
Chapter 4
Dynamics and Control of a Gyroscope

In this chapter theoretical investigations and the results of computer simulations are
presented to show that the following factors affect the accuracy of realization of the
required motion of a controlled gyroscope axis:

1. Compliance of initial conditions of the gyroscope motion with imposed initial
conditions. In order to guide the gyroscope axis to the appropriate initial position
one can apply additional time-independent control.

2. Values of the resistant-force coefficients in the bearings of gyroscope frames.
Too small values of these coefficients, during external disturbance or kinematic
excitation of the base, cause dynamical effects to arise and decrease the accuracy
of realization of the preset motion. However, large values make the gyroscope
axis drift off the preset position in space. Thus, one needs to minimalize the
friction coefficients in the bearings of the gyroscope suspension and, additionally,
to apply optimally selected dampers.

3. Influence of non-linearities in the model of gyroscope motion, which manifests
especially at large angular deviations of the gyroscope axis.

4. Additional deviations of gyroscope—which, independently of the numerous
technological tricks, always emerge during gyroscope operation—need to be
reduced by means of the gyroscope’s automatic control system. The proper
position of the gyroscope axis is maintained by the automatic control system
on the basis of the real position obtained from measurements and the required
position of the gyroscope axis worked out by a digital machine.

4.1 Dynamics of a Gyroscope on a Movable Platform

Figure 4.1 shows a general view of a gyroscope and a movable base [board
of flying object (FO)] along with acting forces and torques. We introduce the
following frames [1–3]: Og1X

0
1X

0
2X

0
3—movable frame fixed to an external frame
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Fig. 4.1 General view of a gyroscope placed on a movable base (board of FO)

of the gyroscope; Og2X
00
1 X

00
2 X

00
3 —movable frame fixed to an internal frame of

the gyroscope; Og3X
000
1 X

000
2 X

000
3 —movable frame fixed to a rotor of the gyroscope;

Og2X
00
10X

00
20X

00
30—movable frame fixed to an axis of the gyroscope.
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The mutual angular position of axes of the frames will be determined by means
of a transformation matrix in the following way. The transformation matrix from
the frame fixed to the platform to the frame fixed to the external frame governing
the rotation of the frameOg1X

0
1X

0
2X

0
3 relative to OX1X2X3 about the axisOg1X

0
2 at

angle  g has the following form:

Mpz D
2
4

cos g 0 � sin g
0 1 0

sin g 0 cos g

3
5 : (4.1)

The transformation matrix from the frame fixed to the external frame to that fixed
to the internal frame (rotation of the frame Og2X

00
1 X

00
2 X

00
3 relative to Og1X

0
1X

0
2X

0
3

about the axis Og2X
00
1 at angle #g) is as follows:

Mzw D
2
4
1 0 0

0 cos#g sin#g
0 � sin#g cos#g

3
5 : (4.2)

The transformation matrix from the frame fixed to the internal frame to that fixed
to the rotor (rotation of the frameOg3X

000
1 X

000
2 X

000
3 relative toOg2X

00
1 X

00
2 X

00
3 about the

axis Og3X
000
3 at angle ˚g) reads

Mwr D
2
4

cos˚g sin˚g 0

� sin˚g cos˚g 0

0 0 1

3
5 : (4.3)

The transformation matrix from the frame fixed to the platform to that fixed to
the internal frame is obtained in the following way:

Mpw D Mzw �Mpz D
2
4

cos g 0 � sin g
sin#g sin g cos#g sin#g cos g
cos#g sin g � sin#g cos#g cos g

3
5 ; (4.4)

and the transformation matrix from the frame fixed to the platform to that fixed to
the rotor is as follows:

Mpr D Mwr �Mpw D

2
6666666664

cos g cos˚gC � sin g cos˚g
C sin#g sin g sin˚g cos #g sin˚g C sin#g cos g sin˚g

� cos g sin˚gC sin g cos˚gC
C sin #g sin g cos˚g cos#g cos˚g C sin#g cos g sin˚g

cos #g sin g � sin#g cos #g cos g

3
7777777775

: (4.5)

In the case where the gyroscope axis is connected with the rotor by means of an
elastic element, the gyroscope gains an additional two degrees of freedom, and the
corresponding matrices of transformation (analogically Mpz;Mzw and Mpw) take
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the form

M0
pz D

2
64

cos 0g 0 � sin 0g
0 1 0

sin 0g 0 cos 0g

3
75 ;

M 0
zw D

2
64
1 0 0

0 cos#0g sin#0g
0 � sin#0g cos#0g

3
75 ;

M 0
pw D M0

pz �M0
zw D

2
64

cos 0g 0 � sin 0g
sin#0g sin 0g cos#0g sin#0g cos 0g
cos#0g sin 0g � sin#0g cos#0g cos 0g

3
75 :

(4.6)

The following assumptions are introduced:

1. The center of mass of the rotor coincides with the center of mass of the internal
frame Og2 D Og3 , but it does not coincide with the center of motion Og1 , i.e.,
with the point of intersection of the axes of rotor rotation and the frames. Hence,
we consider a non-astatic gyroscope, also called a “heavy” gyroscope.

2. The axes Og1X
0
1; Og1X

0
2; Og1X

0
3 are the main, central axes of inertia of the

external frame; similarly, the axes Og2X
00
3 andOg3X

000
3 are the main, central axes

of inertia of the internal frame and the rotor, respectively. The remaining axes are
the main ones of the corresponding systems.

The given quantities follow:

1. m1;m2;m3—masses of external frame, internal (along with the axis) frame,
and rotor of gyroscope, respectively.

2. ls—distance between center of mass of base and center of gyroscope motion.
3. lg—distance between center of mass of system: rotor—internal frame and

center of motion.
4. IX 0

1
; IX 0

2
; IX 0

3
—moments of inertia of external frame about axesOg1X

0
1,Og1X

0
2,

Og1X
0
3, respectively.

5. IX 00

1
; IX 00

2
; IX 00

3
—moments of inertia of internal frame about axes Og2X

00
1 ;

Og2X
00
2 ; Og2X

00
3 , respectively.

6. IX 000

1
; IX 000

2
; IX 000

3
—moments of inertia of rotor about axes Og3X

000
1 ; Og3X

000
2 ;

Og3X
000
3 , respectively.

7. I 0
X 00

1
; I 0
X 00

2
—moments of inertia of gyroscope axis about axes Og2X

00
10; Og2X

00
20,

respectively.
8. !g.p�; q�; r�/—components of angular velocity vector of base (kinematic

interaction of the base).
9. V�

g.VgX1; VgX2; VgX3/—components of linear velocity vector of base
displacement—coordinates of pointOg1 .
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10. Fg.FgX1; FgX2; FgX3/—components of force acting on center of mass of rotor
in frame fixed to platformOg1X1X2X3.

11. Moments of forces of interactions:

(a) Mc.McX1;McX2;McX3/—base on external frame;
(b) Mb.MbX 0

1
;MbX 0

2
;MbX 0

3
/—external frame on internal one;

(c) Mk.MkX 00

1
;MkX 00

2
;MkX 00

3
/—internal frame on rotor.

12. Moments of friction forces in bearings of internal and external frames:

(a) Viscous

Mrc D MV
rc D �c

d g
dt
; Mrb D MV

rb D �b
d#g
dt

I

(b) Dry

Mrc D M T
rc D 0; 5 � Trc � dc; Mrb D M T

rb D 0; 5 � Trb � dbI

where

Trc D �cNcsign
�d g

dt

�
; Trb D �bNbsign

�d#g
dt

�
;

and �c; �b; �c; �b are friction coefficients in the frame bearings; Nc;Nb are
normal reactions in the bearings; dc; db are diameters of the bearing pins.

13. Mrk—moment of friction forces in bearing of rotor in internal frame and
aerodynamic resistance.

14. Mzb;Mzc—disturbing signals in form of torques acting directly on rotor.
15. �—stiffness coefficient of elastic element connecting axis with rotor.

The desired quantities are as follows:

1.  g; #g; ˚g—angles by means of which one determines the position of the rotor
relative to the frame Og1X1X2X3;

2.  0g ; #
0
g—angles by means of which one determines the position of the gyroscope

axis relative to the frameOg1X1X2X3;

3. Angular velocities: P g D d g
dt ;

P#g D d#g
dt ;

P̊
g D d˚g

dt ;

4. Angular velocities: P 0g D d 0g
dt ;

P#0g D d#0g
dt ;

P̊ 0
g D d˚0g

dt .

The vector of the angular velocity of the rotor reads

!�
g D d g

dt
C d#g

dt
C d˚g

dt
; (4.7)
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whereas the angular velocity vector of the gyroscope has the following form:

!0g D d 0g

dt
C d#0g

dt
: (4.8)

Projections of its components on particular axes of the coordinate system can be
determined as follows:

2
64

P gX 0

1P gX 0

2P gX 0

3

3
75 D

2
4
0
P g
0

3
5 ;

2
64

P gX 00

1P gX 00

2P gX 00

3

3
75 D

2
4

0
P g cos#g

� P g sin#g

3
5 ;

2
64

P gX 000

1P gX 000

2P gX 000

3

3
75 D

2
4

P g cos#g sin˚g
P g cos#g cos˚g

� P g sin#g

3
5 ; (4.9)

2
64

P#gX 0

1P#gX 0

2P#gX 0

3

3
75 D

2
4

P#g cos g
0

� P#g sin g

3
5 ;

2
64

P#gX 00

1P#gX 00

2P#gX 00

3

3
75 D

2
4

P#g
0

0

3
5 ;

2
64

P#gX 000

1P#gX 000

2P#gX 000

3

3
75 D

2
4

P#g cos˚g sin
� P#g sin˚g

0

3
5 ;

2
64

P̊
gX 000

1P̊
gX 000

2P̊
gX 000

3

3
75 D

2
4
0

0
P̊
g

3
5 : (4.10)

Analogously, projections of the components of the angular velocity vector of the
gyroscope axis will take the following forms:

2
664

P 0
gX 0

1P 0
gX 0

2P 0
gX 0

3

3
775 D

2
4
0
P 0g
0

3
5 ;

