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Identities Related to the Riemann Zeta

Function and Periodic Zeta Functions

10.1 Introduction

On page 196 in his lost notebook, Ramanujan lists several identities that
are related to the Riemann zeta function, Dirichlet L-series, and periodic
zeta functions. Some of the identities are connected to previous results of
Ramanujan in [256] and [258], but none of the identities on page 196 can be
found in these papers. Furthermore, all of the identities on page 196 are new.
The purpose of this chapter is to examine all of these interesting identities.
Two of the identities were examined and generalized in a paper that the second
author wrote with H.H. Chan and Y. Tanigawa [47].

10.2 Identities for Series Related to ζ(2) and L(1, χ)

At the top of page 196 in [269], Ramanujan records three identities related
to ζ(2), and at the bottom of the page, he states a similar result related to
L(1, χ), where χ is the nonprincipal primitive character modulo 4. In each of
the first three identities, the coefficient 4 of the series on the right-hand side
must be replaced by 2. We record the results in corrected form.

Entry 10.2.1 (p. 196). Let Rex ≥ 0. Then

∞∑

n=1

e−n2πx

n2
=

π2

6
− π

√
x+

1

2
πx− 2π2x3/2

∞∑

n=1

∫ ∞

0

te−π(n+tx)2/xdt, (10.2.1)

where the principal value of the square root is taken.

Proof. We assume throughout the proof that x ≥ 0. The more general
result for Re x ≥ 0 will then hold by analytic continuation. We begin with
the familiar theta transformation formula, which is found in Ramanujan’s
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240 10 Riemann Zeta Function and Periodic Zeta Functions

notebooks [268], [39, p. 43, Entry 27(i)]. It will be convenient, however, to use
the formulation, for Re t > 0,

∞∑

n=1

e−n2πt = −1

2
+

1

2
√
t
+

1

2
√
t

∞∑

n=1

e−n2π/t, (10.2.2)

which is found in Titchmarsh’s treatise [306, p. 22, Eq. (2.6.3)], for example.
Integrate both sides of (10.2.2) over [0, x], invert the order of integration and
summation by absolute convergence, and multiply both sides by −π to reach
the identity

∞∑

n=1

e−n2πx

n2
=

π2

6
− π

√
x+

1

2
πx− π

2

∞∑

n=1

∫ x

0

e−n2πt

√
t

dt. (10.2.3)

In comparing (10.2.3) with (10.2.1), we see that we must address the integrals
on the right side of (10.2.3). First, set t = x/u and then set n2u = (n+ tx)2.
Hence,

∫ x

0

e−n2πt

√
t

dt =
√
x

∫ ∞

1

e−n2πu/x

u3/2
du = 2x3/2n

∫ ∞

0

e−π(n+tx)2/x

(n+ tx)2
dt. (10.2.4)

When examining (10.2.1) in relation to (10.2.3) and (10.2.4), we see that it
remains to show that

2π

∫ ∞

0

te−π(n+tx)2/xdt = n

∫ ∞

0

e−π(n+tx)2/x

(n+ tx)2
dt. (10.2.5)

Integrating the latter integral by parts, in particular integrating
1/(n + tx)2 and differentiating the exponential, we readily find that for
Rex > 0,

n

∫ ∞

0

e−π(n+tx)2/x

(n+ tx)2
dt =

e−n2π/x

x
− 2πn

x

∫ ∞

0

e−π(n+tx)2/xdt.

On the other hand, after a little trickery and then a direct integration, we find
that

2π

∫ ∞

0

te−π(n+tx)2/xdt =
2π

x

∫ ∞

0

(n+ tx)e−π(n+tx)2/xdt

− 2πn

x

∫ ∞

0

e−π(n+tx)2/xdt

=
e−n2π/x

x
− 2πn

x

∫ ∞

0

e−π(n+tx)2/xdt.

