 + y2)
= − m

m2 + y2
+

1

m

and

x2

m(m2 − x2)
=

m

m2 − x2
− 1

m
,

we find that (12.3.8) can be rewritten in the form

π2xy cot(πx) coth(πy) = 1 +
π2

3
(y2 − x2)

+ 2πxy

∞∑

m=1

(
m coth(πmx/y)

m2 + y2
− m coth(πmy/x)

m2 − x2

)

− 2πxy
∞∑

m=1

1

m
(coth(πmx/y)− coth(πmy/x))

= 1 +
π2

3
(y2 − x2)
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+ 2πxy

∞∑

m=1

(
m coth(πmx/y)

m2 + y2
− m coth(πmy/x)

m2 − x2

)

− 4πxy

∞∑

m=1

1

m

(
1

e2πmx/y − 1
− 1

e2πmy/x − 1

)
,

(12.3.9)

where we used the elementary identity

cothx = 1 +
2

e2x − 1
. (12.3.10)

We are now in a position to make simple changes of variables in (12.3.9)
to derive a corrected version of (12.3.1).

Entry 12.3.2 (Corrected Version of (21)). Under the hypotheses of
Entry 12.3.1,

π

2
cot(

√
wα) coth(

√
wβ) =

1

2w
+

1

2
log

β

α

+

∞∑

m=1

{
mα coth(mα)

w +m2α
+

mβ coth(mβ)

w −m2β

}
.

(12.3.11)

Proof. Let πx =
√
wα and πy =

√
wβ in (12.3.9) to deduce that

π

2
cot(

√
wα) coth(

√
wβ)

=
1

2w
+

1

6
(β − α) +

∞∑

m=1

(
mα coth(mα)

m2α+ w
− mβ coth(mβ)

βm2 − w

)

− 2
∞∑

m=1

1

m

(
1

e2mα − 1
− 1

e2mβ − 1

)

=
1

2w
+

1

6
(β − α) +

∞∑

m=1

(
mα coth(mα)

m2α+ w
− mβ coth(mβ)

βm2 − w

)

− 2

(
1

4
logα− α

12
− 1

4
log β +

β

12

)

=
1

2w
+

1

2
log

β

α
+

∞∑

m=1

{
mα coth(mα)

w +m2α
+

mβ coth(mβ)

w −m2β

}
,

where we have used an equivalent formulation for the transformation of the
Dedekind eta function, namely [68],
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∞∑

m=1

1

m(e2mα − 1)
−1

4
logα+

α

12
=

∞∑

m=1

1

m(e2mβ − 1)
−1

4
log β+

β

12
, (12.3.12)

under the condition αβ = π2. This completes the proof of (12.3.11). ��
Thus, Ramanujan’s claim (21) was correct except for the missing term

1
2 log

β
α .

We now proceed to examine the four deductions Ramanujan made from
(12.3.1). We first examine the claim that cannot be formally deduced from
either (12.3.1) or the corrected version (12.3.11), and provide Ramanujan’s
argument. Ramanujan asserts that “Equating the coefficients of 1/n (1/w in
our notation) in both sides in (21) we have . . . .”

Entry 12.3.3 (p. 318, formula (23)). If α and β are positive numbers such
that αβ = π2, then

α

∞∑

m=1

m

e2mα − 1
+ β

∞∑

m=1

m

e2mβ − 1
=

α+ β

24
− 1

4
. (12.3.13)

Proof. (incorrect) Following Ramanujan, we equate coefficients of 1/w on
both sides of (12.3.11). Observe from the Laurent expansion of cot(

√
wα)

coth(
√
wβ) about w = 0 that the coefficient of 1/w equals 1

2 on the left side
of (12.3.11). Note also the term 1/(2w) on the right side of (12.3.11). Hence,
the only contribution of 1/w that remains must come from

∞∑

m=1

{
mα

w +m2α

(
1 +

2

e2mα − 1

)
+

mβ

w −m2β

(
1 +

2

e2mβ − 1

)}
, (12.3.14)

upon the use of (12.3.10), and this contribution must equal 0.
Proceeding formally, we have

mα

w +m2α
=

mα

w

∞∑

r=0

(
−m2α

w

)r

and
mβ

w −m2β
=

mβ

w

∞∑

r=0

(
m2β

w

)r

.

