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 In this chapter, I present older methods for handling missing data. I then turn to the 
major new approaches for handling missing data. In this chapter, I present methods 
that make the MAR assumption. Included in this introduction are the EM algorithm 
for covariance matrices, normal-model multiple imputation (MI), and what I will 
refer to as FIML (full information maximum likelihood) methods. Before getting to 
these methods, however, I talk about the goals of analysis. 

   Goals of Analysis 

 The goal of any analysis is to obtain unbiased estimates of population parameters. For 
example, suppose the researcher wants to perform a multiple regression analysis to 
determine if the variable X has a signi fi cant, unique effect on the variable Y, after 
controlling for the covariate C. The  fi rst goal of this analysis is to obtain an estimate 
of the regression coef fi cient for X predicting Y that is unbiased, that is, near the popu-
lation value. The second goal of analysis is to obtain some indication of the precision 
of the estimate; that is, the researcher wants to obtain standard errors or con fi dence 
intervals around the estimate. When these two goals have been achieved, the researcher 
also hopes to test hypotheses with the maximum statistical power possible. It is in this 
context that I will talk about the methods for handling missing data. In evaluating the 
various methods, I will talk about the degree of bias in parameter estimates, and 
whether or not there is a good way with the strategy for estimating standard errors. 
Where relevant, I will also evaluate the method with respect to statistical power.  

   Older Approaches to Handling Missing Data 

 In this section, I will devote some space to each of these topics: (a) complete cases 
analysis, (b) pairwise deletion, (c) mean substitution, and (d) regression-based sin-
gle imputation. With these older methods, the goal is not so much to present a 
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historical overview of what was typically done prior to 1987. Rather, I want to men-
tion the various approaches, say what is good and bad about them, and in particular, 
focus on what (if anything) is still useful about them. One thing is clear with these 
methods, however. None of them were really designed to  handle  missing data at all. 
The word “handle” connotes dealing effectively with something. And certainly 
none of these methods could be said to deal effectively with missing data. Rather, 
these methods, usually described as ad hoc, were designed to get past the missing 
data so that at least some analyses could be done. 

   Complete Cases Analysis (aka Listwise Deletion) 

 Complete cases analysis begins with the variables that will be included in the analy-
sis of substantive interest. The analyst then discards any case with missing values 
on any of the variables selected and proceeds with the analysis using standard meth-
ods. The  fi rst issue that arises with complete cases analysis relates to whether the 
subsample on which the analysis is done is a random sample of the sample as a 
whole. If the missingness is MCAR (see Chap.   1    ), then the complete cases are rep-
resentative of the whole, and the results of the analyses will be unbiased. In addi-
tion, the standard errors from this analysis are meaningful in the sense that they 
reasonably re fl ect the variability around the parameter estimate (although if the esti-
mates are biased, the meaningfulness of these standard errors is questionable). 

 However, because MCAR missingness is rather a rare occurrence in real-world data, 
it is almost always the case that cases with complete data for the variables included in 
the analysis are not representative of the whole sample. For example, in substance abuse 
prevention studies, it is virtually always true that drug users at the pretest are more likely 
than nonusers to drop out of the study at a later wave. This means that those with com-
plete cases will be different from those who dropped out. And this difference will lead 
to estimation bias in several parameters. In particular, means at the posttest will be 
biased, and Pearson correlations between pretest and posttest variables will be biased. 

 On the other hand, when missingness is MAR, regression coef fi cients for pretest 
variables predicting posttest variables will often be tolerably unbiased. In fact, as 
noted in Chap.   1    , when missingness on Y 

2
  (Y at time 2) is caused by C 

1
  (C at time 1; 

no missing data), then the regression coef fi cient for X 
1
  (X at time 1; no missing 

data) predicting Y 
2
  is unbiased when C 

1
  is included as a covariate. In this speci fi c 

context, complete cases analysis yields b-weights that are identical to those obtained 
with ML methods (e.g., EM algorithm; Graham and Donaldson  1993  ) . 

 With respect to bias, complete cases analysis tends to perform quite well, 
compared to MI and ML analyses, with ANCOVA or multiple regression analysis 
with several predictors from a pretest, and a single DV from a posttest. And because 
this type of model is so common, complete cases analysis can often be useful. 

 However, complete cases analysis fares less well when the proportion of cases 
lost to missingness is large. Thus, complete case analysis tends to fare much less 
well with more complex analyses, for example, with a mediation analysis with X, 
M, and Y coming from three different waves of measurement. 

http://dx.doi.org/10.1007/978-1-4614-4018-5_1
http://dx.doi.org/10.1007/978-1-4614-4018-5_1
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 Also, because complete cases analysis involves discarding cases, it often hap-
pens that complete cases analysis will test hypotheses with less power. And this loss 
of power can be substantial if the missingness on different variables in the model 
comes from nonoverlapping cases. Table  2.1  shows the missingness patterns for 
such a data set. Although this pattern is somewhat extreme, it illustrates the problem. 
In this instance, 80 of 500 data points are missing. That is, just 16 % of the total 
number of data points are missing. However, in this instance, complete cases analy-
sis would discard 80 % of the cases. Discarding 80 % of the cases because 16 % of 
the values are missing is unacceptable.  

 In situations such as the one illustrated in Table  2.1 , MI or ML methods are 
clearly a better choice than using complete cases analysis. But even in much less 
extreme situations, I argue that MI/ML methods are the better choice. In fact, I argue 
that MI/ML methods are always at least as good as complete cases analysis, and 
usually MI/ML methods are better, and often they are substantially better than the 
older methods such as complete cases analysis (Graham  2009  ) . 