2
664

P 0
gX 00

1P 0
gX 00

2P 0
gX 00

3

3
775 D

2
64

0
P 0g cos#0g

� P 0g sin#0g

3
75 ; (4.11)

2
664

P#0
gX 0

1P#0
gX 0

2P#0
gX 0

3

3
775 D

2
64

P#0g cos 0g
0

� P#0g sin 0g

3
75 ;

2
664

P#0
gX 00

1P#0
gX 00

2P#0
gX 00

3

3
775 D

2
4

P#0g
0

0

3
5 : (4.12)

In what follows one may define the components of the angular velocity vector of
the external frame in the coordinate system Og1X

0
1X

0
2X

0
3:

2
64
!gX 0

1

!gX 0

2

!gX 0

3

3
75 D Mpz

2
4
p�
q�
r�

3
5 C

2
64

P gX 0

1P gX 0

2P gX 0

3

3
75 D

2
4
p� cos g � r� sin g

P g C q�
p� sin g C r� cos g

3
5 : (4.13)
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On the other hand, the components of the angular velocity vector of the internal
frame in the coordinate system Og2X

00
1 X

00
2 X

00
3 read

2
64
!gX 00

1

!gX 00

2

!gX 00

3

3
75 D Mpw

2
4
p�
q�
r�

3
5 C

2
64

P#gX 00

1P#gX 00

2P#gX 00

3

3
75 C

2
64

P gX 00

1P gX 00

2P gX 00

3

3
75

D
2
4

p� cos g � r� sin g C P#g
.p� sin g C r� cos g/ sin#g C .q� C P g/ cos#g
.p� sin g C r� cos g/ cos#g � .q� C P g/ sin#g

3
5 : (4.14)

Components of the angular velocity vector in the coordinate system
Og3X

000
1 X

000
2 X

000
3 have the form

2
64
!gX 000

1

!gX 000

2

!gX 000

3

3
75 D Mpr

2
4
p�
q�
r�

3
5 C

2
64

P#gX 000

1P#gX 000

2P#gX 000

3

3
75 C

2
64

P gX 000

1P gX 000

2P gX 000

3

3
75 C

2
64

P̊
gX 000

1P̊
gX 000

2P̊
gX 000

3

3
75 ;

or, equivalently,

!gX 000

1
D p�.cos g cos˚g C sin#g sin g sin˚g/

C .q� C P g/ cos#g sin˚g C P#g cos˚g

C r�.cos g sin#g sin˚g � sin g cos˚g/; (4.15)

!gX 000

2
D �p�.cos g sin˚g � sin#g sin g cos˚g/

C .q� C P g/ cos#g cos˚g � P#g sin˚g

C r�.cos g sin#g cos˚g C sin g sin˚g/; (4.16)

!gX 000

3
D p� sin g cos#g � .q� C P g/ sin#g

C r� cos g cos#g C P̊
g: (4.17)

Components of the velocity vector of the gyroscope axis in the coordinate system
Og1X

0
1X

0
2X

0
3 read

2
664
!0
gX 0

1

!0
gX 0

2

!0
gX 0

3

3
775 D M0

pz

2
4
p�
q�
r�

3
5 C

2
664

P 0
gX 0

1P 0
gX 0

2P 0
gX 0

3

3
775 D

2
64
p� cos 0g � r� sin 0gP 0g C q�
p� sin 0g C r� cos 0g

3
75 : (4.18)
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Finally, components of the velocity vector of the gyroscope axis in the coordinate
system Og2X

00
10X

00
20X

00
30 are as follows:

2
664
!0
gX 00

1

!0
gX 00

2

!0
gX 00

3

3
775 D Mpw

2
4
p�
q�
r�

3
5 C

2
664

P#0
gX 00

1P#0
gX 00

2P#0
gX 00

3

3
775 C

2
664

P 0
gX 00

1P 0
gX 00

2P 0
gX 00

3

3
775

D

2
64

p� cos 0g � r� sin 0g C P#0g
.p� sin 0g C r� cos 0g/ sin#0g C .q� C P 0g/ cos#0g
.p� sin 0g C r� cos 0g/ cos#0g � .q� C P 0g/ sin#0g

3
75: (4.19)

The linear velocity of the center of mass of the rotor is a sum of the drift velocity
of point Os (velocity of FO) and Og1 (about point Os) and the relative velocity
relative to pointOg2 [2, 4]:

Vg2 D Vs C
ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
p� q� r�
ls 0 0

ˇ̌
ˇ̌
ˇ̌ C

ˇ̌
ˇ̌
ˇ̌

E0
1 E0

2 E0
3

!gX 0

1
!gX 0

2
!gX 0

3

0 0 lg

ˇ̌
ˇ̌
ˇ̌ C

ˇ̌
ˇ̌
ˇ̌

E00
1 E00

2 E00
3

!gX 00

1
!gX 00

2
!gX 00

3

0 0 lg

ˇ̌
ˇ̌
ˇ̌ ;

or, equivalently,

VgX 00

1
D us cos g � .ws � q�ls/ sin g C .!gX 0

2
C !gX 00

2
/lg; (4.20)

VgX 00

2
D .us sin g C .ws � q�ls/ cos g/ sin#g

C .vs C r�ls/ cos#g � .!gX 00

1
C !gX 0

1
cos#g/lg; (4.21)

VgX 00

3
D .us sin g C .ws � q�ls/ cos g/ cos#g

� .vs C r�ls/ sin#g C !gX 0

1
lg sin#g: (4.22)

The linear velocity of the center of mass of the external frame reads

Vg1 D Vs C
ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
p� q� r�
ls 0 0

ˇ̌
ˇ̌
ˇ̌ ;

or, equivalently,

VgX 0

1
D us cos g � .ws � q�ls/ sin g; (4.23)

VgX 0

2
D vs C r�ls; (4.24)

VgX 0

3
D us sin g C .ws � q�ls/ cos g: (4.25)
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Similarly, projections of the linear velocity of the center of mass of the external
frame-axis system are

V 0
gX 00

1
D us cos 0g � .ws � q�ls/ sin 0g C .!0

gX 0

2
C !0

gX 00

2
/lg; (4.26)

V 0
gX 00

2
D .us sin 0g C .ws � q�ls/ cos 0g/ sin#0g

C.vs C r�ls/ cos#0g � .!0
gX 00

1
C !0

gX 0

1
cos#0g/lg; (4.27)

V 0
gX 00

3
D .us sin 0g C .ws � q�ls/ cos 0g/ cos#0g

�.vs C r�ls/ sin#0g C !0
gX 0

1
lg sin#0g: (4.28)

The axes Og1X
0
1; Og1X

0
2; Og1X

0
3; Og2X

00
3 , and Og3X

000
3 are the main central axes

of inertia of the corresponding frames. The remaining axes are the main ones of
the suitable systems. By I�

X 00

1
; I�
X 00

2
; I�
X 00

3
; I�
X 000

1
; I�
X 000

2
, and I�

X 000

3
we denote the moments

of inertia of the corresponding frames about the axes parallel to the axes Og2X
00
1 ;

Og2X
00
2 ; Og2X

00
3 ; Og3X

000
1 ; Og3X

000
2 , and Og3X

000
3 but passing through the center of

mass.
We will derive equations of motion of the gyroscope by means of the Lagrange

equations of the second kind. To that end, we will determine the kinetic Ek (equal
to the sum of the kinetic energy of the external and internal frames, the rotor, and
the axis) and the potential Ep energy of the system

Ek D 1

2

�
IX 0

1
!2gX 0 C IX 0

2
!2
gX 0

2
C IX 0

3
!2
gX 0

3

�

C 1

2

�
I�
X 00

1
!2
gX 00

1
C I�

X 00

2
!2
gX 00

2
C I�

X 00

3
!2
gX 00

3

�

C 1

2

�
I�
X 000

1
!2
gX 000

1
C I�

X 000

2
!2
gX 000

2
C I�

X 000

3
!2
gX 000

3

�

C 1

2

�
I 0
X 00

1
.!0

gX 00

1
/2 C I 0

X 00

2
.!0

gX 00

2
/2

�

C 1

2
m3V

2
s C 1

2
m1

�
V 2
gX 0 C V 2

gX 0

2
C V 2

gX 0

3

�

C 1

2
m3

�
V 2
gX 00

1
C V 2

gX 00

2
C V 2

gX 00

3

�

C 1

2
m2

�
.V 0
gX 00

1
/2 C .V 0

gX 00

2
/2 C .V 0

gX 00

3
/2

�
; (4.29a)

Ep D 1

2
�. g �  0g/

2 C 1

2
�.#g � #0g/2: (4.29b)
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The Lagrange function has the following form:

L D Ek �EP : (4.30)

Taking into account the fact that a generalized coordinate˚g is cyclic, we obtain
equations of motion of the gyroscope in the following form:

1. Equations of motion of the gyroscope axis

I 0
X 00

2

d

dt
.!0

gX 0

2
cos2 #0g/Cm2 � l2g.1C cos#0g/

2
d!0

gX 0

2

dt
C I 0

X 00

1
!0
gX 00

1
!0
gX 0

3

C 1

2
I 0
X 00

2
!0
gX 0

3

�
sin 2#0g C .!0

gX 00

1
� !0

gX 0

1
/ cos2 #0g

	
� �. g �  0g/

Cm2lg



.1C cos#0g/ � .Pus cos 0g � . Pws � Pq�ls/ sin 0g/

� P 0g
�

us sin 0g C .ws � q�ls/ cos 0g

	
� V 0

gX 00

1

P#0g sin#0g

�

Cm2l
2
g

�
.!0

gX 0

2
C !0

gX 00

2
/!0

gX 0

1
sin#0g � .1C cos#0g/!