Thus, from (12.3.14) we find that a contribution to the coefficient of 1/w
equals

2α

∞∑

m=1

m

e2mα − 1
+ 2β

∞∑

m=1

m

e2mβ − 1
. (12.3.15)

The remaining contribution to the coefficient of 1/w in (12.3.14) is given by

(α+ β)
∞∑

m=1

m = (α+ β)ζ(−1) = −α+ β

12
. (12.3.16)

Of course, this agrument is not rigorous. The value ζ(−1) = − 1
12 can be found

in Titchmarsh’s book [306, p. 19, Eq. (2.4.3)], for example. Alternatively, the
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“constant” for the series
∑∞

m=1 m in Ramanujan’s terminology is equal to − 1
12

[37, p. 135, Example 2]. Recalling that the contributions of the coefficients of
1/w in (12.3.14) must equal 0, we find from (12.3.15) and (12.3.16) that

α

∞∑

m=1

m

e2mα − 1
+ β

∞∑

m=1

m

e2mβ − 1
=

α+ β

24
. (12.3.17)

In comparing (12.3.17) with (12.3.13), we find that the term − 1
4 in (12.3.13)

does not appear in (12.3.17). This concludes what we think must have been
Ramanujan’s argument. ��
Entry 12.3.4 (pp. 318–319, formula (24)). If α and β are positive num-
bers such that αβ = π2, and if σ(m) =

∑
d|m d, then

α

∞∑

m=1

σ(m)e−2mα + β

∞∑

m=1

σ(m)e−2mβ =
α+ β

24
− 1

4
. (12.3.18)

Proof. Entry 12.3.4 is simply another version of Entry 12.3.3. To that end,
expand the summands of (12.3.13) into geometric series and collect the coef-
ficients of e−2mα and e−2mβ to complete the proof. ��

Ramanujan offered Entry 12.3.3 as Corollary (i) in Sect. 8 of Chap. 14 in his
second notebook [268], [38, p. 255]. To the best of our knowledge, Entry 12.3.3
was first proved by O. Schlömilch [279, 280] in 1877. There now exist many
proofs; see [38, p. 256] for references to several proofs. One of the most common
proofs of the special case α = β = π of both Entries 12.3.3 and 12.3.6 was
recently rediscovered by O. Ogievetsky and V. Schechtman [236]. Entry 12.3.3
is equivalent to the transformation formula for Ramanujan’s Eisenstein series
P (q).

Entry 12.3.5 (p. 320, formula (29)). If α and β are positive numbers such
that αβ = π2, and if σk(m) =

∑
d|m dk, then

∞∑

m=1

1

m(e2mα − 1)
−

∞∑

m=1

1

m(e2mβ − 1)

=
∞∑

m=1

σ−1(m)e−2mα −
∞∑

m=1

σ−1(m)e−2mβ =
1

4
log

α

β
− α− β

12
. (12.3.19)

Proof. Following but altering Ramanujan’s directions, we equate the terms
independent of w in (12.3.11) (not (12.3.1)) and use (12.3.10) to deduce that

π

2

(
−

√
α

3
√
β
+

√
β

3
√
α

)
=

1

2
log

β

α

+
∞∑

m=1

{
1

m

(
1 +

2

e2mα − 1

)
− 1

m

(
1 +

2

e2mβ − 1

)}
.
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The desired result (12.3.19) now follows upon simplification, with the use of
the identity αβ = π2. ��

Entry 12.3.5 is stated by Ramanujan as Corollary (ii) in Sect. 8 of Chap. 14
in his second notebook [268], [38, p. 256] and as Entry 27(iii) in Chap. 16 of
his second notebook [268], [39, p. 43]. It is equivalent to the transformation
formula for the Dedekind eta function. Note that we already used (12.3.19)
in the equivalent form (12.3.12) in order to obtain a corrected version of
Entry 12.3.1.