 Graham et al.  (  1997  )  compared several different analysis methods with a media-
tion analysis using data related to the Adolescent Alcohol Prevention Trial (AAPT; 
Hansen and Graham  1991  ) . A somewhat simpli fi ed version of the model tested is 
shown in Fig.  2.1 . The variables on the left in the model represented three program 

   Table 2.1    Hypothetical patterns of missing and observed values   
 Variable 

 Percent 
 Data 
 Points  A  B  C  D  E 

 1  1  1  1  1  20  100 
 1  0  1  1  1  20  100 
 1  1  0  1  1  20  100 
 1  1  1  0  1  20  100 
 1  1  1  1  0  20  100 

  1 = observed; 0 = missing. 500 total data points  

     Fig. 2.1    Theoretical mediation model for the adolescent alcohol prevention trial (Hansen and 
Graham 1991). RT = Resistance Training program vs. control; Norm = Normative Education pro-
gram vs. control; Comb = Combined (RT + Norm) program vs. control; Skill = behavioral measure 
of skill in resisting drug use offers; Percept = measure of perceptions of peer drug use; Alc9 = 
measure of alcohol use at 9th grade       
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group variables (variables were dummy coded so that each variable represented a 
comparison against an information-only control group). The programs were 
implemented in the seventh grade. The variables in the middle represented the 
hypothesized mediators of longer term effects. These measures were taken 
approximately 2 weeks after completion of the programs. The variable on the right 
represented the longer term outcome (ninth grade alcohol use). In NORM, students 
received a norms clari fi cation curriculum designed to correct student misperceptions 
about the prevalence and acceptability of alcohol and other drug use among their 
peers. In RT, students received resistance skills training. In the COMBined program, 
students received the essential elements of both NORM and RT curricula. It was 
hypothesized that receiving the NORM (or COMBined) curriculum would decrease 
perceptions of peer use, which in turn would decrease ninth grade alcohol use. It was 
also hypothesized that receiving the RT (or COMBined) curriculum would increase 
resistance skills, which in turn would decrease ninth grade alcohol use.  

 Approximately 3,000 seventh grade students received the programs and com-
pleted the pretest survey. Approximately the same number completed the immediate 
posttest survey, which included questions about perceptions of peer use. At the same 
time as the immediate posttest survey administration, approximately one-third of the 
students were selected at random to be taken out of the classroom to complete an 
in-depth, role-play measure of drug resistance skills. Approximately 54 % of those 
present at the seventh grade pretest also completed the survey at the ninth grade 
posttest. Given all this, approximately 500 students had data for all measures. 

 The data described above were analyzed using several procedures, including MI 
with the MIX program for mixed categorical and continuous data (Schafer  1997  ) , 
Amos, an SEM program with a FIML feature for handling missing data (Arbuckle 
 1995  ) , EM algorithm (with bootstrap for standard errors; for example., Graham 
et al.  1996  ) , and complete cases (CC) analysis. The results of these analyses appear 
in Table  2.2 . The key point to take away from these results is that the results based 
on complete cases appears to be slightly biased. But more importantly, the mediator 
→ outcome effects were both nonsigni fi cant using complete cases analysis. Thus, 
had that been our approach, we would not have found signi fi cant mediation in this 
instance (MacKinnon et al.  2002  ) .   

   Table 2.2    Results of analysis of a mediation model based on AAPT data   

 Effect  Amos  Mix  EM  CC 

 RT  → Skill  .365 (6.29)  .375 (6.36)  .365 (6.98)  .438 (4.56) 
 Comb  → Skill  .332 (5.49)  .330 (5.42)  .332 (5.10)  .354 (3.82) 
 Norm  → Percept  −.117 (3.31)  −.118 (3.22)  −.117 (3.73)  −.191 (2.31) 
 Comb  → Percept  −.270 (7.91)  −.273 (7.89)  −2.70 (8.13)  −.209 (2.90) 
 Skill  → Alc9  −.019 (0.48)  −.021 (0.68)  −.019 (0.50)  −.034 (0.62) 
 Percept  → Alc9  .143 (4.35)  .119 (3.26)  .143 (3.50)  .135 (1.89) 

   Note : Table adapted from Graham et al.  (  1997  ) . Regression coef fi cients are shown (with corre-
sponding  t -values shown in parentheses). Amos refers to the Amos Program (Arbuckle  1995  ) ; Mix 
refers to Schafer’s  (  1997  )  Mix program (multiple imputation for mixed continuous and categorical 
data); EM refers to the EM algorithm; Standard errors ( t -values shown) for EM estimates were 
based on bootstrap methods (Efron  1982  ) ; CC refers to complete cases analysis  
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   Pairwise Deletion 

 Pairwise deletion is a procedure that focuses on the variance-covariance matrix. 
Each element of that matrix is estimated from all data available for that element. In 
concept, pairwise deletion seems like it would be good, because it does make use of 
all available data. However, because different variances and covariances are based 
on different subsamples of respondents, parameter estimates may be biased unless 
missingness is MCAR. In addition, because the different parameters are estimated 
with different subsamples, it often happens that the matrix is not positive de fi nite, 
and therefore cannot even be analyzed using most multivariate procedures. An odd 
by-product of pairwise deletion is that eigenvalues from principal components anal-
ysis are either positive (good) or  negative  (bad). With complete cases, eigenvalues 
are either positive (good) or zero (bad). 

 In practice, I have found the biggest limitation of pairwise deletion to be the 
fact that there is no obvious way to estimate standard errors. Estimation of stan-
dard errors requires specifying the sample size, and there is no obvious way to do 
that with pairwise deletion. Thus, with the one exception, outlined in Chap.   8    , I do 
not use pairwise deletion. Even if parameter estimation is all that is needed, better 
parameter estimates are easily obtained with EM (see below; also see Chaps.   3     
and   7    ).  

   Mean Substitution 

 Mean substitution is a strategy in which the mean is calculated for the variable 
based on all cases that have data for that variable. This mean is then used in place of 
any missing value on that variable. 

 This is the worst of all possible strategies. Inserting the mean in place of the 
missing value reduces variance on the variable and plays havoc with covariances 
and correlations. Also, there is no straightforward way to estimate standard errors. 
Because of all the problems with this strategy, I believe that using it amounts to 
nothing more than pretending that no data are missing. I recommend that people 
should NEVER use this procedure. If you absolutely must pretend that you have 
no missing data, a much better strategy, and one that is almost as easy to imple-
ment, is to impute a single data set from EM parameters (see Chaps.   3     and   7    ) and 
use that.  