From these two calculations, we see that (10.2.5) has been demonstrated, and
so the proof is complete. ��
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In Chap. 15 of his second notebook [268], [38, p. 306, Theorem 3.1],
Ramanujan stated a general asymptotic formula for

∞∑

n=1

e−xnp

nm−1,

as x → 0+. If we set p = 2 andm = −1, and replace x by πx in this asymptotic
formula, we find that

∞∑

n=1

e−n2πx

n2
=

π2

6
− π

√
x+

1

2
πx+ o(1), (10.2.6)

as x → 0+, which should be compared with (10.2.1). In [38, pp. 306–308], a
proof of Ramanujan’s general asymptotic formula was obtained by contour
integration. In the course of this proof, the error term, i.e., o(1) in (10.2.6),
is represented by a certain contour integral. It seems to be very difficult,
however, to transform this contour integral into the expression involving the
infinite series on the right-hand side of (10.2.1).

Entry 10.2.2 (p. 196). Let Rex ≥ 0. Then

∞∑

n=1

cos(n2πx)

n2
=

π2

6
− π

√
x

2
+ 2π2x3/2

×
∞∑

n=1

∫ ∞

0

te−2nπt cos

(
π

4
− πn2

x
+ πt2x

)
dt (10.2.7)

and

∞∑

n=1

sin(n2πx)

n2
= π

√
x

2
− 1

2
πx+ 2π2x3/2

×
∞∑

n=1

∫ ∞

0

te−2nπt sin

(
π

4
− πn2

x
+ πt2x

)
dt, (10.2.8)

where the principal value of the square root is taken.

Proof. As in the previous proof, we shall assume that x ≥ 0; an appeal to
analytic continuation then establishes Entry 10.2.2 for Rex ≥ 0. We shall
prove (10.2.7) and (10.2.8) with x replaced by y. In (10.2.1), replace x by
z = x+ iy, with y ≥ 0. Let θ = arg z. Then (10.2.1) takes the form

∞∑

n=1

e−n2πz

n2
=

π2

6
− π|z|1/2(cos 1

2θ + i sin 1
2θ) +

1

2
π(x + iy)

− 2π2|z|3/2(cos 3
2θ + i sin 3

2θ) (10.2.9)

×
∫ ∞

0

t exp

{
− π

|z|2
(
(n+ tx)2 + 2it(n+ tx)y − t2y2

)
(x− iy)

}
dt.
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Now,

E(x, y) := −2π2|z|3/2(cos 3
2θ + i sin 3

2θ)t

× exp

{
− π

|z|2
(
(n+ tx)2 + 2it(n+ tx)y − t2y2

)
(x− iy)

}

= −2π2|z|3/2(cos 3
2θ + i sin 3

2θ)t exp

(
− π

|z|2
(
(n+ tx)2 − t2y2

)
x

+ 2t(n+ tx)y2 + i
(
2tx(n+ tx)y − y(n+ tx)2 − t2y3

))
,

from which we see that

ReE(x, y) = −2π2|z|3/2 cos 3
2θ t exp

{
− π

|z|2
(
(n+ tx)2 − t2y2

)
x

}

× cos
π

|z|2
(
2tx(n+ tx)y − y(n+ tx)2 − t2y3

)

+ 2π2|z|3/2 sin 3
2θ t exp

{
− π

|z|2
(
(n+ tx)2 − t2y2

)
x

}

× sin
π

|z|2
(
2tx(n+ tx)y − y(n+ tx)2 − t2y3

)
.

Setting x = 0 and θ = 1
2π, we find that

ReE(0, y) = 2π2y3/2
1√
2
te−2nπt cos

(
−πn2

y
+ πt2y

)

− 2π2y3/2
1√
2
te−2nπt sin

(
−πn2

y
+ πt2y

)

= 2π2y3/2te−2nπt cos

(
π

4
− πn2

y
+ πt2y

)
. (10.2.10)

If we now use (10.2.10) in (10.2.9), we deduce (10.2.7) with x replaced by y.
A similar calculation of ImE(x, y) followed by setting x = 0 and θ = 1

2π
yields (10.2.8) with x replaced by y. ��
Entry 10.2.3 (p. 196). For x ≥ 0,

∞∑

n=0

(−1)n
e−(2n+1)2πx/4

2n+ 1
=

π

4
− π

√
x

∞∑

n=0

(−1)n
∫ ∞

0

e−π(2n+1+2tx)2/(4x)dt.