The Bernoulli numbers Bm, m ≥ 0, are defined by

z

ez − 1
=

∞∑

m=0

Bm

m!
zm, |z| < 2π.

This convention for Bernoulli numbers is not the same as that used by Ra-
manujan in his unpublished manuscript.

Entry 12.3.6 (p. 319, formula (25)). Let α and β be positive numbers such
that αβ = π2, and let Bm, m ≥ 0, denote the mth Bernoulli number. Then,
if r is a positive integer with r ≥ 2,

αr

( ∞∑

m=1

m2r−1

e2mα − 1
− B2r

4r

)
= (−β)r

( ∞∑

m=1

m2r−1

e2mβ − 1
− B2r

4r

)
. (12.3.20)

Proof. (nonrigorous) Return to (12.3.11), use (12.3.10), and formally expand
the summands into geometric series to arrive at

π

2
cot(

√
wα) coth(

√
wβ) =

1

2w
+

1

2
log

β

α

+

∞∑

m=1

{
mα

w

∞∑

k=0

(
−m2α

w

)k (
1 +

2

e2mα − 1

)

+
mβ

w

∞∑

k=0

(
m2β

w

)k (
1 +

2

e2mβ − 1

)}
. (12.3.21)

Following Ramanujan’s directions, we equate coefficients of 1/wr, r ≥ 2, on
both sides of (12.3.21) to formally deduce that

0 = (−1)r−1αrζ(1− 2r) + 2(−1)r−1αr
∞∑

m=1

m2r−1

e2mα − 1

+ βrζ(1 − 2r) + 2βr
∞∑

m=1

m2r−1

e2mβ − 1
.

Using the relation [306, p. 19, Eq. (2.4.3)]

ζ(1 − 2r) = −B2r

2r
, r ≥ 1,

dividing both sides by 2(−1)r, and simplifying, we deduce (12.3.20). ��
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Entry 12.3.6 is identical to Entry 13 in Chap. 14 of Ramanujan’s second
notebook [268], [38, p. 261]. To the best of our knowledge, the first published
proof of Entry 12.3.6 was given by M.B. Rao and M.V. Ayyar [271] in 1923.
There exist many proofs of Entry 12.3.6, and even more proofs for the special
case α = β = π; see [38, pp. 261–262] for references. N.S. Koshliakov [189, 192]
has derived interesting analogues of Entry 12.3.6 and other entries in this
section.

Expanding the summands in geometric series, we deduce, as in previous
entries, the following corollary, which is, in essence, the transformation formula
for classical Eisenstein series.

Entry 12.3.7 (p. 319, formula (26)). If α and β are positive numbers such
that αβ = π2, and if r is a positive integer with r ≥ 2, then

αr

( ∞∑

m=1

σ2r−1(m)e−2mα − B2r

4r

)
= (−β)r

( ∞∑

m=1

σ2r−1(m)e−2mβ − B2r

4r

)
.

Entry 12.3.8 (p. 319, formula (27)). We have

∞∑

m=1

σ5(m)e−2πm =
1

504
.

Proof. Entry 12.3.8 follows immediately from Entry 12.3.7 by setting r = 3
and α = β = π, and then using the fact that B6 = 1

42 . ��

Entry 12.3.9 (pp. 319–320, formula (28)). If α and β are positive num-
bers such that αβ = π2, and if r is a positive integer, then

(4α)−r

(
1

2
ζ(2r + 1) +

∞∑

m=1

1

m2r+1(e2mα − 1)

)

− (−4β)−r

(
1

2
ζ(2r + 1) +

∞∑

m=1

1

m2r+1(e2mβ − 1)

)

= (4α)−r

(
1

2
ζ(2r + 1) +

∞∑

m=1

σ−1−2r(m)e−2mα

)

− (−4β)−r

(
1

2
ζ(2r + 1) +

∞∑

m=1

σ−1−2r(m)e−2mβ

)

= −
r+1∑

k=0

(−1)kB2kB2r+2−2kα
r+1−kβk

(2k)!(2r + 2− 2k)!
. (12.3.22)