   Averaging the Available Variables 

 This is the situation in which the mean for a scale is calculated based on partial data 
when the person does not have complete data for all variables making up the scale. 
I cover this topic thoroughly in Chap.   9     (coauthored by Lee van Horn and Bonnie 

http://dx.doi.org/10.1007/978-1-4614-4018-5_8
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_9


52 2 Analysis of Missing Data

Taylor). But I wanted also to mention here to distinguish it from mean substitution. 
The idea of using available variables to calculate a scale score is not at all the same 
as mean substitution. Rather, I think of it as being a variant of regression-based 
single imputation (see next section). And as such, this strategy, although not perfect, 
has much better statistical properties.  

   Regression-Based Single Imputation 

 With this strategy, one begins by dividing the sample into those with a variable (Y), 
and those for whom Y is missing, as shown in Table  2.3 . One then estimates a 
regression model in the  fi rst group (X 

1
 , X 

2
 , and X 

3
  predicting Y) and applies that 

regression equation in the second group.  
 For example, in the  fi rst group, the regression equation is:

    Y = + + +0 1 1 2 2 3
ˆ b b X b X b X   

 And because all three X variables have data for the second group, the Ŷ values 
are calculable in the second group. These values are the imputed values and are 
inserted wherever Y is missing. 

 Conceptually, this is a good way to impute values. It is good in the sense that a 
great deal of information from the individual is used to predict the missing values. 
And as I shall show throughout this book (especially see Chap.   11     on auxiliary vari-
ables), the higher correlation between the predictors and Y, the better the imputation 
will be. In fact, this is such a good way to impute values that it forms the heart of 
the EM algorithm for covariance matrices and normal-model MI procedures. 

 However, regression-based single imputation is not a great imputation procedure 
in and of itself. Most importantly, although covariances are estimated without bias 
with this procedure (when certain conditions are met), variances are too low. It is 
easy to see why this is. When Y is present, there is always some difference between 
observed values and the regression line. However, with this imputation approach, 
the imputed values always fall right on the regression line. It is for this reason that 
I do not recommend using this approach. The option available within the MVA 
package in SPSS (even as recent as version 20) for imputing data from the EM solu-
tion is this kind of single imputation (von Hippel  2004  ) . I therefore cannot recom-
mend using this imputed data set (however, please see Chaps.   3     and   7     for other 
options).   

   Table 2.3    Missing data patterns   
 X 

1
   X 

2
   X 

3
   Y 

 1  1  1  1 
 1  1  1  0 

  1 = value observed; 0 = value missing  

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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   Basics of the Recommended Methods 

 I have often said that the recommended methods for handling missing data fall into 
two general categories, model-based procedures and data-based procedures. Model-
based approaches rewrite the statistical algorithms so as to handle the missing data 
and estimate parameters all in a single step. Data-based approaches, on the other 
hand, handle the missing data in one step, and then perform the parameter estimation 
in a second, distinct, step. The most common of the model-based procedures are the 
current crop of structural equation modeling (SEM) programs, which use a FIML 
feature for handling missing data. The most common of the data-based procedures is 
normal-model MI. However, with the EM algorithm, this distinction gets a little 
fuzzy (see below). When an EM algorithm is tailored to produce parameter estimates 
speci fi c to the situation, EM is a model-based approach. However, when the EM 
algorithm produces more generic output, such as a variance-covariance matrix and 
vector of means, which is then analyzed in a separate step, it is more like a data-based 
procedure. The basics of these recommended approaches are presented below. 

   Full Information Maximum Likelihood (FIML) 

 The most common of the model-based procedures are the SEM programs that use a 
FIML feature for handling missing data. As with all model-based approaches, these 
programs handle the missing data and parameter estimation in a single step. The 
FIML approach, which has sometimes been referred to as raw-data maximum likeli-
hood, reads in the raw data one case at a time, and maximizes the ML function one 
case at a time, using whatever information is available for each case (e.g., see 
Graham and Coffman  in press  ) . In the end, combining across the individuals pro-
duces an overall estimate of the ML function. All of these SEM/FIML programs 
provide excellent (ML) parameter estimates for the model being studied and 
also provide reasonable standard errors, all in one step. 

   Amos and Other SEM/FIML Programs 

 Several SEM programs have the FIML feature, including, in alphabetical order, 
Amos (Arbuckle  2010  ) , EQS 6.1 (Bentler and Wu  1995  ) , LISREL 8.5+ (Jöreskog 
and Sörbom  2006 ; also see Mels  2006  ) , Mplus (Muthén and Muthén  2010  ) , Mx 
(Neale et al.  2003  ) , and SAS (v. 9.2) Proc CALIS. All of these programs allow ML 
estimation with missing data and provide good standard errors. Amos has the added 
advantage of being part of the SPSS package. Amos also has the advantage of being 
exceptionally intuitive and easy to use. For these reasons, and because SPSS users 
need more missing data tools, I emphasize Amos a little more here. A more detailed 
discussion of the workings of Amos can be found in Graham et al.  (  2003 ; also see 
Graham et al.  in press  ) .   
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   Basics of the EM Algorithm for Covariance Matrices 

 First, E and M stand for Expectation and Maximization. Also, please understand 
that it is not quite proper to refer to “the” EM algorithm. There are several EM 
algorithms. Collins and Wugalter  (  1992  )  described one for estimating LTA mod-
els, a type of latent class model. Rubin and Thayer  (  1982  )  described an EM algo-
rithm for factor analysis. And early versions of the HLM program (Raudenbush 
and Bryk  2002  )  also made use of an EM algorithm (Raudenbush et al.  1991  ) . In 
each case, the EM algorithm is tailored to produce the ML parameter estimates of 
interest. The version of the EM algorithm I am talking about in this chapter (and 
throughout this book) is what I refer to as the EM algorithm for covariance 
matrices. 