0
gX 00

1
!0
gX 0

3

C P#0g!0gX 00

3
C P!0

gX 0

3
sin#0g

	
Cm2lslg



qs

�
.!0

gX 0

1
� !0

gX 00

1
/ sin 0g sin#0g

C .!0
gX 0

2
C !0

gX 00

3
/ cos 0g � !0

gX 0

3
cos�0

g sin#0g cos#0g

	

C .1C cos#0g/ � r�!0
gX 0

3

�
D Mc �Mrc; (4.31)

I 0
X 00

1

d!0
gX 00

1

dt
Cm2l

2
g

R#0g � I 0
X 00

2
!0
gX 00

2
!0
gX 00

3
� �.#g � #0g/

�m2lg


�
P 0g.us cos 0g � .ws � q�ls/ sin 0g/C Pus sin 0g

C .ws � Pq�ls/ cos 0g

	
sin#0g C P#0gV 0

gX 00

3
C Pvs cos#0g

�
�
q�.!0

gX 00

3
sin 0g C !0

gX 00

1
cos 0g cos#0g/C r�!0

gX 00

1
sin#0g � Pr� cos#0g

	
� ls

�
�
.!0

gX 0

2
C !0

gX 00

2
/!0

gX 00

3
� !0

gX 0

1
!0
gX 00

1
sin#0g C .1C cos#0g/ P!0

gX 0

1

	
� lg

�

D Mb �Mrb: (4.32)
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2. Equations of motion of gyroscope rotor
�
IX 0

2
C I�

X 00

2
C I�

X 000

2
C .I�

X 00

3
� I�

X 00

2
� I�

X 000

2
/ sin2 #g

Cm3l
2
g.1C cos#g/2

	d!gX 0

2

dt
C
I�
X 00

3
� I�

X 00

2
� I�

X 000

2

2
.!gX 0

2

P#g

� P!gX 0

3
/ sin 2#g � .IX 0

3
� IX 0

1
/ � !gX 0

1
!gX 0

3

C I�
X 000

1
!gX 00

1
!gX 0

3
C

�
I�
X 00

2
C I�
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C �. g �  0g/ D Mzc; (4.33)
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�
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1
sin#g
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I�
X 000
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d

dt
.!gX 00

3
C P̊

g/ D Mk �Mrk; (4.35)

where

P!0
gX 0

1
D

d!0
gX 0

1

dt
D Pp� cos 0g � p� P 0g sin 0g � Pr� sin 0g � r� cos 0g;

P!0
gX 0

3
D

d!0
gX 0

3

dt
D Pp� sin 0g C p� P 0g cos 0g C Pr� cos 0g � r� sin 0g:

The preceding mathematical model of gyroscope motion, along with the equa-
tions of motion of the base (board of FO) on which the gyroscope is set, makes
it possible to perform large-scale simulation investigations of gyroscope dynamics.
Moreover, the presented form of equations has the most general and universal char-
acter. From these equations it is possible to derive all other equations describing the
known types of gyroscopes. It should be emphasized that in the model governed by
(4.31)–(4.35), deformability of the rotor is taken into account (elasticity coefficient
�) as is the position of the center of mass of the gyroscope at some distance ls
from the center of mass of the OL (which can matter in the case of a non-astatic
gyroscope). Since no known analytical methods of solving the derived equations
exist, investigation of the model will be performed by means of numerical methods.
The universality of (4.31)–(4.35) relies on the fact that by ignoring specific terms
of particular equations, it is possible to obtain the desired gyroscope models. In the
next subsection, we will present an example of transformation of the aforementioned
equations into forms describing a model of a classic, controlled gyroscope on a
fixed base.

4.1.1 Astatic Gyroscope on a Fixed Platform
with Axis Stiff-Connected to Rotor

Suppose that a gyroscope is located on a fixed base, which implies that us D 0,
vs D 0, ws D 0, ps D 0, qs D 0, rs D 0. We do not take into account the rotational
motion of the Earth, and we assume that the gyroscope is astatic, i.e., the distance
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of the center of mass of the system rotor’s internal frame lg D 0. The equations of
motion of the gyroscope take the form

I 0
X 00

2

d2 0g
dt 2

cos2 #0g � I 0
X 00

2

P 0g P#0g sin 2#0g � �. g �  0g/ D Mc �Mrc; (4.36a)
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2
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Equations (4.36a) and (4.36b) yield

. g �  0g/ D
I 0
X 00

2

d2 0g
dt 2 cos2 #g � I 0
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2
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Substituting (4.40a) into (4.37) and (4.40b) into (4.38), one obtains
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Consider the case where the stiffness coefficient � ! 1. It follows from (4.40a)
and (4.40b) that

 0g �  g and #0g � #g: (4.43)

Thus, we obtained constraint equations for (4.37) and (4.38). This means that the
axis will be stiff-connected to the gyroscope rotor. Taking into account constraints
(4.43), (4.41) and (4.42) take the form
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If we ignore the inertia of the frames IX 00

1
D 0, I 0

X 00

1
D 0, IX 00

2
D 0, I 0

X 00

2
D 0,

IX 0

2
D 0, IX 00

3
D 0 and the values of the disturbing torques Mzb D 0 and Mzc D 0,

and if we introduce additional designations (bearing in mind that the rotor is axially
symmetric), then IX 000

1
D IX 000

2
D Igk , IX 000

3
D Igo, then formulas (4.41) and (4.42)

are cast to the following form

Igk
d2 g
dt2

cos2 #g � Igk P g P#g sin 2#g � Igo. P̊
g � P g sin#g/ P#g cos#g

D Mc CMk �Mrc; (4.46a)
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Igk
d2#g
dt2

C 1

2
Igk P 2g sin 2#gCIgo. P̊

g� P g sin#g/ P g cos#g D Mb�Mrb: (4.46b)

Suppose that the torque driving the rotor is equal to the moment of friction forces
in the rotor bearings and aerodynamic resistance

Mk D Mrk; (4.47a)

and hence

d˚g
dt

� P g sin#g D const D ng: (4.47b)

Finally, taking into account (4.47a), (4.47b) will take the form

Igk
d2 g
dt2

cos2 #g � Igk P g P#g sin 2#g � Igong P#g cos#g D Mc �Mrc; (4.48a)

Igk
d2#g
dt2

C 1

2
Igk P 2g sin 2#g C Igong P g cos#g D Mb �Mrb: (4.48b)

We have obtained equations of motion of a classic gyroscope on a fixed base with
the axis stiff-connected to the rotor.

Numerical investigations to be carried out later on in this work for systems
describing gyroscope motion [such as (4.75a)], it is convenient to perform, not for a
real time t , but for a “dimensionless” � , which is determined as follows [5, 6, 8]:

� D ˝ � t; (4.49)

where

˝ D Igong

Igk
:

Rescaling time one obtains

d

dt
D d

d�

d�

dt
D ˝

d

d�
(4.50)

and

P#g D ˝
d#g
d�

D ˝# 0
g;

R#g D ˝2 d2#g
d�2

D ˝2# 00
g ; (4.51a)

and similarly

P g D ˝ �  0
g;

R g D ˝2 00
g : (4.51b)

The change in time scale in the preceding examples makes the numerical analysis
of the equation of motion easier because the change makes values of the equation
elements equal and allows us to introduce a greater integration step. This makes
numerical errors smaller.
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Applying the dimensionless time � in (4.48a)–(4.48b) and taking into account
(4.50), (4.51a), and (4.51b) one finds

d2 g
d�2

cos2 #g �  0
g#

0
g sin 2#g C bb 

0
g � # 0

g cos#g D cbMc; (4.52a)

d2#g
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C 1

2
. 0

g/
2 sin 2#g C bc#

0
g C  0

g cos#g D ccMb; (4.52b)

where

bb D �b

Igk˝
; bc D �c

Igk˝
; cb D 1

Igk˝2
; cc D 1

Igk˝2
:

4.1.2 Simplified Equations (Technical) of Motion
of a Gyroscope

Analysis of (4.48) and (4.52) is very troublesome because of the difficulties in
obtaining analytical solutions. System (4.48) is strongly non-linear, which is why
its solution can be obtained only by means of numerical methods. However, the
system can be simplified considerably if we eliminate terms that have a slight effect
on the motion character of the gyroscope.

Note that the value of the angular velocity of eigenrotations P̊
g of the gyroscope

is incomparably greater than the value of the velocities P#g and P g of rotations of
the internal and external frames. Hence, in (4.48) we can leave out those terms that
include products P#g and P g or their squares as higher-order quantities of smallness.
Moreover, if we consider a fixed range of rotor operation corresponding to balancing
the driving torque Mk with the resistance torques Mrk, i.e., an almost constant
angular velocity of the eigenrotations of the gyroscope, P̊

g Š const D ng , then
(4.48) will take the following forms:

Igk
d2#g
dt2

C Igong P g cos#g D Mb �Mrb; (4.53a)

Igk
d2 g
dt2

� Igong P#g cos#g D Mc �Mrc: (4.53b)

The preceding forms of equations, governing the motion of a gyroscope about a
fixed point of its suspension, are called technical equations or the technical theory
of the gyroscope [7, 9, 10].

Taking into account the fact that (as was earlier assumed) angular velocities P#g
and P g have small values and assuming that the initial conditions equal zero, one
can assume, with sufficient accuracy from a practical viewpoint, that cos#g Š 1. If
we assume that the moments of friction forces in the frame bearings are small, i.e.,
Mrb D 0, Mrc D 0, then (4.53) will take simpler, final forms:
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Igk
d2#g
dt2

C Igong P g D Mb; (4.54a)

Igk
d2 g
dt2

� Igong P#g D Mc: (4.54b)

4.1.3 Remarks on the Model of Gyroscopic Motion

The most general mathematical model of a controlled gyroscope has been derived.
It follows from the literature overview that the complete numerical investigations
of the dynamics of the controlled gyroscope have not been performed satisfactorily,
especially when the full equations describing the motion of a gyroscope base (e.g.,
board of a FO) are taken into account. This option is ensured by the model given
in this chapter and governed by (4.31)–(4.35). In particular, it makes it possible to
examine the influence of the following factors on the accuracy of maintaining the
preset motion (position) in space by the gyroscope axis:

1. Inertia of suspension frames.
2. Distance lg between the center of mass of the gyroscope and the center of its

rotation (unbalanced gyroscope).
3. Distances ls between the center of mass of the gyroscope and the center of mass

of the FO.
4. Stiffness � of the element connecting the rotor to the gyroscope axis.
5. Kinematic excitations in the form of linear us , vs , ws and angular ps , qs , rs

velocities (and their first derivatives with respect to time) affecting the gyroscope
suspension.