Proof. Return to (12.3.11), use (12.3.10), and expand the summands into
geometric series to arrive at
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π

2
cot(

√
wα) coth(

√
wβ) =

1

2w
+

1

2
log

β

α

+

∞∑

m=1

{
1

m

∞∑

k=0

(
− w

m2α

)k
(
1 +

2

e2mα − 1

)

− 1

m

∞∑

k=0

(
w

m2β

)k (
1 +

2

e2mβ − 1

)}
. (12.3.23)

Following Ramanujan’s advice, we equate coefficients of wr, r ≥ 1, on both
sides of (12.3.23). On the right side, the coefficient of wr equals

(−α)−rζ(2r + 1) + 2(−α)−r
∞∑

m=1

1

m2r+1(e2mα − 1)

−β−rζ(2r + 1) + 2β−r
∞∑

m=1

1

m2r+1(e2mβ − 1)
. (12.3.24)

Using the Laurent expansions for cot z and coth z about z = 0, we find that
on the left side of (12.3.23),

π

2
cot(

√
wα) coth(

√
wβ) =

π

2

∞∑

k=0

(−1)k22kB2k

(2k)!
(wα)k−1/2

×
∞∑

j=0

22jB2j

(2j)!
(wβ)j−1/2 . (12.3.25)

The coefficient of wr in (12.3.25) is easily seen to be equal to

22r+1
r+1∑

k=0

(−1)kB2kB2r+2−2k

(2k)!(2r + 2− 2k)!
αkβr+1−k, (12.3.26)

where we used the equality αβ = π2. Now equate the expressions in (12.3.24)
and (12.3.26), then multiply both sides by (−1)r2−2r−1, and lastly replace k
by r + 1 − k in the finite sum. We then have shown the equality of the first
and third expressions in (12.3.22). The first equality of (12.3.22) follows as
before by expanding the summands on the left side into geometric series. ��

Entry 12.3.9 is the same as Entry 21(i) in Chap. 14 of Ramanujan’s second
notebook [268], [38, pp. 275–276]. An extensive generalization of Entry 12.3.9
can be found in Entry 20 of Chap. 16 in Ramanujan’s first notebook [268], [40,
pp. 429–432]. The special case α = β = π of Entry 12.3.9 was first established
by M. Lerch [215] in 1901, but the general theorem was not proved in print
until S.L. Malurkar [220] did so in 1925. Inspired by two papers by E. Gross-
wald [130, 131], the second author established a proof of Entry 12.3.9, the first
claim in Ramanujan’s notebooks that the second author had ever examined;
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his first paper on Ramanujan’s work was the survey paper [30] on Ramanu-
jan’s formula for ζ(2n + 1). However, at about the same time, the second
author had established another proof of Ramanujan’s formula for ζ(2n + 1)
as well as a far-ranging generalization [33, Theorem 5.2]. The former paper
and the second author’s book [38, p. 276] contain a multitude of references
for the many proofs and generalizations of Entry 12.3.9. Sitaramachandrarao
[289] gave a proof of Entry 12.3.9 based on his partial fraction decomposition
(12.3.8), and so his proof is similar to that of Ramanujan. Further proofs
and generalizations have been given by D. Bradley [74], L. Veps̆tas [308],
and S. Kanemitsu, Y. Tanigawa, and M. Yoshimoto [171, 172]. A very en-
gaging proof, in fact of a significant generalization, via Barnes’s multiple zeta
functions, was devised by Y. Komori, K. Matsumoto, and H. Tsumura [186].
An especially interesting proof, arising out of a very general asymptotic for-
mula, has been devised by M. Katsurada [179]; see also interesting remarks
in his paper [180]. A discussion of Ramanujan’s formula in conjunction with
numerical calculations has been made by B. Ghusayni [122].

The two infinite series on the far left side of (12.3.22) converge very rapidly.
If we “ignore” these two series and let r be odd, then we see that ζ(2r+ 1) is
“almost” a rational multiple of π2r+1. Continuing this line of thought, suppose
that we set α = πz and β = πz, and now require that z be a root of

∞∑

m=1

1

m2r+1(e2mπz − 1)
+

∞∑

m=1

1

m2r+1(e2mπ/z − 1)
= 0.