 As with all of these versions, the EM algorithm for covariance matrices  fi rst 
reads in, or calculates the suf fi cient statistics, the building blocks of the particular 
analysis being done, and reads out the relevant parameters. In this case, the relevant 
parameters are a variance-covariance matrix and vector of means. From here on, 
when I refer to “the EM algorithm,” I am speaking of the version that produces a 
variance-covariance matrix and vector of means. 

 The EM algorithm is an iterative procedure that goes back and forth between the 
E-Step and the M-step. 

   The E-Step 

 The suf fi cient statistics for the EM algorithm are sums, sums of squares, and 
sums of cross products. The program reads in the raw data, and as each case is 
read in, it updates the sums, sums of squares, and sums of cross products. Where 
the data point is observed, it is used directly to update these sums. If the data 
point is missing, however, the best estimate is used in its place. The best estimate 
of the missing value is the Ŷ from a regression equation using all other variables 
as predictors. For sums, the value is added directly whether it was observed or 
missing. For sums of squares and sums of cross products, if one or both values 
were observed, the value is added directly. However, if both values were missing, 
then the best estimate is added along with a correction term. This correction term 
is the residual from the regression with all other variables as predictors. Thus, it 
is like the error variance added to imputed values in multiple imputation (see 
below).  

   The M-Step 

 Once the sums, sums of squares, and sums of cross products have been estimated, 
the variance-covariance matrix (and vector of means) can simply be calculated. This 
concludes the  fi rst iteration. 
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 From the variance-covariance matrix and means from the  fi rst iteration, one can 
calculate all of the regression equations needed to predict each variable in the model. 
During the next iteration, these equations are used to update the “best estimate” 
when the value is missing. After the sums, sums of squares, and sums of cross 
products have been calculated at this iteration, a new variance-covariance matrix 
and vector of means are calculated, and new regression equations are estimated for 
the next iteration. 

 This process continues until the variances, covariances, and means change so 
little from iteration to iteration that they are considered to have stopped changing. 
That is, when this happens, EM is said to have  converged . 

 The variance-covariance matrix and vector of means from the last iteration are 
ML estimates of these quantities. Any analysis that requires only a variance- 
covariance matrix and vector means as input can be used with these EM estimates 
as input. If the new analysis is something that is simply calculated based on the 
input matrix, for example, a multiple regression analysis, then those estimates 
are also ML (note, e.g., that the EM and Amos parameter estimates from Table  2.2  
are identical). However, if the analysis itself is an iterative procedure, such as a 
latent- variable regression model, then the estimates based on the EM variance- 
covariance matrix and means will be unbiased and ef fi cient but technically will not 
be ML.  

   Standard Errors 

 The one drawback with EM is that standard errors are not produced as a by-product 
of the parameter estimation. There are other approaches (e.g., see Yuan and Bentler 
 2000  ) , but the most common approach to estimating standard errors with EM esti-
mates is to use bootstrap procedures (e.g., Graham et al.  1997  ) . Note that the  t- values 
based on bootstrapping in Table  2.2  are reasonable, but are somewhat different from 
the those based on FIML and MI analysis. Although the EM + bootstrapping process 
is generally more time consuming than FIML or MI, one notable advantage of EM 
with bootstrapping is that this is a good approach when data are not normally dis-
tributed. In this instance, bootstrapping to yield direct estimates of the con fi dence 
intervals (which requires one or two thousand bootstraps) provides better coverage 
than does either MI or FIML with regular (i.e., not robust) standard errors.  

   Implementations of the EM Algorithm 

 The EM algorithm for covariance matrices now has many implementations, 
including SAS Proc MI, Norm (Schafer  1997  ) , and EMCOV (Graham and Hofer 
 1991  ) . SPSS does have an EM algorithm routine within its MVA module. This is a 
stand-alone routine that does not interface with other parts of SPSS, but it can be 
very useful for estimating EM means, variances, and correlations. The latest ver-
sions of STATA also have EM capabilities.   
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   Basics of Normal-Model Multiple Imputation 

 In a previous section, I said that the regression-based, single imputation procedure 
formed the heart of EM and normal-model MI. I also said that regression-based 
single imputation underestimates variances. That is, there is too little variability in 
the imputed values. The  fi rst reason for this is that the imputed values have too little 
error variance. This problem is depicted in Fig.  2.2 . The observed data points devi-
ate from the regression line by some amount, but, of course, the imputed values lie 
right on the regression line. This problem is easily resolved simply by adding ran-
dom normal error to each imputed value (this corresponds to adding the correction 
term in the E-step of the EM algorithm, as described above). 1   

 The second reason there is too little variability relates to the fact that the regres-
sion equations used in single imputation are based on a single sample drawn from 
the population. As depicted in Fig.  2.3 , there should be additional variability around 

  Fig. 2.2    A bivariate distribution with the best-fi tting straight line. Imputed values based on 
regression-based single imputation lie right on the regression line. Real (observed) data points 
deviate by some amount from the regression line       

  Fig. 2.3    Regression lines are slightly different for different random draws from the population       

   1   It is this random error that is missing from the data set imputed from the EM solution in the MVA 
module of SPSS (von Hippel  2004 ; this remains the case at least through version 20).  
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the regression line itself to re fl ect what would occur if there were a different random 
draw from the population for each imputed data set. Of course, researchers seldom 
have the luxury of being able to make several random draws from the population of 
interest. However, bootstrap procedures (Efron  1982  )  can be used in this context. Or 
random draws from the population can be simulated using Bayesian procedures, 
such as Markov-Chain Monte Carlo (MCMC) or data augmentation (Tanner and 
Wong  1987 ; Schafer  1997  )  procedures.  

 It has been said that data augmentation (DA), which is used in Schafer’s  (  1997  )  
NORM program, is like a stochastic version of EM. DA is also a two-step, iterative 
process. In the I-step (imputation step), the data are simulated based on the current 
parameter values. In the P-step (posterior step), the parameters are simulated 
from the current data. On the other hand, DA converges in a way that is rather dif-
ferent from how EM converges. Whereas EM converges when the parameter esti-
mates stop changing, DA converges when the distribution of parameter estimates 
stabilizes. 

