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         Introduction 

 Findings of pancreatitis in mice after infection with the human enteroviruses 
 coxsackievirus B (CVB) suggested a relationship to the onset of type 1 diabetes 
(Coleman et al.  1973  ) , a correlation that had been suggested by studies that had 
 variably found a serologic relationship of CVB4 to recent onset diabetic patients 
(Gamble et al.  1969  ) . Although other enteroviruses may well be involved in induc-
tion of pancreatitis and type 1 diabetes (Tracy et al.  2010  ) , the ability of CVBs to use 
the murine homolog of the coxsackievirus and adenovirus receptor CAR (Bergelson 
et al.  1997 ; Carson et al.  1997 ; Tomko et al.  1997 ; Bergelson et al.  1998  )  makes 
CVB-induced murine pancreatitis and diabetes a model for the human disease.  

   Properties of Diabetogenic CVBs 

 A CVB4 isolate from a human diabetic patient was capable of inducing insulitis and 
diabetes in SJL mice (Yoon et al.  1979  ) , but, in general, most diabetogenic strains 
of CVB have had one or more passages in mice or murine pancreas or islets in cul-
ture (Al-Hello et al.  2005 ; Yoon et al.  1978a,   b ; Webb et al.  1976  ) . As these entero-
viruses evolve rapidly in selective cultures, passage in murine pancreatic cells is 
likely to increase the extent to which these viruses can infect and induce diabetes in 
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mice. Sequence analysis of pancreotropic and diabetogenic strains has identi fi ed 
sites of variation in the 5 ¢  nontranslated region (5 ¢ NTR), the capsid, and the 
 nonstructural proteins (Al-Hello et al.  2005 ; Kang et al.  1994 ; Caggana et al.  1993 ; 
Titchener et al.  1994 ; Yin et al.  2002  ) . Chimeras of the 5 ¢ NTR of CVB3 strains 
demonstrate that attenuating determinants are present in this region of the CVB3/
GA strain (Chapman et al.  1994  )  for replication in a murine  b  cell line, MIN6, and 
for replication in the murine pancreas in vivo (Kanno et al.  2006  ) . Variations in the 
capsid proteins may alter sites which control interaction with the CAR receptor or 
with a co-receptor, the decay accelerating factor (DAF) which may play a role in 
CVB virus entry (Coyne and Bergelson  2006  )  and in the immune response to the 
virus (Huber and Rincon  2008 ; Huber et al.  2006  ) . Some identi fi ed sites in CVB4 
VP2 and VP3 (Kang et al.  1994  )  align close to sites shown to be important for DAF 
binding in CVB3 (Pan et al.  2011  ) , although the relatively nonpancreovirulent 
CVB3/GA does not differ from the pancreovirulent CVB3/28 at these sites (Chapman 
et al.  1994  ) . As the extent of replication in the pancreas is related to the extent of 
acceleration of diabetes (Kanno et al.  2006  ) , several of these variations may be due 
to selection to match the murine receptor(s) and host cell factors. Selection by 
growth in pancreatic islets or pancreas is likely to generate strains capable of a high 
rate of replication in the pancreas in vivo, but as most CVB strains have some degree 
of pancreovirulence in mice (Tracy et al.  2000  ) , a virulent CVB may cause murine 
pancreatitis, but not diabetes, without passage in mice. 