6. Rotational motion of the Earth.

The generality of the model enables us to analyze various types of gyroscopes by
means of elimination of appropriate terms in (4.31)–(4.35). Thus, one could pass
from the description of a non-astatic gyroscope on an elastic suspension to a classic
description of an astatic gyroscope.

The computing power of today’s computers allows one, in a relatively simple
way, to verify the results obtained thus far of the theoretical investigations of
gyroscopes—reduced to simplified models in most cases—with the results obtained
from numerical simulations of a completely non-linear model.

4.2 Gyroscope Control

The motion of a gyroscope axis can be realized under the influence of the controlling
torquesMb andMc and angular motion of its base, determined by angular velocities
p�.t/, q�.t/, and r�.t/, or the linear movements of its base (in the case of a
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non-astatic gyroscope), determined by linear velocities us.t/, vs.t/, and ws.t/.
While the torques cause the excitation of motion of a gyroscope axis by external
forces, the angular and linear velocities of the base reflect the parametrical excitation
of the motion.

In this subsection, we will consider programmable control of motion of a
gyroscope axis in an open system and corrective and stabiling control of motion
of a gyroscope axis in a closed system. We will examine the effect of gyroscope
errors on the realization of preset motion. Moreover, we will give optimal control
algorithms of position of a gyroscope axis relative to a preset trajectory.

4.2.1 Motion Control of Gyroscope Axis in an Open System:
The Inverse Problem in Gyroscope Dynamics

The inverse problem of a gyroscope relies on determining the torques Mb.t/

and Mc.t/ that, acting on the gyroscope frames, will set the gyroscope axis in
motion, specified by the angles #gz.t/ and  gz.t/. Thus, the problem is reduced
to determining programs according to which the torques Mb.t/ and Mc.t/ are to
change in time, i.e., the programmable control of the gyroscope axis motion in an
open system [11–13].

In order to determine the torques Mb.t/ and Mc.t/ we make use of the general
definition, which says that inverse problems of dynamics are called problems that
rely on determining the external forces, the parameters of this system, and the
constraints imposed on the system at which motion with preset properties is the only
motion among all possible motions. In practice, these problems refer to the particular
cases relying on formulating the algorithms that determine the controlling forces
and realize the desired motion of a dynamical system—regardless of the problem
conditions—though they are not always achieved.

Thus, the inverse problem relies on task of runs as functions of time #g D #g.t/

and  g D  g.t/, substituting them into the left-hand sides of the equations of
motion of a gyroscope axis and evaluating Mb.t/ and Mc.t/ (i.e., the right-hand
sides of these equations). The determined torques Mb and Mc , plugged into the
right-hand sides of the equations of motion, give a unique (appropriate) result only
for the angular velocities P#g.t/ and P g.t/, while only for the angles will the result
not be unique in general since it depends on integration constants of the angles’
derivatives. This can be compensated by appropriate selection of the integration
constants in the solution to the equations.

This implies that the determined Mb.t/ and Mc.t/, on the basis of the inverse
problem solution, can be used to programmatically control only of the derivatives
angles and not the angles of the gyroscope position. A scheme for an algorithm to
control a gyroscope in an open system is depicted in Fig. 4.2.
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Fig. 4.2 Scheme of algorithm for controlling a gyroscope in an open system

Consider the following problem: let a gyroscope axis describe the a surface of a
cone (Fig. 4.3a). Then the following equations must be satisfied:

#gz.t/ D �k sin �kt;  gz.t/ D �k cos �kt;

#gz

dt
D �k�k cos �kt;

 gz

dt
D ��k�k sin �kt;

d2#gz

dt2
D ��k�2k sin �kt;

d2 gz

dt2
D ��k�2k cos �kt: (4.55)

Let us make use of the linearized equations of a gyroscope (4.53b)–(4.53b) in
which we suppose that �g � 1 and the friction in the suspension bearings is of a
viscous type. Then they will have the following form [14–16]:

d2#g
dt2

C �b˝
d#g
dt

�˝
d g
dt

D Mb

Igk
;

d2 g
dt2

C �c˝
d g
dt

C˝
d#g
dt

D Mc

Igk
: (4.56)

Substituting (4.55) into the left-hand side of (4.56) we obtain

d2#gz

dt2
C �b˝

d#gz

dt
�˝

d gz

dt
D �k�k.˝ � �k/ sin �kt C �b�k�k˝ cos �kt;

d2 gz

dt2
C �c˝

d gz

dt
C˝

d#gz

dt
D �k�k.˝ � �k/ cos �kt � �c�k�k˝ sin �kt;

(4.57)
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Fig. 4.3 Examples of curves drawn by the gyroscope axis: (a) on a cone surface, (b) along
Archimedes spiral, (c) n-flute rosette, (d) modified n-flute rosette, (e) described by (4.67),
(f) described by (4.68)
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and hence

Mb D IgkŒ�k�k.˝ � �k/ sin �kt C �b�k�k˝ cos �kt	;

Mc D IgkŒ�k�k.˝ � �k/ cos �kt � �b�k�k˝ sin �kt	: (4.58)

Thus, we have the torques Mb.t/ and Mc.t/ determined as functions of time.
Now let us check what trajectory will be generated by these torques. Let us substitute
them into the right-hand sides of (4.56):

d2#g
dt2

C �b˝
d#g
dt

�˝
d g
dt

D �k�k.˝ � �k/ sin �kt C �b�k�k˝ cos �kt;

d2 g
dt2

C �c˝
d g
dt

C˝
d#g
dt

D �k�k.˝ � �k/ cos �kt � �c�k�k˝ sin �kt:

(4.59)

The inverse problem is unique for the derivatives of angles #g and  g with
respect to time, but for stationary motion [17, 18], i.e., as t ! 1 (a transient
process is depicted in Figs. 4.6b and 4.7b). However, that question arises as to
whether the solutions to the preceding equations will also describe the preset motion
of the gyroscope axis. If we impose the initial angular position of the axis as
required, #gz.0/ D 0 and  gz.0/ D �k , then we will obtain the required angular
displacements of the gyroscope axis. If, however, the initial position of the axis is
not the one we need, e.g., #gz.0/ D 0:1 rad and  gz.0/ D 0:1 rad, then despite the
fact that the angular velocities are the ones we need, the gyroscope axis does not
describe the required surface (Figs. 4.5 and 4.7).

In the case of angular deviations taking large values of the gyroscope axis, the
control moments Mb.�/ and Mc.�/, as functions of non-dimensional time � , are
determined from the non-linear (4.52a)–(4.52b):

Mb.�/ D d2#gz

d�2
C bb

d#gz

d�
C 1

2

�
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d�


2
sin 2#gz C d gz

d�
cos#gz; (4.60)
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d�2
cos2 #gz C bc
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d�
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d�

d#gz

d�
sin 2#gz C d#gz

d�
cos#gz; (4.61)

where

bb D �b

Igk˝
; bc D �c

Igk˝
:
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If, also in this case, we require that the gyroscope axis must move on the surface of
a cone, then programmable controls (4.60) and (4.61) take the following form:
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The preceding problem of gyroscope axis control on a cone’s surface is one of the
possible problems. We can substitute other functional relations for the angles #gz.�/

and  gz.�/ and their first and second derivatives into the programmable controls
governed by (4.60) and (4.61). Some of the most characteristic examples of the
required motion of a gyroscope axis that can be applied in detection or tracking
systems are depicted below [19, 20]:

1. Motion of gyroscope axis along Archimedes spiral (Fig. 4.3b):

#gz.�/ D ag
�s

˝
� sin

�
�s

˝



;

 gz.�/ D bg�s� cos

�
�s

˝



: (4.64)

2. Motion of gyroscope axis along n-flute rosette (Fig. 4.3c)

#gz.�/ D �r sin

�
�2

˝
�



cos

�
�1

˝
�



;

 gz.�/ D �r sin

�
�2

˝
�



sin

�
�1

˝
�



: (4.65)
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3. Motion of a gyroscope axis along a modified n-flute rosette:

#gz.�/ D �r

�
sin

�
�2

˝
�



C 0; 2 sin

�
3
�2

˝
�



C 0:04 sin

�
5
�2

˝
�


	
cos

�
�1

˝
�



;

 gz.�/ D �r

�
sin

�
�2

˝
�



C 0; 2 sin

�
3
�2

˝
�



C 0:04 sin

�
5
�2

˝
�


	
sin

�
�1

˝
�



:

(4.66)

4. Motion of gyroscope axis along curve depicted in Fig. 4.3e and described by the
following relationships:

#gz D ab

˝
� cos

�
�b

˝
�



C 0; 2ab cos

�
2; 5

�b

˝

�
1C 5

˝
�



�

	
;

 gz D ab

˝
� sin

�
�b

˝
�



C 0; 2ab sin

�
2; 5

�b

˝

�
1C 5

˝
�



�

	
: (4.67)

5. Motion of gyroscope axis along curve depicted in Fig. 4.3f and described by the
following relationships:

#gz D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

2
=.3˝/� dla 0 � � < 0; 25�c;

�2
=.3˝/.� � 0; 5�c/ dla 0; 25�c � � < 0; 75�c;

2
=.3˝/.� � �c/ dla 0; 75�c � � < �c;

 gz D ah sin

�
�h

˝



I (4.68a)

#gz

d�
D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

2
=.3˝/ dla 0 � � < 0; 25�c;

�2
=.3˝/ dla 0; 25�c � � < 0; 75�c;

2
=.3˝/ dla 0; 75�c � � < �c;

 gz

d�
D ah

�h

˝
cos

�
�h

˝
�



I (4.68b)

d2#gz

d�2
D 0;

d2 gz

d�2
D �ah

�
�h

˝


2
sin

�
�h

˝



: (4.68c)
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Fig. 4.4 Influence of the initial conditions on realization of motion on the cone surface by the
gyroscope axis: (a) for angular displacements, (b) for angular velocities

Fig. 4.5 Effect of friction in frame bearings on realization of motion on cone surface by gyroscope
axis: (a) for small values, (b) for large values of viscous damping coefficients

4.2.2 Numerical Example

In Figs. 4.4–4.7, are shown (presented) selected results of computer simulations for
two basic motions of a gyroscope axis: (a) describing a cone surface; (b) unfolding
the surface after the Archimedes spiral.
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Fig. 4.6 Influence of the initial conditions on realization of the preset motion on the surface
described after the Archimede spiral: (a) for angular displacements, (b) for angular velocities

Fig. 4.7 Effect of non-linearities on realization of motion on cone surface by gyroscope axis:
(a) for angular displacements, (b) for angular velocities

Calculations were performed for the following values:

Igo D 5 � 10�4kgm2; Igk D 2:5 � 10�4kgm2; �b D �c D 0:1Nms;

ng D 600 rad/s; �k D 8 rad/s; ˝ D 1;200 rad/s:

Figures 4.4 and 4.5 present the negative influence of the initial conditions and
coefficients of the friction force �b , �c in the frame bearings on the realization of the
desired motion. In the initial conditions, unlike in the required ones, #g.0/ D �0:1,
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Fig. 4.8 Effect of non-linearities on realization of preset motion on surface described after the
Archimedes spiral: (a) for angular displacements, (b) for angular velocities

#gz.0/ D 0,  g.0/ D 0,  gz.0/ D �0:1, the gyroscope axis does not delineate the
required path (Figs. 4.4a and 4.6a), while the angular velocities of the axes are the
one we need. However, one can see a transient process (Figs. 4.4b and 4.6b), which
is certainly longer at smaller values �b , �c and shorter at larger ones (Fig. 4.5a, b).