 Recall that DA is used in order to simulate random draws from the population. 
However, as with all Markov Chain procedures, all information at one iteration 
comes from the previous iteration. Thus the parameter estimates (and imputed data) 
from two consecutive steps of DA are much more like one another than if they had 
come from two random draws from the population. However, after some large num-
ber of DA steps from some starting point, the parameter estimates are like two ran-
dom draws from the population. The question is how many DA steps between 
imputed data sets is enough? The answer (described in more detail in Chaps.   3     
and   7    ) is that the number of iterations for EM convergence is a good estimate of the 
number of DA steps one should use between imputed data sets. 

   The Process of Doing MI 

 Analysis with MI is a three-step process. First, one imputes the data, generating  m  
imputed data sets. With each data set, a different imputed value replaces each miss-
ing value. Early writers suggested that very few imputed data sets were required. 
However, more recent work has suggested that more imputations (e.g.,  m  = 20–40 or 
more) are required to achieve the statistical power of equivalent ML procedures 
(Graham    et al.  2007 ; see below for more details). The details for performing MI are 
given in Chaps.   3     and   7    . 

 Second, one analyzes the  m  data sets with usual, complete data, procedures (e.g., 
with SAS, SPSS, HLM, etc.), saving the parameter estimates and standard 
errors from analysis of each data set. Details for performing analyses are given in 
Chaps.   4    ,   5    ,   6    , and   7    . 

 Third, one combines the results to get  MI inference . Following what are com-
monly known as Rubin’s rules (Rubin  1987  ) , the two most important quantities for 
MI inference are the point estimate of the parameters of interest and the MI-based 
standard errors. These and other important quantities from the MI inference process 
are described below.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
http://dx.doi.org/10.1007/978-1-4614-4018-5_4
http://dx.doi.org/10.1007/978-1-4614-4018-5_5
http://dx.doi.org/10.1007/978-1-4614-4018-5_6
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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   Point Estimate of the Parameter 

 The point estimate for each parameter is simply the arithmetic average of that param-
eter estimate (e.g., a regression coef fi cient) over the  m  imputed data sets. It is this 
average for each parameter of interest that is reported in the article you are writing.  

   Standard Errors and  t- Values 

 The MI inference standard error (SE) is in two parts. One part,  within-imputation 
variance  ( U ) re fl ects the regular kind of sampling variability found in all analyses. 
The other part, between-imputation variance ( B ), re fl ects the added variability, or 
uncertainty, that is due to missing data. The within-imputation variance is simply the 
average of the squared SE over the analyses from the  m  imputed data sets, that is,

    = ∑ 2U SE / ,m   

for each parameter being studied. The between-imputation variance is the sample 
variance of the parameter estimate (e.g., a regression coef fi cient) over the  m  imputed 
data sets,

    = 2
PS ,B   

where P is the parameter being studied. The total variance is a weighted sum of the 
two kinds of variance,

    = + +(1 1 / ) .T U m B    

 It should be clear that  B  is the variance that is due to missing data. If there were 
no missing data, then the variance of the parameter over the  m  imputed data sets 
would be 0 and the  B  component of variance would be 0. The MI inference standard 
error is simply the square root of  T .  

   Degrees of Freedom (df) 

 The  df  associated with the  t- value in Rubin’s rules, adapted from Schafer  (  1997  ) , is

    
−

⎡ ⎤= − = +⎢ ⎥+⎣ ⎦

2

1

U
( 1) 1 .

(1 )
df m

m B    

 The  df  in MI analysis is different from  df  in other statistical contexts; for example, 
it has nothing to do with  N . Just looking at the formula for  df  can give insights into 
its meaning. First, if there were very little missing data,  B  would be very small. At 
the limit,  B  would tend toward 0, and  df  would tend toward in fi nity. On the other 
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hand, if there were much missing data and uncertainty of estimation due to missing 
data, then  B  would tend to be large in comparison to  U , and the right-hand term in the 
brackets would tend to be very small. In that case,  df  would tend toward its lower 
limit ( m− 1). More conceptually, I think of  df  as indicating the stability of the MI 
estimates. If  df  is large, compared to  m , then the MI estimates have stabilized and can 
be trusted. However, if  df  is small, for example, near the lower limit, it indicates that 
the MI estimates have not stabilized, and more imputations should be used.  

   Fraction of Missing Information 

 The fraction of missing information ( FMI ) in Rubin’s rules, adapted from Schafer 
 (  1997  ) , is

    

+ +=
+

2 / ( 3)

1

r df
FMI

r   

where

    

−+=
1(1 )

.
m B

r
U    

  FMI  is an interesting quantity. Conceptually, it represents the amount of  informa-
tion  that is missing from a parameter estimate because of the missing data. In its 
simplest form, the  FMI  is theoretically the same as the amount of missing data. For 
example, with a simple situation of two variables, X and Y, where X is always 
observed, and Y is missing, say 50 % of the time,  FMI  = .50 for b 

YX
 , the regression 

coef fi cient for X predicting Y. However, when there are other variables in the model 
that are correlated with Y,  FMI  will theoretically be reduced, because, to the extent 
that those other variables are correlated with Y, some of the lost information is 
restored (see Chap.   11     for a detailed presentation of this issue). 

 It is important to note that in any analysis, the estimated FMI will differ from the 
hypothetical value.  FMI  based on the formulas given above is only an estimate. And 
it can be a rather bad estimate, especially when  m  is small. I do not trust the  FMI  
estimate at all unless  m   =  40 or greater. And even then, although I do look at the  FMI  
to get a sense of its magnitude, I always bear in mind that the true  FMI  could be a 
bit different.    

   What Analyses Work with MI? 

 It should be clear from reading this book that I believe strongly that normal-model 
MI is an exceptionally useful analytic tool. Normal-model MI, which is just one of 
the MI models that has been described in the literature, is (a) without doubt the best 

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
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implemented of the available programs, and (b) able to handle an exceptionally 
wide array of analytic problems. 

