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Preface

This is the third and final volume of a triad of books devoted to classical mechanics;
it uses the theoretical background presented in Classical Mechanics: Kinematics
and Statics and Classical Mechanics: Dynamics. It is focused on presenting
a unique approach, rooted in classical mechanics, to studying mechanical and
electromagnetic processes occurring in applied mechanics and mechatronics. In
contrast to the majority of books devoted to applied mechanics, this volume
places particular emphasis on theory, modeling, and analysis and control of
gyroscopic devices, including military applications. This book provides practicing
mechanical/mechatronic engineers and designers, researchers, and graduate and
postgraduate students with a knowledge of mechanics focused directly on advanced
applications.

Chapter 1 deals with dynamics in mechatronic systems. A unified approach based
on mechanics and variational calculus is applied first to the study of dynamical
processes in electromechanical systems, henceforth referred to as mechatronic
systems. In Sect. 1.1, the constitutive relations of elements of electric circuits such
as resistors, coils, capacitors, and inductors are introduced, and two of Kirchhoff’s
laws are presented in the form of two theorems. Then, the application of Hamilton’s
principle and the Lagrange equations to electrical (electromagnetic) systems is
described. An illustrative example is also presented. In Sect. 1.2, dynamical pro-
cesses in mechatronic systems are studied. The Lagrange equations for mechatronic
systems are derived. Then various mechatronic transducers are described, including
resistive-displacement transducers, resistance-based sensors, inductive transducers,
capacitive and angular velocity transducers, temperature transducers, thermocou-
ples, pressure transducers, magnetoelectric sensors and piezoelectric transducers.
A single mechatronic system is also studied, and the magnetic force magnitude
is derived. In Sect. 1.3, magnetic levitation is analyzed. A levitating cylindrically
shaped rigid body is studied experimentally, and the governing equations of the
body levitating in magnetic and gravitational fields are derived. Two cases of
the numerical control are studied, and the numerical examples are presented. In
Sect. 1.4, dynamics of the string-type generator is studied. Governing equations
consist of a PDE and ODE with time delay, and they are analyzed using the
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vi Preface

averaging approach and numerical simulation. Lastly, Sect. 1.5 studies the dynamics
of a rotor supported by a magnetohydrodynamic bearing. Both resonance and non-
resonance cases, as well as rotor chaotic dynamics are analyzed

In Chap. 2, the dynamics of a rigid spherical body is studied with emphasis put
on applications. In Sect. 2.1, the kinematics of a rigid body is revisited including
the Euler and Cardan angles. In Sect. 2.2, the kinematic energy of a rigid body is
defined and equations of the spherical motion of a rigid body are given. Here the
Euler and Lagrange cases are studied more extensively in comparison to the book
Classical Mechanics: Dynamics. The same applies to the Kovalevskaya case, and
the essence of the gyroscopic effect is outlined.

Chapter 3 is devoted to the theory of gyroscopes. In Sect. 3.1, an historical outline
of the theory of gyroscopes is given. In Sect. 3.2, elements of gyroscope classifica-
tion are introduced, and then the evolution of the gyroscope concept is presented.
Milestones in gyroscope development are highlighted in Sect. 3.4. In Sects. 3.5–
3.9, the following gyroscope-type devices are considered: the directional gyroscope,
the gyroscopic vertical, the stabilized gyroscopic platform, the laser gyroscope,
the fiber-optic gyroscope, the piezoelectric gyroscope, the fork gyroscope, and the
microgyroscope with a spinning disk and with a vibrating ring. Section 3.10 contains
examples of devices for gyroscopic navigation. An example of an observation device
with a built-in gyroscope is provided in Sect. 3.10. In Sect. 3.11, new challenges for
the gyroscope are briefly summarized.

Chapter 4 is devoted to the dynamics and control of gyroscopes. In Sect. 4.1, the
dynamics of the gyroscope on a movable platform is described. Then the equations
of motion of the gyroscope axis and the gyroscope rotor are derived. The particular
case of a static gyroscope placed on a fixed platform with the axis fixed to the rotor
is studied. Finally, a technical equation of gyroscope motion and some remarks
regarding the modeling of gyroscope dynamics are outlined. Gyroscope control
is presented in Sect. 4.2. First, an inverse problem of gyroscope dynamics, i.e.,
motion control of the gyroscope axis in an open-loop system is studied and a
numerical example is provided. Then, control with constant programmable moments
is discussed and clarified through an illustrative numerical example. Section 4.3
deals with motion control of the gyroscope axis in a closed-loop system. First, a
gyroscopic system with a PID controller is considered, and its stability is analyzed.
Then, a regulator whose role is to minimize errors between the prescribed and actual
motions is introduced into the gyroscope control system. In Sect. 4.4, selection of
optimal parameters of a gyroscopic system in an elastic suspension is carried out
and its optimal control is studied. Section 4.5 focuses on the selection of the optimal
parameters of a gyroscope system with an axis fixed to the rotor; this section also
includes the optimization of a classically controlled gyroscope.

In Chap. 5, gyroscopic control in self-guidance systems of flying objects is
presented. In Sect. 5.1, a gyroscope control in an unmanned aerial vehicle is studied.
First, the navigation kinematics of an unmanned aerial vehicle is analyzed, and then
the control of a gyroscope fixed on its board as well as its full control are discussed.
A gyroscope in a guided aerial bomb is studied in Sect. 5.2, which includes an
analysis of the kinematics of a bomb self-guided motion to a ground target, the
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equations of motion of a guided bomb, and a description of a gyroscopic system
devoted to bomb control including automatic pilot control.

The authors wish to express their thanks to Mr. P. Da̧bek and Mr. M. Kaźmierczak
for their help in the book’s preparation. J. Awrejcewicz acknowledges also the
hospitality of the Fraunhofer Institute of the Technical University of Darmstadt
during his research, made possible by the Alexander von Humboldt Award.

Kielce, Poland Zbigniew Koruba
Łódź, Poland Jan Awrejcewicz
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Chapter 1
Dynamics in Mechatronic Systems

Section 1.1 is devoted to the study of dynamical processes in electric circuits.
It includes derivations of the constitutive relations of elements of electric circuits
(capacitors, inductors) and describes current and voltage sources and Kirchhoff’s
law. Section 1.2 deals with dynamical processes in mechatronic systems (trans-
ducers) and the electromagnetomechanical circuit. In Sect. 1.3, the dynamics and
control of a mass levitating in magnetic and gravitational fields is discussed.
Two cases of numerical control are considered and verified experimentally. In
Sect. 1.4, combined analytical and numerical analyses of vibrations in string-type
generators is carried out. The vibrations of a string are governed by a PDE, whereas
the dynamics of an amplifier is governed by an ODE with a time delay. The
voltage generated on the string ends depends on both electromagnetic induction
and string vibration speed. An averaged set of equations is derived and numerically
studied. Finally, in Sect. 1.5, a 2-DOF nonlinear dynamics of a rotor supported
by a magnetohydrodynamic bearing is investigated using perturbation analysis.
Two modes corresponding to the vertical and horizontal vibrations of the rotor are
coupled. The non-resonant case and the various resonant cases (with and without
an internal resonance) are considered. Frequency-response curves are obtained.
When the amplitude of the external harmonic excitation is near one of the natural
frequencies of the vibrations and the system experiencing internal resonance, a
saturation phenomenon occurs. When the amplitude of the external excitation
increases, after some critical value the energy pumping between various submotions
of the rotor occurs for each mode. Further, it is shown that in the case of rigid
magnetic materials, hysteresis may be a cause of chaotic vibrations of the rotor.
Chaotic regions and the amplitude level contours of the rotor vibrations are obtained
in various control parameter planes.

J. Awrejcewicz and Z. Koruba, Classical Mechanics, Advances in Mechanics
and Mathematics 30, DOI 10.1007/978-1-4614-3978-3 1,
© Springer Science+Business Media, LLC 2012
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2 1 Dynamics in Mechatronic Systems

1.1 Dynamical Processes in Electric Circuits

In Sect. 1.1, to write equations of dynamics in mechatronic systems, we will make
use of the unified approach developed from mechanics and based on variational
calculus [1, 2]. It should be emphasized that such an approach is based on the
theory of the quasistatic electromagnetic field whose changes are slow enough to
neglect the interactions occurring between magnetic and electric fields. Electric
circuits consist of passive elements such as resistors, coils, and capacitors and active
elements such as voltage and current sources.

1.1.1 Constitutive Relations of Elements of Electric Circuits

1.1.1.1 The Capacitor

Figure 1.1a shows a schematic of a capacitor to whose plates the voltage U was
applied and an example of a constitutive function U.Q/ (Fig. 1.1b).

As the capacitor is charged, the charge Q is supplied to one of its plates and
removed from another. The change in the charge on the plates separated by a
dielectric produces the current flow

I D dQ

dt
� PQ: (1.1)

During charging, a potential difference appears between the plates of the
capacitor (voltage U ). An example of measurements of the voltage U and the
corresponding chargeQ in static conditions leads to the construction of graphU.Q/
(Fig. 1.1b).

Fig. 1.1 Schematic diagram of a capacitor (a) and a constitutive function U.Q/ (b)
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The electric energy gathered in the capacitor Ee.Q/ is equivalent to the work
done while charging it from value 0 to Q and is equal to

Ee.Q/ � W e.Q/ D
tZ

0

N edt D
tZ

0

UIdt D
QZ

0

U dQ; (1.2)

where N e D PW e is the power supplied to the system, and during transformations
(1.1) was used. The value of integral (1.2) corresponds to the area under the curve
U.Q/ in Fig. 1.1b. If in the neighborhood of the operating point A of the capacitor
we conduct the linearization, we obtain

Q D CU D C
dEe

dQ
; (1.3)

and integrating we have

Ee.Q/ D Q2

2C
: (1.4)

A complementary state function may be easily determined on the basis of
Fig. 1.1b, and it is equal to

Ee.Q/C Ee
c.I / D UQ; (1.5)

where Ee
c .I / is the so-called complementary energy.

Making use of the method described earlier it is easy to notice that

Ee
c .U / D CU 2

2
: (1.6)

1.1.1.2 The Inductor

It is widely known that if the current of intensity I flows through a conductor, then
around the conductor there is generated a magnetic field proportional to the intensity
of the flowing current. In turn, if the conductor is situated in the changing magnetic
field, then the voltage will be generated at its ends.

If the conductor is wound in turns so as to form a coil, then the generated
magnetic flux ˚ is proportional to the intensity of the current I flowing through
the coil. If we now put a ferromagnetic core inside the coil, then the density of the
magnetic flux is substantially increased.

According to Faraday’s law of induction, the voltage induced in a conductor is
equal to

U D d˚

dt
� P̊ : (1.7)
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Fig. 1.2 Schematic diagram of an inductor (a) and the graph of the constitutive function (b)

If we have an ideal conductor, then I D const (intensity of the current does
not change in time) and a magnetic flux ˚ D const. In this case, from (1.7) it
follows that U D 0 (the voltage in the conductor is not induced). If we perform
the linearization of the function I.˚/ (Fig. 1.2b) in the neighborhood of operating
point A, then

˚ D LI; (1.8)

where L is called the inductance.
As in the case of the capacitor, the magnetic energy stored in an ideal conductor

is calculated based on the knowledge of the power supplied to the conductor (to the
electric circuit) N e D UI , and it is equal to

Em.˚/ D
tZ

0

UIdt D
Z̊

0

Id˚: (1.9)

On the basis of the method described earlier we calculate the magnetic energy
Em.˚/ and complementary magnetic energy Em

c .I / of the forms

Em.˚/ D ˚2

2L
; Em

c .I / D LI2

2
; (1.10)

where

I D dEm

d˚
: (1.11)

It is easy to notice that

Em.˚/C Em
c .I / D ˚I: (1.12)
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Fig. 1.3 Ideal voltage source (a) and ideal current source (b)

1.1.1.3 Current and Voltage Sources and Kirchhoff’s Laws

An ideal voltage source is a source that produces the voltage U D U.t/ in a
conductor (an electric circuit) and is not affected by the current flowing in the
conductor (the circuit). During the composition of Lagrange’s equations voltages
will be treated as generalized forces.

In turn, a source that in a conductor produces the current intensity I D I.t/ and
is not affected by the voltage in the conductor (the electric circuit) is called an ideal
current source.

During composition of Lagrange’s equations the current intensity I.t/ D PQ.t/
in a dissipation function D is taken with a negative sign because it is the active
element supplying the energy.

Figure 1.3a, b shows a schematic of the ideal voltage (current) source.
Voltage-current characteristics corresponding to Fig. 1.3a, b are respectively

described by the equations

U0 D U CRI; (1.13)

RI0 D U D RI: (1.14)

It turns out that the development of contemporary electronics allows for the
construction of almost ideal voltage and current sources.

If we now connect together the active elements (sources) and the passive ones
(resistors, coils, and capacitors), then we will impose certain constraints on the
variables describing the processes in the isolated, i.e., considered individually,
elements (conductors or circuits). Such constraints imposed on electric systems are
known as Kirchhoff’s laws.

Theorem 1.1 (Kirchhoff’s current law). The sum of currents entering and leav-
ing an arbitrary node of an electric circuit must be equal to zero (the conservation
of electric charge).
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Theorem 1.2 (The Kirchhoff’s voltage law). The sum of voltage drops on each
element along a closed subcircuit (loop) must be equal to zero (meaning that the
electric potential at any point in the circuit is independent of the choice of the path
leading to that point).

There are many books (and other publications) devoted to the methods of
composition of equations describing current processes in electric circuits based
on Kirchhoff’s law (the so-called direct methods), and they will not be described
in this textbook. Mainly, the indirect (variational) methods originating in classical
mechanics will be used here.

1.1.2 Application of Hamilton’s Principle and Lagrange’s
Equations to Electrical Systems

There exist two possibilities for formulating Hamilton’s principle for electromag-
netic systems by different choices of generalized coordinates.

In the first case as generalized coordinates we will choose the chargeQn and the
current intensity In. The general equation of mechanics allows, by analogy, for a
direct formulation of the general equation of electromagnetic systems of the form

NX
nD1

�
Un � d˚n

dt

�
ıQn D 0; (1.15)

where nowN denotes the number of elements of an electric circuit. In turn, the first
component of (1.15) will be represented in the form

NX
nD1

UnıQn D �ıEe C
N�X
n�D1

Un�ıQn�; (1.16)

where Un� denotes generalized voltages associated with the n�th non-conservative
element.

In the preceding equation there is a distinction made between the fraction of
the work (the energy) done by an element of conservative electrical circuit Ee

and that done by N � non-conservative elements associated with the generalized
coordinatesQn� .

The minus sign in front of ıEe means that the application of voltage to a
conservative element results in a decrease of electrical energy inside this element.
In turn, the second component of (1.15) will be transformed in the following way:

�
NX
nD1

d˚n
dt
ıQn D �

NX
nD1

d

dt
.˚nıQn/C

NX
nD1

˚n
d .ıQn/

dt
: (1.17)
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Since according to (1.1) and (1.11) we have

NX
nD1

˚n
d

dt
ıQn D

NX
nD1

˚nıIn D ıEm; (1.18)

taking into account the obtained result in the integrated (1.15) we have

S D
t2Z

t1

2
4�ıEm � ıEe C

N�X
n�D1

Un�ıQn� �
NX
nD1

d

dt
.˚nıQn/

3
5 dt

D
t2Z

t1

2
4�ı �Em C Ee�C

N�X
n�D1

Un�ıQn�

3
5 dt �

NX
nD1

Œ˚nıQn�
t2
t1

D
t2Z

t1

2
4�ı �Em C Ee�C

N�X
n�D1

Un�ıQn�

3
5 dt

D
t2Z

t1

2
4�ıLC

N�X
n�D1

Un�ıQn�

3
5 dt D 0; (1.19)

because, according to Hamilton’s principle, the underlined term is equal to zero,
since ıQn.t1/ D ıQn.t2/ D 0. In (1.19), L D Em C Ee, and it denotes the
Lagrangian function.

In other words, according to Hamilton’s principle, the dynamic equilibrium of a
physical system is realized by the system by means of the choice of the extremal
value of the action between the states of the system at time instants t1 and t2. The
extremal value of the action in an electric circuit according to Hamilton leads to
(1.19) for all possible and permitted changes of the charge ıQn during the transition
between the states of the system determined at time instants t1 and t2 and such that
ıQn.t1/ D ıQn.t2/ D 0.

According to the notation introduced earlier, Em in the equation denotes the
magnetic energy in the circuit, that is, it is the sum of all energies of the individual
conductors in the circuit expressed in terms of the current intensity I . In turn, Ee

denotes the electric energy of the circuit, which is the sum of electric energies of all
individual conductors in the circuit related to the charge Qn. The possible current
and charge intensities are allowed if they satisfy Kirchhoff’s law and additionally
In D dQn

dt . The expression
PN�

n�D1 Un�ıQn� represents the virtual work of non-
conservative elements of the circuit. Let us now proceed to the second way to
formulate Hamilton’s principle for electromagnetic systems, that is, now we will
choose as generalized coordinates the magnetic flux ˚n and the voltage Un.
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Similarly to the previous case, the general equation of mechanics allows for the
formulation of equation dual to (1.15) of the form

NX
nD1

�
In � dQn

dt

�
ı˚n D 0; (1.20)

where N denotes the number of circuit elements.
The first component of (1.20) will be represented as

NX
nD1

Inı˚n D �ıEm C
N�X
n�D1

In�ı˚n� ; (1.21)

where Em denotes the magnetic energy of all elements in the circuit, whereas the
second term on the right-hand side of (1.21) denotes the work associated with non-
conservative elements of the circuit related to the generalized current intensities In�

and magnetic fluxes ˚n� , and N � denotes the number of independent coordinates
of magnetic fluxes.

The second component of (1.20) has the form

�
NX
nD1

dQn

dt
ı˚n D �

NX
nD1

d

dt
.Qnı˚n/C

NX
nD1

Qn

d

dt
.ı˚n/: (1.22)

Because according to (1.7) and (1.2) we have

NX
nD1

Qn

d

dt
ı˚n D

NX
nD1

Qnı

�
d˚n
dt

�
D

NX
nD1

QnıUn D ıEe; (1.23)

taking into account (1.23) in integrated (1.20) and taking into account (1.21) and
(1.22) we obtain

S D
t2Z

t1

2
4�ıLC

N�X
n�D1

In�ıQn� �
NX
nD1

d

dt
.Qnı˚n/

3
5 dt

D
t2Z

t1

2
4�ıLC

N�X
n�D1

In�ıQn�

3
5 dt D 0; (1.24)

because, according to Hamilton’s principle, the underlined term becomes zero (since
we have ı˚n�.t1/ D ı˚n�.t2/ D 0).

In (1.24), Ee is the electric energy of the circuit that is the sum of all energies of
the individual elements (the conductors) and expressed in terms of the voltage Un.
In turn, Em is the function of magnetic energy of the circuit that is the sum of the
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magnetic energies of all its conductors. The Lagrangian functionL D Em �Ee and
the adopted generalized coordinates, that is, the voltage Un and the magnetic flux
˚n, will be allowed if they satisfy Kirchhoff’s law Un D d˚n

dt .
From Hamilton’s principle follow directly Lagrange’s equations (see Chap. 3

of [3]). We will derive two elementary forms of Lagrange’s equations of the
second kind in relation to generalized coordinates Qn (the charge) and ˚n (the
magnetic flux).

In the first case, according to (1.19), the Lagrangian of the electrical system is
equal to

L D Em. PQn/CEe.Qn/; n D 1; : : : ; N; (1.25)

where N denotes the number of generalized coordinates. Work done by non-
conservative elements can be expressed by independent generalized coordinates
Qn� in the following way:

N�X
n�D1

U �
n�ıQn� D

NX
nD1

UnıQn; (1.26)

and Lagrange’s equations of the second kind in this case take the forms

d

dt

�
@L

@ PQn

�
� @L

@Qn

D Un; n D 1; : : : ; N; (1.27)

where Un is the generalized voltage corresponding to the generalized charge Qn.
Non-homogeneous Lagrange (1.27) after the introduction of a dissipation function

D. PQ/ D R PQ2

2
(1.28)

will take the form of homogeneous equations

d

dt

�
@L

@ PQn

�
C @D

@ PQn

� @L

@Qn

D 0 (1.29)

because

Un D � @D

@ PQn

: (1.30)

In the second case, according to (1.24), the Lagrangian of the electrical system
is equal to

L D Em. P̊
n/� Ee.˚n/; n D 1; : : : ; N; (1.31)



10 1 Dynamics in Mechatronic Systems

Fig. 1.4 A resistor R as an
example of a
non-conservative conductor

where n D 1; : : : ; N denotes independent generalized coordinates of magnetic
fluxes. In this case the work done by non-conservative elements is expressed by

N�X
n�D1

I�
n�ı˚n� D

NX
nD1

Inı˚n; (1.32)

where In is the generalized current intensity corresponding to the generalized
magnetic flux ˚n� , or by the dissipation function D, which will be shown on
examples. Lagrange’s equations for this case take the form

d

dt

�
@L

@ P̊
n

�
C @L

@˚n
D In; n D 1; : : : ; N: (1.33)

Non-homogeneous Lagrange (1.33), following the introduction of a dissipation
function

D. P̊ / D
P̊ 2
2R
; (1.34)

will take the homogeneous form

d

dt

�
@L

@ P̊
n

�
C @D

@ P̊ � @L

@˚n
D 0; (1.35)

because

In D �@D
@ P̊ : (1.36)

Finally, let us consider virtual work done on a non-conservative element (a
resistor R) with the application of two different generalized coordinates, that is,
the chargeQ and the magnetic flux ˚ (Fig. 1.4).
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Work done on the non-conservative element can be positive (supplied energy) or
negative (removed energy). In the case of the resistor shown in Fig. 1.4, the virtual
work can be expressed in two ways:

(a) By the generalized charge

UıQ D �RIıQ D �R PQıQI (1.37)

(b) By the generalized magnetic flux

Iı˚ D �U
R
ı˚ D �

P̊
R
ı˚; (1.38)

where in both cases the minus sign denotes energy losses.

In the case of an ideal voltage generator, the voltage variation and, consequently,
the variation of the flux change in time is equal to zero, and in this case virtual work
can be expressed only in one way, that is, in terms of the variation of generalized
charge of the form

UıQ D U�ıQ�; (1.39)

where the voltage of an ideal generator is denoted by U�.
In turn, in the case of an ideal current intensity generator, the virtual work can be

expressed only by changes in the generalized magnetic flux ˚ , and it is equal to

I.t/ı˚ D I�.t/ı˚; (1.40)

because in this case ıI D 0.

Example 1.1. Derive equations of dynamics of electromagnetic processes in the
circuit presented in Fig. 1.5 by means of the two methods described earlier.

(a) We choose chargesQ1 andQ2 as generalized coordinates. The circuit is divided
into two loops in which flow the currents In.t/ D PQn.t/, n D 1; 2. However,
these two generalized coordinates are dependent since

PQ2 D PQ1 C PQ0;

where PQ0 D I.t/.
Lagrange’s (1.29) in this case takes the form

d

dt

�
@Em

@ PQ1

�
C @D

@ PQ1

� @Ee

@Q1

D 0;
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Fig. 1.5 Electric circuit
constructed from two
capacitors C1 and C2,
resistors R1 and R2, an
inductor L, and ideal current
generator I.t/

where

Em D 1

2
L PQ2

1; Ee D Q2
1

2C1
C Q2

2

2C2
; D D 1

2
R1 PQ2

2 C 1

2
R2 PQ2

1:

We successively calculate

@Em

@ PQ1

D L PQ1;
d

dt

�
@Em

@ PQ1

�
D L RQ1;

@Ee

@Q1

D Q1

C1
C Q1 CQ0

C2
D Q1

�
C1 C C2

C1C2

�
C Q0

C2
;

@D

@ PQ1

D .R1 CR2/ PQ1 CR1 PQ0;

and eventually obtain

L RQ1 C .R1 CR2/ PQ1 C C1 C C2

C1C2
Q1 D �RI.t/� 1

C2

tZ

0

I.t/dt:

(b) We choose magnetic fluxes ˚n for n D 1; 2; 3 as generalized coordinates.
Lagrange’s equations (1.35) in this case take the form

d

dt

�
@Ee

@ P̊
n

�
C @D

@ P̊
n

� @Em

@˚n
D 0; n D 1; 2; 3;
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where

Ee D C1

2

� P̊
2 � P̊

1

�2 C C2

2

� P̊
3 � P̊

2

�2
; Em D ˚2

1

2L
:

D D
P̊ 2
1

2R
C

P̊ 2
3

2R2
�

P̊ 2
2

2

P̊
2 D I.t/

We successively calculate

@Ee

@ P̊
1

D �C1
� P̊

2 � P̊
1

�
;

@Ee

@ P̊
2

D .C1 C C2/ P̊
2 � C1 P̊

1 � C2 P̊
3;

@Ee

@ P̊
3

D C2
� P̊

3 � P̊
2

�
;

@Em

@˚1
D ˚1

L
;

@D

@ P̊
1

D
P̊
1

R
;

@D

@ P̊
2

D �I.t/; @D

@ P̊
3

D
P̊
3

R2
:

Eventually, from Lagrange’s equations we obtain the following differential
equations:

R̊
1 � R̊

2 C
P̊
1

R1C1
C ˚2

C1L
D 0;

�C1 R̊
1 C .C1 C C2/ R̊

2 � C2 R̊
3 D I.t/;

� R̊
2 C R̊

3 C
P̊
3

R2C2
D 0:

As results we obtained the system of three non-autonomous linear differen-
tial equations, so the problem is more complex than it was in (a).

1.2 Dynamical Processes in Mechatronic Systems

Differential equations describing dynamical processes in mechatronic systems can
be derived from one of Hamilton’s principles, which for cases of mechanical and
electrical systems was described respectively in Chaps. 3 and 4 of [3].

If we number independent mechanical generalized coordinates qk using index
k (K in total) and independent electrical generalized coordinates Qn or ˚n using
index n (N in total), and if for the description of the electrical system as generalized
coordinates we take charges Qn, then the Lagrangian of a mechatronic system
(mechanical and electrical) will take the form
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L
�
qk; Pqk;Qn; PQn

� D Tc C Em � V �Ee: (1.41)

The preceding equation describes the energy of conservative mechatronic sys-
tems, and the energy of non-conservative mechatronic systems is equal to

ıW D
KX
kD1

QF
k ıqk C

NX
nD1

UnıQn; (1.42)

where QF
k denote generalized forces in the mechanical part of a mechatronic

system.
Lagrange’s equations in this case take the form

d

dt

�
@L

@qk

�
C @D

@ Pqk � @L

@qk
D Qk; k D 1; : : : ; K; (1.43)

d

dt

�
@L

@ PQn

�
� @L

@Qn

D Un; n D 1; : : : ; N; (1.44)

where Qk in (1.43) denotes the generalized force (moment of force), Qn in
(1.44) the generalized charge as a generalized coordinate, and D the mechanical
dissipation function.

If for the description of the electrical part we take as generalized coordinates the
magnetic fluxes ˚n, then the Lagrangian of conservative elements of a conservative
mechatronic system is equal to

L
�
qk; Pqk; ˚n; P̊

n

� D Tc C Ee � V � Em: (1.45)

Variation in the work of non-conservative elements of a mechatronic system is
equal to

ıW D
KX
kD1

Qkıqk C
NX
nD1

Inı˚n: (1.46)

In this case, Lagrange’s equations have the form

d

dt

�
@L

@ Pqk
�

C @D

@ Pqk � @L

@qk
D Qk; k D 1; : : : ; K; (1.47)

d

dt

�
@L

@ P̊
n

�
� @L

@˚n
D In; n D 1; : : : N: (1.48)

In Lagrange’s equations associated with the mechanical part of the system
described by (1.43) and (1.47), particular components of the Lagrangian were al-
ready described earlier in Chap. 3 of [3], whereas particular components associated
only with the electrical part are described subsequently in this chapter.
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1.2.1 Mechatronic Transducers

Important components of mechatronic systems are transducers of different types
that transform electrical energy into mechanical energy and vice versa.

In applications, we deal with various transducers transforming one kind of
energy into completely other kinds. This takes place especially in the metrology
of mechanical quantities, where various dynamical processes are measured with
electrical methods. Then the mechatronic transducer plays the role of a sensor; it is
possible to distinguish two types of sensors.

Changes in mechanical processes generate in modulating sensors (passive
sensors) changes in electrical quantities such as voltage, resistance, capacitance,
inductance, current intensity, frequency of current, or phase shift.

One may distinguish the following modulating sensors:

(a) Resistive (resistance of the sensor depends on its geometry).
(b) Thermometric (resistance of the sensor depends on its temperature).
(c) Photoelectric (energy of radiation changes the sensor’s resistance).
(d) Inductive (induction of the sensor depends on its geometry).
(e) Magnetoelastic (magnetic permeability of a ferromagnetic material depends on

mechanical stress).
(f) Capacitive (capacitance of the sensor depends on its geometry, configuration of

electrodes, and permittivity of the medium).

The second type of sensor includes self-generating sensors (active sensors)
such as

(a) Dynamic (here the phenomenon of electromagnetic induction is used).
(b) Thermoelectric (here the phenomenon of generation of a thermoelectric force

resulting from temperature difference is used).
(c) Piezoelectric (here the piezoelectric effect is used).

Later we will describe briefly some sensors that transform mechanical energy
into electrical energy and vice versa, all the while focusing on the derivation of
approximate mathematical models of such simple mechatronic systems.

1. Resistive Displacement Transducers
Resistive displacement transducers transform linear or rotational displacement
into constant or variable voltage of the current as a result of changes in
resistance caused by the displacement. Figure 1.6 shows a schematic of such
a transducer with linear displacement.

According to Fig. 1.6 we have

I D I1 C I2; R1 CR2 D R0; R1=R0 D x=l0;

I1R1 D I2R3; U3 D R3I2; U0 D I1R2 C I2R3: (1.49)
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Fig. 1.6 Schematic diagram
of a resistive linear
displacement transducer

From the preceding equation we determine

U3 D U0
R1

R0
(1.50)

or, in equivalent form,

U3 D U0
x

l0
: (1.51)

This means that the input signal x is proportional to the voltage U3 measured
on the resistor R3.

2. Resistance-based Sensors
Resistance of a sensor is described by the equation

R D �l

A
; (1.52)

where � is the resistivity of the conductor material, l its length, and A its cross
section. Resistance-based sensors include carbon sensors, fluid sensors, strain
gauges, and others.

In the mechanics of deformable bodies for the measurement of stresses
and displacements, strain gauges are commonly applied. If we glue a strain
gauge onto the mechanical element being loaded, then, under the influence of
stress, it changes its geometrical dimensions, and thus its resistance R changes
according to (1.52).
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Applying the logarithm function to both sides of (1.52), and then differentiat-
ing, we obtain

dR

R
D d�

�
C dl

l
� dA

A
: (1.53)

Introducing a deformation sensitivity coefficient

˛ D dR

R

�
dl

l
; (1.54)

from (1.53) we obtain

˛ D 1C 2� C �r

"
; (1.55)

where

� D �1
2

�
dA

A

���
dl

l

�
; �r D d�

�
; " D �l

l
: (1.56)

According to Hooke’s law for a unidirectional state of deformation we have

" D F

EA
; (1.57)

where E is Young’s modulus of the resistive material and F is a tensile
(compressive) force.

From (1.55), taking into account (1.54), (1.56), and (1.57), and replacing
the differential operator with increment�, we obtain

�R

R
D F

A

˛

E
D C�; (1.58)

where � D F=A is the stress and C D ˛=E is constant for the given
tensometer.

From (1.58) it follows that the relative change in resistance of the strain
gauge is proportional to the change of stress existing in the sensor (the
resistance wire).

3. Inductive Transducers
The operation of inductive transducers relies on changes in inductive resistance
during the displacement of an armature Z outside the ferromagnetic core R,
which is shown in Fig. 1.7.

If we take the displacement x for the input quantity, then through the coils
of inductance L (according to Ohm’s law) in the electric circuit will flow the
current of intensity

I D U

RL
D Uq

R2 C .!L/2
; (1.59)

whereRL is the inductive resistance and !L the inductive reactance of the coil.
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Fig. 1.7 Schematic diagram
of an inductive transducer (a)
and function I.x/ (b)

Fig. 1.8 Schematic diagram
of a capacitive transducer of
linear displacement (a) and
angular displacement (b)

The inductance of the coil is equal to

L Š 0:2�N 2A

X
10�8; (1.60)

where A denotes the cross-section area of the magnetic field and N is the
number of turns of the coil winding. In practice R � !L, and in view of
that RL Š !L. According to (1.59) we obtain

I.t/ D Ux

0:2�N 2A!
108 � Cx.t/; (1.61)

where C is a constant characteristic for the given inductive sensor.
From (1.61) it follows that the current flowing in the coil winding is

proportional to the air gap, and the ammeter measuring current intensity I can
be calibrated directly in the units of gap length.

4. Capacitive Transducers
In a capacitive transducer, the input quantity is linear or angular displacement,
and the output quantity is electrical capacitance (Fig. 1.8)

In the case of the schematic in Fig. 1.8a, the relationship C.x/ is described
by the following equation:

C D "A

4�x
; (1.62)
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Fig. 1.9 Transducer for measurement of angular velocity !

where � is a dielectric constant, A denotes the active area of the capacitor, and
x is the distance between capacitor plates.

In the case of the schematic from Fig. 1.8b we have

C D "A

4�d

�
1 � ˛

�

�
; (1.63)

where d is the distance between the rotor plates of the capacitor.
Capacitive sensors allow for a change in the capacitance not only by changes

in the distance between plates (Fig. 1.8a) but also by changes in the active
area of the capacitor plates or by the application of different dielectrics,
e.g., air, or a layer of material of a different dielectric constant between the
plates of the capacitor. Changes in mechanical quantities are registered through
changes in the capacitance and then measured in an electrical measuring
system. Capacitive sensors are characterized by a small force required for the
displacement of the moving electrode of the sensor. Moreover, they enable
contactless measurement and possess a small moving-electrode mass and large
sensitivity.

5. Angular Velocity Transducers
An angular velocity transducer (Fig. 1.9) can be a mechanical part of a system,
but, as distinct from the problems of the mechanics of a rigid body described so
far, here we address the mechanics of fluid flow (a hydraulic transducer or gas
flow transducer).

The measured angular velocity of shaft 3 is transmitted onto a paddle mixer
1 connected to casing 2. The pressure of a gas or liquid p0 entering the working
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Fig. 1.10 Two conductors
joined together (the
thermocouple) and four
thermoelectric forces

part of the angular velocity sensor passes through the paddle mixer, and at a
hole in the casing the pressure p is seen, described by the equation

p D p0 C �

2g
!2
�
r22 � r21

�
; (1.64)

where � is the density of the medium
6. Temperature Transducers

In this case, the change in resistance of a conductor R� is associated with a
change in temperature� according to the equation

R	 D R0 .1C ˛ .	 � 	0// ; (1.65)

where R0 is the resistance of the conductor at temperature �0. The coefficient
˛ŒıC�1� for iron is equal to 0:002–0:006, for aluminium 0:0045, and for carbon
0:0007.

Such a direct temperature measurement using temperature sensors called
thermometers can span a range from �170ıC to 700ıC.

Also in use are thermistors, that is, semiconductors of large temperature
coefficients of resistance. The dependency of resistivity (a specific resistance)
of a thermistor on temperature is described by the equation

�	 D �0e
.˛=	�˛=	0/; (1.66)

where �0 and �� are the resistivities of a resistor corresponding to tempera-
tures �0 and � measured in degrees Kelvin, and ˛ is a constant (�4; 000).
Thermistors are used to measure temperature in a range of 60ıC–120ıC with
an accuracy of up to 0:0005ıC.

7. Thermocouples
Thermocouples are used in various kinds of automatic control systems for
the measurement of temperature. A thermocouple consists of two conductors,
welded together, of different properties of resistance change vs. the measured
temperature, e.g., one electrode is made of pure platinum and the other is an
alloy of platinum .90%/ and rhodium .10%/. Such thermocouples can be used
to measure temperatures reaching up to 1;600ıC.

If two metals 1 and 2 are joined together (Fig. 1.10) and their points of contact
A1 and A2 are at different temperatures �1 and �2, then four thermoelectric
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Fig. 1.11 A thermocouple
.1; 2/ forming a circuit with
metal 3

forces e will appear in the closed circuit. “Cold” ends of the thermocouple are
connected to the system of potentiometers, and the “hot” end is in contact with
a medium (an element) whose temperature is to be measured.

Undesirable changes in ambient temperature affecting the cold ends of a
thermocouple are compensated by introducing a bridge with a thermometer Rt
that measures the temperature of the cold ends.

The force TEPi is the Peltier thermoelectric force at the junction Ai and the
force TETi is the Thomson thermoelectric force in the wire i .i D 1; 2/. The
net thermoelectric force is equal to

TE D TEP1 � TEP2 C TET2 � TET1: (1.67)

Because of difficulties in the identification of particular Peltier and Thomson
thermoelectric forces, the following equation is used:

TE D TE .	1/� TE .	2/ ; (1.68)

where TE.�1/ is the thermoelectric force at point A1 (temperature �1) and
TE.�2/ is the thermoelectric force at point A2 (temperature�2).

In practice two metals 1 and 2 are used for temperature measurement by
means of their connection to a meter (e.g., a millivoltmeter). In this way, an
additional metal 3 is introduced into the circuit, and the measuring wires and
internal circuit of the meter are made of this third metal (Fig. 1.11).

The thermoelectric force in the circuit shown in Fig. 1.11 is equal to

TE D TE12 .	1/C TE23 .	0/C TE31 .	0/ : (1.69)

Because for� D �0 we have TE.�0/ D 0, from (1.69) we obtain

TE23 .	0/C TE31 .	0/ D �TE12 .	0/ : (1.70)

Substituting (1.70) into (1.69) we obtain

TE D TE12 .	1/� TE12 .	0/ : (1.71)
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Fig. 1.12 Swing system applied to temperature measurement

The preceding equation holds on the condition that the introduction of a third
metal into the system composed of metals 1 and 2 does not affect the value
of the net thermoelectric force and both ends of metal 3 are at the same
temperature.

The oldest, simplest, and the most commonly used system of thermoelectric
thermometer in industry is the schematic of the so-called swing thermometer
shown in Fig. 1.12.

In the schematic in Fig. 1.12, 1 and 2 denote thermoelements, 10 and 20
are compensating wires, Rw is the compensating resistor (selected in such a
way that the external resistance of the meter Rz D Rzn, where Rzn is the
nominal resistance of the meter, calibrated in degrees Celsius), and M is a
millivoltmeter. The millivoltmeterM measures the voltageU , which is equal to

U D ET
Rm

Rz CRm
; (1.72)

Rz D R12 CR1020 CR3 CRw; (1.73)

where R12 is the resistance of thermoelements 1 and 2, R1020 is the resistance
of compensating wires 10 and 20, R3 is the resistance of connecting wires 3,
and ET denotes the thermoelectric force of a thermoelement at the measured
temperature�1 and reference temperature�0.

8. Pressure Transducers
Transducers for pressure measurement can be divided into two types. The first
type includes transducers whose principal working elements are mechanical
elastic elements, the deformations of which are transformed into electrical
signals using capacitive elements, inductive elements, or strain gauges.

The second type includes transducers where the main working elements are
magnetoelastic cylinders.

Figure 1.13 shows examples of sensors of the first type for measurement of
pressure of a flowing gas (a) and liquid (b).

The bellows sensor for pressure measurement of a gas consists of a tube
of undulating shape (a bellows) 1, a rack 2, and a pinion 3 connected to
the terminal of the potentiometer 4. The pressure p causes stretching of the
bellows 1 and displacement of the rack 2, and consequently a change in position
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Fig. 1.13 Schematic diagram of pressure sensor of a flowing gas (a) and flowing liquid (b)

of the potentiometer terminal, which leads to a change in output voltageUw. On
the assumption that the relationshipUw.p/ is linear, the equation connecting the
output voltage and the pressure has the form

Uw D ˛p; (1.74)

where ˛ is a proportionality factor. Displacement of the rack x can be
determined after solution of the following second-order differential equation:

M Rx C c Px C kx D Ap; (1.75)

where M denotes the mass of moving parts of the sensor, c is the viscous
damping coefficient, k denotes bellows stiffness, andA is the cross-section area
of the bellows. The problem can be reduced to a model of second-order inertial
elements of the form (see Chap. 6 of [3])

T 2 Rx C 2�T Px C x D ˛p; (1.76)

where T D
q

M
k

, � D c

2
p
kM

, ˛ D A
k

, and the right-hand side of this equation

is equal to Uw [see (1.74)].
Equation (1.76) describes also the dynamics of the meter from Fig. 1.11b,

and in this case the bellows is filled up with a liquid.
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Fig. 1.14 Magnetoelastic
element of a pressure sensor

9. Magnetoelastic Sensors
In Fig. 1.14 the schematic of a magnetoelastic element of a (second type)
transducer for pressure measurement is shown.

Axial forces acting on a ferromagnetic element cause a change in the
magnetic permeability of this element. The steel pipe 1 was covered with a pipe
made of invar alloy. Inside was placed a choking coil 3. The pressure p causes
expansion of the pipe 2, which leads to a change in the magnetic permeability of
invar �, which in turn affects the value of self-inductance of the coil according
to the equation

L D 0:4�N 210�8 �A
l
; (1.77)

where N is the number of coil turns, A denotes the cross-section area of the
invar pipe, and l is its length. The coil is connected to a bridge, and the change
in inductance of the coil results in a change in current intensity proportional to
the pressure magnitude.

The measuring ammeter can be directly calibrated in units of force. Magne-
toelastic sensors are also used for the measurement of large static and dynamic
forces. The magnetoelastic effect apart from the aforementioned invar is also
characteristic of nickel, permalloy, and iron.

10. Piezoelectric Transducers
The piezoelectric effect discovered in 1880 by Marie and Pierre Curie consists
in the generation of electric charges on faces of crystals loaded with tensile or
compressive forces (e.g., quartz, Seignette’s salt, or barium titanate).