Next, multiply both sides of (12.3.22) by (−1)r22r+1πrzr+1 and replace k by
r + 1− k in the finite sum on the far right-hand side. Hence, for such values
of z, we deduce that

Pk(z) :=
(2π)2k−1

(2k)!

r+1∑

k=0

(−1)k
B2kB2r+2−2k

(2k)!(2r + 2− 2k)!
z2k = 0. (12.3.27)

Accordingly, S. Gun, M.R. Murty, and P. Rath [138] defined the related
polynomials

R2k+1(z) :=

k+1∑

j=0

B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
z2j

and showed that all of their nonreal roots lie on the unit circle. Murty,
C.J. Smyth, and R.J. Wang [230] discovered further properties of these poly-
nomials. In particular, they discovered bounds for their real zeros, and they
proved that the largest real zero approaches 2 from above, as k → ∞. M. Laĺın
and M.D. Rogers [205] studied polynomials that are similar to R2k+1(z) and
that are also related to further identities of Ramanujan, and showed that their
zeros lie on the unit circle. The study of the polynomials Pk(z) turns out to be
more difficult, and in [205], only partial results were obtained. In particular,
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for 2 ≤ k ≤ 1,000, the aforementioned authors showed that all of the roots
of Pk(z) lie on the unit circle. Finally, Laĺın and Smyth [206] proved that all
zeros of Pk(z) are indeed located on |z| = 1.

12.4 A Correct Partial Fraction Decomposition
and Hyperbolic Secant Sums

As in the previous section, we alter Ramanujan’s notation by setting
n = w = z2.

Entry 12.4.1 (p. 318, formula (22)). If α and β are positive numbers such
that αβ = π2/4, and if w �= −(2m+ 1)2α, (2m+ 1)2β, 0 ≤ m < ∞, then

π

4
sec(

√
wα)sech(

√
wβ) =

∞∑

m=0

(−1)m
{
(2m+ 1)α sech(2m+ 1)α

w + (2m+ 1)2α

− (2m+ 1)β sech(2m+ 1)β

w − (2m+ 1)2β

}
. (12.4.1)

Proof. We apply the Mittag–Leffler theorem to

f(z) :=
π

4
sec(z

√
α)sech(z

√
β),

which has simple poles at z = (2m+ 1)π/(2
√
α) and z = (2m+ 1)πi/(2

√
β),

for each integer m. The residues are easily calculated to be

R((2m+ 1)π/(2
√
α)) = − (−1)mπ

4
√
α

sech(2m+ 1)β (12.4.2)

and

R((2m+ 1)πi/(2
√
β)) =

(−1)mπ

4i
√
β

sech(2m+ 1)α, (12.4.3)

where we used the relation αβ = π2/4. By (12.4.2), the contributions from
the poles z = (2m + 1)π/(2

√
α) and z = −(2m+ 1)π/(2

√
α), m ≥ 0, to the

partial fraction decomposition of f(z) are

(−1)mπ

4
√
α

(
− sech(2m+ 1)β

z − (2m+ 1)π/(2
√
α)

+
sech(2m+ 1)β

z + (2m+ 1)π/(2
√
α)

)

= − (−1)m(2m+ 1)β sech(2m+ 1)β

z2 − (2m+ 1)2β
,

(12.4.4)

where we used the equality αβ = π2/4. Next, by (12.4.3), the contributions
of the poles z = (2m+ 1)πi/(2

√
β) and z = −(2m+ 1)πi/(2

√
β), m ≥ 0, to

the partial fraction decomposition of f(z) are
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(−1)mπ

4i
√
β

(
sech(2m+ 1)α

z − (2m+ 1)πi/(2
√
β)

− sech(2m+ 1)α

z + (2m+ 1)πi/(2
√
β)

)