(10.2.11)

Proof. We begin by specializing the well-known theta relation for an odd
primitive character [101, p. 70, Eq. (9)]. In our case, this odd primitive char-
acter is the real nonprincipal character modulo 4. Accordingly, for t > 0,

∞∑

n=0

(−1)n(2n+ 1)e−(2n+1)2πt/4 = t−3/2
∞∑

n=0

(−1)n(2n+ 1)e−(2n+1)2π/(4t).

(10.2.12)
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Integrate both sides of (10.2.12) over [0, x], and then multiply both sides by
−π/4 to deduce that

∞∑

n=0

(−1)n
e−(2n+1)2πx/4

2n+ 1

=

∞∑

n=0

(−1)n

2n+ 1
− π

4

∞∑

n=0

(−1)n(2n+ 1)

∫ x

0

t−3/2e−(2n+1)2π/(4t)dt

=
π

4
− π

√
x

4

∞∑

n=0

(−1)n(2n+ 1)

∫ ∞

1

e−(2n+1)2πu/(4x)

√
u

du, (10.2.13)

where we utilized Leibniz’s series for π/4 and made the substitution t = x/u
in the integrals on the right side. Next, set (2n+1)2u = (2n+1+2tx)2. Then

∫ ∞

1

e−(2n+1)2πu/(4x)

√
u

du =
4x

2n+ 1

∫ ∞

0

e−(2n+1+2tx)2π/(4x)dt. (10.2.14)

If we substitute (10.2.14) into (10.2.13), we obtain (10.2.11) to complete the
proof. ��

10.3 Analogues of Gauss Sums

We now offer three claims from the middle of page 196 of [269]. These were
first proved in a more general setting by Berndt, Chan, and Tanigawa [47].
More precisely, they evaluate the sum

∞∑

n=1

e2πin
2/k

n2m ,

where m and k are positive integers, in several ways, obtaining evaluations
in terms of trigonometric functions, Stirling numbers of the second kind, and
ballot numbers. On page 196, Ramanujan considers only the case m = 1.

Entry 10.3.1 (p. 196). Let a be an even positive integer. Then

∞∑

n=1

cos

(
πn2

a

)

n2
=

π2

6
− π2

√
a

a∑

r=1

r

a

(
1− r

a

)
sin

(
π

4
+

πr2

a

)
, (10.3.1)

∞∑

n=1

sin

(
πn2

a

)

n2
= − π2

√
a

a∑

r=1

r

a

(
1− r

a

)
cos

(
π

4
+

πr2

a

)
, (10.3.2)

∞∑

n=1

sin

(
π

4
+

πn2

a

)

n2
=

π2

6
√
2
− π2

√
a

a∑

r=1

r

a

(
1− r

a

)
cos

(
πr2

a

)
. (10.3.3)
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We first prove (10.3.3) assuming the truth of (10.3.1) and (10.3.2).

Proof of (10.3.3) of Entry 10.3.1. Using the addition formulas for sin and
cos, we easily find that

∞∑

n=1

sin

(
π

4
+

πn2

a

)

n2
=

1√
2

⎛

⎜⎜⎝
∞∑

n=1

sin

(
πn2

a

)

n2
+

∞∑

n=1

cos

(
πn2

a

)

n2

⎞

⎟⎟⎠

=
π2

6
√
2
− π2

√
2a

a∑

r=1

r

a

(
1− r

a

){
cos

(
π

4
+

πr2

a

)
+ sin

(
π

4
+

πr2

a

)}

=
π2

6
√
2
− π2

√
a

a∑

r=1

r

a

(
1− r

a

)
cos

(
πr2

a

)
.