In Fig. 1.15 the frequency response of a piezoelectric sensor is shown.
Because the force acting on a sensor plate is usually produced by a moving

element of mass m, the signal obtained from the sensor is proportional to the
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Fig. 1.15 Frequency
response of a piezoelectric
sensor

Fig. 1.16 Measurement of
flow energy losses by means
of piezoelements

acceleration of this element. The operating range of the sensor is 1–300 Hz, and
the resonance frequency of this sensor is equal to about 30 kHz.

Piezoelectric sensors have a very wide range of application for the measurement
of frequency and acceleration. Their disadvantage is the requirement of dynamic
calibration.

The application of piezoelectric transducers is broad, but here we will limit
ourselves to determining the loss of energy of fluid flow on the basis of determining
the difference in propagation velocity of ultrasonic vibrations. Figure 1.16 shows a
schematic of measurement of energy loss of the fluid flowing in pipe 3 with velocity
� between two piezoelements 1 and 2 separated by distance l .

The generator G and the phase amplifier are alternately switched in by a
commutator K in such a way that the piezoelements act at first as transmitters
(radiators) and then as receivers of energy.

The instantaneous voltage of the radiating piezoelement

U1 D U10 sin!t; (1.78)
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and the instantaneous voltage on the receiving piezoelement is equal to

U2 D U20 sin! .t � T / ; (1.79)

where T denotes the time it takes the ultrasonic wave to cover distance l .
The phase difference between a steady-state vibration regime (when the medium

is stationary) and vibration of a fluid is equal to

�'1 D l!

c � v
; (1.80)

and the difference between the standard vibration and a vibration whose sense is
opposite to the velocity of the fluid � is equal to

�'2 D l!

c C v
; (1.81)

where c is the velocity of propagation of ultrasound in the fluid and � is the velocity
of the fluid.

The phase difference is equal to

� D �'1 ��'2 D 2!lv

c2 � v2
Š 2!lv

c2
(1.82)

for c � �. The voltage of the piezoelement will be inversely proportional to
velocity, that is,

U1 D ˛

c C v
; U2 D ˛

c � v
; (1.83)

where ˛ is a proportionality factor. The values of current intensities in the amplifier
are equal to

I1 D ˛1 .c C v/

˛
; I2 D ˛1 .c � v/

˛
; (1.84)

hence we calculate

�I D I1 � I2 D ˇv; (1.85)

where ˇ D 2˛1
˛

is a proportionality factor. From this the conclusion follows that for
a constant volume of the pipe through which the fluid flows, losses of the flow will
be proportional to the velocity of the flowing fluid.

1.2.2 Magnetic Force in a Single Mechatronic System

This problem was already partly considered in the section concerning inductive
transducers. Let the single mechatronic system consist of a magnet core (1) with
wounded coil of N turns (2), and armature (3), shown in Fig. 1.17.
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Fig. 1.17 Schematic diagram
of a magnetic circuit in
system of core (1), armature
(3), and two air gaps

Fig. 1.18 B.H/ dependency
for ARNON material used for
transformer plates

The aim of these considerations is the determination of a magnetic force that
attracts the armature (3) to the electromagnet (1) as a function of the current intensity
I in the coil, the width of the air gap x, the cross-section area of core A, the length
of the ferromagnetic part of the magnetic circuit lr , and the number of turns of coil
winding N . We will neglect the hysteresis phenomenon in the core and assume the
magnetic permeability of the air to be equal to magnetic permeability of vacuum.
The magnetic inductionB.T / generated in the circuit depends on the magnetic field
HŒA=m�, for example, as presented in Fig. 1.18.

Let us note that the function B.H/ is bijective, making it is easy to build the
inverse function H.B/. The aforementioned non-linear functions can be described
after the introduction of relative permeability � D �.B/ or � D �.H/, and the
function B.H/ takes the form

B D �.H/�0H; (1.86)
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Fig. 1.19 Example of �.H/
dependency for ARNON
material

where �0 is the vacuum permeability and is equal to �0 D 4� �10�7 Œ Vs
Am �. A sample

plot of the function �.H/ is shown in Fig. 1.19.
Let us note that limH!1 �.H/ D 1. From Kirchhoff’s voltage law for a

magnetic circuit from Fig. 1.18 we obtain

I.t/ D .2Rsz CRr/˚ .t/

N
(1.87)

Rsz D x

�0A
; Rc D lr

�0�A
; (1.88)

where Rsz .Rr/ denotes respectively the reluctance of two air gaps (reluctance of
the ferromagnetic core and the armature) and ˚ D ˚ŒTm2� is the magnetic flux,
assumed to be uniform at each point of a magnetic circuit.

From (1.87) we obtain

I.t/ D 1

�0AN

�
2x C lr

�

�
˚ .t/ ; (1.89)

hence

˚

A
D �0NI

 
1

2x C lr
�

!
: (1.90)

Because the magnetic flux

˚ D BA; (1.91)

from (1.91) and (1.90) we obtain

B D ˚

A
D �0IN

2x C lr
�.B/

: (1.92)
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Fig. 1.20 Bilinear
characteristics of Bp.H/

and B.H/

Equation (1.92) is a non-linear algebraic equation, where for fixed parameters
we determine function B by means of numerical calculations. From (1.92) and
exploiting (1.86) we obtain

H D NI

2x� .H/C lr
: (1.93)

Knowing function H [determined numerically from (1.93)] we determine its
corresponding value of magnetic induction from (1.86).

Assuming a uniform magnetic field strength in the air gap, denoted H0, the
potential energy accumulated in the gap is equal to

V .x/ D A

2

xZ

0

BH0dx: (1.94)

The desired force acting on the armature is equal to

F D 2
V .x/

@x
D ABH0 D AB2

�0
; (1.95)

where during transformations (1.86) and the value �.H0/ D 1 were used.
The relationship B.H/ presented in Fig. 1.18 and the so-called phenomenon of

magnetic polarization of the core Bp as a function of H allow for the introduction
of a bilinear magnetization curve. Since it turns out that with an increase of H
polarization increases linearly and after passing the value Hs, the value of the
polarization reaches a constant valueBp D B

p
s forH � Hs [1]. Assuming a simpli-

fied magnetization model, both B.H/ and Bp.H/ have the bilinear characteristics
shown in Fig. 1.20.

Piecewise linear changes in magnetic induction B.H/ and Bp.H/ allow for the
introduction of the following simplified equation:

B D �0H C Bp: (1.96)
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Fig. 1.21 Function of
relative magnetic
permeability �.H/
corresponding to the bilinear
magnetization curve

The quantities Hs (saturation magnetic field strength), Bp
s (saturation polarization),

andBs (saturation induction), shown in Fig. 1.20, can be taken as material constants.
Finally, the approximation of characteristics B.H/ can be conducted based on two
material constants BS and HS , and its bilinear approximation has the form

B .H/ D Bs

Hs
for 0 	 H 	 Hs;

B .H/ D Bs C �0 .H �Hs/ for H > HS: (1.97)

To point BS.HS/ corresponds �S D BS
�0HS

, and the relative permeability � D
�.H/ is described by the two equations

� .H/ D �s for 0 	 H 	 Hs;

� .H/ D 1C Hs .�s � 1/

H
for H > HS; (1.98)

shown in Fig. 1.21.
Kirchhoff’s voltage law when the bilinear approximation is used will take the

following form:

NI D 2x

�0
B C

8<
:
lr
Hs
Bs
B for B 	 Bs;

lr

h
B
�0

CHs � Bs
�0

i
for B > Bs:

(1.99)

The desired magnetic force is equal to

F D �0AN
2 I 2�
2x C lr

�s

�2 for
�0NI

2x C lr
�s

	 Bs;

F D �0A

�
NI C lr

�
Bs
�0

�Hs

��2
.2x C lr /

2
for

�0NI

2x C lr
�s

> Bs: (1.100)
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The simplification often used during the analysis of electromagnetic circuits is
the assumption that 2x� � lr , which in many cases is justified, especially for small
values of x. In this case from (1.93) we obtain

H D NI

lr
; (1.101)

and in turn from (1.92) we get

B D �0NI

2x C lr
�.I /

: (1.102)

The force acting on the armature, according to (1.95), is equal to

F D A
�0N

2I 2�
2x C lr

�.B/

�2 : (1.103)

According to Kirchhoff’s voltage law, the relationship between the voltage
supplying the circuit U and the current intensity in circuit I has the form

U D IR �N d˚

dt
; (1.104)

where R is the resistance of the winding.
However, in the case under consideration, now changes in the magnetic flux ˚

are the result of changes in both the current intensity and the width of the air gap x.
Differentiating (1.91) we have

P̊ D A PB; (1.105)

where, according to (1.102), we have

PB D �0N

2
64 PI
2x C lr

�.B/

� 2I Px�
2x C lr

�.B/

�2 C
PB d�

dB
lr

�2.B/�
2x C lr

�.B/

�2
3
75 : (1.106)

Complete coupled non-linear algebraic-differential equations describing the
electromagnetomechanical (mechatronic) circuit from Fig. 1.17 have the form

U D IR �NA PB;
B D �0NI

2x C lr
�.B/

; (1.107)
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and the forceF acting on the armature is described by (1.95). If the field strengthH
is proportional to the current intensity I , then the preceding (1.107) are reduced to
one equation of the form

U D IR � �0NA�
2x C lr

�.I /

�2
	
2x C lr

� .I /
C I lr

�2 .I /

d�

dt
PI � 2I Px



; (1.108)

where U D U.t/ is the voltage applied to the mechatronic system. The force F
exerted by the electromagnet on the armature is described by (1.103), where the
function � D �.I / occurs in the denominator.

1.3 Magnetic Levitation

Magnetic levitation is a known topic and can be realized in several ways [4–6],
but the most spectacular effects can be observed when an electromagnet made of
superconductor is used. A simpler way to create a system for the investigation of
the levitation phenomenon is to use a system with an infrared light sensor (barrier)
that traces the position of the levitating mass placed in the magnetic field generated
by the electromagnet.

For the purpose of the experiment presented here the role of sensor is played by
the infrared light barrier, which traces the actual position of the cylindrical mass
(Fig. 1.22).

The development toward future applications of fast and accurate position control
systems used in optoelectronics, computer hardware, precision machining, robotics,
and automotive has stimulated high-level engagement in the creation of non-
conventional implementations [6,7]. In this section, a numerical analysis devoted to
that domain concerning non-contact (frictionless) fixing of some cylindrical mass

Fig. 1.22 Schematic block diagram of hardware, signal connections, and levitating solid body
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Fig. 1.23 Experimental setup of control system of levitating cylindrical light mass (constructed
by Piotr Jȩdrzejczyk, student of second-degree studies at the Faculty of Mechanical Engineering
of the Technical University of Lodz, Poland)

in an alternating magnetic field is carried out [8]. The calculations given are an
introductory step to the identification of electromagnet parameters and magnetic
fields in the experimental realization of the problem, shown in Fig. 1.22. The mass
levitates in the field generated by the electromagnet system supplied by a voltage
of 12 V. Next to the numerical algorithm of voltage feedback there a modified PID
control [7] of transient oscillations of the levitating light mass was also used. These
were recorded until it reached a stable equilibrium position. The results of the
experiments are presented on time plots of displacement h.t/ measured between
the opposite facing surfaces of the electromagnet core and the top surface of the
levitating mass.

1.3.1 The Analyzed System

The electronic part of the system uses two light-sensitive resistors, the first one of
which acts together with an infrared-light-emitting diode as a simple barrier tracing
the cylindrical solid body position. Due to the existence in the surrounding space
of many infrared-light-emitting sources such as the sun or lightbulbs (producing
disturbance signals to the barrier), the second resistor measures the amount of light
coming into the system from the surrounding space. If the barrier sensor is only
partially illuminated (the result of being obstructed by the levitating body), the
voltage difference appears and is input to the differential amplifier for the generation
of the updated value of voltage supplying the electromagnet circuit. Experimental
realization of the schematic diagram presented in Fig. 1.22 is shown in Fig. 1.23.
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The system shown in Fig. 1.23 can be modeled by a dynamical system of
three first-order differential (1.109) describing the motion of the mass levitating
in magnetic and gravitational fields and the voltage equation for the electric circuit
with alternating current. The meaning of the elements of the system-state vector x is
as follows: x1 ! h is the displacement of the levitating mass measured downward
from the electromagnet surface, x2 ! dh=dt the corresponding velocity of the
displacement, and x3 ! i the electric current in the electromagnet electric circuit.

The governing equations follow:

Px1.t/ D x2.t/;

Px2.t/ D g � k

m

�
x3.t/

x1.t/

�2
C u.t/

ˇ̌
1 case;

Px3.t/ D 1

L

�
v.t/

ˇ̌
2 case �Rx3.t/

�
; (1.109)

where the electrical and physical constants are as follows: L D 0:002H is the
coefficient of inductance, R D 0:29˝ the coefficient of resistance, k D 10�4 kg �
m2=C2, C the magnetic flux,m D 0:0226 kg the mass of the levitating body.

1.3.2 Two Cases of Numerical Control

Voltage v.t/ and force excitation u.t/ are the two control signals. They are consid-
ered in two separate cases, namely: (1) u.t/ is feedback from position h in the system
with a PID controller having the transfer function PID.s/ D kP C .sCkI /=sCkDs

inserted into the first axis of the block diagram shown in Fig. 1.24, while v.t/
is a constant voltage source of 12 V; (2) a time-dependent control input voltage
having the Laplace representation V.s/ D �..k1 C k2sC k3s

2/H.s/� k1h0/ to the
analyzed dynamical system working as the plant in the closed-loop control system
with feedback from the full state vector (a numerical model of the control strategy
is shown in Fig. 1.25). Disturbances coming from any external light sources have
been neglected.

Both of the numerical models presented contain characteristics of the operation
of an infrared light barrier IRR.t/ D 1�bIRRh.t/

�2. This approximation with damp-
ing (sensitivity) constant bIRR measures the amount of infrared light transferred from
the emitting diode to the light-sensitive resistor with the levitating body serving as
the barrier.

Figure 1.26 shows the well-studied effect of introducing an infrared light barrier.
The case for a short range of values of the IRR factor was described as the
correct one, being more realistic in relation to the motion of mass m observed
on the experimental rig. During this experiment one tries to fix the mass at height
hf D 1 cm with the initial condition h0 D 3 cm. It is clear that the mass is quickly
attracted to the steady-state position but is achieved in a different manner.
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Fig. 1.24 Feedback from displacement of levitating mass in PID control for kP D 250, kI D 800,
kD D 13

Fig. 1.25 Closed-loop input voltage control with use of full state-vector feedback for k1 D 103,
k2 D 20, k3 D f0:0; 0:2g in a model made in Simulink
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Fig. 1.26 Time plots of h.t/ obtained from diagram shown in Fig. 1.24 for different values of
the infrared light barrier factor bIRRf1;2;3g D fIRR off; 0:7 � 10�4; 0:4 � 10�4g in the closed-loop
position feedback control and for h0 D 3 cm

Frictionless oscillations in the transition to a stable position can be damped very
well (Fig. 1.27) with the use of the second case of the control strategy based on
feedback from the full state vector, as shown in Fig. 1.25. For a different initial
position (h0 D 2 cm) of mass m there is visible a quicker (because of the voltage,
not external force feedback, as examined in the first approach) and better damped
attraction of the mass to the steady-state position. With respect to application
of a different method of control (with a control with feedback to the voltage
time variable input v), the whole system is characterized by a slightly different
dynamics, so the position of convergence changes with the use of larger values
of bIRRf1;2;3g D f7; 0:7; 22:2g � 10�4. Factor bIRRf3g is the highest available here,
and the control nicely fixes the levitating mass at h3 D 1:67 cm. At this position
the stabilized voltage supplying the electromagnet equals 13.66 V. The time plot
of h4 in Fig. 1.27 is an unnatural effect of a non-zero coefficient of feedback from
acceleration (k3 D 0:2; see Fig. 1.25). The desired position is achieved in about
1.2 s, and it confirms that the vector component of feedback from acceleration is not
necessary in this application.

Depending on the presence of an IRR light barrier and the values of its
sensitivity factor (bIRR), various shapes of the step response can be distinguished.
The convergence is quite fast and well damped when the IRR light correction exists
and, additionally, takes a correct value of its significance. The choice of incorrect
value of bIRR results in the mass being brought into small-amplitude, weakly damped
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Fig. 1.27 Time plots of h.t/ evaluated from diagram shown in Fig. 1.25 for different values
bIRRf1;2;3g D f7; 0:7; 22:2g � 10�4 corresponding to hf1;2;3g (for k3 D 0), respectively. Infrared
light sensitivity factor bIRRf4g D bIRRf3g (for k3 D 0:2), and h0 D 2 cm

oscillations about its desired steady-state position. In some conditions, such an effect
is observable also at a real laboratory rig and is undesirable if we need to fix the
levitating mass at a constant height. Therefore, the introduced feedback from the
infrared light barrier with mass m working as the armature of the electromagnet is
justified. Better shapes of characteristics of the transition to steady-state responses
were confirmed by the second control strategy. They are faster and more stable, and
no oscillations are reported after examination of system parameters. The magnetic
field allowed for elimination of any kinds of friction that are usually required in
various realizations of fixings. Our experimental investigations will turn to the
identification of electromagnetic parameters of the complete mechatronic system
and the associated magnetic field. This is expected to help improve both the
numerical adequacy of the presented approach and the tested strategy of control.

1.4 String-Type Generator

The dynamics of non-linear discrete-continuous systems governed by ordinary
differential equations and partial differential equation often causes difficulties in
numerical analysis. The reason lies not only in non-linear terms but mainly in
time-consuming numerical techniques used to find the solution of the partial
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Fig. 1.28 Scheme of string embedded in magnetic field (a) and electrical model (b)

differential equations. Furthermore, usually real physical systems possess many
parameters that can be changed over wide regions, and in practice direct simulation
of the governing equations is costly and very tedious. Sometimes it does not provide
physical insight into the obtained results. A deeper understanding of the dynamical
behavior of the system under consideration can be discovered by the application
of appropriate scaling and the proper use of averaging techniques [9–11]. In this
section the electromechanical system under consideration serves as an example for
a systematic strategy for solving many other related problems encountered in non-
linear mechanical, biological, or chemical dynamical systems. First, an averaging
method is proposed that is supported by a program for symbolic computation, and
then further systematical study of the obtained ordinary differential equations is
developed.

1.4.1 Analyzed System

The electromechanical model under consideration consists of a distributed mass
system (string) whose oscillations are governed by a PDE (a detailed discussion of
the model is given in [12–14]). The string is embedded in the magnetic field and
crosses a magnetic flux perpendicularly (Fig. 1.28a). On the other hand, the string
is made of steel and has its own inductance L, resistance R, and capacitance C .
It appears that the equilibrium position of the string is unstable. The existence of
the magnet induction and movement of the string causes the occurrence of voltage
and then of a current in the string. The amplitude of the current undergoes change
controlled by the amplifier with a time delay. Figure 1.28b shows the schematic
of the electric system. The output and input voltages are governed by a non-linear
cubic-type relation.
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The magnetic induction B.x/ acting along the string generates voltage at the
ends of the string according to the following equation:

Uinput.t/ D
Z l

0

B.x/
@u.t; x/

@t
dx; (1.110)

where x is the spatial coordinate, t denotes time, u.t; x/ is the string displacement
in the point .t; x/, and l is the length of the string. The amplifier gives the output
voltage

eU output Deh1Uinput.t/ �eh2U 3
input.t/; (1.111)

whereehi .i D 1; 2/ are constant coefficients.
The current oscillations, including a time delay � in the amplifier, are governed

by the equation

RI .t/C 2� PI.t/C kI.t/ D PUoutput.t � �/; (1.112)

where

2� D RL�1; k D .LC /�1; h1 D L�1eh1; h2 D L�1eh2;
Uoutput.t/ D h1Uinput.t/ � h2U

3
input.t/;

and the dot denotes differentiation with respect to t and I.t/ denotes the changes of
the current. The changes in time of I.t/ and the changes in x of B.x/ play the role
of force acting on the string whose oscillations are governed by the equation

@2u.t; x/

@t2
� c2

@2u.t; x/

@x2
D � "

�

�
2h0

@u.t; x/

@t
� B.x/I.t/

�
; (1.113)

where h0 is the external damping coefficient, � is the mass density along the unit
length, and " is the small positive parameter.

The frequencies of free oscillations of the string are given by !s D �cs=l , and
the homogeneous boundary conditions are as follows:

u.t; 0/ D u.t; l/ D 0: (1.114)

1.4.2 Averaging Method

Our consideration is limited to first-order averaging. For " D 0 the solution to
(1.113) can be approximated by

u0 D a1 cos.!1t C 	1/ sin
��x
l

�
C a3 cos.3!1t C 	3/ sin

�
3�x

l

�
; (1.115)

where a1, a3 are the amplitudes, and 	1, 	3 the phases.
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Only two modes are taken into account because the others are quickly damped
during the string dynamics and their influence on the results can be neglected.

For a small enough " ¤ 0 the solution to (1.113) is expected to be of the form

u D u0 C "u1.x; a1; a3; 	1; 	3/CO."2/: (1.116)

Supposing that B.x/ is symmetric with respect to the ends of the string, i.e.,
B.x/ D B.l � x/, we take

B D B1 sin.�x=l/C B3 sin.3�x=l/: (1.117)

This assumption clarifies the selection of modes in (1.115). From (1.110) we
obtain

Uinput D �1
2
B1a1!1l sin.!1t C 	1/ � 3

2
B3a3!1l sin.3!1t C 	3/; (1.118)

and the right-hand side of (1.112) is calculated using a symbolic calculation (in
Mathematica)

PUoutput.t � �/ D �1
2
B1a1h1l!

2
1 cos 10 � 9

2
B3a3h1l!

2
1 cos 30

C3

8
B3
1a

3
1h2l

3!41 cos 10 sin2  30

C27

8
B2
1B3a

2
1a3h2l

3!41 cos 30 sin2  10

C9

8
B2
1B3a

2
1a3h2l

3!41 sin 2 10 sin 30

C81

8
B1B

2
3a1a

2
3h2l

3!41 sin 2 30 sin 10

C27

8
B1B

2
3a1a

2
3h2l

3!41 cos 10 sin2  30

C243

8
B3
3a3h2l

3!41 cos 30 sin2  30; (1.119)

where

 10 D !t C 	1 � �t;  30 D 3!t C 	3 � 3�t; � D �!

t
: (1.120)

From (1.119) we take only the harmonics sin i!1t , cos i!1t .i D 1; 3/, and
therefore

PUoutput.t � �/ D b1c cos!1t C b1s sin!1t C b3c cos 3!1t C b3s sin 3!1t; (1.121)
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where

b1c D A cos 	�
1 � 9

32
B2
1B3a

2
1a3h2l

3!41 cos.2	�
1 � 	�

3 /;

b1s D �A sin 	�
1 C 45

64
B2
1B3a

2
1a3h2l

3!41 sin.2	�
1 � 	�

3 /;

b3c D C cos 	�
3 � 3

32
B3
1B3a

3
1a3h2l

3!41 cos.3	�
1 /;

b3s D �C sin 	�
3 C 3

32
B3
1 a

3
1h2l

3!41 sin.3	�
1 /;

A D �1
2
B1a1h1l!

2
1 C 3

12
B3
1 a

3
1h2l

3!41 C 27

16
B1B

2
3a1a

2
3h2l

3!41 ;

C D �9
2
B3a3h1l!

2
1 C 27

16
B2
1 a

2
1a3h2l

3!41 C 243

32
B3
3a

3
3h2l

3!41 ;

	�
1 D 	1 � �t; 	�

3 D 	3 � 3�t: (1.122)

A solution to the linear (1.112) has the form

I0.t/ D
X
iD1;3

f.bicMi � bisNi/ cos i!1t C .bicNi � bisMi/ sin i!1tg C h:h:;

(1.123)

whereMi , Ni are given below:

Mi D k � i 2!21
.k � i 2!21/2 C 4i2�2!21

; Ni D 2�i!1
.k � i 2!21/

2 C 4i2�2!21
(1.124)

and the abbreviation h:h: denotes higher harmonics that are not taken into account.
Further analysis is straightforward for the perturbation technique, and the

details can be found elsewhere [9, 15]. Because B.x/ and I.t/ are defined,
(1.113) can be solved using a classical perturbation approach. (It is assumed that
u1.x; a1; a3; 	1; 	3/ is a limited and periodic function).

Substituting (1.116) into (1.113) and taking into account that ai D ai .t/ and
	i D 	i .t/ .i D 1; 3/ are slowly changing in time, from the right-hand side of
(1.113) (henceforth referred to as R) the following resonance terms are computed:

Ric D 2

�l

Z l

0

Z 2�

0

R sin
�ix

l
cos i0d i0;

Ris D 2

�l

Z l

0

Z 2�

0

R sin
�ix

l
sin i0d i0;

 i0 D i!1 C 	i ; i D 1; 3; (1.125)
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where Ric , Ris correspond to the terms by cos i0 and sin i0, respectively. The
comparison of the terms by cos i0 and sin i0 and generated by the left-hand side
of (1.113) to those defined by (1.125) leads to the following average-amplitude
equations:

Pa1 D �"h0a1
�

� "B1

2�!1
f.b1cM1 � b1sN1/ sin 	1

C.b1cN1 C b1sM1/ cos 	1g;

Pa3 D �"h0a3
�

� "B3

6�!1
f.b3cM3 � b3sN3/ sin 	3

C.b3cN3 C b3sM3/ cos 	3g;
P	1 D � "B1

2a1�!1
f.b1cM1 � b1sN1/ cos 	1

�.b1cN1 C b1sM1/ sin 	1g;
P	3 D � "B3

6a3�!1
f.b3cM3 � b3sN3/ cos 	3

�.b3cN3 C b3sM3/ sin 	3g: (1.126)

The preceding equations are coupled via (1.122). The first attempt to derive an
averaged set of equations was made by Rubanik [12]. However, neither qualitative
nor quantitative analysis or predictions of the possible behavior of the solutions to
the equations obtained have been given.

The analyzed set of equations has some properties that can cause difficulties
during numerical analysis. First of all, this is a stiff set of equations [note the
occurrence of ai .i D 1; 3/ in the denominator of the last two equations of (1.126)].
As is assumed by the averaging procedure, amplitudes ai and 	i change in time very
slowly, and a long integration to trace the behavior of the system is required.

For the further analysis of the time-dependent solutions we transform (1.126)
into amplitude equations. For this purpose we assume

u0 D .Y1 cos!1t C Y2 sin!1t/ sin
�x

l
C .Y3 cos 3!1t C Y4 sin 3!1t/ sin

3�x

l
:

(1.127)

The comparison with (1.115) yields the following relations:

Y1.t/ D a1.t/ cos 	1.t/; Y2.t/ D �a1.t/ sin 	1.t/;

Y3.t/ D a3.t/ cos 	3.t/; Y4.t/ D �a3.t/ sin 	3.t/: (1.128)
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In what follows the set of amplitude differential equations has the form

PY1.t/ D Pa1.t/ cos 	1.t/ � a1.t/ P	1.t/ sin 	1.t/;

PY2.t/ D �Pa1.t/ sin 	1.t/ � a1.t/ P	1.t/ cos 	1.t/;

PY3.t/ D a3.t/ cos 	3.t/ � a3.t/ P	3.t/ sin 	3.t/;

PY4.t/ D �Pa3.t/ sin 	3.t/ � a3.t/ P	3.t/ cos 	3.t/; (1.129)

where Pai and P	i are given by (1.126) and

	1 D arctan.�Y2=Y1/; 	3 D arctan.�Y4=Y3/;
a1 D .Y 21 C Y 22 /

1=2; a3 D .Y 23 C Y 24 /
1=2: (1.130)

1.4.3 Numerical Analysis and Results

In a standard approach to non-linear dynamical system analysis, time-dependent
solutions are first considered and examined. For this purpose we consider a non-
linear set of algebraic equations obtained from (1.126), where the left-hand sides
are equal to zero. To solve the problem, a Powell hybrid method and a variation of
Newton’s method were used. They require a finite-difference approximation to the
Jacobian with high-precision arithmetic. The root was accepted if the relative error
between two successive approximations was less than 0:0001.

In a general case it can happen that the system of equations under consideration
has one isolated solution or has a family of coexisting solutions for a fixed set of
parameters. The system always possesses the trivial solution a1 D a3 D 	1 D
	3 D 0, which corresponds to the equilibrium position of the original system. Non-
trivial solutions correspond to the periodic oscillations of the string described by
the assumed solution (1.116). The stability of periodic oscillations corresponds to
the stability of fixed points, i.e., to the stability of roots of the non-linear algebraic
equations. To define the stability of the time-independent solutions obtained from
the algebraic non-linear set of equations, we perturb them and then substitute for
(1.116). Taking into account only the first powers of perturbations we get from
(1.116) a linear set of differential equations. Based on these equations, a matrix
corresponding to the analyzed fixed point is defined. In our case, because of the
complicated equations, that matrix is obtained numerically. The eigenvalues of the
matrix obtained determine the stability and bifurcation of the analyzed solutions
(see monographs [16, 17]).

We present below two examples of such a computation. The following parame-
ters were treated as fixed: l D 0:1, ! D 4:1, � D 0:01, k D 25, h1 D 0:01, h2 D
0:6, "=� D 1, h0 D 0, B3 D 0:4. The coefficient � and the amplitude B1 served
as the control parameters. In Fig. 1.29 one can observe that for � D 0:001 with an
increase in the first amplitude of the electromagnetic induction, the amplitude a1
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Fig. 1.29 First harmonic amplitude against B1

decreases (the amplitude a3 and the phases 	1 and 	3 remain almost constant).
A similar situation is observed for � D 0:01 and � D 0:1. This means that for
the considered set of fixed parameters, an increase in B1 damps the magnitude of
oscillations.

A question arises as to whether there is only one isolated solution that corre-
sponds to the fixed value of B1. We have found that in an interval B1 2 .3:0; 5:0/

for each value of B1 there exist two solutions for a1 (marked with triangles) and
one for a3 (marked with crosses), as shown in Fig. 1.30. In both figures the obtained
solutions are stable.

It is a difficult task to prove the existence of time-dependent solutions in the
system of averaged (1.129). The most expected situation (confirmed by numerical
computations) is to find stable fixed points that correspond to the oscillations with
constant amplitudes in the original system. However, we have also found periodic
orbits in the analyzed averaged differential equations. On the basis of this example,
it is proper to describe the benefits obtained from the averaging technique applied.
Instead of examining of a complicated system of non-linear partial and ordinary
differential equations, we reduce the problem to the analysis of the four ordinary
differential equations. Inserting the results obtained numerically into (1.127) we
obtain an averaged solution corresponding to the original system.

We now briefly describe a numerical method for tracking down changes in
periodic orbits, their stability, and potential bifurcations [16, 17]. For this purpose,
let us consider an approximate position of the fixed point Y .k/0 close to the
unknown exact one and perform numerical integration over the estimated period
T .k/. Actually, we have rescaled the equations according to the rule t D ˝t ,
where ˝ serves as an unknown to be determined and the period is equal to 2� .
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Fig. 1.30 Example of multiple set of solutions corresponding to B1 D 4:5

The error E D Y
.k/
0 � G

.k/
0 (where G.k/

0 D G.Y
.k/
0 / is a point mapping) shows

the accuracy of the calculations. Then, after a perturbation of the fixed point, its
stability is determined based on the eigenvalues of a monodromy matrix. The results
of calculation of the fixed points of the map (periodic orbits) as functions of B1 for
l D 0:1, � D 0:1, ! D 2:9, � D 0:1, k D 9:0, h1 D 0:05, h2 D 0:01, �=" D 1:0,
h0 D 0:02, B3 D 0:8 are presented in Fig. 1.31a, b. In this figure, Y3 and Y4 are
much smaller than Y1 and Y2 and are assumed to be zero. Variation of the period
following the change of B1 is evident (Fig. 1.31b, where Z D 1=˝). The observed
periodic orbit is “strongly” stable because the corresponding multipliers lie close to
the origin. As an example, one of the periodic orbits is presented in Fig. 1.32a, b.
One revolution of the variables Y1;2 corresponds to two revolutions of Y3;4 during
the period 2� .

Special attention is focused on detecting the time-dependent aperiodic solutions
to the averaged equations. Some interesting non-linear phenomena will be discussed
subsequently and illustrated based on the gear simulation of the averaged equations.

Let us first consider the following fixed parameters: l D 0:1, � D 0:15, !1 D
190, � D 0:1, k D 25:0, h1 D 0:58, h2 D 0:05544, � D 1:0, " D 0:05, h0 D
0:001,B3 D 0:08. Here the coefficient� serves as a control parameter. Figure 1.33a
illustrates the oscillations of Y1;2 and the exponential decay of Y3;4. The variables
Y1;3 and Y2;4 correspond to the time evolution of the first two modes of the string
arid their derivatives, respectively.

The amplitudes of the first mode oscillate, but those corresponding to the third
mode decrease in time in a non-oscillatory (exponential) manner. The decrease in �
damps the oscillatory effects, which is shown in Fig. 1.33b for � D 0:125.

Figure 1.34 (l D 0:1, � D 0:0, !1 D 900:0, � D 0:1515, k D 2750:0,
h1 D 5:48, h2 D 70:0, � D 1:0, " D 0:009, h0 D 0:00001, B1 D 0:65, B3 D 0:89)
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Fig. 1.31 Fixed points of Y1; Y3; Y4 (a) and Z D 1=˝ (b) against control parameter B1

illustrates an unexpected non-linear phenomenon. A long time-transitional pro-
cess has been interrupted by the sudden occurrence of the strong nonlinear Y1;2
oscillations.

In Fig. 1.35 the coexistence of the periodic oscillations Y1;2.t/ with the expo-
nential decay of Y3;4.t/ is shown. The simulation was performed for the following
fixed parameters: l D 0:1, � D 0:1, !1 D 0:1, � D 0:1, k D 7250:0, h1 D 0:1,
h2 D 0:1, � D 1:0, " D 0:05, h0 D 0:001, B1 D 6:3, B3 D 0:08. Because Y1;2 and
Y3;4 correspond to the first and third modes of the string, respectively, this result can
be interpreted as the independent mode behavior.
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Fig. 1.32 Periodic orbits Y1;2 (a) and Y3;4 (b) with normalized 2� period

The result obtained also illustrates another interesting non-linear behavior.
The solution to the averaged non-linear differential equations can be assumed
analytically in a different form: an exponential decay function and an oscillatory
function with a constant amplitude.

Figure 1.36 (l D 0:1, � D 0:1, !1 D 190:0, � D 0:1, k D 25:0, h1 D 0:58,
h2 D 0:05544, � D 1:0, " D 0:005, h0 D 0:00999, B1 D 6:3, B3 D 0:08)
presents a strange time evolution leading to instability. Here also Y1;2.t/ increases
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Fig. 1.33 Time evolutions of amplitudes: (a) � D 0:15, (b) � D 0:125

with oscillations, while Y3;4.t/ slightly decreases almost linearly. After a long
transitional state, barrierlike phenomena appear. Finally, strong nonlinear pressing
effects, leading to the vertical unlimited increase in Y1;2.t/, are observed.

This behavior can be explained as follows. An almost linear decrease in Y3;4.t/
leading asymptotically to zero causes the occurrence of a sudden increase in Y1;2.t/
due to the existence of a3 in the denominator of the last equation of (1.126).
However, typically the system does not exhibit such instability effects.
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Fig. 1.34 Strong non-linear oscillations of amplitudes

Fig. 1.35 Amplitude versus time

Finally, consider the following set of fixed parameters: l D 0:1, � D 0:00001,
!1 D 900:0, � D 0:1515, k D 7250:0, h1 D 5:48, h2 D 65:0, � D 1:0, " D 0:009,
h0 D 0:00001, B1 D 0:65, B3 D 0:23. A strong non-linear transitional oscillation
of Y1.t/ is shown in Fig. 1.37. The variables Y3;4.t/ again change in a non-oscillatory
manner quite independently in comparison with the first oscillation mode.



50 1 Dynamics in Mechatronic Systems

Fig. 1.36 Independent transitional time evolution of amplitudes leading to instability

Fig. 1.37 Strong non-linear transitional oscillations

1.5 Rotor Supported by Magnetohydrodynamic Bearing

In general, rotating machinery elements are frequently encountered in mechan-
ical/mechatronic engineering, and in numerous cases their non-linear dynamics
causes many harmful effects, i.e., noise and vibrations. In particular, non-linear
rotordynamics plays a crucial role in understanding various non-linear phenomena
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and despite its long research history (see, e.g., [18–22] and references therein), it
continues to attract the attention of many researchers and engineers. Since the topics
related to non-linear rotordynamics are broad ranging and cover many interesting
aspects related to both theory and practice, in this section we aim only at the analysis
of some problems related to a rotor suspended in a magnetohydrodynamic field in
the case of soft and rigid magnetic materials.

Magnetic, magnetohydrodynamic, and piezoelectric bearings are used in many
mechanical engineering applications to support a high-speed rotor, provide vibration
control, minimize rotating friction losses, and potentially avoid flutter instability.
Many publications are dedicated to the dynamic analysis and control of a rotor
supported on various bearing systems. The conditions for active closed-/open-
loop control of a rigid rotor supported on hydrodynamic bearings and subjected
to harmonic kinematical excitation are presented in [23, 24]. The methodology
for modeling lubricated revolute joints in constrained rigid multibody systems is
described in [25]. The hydrodynamic forces used in the dynamic analysis of journal
bearings, including both squeeze and wedge effects, are evaluated from the system-
state variables and included in the equations of motion of multibody systems.
To analyze the dynamic behavior of a rub-impact rotor supported by turbulent
journal bearings and lubricated with couple stress fluid under quadratic damping,
the authors of reference [26] used system-state trajectory, Poincar maps, power
spectrum, bifurcation diagrams, and Lyapunov exponents. Dynamic motion was
detected to be periodic, quasiperiodic, and chaotic.

Rotor-active magnetic bearing (AMB) systems with time-varying stiffness are
considered in [27]. Using the method of multiple scales, a governing non-linear
equation of motion for the rotor-AMB system with one degree of freedom is
transformed into an averaged equation, and then bifurcation theory and a bifurcation
method of the detection function are used to analyze the bifurcations of multiple
limit cycles of the averaged equation.

Rotors supported by floating ring bearings may exhibit instabilities due to self-
excited vibrations [28]. The authors applied linear stability analysis to reveal a
sign change of real parts of the conjugated eigenvalue pairs, and a center manifold
reduction approach allowed them to explain the rotor destabilization via Hopf
bifurcation. Owing to the analytical predictions that were applied, both sub- and
supercritical bifurcations were found, and the analytical results were compared with
numerical ones using a continuation method. Observe that rotors supported by a
simple fluid film bearing the so-called oil whirl and oil whip dynamics ad been
studied analytically in [18, 20–23]. Additionally, this problem was reconsidered
recently with respect to inner and outer oil films and synchronization [29]. The
full annular rub motion of a flexible rotor induced by mass unbalance and contact
rub force with rigid and flexible stators, taking into account dry friction between
the stator and rotor, is studied in [30]. Stability and synchronous problems of full
annular rub motions are discussed, and a simplified formula for the dynamic stability
of the system being investigated is derived.
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Ishida et al. [31] investigate the vibrations of a flexible rotor system with radial
clearance between an outer ring of the bearing and a casing using numerical and
experimental studies. The following non-linear behavior was detected, illustrated,
and discussed: (a) sub-, super-sub, and combined resonances; (b) self-excited
vibrations of forward whirling mode; and (c) transitions from self-excited to forced
system vibrations. In particular, the influence of static force and bearing damping
was analyzed using the harmonic balance method.

Quinn [32] studied the non-linear output of a damped Jeffcott rotor with
anisotropic stiffness and imbalance. It was shown that for sufficiently small external
torque (or large imbalance), resonance capture may occur whereby the rotational
shaft velocity cannot increase beyond the fundamental resonance between the
rotational and translational motion providing a mechanism for energy transfer.
Prediction of the system behavior on the basis of the reduced-order averaged model
is verified and validated against numerical studies of the original ODE-governed
model.

In this section, the two-degree-of-freedom non-linear dynamics of a rotor
supported on a magnetohydrodynamic bearing system (MHDB) is analyzed in the
cases of soft and rigid magnetic materials. In the case of soft magnetic materials, the
analytical solutions were obtained using the method of multiple scales [9,15]. Rigid
magnetic materials possess hysteretic properties that are realized in the present
work by means of the Bouc–Wen hysteretic model [33, 34]. This model enables
simulation of hysteretic loops of various forms for systems from very different
fields such as mechanics, biology, electronics, ferroelectricity, and magnetism [35].
In particular, in mechanical/civil and mechatronic engineering, hysteresis occurs as
the natural inclination of materials to yield to restoring forces against motion and
dissipate energy, and it often deals with the memory nature of inelastic material
properties, where the restoring forces (torques) depend on the deformation process
history. In general, the classic Bouc–Wen model is described by the first-order
non-linear ODE governing the input (displacement rotations) and output (restoring
force/torque) signals in a hysteretic way. Furthermore, a proper choice of the Bouc–
Wen parameters allows one to control their behavior so that it is similar to that of
real hysteresis looplike processes. Observe that despite the simplicity of the Bouc–
Wen model, its behavior and possible application still attract many researchers, in
particular regarding the following topics:

(a) Ways of tuning the Bouc–Wen control parameters to match application-oriented
hysteretic material properties (identifications process).

(b) Numerical analysis of a given full mathematical model including its control.
(c) Rigorous mathematical background devoted to proofs of the convergence

between the Bouc–Wen-like models and their real application-oriented coun-
terpart dynamic objects.

An extensive list of references related to the Bouc–Wen model and beyond,
together with results of the researches associated with the analysis, identification,
and control of the Bouc–Wen-like models, are reported in the monograph by
Ikhouave and Rodellar [36], where the following topics are illustrated and discussed:
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Fig. 1.38 Cross-section
diagram of a rotor
symmetrically supported
on magnetohydrodynamic
bearing

compatibility of the model versus physical laws, model parameters and hysteresis
loops, identification and control of dynamic systems with Bouc–Wen models.
Finally, various mathematical approaches to the hysteresis phenomenon are given
in a survey reference [37].