=
(−1)m(2m+ 1)α sech(2m+ 1)α

z2 + (2m+ 1)2α
,

(12.4.5)

upon using the equality αβ = π2/4. Thus, applying the Mittag–Leffler theo-
rem and using (12.4.4) and (12.4.5), we find that there exists an entire function
g(z) such that

π

4
sec(z

√
α)sech(z

√
β) =

∞∑

m=0

(−1)m
{
(2m+ 1)α sech(2m+ 1)α

z2 + (2m+ 1)2α

− (2m+ 1)β sech(2m+ 1)β

z2 − (2m+ 1)2β

}
+ g(z). (12.4.6)

Letting z → ∞, we find that limz→∞ g(z) = 0. Hence, g(z) ≡ 0, and thus
(12.4.1) follows to complete the proof. ��

An equivalent formulation of Entry 12.4.1 is found as Entry 19(iv) in
Chap. 14 of Ramanujan’s second notebook [268], [38, p. 273], where a different
kind of proof was indicated by Ramanujan.

Entry 12.4.2 (p. 320, formula (30)). If αβ = π2/4, where α and β are
positive numbers, and if r is any positive integer, then

αr
∞∑

m=0

(−1)m(2m+ 1)2r−1

cosh(2m+ 1)α
+ (−β)r

∞∑

m=0

(−1)m(2m+ 1)2r−1

cosh(2m+ 1)β
= 0. (12.4.7)

Proof. (nonrigorous) Return to (12.4.1) and formally expand the summands
on the right side into geometric series to deduce that

π

4
sec(

√
wα)sech(

√
wβ)

=

∞∑

m=0

(−1)m

{
(2m+ 1)α

w
sech(2m+ 1)α

∞∑

k=0

(
− (2m+ 1)2α

w

)k

− (2m+ 1)β

w
sech(2m+ 1)β

∞∑

k=0

(
(2m+ 1)2β

w

)k
}
.

(12.4.8)

Equating coefficients of 1/wr, r ≥ 1, on both sides of (12.4.8), we find that

0 =

∞∑

m=0

(−1)m+r−1(2m+ 1)2r−1αrsech(2m+ 1)α

−
∞∑

m=0

(−1)m(2m+ 1)2r−1βrsech(2m+ 1)β,

which is easily seen to be equivalent to (12.4.7). ��
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Entry 12.4.2 is Entry 14 of Chap. 14 in Ramanujan’s second notebook
[268], [38, p. 262], and the first proof known to us was given by Malurkar
[220]. See [38, p. 262] for further references and comments.

As with previous theorems, Ramanujan provides an alternative version of
Entry 12.4.2 in terms of divisor sums. The details are similar to those above,
and so we do not give them, but we remark that careful attention to the signs
of the summands should be taken.

Entry 12.4.3 (p. 321, formula (31)). If α and β are positive numbers such
that αβ = π2/4, and if r is any positive integer, then

αr
∞∑

m=0

(−1)mσ2r−1(m)e−(2m+1)α + (−β)r
∞∑

m=0

(−1)mσ2r−1(m)e−(2m+1)β = 0.

Recall that the Euler numbers E2k, k ≥ 0, are defined by [126, p. 42,
formula 1.411, no. 10]

sechz =

∞∑

k=0

E2k

(2k)!
z2k, |z| < π/2. (12.4.9)

Entry 12.4.4 (p. 321, formula (32)). If α and β are positive numbers such
that αβ = π2/4, if r is any positive integer, and if χ denotes the nonprincipal
primitive character of modulus 4, as in Sect. 12.2, then

2α1−r
∞∑

m=1

χ(m)m1−2r

cosh(mα)
+ 2(−β)1−r

∞∑

m=1

χ(m)m1−2r

cosh(mβ)

= 4α1−r
∞∑

m=1

χ(m)σ1−2r(m)e−mα + 2(−β)1−r
∞∑

m=1

χ(m)σ1−2r(m)e−mβ

=
π

2

r−1∑

k=0

(−1)k
E2kE2r−2−2k

(2k)!(2r − 2− 2k)!
αr−1−kβk. (12.4.10)

Proof. Return to (12.4.1) and expand both sides in Taylor series about 0.
Using (12.4.9), we find that