��
We evaluate the more general series

Sa(r) :=

∞∑

n=1

cos

(
πn2

a

)

nr
and Ta(r) :=

∞∑

n=1

sin

(
πn2

a

)

nr
, (10.3.4)

where r is an even positive integer. In order to effect these evaluations, we
need to introduce periodic Bernoulli numbers.

Let A = {an}, −∞ < n < ∞, denote a sequence of numbers with period
k. Then the periodic Bernoulli numbers Bn(A), n ≥ 0, can be defined [66,
p. 55, Proposition 9.1], for |z| < 2π/k, by

z
∑k−1

n=0 ane
nz

ekz − 1
=

∞∑

n=0

Bn(A)

n!
zn.

Furthermore [66, p. 56, Eq. (9.5)], for each positive integer n,

Bn(A) = kn−1
k−1∑

j=0

a−jBn

(
j

k

)
, (10.3.5)

where Bn(x), n ≥ 0, denotes the nth Bernoulli polynomial. We say that A is
even if an = a−n for every integer n.

The complementary sequence B = {bn}, −∞ < n < ∞, is defined by [66,
p. 32]

bn =
1

k

k−1∑

j=0

aje
−2πijn/k. (10.3.6)
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It is easily checked that if A is even, then B is even, and that (10.3.6)
holds if and only if

an =

k−1∑

j=0

bje
2πijn/k, −∞ < n < ∞. (10.3.7)

Now set

ζ(s;A) :=

∞∑

n=1

an
ns

, Re s > 1.

If A and r are even and if r ≥ 2, then [66, p. 49, Eq. (6.25)]

ζ(r;B) =
(−1)r+1Br(A)

2 r!

(
2πi

k

)r

.

From (10.3.6) and (10.3.7), we see that the sequences A and B are not sym-
metric. Thus, we note from above that since A is even,

ζ(r;A) =
(−1)r+1Br(B)k

2 r!

(
2πi

k

)r

. (10.3.8)

We are now ready to state general evaluations in closed form for Sa(r) and
Ta(r).

Theorem 10.3.1. If Sa(r) and Ta(r) are defined by (10.3.4) and if r and a
are even positive integers, then

Sa(r) =
(−1)1+r/22r−1πr

r!
√
a

a−1∑

m=0

Br

(m
a

)
sin

(
πm2

a
+

π

4

)
(10.3.9)

and

Ta(r) =
(−1)1+r/22r−1πr

r!
√
a

a−1∑

m=0

Br

(m
a

)
cos

(
πm2

a
+

π

4

)
. (10.3.10)

In our work below, we need the value of the Gauss sum [54, p. 43,
Exercise 5]

c−1∑

n=0

eπin
2/c = eπi/4

√
c, (10.3.11)

where c is an even positive integer.
Before proceeding further, we show that (10.3.1) and (10.3.2) are special

cases of (10.3.9) and (10.3.10), respectively. Let r = 2 in Theorem 10.3.1.
Recall that B2(x) = x2 − x+ 1

6 . Then
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Sa(2) =
π2

√
a

a−1∑

m=0

{(m
a

)2
− m

a
+

1

6

}
sin

(
πm2

a
+

π

4

)

=
π2

6
√
a

a−1∑

m=0

sin

(
πm2

a
+

π

4

)
+

π2

√
a

a−1∑

m=0

{(m
a

)2
− m

a

}
sin

(
πm2

a
+

π

4

)

=
π2

6
+

π2

√
a

a−1∑

m=0

{(m
a

)2
− m

a

}
sin

(
πm2

a
+

π

4

)
,

upon the use of (10.3.11) twice.
The proof of (10.3.2) follows along the same lines, but note that in this

case, by (10.3.11),
a−1∑

m=0

cos

(
πm2

a
+

π

4

)
= 0.