As was demonstrated by investigations in [35], systems with hysteresis may
reveal an unexpected behavior. On the one hand, hysteresis, like any dissipation,
promotes the stabilization of motion and may restrain the occurrence of chaos.
On the other hand, it may cause chaotic vibrations in a system. This last property
is confirmed by the results of this section. In the absence of hysteresis, chaos is
not observed. Taking into account hysteretic properties leads to chaotic vibrations
of a rotor under certain conditions. The effect of hysteretic dissipation on the
emergence of chaos is investigated using a methodology based on an analysis of
wandering trajectories [33, 38]. Chaotic regions were obtained in parametric planes
characterized by dynamic oil film action, magnetic control parameters, hysteretic
dissipation, and the amplitude and frequency of external excitation.

1.5.1 Mathematical Model

Let us consider a uniform symmetric rigid rotor (Fig. 1.38) supported by a mag-
netohydrodynamic bearing system. The four-pole legs are symmetrically placed in
the stator. Fk is the electromagnetic force produced by the kth opposed pair of
electromagnet coils. This force is controlled by electric currents

ik D i0 ˙�ik (1.131)
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and can be expressed in the form

Fk D � 2�0AN
2i0

.2ı C l=��/2
�ik; (1.132)

where i0 denotes the bias current in the actuators’ electric circuits,�0 is the magnetic
permeability of vacuum, A is the core cross-section area, N is the number of
windings of the electromagnet, ı is the air gap in the central position of the rotor with
reference to the bearing sleeve, l is the total length of the magnetic path, the constant
value �� DBS=.�0HS/ denotes the magnetic permeability of the core material; the
values of the magnetic induction BS and magnetizing force HS define the magnetic
saturation level [23, 24]. 	k is the angle between axis x and the kth magnetic
actuator,Q0 is the vertical rotor load identified with its weight, and .Pr ; P� / are the
radial and tangential components of the dynamic oil-film action, respectively. The
equations of motion of the rotor are represented in the following form [23, 24, 39]:

m� Rx� D P �
r

�
�; P��; P
�� cos
 � P �

�

�
�; P
�� sin


C
KX
kD1

F �
k cos	k CQ�

x .t/;

m� Ry� D P �
r

�
�; P��; P
�� sin
 C P �

�

�
�; P
�� cos


C
KX
kD1

F �
k sin	k CQ�

0 CQ�
y .t/;

P �
r

�
�; P��; P
�� D �2C �

(
�2
�
!� � 2 P
��
p .�/ q .�/

C � P��

p .�/
C 2 P��p

p .�/
arctan

s
1C �

1� �

)
;

P �
�

�
�; P
�� D �C � �

�
!� � 2 P
��

q .�/
p
p .�/

: (1.133)

Here m� denotes the rigid rotor mass, .x�; y�/ are the Cartesian coordinates of
the rotor center, Q�

x .t/, Q
�
y .t/ are the external excitation characterizing bearing

movements. We consider the vibrations of the rotor excited by the harmonic
movements of the bearing foundation in the vertical direction:

Q�
x .t/ D 0; Q�

y .t/ D Q�sin˝�t�; (1.134)

where Q� and ˝� are the amplitude and frequency of the external excitation,
respectively. The constant C � is defined as

C � D 6�sRcLc

ı2s
: (1.135)
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The parameters �s , ıs , Rc , and Lc denote the oil viscosity, relative bearing
clearance, journal radius, and total bearing length, respectively. .�; 
/ are the polar
coordinates, and p.�/ D 1 � �2, q.�/ D 2C �2.

To represent the equations of motion in a dimensionless form, the following
changes in variables and parameters are introduced:

t D !�t�; P
 D
P
�

!� ; P� D P��

!� ;

x D x�

c� ; Px D Px�

!�c� ; Rx D Rx�

!�2c� ;
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!�c� ; Ry D Ry�
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m�!�c� ; ˝ D ˝�
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0
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k
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r
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�

m�!�2c� ; (1.136)

where !� is the rotation speed of the rotor and c� is the bearing clearance.
Thus the dimensionless equations of motion take the form
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Here

x D � cos
; y D � sin 
;
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 D Pyx � Pxy
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and the magnetic control forces are expressed as follows

Fx D �� Px � � .x � x0/ ; Fy D �� Py � � .y � y0/ ; (1.139)

where .x0; y0/ are the coordinates of the rotor static equilibrium and � and � are the
control parameters.
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1.5.2 Soft Magnetic Materials

In this section, we consider the two-degree-of-freedom dynamics of the rotor in the
MHDB system without taking hysteresis into account.

1.5.2.1 Non-resonant case

The right-hand sides of (1.137) were expanded into Taylor series, and the origin
was shifted to the location of the static equilibrium .x0; y0/ for the convenience
of investigation. The linear and quadratic terms were retained, so the reformed
equations of motion are as follows:

Rx C ˛x � ˇ Py D �2 O�1 Px C ˛1x
2 C ˛2y

2 C ˛3x Px
C˛4xy C ˛5x Py C ˛6 Pxy C ˛7y Py;

Ry C ˛y C ˇ Px D �2 O�2 Py C ˇ1x
2 C ˇ2y

2 C ˇ3x Px
Cˇ4xy C ˇ5x Py C ˇ6 Pxy C ˇ7y Py C F cos .˝t C �/ : (1.140)

We seek the first-order solution for small but finite amplitudes in the form

x D "x1 .T0; T1/C "2x2 .T0; T1/C � � � ;
y D "y1 .T0; T1/C "2y2 .T0; T1/C � � � ; (1.141)

where " is the small, dimensionless parameter related to the amplitudes and Tn D
"nt .n D 0; 1/ are the independent variables; T0 is the “fast” time, whereas T1 is the
“slow” time. It follows that the derivatives with respect to t become expansions in
terms of the partial derivatives with respect to Tn according to
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whereDk D @
@Tk

.
To analyze the non-resonant case the forcing term is ordered so that it appears

at order ". Thus, we recall in (1.140) F D "f , O�n D "�n. Substituting (1.141) into
(1.140) and equating the coefficients of similar powers of " we obtain
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Order "
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(1.144)

The solution of (1.143) is expressed in the form

x1 D A1 .T1/ exp .i!1T0/C A2 .T1/ exp .i!2T0/

C˚1exp Œi .˝T0 C �/�C CC ;

y1 D �1A1 .T1/ exp .i!1T0/C�2A2 .T1/ exp .i!2T0/

C˚2exp Œi .˝T0 C �/�C CC ; (1.145)

where CC denotes the complex conjugate of the preceding terms, A1 and A2 are
the arbitrary functions of T1 at this level of approximation,
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!n are assumed to be distinct, and !2n are the roots of the characteristic equation
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Substitution of (1.145) into (1.144) gives
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Terms that do not influence the solvability conditions are not presented in the
last equations and were replaced by dots. To determine the solvability conditions
of (1.144), following the method of undetermined coefficients we seek a particular
solution in the form

x2 D P11exp .i!1T0/C P12exp .i!2T0/ ;

y2 D P21exp .i!1T0/C P22exp .i!2T0/ ; (1.149)

with unknowns P11, P12, P21, and P22. Substitution of expressions (1.149) into
(1.148) and collecting the coefficients at exp.i!1T0/ and exp.i!2T0/ yield

�
˛ � !2n

�
P1n � iˇ!nP2n D R1n;

iˇ!nP1n C �
˛ � !2n

�
P2n D R2n; n D 1; 2; (1.150)

where

R11 D �2i!1
�
A

0

1 C �1A1

�
C ˇ�1A

0

1;

R12 D �2i!2
�
A

0

2 C �1A2

�
C ˇ�2A

0

2;

R21 D �2i!1�1

�
A

0

1 C �2A1

�
� ˇA

0

1;

R22 D �2i!2�2

�
A

0

2 C �2A2

�
� ˇA

0

2: (1.151)

Taking into account the characteristic (1.147), the determinant � of the set of
linear algebraic equations relative to P1n, P2n [(1.150)] is equal to zero:

� D
ˇ̌
ˇ̌˛ � !2n �iˇ!n

iˇ!n ˛ � !2n

ˇ̌
ˇ̌ D �

˛ � !2n
�2 � ˇ2!2n D 0: (1.152)
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According to the Kronecker–Kapelly theorem, the set of linear algebraic equa-
tions is compatible if and only if the matrix rank of the linear set is equal to the
extended matrix rank. Therefore, the solvability conditions are

ˇ̌
ˇ̌R1n �iˇ!n
R2n

�
˛ � !2n

�
ˇ̌
ˇ̌ D 0; n D 1; 2I (1.153)

otherwise the set of linear algebraic (1.150) has no solutions. So

R1n D iˇ!nR2n
!2n � ˛

(1.154)

and the solvability conditions can be written in the form

R1n D R2n
N�n

; n D 1; 2: (1.155)

The differential equations to define A1.T1/ and A2.T1/ are the consequence of
solvability conditions (1.155)

�
ˇ�1 � 2i!1 C 2i!1�1 C ˇ

N�1

�
A

0

1 C
�
2i!1�1�2

N�1

� 2i!1�1

�
A1 D 0;

�
ˇ�2 � 2i!2 C 2i!2�2 C ˇ

N�2

�
A

0

2 C
�
2i!2�2�2

N�2

� 2i!2�1

�
A2 D 0: (1.156)

It follows from (1.141), (1.145), and (1.156) that the complex solution of the
differential set (1.140) is

x D "Œexp .�"�1t/ a1exp .i!1t/C exp .�"�2t/ a2exp .i!2t/

C˚1exp Œi .˝t C �/�C CC �CO
�
"2
�
;

y D "Œ�1exp .�"�1t/ a1exp .i!1t/C�2exp .�"�2t/ a2exp .i!2t/

C˚2exp Œi .˝t C �/�C CC �CO
�
"2
�
: (1.157)

Then the real solution is as follows:

x D "Œexp .�"�1t/ a1cos .!1t C�1/C exp .�"�2t/ a2cos .!2t C�2/

C2Im˚1sin .˝t C �/�CO
�
"2
�
;

y D "ŒIm�1exp .�"�1t/ a1sin .!1t C�1/C Im�2exp .�"�2t/ a2sin .!2t C�2/

C2˚2cos .˝t C �/�CO
�
"2
�
; (1.158)
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where

�n D 2!n .�1 C �2/

4!n � ˇ
�

Im�n C 1

Im�n

� ; (1.159)

and an and �n are the real constants.
Figures 1.39–1.41 show a comparison of the numerical integration of (1.140) and

the perturbation solutions (1.158) for the following parameters of set (1.140): ˛ D
1; 500, ˇ D 70, ˛1 D 9:985 
 102, ˛2 D 2 
 103, ˛3 D 7:9588 
 103, ˛4 D 0:002,
˛5 D �4:0794 
 103, ˛6 D 4:0002 
 103, ˛7 D 8:0005 
 103, ˇ1 D 29:9975,
ˇ2 D �0:001, ˇ3 D �4:1594 
 103, ˇ4 D �1:9997 
 103, ˇ5 D �7:9188 
 103,
ˇ6 D 0:7959, ˇ7 D �0:4083; the initial conditions are x.0/ D 10�12, y.0/ D
10�10, Px.0/ D Py.0/ D 0.

In the case of non-resonant undamped vibrations of a rotor (Fig. 1.39), it is
accepted for numerical integration that O�1 D 0, O�2 D 0, F D 0. According to
(1.158), the perturbation solution is presented by the expressions

x D 8:2686044 � 10�6 cos.17:2015t/C 1:6313956 � 10�6 cos.87:2015t/;

y D 8:2686044 � 10�6 sin.17:2015t/� 1:6313956 � 10�6 sin.87:2015t/: (1.160)

Figure 1.40 corresponds to the non-resonant damped vibrations of a rotor. For
this case, O�1 D 0:1, O�2 D 0:15, F D 0. The perturbation solution has the form

x D 8:2686044 � 10�6 exp.�0:0412t/ cos.17:2015t/

C1:6313956 � 10�6 exp.�0:2088t/ cos.87:2015t/;

y D 8:2686044 � 10�6 exp.�0:0412t/ sin.17:2015t/

�1:6313956 � 10�6 exp.�0:2088t/ sin.87:2015t/: (1.161)

For the non-resonant forced damped vibrations of a rotor (Fig. 1.41) it is accepted
for numerical integration that O�1 D 0:1, O�2 D 0:15, F D 0:005, ˝ D 10, � D
��=2. The perturbation solution is

x D 5:8241 � 10�6 exp.�0:0412t/ cos.17:2015t/

C1:69495 � 10�6 exp.�0:2088t/ cos.87:2015t/

�2:38095 � 10�6 sin.10t � �=2/;
y D 5:8241 � 10�6 exp.�0:0412t/ sin.17:2015t/

�1:69495 � 10�6 exp.�0:2088t/ sin.87:2015t/

C4:7619 � 10�6 cos.10t � �=2/: (1.162)

Figures 1.39–1.41 demonstrate good agreement of the numerical and analytical
solutions.
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Fig. 1.39 Comparison of
numerical integration (1.140)
and perturbation solutions
(1.158) in the case of
non-resonant undamped
vibrations of a rotor

1.5.2.2 Primary Resonance: The Cases of no Internal Resonance
and an Internal Resonance

To analyze primary resonances, the forcing term is ordered such that it appears at
order "2 or in the same perturbation equation as the non-linear terms and damping.
Thus, we recall in (1.140) F D "2f , O�n D "�n. Consider the case where ˝ � !2.
The case ˝ � !1 is analogous. Let us introduce the detuning parameter �1 and set
˝ D !2 C "�1.
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Fig. 1.40 Comparison of
numerical integration (1.140)
and perturbation solutions
(1.158) in the case of
non-resonant damped
vibrations of a rotor

Substituting (1.141) into (1.140) and equating coefficients of similar powers of "
we obtain
Order "

D2
0x1 C ˛x1 � ˇD0y1 D 0;

D2
0y1 C ˛y1 C ˇD0x1 D 0: (1.163)

Order "2

D2
0x2 C ˛x2 � ˇD0y2 D �2D0 .D1x1 C �1x1/C ˇD1y1

C˛1x21 C ˛2y
2
1 C ˛3x1D0x1 C ˛4x1y1

C˛5x1D0y1 C ˛6y1D0x1 C ˛7y1D0y1;
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Fig. 1.41 Comparison of
numerical integration (1.140)
and perturbation solutions
(1.158) in the case of
non-resonant forced damped
vibrations of a rotor

D2
0y2 C ˛y2 C ˇD0x2 D �2D0 .D1y1 C �2y1/� ˇD1x1

Cˇ1x21 C ˇ2y
2
1 C ˇ3x1D0x1 C ˇ4x1y1

Cˇ5x1D0y1 C ˇ6y1D0x1 C ˇ7y1D0y1

Cf cos .˝T0 C �/ : (1.164)

The solution of (1.163) is given in the form

x1 D A1 .T1/ exp .i!1T0/C A2 .T1/ exp .i!2T0/C CC ;

y1 D �1A1 .T1/ exp .i!1T0/C�2A2 .T1/ exp .i!2T0/C CC ; (1.165)

where

�n D !2n � ˛
!nˇ

i: (1.166)
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Substitution of (1.165) into (1.164) yields

D2
0x2 C ˛x2 � ˇD0y2 D

h
�2i!1

�
A

0

1 C �1A1

�

C ˇ�1A
0

1

i
exp .i!1T0/C

h
�2i!2

�
A

0

2 C �1A2

�

Cˇ�2A
0

2

i
exp .i!2T0/CA21Œ˛1 C�2

1˛2 C i!1˛3 C�1˛4

Ci!1�1˛5 C i!1�1˛6 C i!1�2
1˛7�exp .2i!1T0/

CA22Œ˛1 C�2
2˛2 C i!2˛3 C�2˛4 C i!2�2˛5 C i!2�2˛6

Ci!2�
2
2˛7�exp .2i!2T0/C A1A2Œ2˛1 C 2�1�2˛2 C .i!1 C i!2/ ˛3

C .�1 C�2/ ˛4 C .i!2�2 � i!1�1/ ˛5 C .i!2�1 C i!1�2/ ˛6

C .i!1 C i!2/�1�2˛7�exp .i .!1 C !2/ T0/C NA1A2Œ2˛1 C 2 N�1�2˛2

C .i!2 � i!1/ ˛3 C �
�2 C N�1

�
˛4 C �

i!2�2 � i!1 N�1

�
˛5

C �
i!2 N�1 � i!1�2

�
˛6 C .i!2 � i!1/ N�1�2˛7�exp .i .!2 � !1/ T0/

CA1 NA1
�
˛1 C�1

� N�1˛2 C ˛4 C i!1 .˛5 � ˛6/
��

CA2 NA2
�
˛1 C�2

� N�2˛2 C ˛4 C i!2 .˛5 � ˛6/
��C CC; (1.167)

D2
0y2 C ˛y2 C ˇD0x2 D

h
�2i!1�1

�
A

0

1 C �2A1

�
� ˇA

0

1

i
exp .i!1T0/

C
h
�2i!2�2

�
A

0

2 C �2A2

�
� ˇA

0

2

i
exp .i!2T0/

CA21Œˇ1 C�2
1ˇ2 C i!1ˇ3 C�1ˇ4 C i!1�1ˇ5 C i!1�1ˇ6

Ci!1�2
1ˇ7�exp .2i!1T0/C A22Œˇ1 C�2

2ˇ2 C i!2ˇ3 C�2ˇ4 C i!2�2ˇ5

Ci!2�2ˇ6 C i!2�2
2ˇ7�exp .2i!2T0/C A1A2Œ2ˇ1 C 2�1�2ˇ2

C .i!1 C i!2/ ˇ3 C .�1 C�2/ ˇ4 C .i!2�2 � i!1�1/ ˇ5

C .i!2�1 C i!1�2/ ˇ6 C .i!1 C i!2/�1�2ˇ7�exp .i .!1 C !2/ T0/

C NA1A2Œ2ˇ1 C 2 N�1�2ˇ2 C .i!2 � i!1/ ˇ3

C �
�2 C N�1

�
ˇ4 C �

i!2�2 � i!1 N�1

�
ˇ5

C �
i!2 N�1 � i!1�2

�
ˇ6 C .i!2 � i!1/ N�1�2ˇ7�exp .i .!2 � !1/ T0/

CA1 NA1
�
ˇ1 C�1

� N�1ˇ2 C ˇ4 C i!1 .ˇ5 � ˇ6/
��

CA2 NA2
�
ˇ1 C�2

� N�2ˇ2 C ˇ4 C i!2 .ˇ5 � ˇ6/
��

C1

2
f exp .i .!2T0 C �1T1 C �//C CC: (1.168)
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Let !2 > !1 for definiteness. We need to distinguish between the case of internal
resonance !2 � 2!1 and the case of no internal resonance, i.e., !2 is away from
2!1. The case !1 > !2, !1 � 2!2 is analogous. When !2 is away from 2!1, the
solvability conditions (1.155) are written in the form

q!1 C 1

�1

p!1 D 0;

q!2 C 1

�2

p!2 C 1

2�2

f exp .i .�1T1 C �// D 0; (1.169)

where

q!1 D �2i!1
�
A

0

1 C �1A1

�
C ˇ�1A

0

1;

q!2 D 2i!2
�
A

0

2 C �1A2

�
C ˇ�2A

0

2;

p!1 D �2i!1�1

�
A

0

1 C �2A1

�
� ˇA

0

1;

p!2 D �2i!2�2

�
A

0

2 C �2A2

�
� ˇA

0

2: (1.170)

Thus, when there is no internal resonance, the first approximation is not
influenced by the non-linear terms; it is essentially a solution of the corresponding
linear problem.

Actually, the solutions of the differential equations below

�
ˇ�1 � 2i!1 C 2i!1�1 C ˇ

N�1

�
A

0

1 C
�
2i!1�1�2

N�1

� 2i!1�1

�
A1 D 0;

�
ˇ�2 � 2i!2 C 2i!2�2 C ˇ

N�2

�
A

0

2 C
�
2i!2�2�2

N�2

� 2i!2�1

�
A2

D � 1

2�2

f exp Œi .�1T1 C �/� (1.171)

are

A1 .T1/ D 1

2
a1exp .��1T1 C i�1/ ;

A2 .T1/ D 1

2
a2exp .��2T1 C i�2/

C f .�2 � i�1/

2Im�2Im
2
�
�22 C �21

� exp Œi .�1T1 C �/� ; (1.172)
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where an and �n are the real constants:

�n D 2!n .�1 C �2/

4!n � ˇ
�

Im�n C 1

Im�n

� ;


2 D �4!2i C ˇ

�
Im�2 C 1

Im�2

�
i: (1.173)

As t ! 1, T1 ! 1, and

A1 ! 0; A2 ! f .�2 � i�1/

2Im�2Im
2
�
�22 C �21

�exp Œi .�1T1 C �/� ; (1.174)

and according to (1.165), we obtain the following steady-state response:

x1 D f .�2 � i�1/

2Im�2Im
2
�
�22 C �21

�exp Œi .!2T0 C �1T1 C �/�C CC;

y1 D �2

f .�2 � i�1/

2Im�2Im
2
�
�22 C �21

�exp Œi .!2T0 C �1T1 C �/�C CC: (1.175)

Therefore, the real solution is

x D F

"

1

Im�2Im
2
�
�22 C �21

� Œ�2cos .˝t C �/C �1sin .˝t C �/�CO
�
"2
�
;

y D F

"

1

Im
2
�
�22 C �21

� Œ�1cos .˝t C �/ � �2sin .˝t C �/�CO
�
"2
�
; (1.176)

or it can be rewritten in the form

x D F

"

1

Im�2Im
2
�
�22 C �21

�1=2 sin .˝t C � C Q�1/CO
�
"2
�
;

y D F

"

1

Im
2
�
�22 C �21

�1=2 sin .˝t C � C Q�2/CO
�
"2
�
; (1.177)

where Q�1 D arctan.�2=�1/, Q�2 D � arctan.�1=�2/.
Another situation occurs when the internal resonance !2 � 2!1 exists. Let us

introduce the detuning parameter �2 and set

!2 D 2!1 � "�2: (1.178)
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Taking into account (1.161), the solvability conditions for this case become

q!1 C 1

�1

p!1 C
�
q!2�!1 C 1

�1

p!2�!1
�

NA1A2exp .�i�2T1/ D 0;

q!2 C 1

�2

p!2 C
�
q2!1C 1

�2
p2!1

�
A21exp .i�2T1/C 1

2�2

f exp .i .�1T1 C �// D 0:

(1.179)

Here coefficients q!1 , q!2 , q!2�!1 , and q2!1 are the expressions in parentheses
at the exponents with the corresponding powers (1.167) and p!1 , p!2 , p!2�!1 , and
p2!1 are the expressions in brackets at the exponents with the corresponding powers
(1.168):

q!1 D �2i!1
�
A

0

1C�1A1
�

C ˇ�1A
0

1;

q!2 D 2i!2
�
A

0

2C�1A2
�

C ˇ�2A
0

2;

q2!1 D ˛1 C�2
1˛2 C i!1˛3 C�1˛4 C i!1�1˛5 C i!1�1˛6 C i!1�

2
1˛7;

q!2�!1 D 2˛1 C 2 N�1�2˛2 C .i!2 � i!1/ ˛3 C �
�2 C N�1

�
˛4

C �
i!2�2 � i!1 N�1

�
˛5 C �

i!2 N�1 � i!1�2

�
˛6 C .i!2 � i!1/ N�1�2˛7;

p!1 D �2i!1�1

�
A

0

1 C �2A1

�
� ˇA0

1;

p!2 D �2i!2�2

�
A

0

2 C �2A2

�
� ˇA0

2;

p2!1 D ˇ1 C�2
1ˇ2 C i!1ˇ3 C�1ˇ4 C i!1�1ˇ5 C i!1�1ˇ6 C i!1�

2
1ˇ7;

p!2�!1 D 2ˇ1 C 2 N�1�2ˇ2 C .i!2 � i!1/ ˇ3 C �
�2 C N�1

�
ˇ4

C �
i!2�2 � i!1 N�1

�
ˇ5 C �

i!2 N�1 � i!1�2

�
ˇ6 C .i!2 � i!1/ N�1�2ˇ7:

(1.180)

For convenience let us introduce the polar notation

Am D 1

2
amexp .i�m/ ; m D 1; 2; (1.181)

where am and �m are the real functions of T1. Substitution of (1.181) into (1.179)
yields

�
a

0

1 C ia1�
0

1

�
C �1a1 C 1

2
1
a1a2 Œ' C i � exp .i�2/ D 0;

�
a

0

2 C ia2�
0

2

�
C �2a2 C 1

2
2
a21 Œ� C i�� exp .�i�2/C f


2 �2

exp .i�1/ D 0:

(1.182)
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In the preceding expressions the following notations were introduced:

' D Re

�
q!2�!1 C 1

�1

p!2�!1
�
;  D Im

�
q!2�!1 C 1

�1

p!2�!1
�
;

� D Re

�
q2!1 C 1

�2

p2!1

�
;

� D Im

�
q2!1 C 1

�2

p2!1

�
;


n D �4!ni C ˇ

�
Im�n C 1

Im�n

�
i; n D 1; 2;

�1 D �1T1 C � ��2; �2 D �2 � 2�1 � �2T1; (1.183)

and �1 and �2 are defined as in (1.158).
Separating (1.182) into real and imaginary parts and taking into account that

according to (1.145)�n .n D 1; 2/ is the imaginary value, we obtain

a0
1 D ��1a1 � a1a2

2Im
1
. cos�2 C 'sin�2/ ;

a1�
0
1 D a1a2

2Im
1
.'cos�2 �  sin�2/ ;

a0
2 D ��2a2 � a21

2Im
2
.�cos�2 � �sin�2/C f

Im
2Im�2

cos�1;

a2�
0
2 D a21

2Im
2
.�cos�2 C �sin�2/C f

Im
2Im�2

sin�1: (1.184)

For the steady-state response a0
n D � 0

n D 0, therefore,

�0
1 D 1

2
.�1 � �2/ ; �0

2 D �1: (1.185)

Two possibilities follow from (1.184). The first one is given by (1.174). It is the
solution of the linear problem. Let us find functions a1 and a2 of T1 according to the
second possibility. It follows from the first two equations of (1.184) that

4!1 .�1 C �2/

a2
D � cos�2 � 'sin�2;

Im
1
a2

.�1 � �2/ D 'cos�2 �  sin�2: (1.186)

So

a2 D
0
@16!

2
1 .�1 C �2/

2 C Im
21

�
.�1 � �2/2

�

'2 C  2

1
A
1=2

: (1.187)
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Let us take sin �2 and cos �2 using, for example, the formulas by Cramer:

cos�2 D �1

�
; sin�2 D �2

�
; (1.188)

where

� D
ˇ̌
ˇ̌� �

' � 

ˇ̌
ˇ̌ D '2 C  2;

�1 D � 1

a2

ˇ̌
ˇ̌ 2Im
1�1 '

Im
1 .�1 � �2/  

ˇ̌
ˇ̌

D 1

a2
.4!1 .�1 C �2/ C Im
1 .�1 � �2/ '/ ;

�2 D 1

a2

ˇ̌
ˇ̌� 2Im
1�1
' Im
1 .�1 � �2/

ˇ̌
ˇ̌

D 1

a2
.�Im
1 .�1 � �2/ � 4!1 .�1 C �2/ '/ : (1.189)

Then a biquadratic equation relative to a1 follows from the last two equations of
(1.184):

a41.�
2 C �2/C 4a21Œ�2!2.�1 C �2/a2.� cos �2 � � sin �2/

�Im
2�1a2.� cos �2 C � sin �2/�

C4 �4!22 .�1 C �2/
2 C Im
22�

2
1

�
a22 � 4f 2

.Im�2/2
D 0: (1.190)

Finally, we obtain the expression for a1:

a1 D
"

�p
2

˙
��p

2

�2 � q

� 1
2

# 1
2

; (1.191)

where

p D 4a2

�2 C �2
Œ�2!2 .�1 C �2/ .�cos�2 � �sin�2/� Im
2�1 .�cos�2 C �sin�2/� ;

q D 1

�2 C �2



4a22

h
4!22 .�1 C �2/

2 C Im
22�
2
1

i
� 4f 2

.Im�2/
2

�
: (1.192)
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Thus, the unknown functions in (1.165) were defined. It follows from (1.141),
(1.165), and (1.181) that

x D "

	
1

2
a1exp Œi .�1 C !1T0/�C 1

2
a2exp Œi .�2 C !2T0/�C CC



CO

�
"2
�
;

y D "

	
1

2
�1a1exp Œi .�1 C !1T0/�C 1

2
�2a2exp Œi .�2 C !2T0/�CCC



CO �"2� :

(1.193)

Then, the real solution is as follows:

x D "



a1cos

	
1

2
.˝t C � � �1 � �2/



C a2cos .˝t C � � �1/

�
CO

�
"2
�
;

y D �"


a1Im�1sin

	
1

2
.˝tC� � �1 � �2/



a2Im�2sin .˝tC� � �1/

�
CO �"2� :

(1.194)

Here a1 and a2 are defined by (1.187) and (1.191).
Let us consider the expression for a1 (1.191). When

fŒ.p=2/ > 0� ^ .q > 0/g _ Œ.p=2/2 < q�; (1.195)

there are no real values of a1 defined by (1.191) and the response must be given by
(1.177). When

Œ.p=2/2 > q� ^ .q < 0/; (1.196)

there is one real solution defined by (1.191). Therefore, the response is one of the
two possibilities given by (1.177) and (1.194). When

Œ.p=2/ < 0� ^ Œ.p=2/2 > q� ^ .q > 0/; (1.197)

there are two real solutions defined by (1.191). Therefore, the response is one of the
three possibilities given by (1.177) and (1.194).

Figure 1.42 depicts frequency-response curves. a1 and a2 are plotted as functions
of �1 for �2 D 0. The dashed line with a peak at �1 D 0 corresponds to
a1 D 0 and is a solution of the corresponding linear problem. Arrows indicate
the jump phenomenon associated with varying the frequency of external excitation
˝ . The perturbation solution obtained is the superposition of two submotions
with amplitudes a1 and a2 and frequencies !1 and !2, respectively. To compare
the perturbation and numerical solutions, we performed an approximate harmonic
analysis of solutions x.t/ and y.t/, obtained numerically. These functions are
expanded in Fourier series formed from cosines
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Fig. 1.42 Frequency-
response curves; �2 D 0,
˝ � !2

x .t/ D a0

2
C

1X
kD1

ak cos
k�t

T
;

ak D 2

T

TZ

0

x .t/ cos
k�t

T
dt; k D 0; 1; 2: : :; (1.198)

where T is the period of integration, 0 	 t 	 T . The coefficients of the Fourier
series were calculated approximately. The following parameters of set (1.140) were
accepted: ˛ D 200, ˇ D 10, ˛1 D 9:985 
 102, ˛2 D 2 
 103, ˛3 D 7:9588 
 103,
˛4 D 0:002, ˛5 D �4:0794 
 103, ˛6 D 4:0002 
 103, ˛7 D 8:0005 
 103,
ˇ1 D 29:9975, ˇ2 D �0:001, ˇ3 D �4:1594 
 103, ˇ4 D �1:9997 
 103, ˇ5 D
�7:9188
 103, ˇ6 D 0:7959, ˇ7 D �0:4083.

Parameters ˛ D 200, ˇ D 10 correspond to natural frequencies !1 D 10,
!2 D 20, i.e., !2 D 2!1. The curves in Fig. 1.43 were plotted using points
. k�
T
; a0
2

C ak/. Figure 1.43 demonstrates good agreement of the perturbation and
numerical solutions: panel a characterizes x.t/ as harmonic motion with amplitude
a2�1:5
10�4 and frequency!2 D 20; panel b characterizes x.t/ as a superposition
of harmonic motions with amplitude a1 � 4
 10�4, frequency !1 D 10, amplitude
a2 � 1:5 
 10�4, and frequency !2 D 20.

In Figs. 1.45 and 1.46 one can see the saturation phenomenon. As f increases
from zero, a2 also increases until it reaches the value a2 D 3:5 
 10�4. In Fig. 1.44
it reaches the value a2 D 1:125 
 10�4, whereas in Fig. 1.46 a1 is zero. This
agrees with the solution of the corresponding linear problem. Then a2 saves the
constant value and a1 starts to increase. Approximate harmonic analysis of Fig. 1.45
(Fig. 1.47) demonstrates good agreement of the theoretical prediction presented in
Fig. 1.44 (Fig. 1.46) and the corresponding numerical solution of (1.140).
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Fig. 1.43 Comparison of analytical results presented on the frequency-response curves (Fig. 1.42)
with numerical integration of (2): (a) ˝ D 19 .ı1 D �1; ı2 D 0/, f D 0:01; (b) ˝ D 20

.ı1 D 0; ı2 D 0/, f D 0:01

Fig. 1.44 Amplitudes a1, a2
versus the amplitude of
external excitation f ;
˝ � !2, �1 D �0:5, �2 D 0

Fig. 1.45 Comparison of analytical results presented in Fig. 1.44 with numerical integration of
(1.140): (a) ˝ D 19:5 .�1 D �0:5; �2 D 0/, f D 0:0065; (b) ˝ D 19:5 .�1 D �0:5; �2 D 0/,
f D 0:01
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Fig. 1.46 Amplitudes a1, a2
versus the amplitude of
external excitation f ;
˝ � !2, �1 D �2 D 0

Fig. 1.47 Comparison of analytical results presented in Fig. 1.46 with numerical integration of
(1.140): (a) ˝ D 20 .�1 D �2 D 0/, f D 0:0006; (b) ˝ D 20 .�1 D �2 D 0/, f D 0:003

1.5.2.3 Rigid Magnetic Materials: Conditions for Chaotic Vibrations
of a Rotor in Various Control Parameter Planes

In the case of rigid magnetic materials, the hysteretic properties of system (1.137)
can be considered using the Bouc–Wen hysteretic model. It was shown [35] that
this modeling mechanism for energy dissipation was sufficiently accurate to model
loops of various shapes in accordance with a real experiment, reflecting the behavior
of hysteretic systems from very different fields. The hysteretic model of the rotor-
MHDB system is as follows:

Rx D Pr
�
�; P�; P
� cos
 � P�

�
�; P
� sin
 � �m Px

��m Œı .x � x0/C .1 � ı/ z1� ;
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Ry D Pr
�
�; P�; P
� sin
 C P�

�
�; P
� cos
 � �m Py

��m Œı .y � y0/C .1 � ı/ z2� CQ0 CQsin˝t;

Pz1 D Œkz � .� C ˇsgn . Px/ sgn .z1// jz1jn� Px;
Pz2 D Œkz � .� C ˇsgn . Py/ sgn .z2// jz2jn� Py: (1.199)

Here z1 and z2 are the hysteretic forces. The case ı D 0 corresponds to maximal
hysteretic dissipation and ı D 1 to the absence of hysteretic forces in the system;
parameters .kz; ˇ; n/ 2 RC and � 2 R govern the shape of the hysteresis loops.

The conditions for chaotic vibrations of a rotor have been found using the
approach based on an analysis of wandering trajectories. The description of the
approach, its advantages over standard procedures, and a comparison with other
approaches can be found, for example, in [35, 38, 40].

The stability of motion depends on all the parameters of system (1.199),
including the initial conditions. We traced the irregular vibrations of a rotor to
sufficient accuracy in the parametric planes of amplitude of external excitation
versus hysteretic dissipation .ı;Q/, the amplitude versus frequency of external
excitation .˝;Q/, the amplitude versus dynamic oil-film action characteristics
.C;Q/, and the amplitude versus the magnetic control parameters .�m;Q/ and
.�m;Q/.

Chaos is not found in the absence of hysteresis when ı D 1. The chaotic
vibrations of a rotor are caused by hysteresis and for all chaotic regions presented
ı ¤ 1. Thus in system (1.199), chaos was quantified using the following conditions:

9t� 2 Œt1; T � W ˚. jx .t�/� Qx .t�/ j > ˛Ax/ _ �jy .t�/� Qy .t�/ j > ˛Ay
��

+ +
chaotic vibrations chaotic vibrations

in the horizontal direction in the vertical direction:
(1.200)

Here x.t/, Qx.t/ and y.t/, Qy.t/ are nearby trajectories respectively, Ax and Ay
are the characteristic vibration amplitudes of the rotor in the horizontal and vertical
direction, respectively:

Ax D 1

2

ˇ̌
ˇ̌ max
t1�t�T

x .t/ � min
t1�t�T

x .t/

ˇ̌
ˇ̌ ;

Ay D 1

2

ˇ̌
ˇ̌ max
t1�t�T

y .t/ � min
t1�t�T

y .t/

ˇ̌
ˇ̌ : (1.201)

Œt1; T � � Œt0; T � and Œt0; T � is the time interval over which the trajectories are
considered. The interval Œt0; t1� is the time interval over which all transient processes
are damped. The introduced parameter ˛ is an auxiliary parameter such that 0 <
˛ < 1. ˛Ax and ˛Ay are referred to as the divergence measures of the observable
trajectories in the horizontal and vertical directions and, with the aid of the chosen
parameter ˛, are inadmissible for the case of the regularity of motion.



1.5 Rotor Supported by Magnetohydrodynamic Bearing 75

Fig. 1.48 Influence of hysteretic dissipation parameter ı on chaos in horizontal (a, c) and vertical
(b, d) vibrations of rotor (1.199) in the case of rigid magnetic materials. The following parameters
are fixed in (a, b): C D 0:03, �m D 0:001, �m D 450, kz D 0:000055, � D 15, ˇ D 0:25,
n D 1:0, ˝ D 0:87, Q0 D 0, x0 D 0, y0 D 0, x.0/ D y.0/ D 10�8, Px.0/ D Py.0/ D 0,
z1.0/ D z2.0/ D 0; (c, d): C D 0:2, �m D 0, �m D 500, kz D 0:000055, � D 15, ˇ D 0:25,
n D 1:0, ˝ D 0:87, Q0 D 0, x0 D 0, y0 D 0, x.0/ D y.0/ D 10�8, Px.0/ D Py.0/ D 0,
z1.0/ D z2.0/ D 0

If inequality (1.200) is satisfied in some nodal point of the sampled control
parameter space, then the motion is chaotic (including transient and alternating
chaos). The manifold of all such nodal points of the investigated control parameter
space defines the domains of chaotic behavior for the considered system.

Figure 1.48 displays the regions of rotor chaotic vibrations in the .ı;Q/ plane.
Part of this plane .10�7 < ı 	 0:0017; 0:00125 < Q 	 0:00185/ (panels a and b)
and .10�7 < ı 	 0:0023; 0:00155 < Q 	 0:0021/ (panels c and d) was sampled by
means of a uniform rectangular grid. For this purpose two families of straight lines
were drawn through dividing points of the axes

ıi D i�ı; i D 0; 1; : : :; 120;

Qj D j�Q; j D 0; 1; : : :; 120: (1.202)
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Fig. 1.49 Chaotic regions for horizontal (a, c) and vertical (b, d) vibrations of rotor (28) in .˝;Q/
parametric plane with decrease of the hysteretic dissipation value (a, b) ı D 0:0001; (c, d) ı D
0:0013 with other parameters of the system fixed: C D 0:2, �m D 0, �m D 500, kz D 0:000055,
� D 15, ˇ D 0:25, n D 1:0, Q0 D 0, x0 D 0, y0 D 0, x.0/ D y.0/ D 10�8, Px.0/ D Py.0/ D 0,
z1.0/ D z2.0/ D 0

Here�ıD 1:4165
10�5,�QD 5
10�6 (panels a and b),�ıD 1:91658
10�5,
�QD 4:58333
 10�6 (panels c and d).

The time period for the simulation T is of 200�
˝

in non-dimentional time units.
During the computations, two-thirds of time period T corresponds to the time
interval Œt0; t1�, where transient processes are damped. The integration step size is
0:02 �

˝
. The initial conditions of the nearby trajectories differ by less than 0:5% of

characteristic vibration amplitudes, e.g., the starting points of these trajectories are
in the rectangle .jx.t0/� Qx.t0/j<0:005Ax, jy.t0/� Qy.t0/j<0:005Ay/. The param-
eter ˛ is chosen to be equal to 1

3
.

All domains have a complex structure. There are a number of scattered points,
streaks, and islets here. Such a structure is characteristic of domains where chaotic
vibrations are possible. For each aggregate of control parameters there is some
critical value of the hysteretic dissipation .1 � ıcr/ that if .1 � ı/< .1 � ıcr/, then
chaos is not observed in the system under consideration.

In Fig. 1.49 chaotic regions for the horizontal and vertical vibrations of a rotor are
depicted in the .˝;Q/ parametric plane .0:25<˝ 	 1:2I 0:0015<Q	 0:0022/.
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The time period for the simulation T and other numerical integration charac-
teristics are the same as for .ı;Q/ parametric plane, �˝D 7:91667 
 10�3,
�QD 5:83333e 
 10�6. One can observe that for the larger hysteretic dissipation
.1 � ı/, ı D 0:0001 the chaotic regions areas are larger.

Figure 1.50 shows the phase portraits, hysteretic loops, and Poincar maps of
chaotic motion of a rotor. The parameters of motion correspond to the parameters
of the chaotic region depicted in Fig. 1.49a, b. The phase portraits, hysteretic loops,
and Poincar maps of the periodic rotor motion that also agree well with the obtained
regions of regular/irregular behavior of the rotor depicted in Fig. 1.49a, b are shown
in Fig. 1.51.

The influence of the dynamic oil-film action characteristics on chaos occurring
in the rotor motion can be observed in Fig. 1.52. One can see the restraining
of chaotic regions with decreasing of hysteretic dissipation .1 � ı/. The .C;Q/
parametric plane was uniformly sampled by 120
120 nodal points in the rectangles
.0<C 	 1:5; 0:0015<Q	 0:0021/, �C D 0:0125, �QD 5 
 10�6 (panels a
and b) and .0<C 	 1:5; 0:0015 < Q	 0:00225/, �C D 0:0125, �QD 6:25 

10�6 (panels c and d).