π

4

∞∑

j=0

(−1)j
E2j

(2j)!
(wα)j ·

∞∑

k=0

E2k

(2k)!
(wβ)k

=
∞∑

m=0

(−1)m

2m+ 1
sech(2m+ 1)α

∞∑

r=0

(−1)r
(

w

(2m+ 1)2α

)r

+

∞∑

m=0

(−1)m

2m+ 1
sech(2m+ 1)β

∞∑

r=0

(−1)r
(

w

(2m+ 1)2β

)r

. (12.4.11)

In (12.4.11) we equate coefficients of wr−1, r ≥ 1, on both sides to deduce
that
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π

4

r−1∑

j=0

(−1)j
E2jE2r−2j−2

(2j)!(2r − 2j − 2)!
αjβr−j−1

= α1−r
∞∑

m=0

(−1)m+1−rsech(2m+ 1)α

(2m+ 1)2r−1
+ β1−r

∞∑

m=0

(−1)msech(2m+ 1)β

(2m+ 1)2r−1
.

(12.4.12)

Now set j = r−1−k in the sum on the left side of (12.4.12) and multiply both
sides of (12.4.12) by 2(−1)r−1. We then readily deduce the equality of the first
and third expressions in (12.4.10). The first equality of (12.4.10) follows as
usual from expanding the summands on the left side into geometric series. ��

Entry 12.4.4 appears in two formulations, Entries 21(ii), (iii), in Chap. 14
of Ramanujan’s second notebook [268], [38, pp. 276–277]. The first proofs of
Entry 12.4.4 were found by Malurkar [220] and Chowla [93], [95, pp. 143–170],
and further references can be found in [38, p. 277].

Entry 12.4.5 (p. 321, formula (33)). We have

4

∞∑

m=0

(−1)mσ−1(m)e−(2m+1)α + 4

∞∑

m=0

(−1)mσ−1(m)e−(2m+1)β =
π

2
.

Proof. Set r = 1 in Entry 12.4.4. ��
S.-G. Lim [216] has generalized many of Ramanujan’s theorems on infi-

nite series identities from Ramanujan’s notebooks [268], in particular from
Chap. 14 in his second notebook, [38, Chap. 14]. For Example, Lim [216,
Corollaries 3.33, 3.35] has proved the following two results that generalize
Entries 12.3.3 and 12.3.5, respectively. Let α and β be positive numbers such
that αβ = π2. Suppose that c is any positive integer. Then

α

∞∑

m=1

m

e2m(α−iπ)/c − 1
+ β

∞∑

m=1

m

e2m(β+iπ)/c − 1
=

α+ β

24
− c

4

and

∞∑

m=1

1

m(e2m(α−iπ)/c − 1)
−

∞∑

m=1

1

m(e2m(β+iπ)/c − 1)

=
1

4
log

α

β
− α− β

12c
+

(c− 1)(c− 2)πi

12c
.

When c = 1 in the identities above, we deduce Entries 12.3.3 and 12.3.5,
respectively.

In another paper [217], Lim has found generalizations of the results in
Sect. 12.4. We state one of his general theorems.
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Theorem 12.4.1. Let α and β be positive numbers such that αβ = π2. Let r
be any real number such that 0 < r < 1. Then, for any integer n,

α−n
∞∑

k=1

(−1)k sinh((1− 2r)αk) sin((1 − 2r)πk)

k2n+1 sinh(αk)

= −(−β)−n
∞∑

k=1

(−1)k sinh((1 − 2r)βk) sin((1− 2r)πk)

k2n+1 sinh(βk)

− 22n+1π

n∑

k=0

B2k+1(r)B2n+1−2k(r)

(2k + 1)!(2n+ 1− 2k)!
αn−k(−β)k, (12.4.13)

where Bj(r), j ≥ 0, denotes the jth Bernoulli polynomial.

Although we avoid providing details, setting r = 1
4 in (12.4.13) yields

Entries 12.4.2 and 12.4.4 [217, Corollary 3.23, Proposition 3.21].
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