Proof of Theorem 10.3.1. Let

an = cos

(
πn2

a

)
, −∞ < n < ∞,

which is an even periodic sequence with period a, since a is even. Then, from
(10.3.6) and (10.3.11),

b−m =
1

a

a−1∑

j=0

cos

(
πj2

a

)
e2πijm/a

=
1

2a
e−πim2/a

a−1∑

j=0

eπi(j+m)2/a +
1

2a
eπim

2/a
a−1∑

j=0

e−πi(j+m)2/a

=
1

2a
e−πim2/a

a−1∑

j=0

eπij
2/a +

1

2a
eπim

2/a
a−1∑

j=0

e−πij2/a

=
1

2a
e−πim2/a+πi/4

√
a+

1

2a
eπim

2/a−πi/4
√
a

=
1√
a
cos

(
πm2

a
− π

4

)

=
1√
a
sin

(
πm2

a
+

π

4

)
.

Therefore, by (10.3.5), with B in place of A,

Bn(B) = an−3/2
a−1∑

m=0

sin

(
πm2

a
+

π

4

)
Bn

(m
a

)
. (10.3.12)

If we substitute (10.3.12) into (10.3.8) and simplify, we deduce (10.3.9).
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The proof of (10.3.10) is analogous to that for (10.3.9). Now we set

an = sin

(
πn2

a

)
, −∞ < n < ∞,

which of course is even, and repeat the same kind of argument that we gave
above. ��

We now provide another evaluation of the series on the left-hand sides of
(10.3.1) and (10.3.2) in closed form. However, we obtain evaluations in entirely
different forms from those claimed by Ramanujan in Entry 10.3.1.

Theorem 10.3.2. Let a be an even positive integer, a ≥ 2. Then

Sa(2) =
π2

6a2
+

π2 cos(aπ/4)

2a2
+

π2

a2

a/2−1∑

j=1

cos

(
j2π

a

)
csc2

(
jπ

a

)
(10.3.13)

and

Ta(2) =
π2 sin(aπ/4)

2a2
+

π2

a2

a/2−1∑

j=1

sin

(
j2π

a

)
csc2

(
jπ

a

)
. (10.3.14)

Proof. Setting n = ka+ j, 0 ≤ k < ∞, 1 ≤ j ≤ a, we find that

Sa(2) =

a∑

j=1

cos

(
j2π

a

) ∞∑

k=0

1

(ka+ j)2

=
π2

6a2
+

1

a2

a−1∑

j=1

cos

(
j2π

a

) ∞∑

k=0

1

(k + j/a)2
. (10.3.15)

Singling out the term for j = a/2 and noting that the terms in the outer sum
with indices j and a− j are identical, we find from (10.3.15) that

Sa(2) =
π2

6a2
+

π2 cos(aπ/4)

2a2
+

1

a2

a/2−1∑

j=1

cos

(
j2π

a

)

×
( ∞∑

k=0

1

(k + j/a)2
+

∞∑

k=0

1

(k + (a− j)/a)2

)

=:
π2

6a2
+

π2 cos(aπ/4)

2a2
+

1

a2

a/2−1∑

j=1

cos

(
j2π

a

)
U(j, a), (10.3.16)

say. There remains the evaluation of U(j, a).
First observe that if for −∞ < k ≤ −1, we set k = −r − 1, then
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∞∑

k=−∞

(
1

(k + j/a)2
+

1

(k + (a− j)/a)2

)

=

∞∑

k=0

(
1

(k + j/a)2
+

1

(k + (a− j)/a)2

)

+

∞∑

r=0

(
1

(−r − 1 + j/a)2
+

1

(−r − j/a)2

)
= 2U(j, a). (10.3.17)

It therefore suffices to evaluate the bilateral sum in (10.3.17).
To evaluate U(j, a), recall the partial fraction decomposition

π cot(πz) =
1

z
+

∞∑

n=1

(
1

z + n
+

1

z − n

)
.

Differentiating once above, we find that

π2 csc2(πz) =

∞∑

n=−∞

1

(z + n)2
. (10.3.18)

Putting z = r/k in (10.3.18), we deduce that

U(j, a) = π2 csc2(πr/k). (10.3.19)

Putting (10.3.19) in (10.3.16), we complete the proof of (10.3.13).
The proof of (10.3.14) follows along exactly the same lines. In analogy

with (10.3.17), we now easily deduce that

Ta(2) =
1

a2

a∑

j=1

sin

(
j2π

a

) ∞∑

k=0

1

(k + j/a)2
.