 Typically, inoculation of mice with a CVB will result in much more extensive 
pathology of the acinar tissue than the islets (Harrison et al.  1972  ) . Inoculation of 
6-week-old SJL mice at dosages of 10 5  PFU of either the standard CVB4 serotype 
strain, JVB, or the E2 diabetogenic strain resulted in extensive acinar cell death 
(Yap et al.  2003  ) . Infection of Swiss Albino mice with the prototypic CVB3, Nancy, 
was able to generate infection of the pancreas with pathology of the acinar tissue 
(Bopegamage et al.  2005  ) . Survival of the islets during infection has been attributed 
to the relative expression of CAR (Mena et al.  2000  ) . Studies have demonstrated 
CAR expression in islets of infected mice (Drescher et al.  2004  )  as well as viral 
RNA (Yap et al.  2003  ) . Although very low level expression of CAR may limit virus 
infection in cultures, almost indetectable levels of CAR still allow virus replication 
(Carson et al.  2007  ) , but the low level expression is likely to limit the degree of 
infection of the islets. Components of the innate immune response provide more 
antiviral protection to the murine exocrine tissue than the islets. Islets of mouse 
strains knockout of RNase L and the double-stranded RNA-activated protein kinase, 
PKR, are more resistant to infection than the acinar tissue in vivo, despite increased 
mortality due to CVB4 infection (Flodström-Tullberg et al.  2005  ) . Knockouts of 
interferon  a  and  b  receptors, melanoma differentiation-associated protein-5 (MDA-5) 
and its signaling adaptor, mitochondrial antiviral signaling (MAVS) did not enhance 
infection of pancreatic islets after CVB4 infection (Hühn et al.  2010 ; Wang et al. 
 2010  ) , although there was more extensive pathology of the exocrine pancreas. 
As MDA-5 is degraded during the course of enterovirus cell infection (Barral et al. 
 2007  )  and another viral sensor, retinoic acid-induced gene 1 (RIG-I), does not affect 
susceptibility to picornavirus infection (Kato et al.  2006  ) , CVBs are likely to have 
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evolved means of avoiding reduction of virus replication through the innate immune 
response to some degree. 

 Diabetogenic virus infections resulted in reduced neogenesis of islets postinfec-
tion indicating that there may be a lasting effect of the infection with the diabeto-
genic viruses (Yap et al.  2003  ) . In studies in which RT-PCR was employed to detect 
viral RNA, persistence of CVB RNA is noted after loss of detection of virus by 
cytopathic assays (Bopegamage et al.  2005 ; Yap et al.  2003  ) . In the heart, CVBs can 
persist in the form of a defective virus (Kim et al.  2005  ) . The defect results in 
reduced levels of positive strand RNA which results in reduced levels of virus rep-
lication and cytolysis (Kim et al.  2005  ) . These defective viruses tend to be selected 
in quiescent cells in culture (Kim et al.  2008  )  or in adult hearts (Kim et al.  2005 ; 
Chapman et al.  2008  ) . The presence of viral antigens in islets without obvious cel-
lular necrosis suggests the selection of defective virus in islet cells. As these genomes 
produce viral proteins (although at a reduced rate), the potential for alterations of 
function of these cells remains despite their reduced replication rate. Part of the 
apparent resistance to CVB infection of the islets may be due to the resistance of 
nondividing cells to replication of CVBs (Feuer et al.  2002 ; Chapman and Kim 
 2008  ) , as most of the islet cells in a non-regenerating islet in vivo are quiescent 
(Salpeter et al.  2010  ) . Regeneration or neogenesis of islets necessarily involves 
dividing cells which are more susceptible to viral infection and, consequently, can 
be eliminated in a pancreas with a persisting infection. 

 Nonobese diabetic (NOD) female mice (Atkinson and Leiter  1999 ; Kikutani and 
Makino  1992  )  develop spontaneously autoimmunity to pancreatic antigens, insuli-
tis, and diabetes by 12 weeks of age. As in other mice, inoculation of NOD mice 
prior to 8 weeks of age results in less extensive infection of the islets than the exo-
crine tissue even with diabetogenic virus strains (Serreze et al.  2000 ; Tracy et al. 
 2002 ; Drescher et al.  2004  ) . Infection of NOD mice with diabetogenic and nondia-
betogenic CVBs at the stage in which insulitis is beginning to be manifested 
(8–12 weeks of age) results in the infection of islets and accelerated development of 
diabetes (Serreze et al.  2000 ; Drescher et al.  2004  ) . Increasing dosage of a less viru-
lent CVB can increase the extent of conversion to diabetes indicating the extent of 
replication in the pancreas correlates with induction of diabetes (Kanno et al.  2006  ) . 
Knockouts of interleukin-4 (IL-4) do not alter the conversion to diabetes in NOD 
mice by CVB4 infection, whereas loss of interferon- g  (IFN- g ) does delay the onset 
of diabetes (Serreze et al.  2005  ) . As CVBs can induce IFN- g  (Nair et al.  2010  ) , the 
 fi nding that higher levels of replication correlate with accelerated onset of diabetes 
may increase the exposure of islets to IFN- g . As transforming growth factor- b  
(TGF- b ) can reduce the expression of the CVB receptor (Lacher et al.  2006 ; Shi 
et al.  2010  ) , one effect of the expression of TGF- b  by beta cells may be to lower the 
expression of the receptor necessary for infection of beta cells (Richer et al.  2008 ; 
Peng et al.  2004  ) . In CVB3-induced myocarditis, adoptive transfer of T regulatory 
cells increased TGF- b  expression, decreased CAR expression, and lowered CVB3 
replication in the heart (Shi et al.  2010  )  indicating that one protective effect of T 
regulatory cells may be lowering CVB replication by reducing the expression of the 
CVB receptor. 