Figures 4.7 and 4.8 illustrate the effect of large angular displacements on the
accuracy of the required motion on the cone surface and along the Archimedes
spiral.

4.2.3 Control with Constant Programmable Moments

In order to put a gyroscope axis into a preset path, one needs to change the torques
controlling the gyroscope [5, 21]. It is convenient to require to guide, from given
initial positions #g.t0/ D #go and  g.t0/ D  go, the gyroscope axis to the position
#go.t0/ D #gk and  go.t0/ D  gk by means of Mb1 D const and Mc1 D const.
The earlier determined torquesMb andMc , which we will denote by Mb2 andMc2 ,
will take the gyroscope axis from this position on the preset surface (cone, unfolded
along a spiral, rosette, etc.). Thus, we control the gyroscope axis in two stages: in the
first stage, the constant moments are applied, and after we reach #g D #go D #gk
and  g D  go D  gk , we go to the second stage, where the moments described by
(4.60) and (4.61) are applied.
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In the first stage, at the initial conditions R#go D 0, P#go D 0, R go D 0, P go D 0, we
obtain the following solution to (4.56):

#g.t/ D #go C ˝.�cMb1 CMc1/

Igk!2go

�
t � 2h�

g

!2go

�
1 � e�h�

g t cos!�
g t




� .!�
g /
2 � .h�

g/
2

!2go!
�
g

e�h�

g t sin!�
g t

	
; (4.69a)

 g.t/ D #go C ˝.�bMc1 �Mb1/

Igk!2go

�
t � 2h�

g

!2go

�
1 � e�h�

g t cos!�
g t




� .!�
g /
2 � .h�

g/
2

!2go!
�
g

e�h�

g t sin!�
g t

	
; (4.69b)

where

!0g D
q
!2go � .h�

g/
2; !2go D .1C �b�c/˝

2; h�
g D ˝

2
.�b C �c/:

At large values of h�
g and short time of motion in the first stage, we can make the

following approximation:

#g.t/ � #go C ˝.�cMb1 CMc1/

Igk!2go
t; (4.70a)

 g.t/ �  go C ˝.�bMc1 �Mb1/

Igk!2go
t: (4.70b)

Now we impose the time during which the axis of the gyroscope travels from the
position #go,  go to #g D #gk ,  g D  gk . Let us denote this time by tu. Then from
the preceding equalities (in truth, they are approximated) we obtain

#go C ˝.�cMb1 CMc1/

Igk!2go
tu D #gk; (4.71a)

 go C ˝.�bMc1 �Mb1/

Igk!2go
tu D  gk: (4.71b)

This is a system of two equations with two unknown quantities Mb1 and Mc1 ,
and it yields

Mb1 D � . gk �  go � �b.#gk � #go// � Igong
tu

; (4.72)
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Mc1 D .#gk � #go C �c. gk �  go// � Igong
tu

: (4.73)

If we want to displace the axis of the gyroscope from the known initial position
#go,  go to the given position on the surface of the cone #g D #gk,  g D  gk , then
the controls have the form

Mb1 D � . gk �  go C �b#go/ � Igong
tu

; (4.74a)

Mc1 D Œ. gk �  go/�c � #go	 � Igong
tu

: (4.74b)

When we want to do the same for the preset motion of the axis along the
Archimedes spiral, then

Mb1 D � .�b#go �  go/ � Igong
tu

; (4.75a)

Mc1 D � .�c go C #go/ � Igong
tu

: (4.75b)

Summing up, we can say that for the realization of the desired motion, we apply
the following algorithm: (1) for t < tu we control the torques Mb D Mb1 and
Mc D Mc1 ; (2) for t � tu we control the torquesMb D Mb2 andMc D Mc2 .

4.2.4 Numerical Example

Figures 4.9 and 4.10 present a process of motion, inconsistent with the preset one,
of the gyroscope axis from the initial position to the required one by means of
controlsMb1;Mc1 described by expressions (4.73). These figures show that a precise
realization of the motion of the gyroscope axis is possible along the Archimedes
spiral after the gyroscope axis is moved to the required initial position.

4.3 Motion Control of Gyroscope Axis in a Closed System

The results of the preceding section show that programmable control of a gyroscope
axis in an open system cannot provide satisfactory accuracy of realization of the
preset motion of the axis. The cause are many disturbances, which acts on the
gyroscope base.
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Fig. 4.9 Taking the gyroscope axis to the preset initial position at its motion on the cone surface:
(a) for angular displacements, (b) for angular velocities

Fig. 4.10 Taking the gyroscope axis to the preset initial position at its motion on the surface,
unfolded after the Archimedes spiral: (a) for angular displacements, (b) for angular velocities

The fundamental elements affecting the errors of not only navigation but also
controlled gyroscopes are as follows [22, 23]:

(a) Dry and viscous friction in frame bearings.
(b) Inertia of frames.
(c) Unbalance (static and dynamic) of rotor relative to intersection of frame axes—

center of rotation.
(d) Linear and angular accelerations of base.
(e) Elasticity of elements of construction.
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(f) Errors of Cardan suspension.
(g) Instability of rotor drive.
(h) Intersection of frames at incorrect angles.
(i) Large angles and angular velocities of deviation of main axis from preset

direction.
(j) Rotational motion of Earth.

In order to eliminate the detrimental interaction of the preceding elements one
needs to apply systems of automatic correction of the motion of the gyroscope axis.

4.3.1 Gyroscopic System with PID Regulator

Here we will consider control of the gyroscope axis, which relies on tracking, by
this axis, a preset direction, which is either time dependent or time independent.
The application of such control takes place in various observation instruments, in
automatic detection and angular tracking systems, in optical target coordinators of
self-guided missiles, etc. [21, 24]. The tracking requires the measurement of the
results of control; thus it belongs to the group of closed control systems (with
feedback) [22]. We will distinguish a desired motion (signal) #gz.t/ and  gz.t/,
i.e., the motion of a gyroscope that we would like to realize, and the motion (signal)
realized #g.t/ and  g.t/ by the gyroscope axis. We will call the deviation of the
realized motion from the desired one

�g D
q
.#g � #gz/2 C . g �  gz/2 (4.76)

a real deviation of the control. Moreover, we will use the notion of partial
deviations:

eb D #g � #gz; (4.77)

ec D  g �  gz; (4.78)

The basic block diagram of control in a closed system is depicted in Fig. 4.11.
Such a scheme of deviation control, in which a proportional-integral-derivative
(PID) regulator is applied, can serve to control the motion of the gyroscope. Values
of the torquesMb and Mc are assumed to be as follows:

Mb

Ibk˝2
D kbeb C hb

deb
dt

C hb1

Z t

0

eb.�/d�;

Mc

Ibk˝2
D kcec C hc

dec
dt

C hc1

Z t

0

ec.�/d�: (4.79)
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Fig. 4.11 Control scheme in a closed system

One mostly assumes kb D kc; hb D hc; hb1 D hc1 [22]. However, this is not the
most effective control method, which will be shown later in this chapter. The control
system should be examined with regard to stability (closed system).

The result of control system operation can be verified by means of a numerical
method (computer simulation). For this purpose, we write the linearized equations
of motion of gyroscope (4.53), provided that #g <<1, in the following form:

Igk˝
2# 00

g C �b˝#
0
g � Igong˝ 0

g D Mb;

Igk˝
2 00

g C �c˝ 
0
g C Igong˝#

0
g D Mc; (4.80)

or

 00
g C bc 

0
g C # 0

g D ccMc;

# 00
g C bb#

0
g �  0

g D cbMb; (4.81)

where

bb D �b

Igk˝
; bc D �c

Igk˝
; cb D 1

Igk˝2
; cc D 1

Igk˝2
:

Equations of motion of a gyroscope axis in tracking mode are as follows:

# 00
g C bb#

0
g �  0

g D Nkb.#gz � #g/C Nhb.# 0
gz � # 0

g/C Nhb1
Z �

0

Œ#gz.�1/� #g.�1/	d�1;

(4.82a)

 00
g C bc 

0
g C # 0

g D Nkc. gz �  g/C Nhc. 0
gz �  0

g/C Nhc1
Z �

0

Œ gz.�1/ �  g.�1/	d�1;
(4.82b)
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Fig. 4.12 Results of control of gyroscope axis with using PID regulator with small values of
damping coefficients at tracking of the fixed point: (a) change in control torques as a function
of time; (b, c) change in angular deviations as a function of time; (d) path of gyroscope axis

where

Nkb D kb

Igk˝2
; Nkc D kc

Igk˝2
; Nhb D hb

Igk˝2
; Nhc D hc

Igk˝2
:

As a first example, let us examine a procedure for taking a gyroscope axis
from the zero position, i.e., #g.0/D 0, P#g.0/D 0,  g.0/D 0, and P g.0/D 0, to the
position specified by the angles #g D#c0 and  g D c0.