The influence of the magnetic control parameters �m; �m on chaos oc-
curring in the rotor vibrations can be observed in Figs. 1.53 and 1.54.
The .�m;Q/ and .�m;Q/ parametric planes were uniformly sampled by
120 
 120 nodal points in the rectangles .0<�m 	 0:09; 0:00165<Q	0:0019/,
�m D 7:5 
 10�4, �QD 2:08333 
 10�6, Fig. 1.44a, b; .0<�m 	 0:15;
0:00155<Q	 0:0023/, �m D 1:25 
 10�3, �QD 6:25 
 10�6 Fig. 1.44c, d;
.450<�m 	 630; 0:00145<Q	 0:0025/, ��m D 1:5, �QD 8:75 
 10�6,
Fig. 1.54a and b; .420<�m 	 800; 0:0015<Q	 0:0043/, ��m D 3:16667,
�QD 2:33333 
 10�5, Fig. 1.54c, d. The time period for simulation T and other
numerical integration characteristics are the same as for the .ı;Q/ parametric plane.

Impact phenomena are possible in the bearings for both chaotic and periodic
rotor motion at large amplitudes of the external harmonic excitation. An analysis
of the rotor behavior after a collision with the bearings is not considered in this
paper because the model described does not have a physical meaning in this case.
To see if the rotor chaotic motion is accompanied by an increase in the amplitude of
vibration, the amplitude level contours of the horizontal and vertical vibrations of
the rotor were obtained. In Fig. 1.55, the amplitude level contours are presented
in the .�m;Q/ parametric plane with the same parameters as in Fig. 1.53a, b.
Some “consonance” between the chaotic vibrations regions and the amplitude level
contours is observed. At that level the amplitudes of chaotic rotor vibrations are
greater in comparison to the periodic vibrations.

In Fig. 1.56 the amplitude level contours are presented in the .C;Q/ parametric
plane with the same parameters as in Fig. 1.52a, b. Although some “consonance”
between the chaotic regions of vibrations and the amplitude level contours is
observed, it cannot be concluded that chaos leads to an essential increase in the
rotor vibration amplitude [40].
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Fig. 1.50 Phase portraits (a, c), hysteresis loops (b, d), and Poincar maps (e, f) of rotor motion
that agree with the chaotic regions in Fig. 1.49 (a, b). The parameters ˝ D 0:87, Q D 0:00177,
ı D 0:0001, C D 0:2, �m D 0, �m D 500, kz D 0:000055, � D 15, ˇ D 0:25, n D 1:0,Q0 D 0,
x0 D 0, y0 D 0, x.0/ D y.0/ D 10�8, Px.0/ D Py.0/ D 0, z1.0/ D z2.0/ D 0 are fixed
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Fig. 1.51 Phase portraits (a, c), hysteresis loops (b, d), and Poincar maps (e, f) of periodic rotor
motion that agree with regions of regular motion in Fig. 1.49a–d. The parameters ˝ D 1:2, Q D
0:0017, ı D 0:0001, C D 0:2, �m D 0, �m D 500, kz D 0:000055, � D 15, ˇ D 0:25, n D 1:0,
Q0 D 0, x0 D 0, y0 D 0, x.0/ D y.0/ D 10�8, Px.0/ D Py.0/ D 0, z1.0/ D z2.0/ D 0 are fixed
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Fig. 1.52 Influence of dynamic oil-film action characteristics on chaos occurring in horizontal
(a, c) and vertical (b, d) vibrations of rotor (1.199) in the case of rigid magnetic materials. The
parametric planes (C,Q) are depicted at (a), (b) ı D 0:000001, �m D 0 and (c), (d) ı D 0:001,
�m D 0:03 with other parameters of the system fixed: �m D 500, kz D 0:000055, � D 15,
ˇ D 0:25, n D 1:0, Q0 D 0, x0 D 0, y0 D 0, x.0/ D y.0/ D 10�8, Px.0/ D Py.0/ D 0,
z1.0/ D z2.0/ D 0
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Fig. 1.53 Influence of magnetic control parameter �m on chaos occurring in horizontal (a, c) and
vertical (b, d) vibrations of rotor (1.199) in the case of rigid magnetic materials. The parametric
planes .�m;Q/ are depicted at (a, b) ı D 0:000001, C D 0:2 and (c, d) ı D 0:0005, C D 1

with other parameters of the system fixed: �m D 500, kz D 0:000055, � D 15, ˇ D 0:25,
n D 1:0, ˝ D 0:87, Q0 D 0, x0 D 0, y0 D 0, x.0/ D y.0/ D 10�8, Px.0/ D Py.0/ D 0,
z1.0/ D z2.0/ D 0
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Fig. 1.54 Influence of magnetic control parameter �m on chaos occurring in horizontal (a, c) and
vertical (b, d) vibrations of rotor (1.199) in the case of rigid magnetic materials. The parametric
planes .�m;Q/ are depicted at (a, b) ı D 0:000001, C D 0:2, �m D 0 and (c, d) ı D 0:001,
C D 1, �m D 0:005with other parameters of the system fixed: kz D 0:000055, � D 15, ˇ D 0:25,
n D 1:0, ˝ D 0:87, Q0 D 0, x0 D 0, y0 D 0, x.0/ D y.0/ D 10�8, Px.0/ D Py.0/ D 0,
z1.0/ D z2.0/ D 0
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Fig. 1.55 Amplitude level contours (corresponding to Fig. 1.53a, b) of horizontal (a) and vertical
(b) vibrations of rotor (1.199) in parametric plane .�m;Q/ at ı D 0:000001, C D 0:2, �m D 500,
kz D 0:000055, � D 15, ˇ D 0:25, n D 1:0, ˝ D 0:87, Q0 D 0, x0 D 0, y0 D 0, x.0/ D
y.0/ D 10�8, Px.0/ D Py.0/ D 0, z1.0/ D z2.0/ D 0
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Fig. 1.56 Amplitude level contours (corresponding to Fig. 1.52a, b) of horizontal (a) and vertical
(b) vibrations of rotor (1.199) in parametric plane .C;Q/ at ı D 0:000001, �m D 0, �m D 500,
kz D 0:000055, � D 15, ˇ D 0:25, n D 1:0, ˝ D 0:87, Q0 D 0, x0 D 0, y0 D 0, x.0/ D
y.0/ D 10�8, Px.0/ D Py.0/ D 0, z1.0/ D z2.0/ D 0
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Chapter 2
Equations of Motion of a Rigid Spherical Body

In this chapter, we introduce basic equations of dynamics of a rigid body during
motion about a fixed pivot point. On the basis of these equations, later in this work,
we will describe gyroscopic phenomena.

2.1 Kinematics of Rigid-Body Motion

To describe the spherical motion of a rigid body, it is necessary to find angular
coordinates that uniquely determine the position of a rigid body in the reference
frame [1–3]. In what follows, we take two frames (Fig. 2.1).

The first frame,OX 0
1OX

0
2OX

0
3O , is a reference frame. In the considered problem,

we can think of it as a fixed coordinate system. The second frame,OX 000
1 X

000
2 X

000
3 , is

stiff-connected with the body so that it rotates. The origins O of both these frames
are the same fixed point. The position of a body with respect to the fixed coordinate
systemOX 0

1OX
0
2OX

0
3O is described by means of three angles of rotation. This means

that a rotation of the body about an arbitrarily oriented axis in space, originating
from point O , can be composed of another three rotations. The angles of these
rotations can be specified in various ways. There exist many ways of describing the
same position of a body by means of three angles [1–3]. The most popular technique
was proposed by Euler.

2.1.1 The Euler Angles

After Euler,the position of a fixed-body frameOX1X2X3 relative to the fixed frame
OX 0

1OX
0
2OX

0
3O can be specified by the three angles �e , #e , ˚e depicted in Fig. 2.2.
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Fig. 2.1 Position of body in frames

Fig. 2.2 Euler’s angles

The angle #e is between two axes OX 0
3O and OX3. The two remaining angles

are measured in the planes OX 0
1OX

0
2O and OX 000

1 X
000
2 (Fig. 2.2). Following the

description given in [1–3], a line of intersection of these planes is called a line
of nodes .Kn/ or axis of nutation. The angle  e is between a line of nodes and
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Fig. 2.3 Rotation about
precession axis

the axis OX 0
1O , and the angle ˚e is between the line of nodes and the axis OX 000

1 .
In the theory of gyroscopes, angles #e ,  e , and 
e are called nutation, precession,
and eigenrotations, respectively. However, it should be emphasized that these terms
are geometrical names and should not be confused with notions of nutation and
precession, used in the rest of this work with a completely different meaning.

Thus, in the Euler approach an arbitrary position of a body can be specified as
follows:

1. The first rotation is made about theOX 000
3 axis by a precession angle e (Fig. 2.3).

This orthogonal transformation can be presented by means of a matrix of
transformation:

m D
2
4 cos e sin e 0

� sin e cos e 0
0 0 1

3
5 :

2. The second rotation is made about theOX 0
1 axis by a nutation angle #e (Fig. 2.4).

This operation is equivalent to the matrix

m# D
2
4 1 0 0

0 cos#e sin#e
0 � sin#e cos#e

3
5 :

3. The final rotation needs to be made about the axis of eigenrotationsOX 00
3 by an

angle 
e (Fig. 2.5).
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Fig. 2.4 Rotation about
nutation angle

Fig. 2.5 Rotation about
the axis of eigenrotations

The corresponding transformation matrix has the following form:

m˚ D
2
4 0 0 0

cos˚e sin˚e 0
� sin˚e cos˚e 1

3
5 :

Let us determine the cosines of the inclination angles of the axes OX 000
1 OX

000
2

OX 000
3 to OX 0

1OOX
0
2OOX

0
3O (observe that these angles are not equal to #e;  e; ˚e

except some particular cases). These direction cosines are elements of the matrix of
transformation, which can be obtained by successive transformations. Then we have
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Fig. 2.6 Angular velocity
vector of body [1]

mE D m˚ m#m 

D
2
4 cos e sin e 0

� sin e cos e 0
0 0 1

3
5
2
4 1 0 0

0 cos#e sin#e
0 � sin#e cos#e

3
5
2
4 0 0 0

cos˚e sin˚e 0
� sin˚e cos˚e 1

3
5

D
2
4 cos e cos˚e � sin˚e cos#e sin e cos˚e sin e C sin˚e cos e cos#e

� sin˚e cos e � cos˚e cos#e sin e � sin˚e sin e C cos˚e cos e cos #e
sin#e sin e � sin#e cos e

sin˚e sin#e
cos e sin#e

cos#e

3
5 : (2.1)

The vector !e of the body’s angular velocity is a vector sum of the component
velocities (Fig. 2.6):

!e D P#e C e C P̊
e; (2.2)

where

P#e D d#e

dt
; P e D d 

dte
; P̊

e D d˚

dte
:
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Projections of vector !e onto the OX 000
1 , OX 000

2 , and OX 000
3 axes are determined

in such a way that each of the vectors P#e , P e , and P̊
e is projected onto the

aforementioned axes:

!
OX 000

1 X
000

2 X
000

3
e D m#˚

2
4 00

P e

3
5Cm˚

2
4

P#e
0

0

3
5C

2
4 00

P̊
e

3
5 ;

2
64
!eX 000

1

!eX 00

2

!eX 000

3

3
75 D

2
4

P�e sin#e sin˚e C P#e cos˚e
P e sin# cos
e � P#e sin˚e

P̊
e C P̊

e cos#e

3
5 : (2.3)

The projections of vector !e onto the axes of the fixed frame OX 0
1O; OX

0
2O;

OX 0
3O are as follows:

!
OX 0

1OX
0

2OX
0

3O
e D m #

2
4 00

P̊
e

3
5Cm�

2
4

P#e
0

0

3
5C

2
4 00

P e

3
5 ;

2
64
!eX 0

1O

!eX 0

2O

!eX 0

3O

3
75 D

2
4

P̊
e sin#e sin e C P#e cos e
P̊
e sin# cos e � P#e sin e

P e C P̊
e cos#e

3
5 : (2.4)

The preceding formulas (2.3) and (2.4) can be regarded as systems of equations
of unknowns P#e , P e , and P̊

e . Determining, e.g., on the basis of (2.3), projections of
the angular velocities P# e; P e;

P̊
e onto the movable axes OX 000

1 ; OX
000
2 ; OX

000
3 , we

have

P#e D !eX 000

1
cos˚e � !eX 000

2
sin˚e;

P e D !eX 000

1
sin˚e C !eX 000

1
cos˚e

sin#e
;

P̊
e D !eX 000

3
� !eX 000

1
sin˚e C !eX 000

2
cos˚e

tan#e
: (2.5)

Equations (2.5) imply the following conclusions:

(a) For #e D 0 we have P e and P̊
e undetermined.

(b) For #e D  e D ˚e D 0 we have: !eX 000

1
D P#e; !000

eX2
D 0; !000

eX3
D P e C P̊

e

[(2.3)] regardless of the fact that the values P#e; P e; P̊
e are non-zero, which is

not true in a general case.
(c) When #e D 0, then formulas (2.3) imply that !eX 000

1
D �!000

eX2
tan˚e , which is

not valid in a general case either. There are certain paradoxes. Thus, using the
Euler angles one should avoid the position of the body at #e D 0.
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Fig. 2.7 Variants of Euler angles

There exist other variants in specifying angles  e and ˚e (Fig. 2.7a, b).
Using formulas (2.2), it is possible to determine both the value and direction

of the angular velocity !e . For the value of the angular velocity !e we obtain the
expression

!e D
q
!2
eX 000

1
C !2

eX 000

2
C !2

eX 000

3
D
q

P#2e C P 2e C P̊ 2
e C 2 P 2e P̊ 2

e cos#e: (2.6)

The linear velocities of points of a body that rotates about a fixed point O are
angular velocities about the instantaneous axis of rotation. This means that the linear
velocity Ve is a cross product of the angular velocity !e of the form [the radius
vector �.X 000

1 ; X
000
2 ; X

000
3 / is going to a given point from the fixed pointO]

Ve D !e 
 �e: (2.7)

Projecting the velocity Ve onto the OX 000
1 , OX 000

2 , OX 000
3 axes one obtains

VeX 000

1
D !eX 000

2
x000
3 � !eX 000

3
x000
2 ;

VeX 000

2
D !eX 000

3
x000
1 � !eX 000

1
x000
3 ;

VeX 000

3
D !eX 000

1
x000
2 � !eX 000

2
x000
1 : (2.8)

2.1.2 Cardan Angles

The appearance of the Cardan angles is connected with the fact of a common spread
of the Cardan suspension in gyroscopic devices. The Euler angles  e , #e , and ˚e in
this kind of device are inconvenient for analysis. This refers to the fact that small
movements of the rigid body axis cannot be related to the two small angles from
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Fig. 2.8 Cardan angles

the following set:  e , #e, and ˚e. Moreover, the OX 000
1 ; OX

000
2 ; OX

000
3 axes, which

are fixed to the body, change their orientation very fast in space at high angular
velocities of the body [4,5]. This causes some difficulties in exhibiting various kinds
of correcting and control torques, usually about physical axes of the suspension, in
the equations of motion of a rigid body. These defects can be eliminated by choosing
another set of angles  g , #g , ˚g , i.e., the aforementioned Cardan angles compared
to  e , #e , ˚e .

The Cardan angles can be specified in various ways as angles between particular
elements of a suspension. One of the possible forms of a Cardan suspension, along
with the assumed angles, is depicted in Fig. 2.8. The Cardan suspension is discussed
in more detail subsequently.

Figure 2.8 shows a gyroscope in its initial position, at which the coordinate sys-
temOX 000

1 X
000
2 X

000
3 , fixed to the rotor, coincides with the fixed systemOX 0

1OX
0
2OX

0
3O .

By mutual rotations of these two bodies, we can specify an arbitrary position of the
gyroscope in space, bearing in mind that the origin O remains at rest.

As in the case of the Euler angles, any position of the rotor of the gyroscope can
be achieved in the following way (see also [3]):

4. The first rotation is made about the fixed axis (of the external frame)OX 0
1O , by an

angle  g (Fig. 2.9). This orthogonal transformation can be expressed by means
of a matrix m 

g [see (2.9)].
5. The second rotation is made about the internal frame axis OX 0

1 by an angle #g
(Fig. 2.10). The respective transformation matrix is m#

g [see (2.9)].
6. The final rotation needs to be made about the eigenrotation axis OX 00

3 at angle
˚g (Fig. 2.11). The corresponding transformation matrix is m˚

g [see (2.9)].

The transformation matrix from the coordinate system OX 0
1O ; OX

0
2O; OX

0
3O to

the system OX 000
1 ; OX

000
2 ; OX

000
3 has the following form:
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Fig. 2.9 Rotation about
external frame axis

Fig. 2.10 Rotation about
internal frame axis

mK D m 
g m

#
gm

˚
g

D
2
4 1 0 0

0 cos g sin g
0 � sin g cos g

3
5
2
4 cos#g 0 � sin#g

0 1 0

sin#g 0 cos#g

3
5
2
4 cos˚g sin˚g 0

� sin˚g cos˚g 0
0 0 1

3
5
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Fig. 2.11 Rotation about
eigenrotation axis (fast)

D
2
4 cos g cos˚gI cos g sin˚g C sin#g sin g cos˚gI

� sin g cos˚gI cos g cos˚g � sin#g sin g sin˚gI
sin gI � cos#g sin gI

sin g sin˚g � cos#g sin g cos˚g
sin g cos˚g C sin#g cos g sin˚g

cos g cos#g

3
5 : (2.9)

Projections of !g onto the OX 000
1 ; OX

000
2 ; OX

000
3 axes are as follows:

!g
OX 000

1 X
000

2 X
000

3 D m#˚
g

2
4

P g
0

0

3
5Cm˚

g

2
4 0

P#g
0

3
5C

2
4 0

0
P̊
g

3
5 ;

2
64
!gX 000

1

!gX 000

2

!gX 000

3

3
75 D

2
4

P g cos#g cos˚g C P#g sin˚g
� P g cos#g sin˚g C P#g cos˚g

P̊
g C P g sin#g

3
5 : (2.10)

By (2.9) we determine projections of the angular velocities P#e; P e;
P̊
e onto

the movable axes OX 000
1 ; OX

000
2 ; OX

000
3 , i.e., we obtain

P#g D !gX 000

1
sin˚g � !gX 000

2
cos˚g;

P g D !gX 000

1
cos˚g � !gX 000

2
sin˚g

cos#g
;

P̊
g D !gX 000

3
�
�
!gX 000

1
cos˚g � !gX 000

2
sin˚g

�
tan#g: (2.11)



2.2 Kinetic Energy of a Rigid Body 97

Projections of the angular velocity !g described by relations (2.10) [or projec-
tions of the angular velocity !e described by relations (2.3)] are not holonomic
coordinates in the sense of analytical mechanics. Thus it is not possible to obtain, by
means of integration, the angles that could uniquely specify the position of a body in
space. That is why one should not measure the components of the angular velocity
of a moving object (airplane, missile, bomb, ship) with measurement instruments
placed on this object to obtain the rotation angles, by means of direct integration,
about the axis of the coordinate system fixed to the object. However, one should
integrate a system of non-linear (2.11) [or (2.5)] to determine the aforementioned
angles precisely.

In the case of the Cardan angles, we can also observe ambiguities in determining
the angular velocities P#g; P g , and P̊

g . In a given case it concerns the angle
#g D �=2. This corresponds to the case of the so-called frame folding of a Cardan
suspension, when the gyroscope fails to operate as a gyroscope.

2.2 Kinetic Energy of a Rigid Body

Considering a body as a set ofN material points moving at velocities Vn, we express
the kinetic energy of the body as follows [6, 7]:

T D 1

2

NX
nD1

mnV
2
n : (2.12)

Using (2.8), the square of velocity of the nth material point reads

V 2
n D V 2

nX 000

1
C V 2

nX 000

2
C V 2

nX 000

3
D
�
!eX 000

2
xn3 � !eX 000

3
xn2

�2

C
�
!eX 000

3
xn1 � !eX 000

1
xn3

�2 C
�
!eX 000

1
xn2 � !eX 000

2
xn1

�2

D !2
eX 000

1

��
xn2
�2 C �

xn3
�2�C !2

eX 000

2

��
xn3
�2 C �

xn1
�2�

C!2
eX 000

3

��
xn1
�2 C �

xn2
�2�� 2!eX 000

2
!eX 000

3
xn2 x

n
3

�2!eX 000

3
!eX 000

1
xn3 x

n
1 � 2!eX 000

1
!eX 000

2
xn1 x

n
2 : (2.13)

Substituting the preceding expression into (2.12) we obtain

T D 1

2

�
IX 000

1
!2
eX 000

1
C IX 000

2
!2
eX 000

2
C IX 000

3
!2
eX 000

3
� 2Iyz!eX 000

2
!eX 000

3

�2Izx!eX 000

3
!eX 000

1
� 2Ixy!eX 000

1
!eX 000

2

�
: (2.14)
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As was assumed in our considerations that the axes OX 000
1 ; OX

000
2 ; OX

000
3 were

fixed to the body and oriented along the main axes of inertia and with the origin
at point O , so in this case the moments of inertia IX 000

1
; IX 000

2
; IX 000

3
are constant and

deviation moments equal zero, i.e., IX2X3 D IX3X1 D IX1X2 D 0.
Thus, the kinetic energy is expressed in the following form:

T D 1

2

�
IX 000

1
!2
eX 000

1
C IX 000

2
!2
eX 000

2
C IX 000

3
!2
eX 000

3

�
: (2.15)

The kinetic energy of a body—in cases where the body, besides spherical motion,
moves in translational motion at the velocity Vo of its center of mass (by the König
theorem)—can be written in the following form:

T D 1

2
m3V

2
o C 1

2

�
IX 000

1
!2
eX 000

1
C IX 000

2
!2
eX 000

2
C IX 000

3
!2
eX 000

3

�
: (2.16)

2.2.1 Equations of Spherical Motion of a Rigid Body

Let us write a theorem on the variation of the angular momentum in the spherical
motion of a body about a fixed pointO (center of spherical motion) in the following
form (see [1, 7] and Chap. 9 of [2]):

dKo

dt
D Mo: (2.17)

We find the angular momentum Ko of the body by the following formula:

Ko D
NX
nD1

�n 
mnVn D
NX
nD1

�n 
mn .!e 
 �n/

D
NX
nD1

mn Œ�n 
 .!e 
 �n/�: (2.18)

Using the properties of vector product, (2.18) takes the following form:

Ko D
NX
nD1

mn Œ!e .�n ı �n/ � �n .!e ı �n/�

D
NX
nD1

mi

�
!e ı �2n � �n.!e ı �n/

�

D
NX
nD1

mn

�
!e
�
.xn1 /

2 C .xn2 /
2 C .xn3 /

2
� � �n.!eX 000

1
xn1 C !eX 000

2
xn2 C !eX 000

3
xn3 /

�
:

(2.19)
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In projections onto particular axes of the coordinate system Og3X
000
1 X

000
2 X

000
3 , the

components of the angular momentum vector read

KX 000

1
D IX 000

1
!eX 000

1
� IX1X2!eX 000

2
� IX1X3!eX 000

3
;

KX 000

2
D IX 000

2
!eX 000

2
� IX2X3!eX 000

3
� Iyx!eX 000

1
;

KX 000

3
D IX 000

3
!eX 000

3
� IX3X1!eX 000

1
� IX3X2!eX 000

2
; (2.20)

where

IX 000

1
D

NX
nD1

mn

��
xn2
�2 C �

xn3
�2�
; IX 000

2
D

NX
nD1

mn

��
xn3
�2 C �

xn2
�2�
;

IX 000

3
D

NX
nD1

mn

��
xn1
�2 C �

xn2
�2�
; IX1X2 D

NX
nD1

mnx
n
1 x

n
2 ;

IX2X3 D
NX
nD1

mnx
n
2 x

n
3 ; IX3X1 D

NX
nD1

mnx
n
3 x

n
1 :

In cases where the axes OX 000
1 ; OX

000
2 ; OX

000
3 are the main axes intersecting at

point O , the moments of deviation of the body relative to these axes read IX1X2 D
IX2X3 D IX1X3 D 0.

Finally, the components of the angular momentum take the form

KX 000

1
D IX 000

1
!eX 000

1
; KX 000

2
D IX 000

2
!eX 000

2
; KX 000

3
D IX 000

3
!eX 000

3
: (2.21)

A derivative of the angular momentum Ko with respect to time has the following
form:

dKo

dt
D E000

1

dKX 000

1

dt
C E000

2

dKX 000

2

dt
C E000

3

dKX 000

3

dt
C!e 
 Ko

D E000
1

dKX 000

1

dt
C E000

2

dKX 000

2

dt
C E000

3

dKX 000

3

dt

C

ˇ̌
ˇ̌
ˇ̌
ˇ

E000
1 E000

2 E000
3

!eX 000

1
!eX 000

2
!eX 000

3

KX 000

1
KX 000

2
KX 000

3

ˇ̌
ˇ̌
ˇ̌
ˇ
: (2.22)
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Equations (2.17), taking into account (2.22) in projections onto the axes of the
movable coordinate system OX 000

1 X
000
2 X

000
3 , will have the form

dKX 000

1

dt
C !eX 000

2
KX 000

3
� !eX 000

3
KX 000

2
D MX 000

1
;

dKX 000

2

dt
C !eX 000

3
KX 000

1
� !eX 000

1
KX 000

3
D MX 000

2
;

dKX 000

3

dt
C !eX 000

1
KX 000

2
� !eX 000

2
KX 000

1
D MX 000

3
: (2.23)

Assuming that the axes of the movable coordinate system are the main axes of
inertia of the body at the pointOg3 , we substitute (2.21) into (2.23) and obtain

IX 000

1

d!eX 000

1

dt
C
�
IX 000

3
� IX 000

2

�
!eX 000

2
!eX 000

3
D MX 000

1
; (2.24a)

IX 000

2

d!eX 000

2

dt
C
�
IX 000

1
� IX 000

3

�
!eX 000

2
!eX 000

3
D MX 000

2
; (2.24b)

IX 000

3

d!eX 000

3

dt
C
�
IX 000

2
� IX 000

1

�
!eX 000

1
!eX 000

2
D MX 000

3
: (2.24c)

These are the Euler equations of a rigid body in spherical motion [1, 3, 7, 8].
By adding to the preceding (2.23) the relations among projections of the angular
velocities !eX 000

1
; !eX 000

2
; !eX 000

3
, we will obtain six first-order ODEs, which (along

with suitable initial conditions) fully govern the rotation of a rigid body about a fixed
point. The solution of the non-linear differential (2.24) involves elliptic integrals.

Suppose that the torque Mo acting on a rigid body is caused by a single gravity
force G D mg. It can thus be presented in the form

Mo D rc 
mg D
ˇ̌
ˇ̌
ˇ̌

E000
1 E000

2 E000
3

x000
1C x000

2C x000
3C

GX 000

1
GX 000

2
GX 000

3

ˇ̌
ˇ̌
ˇ̌ ; (2.25)

where X 000
1C ; X

0000
2C ; X

000
3C are coordinates of the center of mass in the coordinate sys-

temOX 000
1 X

000
2 X

000
3 . Observe that ŒGX 000

1
; GX 000

2
; GX 000

3
�T DmEŒ0; 0; �G�T D

�GŒsin˚e sin#e; cos˚e sin#e; cos#e�T, wheremE is matrix of transformation
described by relation (2.1); �1; �2; �3 are direction cosines of the angles between the
axis OX 000

3 and the axes OX1; OX2; OX3, where

�1 D sin˚e sin#e; �2 D cos˚e sin#e; �3 D cos#e: (2.26)



2.2 Kinetic Energy of a Rigid Body 101

Taking into account (2.25), the dynamical Euler equations can be cast in the
following form:

IX 000

1

d!eX 000

1

dt
C
�
IX 000

3
� IX 000

2

�
!eX 000

2
!eX 000

3
D G

�
�2x

000
3C � �3x000

2C

�
; (2.27a)

IX 000

2

d!eX 000

3

dt
C
�
IX 000

1
� IX 000

3

�
!eX 000

1
!eX 000

3
D G

�
�3x

000
1C � �1x

000
3C

�
; (2.27b)

IX 000

3

d!eX 000

3

dt
C
�
IX 000

2
� IX 000

1

�
!eX 000

1
!eX 000

2
D G

�
�1x

000
2C � �2x

000
1C

�
: (2.27c)

The derivative of versor k of OX3 with respect to time is as follows:

dk
dt

D dk
dt

ˇ̌
ˇ̌
OX 000

1 X
000

2 X
000

3

C!e 
 k D dkX 000

1

dt
E000
1 C dkX 000

2

dt
E000
2 C dkX 000

3

dt
E000
3

C

ˇ̌
ˇ̌
ˇ̌
ˇ

E000
1 E000

2 E000
3

!eX 000

1
!eX 000

2
!eX 000

3

kX 000

1
kX 000

2
kX 000

3

ˇ̌
ˇ̌
ˇ̌
ˇ

D
�

d�1
dt

C !eX 000

2
�3 � !eX 000

3
�2

�
E000
1

C
�

d�2
dt

C !eX 000

3
�1 � !eX 000

1
�3

�
E000
2 C

�
d�3
dt

C !eX 000

1
�3 � !eX 000

2
�1

�
E000
3 ;

and hence
d�1
dt

D !eX 000

3
�2 � !eX 000

2
�3; (2.28a)

d�2
dt

D !eX 000

1
�3 � !eX 000

3
�1; (2.28b)

d�3
dt

D !eX 000

2
�1 � !eX 000

1
�2: (2.28c)

The obtained relations are called the Poisson equations. These equations,
together with (2.27), form a basic mathematical model of motion of a heavy rigid
body about a fixed point; they are called the Euler–Poisson equations. The angle
 e , which does not occur in (2.28), can be determined by means of quadratures
of the Euler kinematic equations (2.3). Although one can determine as well the
remaining angles˚e and #e from (2.3) knowing the angular velocities !eX 000

1
, !eX 000

2
,

and !eX 000

3
, the relationships (2.28) are more advantageous since they require no

redundant integrations.
One can show that [1, 3] when four first integrals are found, the problem of

solving the system of (2.27) and (2.28) reduces to the quadratures. Three integrals
can be determined directly.



102 2 Equations of Motion of a Rigid Spherical Body

Multiplying each equation of system (2.28) by �1; �2; �3, respectively, and
adding the equations we obtain a trivial integral

�21 C �22 C �23 D 1: (2.29)

We obtain the second integral from the obvious relation

dKX3O

dt
D MX3O D 0; (2.30)

whereKX3O is a projection of the angular momentum of a rigid body onto theOX3O
axis in a fixed frame and reads

KX3O D KX 000

1
sin˚e sin#e CKX 000

2
cos˚e sin#e CKX 000

3
cos#e: (2.31)

Taking into account (2.26) and (2.21), we obtain the first integral of the form

IX 000

1
!X 000

1
�1 C IX 000

1
!X 000

2
�2 C IX 000

3
!X 000

3
�3 D const: (2.32)

If each equation of system (2.27) is multiplied by !eX 000

1
, !eX 000

2
, and !eX 000

3
,

respectively, and the equations are added to one another, then we will obtain the
first integral of the kinetic energy:

T D 1

2

�
IX 000

1
!2
X 000

1
C IX 000

2
!2
X 000

2
C IX 000

3
!2
X 000

3

�
: (2.33)

It is easy to see that the potential energy of a rigid body in the considered case
reads

V D Gx3O D G
�
x000
1C �1 C x000

2C �1 C x000
3C �1

�
: (2.34)

Thus, by the principle of conservation of energy for a heavy rigid body in
spherical motion

T C V D const; (2.35)

we obtain the third integral in the form

1

2

�
IX 000

1
!2
X 000

1
C IX 000

2
!2
X 000

2
C IX 000

3
!2
X 000

2

�
CG

�
x000
1C �1 C x000

2C �1 C x000
3C �1

� D const:

(2.36)

A problem related to finding the fourth integral is the essence of solving
the Euler–Poisson system of equations. It was precisely this problem that was
investigated by Euler, Lagrange, Poinsot, Kovalevskaya, Poincaré, Lyapunov, and
many other renowned scientists. Unfortunately, the problem remains unsolved.
However, a general solution of these equations has been found only in three cases:
Euler (x000

1C D 0; x000
2C D 0; x000

3C D 0); Lagrange ( IX 000

1
D IX 000

2
; x000

1C D 0; x000
2C D 0);

Kovalevskaya ( IX 000

1
D IX 000

2
D 2IX 000

3
; x000

3C D 0); see also the related discussion
in [3].

In subsequent subsections, we will consider the aforementioned cases of spheri-
cal motion of a rigid body in more detail from the point of view of applications.
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Fig. 2.12 The Euler case

2.2.2 The Euler Case and Geometric Interpretation of Motion
of a Body by Poinsot

Consider the motion of a rigid body about a fixed supporting pointO . Suppose that
the center of mass of this body coincides with the center of rotation at the point O
(Fig. 2.12).

If we ignore friction in the bearing, which supports the body and air resistance,
then the moments of all external forces about the fixed center of mass O will equal
zero. The system of the Euler dynamical equations (2.22) will take the form

IX 000

1

d!eX 000

1

dt
C
�
IX 000

3
� IX 000

2

�
!eX 000

2
!eX 000

3
D 0; (2.37a)

IX 000

2

d!eX 000

2

dt
C
�
IX 000

1
� IX 000

3

�
!eX 000

1
!eX 000

3
D 0; (2.37b)

IX 000

3

d!eX 000

3

dt
C
�
IX 000

2
� IX 000

1

�
!eX 000

1
!eX 000

2
D 0: (2.37c)

Note that it is not difficult to find two integrals of (2.37). To find the first integral,
let us multiply the first of these equations by !eX 000

1
, the second one by !eX 000

2
, and

the third one by !eX 000

3
and then add them all up. Then we obtain

IX 000

1
!eX 000

1
P!eX 000

1
C IX 000

2
!eX 000

2
P!eX 000

2
C IX 000

3
!eX 000

3
P!eX 000

3
D 0: (2.38)
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The preceding equation is transformed into the form

1

2

d

dt

�
IX 000

1
!2
eX 000

1
C IX 000

2
!2
eX 000

2
C IX 000

3
!2
eX 000

3

�
D 0: (2.39)

Hence we have

IX 000

1
!2
eX 000

1
C IX 000

2
!2
eX 000

2
C IX 000

3
!2
eX 000

3
D const: (2.40)

The expression on the left-hand side of (2.40) is equal to a doubled kinetic energy
of the considered body, governed by formula (2.35). Thus we have shown that in the
given case, the kinetic energy is constant T D T o D const. The latter observation is
obviously consistent with the theorem on kinetic energy when external forces acting
on the body do not undertake any work. Let us write (2.40) in the form

IX 000

1
!2
eX 000

1
C IX 000

2
!2
eX 000

2
C IX 000

3
!2
eX 000

3

D KX 000

1
!eX 000

1
CKX 000

2
!eX 000

2
CKX 000

3
!eX 000

3
D 2T o: (2.41)

It follows from (2.41) that the end of vector !e can move only in the plane
perpendicular to Ko.

We are left to find the second integral. This time, let us multiply (2.37a) by
KX 000

1
D IX 000

1
!eX 000

1
, (2.37b) by KX 000

2
D IX 000

2
!eX 000

2
, and (2.37c) by KX 000

3
D

IX 000

3
!eX 000

3
and add them up. Then we obtain

I 2
X 000

1
!
eX 000

1

d!
eX 000

1

dt
C I 2

X 000

2
!
eX 000

2

d!
eX 000

2

dt
C I 2

X 000

3
!
eX 000

3

d!
eX 000

3

dt
D 0: (2.42)

Equation (2.42) is equivalent to

d

dt

�
I 2
X 000

1
!2
eX 000

1
C I 2

X 000

2
!2
eX 000

2
C I 2

X 000

3
!2
eX 000

3

�
D 0: (2.43)

Note that the expression in parentheses in (2.43) is equal to the square of the
absolute value of the angular momentum Ko relative to point O . Thus, we obtain
the following integral of (2.43):

I 2
X 000

1
!2
eX 000

1
C I 2

X 000

2
!2
eX 000

2
C I 2

X 000

3
!2
eX 000

3
D K2

o D const: (2.44)

This time it was shown that the magnitude of the angular momentum relative to
pointO is constant.

Although the first two integrals (2.42) and (2.44) do not allow one to obtain the
components of the angular velocity!e as a function of time t , they provide a simple
geometric interpretation that was first studied by Poinsot. Note that (2.41) describes
the energy ellipsoid, which can be written in the form

�!
eX 000

1

ae

�2
C
�!

eX 000

2

be

�2
C
�!

eX 000

3

ce

�2
D 1; (2.45)
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Fig. 2.13 Rolling of energy ellipsoid on a fixed plane

where the semiaxes are as follows:

ae D
s
2T o

IX 000

1

; be D
s
2T o

IX 000

2

; ce D
s
2T o

IX 000

3

:

Ellipsoid (2.45) is a locus of ends of the vector!e (it corresponds to the constant
kinetic energy T o). The main axes of the energy ellipsoid are simultaneously main
axes of the body, whose center coincides with the supporting point O (Fig. 2.13).
Equation (2.44) describes the kinetic ellipsoid, which is a locus of ends of vector!e
(it corresponds to the constant angular momentum).

The invariant plane � and ellipsoid (2.45) touch each other at point P , which is
an end of vector!e. Since the angular momentum Ko is permanently perpendicular
to the plane � , this plane is tangent to the energy ellipsoid at point P . The ellipsoid
rolls without slip on the plane because point P lies on the instantaneous axis, which
is why its velocity equals zero. During this rolling, pole P draws on the plane � ,
a curve called a herpolodia, while on an energy ellipsoid a curve, it is known as a
polodia (Fig. 2.13).

Polodias are closed curves on the surface of an energy ellipsoid. We can
determine them as curves of intersection between the ellipsoid described by (2.41)
and the kinetic ellipsoid described by (2.44). Shapes of polodias can be viewed by
means of their projections onto the main planesOX 000

1 X
000
2 ,OX 000

1 X
000
3 , andOX 000

2 X
000
3 .

Making appropriate transformations of (2.41) and (2.44) we obtain

IX 000

2

�
IX 000

1
� IX 000

2

�
!2
eX 000

2
C IX 000

3

�
IX 000

1
� IX 000

3

�
!2
eX 000

3
D 2T oI

X 000

1
�K2

o;

(2.46a)
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Fig. 2.14 Rolling of energy ellipsoid on invariant plane

�IX 000

1

�
IX 000

1
� IX 000

2

�
!2
eX 000

1
C IX 000

3

�
IX 000

2
� IX 000

3

�
!2
eX 000

3
D 2T oI

X 000

2
�K2

o;

(2.46b)

�IX 000

1

�
IX 000

1
� IX 000

3

�
!2
eX 000

1
� IX 000

3

�
IX 000

2
� IX 000

3

�
!2
eX 000

2
D 2T oI

X 000

3
�K2

o :

(2.46c)

If we choose the main axes so that IX 000

1
> IX 000

2
> IX 000

3
, then (2.46) imply

that in the planes OX 000
2 X

000
3 and OX 000

1 X
000
2 , projections of polodia are ellipses,

whereas in the plane OX 000
1 X

000
3 they are hiperbolas (Fig. 2.14). In a projection

onto the plane OX 000
1 X

000
3 the boundary curves reduce to straight lines, which are

asymptotes of hyperbola families. From (2.46b) we easily determine equations of
these asymptotes:

!eX 000

1
D ˙

vuuutIX 000

3

�
IX 000

2
� IX 000

3

�

IX 000

1

�
IX 000

1
� IX 000

2

�!
eX 000

3
: (2.47)

When IX 000

2
D IX 000

3
, then a direction coefficient of a straight line equals zero,

and if IX 000

1
D IX 000

2
, then the coefficient tends to infinity, which corresponds to

the inclination angle of the line, namely, �=2. In the former case we are dealing
with a flatten rotational ellipsoid, whereas in the second case we are dealing with a
lengthened rotational ellipsoid with respect to its symmetry axis.
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Fig. 2.15 Rolling of energy
ellipsoid on invariant plane

Fig. 2.16 Rolling of energy
ellipsoid on invariant plane

Polodias and herpolodias are directrices of two cones of a common vertex at
point O . During the motion of the analyzed body the polodia cone becomes a
movable axode, which rolls without sliding on a herpolodia cone, which is a fixed
axode (Figs. 2.15 and 2.16).
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Suppose that a rigid body with a fixed center of mass is axially symmetric IX 000

2
D

IX 000

3
D Ib (its central inertial ellipsoid is a rotational ellipsoid) and rotates about

both a movable axis OX 000
1 at angular velocity P̊

e and a fixed axis OX3O at angular
velocity P e . Then, the ellipsoid rolls on the invariant plane � perpendicular to the
constant angular momentum Ko. In this case, all possible polodias are circles lying
in planes perpendicular to the axis OX 000

1 , and herpolodias, which are also circles,
are perpendicular to the axisOX3O . Moreover, both movable and immovable axodes
are cones simple circular with common vertexO (center of mass of the rigid body).

Figure 2.15 presents a case of motion of an oblate ellipsoid, i.e., when IX 000

1
> Ib .