By the same identical argument that we used above, we conclude that

Ta(2) =
π2 sin(aπ/4)

2a2
+

π2

a2

a/2−1∑

j=1

sin

(
j2π

a

)
csc2

(
jπ

a

)
.

��
We record a few examples to illustrate Theorem 10.3.2, namely,

S2(2) =
π2

24
, S4(2)=− π2

48
+

π2
√
2

16
, S6(2) = −π2

72
+

π2
√
3

18
,

T2(2) =
π2

8
, T4(2)=

π2
√
2

16
, T6(2) =

π2

24
+

π2
√
3

54
.

Equating the evaluations of Sa(2) and Ta(2) in (10.3.13) and (10.3.14),
respectively, with those in (10.3.1) and (10.3.2), we obtain identities that
would be surprising if we had not known of their origins, namely,
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π2

6a2
+

π2 cos(πa/4)

2a2
+

π2

a2

1
2a−1∑

j=1

cos

(
πj2

a

)
csc2

(
πj

a

)

=
π2

6
− π2

√
a

a∑

r=1

r

a

(
1− r

a

)
sin

(
π

4
+

πr2

a

)

and

π2 sin(πa/4)

2a2
+

π2

a2

1
2a−1∑

j=1

sin

(
πj2

a

)
csc2

(
πj

a

)

= − π2

√
a

a∑

r=1

r

a

(
1− r

a

)
cos

(
π

4
+

πr2

a

)
.

Note that on the left-hand sides above, the sums contain only trigonometric
functions, while on the right-hand sides the sums contain both polynomials
and trigonometric functions. Trigonometric identities involving polynomials
in the summands appear to be rare. The sums on both sides of the identities
may be regarded as new analogues of Gauss sums.

In fact, Ramanujan states a second equality for the sum on the left side of
(10.3.3). We slightly reformulate this result in the next entry.

Entry 10.3.2 (p. 196). If a is an even positive integer, then

4π2

a3/2

{
1

8π
+

∞∑

n=1

n cos(πn2/a)

e2nπ − 1

}
− 23/2π2

{
1

8πa
+

∞∑

n=1

n

e2nπa − 1

}

= − π2

a5/2

a∑

r=1

r(a − r) cos

(
πr2

a

)
. (10.3.20)

Proof. Our proof depends on two results from Ramanujan’s papers [256, 262].
First, if a is an even positive integer [262, Eq. (17)], [267, p. 132], then

1

8π
+

∞∑

n=1

n cos(πn2/a)

e2nπ − 1
=

∫ ∞

0

x cos(πx2/a)

e2πx − 1
dx+ a

√
1
2a

∞∑

n=1

n

e2nπa − 1
.

(10.3.21)
Now, from [256, Eq. (50)], [267, p. 67],

∫ ∞

0

x cos(πx2/a)

e2πx − 1
dx =

1

2

∫ ∞

0

cos(πu/a)

e2π
√
u − 1

du

=
1

2

(√
a/2

4π
− 1

2a

a∑

r=1

r(a− r) cos

(
πr2

a

))

=

√
a

8π
√
2
− 1

4a

a∑

r=1

r(a − r) cos

(
πr2

a

)
. (10.3.22)
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If we substitute (10.3.22) in (10.3.21) and then multiply both sides of the
resulting equality by 4π2/a3/2, we deduce that

π

2a3/2
+

4π2

a3/2

∞∑

n=1

n cos(πn2/a)

e2nπ − 1

=
π

2
√
2a

− π2

a5/2

a∑

r=1

r(a− r) cos

(
πr2

a

)
+

4π2

√
2

∞∑

n=1

n

e2nπa − 1
,

which is easily seen to be equivalent to (10.3.20). ��
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