Figure 4.12 presents the result of controlling with the use of only a PD-type
regulator (without the integrating element hb1 D hc1 D 0, kb D kc D �50, hb D
hc D �25).
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Fig. 4.13 Results of control of gyroscope axis using PID regulator with large values of damping
coefficients at tracking of fixed point: (a) change of the control torques as a function of time;
(b, c) change of angular deviations as a function of time; (d) path of gyroscope axis

The gyroscope axis makes large displacements, reaching the desired angles over
a relatively long time. Increasing values of the damping coefficients hb Dhc D �150
improve this result considerably (Fig. 4.13).

When one selects the regulator parameters .kb; kc; hb; hc; hb1 ; hc1/, one needs to
check what values the control momentsMb andMc should be given. In other words,
we need to check if these values are not too large to damage the gyroscope. These
moments (Fig. 4.12) take on values much larger than those in Fig. 4.13.

The results presented in Figs. 4.12 and 4.13 confirm that a differentiating term,
besides a proportional term, plays an important role in the control of a gyroscope
axis. The former decides whether regulation is to be realized, whereas the latter
increases the damping of system that have a great importance in control of
gyroscope. In what follows we will discuss this problem thoroughly. The second
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Fig. 4.14 Results of control of gyroscope axis with use of PID regulator with large values of
damping coefficients at tracking of movable point: (a) change of the control torques as a function
of time; (b, c) change of angular deviations as a function of time; (d) path of gyroscope axis

example covers the tracking of a movable point. The moving point in space is
observed from Earth by means of a telescope. The optical axis of the telescope
is not coincident with the line connecting this point with the telescope (i.e., the
so-called observation line of the target). The telescope objective is located in the
gyroscope axis. The problem of control relies on making the axis of the gyroscope
coincide with the observation line of the target. Consequently, tracking of the target
is performed. In the example, whose results are presented in Figs. 4.14–4.16, a
moving point (target) specifies the angles that are required signals according to the
following formulas:

#gz.�/ D #c0 C 0:2 � !c � �2;
 gz.�/ D  c0 C !c � �:
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Fig. 4.15 Results of control of gyroscope axis using PID regulator to track fixed point: (a) change
in control torques as a function of time, (b) change in angular deviations as a function of time

Fig. 4.16 Results of control of gyroscope axis using PID regulator to track movable point:
(a) change in angular deviations as a function of time, (b) path of gyroscope axis

In Fig. 4.14, a regulator without integrating elements leads to the relatively large
error �g of the target tracking. Applying a PID-type regulator with specific values
of the coefficients improves the tracking (Fig. 4.15).

A more advanced example of gyroscope usage would be a combined method
of control of the gyroscope motion. A fixed or movable point in space is to be
automatically detected and tracked by an optical system placed in the gyroscope
axis, as in the previous examples. The visual field of the objective (angle of view)
is defined. We have here two states of control of the gyroscope axis. In the first
state (seeking the target), the axis “draws” lines in space (e.g., spiral). When the
axis approaches the target, so that it is in the vicinity of the objective, a transition



184 4 Dynamics and Control of a Gyroscope

to the second control state occurs. This is a state of target tracking. The axis of the
gyroscope approaches the observation line of the target.

4.3.2 Program Control with Feedback

The investigation results mentioned in Sect. 4.1 show that controlling a gyroscope
in an open system is saddled with errors caused by the influence of non-linearities.
Despite the fact that friction forces in the frame bearings shorten the duration of the
transient process, a gyroscope must have those friction forces minimalized. This is
implied by the essential task of a gyroscope. Therefore, it is necessary to incorporate
a regulator into a gyroscope control system whose role is to minimize errors between
the preset and real motions.

In order to determine a program control algorithm with feedback, let us assume
that deviations

eb D #gz � #g; ec D  gz �  g (4.83)

change according to the following rules [18]:

eb D Cb1e
��b1 t C Cb2e

��b2 t ; (4.84a)

ec D Cc1e
��c1 t C Cc2e

��c2 t ; (4.84b)

which are equivalent to the differential equations

d2eb
dt2

C .�b1 C �b2/
deb
dt

C �b1�b2eb D 0; (4.85a)

d2ec
dt2

C .�c1 C �c2/
dec
dt

C �c1�c2ec D 0: (4.85b)

From (4.85) and (4.84) we have

d2#g
dt2

D d2#gz

dt2
� .�b1 C �b2/

deb
dt

� �b1�b2eb; (4.86a)

d2 g
dt2

cos2 #g D
�

d2 gz

dt2
� .�c1 C �c2/

dec
dt

� �c1�c2ec
	

cos2 #g: (4.86b)
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Substituting the preceding expressions into (4.48) and leaving terms up to the first
order of smallness with respect to the deviations eb and ec , one obtains the desired
control algorithm in a closed system:

Mb.t/ D M
p

b .t/C ub.t/; (4.87a)

Mc.t/ D Mp
c .t/C uc.t/: (4.87b)

The quantities Mb.t/ and Mc.t/ occurring in (4.87) are program controls of the
form

M
p

b .t/ DIgk d2#gz

dt2
C 1

2
Igk

�
d gz

dt


2
sin 2#gz � Igong

d gz

dt
cos#gz C �b

d#gz

dt
;

(4.88a)

Mp
c .t/ D Igk

d2 gz

dt2
� Igk d gz

dt

d#gz

dt
sin 2#gz C Igong

d#gz

dt
cos#gz C �c

d gz

dt
:

(4.88b)

The quantities ub.t/ and uc.t/ are correcting controls of the following form:

ub.t/ D kb1 .t/ � eb C kc1.t/ � ec C hb1.t/ � deb
dt

C hc1 .t/ � dec
dt
; (4.89a)

uc.t/ D kb2 .t/ � eb C kc2.t/ � eb C hb2.t/ � deb
dt

C hc2.t/ � dec
dt
; (4.89b)

where

kb1 .t/ D 1

2

�
d gz

dt


2
cos 2#gz C  gz

dt
sin#gz � �b1�b2 ;

kb2 .t/ D d gz

dt

d#gz

dt
cos 2#gz C #gz

dt
sin#gz;

kc1 .t/ D 0; kc2 .t/ D ��c1�c2 cos2 #gz;

hb1 .t/ D �.�b C �b1 C �b2/;

hb2 .t/ D �
�

d gz

dt
sin 2#gz � cos#gz



;

hc1 .t/ D
�

d gz

dt
sin 2#gz � cos#gz



;

hc2 .t/ D �
�
�c C .�c1 C �c2/ cos2 #gz � d gz

dt
sin 2#gz

	
:
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Fig. 4.17 Control scheme of a gyroscope in a closed system

In Fig. 4.17 one can see a functional scheme of the position control of the
gyroscope axis in a closed system.

The control algorithm depicted in Fig. 4.17 needs a pre-set change in time of
the coefficients of the regulator kb1 ; kb2 ; kc2 ; hb1 ; hb2 ; hc1 ; hc2 , which depend on the
required values of angular deviations of the gyroscope axis #gz,  gz and their first
and second derivatives with respect to time. However, one should note that for the

quantities #gz,  gz,
d#gz

dt , d gz

dt , d2#gz

dt 2 , d2 gz

dt 2 attaining small values we can assume,
with a sufficient accuracy from practical viewpoint, constant values of the regulator
coefficients, namely,

kb1 D ��b1�b2 ; kb2 D 0; kc1 D 0; kc2 D ��b1�b2 ;

hb1 D �
�
�b C �b1 C �b2



; hc1 D �Igong;

hb2 D Igong; hc2 D �
�
�c C �c1 C �c2



: (4.90)



4.4 Selection of Optimal Gyroscopic Parameters 187

The quantities �b1 , �b2 , �c1 , �c2 in (4.90) are constants optimally selected with
respect to the minimum of the mean square error and stability of a gyroscope system,
which is discussed in the following sections.

4.4 Selection of Optimal Parameters of a Gyroscopic System
in Elastic Suspension

In this section, we consider how to select the optimal parameters of a gyroscope
whose axis is connected with the rotor by means of an elastic element [16, 18];
this can also be regarded as taking into account the deformability of the rotor
construction. It concerns a situation in which the selection of parameters at which
the dynamical effects emerging in the transient process will vanish in the shortest
time. However, during control of the gyroscope, a sufficient accuracy of the preset
position of the gyroscope axis in space can be ensured not just by the gyroscope’s
construction parameters due to various disturbances. That is why in order to
ensure the assumed accuracy of the gyroscope motion, one also needs to select the
optimal parameters of the automatic control system of the gyroscope motion. The
optimization of the whole gyroscopic system can minimize the dynamical effects.
The optimization of parameters is particularly important in the case of scanning of
the target coordinator of a self-guided missile or a system for detecting and tracking
a target in an unmanned FO (a more detailed discussion is carried out in Chap. 5).
In both cases, accuracy is required in the realization of the preset motion and
maintenance of the required direction by the gyroscope axis and the fastest damping
of transient processes generated from changes in the gyroscope axis motion.

We will consider separately a problem related to the selection of optimal
gyroscope parameters and of its automatic control parameters.