Then the movable axode moves outside on the surface of the immovable axode. In
Fig. 2.16, the case of the lengthened ellipsoid is depicted (IX 000

1
> Ib), for which the

fixed axode is located inside the movable axode rolling on the external surface.
As was already mentioned, Euler considered inertial motion of a body, i.e. the

one, in which the sole force acting on the body is gravity at the fixed center of mass.
In this case

MX 000

1
D MX 000

2
D MX 000

3
D 0: (2.48)

Moreover, he assumed that a body was symmetric relative to the axisOX 000
3 , i.e.,

IX 000

1
D IX 000

2
. In this case we have

1
2

h
IX 000

1

�
!2
X 000

1
C !2

X 000

2

�
C IX 000

3
!2
X 000

3

i
D T o D const; (2.49a)

IX 000

1

�
!2
X 000

1
C !2

X 000

2

�
C IX 000

3
!2
X 000

3
D K2

o D const; (2.49b)

!X 000

3
D !o

X 000

3
D const: (2.49c)

For this particular case the angular momentum Ko is constant, both the norm and
the direction relative to the fixed coordinate system. In projections onto the fixed
axes of the coordinate system vector Ko is as follows:

KX1 D Ko sin#e sin˚e D IX 000

1
!X 000

1
; (2.50a)

KX2 D Ko sin#e cos˚e D IX 000

2
!X 000

2
; (2.50b)

KX3 D Ko cos#e D IX 000

3
!o
X 000

3
: (2.50c)

By (2.50c) we have

cos#e D
IX 000

3
!o
X 000

3

Ko

D constI #e D #oe D constI d#e
dt

D 0: (2.51)

Taking into account (2.51), formulas (2.49) and (2.50) can be expressed in the
following form:
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Fig. 2.17 Regular precession
for the Euler case

!X 000

1
D P e sin#e sin˚e; (2.52a)

!X 000

2
D P e sin#e cos˚e; (2.52b)

!X 000

3
D P e cos#e C P̊

e; (2.52c)

KX1 D IX 000

1

P e sin#oe sin˚e D Ko sin#oe sin˚eI IX 000

1

P e D Ko; (2.53a)

KX1 D IX 000

1

P e sin#oe cos˚e D Ko sin#oe cos˚eI IX 000

1

P e D Ko: (2.53b)

Equations (2.53a) and (2.53b) became identical, hence

P e D Ko

IX 000

1

D const D n1I  e D n1t C  oe ; (2.54)

while from (2.52c) we have

P̊
e D !o

X 000

3
� n1 cos#oe D const D n2I ˚e D n2t C ˚o

e : (2.55)

Thus, the Euler case presents the regular precession (Fig. 2.17).
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Fig. 2.18 Lagrange case

2.2.3 Lagrange Case (Pseudoregular Precession)

Consider the motion of a rigid body about a fixed pivot point for a case investigated
by Lagrange. The case relies on the fact that the analyzed body is axially symmetric
(the respective inertial ellipsoid is a prolate spheroid) IX 000

1
D IX 000

2
. The supporting

point (rotation) O and center of mass C lie on the body’s axis of symmetry, where
OC D X 000

3C , and the body is under the influence only of gravitational forces. The
body rotates at high angular velocity P̊

e about the symmetry axis OX 000
3 (Fig. 2.18).

This kind of body is called a gyroscope, and in the given case we can call it
the Lagrange gyroscope (a more detailed definition of a gyroscope will be given
subsequently). Besides rotating about its own axis of symmetry, the body can rotate
about the fixed axis OX3O at angular velocity P e .

To analyze motion of the Lagrange gyroscope, we introduce two movable
coordinate systems OX 00

1 X
00
2 X

00
3 andOX 000

1 X
000
2 X

000
3 , which slightly differ from the

Euler case considered earlier. Similarly, we will select the axisOX 00
3 as a symmetry

axis of the body (Fig. 2.18). The axis OX 00
2 lies on the line of nodes and the axis

OX 00
1 is selected in such a way that we obtain a rectangular coordinate system. The

frame OX 000
1 X

000
2 X

000
3 is obtained by rotating the frame OX 00

1 X
00
2 X

00
3 by an angle ˚e

about the axis OX 00
3 .

The matrices of transformationmL
2 and mL

3 from the fixed frameOX1OX2O X3O
to movable onesOX 000

1 X
000
2 X

000
3 and OX 000

1 X
000
2 X

000
3 will take the forms
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mL
2 D m#m D

2
4 cos#e cos e cos#e sin e � sin#e

� sin#e cos e 0

sin#e cos e sin#e sin e cos#e

3
5 ; (2.56a)

mL
3 D m˚m#m 

D

2
666666666664

cos#e cos e cos˚eC
� cos#e sin e sin˚eI

cos#e cos e sin˚eC
C cos#e sin e cos˚eI � sin#e

� sin#e cos˚eC
� cos e sin˚eI

� sin#e sin˚eC
C cos e cos˚eI 0

sin#e cos e cos˚eC
� sin#e sin e sin˚eI

sin#e cos e sin˚eC
C sin#e sin e cos˚eI cos#e

3
777777777775

: (2.56b)

We determine projections of the instantaneous angular velocity !e as a result of
composing three rotations about the particular axes of both assumed frames.

!e D P e C P#e C P̊
e : (2.57)

Thus, projections onto the axesOX 000
1 X

000
2 X

000
3 of the components of the vector!e

are as follows:

!
OX 000

1 X
000

2 X
000

3
e D mL

3

2
4 0

0
P e

3
5CmL

2

2
4 0

P#e
0

3
5C

2
4 0

0
P̊
e

3
5 ; (2.58)

!eX 000

1
D � P e sin#e; (2.59a)

!eX 000

2
D P#e; (2.59b)

!eX 000

3
D P e cos#e C P̊

e: (2.59c)

On the other hand, projections onto the axes OX 00
1 X

00
2 X

00
3 yield

!
OX 00

1 X
00

2 X
00

3
e D mL

2

2
4 0

0
P e

3
5C

2
4 0

P#e
0

3
5C

2
4 00
0

3
5 ;

!eX 00

1
D � P e sin#e; (2.60a)

!eX 00

2
D P#e; (2.60b)

!eX 000

3
D P e cos#e: (2.60c)
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At an arbitrary position of the body, the axes OX 000
1 X

000
2 X

000
3 are the main axes of

inertia, which is why the angular momentum Ko components of this body can be
cast in the form

KX 000

1
D IX 000

1
!X 000

1
; KX 000

2
D IX 000

2
!X 000

2
; KX 000

3
D IX 000

3
!X 000

3
: (2.61)

Making use of the theorem on angular momentum change, the equations of
motion of Lagrange’s gyroscope are written in the form

dKo

dt
C

ˇ̌
ˇ̌
ˇ̌
ˇ

E000
1 E000

2 E000
3

!X 00

1
!X 00

2
!X 00

3

IX 000

1
!X 000

1
IX 000

2
!X 000

2
IX 000

3
!X 000

3

ˇ̌
ˇ̌
ˇ̌
ˇ

D Mo:

Taking into account the fact that the components of the main moment Mo of
external forces acting on a body have the form

2
64
MX 000

1

MX 000

2

MX 000

3

3
75 D

ˇ̌
ˇ̌
ˇ̌

E000
1 E000

2 E000
3

0 0 x000
3C

G sin#e 0 �G cos#e

ˇ̌
ˇ̌
ˇ̌ D

2
4 0

Gx000
3C sin#e
0

3
5 ; (2.62)

and taking into account relations (2.49) and (2.50), the equations of motion of the
Lagrange gyroscope (2.61),

R e sin#e C 2 P e P#e cos#e � IX 000

3

IX 000

1

� P e cos#e C P̊
e

� P#e D 0; (2.63a)

R#e C
"
IX 000

3

IX 000

2

P̊
e C IX 000

3
� IX 000

1

IX 000

2

P e cos#e

#
P e sin#e D Gx000

3C

IX 000

2

sin#e; (2.63b)

d

dt

� P e cos#e C P̊
e

� D 0I P e cos#e C P̊
e D !o D const: (2.63c)

Let us introduce designation P D !1 and transform (2.53a) into the form of a
linear differential equation with respect to angular velocity !1:

d!1
d#e

C 2!1ctan#e D IX 000

3
!o

IX 000

1
sin#e

: (2.64)

It is easy to determine by integration of (2.64)

!1 D C � IX 000

3
!o cos#e

IX 000

1
sin2#e

; (2.65)

where C is an integration constant.
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In order that a body in the Lagrange case could move in a regular precession
(regular precession), the angular velocity !1 in this motion should be constant,
–!1 D const D P oe . This implies, as shown clearly in (2.65), that angle #e will also
be constant –#e D const D #oe . Then, (2.53b) will be simplified to the following
form: 	

IX 000

3
�
�
IX 000

1
� IX 000

3

� !1
!o

cos#oe



!1!o sin#oe D Gx000

3C sin#oe : (2.66)

Taking into account that the angular velocity of eigenrotations !o takes large
values, i.e., !1=!o � 1, (2.66) can be written in a simpler form:

Gx000
3C sin#oe � IX 000

3
!1!o sin#oe D 0; Mg C IX 000

3
!o 
!1 D 0;

Mg C M� D 0: (2.67)

We have obtained the equation of equilibrium of moments of external forces
acting on the gyroscope Mg (in this case the moment of gravitation Mg D
Gx000

3C sin#oe ) and moment of inertial forces M� generated by rotational motion
about the symmetry axis OX 000

3
. The aforementioned torque

M� D IX 000

3
!o 
!1 (2.68)

is called a gyroscopic moment.
The formula on the gyroscopic moment can be obtained from (2.66) when

the nutation angle equals #e D �=2, i.e., when the angular velocity vector of
eigenrotations of the gyroscope is perpendicular to the angular velocity vector of
precession !1 D P e . In this case, exact and approximated formulas are the same.
From (2.67) we can determine the precession speed of the Lagrange gyroscope

!1 D P e D Mg

IX 000

3
!o

D Gx000
3C

IX 000

3

P̊
e

: (2.69)

Let us rewrite (2.66), ignoring sin#e , in the following form:
h
IX 000

3
!o �

�
IX 000

1
� IX 000

3

� P oe cos#oe
i P oe D Gx000

3C : (2.70)

Solving the preceding equation with respect to P oe we find

P oei D
IX 000

3
!o 


r
I 2
X 000

3
!2o � 4

�
IX 000

1
� IX 000

3

�
Gx000

3C cos#oe

2
�
IX 000

1
� IX 000

3

�
cos#oe

; i D 1; 2: (2.71)

This implies that solutions exist when

I 2
X 000

3
!2o � 4

�
IX 000

1
� IX 000

3

�
Gx000

3C cos#oe > 0: (2.72)
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Inequality (2.72) will be preserved if the angular momentum of the Lagrange
gyroscope I 2

X 000

3
!2o is sufficiently large. This is simultaneously a condition of

realization of the regular precession of a gyroscope. Equation (2.71) shows that at
a given numerical value of the angular velocity of eigenrotations !o, there are three
possible types of precession of the examined body. To analyze the obtained result,
let us substitute the square root in (2.71) with an approximated expression

r
I 2
X 000

3
!2o � 4

�
IX 000

1
� IX 000

3

�
Gx000

3C cos#oe

Š IX 000

3
!o �

2

�
I
X000

1
�I

X000

3

�
Gx000

3C cos #oe

I
X000

3
!o

: (2.73)

Replacing the square root in (2.71) with its approximated value (2.73), we obtain
the two following values of the angular velocity of precession:

P oe1 Š Gx000
3C

IX 000

1
!o
; P oe2 Š IX 000

1
!o�

IX 000

1
� IX 000

3

�
cos#oe

: (2.74)

The obtained expressions are two kinds of precession: precession of the first kind
(slow precession) P oe1 and precession of the second kind (fast precession) P oe2.

The determined quantities P oe ; !o and #oe can be considered initial conditions for
equations of motion of the Lagrange gyroscope (2.63). Given these initial conditions
and assuming that the motion of the body differs slightly from the regular precession�
#e D #oe C�#e; where�#e is sufficiently small), (2.63) govern the vibrations of

a rigid body about the operation position (stationary), which is the regular precession
described previously. The aforementioned vibrations have bounded amplitude and
high frequency. The vibrations are called nutation vibrations. Thus, we have a
superposition of fast vibrations (nutation) and slow vibrations (regular precession).
This situation is depicted in Fig. 2.19.

In this figure, a path is drawn (on a sphere with its center at point O) by
the intersection point of the axis OX 000

3 of the eigenrotations and the sphere. The
aforementioned track describes a spherical curve lying between two horizontal
circles having the shape shown in Fig. 2.19. At large value of the gyroscope
rotations, the nutation angle #e takes on small values, and consequently the
gyroscope motion differs slightly from a regular precession. For this reason, the
motion of the gyroscope for this case is called a pseudoregular precession.

2.2.4 The Kovalevskaya Case of Spherical Motion
of a Rigid Body

Until the end of the nineteenth century, cases of spherical motions of a rigid body,
investigated by Euler and Lagrange, had been the only ones, where (2.22) and (2.23)
had been completely solved. The main problem remained finding the fourth first
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Fig. 2.19 Pseudoregular precession

integral of the Euler–Poisson equations. As was already mentioned, the three first
integrals had been already determined: the trivial one �21 C �22 C �23 D 1, the energy
integral 2T 2 D const, and the angular momentum integralK2

o D const.
The Kovalevskaya1 investigations showed that the fourth integral existed only

for the Euler, Lagrange, and Kovalevskaya cases (i.e., for IX 000

1
D IX 000

2
D 2IX 000

3
;

x000
3C D 0) (Fig. 2.20).

Let us write the Euler–Poisson equations for the Kovalevskaya case, where the
axes OX 000

1 and OX 000
2 are selected in a way that (we can always do this) the center

of inertia lies on the axis OX 000
1 , hence IX 000

1
D IX 000

2
D 2IX 000

3
; x000

2C D x000
3C D 0;

x000
1C D a. Thus, we have the following system of equations:

2
d!eX 000

1

dt
� !eX 000

2
!eX 000

3
D 0; (2.75a)

2
d!eX 000

2

dt
C !eX 000

3
!eX 000

1
D G�3; (2.75b)

1Sofia Kovalevskaya (1850–1891), Russian mathematician.
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Fig. 2.20 Kovalevskaya case

d!eX 000

3

dt
D �G�2; (2.75c)

d�1
dt

D !eX 000

3
�2 � !eX 000

2
�3; (2.76a)

d�2
dt

D !eX 000

1
�3 � !eX 000

3
�1; (2.76b)

d�3
dt

D !eX 000

2
�1 � !eX 000

1
�2; (2.76c)

where G D Ga=IX 000

3
.

The preceding system of equations has three classic integrals, and we obtain them
as in the Euler case. Besides the trivial integral �21 C �22 C �23 D 1, we have the
energy integral

1

2

�
IX 000

1
!2
X 000

1
C IX 000

2
!2
X 000

2
C IX 000

3
!2
X 000

3

�
CGa�1 D const (2.77)

and the angular momentum integral

IX 000

3

�
!X 000

1
�1 C !X 000

2
�2 C !X 000

3
�3

�
D const: (2.78)

We will determine the fourth integral in the following way. Let us introduce new
variables
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x11 D !eX 000

1
C i!eX 000

2
; (2.79a)

x21 D �1 C i�2; (2.79b)

where i D p�1.

Let us multiply (2.75b) by i and sum up both sides with (2.75a). Then we obtain

2 Px11 C i!eX 000

1
x11 D iG�3: (2.80)

Following similar manipulations in the first two equations of system (2.76), we
find

Px21 C i!eX 000

1
x21 D ix11�3: (2.81)

Dividing both sides of (2.80) and (2.81) by each other, we obtain

2 Px11x11 C i!eX 000

1
.x11/

2 �G Px21 � iG!eX 000

1
x21 D 0: (2.82)

Following simple manipulations we obtain

d

dt

�
.x11/

2 �Gx21
�C i!eX 000

1

�
.x11/

2 �Gx21
� D 0; (2.83a)

d

dt
ln
�
.x11/

2 �Gx21
� D �i!eX 000

1
: (2.83b)

The equation conjugate to (2.83b) has the following form:

d

dt
ln

��
x11

�2 �Gx21

�
D i!eX 000

1
: (2.84)

Adding both sides of (2.83a) and (2.83b), we have

d

dt
ln
h�
.x11/

2 �Gx21
� ��

x11
�2 �Gx21

�i
D 0: (2.85)

Equation (2.85) implies that

�
.x11/

2 �Gx21
� ��

x11

�2 �Gx21

�
D const: (2.86)

Going back in (2.79) to the original variables, we obtain the desired fourth first
integral:

�
!2
eX 000

1
� !2

eX 000

2
�G�1

�2 C
�
2!

eX 000

1
!
eX 000

2
�G�2

�2 D const: (2.87)
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Thus, the Kovalevskaya problem reduces to quadratures of the hyperbolic type.
The character of motion of a body in the Kovalevskaya case is much more complex
than in the Euler and Lagrange cases. For this reason, in these two latter cases, the
general properties of motion of a rigid body were thoroughly examined, contrary to
the Kovalevskaya case.

It should be emphasized that Kovalevskaya’s investigations caused in the fall of
the nineteenth and in the first half of the twentieth century a kind of competition
among renowned mathematicians to find new solutions to the Euler–Poisson
equations. As an example one can give the results of investigations of Russian
mathematicians Nekrasov and Appelrot from Moscow. They gave the relations
between moments of inertia and coordinates of the center of inertia of a body,
at which it is possible to integrate the system of equations (2.22) and (2.23). The
relations are as follows:

x000
2C D 0; x000

1C

r
IX 000

1

�
IX 000

2
� IX 000

3

�
C x000

3C

r
IX 000

3

�
IX 000

2
� IX 000

3

�
D 0:

For several decades, many outstanding scientists struggled with finding the fourth
integral for another more general cases since (as was already mentioned) this would
allow for the integration of the basic system of (2.22) and (2.23) by means of
quadratures.

However, presently, this problem can be considered as historic since modern
computers allow one to easily solve a full system of equations of spherical motion of
any rigid body, with arbitrarily acting external forces. For this reason, the problem
of determining the fourth integral has been out of date for a long time, but it remains
open.

2.2.5 Essence of Gyroscopic Effect

For many centuries the lack of constraints maintaining the pivot point of a humming
top at a fixed position relative to the base has blocked the practical application of
the humming top.

The humming top maintains the orientation of the main axis AA in space only on
a base with no angular movements (Fig. 2.21). If the base is inclined at the angle �
(Fig. 2.22), the humming top goes down under the action of the gravitational force
mg sin�.

The Cardan suspension (Foucault – 1852) allowed for the transformation of a
humming top into a compact, axially symmetric rotor spinning freely about the so-
called main axis (also called an eigenaxis) AA (Fig. 2.23) in an internal frame (ring).
The internal frame was mounted by means of two bearings located in the BB axis of
the external frame [9, 10].

Such a suspension provided to the rotor, along with the internal frame, makes it
possible to rotate about the BB axis. An external frame was also mounted by means
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Fig. 2.21 Humming top on a
horizontal base

Fig. 2.22 Humming top on an inclined base

of two bearings, located on the CC axis, on the gyroscope base. In this way, the rotor,
along with the internal and external frames, was given freedom of rotation about the
external axis CC of suspension. Moreover, contrary to the case of the humming top,
constraints imposed on support point O do not allow for displacement relative to
the base.

Finally, a gyroscope, in the technical sense, is a device in the form of a fast
spinning rotor that rotates about an axis of symmetry and is suspended in a
suspension (e.g., proposed by Foucault) and ensures free angular deviations relative
to the base.
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Fig. 2.23 Gyroscope
in Cardan suspension

The gyroscopic effect of a fast spinning body relies on opposing any changes
to its position in the space. For many centuries, the amazing phenomenon of the
gyroscopic effect has seemed, to many observers, to contradict the fundamental laws
of mechanics of the motion of bodies. We can observe these laws in the case of the
effect of a force on the external frame of a gyroscope that attempts to turn the rotor
about the CC axis and consequently move the main axis AA out of its initial position.

The external frame remains fixed, whereas the rotor with an internal frame starts
to rotate about the BB axis. This anomaly in gyroscope motion can be explained by
the fact that as the gyroscope axis changes its orientation, the Coriolis force occurs.

Let us consider, in more detail, the generation of the Coriolis force at the fast
spinning gyroscope rotor about the axis OX 000

1 at angular velocity !o (Fig. 2.24)
and simultaneously rotating about the axis OX 000

3 at angular velocity !1. Thus in
this case we are dealing with a compound motion of the rotor. Each point of the
rotor participates in relative motion (rotational motion around the gyroscope axis)
and in the drift motion (rotational motion about the axis OX 000

3 ). Then, the Coriolis
acceleration will appear as a result of the drift velocity change in relative motion
and the relative velocity change in drift motion.

Taking into account the fact that at an arbitrary instant of time, each material
point ni of the gyroscope rotor, distant from the axis OX 000

1 at �i , has a relative
velocity Vi D !o�i and angular velocity of drift !1 about the axis OX 000

3 , and its
Coriolis acceleration reads

aci D 2!o�i!1 sin˚i : (2.88)

To make a material point of mass mi accelerate with the above acceleration
(2.89), one needs to apply an external force to it:
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Fig. 2.24 Generation
of gyroscopic moment

Fig. 2.25 Determining
a gyroscope’s mass

Fi D miaci : (2.89)

Assuming, for the sake of simplicity, that the gyroscope rotor is disk-shaped and
expressing the mass of the material point of the rotor as a product of volume and
density dr we obtain

mi D dr��i�i�˚ih; (2.90)

where h denotes the width of the rotor disk. Substituting (2.88) and (2.90) into
(2.89), we find the expression for an elemental Coriolis force (Figs. 2.24, 2.25):

Fi D 2dr!0!1h�
2
i ��i sin˚i�˚i : (2.91)
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The inertial force R�
i (Fig. 2.24), whose norm equals the norm of Fi and the

opposite orientation, will oppose the Coriolis force (2.91). This force generates
resistance torques relative to the two axes OX 000

2 andOX 000
3 of the form

Mgxi2
D �R�

i x
i
3 D R�

i �i sin˚i ; (2.92)

Mgxi3
D �R�

i x
i
2 D R�

i �i cos˚i : (2.93)

Substituting R�
i D �Fi from (2.91), we obtain

Mgxi2
D 2dr!0!h�

3
i ��i sin2˚i�˚i ; (2.94)

Mgxi3
D 2dr!0!h�

3
i ��i sin˚i cos˚i�˚i : (2.95)

The sum of the inertial moments values (2.94) and (2.95) for the whole rotor is
as follows:

MgX2 D 2dr!o!1h

RZ

0

�3d�

2�Z

0

sin2˚d˚; (2.96)

MgX3 D 2dr!0!1h

RZ

0

�3d�

2�Z

0

sin˚ cos˚d˚; (2.97)

where R is the radius of the gyroscope rotor.
Evaluating the integrals in (2.96) and (2.97) we obtain

MgX2 D Igo!o!1; MgX3 D 0; (2.98)

where Igo D dr�R
2hR

2

2
D mR2

2
is the moment of inertia of the rotor relative to the

main axis OX 000
1 .

It follows from the preceding considerations that if the external torqueMe about
the axis OX 000

3 is applied to a fast spinning rotor about the axis OX 000
1 , then the

gyroscopic torque MgX2 arises about the axis OX 000
2 . In Fig. 2.24 one can observe

that the gyroscopic moment attempts to rotate the rotor about the axisOX 000
2 in such

a way that the axis of its forced rotation OX 000
3 will coincide with the main axis

OX 000
1 of the gyroscope in the shortest distance. The aforementioned operation of

the gyroscopic moment will occur during the forced rotation of the rotor about an
arbitrary axis that is not the main axis of the gyroscope.

Generally, one can apply the Zhukovski principle to determine the orientation of
the gyroscopic moment M� , which is equal to

M� D Igo!o 
!1; (2.99)

where !o is the angular velocity of eigenrotations of a gyroscope and !1 is the
angular velocity of the forced rotation.
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The principle states that making the rotor, which spins at the angular velocity
!o about the main axis AA (Fig. 2.23), rotate at the angular velocity !1 about any
axis of those remaining (BB or CC) perpendicular to AA, a moment arises whose
vector M� is perpendicular to vectors !o and !1 and indicates the direction in
which the coincidence of vector !o with !1 is performed on the shortest path
counterclockwise.

Generally, one can state that the gyroscopic moment is a property of a gyroscope
that is used to oppose the external torques attempting to change the position of its
main axis in space. It is always generated in cases where a rotating body is attached
to a movable base.

The law of precession, stated by Foucault, is as follows [5, 11, 12]:
As a result of the action of the external moment Mo exerted on a gyroscopic

moment, the angular velocity vector of eigenrotations !o and vector !1 obey the
following formula

!1 D Mo

Igo!o
: (2.100)

It follows from (2.100) that the angular velocity !o of precession of a gyroscope
is proportional to the value of the momentMo of external forces. Thus, if there is no
acting moment of external forces, then there is no precession motion of a gyroscope.
The position of the gyroscope in such a case will remain unchanged (and thus stable)
in space. Therefore, eliminating the influence of moments of external forces on a
gyroscope, by putting it in Cardan rings (Fig. 2.23), the main axis will preserve
its initial position independently of displacements, velocities, and accelerations of
the base. The aforementioned property of the gyroscope has found application in
various navigational instruments.
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Chapter 3
Theory of Gyroscopes

In this chapter, first a historical outline of the theory of gyroscopes is given.
Elements of gyroscope classification are introduced, and then the evolution of
the gyroscope concept is presented. In particular, the following gyroscope-type
devices are considered: the directional gyroscope, the gyroscopic vertical, the
stabilized gyroscopic platform, the laser gyroscope, the fiber-optic gyroscope,
the piezoelectric gyroscope, the fork gyroscope, and the microgyroscope with
a spinning disk and with a vibrating ring. Examples of devices for gyroscopic
navigation and an observation device with a built-in gyroscope are provided. Finally,
new challenges for gyroscopes are briefly summarized.

3.1 Elements of Gyroscope Classification

Presently, one can distinguish many types of gyroscope with regard to accepted
criteria. Mostly, one classifies gyroscopes by the following criteria [1–3]:

1. Principle of operation:

(a) Mechanical
(b) Laser
(c) Nuclear

2. Number of degrees of freedom of a gyroscope rotor:

(a) One degree of freedom (one-step)
(b) Two degrees of freedom (two-step)
(c) Three degrees of freedom (three-step)

3. Type of suspension:

(a) With Cardan suspension (external and internal)
(b) Without Cardan suspension

J. Awrejcewicz and Z. Koruba, Classical Mechanics, Advances in Mechanics
and Mathematics 30, DOI 10.1007/978-1-4614-3978-3 3,
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4. Mutual position of intersection points of suspension axis (center of suspension)
and center of rotor mass:

(a) Astatic (center of suspension coincides with center of mass)
(c) Non-static (“heavy”)

5. Cardan-free (spherical mostly) gyroscopes with respect to suspension type:

(a) Gasostatic
(b) Gasodynamic
(c) Floating
(d) Electromagnetic
(e) Electrodynamic
(f) Cryogenic

6. Type of rotor:

(a) With stiff rotor
(b) With an elastic rotor
(c) With liquid rotor

7. Constraints imposed on the rotor by the suspension:

(a) Integrating
(b) Differentiating

8. Dynamically tuned gyroscopes with respect to mutual ratio of centrifugal and
elastic torques.

Generally, we can divide gyroscopes into three large classes (Fig. 3.1): (1) sensor,
(2) navigation, (3) force.

Sensor gyroscopes are used as measuring devices and are located on a movable
base. Navigation gyroscopes serve to determine a horizon plane and meridian.
Force gyroscopes generate controlling torques in systems of angular stabilization
and vibration damping (e.g., flatter types) and serve as stabilizing platforms in the
targeting and tracking systems (e.g., cannons, missiles).

3.2 Evolution of Gyroscope Concept

In recent decades, the notion of the gyroscope has seen increasingly broader
application. Presently, we call gyroscopes not only classical mechanical systems
composed of a spinning rotor and elements of the rotor suspension, but also
external devices that somewhat resemble the aforementioned mechanical system.
In particular, in vibrating gyroscopes, the free motion of the rotor can take the
form of translational or angular vibrations. A rotating or vibrating liquid can serve
as a rotor in vibrating, hydrodynamical, or magnetohydrodynamical gyroscopes.



3.2 Evolution of Gyroscope Concept 127

Fig. 3.1 Classification of gyroscopes

In molecular gyroscopes, carriers of angular momentum are particles—electrons,
protons, neutrons, nuclei, or atoms. However, a general characteristic of gyroscopes,
without regard to form, is that they contain angular momentum carriers.

The term “gyroscope” in recent decades has become increasingly broad. The
word derives from the literal sense of an indicator of turns, rotation. Thus, by
gyroscope we understand any device that allows one, e.g., without contact with the
environment, to measure the rotation of a base relative to an inertial frame. Hence,
we focus on gyroscopes such as optical, laser, and polarization gyroscopes and those
based, e.g., on the interference of de Broglie waves of particles.

Initially, the concept of gyroscope was introduced by the French physicist
Foucault as a name for a balanced, fast-spinning rotor in a uniaxial or biaxial Cardan
suspension, incorporating the property of detection and measurement of rotations of
a base. The name started to be applied as a general term for any device that had
this property. In the literature, one can find nearly 100 physical phenomena that can
be used to autonomously detect and measure turns, i.e., to build a gyroscope. In
practical terms, just few of the physical phenomena are used. Until now, are applied
the Foucault gyroscopes in a mechanical, stiff, fast-spinning rotor in a Cardan
suspension. In order to unload bearings, one uses hydrostatic (floating) suspension.



128 3 Theory of Gyroscopes

Spherical gyroscopes with aerodynamic, electrostatic, and magnetic suspensions
have gained widespread usage. The most modern solutions include gyroscopes with
a cryogenic, magnetic suspension relying on superconductivity. A typical example
of gyroscopes in the extended meaning of this notion, i.e., not having carriers of
angular momentum, is a laser gyroscope. Nowadays, gyroscopic devices are used
mainly on moveable objects such as airplanes, ships and submarines, rockets, and
satellites. Their task is to navigate those objects and their orientation with respect to
the assumed reference frame, stabilize the motion of an object relative to a given
trajectory and automatically control this motion, and spatially stabilize devices
located on-board a movable object.

3.3 Fundamental Stages of Gyroscope Development

The phenomenon of preserving the position in inertial space of a fast-spinning
body around its symmetry axis was known in ancient times. For a long time,
amazing feature (which seems at first glance to contradict the fundamental laws
of nature) of a spinning body has not found its practical application. This feature
was used only to build simple toys known as “humming tops.” A humming top
attracted the attention not only of children but of many outstanding scientists as
well. It was Newton (1642–1727) who analyzed the behavior of a humming top
for the first time. The theory of the gyroscope is based on a branch of mechanics
dealing with the rotational motion of a rigid body around a fixed point. For this
reason, the fundamentals of the theory of gyroscopes were studied along with the
development of celestial mechanics. In the initial stages of the history of mechanics,
was observed that spinning bodies were simply huge humming tops, having all the
specific properties of spinning bodies. Research in the field of celestial mechanics
was performed by L. Euler (1707–1783) (who created the theory of nutation of
the Earth’s axis and the theory of lunar libration), and his derivation of equations
of the rotational motion of a rigid body around a fixed pivot point in the work
Theory of the Motion of Rigid Bodies, published in 1765, became a fundamental
contribution to the contemporary theory of gyroscopes. Further development of
the theory of spinning bodies ensued in the works of Lagrange (1736–1813),
Poinsot (1777–1859), and other brilliant scientists such as D’Alembert and Laplace,
Kovalevskaya, Somov, Bobyliev, and Zhukovski [4–6].

The applied theory of gyroscopes, i.e., the theory of devices and gyroscopic
systems, emerged mainly in the twentieth century; however, the first attempts at
practical application of gyroscopes had been made much earlier.

In 1752 Serson suggested making use of a spinning body to obtain an “artificial
horizon” on a ship [2]. Unfortunately, the attempt to apply this invention on
the frigate Victory had a tragic end not only for the ship (which sank) but also the
inventor himself. Thus, no attempt was made to apply a similar invention for the
next hundred years, and the humming top remains merely a toy.
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Fig. 3.2 Foucault gyroscope:
(a) Rotor. (b) Spin axes. (c)
Internal frame. (d) Internal
joint. (e) External frame. (f)
External joint. (g) Base

In the nineteenth century, L. Foucault decided to prove experimentally the
existence of the Earth’s rotation. To this end, he put a fast-spinning, axially
symmetric body in a Cardan joint. He first presented the device (Fig. 3.2) at the
meeting of the Paris Academy of Sciences in 1752 and called it a gyroscope (from
the Greek giros, spinning, and skopeo, observe).

The French physicist investigated a gyroscope (gyro). However, not all the results
were convincing due to technical difficulties, which were not overcome before
the turn of the twentieth century. The main difficulties concerned the considerable
friction in the bearings of the Cardan suspension rings and others related to the rotor
drive’s not allowing for a high and constant angular velocity to be maintained.

In those days an urgent need arose to build a device that could replace the
magnetic compass because the operating conditions of the compass got worse on
ships with steam engines and steal frames compared to the compass’s operation on
wooden sailboats. Foucault demonstrated the possibility of using a gyroscope to
determine a meridional line at a given latitude [4]. Thus, the idea of a gyrocompass
was presented for the first time. However, due to incorrect calculations on the
value of period of free vibrations of the device and to technical difficulties, a
gyrocompass that would be useful in practical applications could not be built sooner
than in the early twentieth century. Since Foucault’s experiments, the history of the
development of gyroscopes has involved the continuous pursuit of lower disturbing
torques that affect rotors and an increase in the angular velocity of gyroscopes.

In 1898, a lieutenant of the Austrian army, Obri [3], started using a gyroscope
in practical applications. He built one with three degrees of freedom whose rotor
was set in motion by means of the energy of compressed air. Slight friction in the
Cardan suspension bearings was achieved with the application of ball bearings. Such
a device was applied to stabilize a torpedo.
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Fig. 3.3 Sperrs gyroscope:
1—steal rotor; 2—stator
producing a rotational
magnetic field; 3—sensor
whose signals enable one to
follow the ball axis on a
swinging base (ship);
4—bronze bowl separated
from rotor by layer of air of
micrometer width; 5—inflow
of compressed air suspending
gyroscope

In 1905, the German engineer Herman Anschütz Kaempfe patented a
gyrocompass, which was tested in practice. A few years later, in 1911, an American,
Elmer Sperry, built another type of gyrocompass (Fig. 3.3). Thanks to continual
improvements in these types of compass, they have been used on warships for many
years [5, 6].

When Zhukovski’s works were published in 1912, new possibilities in the
application of gyroscopic devices appeared [4, 6]. Zhukovski proposed mounting
a gyroscope in an airplane in order to improve stability of flight. In that case,
a gyroscope served as an actuator, by means of which controlling and damping
torques were produced. In the 1920s, Soviet inventor S.A. Nozdrovskiy worked out
a system for a gyroscopic stabilizer. Presently, gyroscopic actuators are widely
applied in systems of angular stabilization of spaceships.

Gyroscopic tachometers were initially used in aeronautics as indicators of turn,
and then in artillery of naval guns to determine the angle of shot lead. They
found very wide applications in control systems of flying objects (automatic pilot),
in gyroscopic stabilizers, and in systems of indirect stabilization. As aviation
developed, vertical gyroscopes and course gyroscopes were commonly used as
pilotage instruments, necessary for blind flights, i.e., flights without any visual
external reference on the ground.

Integrating gyroscopes have been widely applied since no earlier than the second
half of the twentieth century in the form of floating-integrating gyroscopes, which
allowed one to obtain small drifts of the gyroscope axis.

In 1963, E.W. Howe worked out a gyroscope called a dynamically tuned gyro, or
a gyroscope with an elastic suspension [7, 8].

The rotor of such a gyroscope is suspended on a Cardan joint (Fig. 3.4), where
there is no bearing of the frame joint, which is made of elastic elements [9–11], e.g.,
torsion bars (Fig. 3.5).
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Fig. 3.4 Gyroscope with a rotor suspended on a Cardan (Hooke) joint

Fig. 3.5 Dynamically tuned
gyroscope

However, in his gyroscope, Zhukovski made use of the dynamical effects of inertia
of a Cardan suspension frame to eliminate the elastic torques of torsion bars.
It has become one of the most commonly produced velocity gyroscopes. It finds
application mainly as a sensor in autonomous orientation referencing systems,
inertial navigation, and stabilization of various objects such as aerial, marine, and
land objects.

Presently, a free gyroscope enjoys the most common usage in navigation
instruments.
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Fig. 3.6 Schematic diagram
of a course gyroscope [8]:
1—internal frame;
2—gravitational sensor;
3—external frame;
4—pointer; 5—course disk;
6—gyroscope rotor

3.3.1 Directional Gyroscope

This is an on-board instrument used to determine the course of a flying object (FO).
A fundamental element of the device is a gyroscope of three degrees of freedom
with a main axis lying in the plane of horizon (Fig. 3.6). The axis of the external
frame is perpendicular to the plane of the FO board. A directional gyro does not
determine a constant direction (e.g., northern), but it can maintain an arbitrarily
chosen direction, which can be regarded as a reference direction.

A correction system for the device is composed of a gravitational sensor and a
corrective engine. Its objective is to maintain the rotor axis in the horizontal plane.
As the course of the FO changes, the external frame moves relative to the gyroscope
body. A disk with an angular scale on it allows one to read the change in the FO’s
course relative to the fixed stroke in the case window. In early solutions (despite
the corrective systems), deviation of the gyroscope axis off the given position was
even 15ı per hour. Nowadays, this deviation can be only 0:5ı per hour in improved
systems.

3.3.2 Gyroscopic Vertical

This is an on-board device to measure the deviation of the FO off the horizontal and
vertical planes. Its main element is a gyroscope of three degrees of freedom whose
rotor axis is set vertically and suspension-frame axes are placed according to the tilt
and inclination axes of the FO (Fig. 3.7).

Gravitational sensors, located on the gyroscope body (internal frame), measure
the angular deviation of the angular momentum axis off the vertical and make the
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Fig. 3.7 Scheme of
gyroscopic vertical [8]:
1—rotor; 2—internal frame;
3—external frame; 4—torque
engines; 5—gravity sensors;
6—selsyns (angular position
sensors)

Fig. 3.8 Schematic diagram
of a biaxial stabilized
gyroscopic platform [8]:
1—angular position sensors;
2—correction engines;
3—internal frames;
4—torque engines;
5—inclination angle signal;
6—external frame; 7—tilt
angle signal; 8—gravitational
sensors; 9—stabilized
element (platform)

correcting engines operate. The engines make the gyroscope move in precession,
which eliminates deviations. Changes in the angular position of the FO are measured
by selsyns or other sensors placed on the axes of both frames.

3.3.3 Stabilized Gyroscopic Platform

This is an on-deck device to precisely measure the vertical and course or si-
multaneously to measure the vertical and course of an Flying Object (FO). A
biaxial stabilized, gyroscopic platform (Fig. 3.8) acts as a gyroscopic vertical. Two
gyroscopes of two degrees of freedom are placed such that the axes of their
suspension frames are mutually perpendicular and parallel to the axis of the platform
and external frame of the platform suspension, respectively, while the axes of the
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Fig. 3.9 Schematic diagram
of four-axial stabilized
gyroscopic platform [12]
(www.docstoc.com/docs/
19589480/Gyroscope.htm):
1—gyroscopes of two degrees
of freedom; 2—stabilized
elelement (platform); 3—tilt
sensor; 4—inclination sensor;
5—course angle sensor;
6—suspension frames

gyroscope’s rotors coincide with the vertical axis of the system. Maintaining the
axes of rotors in the vertical position is ensured by a corrective device composed of
a gravitational sensor and correcting engine. Precession of the gyroscopes generated
by disturbing torques on the suspension axes is compensated by torques generated
by sensors of inclination connected with corrective engines. Selsyns (or another
sensor of angular position) placed on the axes of the platform and external frame
produce output signals of tilt and inclination angles.

One can obtain complete information about the spatial position of the FO
without angular limitations by means of a four-axial stabilized gyroscopic platform
(Fig. 3.9).

The FO can rotate without disturbing the position of the stabilized element,
in which there are three gyroscopes of two degrees of freedom such that their
measuring axes are parallel to the axesX1;X2;X3 of the system. Sensors of angular
position on the axes X1;X2;X3 generate tilt and inclination signals of the course,
respectively.

3.3.4 Laser Gyroscope

The most modern solutions include an optical gyroscope, which makes use of
the phenomenon of change in the propagating light wave. With regard to the
lack of mechanical systems, optical gyroscopes are insensitive to rapid maneuvres
and experience neither precession nor blocking. In early constructions of optical
gyroscopes, there was a blurring of the fiber-optic block, which made the system
life shorter, to about a year. Presently produced optical gyroscopes have a service
life of about 60,000 h. They are able to measure angular velocities from 0:1ıperhour
to several hundreds of degrees per second.

www.docstoc.com/docs/19589480/Gyroscope.htm
www.docstoc.com/docs/19589480/Gyroscope.htm


3.4 Fiber-Optic Gyroscope 135

Fig. 3.10 Principle of operation of a laser gyroscope (www.meos.com/Laser Metrology/
laser gyroscope.htm)

Optical gyroscopes can be classified as (1) laser and (2) fiber optic (www.
alphapiezo.com/ring laser gyroscope.htm). The most typical example is the laser
gyroscope, in which coherent light beams from a laser circulate a toroidal resonator
in opposite directions. A rotation of the device in the resonator plane makes
the frequency in both beams change in accordance with the Doppler effect.
The frequency of the beam circulating the resonator in the direction coincident
with the rotation decreases and increases in the opposite direction. The sensitivity
difference is proportional to the angular velocity. In a photodetector, placed in the
output of the system, one obtains a difference signal as a result of the coincidence
of both bands. This signal can be used for navigation purposes.

In a laser gyroscope, one applies the method of comparing phases of laser rays
running in a triangular fiber optic (Fig. 3.10). The phases of a linear and refracted
ray are compared by a detector, transmitting a signal that is proportional to the
difference of these phases. When the base of a gyro does not change its position,
then the phases of both rays are identical and the pointer points to zero. At the
moment of position change, rays of distinct phases reach the detector and the gauge
shows the angular velocity of this change.

3.4 Fiber-Optic Gyroscope

Another example of an optical gyroscope is a fiber-optic one, which contains long
optical fibers, wound in a coil, that make the instrument more sensitive [8] (www.
alphapiezo.com/ring laser gyroscope.htm).

www.alphapiezo.com/ring_laser_gyroscope.htm
www.alphapiezo.com/ring_laser_gyroscope.htm
www.alphapiezo.com/ring_laser_gyroscope.htm
www.alphapiezo.com/ring_laser_gyroscope.htm
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Fig. 3.11 Fiber-optic gyroscope scheme

In a fiber-optic gyroscope (Fig. 3.11), the sensitivity limit is lowered due to
resonance phenomena. One measures the difference between the distances traveled
by the ray in the left and right fiberglass. During coil rotation, a phase shift appears
between the light rays, and when they are superposed on a half-transparent mirror,
the resultant force of light follows changes in the angular velocity. The larger the
coil area, the larger the phase shift, and sensitivity grows as the number of coils
increases. This method is passive since an independent laser source is used. This
device allows one to measure angular velocities up to 10�8rad=s.