 I think it helps to know that normal-model MI “preserves,” that is, estimates 
without bias, means, variances, covariances, and related quantities. It does not, how-
ever, give unbiased estimates for the proportion of people who give a particular 
answer to a variable with more than two response levels. For example, normal-
model MI (and the related EM algorithm) typically cannot be used to estimate the 
proportion of respondents who respond “none” to a variable asking about the num-
ber of cigarettes smoked in the person’s lifetime. That proportion is really a categori-
cal quantity, and unless the variable happens to be normally distributed, normal-model 
MI will get it wrong. The good news is that variables such as this can often be recast 
so that normal-model MI can handle them. With the lifetime cigarette smoking ques-
tion, for example, if the variable were recoded to take on the values 0 (never smoked) 
and 1 (ever smoked), then normal-model MI (and EM) will produce unbiased esti-
mates of the proportion. The reason it works in this instance is that the proportion of 
people responding “1” is the same as the mean for that recoded version of the vari-
able, and the estimate of the mean is unbiased with normal-model MI. 

   Normal-Model MI with Categorical Variables 

 Normal-model MI does not deal with categorical variables with more than two lev-
els, unless they are  fi rst dummy coded; any categorical variable with  p  levels must 
be recoded into  p −1 dummy variables. When such variables have no missing data, 
that is all that needs to be done. When such variables have missing data, the values 
may be imputed with normal-model MI, but a minor ad hoc  fi x may be needed for 
certain patterns of imputed values (Allison  2002 ; also see Chaps.   3     and   7    ). Normal-
model MI may also be used for cluster data (e.g., students within schools). I discuss 
this topic in much greater detail in Chap.   6    , but suf fi ce it to say here that normal-
model MI does just ok with cluster data, and in this instance, other MI models (e.g., 
Schafer’s PAN program; Schafer  2001 ; Schafer and Yucel  2002  )  are preferred.  

   Normal-Model MI with Longitudinal Data 

 Schafer’s  (  2001  )  PAN program was developed initially to handle the special longi-
tudinal data problem depicted in Table  2.4 . The data came from the AAPT study 
(Hansen and Graham  1991  ) . The three variables shown were Alcohol (alcohol use), 
Posatt (beliefs about the positive social consequences of drinking alcohol), and 
Negatt (beliefs about the negative consequences of drinking alcohol). As shown in 
the table, students were asked about their alcohol consumption in each grade from 
 fi fth to tenth grades. However, the Posatt questions were not asked in eighth grade, 

http://dx.doi.org/10.1007/978-1-4614-4018-5_3
http://dx.doi.org/10.1007/978-1-4614-4018-5_7
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but reappeared on the survey in ninth and tenth grades. The Negatt questions were 
not asked in any of the last three grades.  

 Normal-model MI cannot impute data such as those shown, because data for 
each case (which would normally appear in one long row) would be missing data 
for Posatt at eighth grade and Negatt at eighth, ninth, and tenth grades. However, 
PAN (short for panel) adds a longitudinal component (essentially a growth model) 
to the imputation procedure. Thus, Posatt data for  fi fth, sixth, seventh, ninth, and 
tenth grades can be used to make a good guess about the missing value for Posatt at 
eighth grade. Also, Negatt at  fi fth, sixth, and seventh grades can be used to make 
guesses about the missing Negatt scores for eighth, ninth, and tenth grades. Of 
course, we would be much more con fi dent about imputing the missing Posatt score 
at eighth grade than we would about imputing the missing Negatt scores. But the 
point is that this kind of imputation is possible with PAN. 

 Many people believe, incorrectly, that programs such as PAN must also be used 
to impute longitudinal data under what I would refer to as typical circumstances 
(e.g., the pattern depicted in Table  2.5 ). The data shown in Table  2.5  differ 
signi fi cantly from the data shown in the previous example. With the data shown in 
Table  2.5 , some people have complete data. More importantly, with these data, at 
least some cases have data for every variable and for every pair of variables. Under 
these circumstances, longitudinal models, for example, growth models, may be esti-
mated based on a variance-covariance matrix and vector of means (e.g., using SEM 
procedures; see Willett and Sayer  1994  ) . And because variances, covariances, and 
means are estimated without bias with normal-model MI (and the corresponding 
EM algorithm), these normal-model procedures are suf fi cient for imputing data in 
this longitudinal context.   

   Table 2.4    “Special” longitudinal missing data patterns   
 Grade 

 5  6  7  8  9  10 

 Alcohol  1  1  1  1  1  1 
 Posatt  1  1  1  0  1  1 
 Negatt  1  1  1  0  0  0 

  1 = data observed; 0 = data missing. Data for each case would 
normally appear in one long row  

   Table 2.5    Typical longitudinal missing data patterns   
 Alcohol in grade 

 Pattern  5  6  7  8  9  10  N 

 1  1  1  1  1  1  1  500 
 2  1  1  1  1  1  0  200 
 3  1  1  1  0  1  1  100 
 4  1  1  1  0  0  0  200 

  1 = data observed; 0 = data missing  
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   Imputation for Statistical Interactions: The Imputation Model 
Must Be at Least as Complex as the Analysis Model 

 Researchers are often interested in statistical interactions (e.g., see Aiken and West 
 1991 ; Jaccard and Turrisi  2003  ) . One way to form a statistical interaction is simply 
to obtain a product of two variables, for example,

    = ×AB  A  B    

 Suppose one is interested in testing a regression model with main effects and 
interaction terms, for example, A, B, and AB as predictors of Y. People often ask if 
they can go ahead and test this kind of interaction model if they did not address the 
interaction during imputation. The general answer is that the imputation model 
should be at least as complex as the analysis model. One way of thinking of this is 
that any variable that is used in the analysis model must also be included in the 
imputation model. 2  

 If a variable is omitted from the imputation model, then imputation is carried out 
under the model in which the omitted variable is correlated  r  = 0 with all of the vari-
ables included in the model. Thus, to the extent that there is missing data, the 
correlation between the omitted variable and any included variable will be sup-
pressed, that is biased, toward zero. Interactions (product of two variables) are com-
monly omitted from the imputation model. And because the product is a nonlinear 
combination of two variables, it cannot simply be calculated after imputation. One 
solution, then, is to anticipate any interactions, and to include the appropriate prod-
ucts in the imputation model. 