4.4.1 Selection of Optimal Parameters of a Gyroscope
in Elastic Suspension

The linearized equations of motion (technical theory) of a gyroscope in an elastic
suspension [derived from (4.31)–(4.35)] are presented in the following form:

I 0gk
d

dt

�
P#0g C q�



C �b P#0g � �

�
#g � #0g



D Mb; (4.91a)

I 0gk
d

dt

�
P 0g C r�



C �c P 0g � �

�
 g �  0g



D Mc; (4.91b)
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C Igon
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P g C r�



C �

�
#g � #0g



D Mzb; (4.91c)

Igk
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dt

�
P g C r�



� Igon

�
P#g C q�



C �

�
 g �  0g



D Mzc: (4.91d)
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Let us apply to the preceding system a dimensionless time

� D ˝ � t; (4.92a)

where

˝ D Igo � ng
Igk C I 0gk

: (4.92b)

Introducing the independent variable � (4.92a) and making appropriate transfor-
mations, the linearized (4.91) take the following form [15]:

d2�g
d�2

D 
g
d�g
d�

C 
g
d 0g
d�

C bb
d#0g
d�

� �.�p C �0/�g C NMzb � NMb � r�; (4.93a)

d2�g
d�2

D 
g
d�g
d�

C 
g
d#0g
d�

C bc
d 0g
d�

� �.�p C �0/�g C NMzc � NMc C q�; (4.93b)

d2#0g
d�2

D �bb
d#0g
d�

C �0�g C NMb � dq�

d�
; (4.93c)

d2 0g
d�2

D �bc
d 0g
d�

C �0�g C NMc � dr�

d�
; (4.93d)

where

�g D #g � #0g; �g D  g �  0g; 
g D I 0gk C Igk

Igk
; (4.94a)

bb D �b

I 0gk˝
; bc D �c

I 0gk˝
; �0 D �

I 0gk˝
2
; �p D �

I 0gk˝
2
; (4.94b)

NMb D Mb

I0gk˝
2
; NMc D Mc

I0gk˝
2
; NMzb D Mzb

Igk˝2
; NMzc D Mzc

Igk˝2
:

In order to determine stable and optimal parameters we introduce the following
designations:

x1 D �g; x2 D d�g
d�
; x3 D �g;

x4 D d�g
d�
; x5 D d#0g

d�
; x6 D d 0g

d�
: (4.95a)
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Additionally, let us introduce the following quantities:

Nbb D hb C bb; Nbc D hc C bc; (4.95b)

where hb and hc denote the desired damping needed in the gyroscopic system.
System (4.93), taking into account (4.95), is as follows:

dxg
d�

D Agxg; (4.96)

where
xg D Œx1 x2 x3 x4 x5 x6	

T;

Ag D

2
66666664

0 1 0 0 0 0

�.�p C �0/ 0 0 
g Nbb 
g

0 0 0 1 0 0

0 �
g �.�p C �0/ 0 �
g Nbc
�0 0 0 0 � Nbb 0

0 0 �0 0 0 � Nbc

3
77777775
: (4.97)

According to the modified Golubientsev method [22, 25], let us introduce a new
variable defined as follows:

xg.�/ D yg.�/ � eı�

g .�/; (4.98)

where

ı�
g D 1

6
TrAg D �1

6
. Nbb C Nbc/: (4.99)

After some transformations we have

dyg
d�

D B�
gyg; (4.100)

where

B�
g D

2
66666664

�ı�
g 1 0 0 0 0

�.�p C �0/ �ı�
g 0 
g Nbb 
g

0 0 �ı�
g 1 0 0

0 �
g �.�p C �0/ �ı�
g �
g Nbc

�0 0 0 0 � Nbb � ı�
g 0

0 0 �0 0 0 � Nbc � ı�
g

3
77777775
:

(4.101)
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A characteristic equation of matrix B�
g , whose TrB�

g D 0, is transformed into a
characteristic polynomial of the form

�6g C b2�
4
g � b3�

3
g C b4�

2
g � b5�g C b6 D 0: (4.102)

For matrix B�
g we seek values �0, �p , Nbb, Nbc such that the characteristic (4.102)

could possess only imaginary or zero roots [25]. To this end, the coefficients of
the characteristic (4.102) b2; b3; b4; b5; b6 (coefficient b1 D TrB�

g D 0) must be
determined as sums over all possible combinations of leading-diagonal determinants
of degrees 2, 3, 4, 5, and 6 of matrix B�

g [(4.101)]. Introducing an additional
designation N� D .�0 C �p/, we obtain

b2 D � 15.ı�
g /
2 C 2.�0 C �p/C 
2g C Nbb Nbc > 0; (4.103)

b3 D 40.ı�
g /
2 C .2�p � �0 C 
2g � 2 Nbb Nbc/ı�

g D 0; (4.104)

b4 D � 45.ı�
g /
2 C 6.ı�

g /
2. Nbb Nbc � �0 � 4�p � 2
2g/

C 2�p Nbb Nbc C . Nbb Nbc C 2�0/

2
g C .�0 C �p/

2 > 0; (4.105)

b5 D 24.ı�
g /
5 � 2.ı�

g /
3.2 Nbb Nbc � 5�0 � 14�p � 7
2g/

� 2ı�
g

�
Nbb Nbc.2�p C 
2g/

	
C .�0 C �p/ � .�0 � 2�p/� �0


2
g D 0; (4.106)

b6 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

�ı�
g 1 0 0 0 0

�N� �ı�
g 0 
g Nbb 
g

0 0 �ı�
g 1 0 0

0 �
g �N� �ı�
g �
g bc

�0 0 0 0 � Nbb � ı�
g 0

0 0 �0 0 0 � Nbc � ı�
g

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

> 0;

b6 D � 5.ı�
g /
6 C .ı�

g /
4. Nbb Nbc � 4�0 � 10�p � 5
2g/

C .ı�
g /
2

�
Nbb Nbc.2�p C 
2g/� 4�0


2 C .�0 C �p/.�0 � 5�p/

	

C Nbb Nbc�p C �20

2
g > 0: (4.107)

Moreover, one needs to take into account a very important condition of absolute
maximization of the trace of matrix Ag defined by (4.97):

jTrAgj D j � . Nbb C Nbc/j D max: (4.108)
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From the preceding relationships (4.104) and (4.106) for b3 D 0 and b5 D 0 we
can determine

�p D

�
288.ı�

g /
2 � 68 Nbb Nbc C 8
2g.ı

�
g /
2

	
.ı�
g /
2 � Nbb Nbc
2g C 4 Nb2b Nb2c

�36.ı�
g /
2 C 4 Nbb Nbc � 
2g

; (4.109a)

�0 D 20.ı�
g /
2 C 
2g � 2 Nbb Nbc C 2�p: (4.109b)

From (4.94a) and (4.94b) we have

I 0gk

Igk
D �p

�0
; (4.110a)


g D �p

�0
C 1; (4.110b)

� D �p

Igk

�
ng


g


2
: (4.110c)

It follows from (4.110a) that a ratio of transversal moments of inertia of the axis
and rotor should equal the ratio of optimal parameters �p and �0 given in (4.109a)
and (4.109b). Formula (4.110c) shows that the coefficient of membrane stiffness �
is directly proportional to the square of the angular velocities of eigenrotations ng of
the gyroscope and inversely proportional to the moment of inertia of the rotor Igk.

Figure 4.18 depicts a scheme of an optimization procedure of linear system
parameters of arbitrary dimension. On the basis of the aforementioned scheme,
a Matlab Simulink program was created that determines the numerically optimal
parameters of the considered dynamical systems.

Figures 4.19 and 4.20 show the dynamical effects of a gyroscope on an elastic
suspension excited by the initial conditions. At these optimal parameters (Fig. 4.19)
vanishing of the transient process is considerably faster than at parameters that are
not optimally selected (Fig. 4.20).

4.4.2 Optimal Control of a Gyroscope in an Elastic Suspension

We will define the law of control of a gyroscope in an elastic suspension by means
of the method of linear-square optimization [24, 25] using a functional of the form

I D
Z 1

0

�
xT
gQgxg C uT

gRgug



dt: (4.111)
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Fig. 4.18 Scheme of optimization of linear system parameters

We will present this law in the following form [23, 24]:

ug D �Kgxg; (4.112)

where

ug D ŒUzb Uzc Ub Uc	
T;

xg D
�
#g

d#g
dt

 g
d g
dt

#0g
d#0g
dt

 0g
d 0g
dt

	T

:
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Fig. 4.19 Damping of transient process of optimal gyroscopic system: (a) path of gyroscope axis
motion, (b) motion path of gyroscope axis

Fig. 4.20 Damping of transient process of non-optimal gyroscopic system: (a) motion path of
gyroscope rotor axis, (b) motion path of gyroscope axis

The coupling matrix Kg in (4.112) is determined from the following relationship:

Kg D R�1
g BT

gPg; (4.113)

where

BT
g D

2
664

0 cg 0 0 0 0 0 0

0 0 0 cg 0 0 0 0

0 0 0 0 0 cgo 0 0

0 0 0 0 0 0 0 cgo

3
775

T

;
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cg D 1

Igk˝2
; cgo D 1

I 0gk˝
2
:

Matrix Pg is a solution of the algebraic Riccati equation

AT
gPg C PgAg � 2PgBgR�1

g BT
gPg C Qg D 0; (4.114a)

where Ag is a state matrix of the form

Ag D

2
666666666664

0 1 0 0 0 0 0 0

��p 0 0 �1 �p 0 0 0

0 0 0 1 0 0 0 0

0 1 ��p 0 0 0 �p 0

0 0 0 0 0 1 0 0

�0 0 0 0 ��0 �bb 0 0

0 0 0 0 0 0 0 1

0 0 �0 0 0 0 ��0 �bc

3
777777777775

: (4.114b)

The weight matrices Rg and Qg in (4.113) and (4.114a), transformed into
diagonal forms, are selected experimentally, where the search is initiated from the
following values [22]:

qii D 1

2ximax

; ri i D 1

2uimax

; .i D 1; 2; : : : ; 8/; (4.115)

where ximax is the maximal range of change of the i th value of the state variable,
uimax is the maximal range of change of the i th value of the control variable.

Solving numerically the matrix Ricatti (4.114a) and determining the gain matrix
Kg, one can observe that for the analyzed case, particular elements of the matrix
satisfy the following relationships:

k11 D k23 D kz# ; k12 D k24 D hz# ; k13 D �k21 D kz ;

k14 D k22 D hz D 0; k15 D k27 D kz#0
; k16 D �k28 D hz#0

;

k17 D k25 D kz 0
; k18 D �k26 D hz 0

; k31 D k43 D k# ;

k32 D k44 D h# ; k33 D �k41 D k ; k34 D �k42 D h ;

k35 D k47 D k#0 ; k36 D k48 D h#0; k37 D �k45 D k 0 ;

k38 D k46 D h 0 D 0:
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It follows from the preceding relationships and (4.112) that the control torques
influencing the gyroscope will have the form

Uzb D �kz# #g � hz#

d#g
d�

C kz  g � kz#0
#0g C hz#0

d#0g
d�

� kz 0
 0g C hz 0

d 0g
d�

;

(4.116)

Uzc D �kz #g � hz#

d g
d�

� kz# g � kz 0
#0g � hz 0

d#0g
d�

� kz#0
 0g � hz#0

d 0g
d�

;

(4.117)

Ub D �k##g � h# d#g
d�

� k  g C h 
d g
d�

� k#0#
0
g � h#0

d#0g
d�

C k 0 
0
g;

(4.118)

Uc D �k #g � h 
d#g
d�

� k# g � h#
d g
d�

� k 0#
0
g � h#0

d 0g
d�

� k#0 0g:
(4.119)

Applying the preceding controls to the gyroscope described by (4.96), we obtain
a new gyroscopic system of the form

dxg
d�

D A�
gxg; (4.120)

where

A�
g D Ag � BgR�1

g BT
gPg:

System (4.120) can be optimized according to the algorithm depicted in Fig. 4.18.
The additional optimization by means of the modified Golubientsev method can be
carried out if the gyroscopic system (4.120) is to be applied in devices of target
detection and tracking systems [21]. This concerns the minimization of the transient
process duration at the moment of target detection, which holds great significance
for the maintenance of this target near the tracking system [22, 25].