3.5 Piezoelectric Gyroscope

A modern vibrating piezoelectric gyroscope is designed and produced on a quartz
crystal. The principle of operation is based on making use of vibrations, which
increase the thickness of piezoelectric materials. Trihydrate lead acetate is a
fundamental compound used to produce these gyroscopes. A thin layer of this
compound is coated on the substrate Pt/Ti/SiO2/Si.

The final steps in assembling a piezoelectric gyroscope are depicted in Fig. 3.12.
A thin layer of Lead Zirconate Titanate (LZT) is coated on the substrate by means
of a sol-gel method. PZT is coated layer by layer, by rotating at high velocity, on a
titanium/platinum electrode at 3; 500ıC for 20 s. Next, it is annealed at a temperature
of 700ıC for 3 h to increase strength and crack toughness. After this process, on the
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Fig. 3.12 Manufacturing a piezoelectric gyroscope (www.microstrain.com/3dm-gx1.aspx.)

layer LZT is sprayed layer of chromium/silver. It is the top electrode. The whole
structure undergoes oxidization and pickling to obtain a suitable structure so that
the gyroscope can operate.

The top view of four sensors of a piezogyroscope is shown in Fig. 3.13, where
F1 denotes the force caused by vibrations of the central mass and F2 is the Coriolis
force. Each sensor of dimension 388 
 800�m possesses a middle layer of a
piezoelectric material, PZT, and top and bottom electrodes.

If we apply a signal of a particular frequency to the IN port, we obtain the
piezoelectric effect. Sensors 1 and 3 start to vibrate at a frequency that is equal to
the frequency of the input signal and make the central mass vibrate. The frequency
of its vibrations is the same as that of elements 1 and 3.

A gyroscope is situated parallel to the X1X3 plane and set in rotational motion
around the X3 axis. Then, piezoelectric elements 2 and 4 experience cyclic changes
in velocity in the X2 direction. The Coriolis force, acting in the X1 direction, is
generated as a result of changes in the vibrations and angular velocity and has the
form

FC D 2mVX1 
˝ : (3.1)

In (3.1)m is the mass of the central element. The Coriolis force can be regarded
as a shear force in sensors plates 2 and 4, acting in the X1X3 plane and in the

www.microstrain.com/3dm-gx1.aspx.
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Fig. 3.13 Principle of
operation of a piezoelectric
gyroscope (www.microstrain.
com/3dm-gx1.aspx.)

Fig. 3.14 Principle of operation of a piezoelectric gyroscope (www.microstrain.com/3dm-gx1.
aspx.)

X1 direction. It cause the emergence of an electric field that acts in theX2 direction.
Thus, a voltage appears on electrodes of elements 2 and 4. Since the output signal
is a consequence of the Coriolis force, its frequency is exactly the same as the
frequency of vibrations of a central mass, which is equal to the frequency of the
output signal.

Two output sensors give two different signals, depending on the value of
the angular velocity. The Coriolis force is generated in sensor 2 (Fig. 3.14) in the
positive direction and in sensor 4 in the opposite direction. Two output signals,
generated in sensors 2 and 4 are depicted in the Fig. 3.14.

www.microstrain.com/3dm-gx1.aspx.
www.microstrain.com/3dm-gx1.aspx.
www.microstrain.com/3dm-gx1.aspx.
www.microstrain.com/3dm-gx1.aspx.
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The output signal, generated by vibrations of sensor 2, is in the same phase as
the signal coming from the vibrating mass. While the amplitude of the output signal
decreases as the angular velocity increases, the amplitude of the output signal in
sensor 4 increases as the angular velocity grows.

3.6 Fork Gyroscope

These are electromechanic gyroscopes assembled on a silicon crystal with vibrating
forks. They are driven by electrostatic force, while the Coriolis force is read as a
change in the capacitance of the microcapacitors. Additionally, the module contains
capacitors that measure feedback forces and for voltage application fix the resonance
frequency of the forks.

Two separate masses A and B (Fig. 3.15), connected with the frame, will be
excited by an electrostatic force after voltage is applied to electrode C , and they
will in the X1 direction. Their motion is guided by combs. The angular velocity in
the X2 direction will force the plate to vibrate, and the vibrations will be detected.
The forks are affixed to supports D and E . The external electrodes F and G are
used to control the amplitude and phase of mechanical vibrations. Three plates of
the capacitor are located in the massesA andB to measure the Coriolis force (signal
of the gyroscope effect) for the feedback force and for voltage application to fix the
twisting resonance frequency.

A rotation relative to the axis perpendicular to the gyroscope generates the
Coriolis force, which is perpendicular to the plane of the fork module. This force
makes the masses move in the X1 direction (Fig. 3.16). It causes changes in volume

Fig. 3.15 Principle of operation of a fork gyroscope [8] (www.microstrain.com/3dm-gx1.aspx.)

www.microstrain.com/3dm-gx1.aspx.
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Fig. 3.16 Coriolis force in a
fork gyroscope [8] (www.
microstrain.com/3dm-gx1.
aspx.)

Fig. 3.17 Generation of the gyroscope effect [8] (www.microstrain.com/3dm-gx1.aspx.)

between the forks of mass and the frame. Thus, the amplitude of the vibrating-fork
displacements is a basis for determining of the gyroscopic effect (Fig. 3.17).

3.7 Microgyroscope with a Spinning Disk

These gyroscopes possess a thin, magnetic levitating disk that spins at very high
angular velocity. This high spinning velocity allows it to attain the gyroscope effect.
When a sensor rotates at constant angular velocity with respect to an arbitrary axis,
levitation forces make the disk move in precession, and it inclines at some angle.
The inclination is proportional to the speed of rotation of the gyroscope (Fig. 3.18).

3.8 Microgyroscope with Vibrating Ring

A microgyroscope with a vibrating ring is composed of a ring, eight semicircular
spring supports, and leading, detecting, and controlling electrodes (Figs. 3.19
and 3.20).

The symmetric structure of the gyroscope requires applying at least eight elastic
supports to keep the ring in equilibrium. The ring is subject to the action of two
elliptically shaped bending waves. The vibration ring is excited electrostatically.

www.microstrain.com/3dm-gx1.aspx.
www.microstrain.com/3dm-gx1.aspx.
www.microstrain.com/3dm-gx1.aspx.
www.microstrain.com/3dm-gx1.aspx.
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Fig. 3.18 Microgyroscope with spinning disk [8] (www.microstrain.com/3dm-gx1.aspx.)

Fig. 3.19 Microgyroscope
with vibrating disk [8] (www.
microstrain.com/3dm-gx1.
aspx.)

When the gyroscope is at rest (does not spin), the ring vibrates in the first mode
of bending at a fixed amplitude. When the gyroscope is set in motion in the
rotational motion about the normal axis, the Coriolis force makes a transition from
the first bending mode to the other. Then the nodes and maxima are displaced
at 45ı (Fig. 3.21). The amplitude change is then detected by the electrodes as the
capacitance changes. Finally, the signal is transmitted to the reading instruments.

www.microstrain.com/3dm-gx1.aspx.
www.microstrain.com/3dm-gx1.aspx.
www.microstrain.com/3dm-gx1.aspx.
www.microstrain.com/3dm-gx1.aspx.
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Fig. 3.20 Types of gyroscopes with a vibrating ring

Fig. 3.21 Principle of operation of a gyroscope with a vibrating ring [8] (www.microstrain.com/
3dm-gx1.aspx). (a) First bending wave. (b) Second bending wave shifted at 45ı relative to first one

3.9 Examples of Gyroscopic Pilotage Devices

A gyrocompass is an on-board device pointing in the geographic northern direction
(Fig. 3.22). It makes use of a basic feature of gyroscopes, namely, it maintains an
unchanged position in the space of eigenrotations. A gyrocompass is independent
of the magnetic field and declination of the object in which it is located.

www.microstrain.com/3dm-gx1.aspx
www.microstrain.com/3dm-gx1.aspx


3.9 Examples of Gyroscopic Pilotage Devices 143

Fig. 3.22 Gyrocompass
(www.imar-navigation.de/
englishside/dat engl/ifog e.
htm)

A gyrocompass is the oldest aeronautic gyroscopic instrument. It was initially
designed by Elmer Sperry for ships but as its size has been reduced, it is used in
aviation. Its operation is based on that of a gyroscope, namely, when it spins, it
maintains the position of its axis. A vertically placed gyroscopic disk is suspended
on a Cardan joint, so that the orientation of the disk in space is unchanged. A rotation
of an airplane about the gyroscope is transmitted on a 360-degree scale.

A Cardan system with a gyroscope can be placed inside or outside the device.
In the latter case a gyrocompass is placed in a hermetic thermostat, and an indicator
on the instrument panel (electromechanic or electronic) is electrically coupled
with it.

In order to periodically update a gyrocompass one uses a compass. Such a system
is called a gyromagnetic compass. The accurate so-called distant reading compass is
located away from magnetic field sources (steal elements, electric energy receivers,
cables), mostly placed in wing tips, and is electrically coupled with other systems.

A turn indicator allows for perfect turns without skidding or sideslipping
(a so-called coordinated turn). The shape of the plane fixed to the gyroscope
represents turn depth (angular velocity) (Fig. 3.23). A ball indicates the direction
of the centrifugal force; it must stay in the marked area. A turn indicator can be
made as a turn coordinator or a turn indicator with a vertical hand instead of an
airplane shape.

An artificial horizon points indicates the position of an aircraft (horizontal flight,
climb, descend, and tilt) relative to the real horizon plane (Fig. 3.24). The real
horizon is called a plane that is perpendicular to the vertical at the observation point.
The real horizon plane is parallel to the plane of visible horizon—it is specified by
the rotor plane of a gyroscope. The real distance of the visible horizon depends on
the curvature of the Earth’s altitude and optical refraction (refraction of the track
visible light rays in the atmosphere). As a result of refraction, an observer sees
below something like a huge hollow; objects seem to be much farther away than
they really are. Optical refraction depends on air temperature, humidity, pressure,
pollination, and other factors.

www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
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Fig. 3.23 Turn indicator
(www.imar-navigation.de/
englishside/dat engl/ifog e.
htm)

Fig. 3.24 Artificial horizon
(www.imar-navigation.de/
englishside/dat engl/ifog e.
htm)

An artificial horizon is a base of flight without visibility. The artificial horizon
indicates the real orientation of an airplane in space. The suspension of a gyroscope
in an artificial horizon has three degrees of freedom. Therefore, the artificial horizon
can rotate without limitations.

The first autopilot devices emerged from the gyrocompass and artificial horizon.
Gyroscopic instruments controlled the actuators employed in airplane control
systems by stabilizing the position in two planes. Previous autopilots were
hydropneumatic devices without no electronics on-board.

Tachometer sights belong to a group of sight systems dealing with the problem
of analytically determining the target hit by projectile.

The name refers to the fact that in sights of this kind, one measures the angular
velocity of the vector radius determined between a target and a shooter. A typical
solution of tachometer sights is coupling of the sight with a barrel of the canon.

www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
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Fig. 3.25 Tachometer sight
(www.imar-navigation.de/
englishside/dat engl/ifog e.
htm)

The structure of a tachometer sight depends on the method of measuring the angular
velocity, the method of determining the flight duration of a projectile, and the
multiplying system. One uses gyroscopes or generators to determine the angular
velocity.

When a gyroscope is used in a sight, it is mounted on the barrel lift unit in such a
way that the main axis is parallel to the axis of a barrel under no external influence.
An optical system is connected with the internal frame of a gyroscope. With an
internal gyroscope frame is related to the optical system (sight) which optical axis
is parallel to the axis of the gyroscope.

An example of a tachometer sight is the GP-02MR (Fig. 3.25), designed to
manage gunfire and the naval cannon ZU-23-2M, which uses electromechanical
equipment, the naval cannon ZU-23-2M. The sight is designed to shoot with
antiaircraft short-range 9K32M missiles and ammo of various ballistics. During
target tracking, it automatically determines the advanced and sight angles. The sight
enables attacking targets on land or sea that are at rest or in motion.

3.10 Example of an Observation Instrument with a Built-in
Gyroscope

Gyroscopic tracking systems represent a great improvement over binoculars in the
observation of moving objects.

Modern binoculars, an example of which is the Stabiscope S1240 D/N
(Fig. 3.26), are characterized by an internal built-in stabilizing system, so that
the observed object remains motionless regardless of the vibrations of the holder’s

www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
www.imar-navigation.de/englishside/dat_engl/ifog_e.htm
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Fig. 3.26 Binocular with
a built-in gyroscopic
stabilization system

hands or shaking generated by a car, helicopter, or ship. The stabilizing system
consists of a fast-spinning gyroscope, coupled with a prism system suspended in a
Cardan joint and placed in the optical axis between the lenses. When after a few
seconds after it is turned on the rotating mass of the gyroscope is at full speed, and
the suspension system is released—the binoculars are ready to work. The gyroscope
ensures that the prism will maintain a fixed position independent of vibrations of
the binoculars, so that an observer can see the object steadily.

3.11 New Challenges for a Gyroscope

An especially notable contribution to the development of gyroscopic devices came
from the emergence and rapid growth of missile and spaceship technology. Gyro-
scopic devices were classified into two groups: seaborne and airborne. The former
were characterized by relatively high accuracy, but they were large and massive.
The latter, in contrast, had low accuracy but were of simple construction and small
dimensions. The necessity of applying a gyroscope as a drive of an optoelectronic
target coordinator in self-guided missiles forced the construction of gyroscopic
devices of high accuracy and small overall dimensions, mass, and minimal energy
consumption [8]. It should be emphasized that the high accuracy of a gyroscope
needs to be maintained in hard, dynamic (overloads, vibrations), and climatic (large
amplitudes of temperature and pressure) operating conditions. Thus the develop-
ment of gyroscopic devices and their applications in missiles and spaceships has
been revived. Scientists and engineers started new investigations into the causes of
error generation and techniques of minimizing errors, construction improvements,
inventing new materials of required properties providing high accuracy at small
sizes and masses.
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The development and improvement of precise and small gyroscopic instruments,
working in complex conditions, has not ended and remains a scientific-engineering
problem.
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Chapter 4
Dynamics and Control of a Gyroscope

In this chapter theoretical investigations and the results of computer simulations are
presented to show that the following factors affect the accuracy of realization of the
required motion of a controlled gyroscope axis:

1. Compliance of initial conditions of the gyroscope motion with imposed initial
conditions. In order to guide the gyroscope axis to the appropriate initial position
one can apply additional time-independent control.

2. Values of the resistant-force coefficients in the bearings of gyroscope frames.
Too small values of these coefficients, during external disturbance or kinematic
excitation of the base, cause dynamical effects to arise and decrease the accuracy
of realization of the preset motion. However, large values make the gyroscope
axis drift off the preset position in space. Thus, one needs to minimalize the
friction coefficients in the bearings of the gyroscope suspension and, additionally,
to apply optimally selected dampers.

3. Influence of non-linearities in the model of gyroscope motion, which manifests
especially at large angular deviations of the gyroscope axis.

4. Additional deviations of gyroscope—which, independently of the numerous
technological tricks, always emerge during gyroscope operation—need to be
reduced by means of the gyroscope’s automatic control system. The proper
position of the gyroscope axis is maintained by the automatic control system
on the basis of the real position obtained from measurements and the required
position of the gyroscope axis worked out by a digital machine.

4.1 Dynamics of a Gyroscope on a Movable Platform

Figure 4.1 shows a general view of a gyroscope and a movable base [board
of flying object (FO)] along with acting forces and torques. We introduce the
following frames [1–3]: Og1X

0
1X

0
2X

0
3—movable frame fixed to an external frame
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Fig. 4.1 General view of a gyroscope placed on a movable base (board of FO)

of the gyroscope; Og2X
00
1 X

00
2 X

00
3 —movable frame fixed to an internal frame of

the gyroscope; Og3X
000
1 X

000
2 X

000
3 —movable frame fixed to a rotor of the gyroscope;

Og2X
00
10X

00
20X

00
30—movable frame fixed to an axis of the gyroscope.
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The mutual angular position of axes of the frames will be determined by means
of a transformation matrix in the following way. The transformation matrix from
the frame fixed to the platform to the frame fixed to the external frame governing
the rotation of the frameOg1X

0
1X

0
2X

0
3 relative to OX1X2X3 about the axisOg1X

0
2 at

angle  g has the following form:

Mpz D
2
4 cos g 0 � sin g

0 1 0

sin g 0 cos g

3
5 : (4.1)

The transformation matrix from the frame fixed to the external frame to that fixed
to the internal frame (rotation of the frame Og2X

00
1 X

00
2 X

00
3 relative to Og1X

0
1X

0
2X

0
3

about the axis Og2X
00
1 at angle #g) is as follows:

Mzw D
2
4 1 0 0

0 cos#g sin#g
0 � sin#g cos#g

3
5 : (4.2)

The transformation matrix from the frame fixed to the internal frame to that fixed
to the rotor (rotation of the frameOg3X

000
1 X

000
2 X

000
3 relative toOg2X

00
1 X

00
2 X

00
3 about the

axis Og3X
000
3 at angle ˚g) reads

Mwr D
2
4 cos˚g sin˚g 0

� sin˚g cos˚g 0

0 0 1

3
5 : (4.3)

The transformation matrix from the frame fixed to the platform to that fixed to
the internal frame is obtained in the following way:

Mpw D Mzw �Mpz D
2
4 cos g 0 � sin g

sin#g sin g cos#g sin#g cos g
cos#g sin g � sin#g cos#g cos g

3
5 ; (4.4)

and the transformation matrix from the frame fixed to the platform to that fixed to
the rotor is as follows:

Mpr D Mwr �Mpw D

2
6666666664

cos g cos˚gC � sin g cos˚g
C sin#g sin g sin˚g cos #g sin˚g C sin#g cos g sin˚g

� cos g sin˚gC sin g cos˚gC
C sin #g sin g cos˚g cos#g cos˚g C sin#g cos g sin˚g

cos #g sin g � sin#g cos #g cos g

3
7777777775
: (4.5)

In the case where the gyroscope axis is connected with the rotor by means of an
elastic element, the gyroscope gains an additional two degrees of freedom, and the
corresponding matrices of transformation (analogically Mpz;Mzw and Mpw) take
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the form

M0
pz D

2
64

cos 0g 0 � sin 0g
0 1 0

sin 0g 0 cos 0g

3
75 ;

M 0
zw D

2
64
1 0 0

0 cos#0g sin#0g
0 � sin#0g cos#0g

3
75 ;

M 0
pw D M0

pz �M0
zw D

2
64

cos 0g 0 � sin 0g
sin#0g sin 0g cos#0g sin#0g cos 0g
cos#0g sin 0g � sin#0g cos#0g cos 0g

3
75 :

(4.6)

The following assumptions are introduced:

1. The center of mass of the rotor coincides with the center of mass of the internal
frame Og2 D Og3 , but it does not coincide with the center of motion Og1 , i.e.,
with the point of intersection of the axes of rotor rotation and the frames. Hence,
we consider a non-astatic gyroscope, also called a “heavy” gyroscope.

2. The axes Og1X
0
1; Og1X

0
2; Og1X

0
3 are the main, central axes of inertia of the

external frame; similarly, the axes Og2X
00
3 andOg3X

000
3 are the main, central axes

of inertia of the internal frame and the rotor, respectively. The remaining axes are
the main ones of the corresponding systems.

The given quantities follow:

1. m1;m2;m3—masses of external frame, internal (along with the axis) frame,
and rotor of gyroscope, respectively.

2. ls—distance between center of mass of base and center of gyroscope motion.
3. lg—distance between center of mass of system: rotor—internal frame and

center of motion.
4. IX 0

1
; IX 0

2
; IX 0

3
—moments of inertia of external frame about axesOg1X

0
1,Og1X

0
2,

Og1X
0
3, respectively.

5. IX 00

1
; IX 00

2
; IX 00

3
—moments of inertia of internal frame about axes Og2X

00
1 ;

Og2X
00
2 ; Og2X

00
3 , respectively.

6. IX 000

1
; IX 000

2
; IX 000

3
—moments of inertia of rotor about axes Og3X

000
1 ; Og3X

000
2 ;

Og3X
000
3 , respectively.

7. I 0
X 00

1
; I 0
X 00

2
—moments of inertia of gyroscope axis about axes Og2X

00
10; Og2X

00
20,

respectively.
8. !g.p�; q�; r�/—components of angular velocity vector of base (kinematic

interaction of the base).
9. V�

g.VgX1; VgX2; VgX3/—components of linear velocity vector of base
displacement—coordinates of pointOg1 .
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10. Fg.FgX1; FgX2; FgX3/—components of force acting on center of mass of rotor
in frame fixed to platformOg1X1X2X3.

11. Moments of forces of interactions:

(a) Mc.McX1;McX2;McX3/—base on external frame;
(b) Mb.MbX 0

1
;MbX 0

2
;MbX 0

3
/—external frame on internal one;

(c) Mk.MkX 00

1
;MkX 00

2
;MkX 00

3
/—internal frame on rotor.

12. Moments of friction forces in bearings of internal and external frames:

(a) Viscous

Mrc D MV
rc D �c

d g
dt
; Mrb D MV

rb D �b
d#g
dt

I

(b) Dry

Mrc D M T
rc D 0; 5 � Trc � dc; Mrb D M T

rb D 0; 5 � Trb � dbI

where

Trc D �cNcsign
�d g

dt

�
; Trb D �bNbsign

�d#g
dt

�
;

and �c; �b; �c; �b are friction coefficients in the frame bearings; Nc;Nb are
normal reactions in the bearings; dc; db are diameters of the bearing pins.

13. Mrk—moment of friction forces in bearing of rotor in internal frame and
aerodynamic resistance.

14. Mzb;Mzc—disturbing signals in form of torques acting directly on rotor.
15. 
—stiffness coefficient of elastic element connecting axis with rotor.

The desired quantities are as follows:

1.  g; #g; ˚g—angles by means of which one determines the position of the rotor
relative to the frame Og1X1X2X3;

2.  0g ; #
0
g—angles by means of which one determines the position of the gyroscope

axis relative to the frameOg1X1X2X3;

3. Angular velocities: P g D d g
dt ;

P#g D d#g
dt ;

P̊
g D d˚g

dt ;

4. Angular velocities: P 0g D d 0g
dt ;

P#0g D d#0g
dt ;

P̊ 0
g D d˚0g

dt .

The vector of the angular velocity of the rotor reads

!�
g D d g

dt
C d#g

dt
C d˚g

dt
; (4.7)
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whereas the angular velocity vector of the gyroscope has the following form:

!0g D d 0g

dt
C d#0g

dt
: (4.8)

Projections of its components on particular axes of the coordinate system can be
determined as follows:

2
64

P gX 0

1P gX 0

2P gX 0

3

3
75 D

2
4 0

P g
0

3
5 ;

2
64

P gX 00

1P gX 00

2P gX 00

3

3
75 D

2
4 0

P g cos#g
� P g sin#g

3
5 ;

2
64

P gX 000

1P gX 000

2P gX 000

3

3
75 D

2
4

P g cos#g sin˚g
P g cos#g cos˚g

� P g sin#g

3
5 ; (4.9)

2
64

P#gX 0

1P#gX 0

2P#gX 0

3

3
75 D

2
4

P#g cos g
0

� P#g sin g

3
5 ;

2
64

P#gX 00

1P#gX 00

2P#gX 00

3

3
75 D

2
4

P#g
0

0

3
5 ;

2
64

P#gX 000

1P#gX 000

2P#gX 000

3

3
75 D

2
4

P#g cos˚g sin
� P#g sin˚g

0

3
5 ;

2
64

P̊
gX 000

1P̊
gX 000

2P̊
gX 000

3

3
75 D

2
4 0

0
P̊
g

3
5 : (4.10)

Analogously, projections of the components of the angular velocity vector of the
gyroscope axis will take the following forms:

2
664

P 0
gX 0

1P 0
gX 0

2P 0
gX 0

3

3
775 D

2
4 0

P 0g
0

3
5 ;

2
664

P 0
gX 00

1P 0
gX 00

2P 0
gX 00

3

3
775 D

2
64

0
P 0g cos#0g

� P 0g sin#0g

3
75 ; (4.11)

2
664

P#0
gX 0

1P#0
gX 0

2P#0
gX 0

3

3
775 D

2
64

P#0g cos 0g
0

� P#0g sin 0g

3
75 ;

2
664

P#0
gX 00

1P#0
gX 00

2P#0
gX 00

3

3
775 D

2
4

P#0g
0

0

3
5 : (4.12)

In what follows one may define the components of the angular velocity vector of
the external frame in the coordinate system Og1X

0
1X

0
2X

0
3:

2
64
!gX 0

1

!gX 0

2

!gX 0

3

3
75 D Mpz

2
4p

�
q�
r�

3
5C

2
64

P gX 0

1P gX 0

2P gX 0

3

3
75 D

2
4 p

� cos g � r� sin g
P g C q�

p� sin g C r� cos g

3
5 : (4.13)
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On the other hand, the components of the angular velocity vector of the internal
frame in the coordinate system Og2X

00
1 X

00
2 X

00
3 read

2
64
!gX 00

1

!gX 00

2

!gX 00

3

3
75 D Mpw

2
4p

�
q�
r�

3
5C

2
64

P#gX 00

1P#gX 00

2P#gX 00

3

3
75C

2
64

P gX 00

1P gX 00

2P gX 00

3

3
75

D
2
4 p� cos g � r� sin g C P#g
.p� sin g C r� cos g/ sin#g C .q� C P g/ cos#g
.p� sin g C r� cos g/ cos#g � .q� C P g/ sin#g

3
5 : (4.14)

Components of the angular velocity vector in the coordinate system
Og3X

000
1 X

000
2 X

000
3 have the form

2
64
!gX 000

1

!gX 000

2

!gX 000

3

3
75 D Mpr

2
4p

�
q�
r�

3
5C

2
64

P#gX 000

1P#gX 000

2P#gX 000

3

3
75C

2
64

P gX 000

1P gX 000

2P gX 000

3

3
75C

2
64

P̊
gX 000

1P̊
gX 000

2P̊
gX 000

3

3
75 ;

or, equivalently,

!gX 000

1
D p�.cos g cos˚g C sin#g sin g sin˚g/

C .q� C P g/ cos#g sin˚g C P#g cos˚g

C r�.cos g sin#g sin˚g � sin g cos˚g/; (4.15)

!gX 000

2
D �p�.cos g sin˚g � sin#g sin g cos˚g/

C .q� C P g/ cos#g cos˚g � P#g sin˚g

C r�.cos g sin#g cos˚g C sin g sin˚g/; (4.16)

!gX 000

3
D p� sin g cos#g � .q� C P g/ sin#g

C r� cos g cos#g C P̊
g: (4.17)

Components of the velocity vector of the gyroscope axis in the coordinate system
Og1X

0
1X

0
2X

0
3 read

2
664
!0
gX 0

1

!0
gX 0

2

!0
gX 0

3

3
775 D M0

pz

2
4p

�
q�
r�

3
5C

2
664

P 0
gX 0

1P 0
gX 0

2P 0
gX 0

3

3
775 D

2
64
p� cos 0g � r� sin 0gP 0g C q�
p� sin 0g C r� cos 0g

3
75 : (4.18)
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Finally, components of the velocity vector of the gyroscope axis in the coordinate
system Og2X

00
10X

00
20X

00
30 are as follows:

2
664
!0
gX 00

1

!0
gX 00

2

!0
gX 00

3

3
775 D Mpw

2
4p

�
q�
r�

3
5C

2
664

P#0
gX 00

1P#0
gX 00

2P#0
gX 00

3

3
775C

2
664

P 0
gX 00

1P 0
gX 00

2P 0
gX 00

3

3
775

D

2
64

p� cos 0g � r� sin 0g C P#0g
.p� sin 0g C r� cos 0g/ sin#0g C .q� C P 0g/ cos#0g
.p� sin 0g C r� cos 0g/ cos#0g � .q� C P 0g/ sin#0g

3
75: (4.19)

The linear velocity of the center of mass of the rotor is a sum of the drift velocity
of point Os (velocity of FO) and Og1 (about point Os) and the relative velocity
relative to pointOg2 [2, 4]:

Vg2 D Vs C
ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
p� q� r�
ls 0 0

ˇ̌
ˇ̌
ˇ̌C

ˇ̌
ˇ̌
ˇ̌

E0
1 E0

2 E0
3

!gX 0

1
!gX 0

2
!gX 0

3

0 0 lg

ˇ̌
ˇ̌
ˇ̌C

ˇ̌
ˇ̌
ˇ̌

E00
1 E00

2 E00
3

!gX 00

1
!gX 00

2
!gX 00

3

0 0 lg

ˇ̌
ˇ̌
ˇ̌ ;

or, equivalently,

VgX 00

1
D us cos g � .ws � q�ls/ sin g C .!gX 0

2
C !gX 00

2
/lg; (4.20)

VgX 00

2
D .us sin g C .ws � q�ls/ cos g/ sin#g

C .vs C r�ls/ cos#g � .!gX 00

1
C !gX 0

1
cos#g/lg; (4.21)

VgX 00

3
D .us sin g C .ws � q�ls/ cos g/ cos#g

� .vs C r�ls/ sin#g C !gX 0

1
lg sin#g: (4.22)

The linear velocity of the center of mass of the external frame reads

Vg1 D Vs C
ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
p� q� r�
ls 0 0

ˇ̌
ˇ̌
ˇ̌ ;

or, equivalently,

VgX 0

1
D us cos g � .ws � q�ls/ sin g; (4.23)

VgX 0

2
D vs C r�ls; (4.24)

VgX 0

3
D us sin g C .ws � q�ls/ cos g: (4.25)
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Similarly, projections of the linear velocity of the center of mass of the external
frame-axis system are

V 0
gX 00

1
D us cos 0g � .ws � q�ls/ sin 0g C .!0

gX 0

2
C !0

gX 00

2
/lg; (4.26)

V 0
gX 00

2
D .us sin 0g C .ws � q�ls/ cos 0g/ sin#0g

C.vs C r�ls/ cos#0g � .!0
gX 00

1
C !0

gX 0

1
cos#0g/lg; (4.27)

V 0
gX 00

3
D .us sin 0g C .ws � q�ls/ cos 0g/ cos#0g

�.vs C r�ls/ sin#0g C !0
gX 0

1
lg sin#0g: (4.28)

The axes Og1X
0
1; Og1X

0
2; Og1X

0
3; Og2X

00
3 , and Og3X

000
3 are the main central axes

of inertia of the corresponding frames. The remaining axes are the main ones of
the suitable systems. By I�

X 00

1
; I�
X 00

2
; I�
X 00

3
; I�
X 000

1
; I�
X 000

2
, and I�

X 000

3
we denote the moments

of inertia of the corresponding frames about the axes parallel to the axes Og2X
00
1 ;

Og2X
00
2 ; Og2X

00
3 ; Og3X

000
1 ; Og3X

000
2 , and Og3X

000
3 but passing through the center of

mass.
We will derive equations of motion of the gyroscope by means of the Lagrange

equations of the second kind. To that end, we will determine the kinetic Ek (equal
to the sum of the kinetic energy of the external and internal frames, the rotor, and
the axis) and the potential Ep energy of the system

Ek D 1

2

�
IX 0

1
!2gX 0 C IX 0

2
!2
gX 0

2
C IX 0

3
!2
gX 0

3

�

C 1

2

�
I�
X 00

1
!2
gX 00

1
C I�

X 00

2
!2
gX 00

2
C I�

X 00

3
!2
gX 00

3

�

C 1

2

�
I�
X 000

1
!2
gX 000

1
C I�

X 000

2
!2
gX 000

2
C I�

X 000

3
!2
gX 000

3

�

C 1

2

�
I 0
X 00

1
.!0

gX 00

1
/2 C I 0

X 00

2
.!0

gX 00

2
/2
�

C 1

2
m3V

2
s C 1

2
m1

�
V 2
gX 0 C V 2

gX 0

2
C V 2

gX 0

3

�

C 1

2
m3

�
V 2
gX 00

1
C V 2

gX 00

2
C V 2

gX 00

3

�

C 1

2
m2

�
.V 0
gX 00

1
/2 C .V 0

gX 00

2
/2 C .V 0

gX 00

3
/2
�
; (4.29a)

Ep D 1

2

. g �  0g/

2 C 1

2

.#g � #0g/2: (4.29b)
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The Lagrange function has the following form:

L D Ek �EP : (4.30)

Taking into account the fact that a generalized coordinate˚g is cyclic, we obtain
equations of motion of the gyroscope in the following form:

1. Equations of motion of the gyroscope axis

I 0
X 00

2

d

dt
.!0

gX 0

2
cos2 #0g/Cm2 � l2g.1C cos#0g/

2
d!0

gX 0

2

dt
C I 0

X 00

1
!0
gX 00

1
!0
gX 0

3

C 1

2
I 0
X 00

2
!0
gX 0

3

	
sin 2#0g C .!0

gX 00

1
� !0

gX 0

1
/ cos2 #0g



� 
. g �  0g/

Cm2lg



.1C cos#0g/ � .Pus cos 0g � . Pws � Pq�ls/ sin 0g/

� P 0g
	

us sin 0g C .ws � q�ls/ cos 0g



� V 0

gX 00

1

P#0g sin#0g

�

Cm2l
2
g

	
.!0

gX 0

2
C !0

gX 00

2
/!0

gX 0

1
sin#0g � .1C cos#0g/!

0
gX 00

1
!0
gX 0

3

C P#0g!0gX 00

3
C P!0

gX 0

3
sin#0g



Cm2lslg



qs

	
.!0

gX 0

1
� !0

gX 00

1
/ sin 0g sin#0g

C .!0
gX 0

2
C !0

gX 00

3
/ cos 0g � !0

gX 0

3
cos�0

g sin#0g cos#0g




C .1C cos#0g/ � r�!0
gX 0

3

�
D Mc �Mrc; (4.31)

I 0
X 00

1

d!0
gX 00

1

dt
Cm2l

2
g

R#0g � I 0
X 00

2
!0
gX 00

2
!0
gX 00

3
� 
.#g � #0g/

�m2lg
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2. Equations of motion of gyroscope rotor	
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�
	
q�.!gX 00

3
sin g C !gX 00

1
cos g cos#g/C r�!gX 00

1
sin#g

� Pr� cos#g



� ls �

	
.!gX 0

2
C !gX 00

2
/ � !gX 00

3
� !gX 0

1
!gX 00

1
sin#g

C .1C cos#g/ � P!gX 0

1



� lg
�

D Mzb; (4.34)

I�
X 000

3

d

dt
.!gX 00

3
C P̊

g/ D Mk �Mrk; (4.35)

where
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D Pp� cos 0g � p� P 0g sin 0g � Pr� sin 0g � r� cos 0g;
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D Pp� sin 0g C p� P 0g cos 0g C Pr� cos 0g � r� sin 0g:

The preceding mathematical model of gyroscope motion, along with the equa-
tions of motion of the base (board of FO) on which the gyroscope is set, makes
it possible to perform large-scale simulation investigations of gyroscope dynamics.
Moreover, the presented form of equations has the most general and universal char-
acter. From these equations it is possible to derive all other equations describing the
known types of gyroscopes. It should be emphasized that in the model governed by
(4.31)–(4.35), deformability of the rotor is taken into account (elasticity coefficient

) as is the position of the center of mass of the gyroscope at some distance ls
from the center of mass of the OL (which can matter in the case of a non-astatic
gyroscope). Since no known analytical methods of solving the derived equations
exist, investigation of the model will be performed by means of numerical methods.
The universality of (4.31)–(4.35) relies on the fact that by ignoring specific terms
of particular equations, it is possible to obtain the desired gyroscope models. In the
next subsection, we will present an example of transformation of the aforementioned
equations into forms describing a model of a classic, controlled gyroscope on a
fixed base.

4.1.1 Astatic Gyroscope on a Fixed Platform
with Axis Stiff-Connected to Rotor

Suppose that a gyroscope is located on a fixed base, which implies that us D 0,
vs D 0, ws D 0, ps D 0, qs D 0, rs D 0. We do not take into account the rotational
motion of the Earth, and we assume that the gyroscope is astatic, i.e., the distance
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of the center of mass of the system rotor’s internal frame lg D 0. The equations of
motion of the gyroscope take the form
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Equations (4.36a) and (4.36b) yield
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Substituting (4.40a) into (4.37) and (4.40b) into (4.38), one obtains
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Consider the case where the stiffness coefficient 
 ! 1. It follows from (4.40a)
and (4.40b) that

 0g �  g and #0g � #g: (4.43)

Thus, we obtained constraint equations for (4.37) and (4.38). This means that the
axis will be stiff-connected to the gyroscope rotor. Taking into account constraints
(4.43), (4.41) and (4.42) take the form
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If we ignore the inertia of the frames IX 00
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D 0, I 0
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D 0,
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D 0 and the values of the disturbing torques Mzb D 0 and Mzc D 0,

and if we introduce additional designations (bearing in mind that the rotor is axially
symmetric), then IX 000

1
D IX 000

2
D Igk , IX 000

3
D Igo, then formulas (4.41) and (4.42)

are cast to the following form
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Igk
d2#g
dt2

C 1
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Suppose that the torque driving the rotor is equal to the moment of friction forces
in the rotor bearings and aerodynamic resistance

Mk D Mrk; (4.47a)

and hence

d˚g
dt

� P g sin#g D const D ng: (4.47b)

Finally, taking into account (4.47a), (4.47b) will take the form
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We have obtained equations of motion of a classic gyroscope on a fixed base with
the axis stiff-connected to the rotor.

Numerical investigations to be carried out later on in this work for systems
describing gyroscope motion [such as (4.75a)], it is convenient to perform, not for a
real time t , but for a “dimensionless” � , which is determined as follows [5, 6, 8]:

� D ˝ � t; (4.49)

where

˝ D Igong

Igk
:

Rescaling time one obtains

d
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and

P#g D ˝
d#g
d�

D ˝# 0
g;

R#g D ˝2 d2#g
d�2

D ˝2# 00
g ; (4.51a)

and similarly

P g D ˝ �  0
g;

R g D ˝2 00
g : (4.51b)

The change in time scale in the preceding examples makes the numerical analysis
of the equation of motion easier because the change makes values of the equation
elements equal and allows us to introduce a greater integration step. This makes
numerical errors smaller.
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Applying the dimensionless time � in (4.48a)–(4.48b) and taking into account
(4.50), (4.51a), and (4.51b) one finds

d2 g
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0
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where
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; bc D �c

Igk˝
; cb D 1

Igk˝2
; cc D 1

Igk˝2
:

4.1.2 Simplified Equations (Technical) of Motion
of a Gyroscope

Analysis of (4.48) and (4.52) is very troublesome because of the difficulties in
obtaining analytical solutions. System (4.48) is strongly non-linear, which is why
its solution can be obtained only by means of numerical methods. However, the
system can be simplified considerably if we eliminate terms that have a slight effect
on the motion character of the gyroscope.

Note that the value of the angular velocity of eigenrotations P̊
g of the gyroscope

is incomparably greater than the value of the velocities P#g and P g of rotations of
the internal and external frames. Hence, in (4.48) we can leave out those terms that
include products P#g and P g or their squares as higher-order quantities of smallness.
Moreover, if we consider a fixed range of rotor operation corresponding to balancing
the driving torque Mk with the resistance torques Mrk, i.e., an almost constant
angular velocity of the eigenrotations of the gyroscope, P̊

g Š const D ng , then
(4.48) will take the following forms:

Igk
d2#g
dt2

C Igong P g cos#g D Mb �Mrb; (4.53a)

Igk
d2 g
dt2

� Igong P#g cos#g D Mc �Mrc: (4.53b)

The preceding forms of equations, governing the motion of a gyroscope about a
fixed point of its suspension, are called technical equations or the technical theory
of the gyroscope [7, 9, 10].

Taking into account the fact that (as was earlier assumed) angular velocities P#g
and P g have small values and assuming that the initial conditions equal zero, one
can assume, with sufficient accuracy from a practical viewpoint, that cos#g Š 1. If
we assume that the moments of friction forces in the frame bearings are small, i.e.,
Mrb D 0, Mrc D 0, then (4.53) will take simpler, final forms:
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Igk
d2#g
dt2

C Igong P g D Mb; (4.54a)

Igk
d2 g
dt2

� Igong P#g D Mc: (4.54b)

4.1.3 Remarks on the Model of Gyroscopic Motion

The most general mathematical model of a controlled gyroscope has been derived.
It follows from the literature overview that the complete numerical investigations
of the dynamics of the controlled gyroscope have not been performed satisfactorily,
especially when the full equations describing the motion of a gyroscope base (e.g.,
board of a FO) are taken into account. This option is ensured by the model given
in this chapter and governed by (4.31)–(4.35). In particular, it makes it possible to
examine the influence of the following factors on the accuracy of maintaining the
preset motion (position) in space by the gyroscope axis:

1. Inertia of suspension frames.
2. Distance lg between the center of mass of the gyroscope and the center of its

rotation (unbalanced gyroscope).
3. Distances ls between the center of mass of the gyroscope and the center of mass

of the FO.
4. Stiffness 
 of the element connecting the rotor to the gyroscope axis.
5. Kinematic excitations in the form of linear us , vs , ws and angular ps , qs , rs

velocities (and their first derivatives with respect to time) affecting the gyroscope
suspension.

6. Rotational motion of the Earth.

The generality of the model enables us to analyze various types of gyroscopes by
means of elimination of appropriate terms in (4.31)–(4.35). Thus, one could pass
from the description of a non-astatic gyroscope on an elastic suspension to a classic
description of an astatic gyroscope.