 A more convenient approach to imputation with interactions is available for 
some classes of variables – categorical variables that fall naturally into a small num-
ber (e.g., just two or three) groups. This approach follows from the idea that interac-
tions can also be conceived of as a correlation between two variables (e.g.,  r  

AY
 ) 

being different when some categorical third variable, B, is 0 or 1. With this approach, 
one simply imputes separately at the two (or more) levels of the categorical vari-
able. The good news is that imputing in this manner allows one, after imputation, to 
test any interaction involving the categorical variable. For example, if one imputes 
separately for males and females, then any interaction involving gender can be 
tested appropriately after imputation. This strategy also works well for treatment 
membership variables. If one imputes separately within treatment and control 
groups, then any interaction involving that treatment membership variable can be 
tested appropriately after imputation.  

   2   However, it is acceptable if variables are included in the imputation model that are not included 
in the analysis model.  
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   Normal-Model MI with ANOVA 

 The kind of analysis that works best with MI is the kind of analysis that produces a 
parameter estimate and standard error. Thus, virtually all analyses in the large fam-
ily of regression analyses lend themselves very well to normal-model MI. Analyses 
that do not work so well are ANOVA-related analyses, speci fi cally, analyses that 
focus on sums of squares, F-tests, and the like. Fortunately, it is generally possible 
to recast problems that are typically handled with some version of ANOVA into 
some kind of regression analysis.  

   Analyses for Which MI Is not Necessary 

 Some analyses do not require the overhead associated with MI. For example, as 
I outline in Chaps.   4    ,   5    , and   7    , analyses (e.g., coef fi cient alpha analysis or explor-
atory factor analysis) that do not require hypothesis testing are more readily handled 
directly by analyzing the EM covariance matrix (see Chap.   7    ), or by imputing a 
single data set from EM parameters, and analyzing that (see Chaps.   4    ,   5    , and   7    ). 

 Similarly, although one would de fi nitely prefer to use MI for multiple regression 
analysis, certain quantities in those analyses do not necessarily involve hypothesis 
testing, and can be handled either by analyzing the EM covariance matrix directly 
(see Chap.   7    ), or by analyzing the single data set imputed from EM parameters (see 
Chaps.   4    ,   5    , and   7    ). For example, standardized b-weights and R 2  values can theoreti-
cally be handled with MI. But it is much easier to estimate these quantities using the 
EM covariance matrix directly or by analyzing a single data set imputed from EM 
parameters.   

   Missing Data Theory and the Comparison Between 
MI/ML and Other Methods 

 MI and ML methods for handling missing data were designed speci fi cally to achieve 
unbiased estimation with missing data when the MAR assumption holds. Thus it is 
not surprising that when compared against older, ad hoc methods (e.g., listwise 
deletion, pairwise deletion, mean substitution), MI and ML methods yield unbiased 
parameter estimates. And regardless of whether the assumptions are met or not, MI 
and ML yield estimates that are at least as good as the older, ad hoc methods (Graham 
 2009  ) . This does not mean that the MI/ML methods will always be better than, say, 
complete cases analysis. But they will always be at least as good, usually better, and 
often very much better than the older methods (Graham  2009  ) . 

 An important point here is that missing data  theory  predicts that MI and ML 
will be better than the old methods. There are already numerous simulations to 
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demonstrate that they are, in fact, better. An important point here is that we do not 
need more simulations to demonstrate this. What we do need are simulations and 
other studies that demonstrate the limits of the MI/ML advantage. My recommenda-
tion for future research in this area is that the researcher should acknowledge estab-
lished missing data theory and articulate the reasons why it is either incorrect or 
incomplete. Here is one example. 

   Estimation Bias with Multiple Regression Models 

 Consider the simple regression model depicted in Fig.  2.4 . The regression coef fi cient 
of X predicting Y (b 

YX
 ) is of primary interest in the model, and the variable C is 

included as a covariate. In this instance, X and C are never missing. Y is sometimes 
missing, and C is the cause of missingness on Y. Graham and Donaldson  (  1993  )  
demonstrated that under these circumstances, b 

YX
  is identical when based on the EM 

algorithm and on complete cases analysis.  
 Although this model is a very simple one, it is representative of a very common 

kind of model. That is, it is common to have a regression model such as that shown 
in Fig.  2.4 , with perhaps several covariates. Even with several covariates, where the 
pattern of missingness among the covariates could be somewhat complex, complete 
cases analysis does tend to yield results that are similar to those given by EM and 
MI. What is important is that regardless of the type of missingness, these EM/MI 
and complete cases analysis yield similar results for regression coef fi cients under 
these circumstances (Graham and Donaldson  1993  ) . 

 Note that this is not true of other parameters. For example, means and correla-
tions based on complete cases are often substantially biased under the conditions 
described here. And with more complex models, such as that described in Fig.  2.1  
and Table  2.2 , the advantage of the MI/ML approach over complete cases analysis 
can be substantial. 

  Fig. 2.4    Simple regression model with X and C predicting Y       
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 Perhaps the biggest drawback with complete cases analysis is that it is not pos-
sible to make use of auxiliary variables. As noted above, with MI/ML methods, the 
information that is lost to missingness can be partially mitigated by adding auxil-
iary variables to the model (please see Chap.   11    ). However, this mitigation makes 
no sense when there are no missing data, as is the case with complete cases 
analysis.   

   Missing Data Theory and the Comparison Between 
MI and ML 

 Missing data theory holds that MI and ML are asymptotically equivalent. We do not 
need new simulations to demonstrate this point. What we do need are studies to 
de fi ne the limits of this equivalence. Under such and such conditions, for example, 
ML or MI is better. 