A block diagram of the algorithm of a linear-square optimization, along with the
modified Golubientsev method of any control system, is presented in Fig. 4.21.

4.4.3 Results of Digital Investigations

The results of controlling a gyroscope suspended in an elastic suspension are
depicted in Figs. 4.22–4.26. A control problem depends on putting the gyroscope
axis in the pre-set motion, in which the gyroscope axis moves on a cone surface
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Fig. 4.21 Block diagram of complete system optimization
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Fig. 4.22 Gyroscope control in elastic suspension using PID regulator: (a) change in control
torques as a function of time, (b) path of gyroscope axis, (c), (d) change in preset and realized
angular deviations of gyroscope axis as a function of time

(Figs. 4.22–4.24) or on an Archimedes spiral (Figs. 4.25 and 4.26), and the rotor
axis plots n-flute rosette. For all of the cases the gyroscope parameters are the same
as in Sect. 4.2. Figures 4.22 and 4.23 present the behavior of a gyroscope with the
PID regulator applied, with non-optimal coefficients.

In Fig. 4.24 one can observe an essential improvement in realization of motion,
preset by the gyroscope after introduction of controls, selected on the basis of the
algorithm illustrated in Fig. 4.21. The efficiency of the optimal control is depicted
in Fig. 4.25, where, despite the action of the impulse of torque, the preset motion
is instantiated. We have a similar situation in the case of the effect of kinematic
excitations on gyroscope suspension in the form of harmonic vibrations.

We applied optimal gain coefficients of the control torques described by
relationships (4.117)–(4.120) with the following values:
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Fig. 4.23 Gyroscope control in elastic suspension using PID regulator: (a) preset and realized
path of gyroscope axis, (b) angular velocities of rotor axis of gyroscope in phase plane, (c) angular
velocities of gyroscope axis in phase plane

kz# D �0:0155; hz# D 73:67; kz D �0:355; hz D 0:00;

kz#0
D 0:477; hz#0

D 0:756; kz 0
D �0:471; hz D �0:0146;

k# D �0:128; h# D 3:549; k D �2:125; h D 0:0686;

k#0 D 12:574; h#0 D 20:898; k 0 D �2:633; h 0 D 0:00:
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Fig. 4.24 Gyroscope control in elastic suspension using optimal control torques: (a) change in
control torques as a function of time, (b) preset and realized path of gyroscope axis, (c) angular
velocities of rotor axis of gyroscope in phase plane, (d) angular velocities of gyroscope axis in
phase plane

4.5 Selection of Optimal Parameters of a Gyroscopic System
with an Axis Fixed to Rotor

4.5.1 Optimization of a Classic Controlled Gyroscope

The linearized model of a controlled gyroscopic system with an axis permanently
connected to a rotor is presented as follows

dxg
d�

D Agxg C Bgug; (4.121)
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Fig. 4.25 Gyroscope control in elastic suspension using optimal control torques under action of
impulse of pair of forces: (a) path of rotor axis of gyroscope, (b) angular velocities of rotor axis of
gyroscope in phase plane, (c) preset and realized path of gyroscope axis, (d) angular velocities of
gyroscope axis in phase plane

where

xg D
�
#g

d#g
d�

 g
d g
d�

	T

; ug D Œub uc	
T;

Ag D

2
664

0 1 0 0

0 �bb 0 �1
0 0 0 1

0 1 0 �bc

3
775 ; Bg D

2
664

0 0

cb 0

0 0

0 cc

3
775 :



4.5 Selection of Optimal Parameters 201

Fig. 4.26 Controlling a gyroscope suspended in an elastic suspension using optimal control
torques under action of kinematic excitements of base: (a) path of rotor axis, (b) angular velocities
of rotor axis in phase plane, (c) preset and realized path of gyroscope axis, (d) angular velocities
of gyroscope axes in phase plane

In order to ensure that the controlled gyroscope governed by (4.121) has stability
and a shortest transient process, as in the preceding section, we will introduce an
optimal control of the form

ug D �Kgxg; (4.122)

where

Kg D
�
k11 k12 k13 k14

k21 k22 k23 k24

	
:
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Similarly to the case of the gyroscopic system in an elastic suspension described
by state matrix (4.114a), the particular elements of gain matrix Kg satisfy the
following relationships for the analyzed case:

k11 D k23 D Nkb;
k12 D k14 D k22 D k24 D Nhg;
k21 D �k13 D Nkc: (4.123)

Substituting the gain coefficients (4.123) into (4.122), the correcting controls take
the form

ub D � Nkb#g C Nkc g � Nhg d#g
d�

; (4.124a)

uc D � Nkc#g � Nkb g � Nhg d g
d�

; (4.124b)

where

Nkb D kb

Igk˝2
; Nkc D kc

Igk˝2
; Nhg D hg

Igk˝
: (4.125)

Thus, the gyroscopic system in the closed system (4.121), including (4.124), is
reduced to a new form:

dxg
d�

D A�
gxg; (4.126)

where

A�
g D

2
664

0 1 0 0

� Nkb � Nhg � bb Nkc 1

0 0 0 1

� Nkc �1 � Nkb � Nhg � bc

3
775 : (4.127)

Henceforth, we will assume that friction in the suspension bearings is negligible,
i.e., bb D bc D 0. For a gyroscopic system like this, we will seek two more
parameters and relations between them for which the duration of the transient
process damping is the shortest. In this case, we will also apply the modified
optimization method of Golubientsev, whose algorithm is presented in Fig. 4.18.

We obtain the following system of equations and inequalities from the stability
conditions of Hurwitz and modified Golubientsev optimization method [25]:

Nkb > 0; Nkc > 0; Nhg > 0; (4.128)

2 Nkb � 1

2
Nh2g C 1 > 0; (4.129)
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Fig. 4.27 Graph of mutually
optimal relations of damping
coefficient of regulator hg ,
angular velocity ng , and gain
factor kb

Fig. 4.28 Graph of mutual
optimal relationships of gain
coefficient of regulator kc ,
angular velocity ng , and gain
coefficient kb

Nkc D 1

2
Nhg; (4.130)

1

16
Nh4g C 1

4
Nh2g � 1

2
Nh2g Nkb � Nhg Nkc C Nk2b C Nk2c > 0: (4.131)

Taking into account the condition of maximization of absolute value of a trace of
matrix A�

g yields

jTrA�
g j ! max: (4.132)
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Fig. 4.29 Graph of optimal relationships of regulator coefficients (a) hg , (b) kc vs. angular
velocity ng at different gain coefficient kb

Fig. 4.30 Graph of mutual optimal relationships of damping coefficient of regulator hg , angular
velocity ng , and moment of inertia Igo

From (4.129) we obtain the following value of the damping coefficient:

Nhg D
q
2C 4 Nkb: (4.133)

Substituting (4.133) into (4.130) we obtain

Nkc D 1

2

q
2C 4 Nkb: (4.134)
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Fig. 4.31 Graph of mutual optimal relationships of gain coefficient of regulator kg , angular
velocity ng , and moment of inertia Igo

Taking into account (4.125) we have

hg D
q
2I 2gon

2
g C 4Igkkb; (4.135)

kc D 1

2

q
2I 2gon

2
g C 4Igkkb � I

2
gon

2
g

Igk
: (4.136)

Thus, the coefficients Nhg and Nkc are uniquely determined as functions of the
gyroscope parameters Igo, Igk, ng and the coefficient Nkb , which should satisfy
the stability conditions, and technical constraints resulting from the strength of the
gyroscope.

The obtained relationships can be used to gyroscope control under conditions of
alternating angular velocity of eigenrotations (e.g., in some self-guided missiles or
target-seeking systems with a wide range of angular deviations of the gyroscope
axis). Then one needs to measure simultaneously ng.t/ and update the values of the
regulator coefficients hg and kc according to the relationships (4.135) and (4.136).
The coefficient kb is given in a programmable way and it allows for adaptive control
of the gyroscope.

Figures 4.27–4.31 graphically present the character of the relationships between
particular gyroscope parameters. In order to obtain these relationships, one assumed
that

Igk D Igo=2:
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Fig. 4.32 Results of gyroscope axis control using optimal regulator during tracking of fixed point:
(a) change of control torques as a function of time, (b, c) change in angular deviations as a function
of time, (d) path of gyroscope axis

Thus, if the system of conditions (4.128)–(4.133) is satisfied, then the transient
process of the gyroscopic system (4.121) will be damped during the shortest time
[22]. Figures 4.32 and 4.33 present the results of gyroscope axis control upon
tracking of a movable and fixed target using an optimal regulator of the coefficients
determined from relationships (4.135) and (4.136).

In comparison with the results presented in Figs. 4.12–4.16 we can observe a
significant improvement in the control quality of the gyroscope axis, i.e., consider-
able reduction of the duration of the transient process.

A gyroscope is a strongly non-linear system, which implies that errors of the
preset and performed motion are generated at large values of angular velocities and
deviations of the gyroscope axis. Therefore, when we apply program control within
the non-linear range and under the influence of disturbance of gyroscope operation,
it should also apply additional optimal control in a closed system.
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Fig. 4.33 Results of gyroscope axis control using optimal regulator during tracking of moving
point: (a) change in control torques as a function of time, (b, c) change in angular deviations as a
function of time, (d) path of gyroscope axis
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