The computing power of today’s computers allows one, in a relatively simple
way, to verify the results obtained thus far of the theoretical investigations of
gyroscopes—reduced to simplified models in most cases—with the results obtained
from numerical simulations of a completely non-linear model.

4.2 Gyroscope Control

The motion of a gyroscope axis can be realized under the influence of the controlling
torquesMb andMc and angular motion of its base, determined by angular velocities
p�.t/, q�.t/, and r�.t/, or the linear movements of its base (in the case of a
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non-astatic gyroscope), determined by linear velocities us.t/, vs.t/, and ws.t/.
While the torques cause the excitation of motion of a gyroscope axis by external
forces, the angular and linear velocities of the base reflect the parametrical excitation
of the motion.

In this subsection, we will consider programmable control of motion of a
gyroscope axis in an open system and corrective and stabiling control of motion
of a gyroscope axis in a closed system. We will examine the effect of gyroscope
errors on the realization of preset motion. Moreover, we will give optimal control
algorithms of position of a gyroscope axis relative to a preset trajectory.

4.2.1 Motion Control of Gyroscope Axis in an Open System:
The Inverse Problem in Gyroscope Dynamics

The inverse problem of a gyroscope relies on determining the torques Mb.t/

and Mc.t/ that, acting on the gyroscope frames, will set the gyroscope axis in
motion, specified by the angles #gz.t/ and  gz.t/. Thus, the problem is reduced
to determining programs according to which the torques Mb.t/ and Mc.t/ are to
change in time, i.e., the programmable control of the gyroscope axis motion in an
open system [11–13].

In order to determine the torques Mb.t/ and Mc.t/ we make use of the general
definition, which says that inverse problems of dynamics are called problems that
rely on determining the external forces, the parameters of this system, and the
constraints imposed on the system at which motion with preset properties is the only
motion among all possible motions. In practice, these problems refer to the particular
cases relying on formulating the algorithms that determine the controlling forces
and realize the desired motion of a dynamical system—regardless of the problem
conditions—though they are not always achieved.

Thus, the inverse problem relies on task of runs as functions of time #g D #g.t/

and  g D  g.t/, substituting them into the left-hand sides of the equations of
motion of a gyroscope axis and evaluating Mb.t/ and Mc.t/ (i.e., the right-hand
sides of these equations). The determined torques Mb and Mc , plugged into the
right-hand sides of the equations of motion, give a unique (appropriate) result only
for the angular velocities P#g.t/ and P g.t/, while only for the angles will the result
not be unique in general since it depends on integration constants of the angles’
derivatives. This can be compensated by appropriate selection of the integration
constants in the solution to the equations.

This implies that the determined Mb.t/ and Mc.t/, on the basis of the inverse
problem solution, can be used to programmatically control only of the derivatives
angles and not the angles of the gyroscope position. A scheme for an algorithm to
control a gyroscope in an open system is depicted in Fig. 4.2.
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Fig. 4.2 Scheme of algorithm for controlling a gyroscope in an open system

Consider the following problem: let a gyroscope axis describe the a surface of a
cone (Fig. 4.3a). Then the following equations must be satisfied:

#gz.t/ D �k sin �kt;  gz.t/ D �k cos �kt;

#gz

dt
D �k�k cos �kt;

 gz

dt
D ��k�k sin �kt;

d2#gz

dt2
D ��k�2k sin �kt;

d2 gz

dt2
D ��k�2k cos �kt: (4.55)

Let us make use of the linearized equations of a gyroscope (4.53b)–(4.53b) in
which we suppose that �g � 1 and the friction in the suspension bearings is of a
viscous type. Then they will have the following form [14–16]:

d2#g
dt2

C �b˝
d#g
dt

�˝
d g
dt

D Mb

Igk
;

d2 g
dt2

C �c˝
d g
dt

C˝
d#g
dt

D Mc

Igk
: (4.56)

Substituting (4.55) into the left-hand side of (4.56) we obtain

d2#gz

dt2
C �b˝

d#gz

dt
�˝

d gz

dt
D �k�k.˝ � �k/ sin �kt C �b�k�k˝ cos �kt;

d2 gz

dt2
C �c˝

d gz

dt
C˝

d#gz

dt
D �k�k.˝ � �k/ cos �kt � �c�k�k˝ sin �kt;

(4.57)
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Fig. 4.3 Examples of curves drawn by the gyroscope axis: (a) on a cone surface, (b) along
Archimedes spiral, (c) n-flute rosette, (d) modified n-flute rosette, (e) described by (4.67),
(f) described by (4.68)
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and hence

Mb D IgkŒ�k�k.˝ � �k/ sin �kt C �b�k�k˝ cos �kt�;

Mc D IgkŒ�k�k.˝ � �k/ cos �kt � �b�k�k˝ sin �kt�: (4.58)

Thus, we have the torques Mb.t/ and Mc.t/ determined as functions of time.
Now let us check what trajectory will be generated by these torques. Let us substitute
them into the right-hand sides of (4.56):

d2#g
dt2

C �b˝
d#g
dt

�˝
d g
dt

D �k�k.˝ � �k/ sin �kt C �b�k�k˝ cos �kt;

d2 g
dt2

C �c˝
d g
dt

C˝
d#g
dt

D �k�k.˝ � �k/ cos �kt � �c�k�k˝ sin �kt:

(4.59)

The inverse problem is unique for the derivatives of angles #g and  g with
respect to time, but for stationary motion [17, 18], i.e., as t ! 1 (a transient
process is depicted in Figs. 4.6b and 4.7b). However, that question arises as to
whether the solutions to the preceding equations will also describe the preset motion
of the gyroscope axis. If we impose the initial angular position of the axis as
required, #gz.0/ D 0 and  gz.0/ D �k , then we will obtain the required angular
displacements of the gyroscope axis. If, however, the initial position of the axis is
not the one we need, e.g., #gz.0/ D 0:1 rad and  gz.0/ D 0:1 rad, then despite the
fact that the angular velocities are the ones we need, the gyroscope axis does not
describe the required surface (Figs. 4.5 and 4.7).

In the case of angular deviations taking large values of the gyroscope axis, the
control moments Mb.�/ and Mc.�/, as functions of non-dimensional time � , are
determined from the non-linear (4.52a)–(4.52b):

Mb.�/ D d2#gz

d�2
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d�
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�
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cos#gz; (4.61)

where

bb D �b
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Igk˝
:
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If, also in this case, we require that the gyroscope axis must move on the surface of
a cone, then programmable controls (4.60) and (4.61) take the following form:
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˝
� C bb�k
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; (4.62)
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: (4.63)

The preceding problem of gyroscope axis control on a cone’s surface is one of the
possible problems. We can substitute other functional relations for the angles #gz.�/

and  gz.�/ and their first and second derivatives into the programmable controls
governed by (4.60) and (4.61). Some of the most characteristic examples of the
required motion of a gyroscope axis that can be applied in detection or tracking
systems are depicted below [19, 20]:

1. Motion of gyroscope axis along Archimedes spiral (Fig. 4.3b):

#gz.�/ D ag
�s

˝
� sin

�
�s

˝

�
;

 gz.�/ D bg�s� cos

�
�s

˝

�
: (4.64)

2. Motion of gyroscope axis along n-flute rosette (Fig. 4.3c)

#gz.�/ D �r sin

�
�2

˝
�

�
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�
�1

˝
�

�
;

 gz.�/ D �r sin

�
�2

˝
�

�
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�
�1

˝
�

�
: (4.65)
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3. Motion of a gyroscope axis along a modified n-flute rosette:

#gz.�/ D �r

	
sin

�
�2

˝
�

�
C 0; 2 sin

�
3
�2

˝
�

�
C 0:04 sin

�
5
�2

˝
�

�

cos

�
�1

˝
�

�
;

 gz.�/ D �r

	
sin

�
�2

˝
�

�
C 0; 2 sin

�
3
�2

˝
�

�
C 0:04 sin

�
5
�2

˝
�

�

sin

�
�1

˝
�

�
:

(4.66)

4. Motion of gyroscope axis along curve depicted in Fig. 4.3e and described by the
following relationships:

#gz D ab

˝
� cos

�
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˝
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�
C 0; 2ab sin

	
2; 5

�b

˝

�
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�

�
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: (4.67)

5. Motion of gyroscope axis along curve depicted in Fig. 4.3f and described by the
following relationships:

#gz D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

2�=.3˝/� dla 0 	 � < 0; 25�c;

�2�=.3˝/.� � 0; 5�c/ dla 0; 25�c 	 � < 0; 75�c;
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I (4.68a)
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�
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˝

�
: (4.68c)
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Fig. 4.4 Influence of the initial conditions on realization of motion on the cone surface by the
gyroscope axis: (a) for angular displacements, (b) for angular velocities

Fig. 4.5 Effect of friction in frame bearings on realization of motion on cone surface by gyroscope
axis: (a) for small values, (b) for large values of viscous damping coefficients

4.2.2 Numerical Example

In Figs. 4.4–4.7, are shown (presented) selected results of computer simulations for
two basic motions of a gyroscope axis: (a) describing a cone surface; (b) unfolding
the surface after the Archimedes spiral.
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Fig. 4.6 Influence of the initial conditions on realization of the preset motion on the surface
described after the Archimede spiral: (a) for angular displacements, (b) for angular velocities

Fig. 4.7 Effect of non-linearities on realization of motion on cone surface by gyroscope axis:
(a) for angular displacements, (b) for angular velocities

Calculations were performed for the following values:

Igo D 5 � 10�4kgm2; Igk D 2:5 � 10�4kgm2; �b D �c D 0:1Nms;

ng D 600 rad/s; �k D 8 rad/s; ˝ D 1;200 rad/s:

Figures 4.4 and 4.5 present the negative influence of the initial conditions and
coefficients of the friction force �b , �c in the frame bearings on the realization of the
desired motion. In the initial conditions, unlike in the required ones, #g.0/ D �0:1,
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Fig. 4.8 Effect of non-linearities on realization of preset motion on surface described after the
Archimedes spiral: (a) for angular displacements, (b) for angular velocities

#gz.0/ D 0,  g.0/ D 0,  gz.0/ D �0:1, the gyroscope axis does not delineate the
required path (Figs. 4.4a and 4.6a), while the angular velocities of the axes are the
one we need. However, one can see a transient process (Figs. 4.4b and 4.6b), which
is certainly longer at smaller values �b , �c and shorter at larger ones (Fig. 4.5a, b).

Figures 4.7 and 4.8 illustrate the effect of large angular displacements on the
accuracy of the required motion on the cone surface and along the Archimedes
spiral.

4.2.3 Control with Constant Programmable Moments

In order to put a gyroscope axis into a preset path, one needs to change the torques
controlling the gyroscope [5, 21]. It is convenient to require to guide, from given
initial positions #g.t0/ D #go and  g.t0/ D  go, the gyroscope axis to the position
#go.t0/ D #gk and  go.t0/ D  gk by means of Mb1 D const and Mc1 D const.
The earlier determined torquesMb andMc , which we will denote by Mb2 andMc2 ,
will take the gyroscope axis from this position on the preset surface (cone, unfolded
along a spiral, rosette, etc.). Thus, we control the gyroscope axis in two stages: in the
first stage, the constant moments are applied, and after we reach #g D #go D #gk
and  g D  go D  gk , we go to the second stage, where the moments described by
(4.60) and (4.61) are applied.
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In the first stage, at the initial conditions R#go D 0, P#go D 0, R go D 0, P go D 0, we
obtain the following solution to (4.56):

#g.t/ D #go C ˝.�cMb1 CMc1/

Igk!2go
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; (4.69a)

 g.t/ D #go C ˝.�bMc1 �Mb1/
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where

!0g D
q
!2go � .h�

g/
2; !2go D .1C �b�c/˝

2; h�
g D ˝

2
.�b C �c/:

At large values of h�
g and short time of motion in the first stage, we can make the

following approximation:

#g.t/ � #go C ˝.�cMb1 CMc1/

Igk!2go
t; (4.70a)

 g.t/ �  go C ˝.�bMc1 �Mb1/

Igk!2go
t: (4.70b)

Now we impose the time during which the axis of the gyroscope travels from the
position #go,  go to #g D #gk ,  g D  gk . Let us denote this time by tu. Then from
the preceding equalities (in truth, they are approximated) we obtain

#go C ˝.�cMb1 CMc1/

Igk!2go
tu D #gk; (4.71a)

 go C ˝.�bMc1 �Mb1/

Igk!2go
tu D  gk: (4.71b)

This is a system of two equations with two unknown quantities Mb1 and Mc1 ,
and it yields

Mb1 D � . gk �  go � �b.#gk � #go// � Igong
tu

; (4.72)
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Mc1 D .#gk � #go C �c. gk �  go// � Igong
tu

: (4.73)

If we want to displace the axis of the gyroscope from the known initial position
#go,  go to the given position on the surface of the cone #g D #gk,  g D  gk , then
the controls have the form

Mb1 D � . gk �  go C �b#go/ � Igong
tu

; (4.74a)

Mc1 D Œ. gk �  go/�c � #go� � Igong
tu

: (4.74b)

When we want to do the same for the preset motion of the axis along the
Archimedes spiral, then

Mb1 D � .�b#go �  go/ � Igong
tu

; (4.75a)

Mc1 D � .�c go C #go/ � Igong
tu

: (4.75b)

Summing up, we can say that for the realization of the desired motion, we apply
the following algorithm: (1) for t < tu we control the torques Mb D Mb1 and
Mc D Mc1 ; (2) for t � tu we control the torquesMb D Mb2 andMc D Mc2 .

4.2.4 Numerical Example

Figures 4.9 and 4.10 present a process of motion, inconsistent with the preset one,
of the gyroscope axis from the initial position to the required one by means of
controlsMb1;Mc1 described by expressions (4.73). These figures show that a precise
realization of the motion of the gyroscope axis is possible along the Archimedes
spiral after the gyroscope axis is moved to the required initial position.

4.3 Motion Control of Gyroscope Axis in a Closed System

The results of the preceding section show that programmable control of a gyroscope
axis in an open system cannot provide satisfactory accuracy of realization of the
preset motion of the axis. The cause are many disturbances, which acts on the
gyroscope base.
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Fig. 4.9 Taking the gyroscope axis to the preset initial position at its motion on the cone surface:
(a) for angular displacements, (b) for angular velocities

Fig. 4.10 Taking the gyroscope axis to the preset initial position at its motion on the surface,
unfolded after the Archimedes spiral: (a) for angular displacements, (b) for angular velocities

The fundamental elements affecting the errors of not only navigation but also
controlled gyroscopes are as follows [22, 23]:

(a) Dry and viscous friction in frame bearings.
(b) Inertia of frames.
(c) Unbalance (static and dynamic) of rotor relative to intersection of frame axes—

center of rotation.
(d) Linear and angular accelerations of base.
(e) Elasticity of elements of construction.
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(f) Errors of Cardan suspension.
(g) Instability of rotor drive.
(h) Intersection of frames at incorrect angles.
(i) Large angles and angular velocities of deviation of main axis from preset

direction.
(j) Rotational motion of Earth.

In order to eliminate the detrimental interaction of the preceding elements one
needs to apply systems of automatic correction of the motion of the gyroscope axis.

4.3.1 Gyroscopic System with PID Regulator

Here we will consider control of the gyroscope axis, which relies on tracking, by
this axis, a preset direction, which is either time dependent or time independent.
The application of such control takes place in various observation instruments, in
automatic detection and angular tracking systems, in optical target coordinators of
self-guided missiles, etc. [21, 24]. The tracking requires the measurement of the
results of control; thus it belongs to the group of closed control systems (with
feedback) [22]. We will distinguish a desired motion (signal) #gz.t/ and  gz.t/,
i.e., the motion of a gyroscope that we would like to realize, and the motion (signal)
realized #g.t/ and  g.t/ by the gyroscope axis. We will call the deviation of the
realized motion from the desired one

�g D
q
.#g � #gz/2 C . g �  gz/2 (4.76)

a real deviation of the control. Moreover, we will use the notion of partial
deviations:

eb D #g � #gz; (4.77)

ec D  g �  gz; (4.78)

The basic block diagram of control in a closed system is depicted in Fig. 4.11.
Such a scheme of deviation control, in which a proportional-integral-derivative
(PID) regulator is applied, can serve to control the motion of the gyroscope. Values
of the torquesMb and Mc are assumed to be as follows:

Mb

Ibk˝2
D kbeb C hb

deb
dt

C hb1

Z t

0

eb.�/d�;

Mc

Ibk˝2
D kcec C hc

dec
dt

C hc1

Z t

0

ec.�/d�: (4.79)
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Fig. 4.11 Control scheme in a closed system

One mostly assumes kb D kc; hb D hc; hb1 D hc1 [22]. However, this is not the
most effective control method, which will be shown later in this chapter. The control
system should be examined with regard to stability (closed system).

The result of control system operation can be verified by means of a numerical
method (computer simulation). For this purpose, we write the linearized equations
of motion of gyroscope (4.53), provided that #g <<1, in the following form:

Igk˝
2# 00

g C �b˝#
0
g � Igong˝ 0

g D Mb;

Igk˝
2 00

g C �c˝ 
0
g C Igong˝#

0
g D Mc; (4.80)

or

 00
g C bc 

0
g C # 0

g D ccMc;

# 00
g C bb#

0
g �  0

g D cbMb; (4.81)

where

bb D �b

Igk˝
; bc D �c

Igk˝
; cb D 1

Igk˝2
; cc D 1

Igk˝2
:

Equations of motion of a gyroscope axis in tracking mode are as follows:

# 00
g C bb#

0
g �  0

g D Nkb.#gz � #g/C Nhb.# 0
gz � # 0

g/C Nhb1
Z �

0

Œ#gz.�1/� #g.�1/�d�1;

(4.82a)

 00
g C bc 

0
g C # 0

g D Nkc. gz �  g/C Nhc. 0
gz �  0

g/C Nhc1
Z �

0

Œ gz.�1/ �  g.�1/�d�1;
(4.82b)
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Fig. 4.12 Results of control of gyroscope axis with using PID regulator with small values of
damping coefficients at tracking of the fixed point: (a) change in control torques as a function
of time; (b, c) change in angular deviations as a function of time; (d) path of gyroscope axis

where

Nkb D kb

Igk˝2
; Nkc D kc

Igk˝2
; Nhb D hb

Igk˝2
; Nhc D hc

Igk˝2
:

As a first example, let us examine a procedure for taking a gyroscope axis
from the zero position, i.e., #g.0/D 0, P#g.0/D 0,  g.0/D 0, and P g.0/D 0, to the
position specified by the angles #g D#c0 and  g D c0.

Figure 4.12 presents the result of controlling with the use of only a PD-type
regulator (without the integrating element hb1 D hc1 D 0, kb D kc D �50, hb D
hc D �25).
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Fig. 4.13 Results of control of gyroscope axis using PID regulator with large values of damping
coefficients at tracking of fixed point: (a) change of the control torques as a function of time;
(b, c) change of angular deviations as a function of time; (d) path of gyroscope axis

The gyroscope axis makes large displacements, reaching the desired angles over
a relatively long time. Increasing values of the damping coefficients hb Dhc D �150
improve this result considerably (Fig. 4.13).

When one selects the regulator parameters .kb; kc; hb; hc; hb1 ; hc1/, one needs to
check what values the control momentsMb andMc should be given. In other words,
we need to check if these values are not too large to damage the gyroscope. These
moments (Fig. 4.12) take on values much larger than those in Fig. 4.13.

The results presented in Figs. 4.12 and 4.13 confirm that a differentiating term,
besides a proportional term, plays an important role in the control of a gyroscope
axis. The former decides whether regulation is to be realized, whereas the latter
increases the damping of system that have a great importance in control of
gyroscope. In what follows we will discuss this problem thoroughly. The second
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Fig. 4.14 Results of control of gyroscope axis with use of PID regulator with large values of
damping coefficients at tracking of movable point: (a) change of the control torques as a function
of time; (b, c) change of angular deviations as a function of time; (d) path of gyroscope axis

example covers the tracking of a movable point. The moving point in space is
observed from Earth by means of a telescope. The optical axis of the telescope
is not coincident with the line connecting this point with the telescope (i.e., the
so-called observation line of the target). The telescope objective is located in the
gyroscope axis. The problem of control relies on making the axis of the gyroscope
coincide with the observation line of the target. Consequently, tracking of the target
is performed. In the example, whose results are presented in Figs. 4.14–4.16, a
moving point (target) specifies the angles that are required signals according to the
following formulas:

#gz.�/ D #c0 C 0:2 � !c � �2;
 gz.�/ D  c0 C !c � �:
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Fig. 4.15 Results of control of gyroscope axis using PID regulator to track fixed point: (a) change
in control torques as a function of time, (b) change in angular deviations as a function of time

Fig. 4.16 Results of control of gyroscope axis using PID regulator to track movable point:
(a) change in angular deviations as a function of time, (b) path of gyroscope axis

In Fig. 4.14, a regulator without integrating elements leads to the relatively large
error �g of the target tracking. Applying a PID-type regulator with specific values
of the coefficients improves the tracking (Fig. 4.15).

A more advanced example of gyroscope usage would be a combined method
of control of the gyroscope motion. A fixed or movable point in space is to be
automatically detected and tracked by an optical system placed in the gyroscope
axis, as in the previous examples. The visual field of the objective (angle of view)
is defined. We have here two states of control of the gyroscope axis. In the first
state (seeking the target), the axis “draws” lines in space (e.g., spiral). When the
axis approaches the target, so that it is in the vicinity of the objective, a transition
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to the second control state occurs. This is a state of target tracking. The axis of the
gyroscope approaches the observation line of the target.

4.3.2 Program Control with Feedback

The investigation results mentioned in Sect. 4.1 show that controlling a gyroscope
in an open system is saddled with errors caused by the influence of non-linearities.
Despite the fact that friction forces in the frame bearings shorten the duration of the
transient process, a gyroscope must have those friction forces minimalized. This is
implied by the essential task of a gyroscope. Therefore, it is necessary to incorporate
a regulator into a gyroscope control system whose role is to minimize errors between
the preset and real motions.

In order to determine a program control algorithm with feedback, let us assume
that deviations

eb D #gz � #g; ec D  gz �  g (4.83)

change according to the following rules [18]:

eb D Cb1e
��b1 t C Cb2e

��b2 t ; (4.84a)

ec D Cc1e
��c1 t C Cc2e

��c2 t ; (4.84b)

which are equivalent to the differential equations

d2eb
dt2

C .�b1 C �b2/
deb
dt

C �b1�b2eb D 0; (4.85a)

d2ec
dt2

C .�c1 C �c2/
dec
dt

C �c1�c2ec D 0: (4.85b)

From (4.85) and (4.84) we have

d2#g
dt2

D d2#gz

dt2
� .�b1 C �b2/

deb
dt

� �b1�b2eb; (4.86a)

d2 g
dt2

cos2 #g D
	

d2 gz

dt2
� .�c1 C �c2/

dec
dt

� �c1�c2ec



cos2 #g: (4.86b)
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Substituting the preceding expressions into (4.48) and leaving terms up to the first
order of smallness with respect to the deviations eb and ec , one obtains the desired
control algorithm in a closed system:

Mb.t/ D M
p

b .t/C ub.t/; (4.87a)

Mc.t/ D Mp
c .t/C uc.t/: (4.87b)

The quantities Mb.t/ and Mc.t/ occurring in (4.87) are program controls of the
form

M
p

b .t/ DIgk d2#gz

dt2
C 1

2
Igk

�
d gz

dt

�2
sin 2#gz � Igong

d gz

dt
cos#gz C �b

d#gz

dt
;

(4.88a)

Mp
c .t/ D Igk

d2 gz

dt2
� Igk d gz

dt

d#gz

dt
sin 2#gz C Igong

d#gz

dt
cos#gz C �c

d gz

dt
:

(4.88b)

The quantities ub.t/ and uc.t/ are correcting controls of the following form:

ub.t/ D kb1 .t/ � eb C kc1.t/ � ec C hb1.t/ � deb
dt

C hc1 .t/ � dec
dt
; (4.89a)

uc.t/ D kb2 .t/ � eb C kc2.t/ � eb C hb2.t/ � deb
dt

C hc2.t/ � dec
dt
; (4.89b)

where

kb1 .t/ D 1

2

�
d gz

dt

�2
cos 2#gz C  gz

dt
sin#gz � �b1�b2 ;

kb2 .t/ D d gz

dt

d#gz

dt
cos 2#gz C #gz

dt
sin#gz;

kc1 .t/ D 0; kc2 .t/ D ��c1�c2 cos2 #gz;

hb1 .t/ D �.�b C �b1 C �b2/;

hb2 .t/ D �
�

d gz

dt
sin 2#gz � cos#gz

�
;

hc1 .t/ D
�

d gz

dt
sin 2#gz � cos#gz

�
;

hc2 .t/ D �
	
�c C .�c1 C �c2/ cos2 #gz � d gz

dt
sin 2#gz



:
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Fig. 4.17 Control scheme of a gyroscope in a closed system

In Fig. 4.17 one can see a functional scheme of the position control of the
gyroscope axis in a closed system.

The control algorithm depicted in Fig. 4.17 needs a pre-set change in time of
the coefficients of the regulator kb1 ; kb2 ; kc2 ; hb1 ; hb2 ; hc1 ; hc2 , which depend on the
required values of angular deviations of the gyroscope axis #gz,  gz and their first
and second derivatives with respect to time. However, one should note that for the

quantities #gz,  gz,
d#gz

dt , d gz

dt , d2#gz

dt 2 , d2 gz

dt 2 attaining small values we can assume,
with a sufficient accuracy from practical viewpoint, constant values of the regulator
coefficients, namely,

kb1 D ��b1�b2 ; kb2 D 0; kc1 D 0; kc2 D ��b1�b2 ;

hb1 D �
�
�b C �b1 C �b2

�
; hc1 D �Igong;

hb2 D Igong; hc2 D �
�
�c C �c1 C �c2

�
: (4.90)
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The quantities �b1 , �b2 , �c1 , �c2 in (4.90) are constants optimally selected with
respect to the minimum of the mean square error and stability of a gyroscope system,
which is discussed in the following sections.

4.4 Selection of Optimal Parameters of a Gyroscopic System
in Elastic Suspension

In this section, we consider how to select the optimal parameters of a gyroscope
whose axis is connected with the rotor by means of an elastic element [16, 18];
this can also be regarded as taking into account the deformability of the rotor
construction. It concerns a situation in which the selection of parameters at which
the dynamical effects emerging in the transient process will vanish in the shortest
time. However, during control of the gyroscope, a sufficient accuracy of the preset
position of the gyroscope axis in space can be ensured not just by the gyroscope’s
construction parameters due to various disturbances. That is why in order to
ensure the assumed accuracy of the gyroscope motion, one also needs to select the
optimal parameters of the automatic control system of the gyroscope motion. The
optimization of the whole gyroscopic system can minimize the dynamical effects.
The optimization of parameters is particularly important in the case of scanning of
the target coordinator of a self-guided missile or a system for detecting and tracking
a target in an unmanned FO (a more detailed discussion is carried out in Chap. 5).
In both cases, accuracy is required in the realization of the preset motion and
maintenance of the required direction by the gyroscope axis and the fastest damping
of transient processes generated from changes in the gyroscope axis motion.

We will consider separately a problem related to the selection of optimal
gyroscope parameters and of its automatic control parameters.

4.4.1 Selection of Optimal Parameters of a Gyroscope
in Elastic Suspension

The linearized equations of motion (technical theory) of a gyroscope in an elastic
suspension [derived from (4.31)–(4.35)] are presented in the following form:

I 0gk
d

dt

�
P#0g C q�

�
C �b P#0g � 


�
#g � #0g

�
D Mb; (4.91a)

I 0gk
d

dt

�
P 0g C r�

�
C �c P 0g � 


�
 g �  0g

�
D Mc; (4.91b)

Igk
d

dt

�
P#g C q�

�
C Igon

�
P g C r�

�
C 


�
#g � #0g

�
D Mzb; (4.91c)

Igk
d

dt

�
P g C r�

�
� Igon

�
P#g C q�

�
C 


�
 g �  0g

�
D Mzc: (4.91d)
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Let us apply to the preceding system a dimensionless time

� D ˝ � t; (4.92a)

where

˝ D Igo � ng
Igk C I 0gk

: (4.92b)

Introducing the independent variable � (4.92a) and making appropriate transfor-
mations, the linearized (4.91) take the following form [15]:

d2�g
d�2

D �g
d�g
d�

C �g
d 0g
d�

C bb
d#0g
d�

� �.
p C 
0/�g C NMzb � NMb � r�; (4.93a)

d2�g
d�2

D �g
d�g
d�

C �g
d#0g
d�

C bc
d 0g
d�

� �.
p C 
0/�g C NMzc � NMc C q�; (4.93b)

d2#0g
d�2

D �bb
d#0g
d�

C 
0�g C NMb � dq�

d�
; (4.93c)

d2 0g
d�2

D �bc
d 0g
d�

C 
0�g C NMc � dr�

d�
; (4.93d)

where

�g D #g � #0g; �g D  g �  0g; �g D I 0gk C Igk

Igk
; (4.94a)

bb D �b

I 0gk˝
; bc D �c

I 0gk˝
; 
0 D 


I 0gk˝
2
; 
p D 


I 0gk˝
2
; (4.94b)

NMb D Mb

I0gk˝
2
; NMc D Mc

I0gk˝
2
; NMzb D Mzb

Igk˝2
; NMzc D Mzc

Igk˝2
:

In order to determine stable and optimal parameters we introduce the following
designations:

x1 D �g; x2 D d�g
d�
; x3 D �g;

x4 D d�g
d�
; x5 D d#0g

d�
; x6 D d 0g

d�
: (4.95a)



4.4 Selection of Optimal Gyroscopic Parameters 189

Additionally, let us introduce the following quantities:

Nbb D hb C bb; Nbc D hc C bc; (4.95b)

where hb and hc denote the desired damping needed in the gyroscopic system.
System (4.93), taking into account (4.95), is as follows:

dxg
d�

D Agxg; (4.96)

where
xg D Œx1 x2 x3 x4 x5 x6�

T;

Ag D

2
66666664

0 1 0 0 0 0

�.
p C 
0/ 0 0 �g Nbb �g

0 0 0 1 0 0

0 ��g �.
p C 
0/ 0 ��g Nbc

0 0 0 0 � Nbb 0

0 0 
0 0 0 � Nbc

3
77777775
: (4.97)

According to the modified Golubientsev method [22, 25], let us introduce a new
variable defined as follows:

xg.�/ D yg.�/ � eı�

g .�/; (4.98)

where

ı�
g D 1

6
TrAg D �1

6
. Nbb C Nbc/: (4.99)

After some transformations we have

dyg
d�

D B�
gyg; (4.100)

where

B�
g D

2
66666664

�ı�
g 1 0 0 0 0

�.
p C 
0/ �ı�
g 0 �g Nbb �g

0 0 �ı�
g 1 0 0

0 ��g �.
p C 
0/ �ı�
g ��g Nbc


0 0 0 0 � Nbb � ı�
g 0

0 0 
0 0 0 � Nbc � ı�
g

3
77777775
:

(4.101)
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A characteristic equation of matrix B�
g , whose TrB�

g D 0, is transformed into a
characteristic polynomial of the form

�6g C b2�
4
g � b3�

3
g C b4�

2
g � b5�g C b6 D 0: (4.102)

For matrix B�
g we seek values 
0, 
p , Nbb, Nbc such that the characteristic (4.102)

could possess only imaginary or zero roots [25]. To this end, the coefficients of
the characteristic (4.102) b2; b3; b4; b5; b6 (coefficient b1 D TrB�

g D 0) must be
determined as sums over all possible combinations of leading-diagonal determinants
of degrees 2, 3, 4, 5, and 6 of matrix B�

g [(4.101)]. Introducing an additional
designation N
 D .
0 C 
p/, we obtain

b2 D � 15.ı�
g /
2 C 2.
0 C 
p/C �2g C Nbb Nbc > 0; (4.103)

b3 D 40.ı�
g /
2 C .2
p � 
0 C �2g � 2 Nbb Nbc/ı�

g D 0; (4.104)

b4 D � 45.ı�
g /
2 C 6.ı�

g /
2. Nbb Nbc � 
0 � 4
p � 2�2g/

C 2
p Nbb Nbc C . Nbb Nbc C 2
0/�
2
g C .
0 C 
p/

2 > 0; (4.105)

b5 D 24.ı�
g /
5 � 2.ı�

g /
3.2 Nbb Nbc � 5
0 � 14
p � 7�2g/

� 2ı�
g

	
Nbb Nbc.2
p C �2g/



C .
0 C 
p/ � .
0 � 2
p/� 
0�

2
g D 0; (4.106)

b6 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

�ı�
g 1 0 0 0 0

�N
 �ı�
g 0 �g Nbb �g

0 0 �ı�
g 1 0 0

0 ��g �N
 �ı�
g ��g bc


0 0 0 0 � Nbb � ı�
g 0

0 0 
0 0 0 � Nbc � ı�
g

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

> 0;

b6 D � 5.ı�
g /
6 C .ı�

g /
4. Nbb Nbc � 4
0 � 10
p � 5�2g/

C .ı�
g /
2

	
Nbb Nbc.2
p C �2g/� 4
0�

2 C .
0 C 
p/.
0 � 5
p/




C Nbb Nbc
p C 
20�
2
g > 0: (4.107)

Moreover, one needs to take into account a very important condition of absolute
maximization of the trace of matrix Ag defined by (4.97):

jTrAgj D j � . Nbb C Nbc/j D max: (4.108)
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From the preceding relationships (4.104) and (4.106) for b3 D 0 and b5 D 0 we
can determine


p D

	
288.ı�

g /
2 � 68 Nbb Nbc C 8�2g.ı

�
g /
2



.ı�
g /
2 � Nbb Nbc�2g C 4 Nb2b Nb2c

�36.ı�
g /
2 C 4 Nbb Nbc � �2g

; (4.109a)


0 D 20.ı�
g /
2 C �2g � 2 Nbb Nbc C 2
p: (4.109b)

From (4.94a) and (4.94b) we have

I 0gk

Igk
D 
p


0
; (4.110a)

�g D 
p


0
C 1; (4.110b)


 D 
p

Igk

�
ng

�g

�2
: (4.110c)

It follows from (4.110a) that a ratio of transversal moments of inertia of the axis
and rotor should equal the ratio of optimal parameters 
p and 
0 given in (4.109a)
and (4.109b). Formula (4.110c) shows that the coefficient of membrane stiffness 

is directly proportional to the square of the angular velocities of eigenrotations ng of
the gyroscope and inversely proportional to the moment of inertia of the rotor Igk.

Figure 4.18 depicts a scheme of an optimization procedure of linear system
parameters of arbitrary dimension. On the basis of the aforementioned scheme,
a Matlab Simulink program was created that determines the numerically optimal
parameters of the considered dynamical systems.

Figures 4.19 and 4.20 show the dynamical effects of a gyroscope on an elastic
suspension excited by the initial conditions. At these optimal parameters (Fig. 4.19)
vanishing of the transient process is considerably faster than at parameters that are
not optimally selected (Fig. 4.20).

4.4.2 Optimal Control of a Gyroscope in an Elastic Suspension

We will define the law of control of a gyroscope in an elastic suspension by means
of the method of linear-square optimization [24, 25] using a functional of the form

I D
Z 1

0

�
xT
gQgxg C uT

gRgug

�
dt: (4.111)
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Fig. 4.18 Scheme of optimization of linear system parameters

We will present this law in the following form [23, 24]:

ug D �Kgxg; (4.112)

where

ug D ŒUzb Uzc Ub Uc�
T;

xg D
	
#g

d#g
dt

 g
d g
dt

#0g
d#0g
dt

 0g
d 0g
dt


T

:
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Fig. 4.19 Damping of transient process of optimal gyroscopic system: (a) path of gyroscope axis
motion, (b) motion path of gyroscope axis

Fig. 4.20 Damping of transient process of non-optimal gyroscopic system: (a) motion path of
gyroscope rotor axis, (b) motion path of gyroscope axis

The coupling matrix Kg in (4.112) is determined from the following relationship:

Kg D R�1
g BT

gPg; (4.113)

where

BT
g D

2
664
0 cg 0 0 0 0 0 0

0 0 0 cg 0 0 0 0

0 0 0 0 0 cgo 0 0

0 0 0 0 0 0 0 cgo

3
775

T

;
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cg D 1

Igk˝2
; cgo D 1

I 0gk˝
2
:

Matrix Pg is a solution of the algebraic Riccati equation

AT
gPg C PgAg � 2PgBgR�1

g BT
gPg C Qg D 0; (4.114a)

where Ag is a state matrix of the form

Ag D

2
666666666664

0 1 0 0 0 0 0 0

�
p 0 0 �1 
p 0 0 0

0 0 0 1 0 0 0 0

0 1 �
p 0 0 0 
p 0

0 0 0 0 0 1 0 0


0 0 0 0 �
0 �bb 0 0

0 0 0 0 0 0 0 1

0 0 
0 0 0 0 �
0 �bc

3
777777777775

: (4.114b)

The weight matrices Rg and Qg in (4.113) and (4.114a), transformed into
diagonal forms, are selected experimentally, where the search is initiated from the
following values [22]:

qii D 1

2ximax

; ri i D 1

2uimax

; .i D 1; 2; : : : ; 8/; (4.115)

where ximax is the maximal range of change of the i th value of the state variable,
uimax is the maximal range of change of the i th value of the control variable.

Solving numerically the matrix Ricatti (4.114a) and determining the gain matrix
Kg, one can observe that for the analyzed case, particular elements of the matrix
satisfy the following relationships:

k11 D k23 D kz# ; k12 D k24 D hz# ; k13 D �k21 D kz ;

k14 D k22 D hz D 0; k15 D k27 D kz#0
; k16 D �k28 D hz#0

;

k17 D k25 D kz 0
; k18 D �k26 D hz 0

; k31 D k43 D k# ;

k32 D k44 D h# ; k33 D �k41 D k ; k34 D �k42 D h ;

k35 D k47 D k#0 ; k36 D k48 D h#0; k37 D �k45 D k 0 ;

k38 D k46 D h 0 D 0:
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It follows from the preceding relationships and (4.112) that the control torques
influencing the gyroscope will have the form

Uzb D �kz# #g � hz#

d#g
d�

C kz  g � kz#0
#0g C hz#0

d#0g
d�

� kz 0
 0g C hz 0

d 0g
d�

;

(4.116)

Uzc D �kz #g � hz#

d g
d�

� kz# g � kz 0
#0g � hz 0

d#0g
d�

� kz#0
 0g � hz#0

d 0g
d�

;

(4.117)

Ub D �k##g � h# d#g
d�

� k  g C h 
d g
d�

� k#0#
0
g � h#0

d#0g
d�

C k 0 
0
g;

(4.118)

Uc D �k #g � h 
d#g
d�

� k# g � h#
d g
d�

� k 0#
0
g � h#0

d 0g
d�

� k#0 0g:
(4.119)

Applying the preceding controls to the gyroscope described by (4.96), we obtain
a new gyroscopic system of the form

dxg
d�

D A�
gxg; (4.120)

where

A�
g D Ag � BgR�1

g BT
gPg:

System (4.120) can be optimized according to the algorithm depicted in Fig. 4.18.
The additional optimization by means of the modified Golubientsev method can be
carried out if the gyroscopic system (4.120) is to be applied in devices of target
detection and tracking systems [21]. This concerns the minimization of the transient
process duration at the moment of target detection, which holds great significance
for the maintenance of this target near the tracking system [22, 25].

A block diagram of the algorithm of a linear-square optimization, along with the
modified Golubientsev method of any control system, is presented in Fig. 4.21.

4.4.3 Results of Digital Investigations

The results of controlling a gyroscope suspended in an elastic suspension are
depicted in Figs. 4.22–4.26. A control problem depends on putting the gyroscope
axis in the pre-set motion, in which the gyroscope axis moves on a cone surface
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Fig. 4.21 Block diagram of complete system optimization
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Fig. 4.22 Gyroscope control in elastic suspension using PID regulator: (a) change in control
torques as a function of time, (b) path of gyroscope axis, (c), (d) change in preset and realized
angular deviations of gyroscope axis as a function of time

(Figs. 4.22–4.24) or on an Archimedes spiral (Figs. 4.25 and 4.26), and the rotor
axis plots n-flute rosette. For all of the cases the gyroscope parameters are the same
as in Sect. 4.2. Figures 4.22 and 4.23 present the behavior of a gyroscope with the
PID regulator applied, with non-optimal coefficients.

In Fig. 4.24 one can observe an essential improvement in realization of motion,
preset by the gyroscope after introduction of controls, selected on the basis of the
algorithm illustrated in Fig. 4.21. The efficiency of the optimal control is depicted
in Fig. 4.25, where, despite the action of the impulse of torque, the preset motion
is instantiated. We have a similar situation in the case of the effect of kinematic
excitations on gyroscope suspension in the form of harmonic vibrations.