   MI and ML and the Inclusion of Auxiliary Variables 

 Collins et al. ( 2001 ) tested and found substantial support for the following 
proposition:

   Proposition 1 . If the user of the ML procedure and the imputer use the same set of input data 
(same set of variables and observational units), if their models apply equivalent distribu-
tional assumptions to the variables and the relationships among them, if the sample size is 
large, and if the number of imputations,  M , is suf fi ciently large, then the results from the 
ML and MI procedures will be essentially identical (p. 336).   

 Although their proposition was supported, Collins et al. (2001) noted that it holds 
in theory. But they also noted that, as typically practiced, MI and ML do have impor-
tant differences. For example, as practiced, MI users have typically included vari-
ables in the imputation model that, although not intended for analysis, were included 
to “help” with the imputation (we now refer to these variables as auxiliary variables; 
see Chap.   11    ). 

 Users of ML methods, however, in usual practice, are much more likely to limit 
their models to include only those variables that will be part of the analysis model. 
Although strategies have been described for including auxiliary variables into some 
types of ML models (e.g., see Graham  2003 , for strategies within a structural equa-
tion modeling context), it is not uncommon to see ML models that do not attempt to 
include auxiliary variables. The exclusion of important auxiliary variables from ML 
models violates the particulars of the Collins et al. proposition and leads to impor-
tant differences between the models. An important extension of the concept of 
including auxiliary variables is that models are less well described for including 
auxiliary variables in ML approaches to latent class analysis.  

http://dx.doi.org/10.1007/978-1-4614-4018-5_11
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   MI Versus ML, the Importance of Number of Imputations 

 Missing data theorists have often stated that the number of imputations needed in 
MI in order to achieve ef fi cient estimates was relatively small, and that  m  = 3–5 
imputations were often enough. In this context the relative ef fi ciency of the estimate 
is given by (1 +  g  /  m  ) −1 , where  g  is the fraction of missing information (Schafer and 
Olsen  1998  ) . The point made in this context was articulated clearly by Schafer and 
Olsen:

  Consider … 30 % missing information ( g  = .3), a moderately high rate for many applica-
tions. With  m  = 5 imputations, we have already achieved 94 % ef fi ciency. Increasing the 
number to  m  = 10 raises the ef fi ciency to 97 %, a rather slight gain for doubling of compu-
tational effort. In most situations, there is simply little advantage to producing and analyz-
ing more than a few imputed datasets (pp. 548-549).   

 However, Graham et al. (2007) showed that the effect of number of imputations 
on statistical power gives a different picture. Graham et al. showed that although the 
relative ef fi ciency difference might seem small in the context described by Schafer 
and Olsen  (  1998  ) , MI with small  m  could lead to an important falloff in statistical 
power, compared to the equivalent FIML model, especially with small effect sizes. 
The numbers below apply to a small effect size in Cohen’s (1977) terms (  r   = .10). 
Under these conditions MI with  m  = 5 imputations yields statistical power that is 
approximately 13 % lower than MI with  m  = 100, and 13 % lower than the compa-
rable FIML analysis (power is .682 for  m  = 5; .791 for  m  = 100; and .793 for the 
comparable FIML model). Figure  2.5  displays for power falloff compared to FIML 
for MI with various levels  m  for  g  = .50. Graham et al. agreed that an acceptable 
power falloff is a subjective thing, but that power falloff greater than 1 % would be 
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comparable FIML model. FMI = Fraction of Missing Information;  r  is the population correlation 
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considered unacceptable to them. Given this judgment, their recommendations are 
shown in Table  2.6  for the number of imputations required to maintain a power 
falloff of less than 1 % compared to FIML.     

   Computational Effort and Adjustments in Thinking About MI 

 In the Schafer and Olsen  (  1998  )  quote given above, the second to last sentence sug-
gested that the increase in ef fi ciency from .94 to .97 was “… a rather slight gain for 
doubling of computational effort.” It is important to look carefully at this statement. 
I will go into more detail about this idea in later chapters, but let me say here that 
their doubling the number of imputations comes nowhere near doubling the compu-
tational effort. There are exceptions, of course, but with the latest versions of the 
common statistical software (especially SAS, but also SPSS to an important extent), 
and with the automation utilities described in later chapters, it often costs little in 
additional computational effort to increase from 5 to 40 imputations. 

 In the earliest days of MI, several factors conspired to make the computational 
intensity of the procedure undesirable. First, the procedure itself was brand new 
back in 1987 and was still relatively new even in 1998. Back then, it represented a 
radically new approach to handling missing data. Second, in 1987 computers were 
still very slow. With the computers available back then, the difference between 5 
and 40 imputations would often have been very important in terms of computational 
effort. Third, software for performing multiple imputation was not generally avail-
able. Certainly, automation features for handling analysis and summary of multiple 
data sets were not available. 

 In this context, the MI theorists suggested the impute-once-analyze-many-times 
strategy. With this strategy, the computational costs of multiple imputation could be 
amortized over numerous analyses, thereby reducing the overall costs of the MI 
procedure. Along with the suggestion that perhaps just 3–5 imputations were enough 
for ef fi cient parameter estimates, MI did not look so bad as an alternative to other 
possible approaches to handling missing data. 

 However, as the realities set in for performing multiple imputation in real-world 
data sets, it became clear that much of the original thinking regarding MI would not 
be feasible in large-scale research with missing data. In this context, I have begun 
to realize that the impute-once-analyze-many approach often does not work. 
Although it would certainly be desirable in many research contexts, it happens far 

      Table 2.6    Recommended number of imputations 
needed for power falloff < .01 compared to FIML   

  g  (Fraction of missing information) 

 .1  .3  .5  .7  .9 
 20  20  40  100  >100 

  Effect size:   r   = .10  
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too often that the researcher needs to make a change in analysis that requires a 
whole new set of imputations. In addition, pretty much everything is different now. 
Computers are now very much faster than they were in 1987, and they will continue 
to get faster. Perhaps more importantly, the software is catching up. The MI feature 
in SAS (Proc MI; see Chap.   7    ) is now a highly functional program. And SPSS, with 
versions 17+, (see Chap.   5    ) is not far behind. With a fast computer running SAS, it 
is very feasible to perform multiple imputation separately for each analysis.      
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