52 N.M. Chapman

 On the other hand, infection of NOD mice at 3–4 weeks of age with CVBs 
(an age at which non-NOD mice are more susceptible to pancreatitis) results in 
delayed onset and decreased incidence of diabetes from uninfected NOD mice 
(Tracy et al.  2002 ; Serreze et al.  2000 ; Filippi et al.  2009  ) . It is known that infection 
or treatment with a number of agents will decrease or delay the onset of diabetes in 
the NOD mouse (Atkinson and Leiter  1999  ) . Neither IL-4 nor IFN- g  are required 
for the delay or decrease in the development of type 1 diabetes in the NOD mouse 
due to CVB4 infection prior to insulitis (Serreze et al.  2005  ) . Activation or supple-
mentation of invariant natural killer cells (iNKT cells) in NOD mice leads to later 
onset or less conversion to diabetes in the NOD mouse (Lehuen et al.  1998 ; Naumov 
et al.  2001 ; Sharif et al.  2001  ) , an effect requiring CD4 +  CD25 +  T regulatory cells 
(Ly et al.  2006  ) . As CVB infections in the context of virus-induced expression of 
tumor necrosis factor- a  (TNF- a ) have been shown to upregulate CD1d (Huber and 
Sartini  2005  ) , it is possible that the very active CVB infection of the exocrine pan-
creas produces an environment in which iNKT cell activation is more likely. CVB3-
infected murine dendritic cells do not produce cytopathic virus but are stimulated to 
produce interferons, interleukins, and chemokines (Weinzierl et al.  2008  ) . A.BY/
SnJ mice susceptible to CVB3-induced chronic myocarditis produce dendritic cells 
(DC) which, upon infection, have similar levels of positive and negative CVB3 
RNA, produce less IL-10 than those from C57BL/6 mice (resistant to CVB3-induced 
chronic myocarditis), and have a later peak of IL-6 and TNF- a  (Weinzierl et al. 
 2008  ) . It is possible that CVB-infected DCs may interact with iNKT differently 
resulting in changes to the level to which pancreatic antigen-speci fi c T regulatory 
cells are generated via murine DCs. 

 As discussed above, there is evidence of persistent infection of the pancreas after 
inoculation of mice with diabetogenic CVBs (Yap et al.  2003 ; Bopegamage et al. 
 2005  ) . In the heart, CVBs can persist in the form of a defective virus (Kim et al. 
 2005  ) . As this slower replicating defective virus is capable of persisting without 
rapid cytolysis, DCs and other cells infected with defective viruses may persist so 
that an environment for the activation of T regulatory cells speci fi c for pancreatic 
antigens may be long-lasting. 

 Is this relevant for human disease? CVBs are human pathogens which target the 
pancreas and produce pathogenic immune responses. As these viruses have also 
been shown to have an ability to persist after an acute infection in a form capable of 
replicating and producing viral proteins, but with reduced cytolysis, they are good 
candidates to alter the complex immune responses involved in autoimmune patho-
genesis. The ability to study these human viruses in a murine model of type 1 dia-
betes allows an analysis of mechanisms for this disease. Enterovirus infections are 
common in the human population, but their frequency may be decreasing in the 
populations in which type 1 diabetes is increasing (Viskari et al.  2005 ; Tracy et al. 
 2010  ) . This may have the resulting double defect of decreasing regulation of pan-
creatic autoimmunity in those prone to this disease, and increasing the chance that 
when an enterovirus infection occurs it will be at an age in which autoimmunity has 
made islets susceptible to infection.      
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