We applied optimal gain coefficients of the control torques described by
relationships (4.117)–(4.120) with the following values:
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Fig. 4.23 Gyroscope control in elastic suspension using PID regulator: (a) preset and realized
path of gyroscope axis, (b) angular velocities of rotor axis of gyroscope in phase plane, (c) angular
velocities of gyroscope axis in phase plane

kz# D �0:0155; hz# D 73:67; kz D �0:355; hz D 0:00;

kz#0
D 0:477; hz#0

D 0:756; kz 0
D �0:471; hz D �0:0146;

k# D �0:128; h# D 3:549; k D �2:125; h D 0:0686;

k#0 D 12:574; h#0 D 20:898; k 0 D �2:633; h 0 D 0:00:
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Fig. 4.24 Gyroscope control in elastic suspension using optimal control torques: (a) change in
control torques as a function of time, (b) preset and realized path of gyroscope axis, (c) angular
velocities of rotor axis of gyroscope in phase plane, (d) angular velocities of gyroscope axis in
phase plane

4.5 Selection of Optimal Parameters of a Gyroscopic System
with an Axis Fixed to Rotor

4.5.1 Optimization of a Classic Controlled Gyroscope

The linearized model of a controlled gyroscopic system with an axis permanently
connected to a rotor is presented as follows

dxg
d�

D Agxg C Bgug; (4.121)
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Fig. 4.25 Gyroscope control in elastic suspension using optimal control torques under action of
impulse of pair of forces: (a) path of rotor axis of gyroscope, (b) angular velocities of rotor axis of
gyroscope in phase plane, (c) preset and realized path of gyroscope axis, (d) angular velocities of
gyroscope axis in phase plane

where

xg D
	
#g

d#g
d�

 g
d g
d�


T

; ug D Œub uc�
T;

Ag D

2
664
0 1 0 0

0 �bb 0 �1
0 0 0 1

0 1 0 �bc

3
775 ; Bg D

2
664
0 0

cb 0

0 0

0 cc

3
775 :
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Fig. 4.26 Controlling a gyroscope suspended in an elastic suspension using optimal control
torques under action of kinematic excitements of base: (a) path of rotor axis, (b) angular velocities
of rotor axis in phase plane, (c) preset and realized path of gyroscope axis, (d) angular velocities
of gyroscope axes in phase plane

In order to ensure that the controlled gyroscope governed by (4.121) has stability
and a shortest transient process, as in the preceding section, we will introduce an
optimal control of the form

ug D �Kgxg; (4.122)

where

Kg D
	
k11 k12 k13 k14

k21 k22 k23 k24



:
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Similarly to the case of the gyroscopic system in an elastic suspension described
by state matrix (4.114a), the particular elements of gain matrix Kg satisfy the
following relationships for the analyzed case:

k11 D k23 D Nkb;
k12 D k14 D k22 D k24 D Nhg;
k21 D �k13 D Nkc: (4.123)

Substituting the gain coefficients (4.123) into (4.122), the correcting controls take
the form

ub D � Nkb#g C Nkc g � Nhg d#g
d�

; (4.124a)

uc D � Nkc#g � Nkb g � Nhg d g
d�

; (4.124b)

where

Nkb D kb

Igk˝2
; Nkc D kc

Igk˝2
; Nhg D hg

Igk˝
: (4.125)

Thus, the gyroscopic system in the closed system (4.121), including (4.124), is
reduced to a new form:

dxg
d�

D A�
gxg; (4.126)

where

A�
g D

2
664

0 1 0 0

� Nkb � Nhg � bb Nkc 1

0 0 0 1

� Nkc �1 � Nkb � Nhg � bc

3
775 : (4.127)

Henceforth, we will assume that friction in the suspension bearings is negligible,
i.e., bb D bc D 0. For a gyroscopic system like this, we will seek two more
parameters and relations between them for which the duration of the transient
process damping is the shortest. In this case, we will also apply the modified
optimization method of Golubientsev, whose algorithm is presented in Fig. 4.18.

We obtain the following system of equations and inequalities from the stability
conditions of Hurwitz and modified Golubientsev optimization method [25]:

Nkb > 0; Nkc > 0; Nhg > 0; (4.128)

2 Nkb � 1

2
Nh2g C 1 > 0; (4.129)
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Fig. 4.27 Graph of mutually
optimal relations of damping
coefficient of regulator hg ,
angular velocity ng , and gain
factor kb

Fig. 4.28 Graph of mutual
optimal relationships of gain
coefficient of regulator kc ,
angular velocity ng , and gain
coefficient kb

Nkc D 1

2
Nhg; (4.130)

1

16
Nh4g C 1

4
Nh2g � 1

2
Nh2g Nkb � Nhg Nkc C Nk2b C Nk2c > 0: (4.131)

Taking into account the condition of maximization of absolute value of a trace of
matrix A�

g yields

jTrA�
g j ! max: (4.132)
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Fig. 4.29 Graph of optimal relationships of regulator coefficients (a) hg , (b) kc vs. angular
velocity ng at different gain coefficient kb

Fig. 4.30 Graph of mutual optimal relationships of damping coefficient of regulator hg , angular
velocity ng , and moment of inertia Igo

From (4.129) we obtain the following value of the damping coefficient:

Nhg D
q
2C 4 Nkb: (4.133)

Substituting (4.133) into (4.130) we obtain

Nkc D 1

2

q
2C 4 Nkb: (4.134)
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Fig. 4.31 Graph of mutual optimal relationships of gain coefficient of regulator kg , angular
velocity ng , and moment of inertia Igo

Taking into account (4.125) we have

hg D
q
2I 2gon

2
g C 4Igkkb; (4.135)

kc D 1

2

q
2I 2gon

2
g C 4Igkkb � I

2
gon

2
g

Igk
: (4.136)

Thus, the coefficients Nhg and Nkc are uniquely determined as functions of the
gyroscope parameters Igo, Igk, ng and the coefficient Nkb , which should satisfy
the stability conditions, and technical constraints resulting from the strength of the
gyroscope.

The obtained relationships can be used to gyroscope control under conditions of
alternating angular velocity of eigenrotations (e.g., in some self-guided missiles or
target-seeking systems with a wide range of angular deviations of the gyroscope
axis). Then one needs to measure simultaneously ng.t/ and update the values of the
regulator coefficients hg and kc according to the relationships (4.135) and (4.136).
The coefficient kb is given in a programmable way and it allows for adaptive control
of the gyroscope.

Figures 4.27–4.31 graphically present the character of the relationships between
particular gyroscope parameters. In order to obtain these relationships, one assumed
that

Igk D Igo=2:
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Fig. 4.32 Results of gyroscope axis control using optimal regulator during tracking of fixed point:
(a) change of control torques as a function of time, (b, c) change in angular deviations as a function
of time, (d) path of gyroscope axis

Thus, if the system of conditions (4.128)–(4.133) is satisfied, then the transient
process of the gyroscopic system (4.121) will be damped during the shortest time
[22]. Figures 4.32 and 4.33 present the results of gyroscope axis control upon
tracking of a movable and fixed target using an optimal regulator of the coefficients
determined from relationships (4.135) and (4.136).

In comparison with the results presented in Figs. 4.12–4.16 we can observe a
significant improvement in the control quality of the gyroscope axis, i.e., consider-
able reduction of the duration of the transient process.

A gyroscope is a strongly non-linear system, which implies that errors of the
preset and performed motion are generated at large values of angular velocities and
deviations of the gyroscope axis. Therefore, when we apply program control within
the non-linear range and under the influence of disturbance of gyroscope operation,
it should also apply additional optimal control in a closed system.
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Fig. 4.33 Results of gyroscope axis control using optimal regulator during tracking of moving
point: (a) change in control torques as a function of time, (b, c) change in angular deviations as a
function of time, (d) path of gyroscope axis
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Chapter 5
Gyroscopic Control in Self-Guidance Systems
of Flying Objects

In this chapter a gyroscopic control in self-guidance systems of flying objects (FOs)
is presented, and a gyroscopic control in an unmanned aerial vehicle is studied.
First, the navigational kinematics of an unmanned aerial vehicle (UAV) is analyzed,
and then the control of a gyroscope fixed on its board as well as its full control are
discussed. Furthermore, a gyroscope in a guided aerial bomb is studied. It includes
analysis of kinematics of a bomb self-guided motion to a ground target, equations
of motion of a guided bomb, and a description of a gyroscopic system designed for
bomb control including automatic pilot control.

5.1 Gyroscope in an Unmanned Aerial Vehicle

The functioning of a UAV at every stage of its operation is a complicated process
that requires a complex of technical tasks. The basis of this is the UAV control
system. In the course of a mission, there occurs, firstly, the measurement, evaluation,
and checking of flight parameters and technical systems, and, secondly, the appro-
priate control of the flight, system observation, and laser illumination conducted
according to the results of identification and checking of the aforementioned
parameters. Both the identification and checking, as well as the control, are realized
either directly by the operator or automatically.

A fundamental drawback of UAV functioning is the need to maintain two-
way communications (often continuously) with a ground control post, which
may disclose the post’s location, although a variety of means is used to hide
the communications. That is why in modern UAV systems autonomy during the
realisation of the task of seeking and tracking a ground target is of the utmost
importance. It is required that during a programmed flight of a UAV, there must be a
way to adjust or even completely change the flight path, depending on the situation,
for instance, after target detection.

Modern so-called precision weapons, such as missiles, rockets, and bombs
(MRBs), controlled by semiactive self-guidance to a target, find a wide range of
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and Mathematics 30, DOI 10.1007/978-1-4614-3978-3 5,
© Springer Science+Business Media, LLC 2012

209



210 5 Gyroscopic Control in Self-Guidance Systems of Flying Objects

applications. Semiactive methods of MRB path control require so-called target
illumination, which is realized by means of a radar beam or rays in the infrared band.
The latter are exploited ever more often because of their well-known advantages.

Target illumination is usually conducted from ground stations or from the
air, from airplanes and helicopters. This kind of target illumination has many
disadvantages. Illumination requires exposing a target. In the case of illumination
from ground stations, the target can be covered by natural obstacles. Moreover,
the station can be easily detected and destroyed by the enemy. With illumination
from the air, manned airplanes or helicopters are used. The need for illumination
for a limited amount of time exposes the aerial vehicles to possible danger. Those
drawbacks are largely mitigated if a small UAV is used for illumination. If produced
using “stealth” technology, given its small dimensions, it is less likely to be
detected and shot down. The control problem then becomes illuminating targets
with sufficient accuracy.

On the modern battlefield, light, small UAVs produced using stealth technology,
which makes them difficult to detect and shoot down, are used for the detection,
tracking, and laser illumination of ground targets. A further development of these
vehicles is the combat UAV, whose task is the autonomous detection and destruction
of targets. An example of this is the use of onboard homing missiles with infrared
sensors (trials have been made with a combat version of the Israeli Pioneer
[1, 2]. Another example is a UAV equipped with a warhead that can automatically
direct itself toward a target according to a defined guidance algorithm (e.g., the
American Lark [3]). In this research, a control algorithm for this kind of combat
UAV independently attacking detected targets (e.g., radar stations, combat vehicles,
tanks) or conducting illumination using a laser has been proposed (Fig. 5.1).

5.1.1 Navigation Kinematics of a UAV

Figure 5.2 schematically depicts the geometric relationships of the kinematics of
relative motion of particles S and C (mass centers of UAV and target) andG (point
of intersection of a target seeking and observation line—the TSOL—with Earth’s
surface).

Based on this and the following figures (Figs. 5.3 and 5.4), the equations of the
kinematics of motion of a UAV, TSOL, pointG, and a target are derived.

5.1.1.1 Kinematic Equations of UAV Motion

The relative position of axes of the Earth-fixed coordinate system Oox
0
oy

0
oz0

o

and the system associated with position vector Res (joining points Oo and S )
Ooxesyeszes is defined by two angles 's� and 's� .
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Fig. 5.1 Overall view of process of mission realization by a combat UAV

Fig. 5.2 Kinematics of a combat UAV guidance to a moving target

The relative angular positions of the axes of the coordinate systems are defined
by direction cosines given in the form of tables or matrices. We obtain the following
tables of direction cosines (transformation matrices).
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Fig. 5.3 Kinematics of UAV motion

Fig. 5.4 Kinematics of TSOL line motion
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The matrix of transformation from the stationary Earth-fixed coordinate system
Oox

0
oy

0
oz0

o to the instantaneous coordinate system Oox�y�z� (after the first
rotation about the axis Oozo) is as follows:

The matrix of transformation from the system Oox�y�z� to the system
Ooxesyeszes (after the second rotation about the instantaneous axis of rotation
Ooy�/ is

The matrix of transformation from the Earth-fixed coordinate system Ooxoyozo
to the system Ooxesyeszes is as follows:

M�� D M� �M� D

2
64

cos's� cos's� cos's� sin 's� � sin 's�
� sin's� cos's� 0

sin 's� cos's� sin 's� sin 's� cos's�

3
75: (5.1)

Proceeding in an analogous way we obtain the matrix of transformation from the
Earth-fixed coordinate system Ooxoyozo to the system associated with the velocity
vector of the UAV Sxsyszs , i.e.,

Ms
�� D

2
4cos �s cos�s cos �s sin�� � sin �s

� sin�s cos�s 0

sin �s cos�s sin �s sin�s cos �s

3
5: (5.2)

The time derivative of vector Res is equal to the vector of flight velocity Vs of
the UAV, namely,

dRes

dt
D Vs: (5.3)



214 5 Gyroscopic Control in Self-Guidance Systems of Flying Objects

Let us project the preceding vector equation onto the axes of the coordinate
system Ooxesyeszes :

dRes

dt
D ies

dRes
dt

C!es 
 Res D ies
dRes

dt
C
ˇ̌
ˇ̌
ˇ̌

ies jes kes
!xes !yes !zes

Res 0 0

ˇ̌
ˇ̌
ˇ̌

D ies
dRes

dt
C jesRes!zes � kesRes!yes : (5.4)

Vector !es in (5.4) is the vector of angular velocity of vector Res , and it can be
represented in the form of the following sum of vectors:

!es D P's� C P's� : (5.5)

The projections are determined by means of matrix (5.1), and we obtain

2
4!xes!xes
!xes

3
5 D M��

2
4 00

P's�

3
5C

2
4 0P's�
0

3
5: (5.6)

Hence

!xes D � P's� sin 's� ;

!yes D � P's� ;
!zes D � P's� cos's� ; (5.7)

and by virtue of (5.4) we obtain

�
dRes

dt

�
xes

D dRes
dt

;

�
dRes

dt

�
yes

D Res P's� cos's� ;

�
dRes

dt

�
zes

D �Res P's� :
(5.8)

Similarly, projecting velocity vector Vs onto the axes Ooxesyeszes we obtain
2
4VsxesVsyes
Vszes

3
5 D M�� �M T

��

2
4Vs0
0

3
5;

or equivalently

Vsxes D Vs

h
cos

�
's� � �s

�
cos's� cos �s C sin's� sin �s

i
;

Vsyes D �Vs sin
�
's� � �s

�
cos �s;

Vszes D Vs

h
cos

�
's� � �s

�
sin's� cos �s � cos's� sin �s

i
: (5.9)
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Projections of the left- and right-hand sides of (5.3) onto axes of the system
Ooxesyeszes give the following system of equations:

dRes
dt

D Vs

h
cos

�
's� � �s

�
cos's� cos �s C sin 's� sin �s

i
; (5.10a)

d's�
dt
Res cos's� D �Vs sin

�
's� � �s

�
cos �s; (5.10b)

d's�
dt
Res D Vs

h
cos

�
's� � �s

�
sin 's� cos �s � cos's� sin �s

i
: (5.10c)

The preceding equations represent the motion of point S (mass center of a UAV)
with respect to the stationary point Oo (the origin of the Earth-fixed coordinate
system). The path of motion of the UAV in the Earth-fixed coordinate system is
described by the following equations:

xsx0 D Res cos's� cos's�;

ysx0 D Res cos's� sin 's�;

zsz0 D �Res sin 's� : (5.11)

5.1.1.2 Equations of Motion of the Target Seeking and Observation Line
(TSOL)

Proceeding in an analogous way to the case of the kinematic equations of motion of
a UAV we obtain the following equations: of motion of the TSOL:

d�N
dt

D ˘.t0; tw/ � .Vsxn � Vgxn/C Œ˘.tw; ts/

C˘.ts; tk/� � .Vsxn � Vcxn/; (5.12)

� d�n
dt
�N cos �n D ˘.t0; tw/ � .Vsyn � Vgyn/

CŒ˘.tw; ts/C˘.ts; tk/� � .Vsyn � Vcyn/; (5.13)

d�n
dt
�N D ˘.t0; tw/ � .Vszn � Vgzn/

CŒ˘.tw; ts/C˘.ts; tk/� � .Vszn � Vczn/: (5.14)

Equations (5.12)–(5.14) are distributive equations with respect to the functions of a
square impulse ˘.�/. Thus, they offer way to describe the changes in motion of the
TSOL in its various phases.
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The components of velocity vectors VS , VG , and VC in the relative coordinate
system Sxnynzn are as follows:

Vsxn D Vs Œcos.�n � �s/ cos �n cos �s � sin �n sin �s� ; (5.15a)

Vsyn D �Vs sin.�n � �s/ cos �s; (5.15b)

Vszn D Vs Œcos.�n � �s/ sin �n cos �s � cos �n sin �s� ; (5.15c)

Vgxn D Vg
�
cos.�n � �g/ cos �n cos �g � sin �n sin �g

�
; (5.16a)

Vgyn D �Vg sin.�n � �g/ cos �g; (5.16b)

Vgzn D Vg
�
cos.�n � �g/ sin �n cos �g � cos �n sin �g

�
; (5.16c)

Vcxn D Vc Œcos.�n � �c/ cos �n cos �c � sin �n sin �c� ; (5.17a)

Vcyn D �Vc sin.�n � �c/ cos �c; (5.17b)

Vczn D Vc Œcos.�n � �c/ sin �n cos �c � cos �n sin �c� : (5.17c)

5.1.1.3 Path of Motion of Point G

This motion is governed by the following equations (Fig. 5.5):

dReg
dt

D ˘.t0; tw/Vg cos
�
'g � �g

�
;

d'g
dt

D ˘.t0; tw/Vg sin
�
'g � �g

�
; (5.18a)

xgx0 D Reg cos'g;

ygy0 D Reg sin 'g: (5.18b)

5.1.1.4 Kinematics of Motion of a Target

Proceeding in an analogous way to the case of the derivation of kinematic equations
of motion of a UAV and using Fig. 5.4, we obtain the following equations of motion
of a target (Fig. 5.6):

dRec
dt

D Vc

h
cos

�
'c� � �c

�
cos'c� cos �c C sin'c� sin �c

i
; (5.19a)



5.1 Gyroscope in an Unmanned Aerial Vehicle 217

Fig. 5.5 Kinematics of motion of the point G

Fig. 5.6 Kinematics of target motion

d'c�
dt
Rec cos'c� D �Vc sin

�
'c� � �s

�
cos �c; (5.19b)

d'c�
dt
Rec D Vc

h
cos

�
'c� � �c

�
sin'c� cos �c � cos'c� sin �c

i
: (5.19c)

A path of target motion in an Earth-fixed coordinate system is described by the
equations

xcx0 D Rec cos'c� cos'c�;
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ysx0 D Rec cos'c� sin'c�;

zsz0 D �Rec sin'c� : (5.20)

Determining desired angles of flight of a UAV

The angles of flight �s and �s of a UAV seeking and attacking a detected target
are determined from the following relationships:

��
s D ˘ .to; tw/ � �ps C˘ .tw; tk/ � �ns ; (5.21)

��
s D ˘ .to; tw/ � �ps C˘ .tw; tk/ � �ns : (5.22)

The functions of square impulse ˘.�/ offer a method for describing the changes
in angles of UAV flight in various phases.

In turn, the angles of flight of the UAV �s and �s during seeking, the transition
to a tracking phase, and laser illumination of a detected target are as follows:

��
s D ˘ .to; tw/ � �ps C˘ .tw; ts/ � �ts C˘ .ts; tk/ � �os ; (5.23)

��
s D ˘ .to; tw/ � �ps C˘ .tw; ts/ � �ts C˘ .ts; tk/ � �os : (5.24)

The quantities �ps and �ps denote the programmed angles of flight of a UAV
while patrolling the Earth’s surface (target seeking), and they are the prescribed
time functions

�ps D �ps .t/ ; �ps D �ps .t/ : (5.25)

Before determining a UAV’s flight angles �os and �os for the case of tracking and
simultaneous laser illumination of a detected target, let us introduce the following
assumptions [4–6].

For the sake of simplification of calculation, let us assume that UAV motion, both
during penetration and tracking, takes place in a horizontal plane at a given altitude
HS , whereas the target and pointG move in the Earth’s plane. Then we can assume
that

�os D 0; �c D 0; �g D 0: (5.26)

Let us additionally introduce, for the convenience of notation, the following
symbol:

rN D �N cos �n (5.27)

and calculate the time derivative of this expression:

drN
dt

D d�N
dt

cos �n � �N
d�n
dt

sin �n: (5.28)

Taking into account (5.26)–(5.28), we can limit our further calculations to plane
motion in the horizontal plane and represent (5.12)–(5.14), after the substitution of
(5.26)–(5.28), in the following form:
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drN
dt

D ˘.t0; tw/
�
Vs cos

�
�n � �ps

� � Vg cos
�
�n � �g

��

C˘.tw; ts/
�
Vs cos

�
�n � �ts

� � Vc cos .�n � �c/
�

C˘.ts; tk/
�
Vs cos

�
�n � �ss

� � Vc cos .�n � �c/
�
; (5.29)

d�n
dt

D ˘.t0; tw/
Vs sin

�
�n � �g

� � Vg sin
�
�n � �

p
s

�
rN

C˘.tw; ts/ � Vs sin .�n � �c/ � Vc sin
�
�n � �ts

�
rN

C˘.ts; tk/
Vs sin .�n � �c/� Vc sin

�
�n � �ss

�
rN

: (5.30)

Let us require that at the instant of target detection the UAV must automatically
commence transition to a target tracking flight, which relies on the movement of an
aerial vehicle at the constant prescribed distance from the target rN0 D �N0 cos �n D
const (in the horizontal plane at the constant altitude Hs).

Until the relative distance rN of points S and C is equal to rN0, the program of
change of yaw angle �s D �ts and �s D �ts are determined from the relationship [7]

d�ts
dt

D a� � sign
�
rN0 � rN

� d�n
dt
; � ts D 0; (5.31)

which results in steering of the UAV so as to approach or depart from the target
(depending on the sign of the function sign.rN0 � rN /), according to the so-
called proportional navigation method [8–10]. Upon satisfaction of the condition
rN0 D rN , the program of change of the angle �os is determined from (5.30), which
is transformed into

Vs cos
�
�n � �os

� D Vc cos .�n � �c/ : (5.32)

Hence, the flight angles of the UAV during laser illumination of the detected
target �os and �os , on the assumption that the UAV moves in the horizontal plane at a
constant altitude Hs, will be determined from the relationships

�os D �n � arccos

	
Vc

Vs
cos.�n � �c/



; �os D 0: (5.33)

The flight angles of the UAV while attacking a detected target �ns and �ns will
be determined from the relationships describing the proportional navigation method
[7, 11]:

d�ns
dt

D a�
d�n
dt
; (5.34)
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d�ns
dt

D a�
d�n
dt
: (5.35)

The angles ��
s and ��

s define the prescribed position of the velocity vector of a
missile in space. The difference between the prescribed and actual angular positions
of the velocity vector of a UAV is an error, also known as a discrepancy parameter,
for a system of automatic control in autopilot. Based on the value and direction of
the error, a control signal is elaborated, and after the appropriate transformation, it
is transferred to an actuator for displacing control surfaces in a transverse channel
and a longitudinal channel by the determined values of the angles.

5.1.2 Control of an Axis of a Gyroscope on Board
a Combat UAV

It follows from the previous sections that during seeking of a ground target
from on-board a UAV, a gyroscope axis should perform required movements, and
consequently, because it is being directed downward, it should draw strictly defined
lines on the Earth’s surface. In this way, the optical system installed in the gyroscope
axis, with its angle of view, may encounter a visible light or infrared radiation
emitted by a moving apparatus. Thus, the kinematic parameters of relative motion
of the gyroscope axis and the UAV board should be selected so that the target
can be detected with the highest possible probability. After location of the target
(upon reception of the signal by an infrared detector) the gyroscope transitions to a
tracking state, that is, from that moment on its axis assumes the specific position in
space so as to be directed toward its target.

Control moments Mb, Mc acting on the gyroscope located on board the UAV,
will be represented in the following way:

Mb D ˘.to; tw/ �Mp

b .t/C˘.ts; tk/ �Ms
b ; (5.36)

Mc D ˘.to; tw/ �Mp
c .t/C˘.ts; tk/ �Ms

c : (5.37)

The programmed control momentsMp

b .t/ andMp
c .t/ set the gyroscope axis into

the required motion and are determined by means of a method for solving the inverse
dynamics problem [12, 13]:

M
p

b .�/ D ˘ .�0; �w/ �
"

d2#gz

d�2
C bb

d#gz

d�
� 1

2

�
d gz

d�

�2
sin 2#gzC

�d gz

d�
cos#gz

#
� 1
cb
; (5.38)
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Mp
c .�/ D ˘ .�0; �w/ �

"
d2 gz

d�2
cos2#pgz C bc

d gz

d�
C d gz

d�

d#gz

d�
sin 2#gz

Cd#gz

d�
cos#gz

#
� 1
cc
; (5.39)

where � D t �˝ , ˝ D Jgong
Jgk

, cb D cc D 1
Jgk˝2 .

The time instant when the target enters a field of view of objective TSOL is
equivalent to the following relationship:

j�rj D ˇ̌
rc � rg

ˇ̌ 	 �rzad ; (5.40)

where �rzad is the prescribed radius of a circle of view of objective TSOL, the
control of a gyroscope passes to a tracking state.

If we denote the angular error between the actual angles #g and  g and the
required angles #gz and  gz by

e# D #g � #gz; (5.41a)

e D  g �  gz; (5.41b)

then the control moments of a gyroscope at tracking have the following form:

Ms
b .�/ D ˘ .�s; �k/ �

�
Nkb � e# � Nkc � e C Nhg de#

d�

�
; (5.42)

Ms
c .�/ D ˘ .�s; �k/ �

�
Nkb � e C Nkc � e# C Nhg de 

d�

�
; (5.43)

where Nkb D kb
Jgk˝2 , Nkc D kc

Jgk˝2 , Nhg D hg
Jgk˝

. The coefficients kb , kc , and hg are

selected in an optimal way using the algorithm presented in [5].
The prescribed angles #gz and  gz and their first and second time derivatives

occurring in the control laws (5.38), (5.39), (5.42), and (5.43) are determined as
presented in [5,9]. If a prismatic scanning device is applied in UWSLOC, the control
momentsMb , Mc acting on a gyroscope are as follows:

Mb D ˘.to; tw/ �Mp

b .t/C˘.tw; tz/ �Mt
b.t/C˘.ts; tk/ �Ms

b ; (5.44a)

Mc D ˘.to; tw/ �Mp
c .t/C˘.tw; tz/ �Mt

c .t/C˘.ts; tk/ �Ms
c : (5.44b)

The additional (as compared to (5.36) and (5.37)) quantities Mt
b and Mt

c that
occur in the preceding equations denote the programmed control moments whose
task is to move the axis along the shortest path onto the target observation line—the
TOL (the line joining points S and C—Fig. 5.4).
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Since the moment when the target enters the field of view of a scanning device—
the controls of the gyroscope transits to a state where it moves the axis onto the
TOL

j���j D ˇ̌
��

z � ��
w

ˇ̌ 	 ��zad ; (5.45)

where��zad is the prescribed width of a ring of view of a scanning device.
In order to the determine of the control moments Mt

b and Mt
c that move the

gyroscope axis onto the TOL, one should apply the control algorithm described in
[10]. Thus, it is necessary to change the moments of forces controlling a gyroscope.
It is most convenient at first to require that from the given initial position following
detection of the target #w

gz and  w
gz the gyroscope axis should be led to the position

#�
gz and  �

gz by means ofMt
b D const andMt

c D const. Thus, we control gyroscope
axes in two stages:

1. We act with constant moments Mt
b D const and Mt

c D const and after reaching
#g D #�

gz and  g D  �
gz we proceed to the second stage.

2. We act with momentsMs
b , Ms

c .

Assuming that the target moves at a relatively low speed, that is, R#w
zo � 0,

P#w
gz � 0, R w

gz � 0, P w
gz � 0, we obtain the following relationships:

#g .t/ � #w
gz C ˝

�
�cM

t
b CMt

c

�
Jgk!2go

t ; (5.46a)

 g .t/ �  w
gz C ˝

�
�bM

t
c �Mt

b

�
Jgk!2go

t; (5.46b)

where !2go D .1C �b�c/ �˝2.
The time during which the gyroscope axis is transits from the position #w

gz, 
w
gz to

the position #�
gz,  

�
gz is equal to the time of maximum prism intensitivity T �

w . Then,
from the preceding equations we obtain

#w
gz C ˝

�
�cM

t
b CMt

c

�
Jgk!2go

T �
w D #�

gz; (5.47a)

 w
gz C ˝

�
�bM

t
c �Mt

b

�
Jgk!2go

T �
w D  �

gz: (5.47b)

This is a system of two equations with two unknowns Mt
b and Mt

c . Hence we
obtain

Mt
b D �

��
 �
gz �  w

gz

�
�
�
#�
gz � #w

gz

�
�b

�
Jgong

T �
w

; (5.48a)
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Mt
c D

��
 �
gz �  w

gz

�
�c C

�
#�
gz � #w

gz

��
Jgong

T �
w

: (5.48b)

Eventually, for the realization of the gyroscope axis motion intended to obtain
alignment with the TOL we apply the following algorithm:

1. For tw 	 t < T �
w we control with the momentsMb D Mt

b and Mc D Mt
c .

2. For T �
w � t � tk we control with the momentsMb D Ms

b andMc D Ms
c .

If in this case we denote the angular errors between the actual angles #g and  g
and the required angles #�

gz and  �
gz by

e# D #g � #�
gz; e D  g �  �

gz; (5.49)

then we write the control moments of the gyroscope at tracking in the form of a law
described by (5.42) and (5.43).

The presented mathematical model of the operation of a scanning device installed
on board a UAV allows us to conduct numerical investigations of seeking, locating,
and tracking of a mobile target (a ground or water one) emitting the infrared
radiation.

5.1.3 Control of UAV Motion

The control of UAV motion takes place by means of displacement of control surfaces
of ailerons, a rudder, and an elevator respectively by angles ıl , ım, and ın.

The realization of a required flight path of the UAV is effected by an automatic
pilot (AP), which elaborates control signals for the actuating system of the control
based on the derived relationships (5.21)–(5.24).

The control law for the autopilot, including the dynamics of displacement of the
rudder and elevator, is described in the following way:

d2ım
dt2

C hms
dım
dt

C kmsım D km
�
�s � ��

s

�C hm

�
d�s
dt

� d��
s

dt

�
C bm � um; (5.50)

d2ın
dt2

C hns
dın
dt

C knsın D kn
�
�s � ��

s

�C hm

�
d�s
dt

� d��
s

dt

�
C bn � un: (5.51)

Quantities um and un occurring in the preceding equations denote stabilizing
controls elaborated by the automatic control system AP. The rule for the elaboration
of the stabilizing controls is presented in [14].

In the course of a mission, a light UAV can be affected by various kinds of
disturbances such as wind blasts, vertical ascending and descending motions of
air masses, or shockwaves from missiles exploding in the vicinity. At the instant
when the target is detected, the UAV automatically transits from its flight along
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the programmed trajectory to a flight tracking the target according to the assumed
algorithm, in the considered case, maintaining a constant distance from the target.
In this way the best conditions are ensured for maintaining the target in the field
of view of the objective of a tracking system. A rapid switching of the control
system (from one flight stage to the other) can be the cause of disturbance effects
of UAV motion dynamics. In turn, the dynamic effects that are the result of the
aforementioned disturbances and control switching produce changes in the flight
state and the aerodynamic characteristics of the airplane. The time history of
maneuvers necessary for the realization of the posed task indicates the existence of
distinctly non-linear characteristics of the controlled apparatus [5,6,14]. Therefore,
for a UAV one should apply the autopilot such that it would be able to provide
the assumed accuracy of realization of the programmed and tracking flight while
simultaneously ensuring its stability.

5.1.4 Final Remarks

The presented model of navigation and control of a UAV describes the fully
autonomous motion of a combat apparatus whose task is not only the detection and
identification of a ground target but also its laser illumination or direct attack. The
intervention of an operator in the UAV steering can be reduced only to cases where
the apparatus is completely diverted off the prescribed course or the target is lost
from the field of view of the tracking system’s objective (due to wind, missiles, etc.).
Thus, there should be a way to automatically send information about such events,
and the operator should have the option of taking over the UAV flight control. In
further research, both theoretically computational and simulative-experimental, it
would be recommended to

(a) Determine the optimal program of a UAV flight.
(b) Elaborate an algorithm for scanning the Earth’s surface to provide the quickest

detection of targets.
(c) Elaborate a program of time-minimum transition of a UAV from programmed

flight to target tracking flight or to self-guidance to a detected target according
to the prescribed algorithm.

5.2 Gyroscope in a Guided Aerial Bomb

One characteristic of a bomb attack is that the target is most often known in the form
of an image. Even if it emits electromagnetic waves or infrared radiation, the waves
or radiation would possess such a small intensity as to be virtually useless. Thus,
the target of a bomb attack should be satisfactorily illuminated. Current solutions
of guided bombs can be divided into three main groups: bombs requiring marking
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of the target by illumination using a laser beam emitted from a separate device,
bombs having their own target illumination system, and bombs guided to targets
with the aid of a navigation satellite system like a GPS. Within all those groups a
fundamental problem is the reliable and accurate guidance of the bomb to the target
along an optimal trajectory with respect to time and curvature and at the appropriate
angle. A device that is capable of satisfying these requirements would likely be a
controlled gyroscope whose axis was a target observation line for a bomb’s self-
guidance system. It should be emphasized that a gyroscope is not vulnerable to
disturbances, and in emergency situations it can replace a GPS system.

Just before a bomb drops from a carrier, the axis of a controlled gyroscope is
being directed to the target. From that moment on it represents a target observation
line (TOL) that for the bomb’s autopilot is the reference for realization of the
assumed guidance algorithm (Fig. 5.1). The controlled gyroscope can also be
applied in a bomb’s television-based guidance system to a ground target. An image
of the target’s surroundings is transmitted telemetrically or by means of a cable with
a bundle of optical fibers to a display being viewed by the operator. With the aid of
the display the operator indicates the attack target, that is, he or she appropriately
directs the gyroscope axis. From that point the bomb can be steered automatically
according to a preset guidance algorithm.

An example of a classic gyroscope suspended on a Cardan joint is the operational
unit of a TOL’s position control in a target coordinator of a self-guided aerial
bomb. Along the gyroscope axis there is installed an optical system of a target-
seeking and tracking head. Thus, the accuracy of guidance depends largely on the
gyroscope correction system whose task is the minimization of the error between
the prescribed motion determined on the fly by the image analysis system and the
actual motion. Gyroscope errors are caused mainly by the existence of friction in
suspension bearings and non-coincidence of the mass center of the gyroscope’s rotor
with the point of intersection of suspension frames. For this reason the gyroscope
reacts to the kinematic excitation of the base on which it is mounted, that is, to
angular motions and changes in the linear velocity of an aerial bomb.

Particularly large changes in the flight parameters of a bomb take place in the
initial stage of the guidance process, that is, after the bomb is detached from the
carrier and the bomb’s native control system is activated. The TOL according to
which the bomb guides itself to the target is then determined improperly. With
the appearance of excessive deviations of the gyroscope axis from the prescribed
orientation, the target’s image may be lost from the field of view.

Therefore, a correction system and the parameters of the gyroscope itself should
be selected in an optimal way so as to minimize the influence of vibrations of the
base (the board of an aerial bomb) on the accuracy of orientation of the gyroscope
axis. In this study it was achieved using linear-quadratic regulation (optimization)
LQR [15–17].

It is assumed that FO moves ideally along a computed path determined on the
basis of the motion of the gyroscope axis. The gyroscope axis, in turn, is controlled
in such a way as to obtain its coincidence with the TOL during the self-guidance
process.
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5.2.1 Kinematics of a Bomb’s Self-Guided Motion to a Ground
Target

Let us write the equations of motion of a TOL as follows:

drb
dt

D Vc Œcos ." � �c/ cos � cos�c C sin � sin�c�

�Vb Œcos ." � �b/ cos� cos�b C sin � sin�b� ; (5.52a)

d�

dt
D Vb Œcos ." � �b/ sin � cos�b � cos� sin�b�

rb

C�Vc Œcos ." � �c/ sin � cos�c � cos� sin�c�

rb
; (5.52b)

d"

dt
D Vb sin ." � �b/ cos�b � Vc sin ." � �c/ cos�c

rb cos�
; (5.52c)

where rb is the relative distance of the bomb from the target; � and � are the yaw
angle and pitch angle of the TOL, respectively; Vb and Vc are the velocities of
motion of the bomb and the target, respectively; �b and �b are the bomb’s angles of
flight; and �c and �c are the angles of flight of the target.

Let us apply a proportional navigation method [6,7] to the guidance of the bomb
to the target:

d�b
dt

D a�
d�

dt
; (5.53)

where a� , a� are the constant coefficients of the proportional navigation.
The initial conditions of a bomb’s self-guidance are as follows (Fig. 5.7):

ro D
q
.xbo � xco/

2 C .ybo � yco/
2 C .zbo � zco/

2; (5.54a)

�o D arcsin
yco � ybo

ro
; (5.54b)

"o D arctan
zbo � zco
xc � xb : (5.54c)

Let us consider the possibilities for the self-guidance of a bomb such that the
attack on the target at the final stage occurs at prescribed angles to the level. Let
us additionally assume that the guidance process takes place in the vertical plane.
Equations (5.52a) and (5.53) simplify, then, to the form

dr

dt
D Vc cos ." � �c/� Vs cos ." � �b/ ; (5.55a)
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Fig. 5.7 Kinematics of self-guidance of a bomb aimed at a ground target

d"

dt
D Vb sin ." � �b/� Vc sin ." � �c/

r
; (5.55b)

d�b
dt

D a"
d"

dt
: (5.55c)

Let us move on to the analysis of the kinematics of the self-guidance of a bomb
for three special cases of target attack: (1) at an angle of 0ı (Fig. 5.8), (2) at an angle
of 90ı (Fig. 5.9), (3) at an angle of 180ı (Fig. 5.10).

Case 1. The attack on a stationary target from a forward hemisphere at an angle
of 0ı.

Figure 5.8 depicts a possible way to attack a target in the considered case. For
this and the two remaining cases, equations of kinematics of motion of a self-guided
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Fig. 5.8 Overall view of self-guidance of a bomb attacking a target at an angle of 0ı

Fig. 5.9 Overall view of self-guidance of a bomb attacking a target at an angle of 90ı

bomb will be represented in the following way:

drz

dt
D Vc cos ."z � �c/� Vb cos ."z � �b/ ; (5.56a)



5.2 Gyroscope in a Guided Aerial Bomb 229

Fig. 5.10 Overall view of self-guidance of a bomb attacking a target at an angle of 180ı

d"z

dt
D Vb sin ."z � �b/� Vb sin ."b � �c/

rz
; (5.56b)

d�b
dt

D a�
d"�

dt
: (5.56c)

According to Fig. 5.11, in which the trigonometric relationships of a bomb’s
motion are shown, we have

"� D "z C 
; 
 D arcsin
ro

rz
;

"z D arctan
zc � zb C ro

xc � xb
; rz D

q
.zb � zc � ro/2 C .xc � xb/

2;

hence

d"�

dt
D d"z

dt
� rop

r2z � r2o rz

drz

dt
; (5.57)

where ro is the prescribed radius of the circle on whose arc (SC) the bomb moves at
the final stage of the flight; rZ is the distance from pointB (mass center of bomb) to
the center of the circle that passes through point C (a selected point on the target);

 is the angle between segments BO1 and BS ; and �z is the “angle of observation”
of pointO1.

Case 2. Attacking a stationary target from a forward hemisphere at an angle of 90ı.
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Fig. 5.11 Kinematic schematic of self-guidance of a bomb attacking a target at an angle of 0ı

Fig. 5.12 Kinematic schematic of self-guidance of a bomb attacking a target at an angle of 90ı
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Fig. 5.13 Kinematic schematic of self-guidance of a bomb attacking a target at an angle of 180ı

According to Fig. 5.12 we have

"� D "z � 
; 
 D arcsin
ro

rz
;

"z D arctan
zc � zb

xc � xb � ro ; rz D
q
.zb � zc/

2 C .xc � xb � ro/2;

hence

d"�

dt
D d"z

dt
C rop

r2z � r2o rz

drz

dt
: (5.58)

Case 3. Attack on a stationary target from a backward hemisphere at an angle of
180ı.

According to Fig. 5.13, we have

"� D "z � 
; 
 D arcsin
ro

rz
;

"z D arctan
zc � zb C ro

xc � xb
; rz D

q
.zb � zc � ro/2 C .xc � xb/

2;

hence

d"�

dt
D d"z

dt
C rop

r2z � r2o rz

drz

dt
: (5.59)
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In all the cases considered previously, at the instant when the bomb reaches point
S , that is, at a distance from the target of rz D ro, it starts moving on a circle of
radius ro D const, and (5.55a) takes the form

Vc cos ."z � �c/� Vb cos ."z � �b/ D 0: (5.60)

Hence

�b D "z � arccos

	
Vc

Vb
cos ."z � �c/



: (5.61)

In turn, (5.56b) and (5.56c) have the following form:

d"z

dt
D
Vb sin

n
arccos

h
Vc
Vb

cos ."z � �c/
io

� Vc sin ."z � �c/
ro

; (5.62a)

d�b
dt

D d"z

dt
C

Vc
Vb

h
. P�c � P"z/ sin ."z � �c/C

� PVc
Vc

� PVb
V 2b

�
cos ."z � �c/

i
r
1 �

h
Vc
Vb

cos ."z � �c/
i2 : (5.62b)

If the target is stationary (Vc D 0), then

�b D "z � �

2
: (5.63)

5.2.2 Equations of Motion of a Guided Bomb

We assume that a bomb is a non-deformable (rigid) body of a constant mass. That is
why, using Fig. 5.14, the motion of an apparatus can be represented by two systems
of equations describing the motion of the mass center of the apparatus and the
motion about the mass center [18, 19].

Equations of translational motion

The equations of translational motion of a bomb in its associated coordinate system
Obxyz are as follows:

mb

�
dub
dt

C wbqb � vbrb

�
� Sx

�
q2b C r2b

� C Sz

�
dqb
dt

C pbrb

�
D Fx; (5.64a)

mb

�
dvb
dt

C ubrb � wbpb

�
C Sx

�
drb
dt

C qbpb

�
� Sz

�
dpb
dt

� qbrb
�

D Fy;

(5.64b)
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Fig. 5.14 System of forces and moments acting on an FO during flight

mb

�
dwb
dt

C pbvb � qbub
�

� Sx
�

dqb
dt

� pbrb
�

� Sz
�
q2b C p2b

� D Fz; (5.64c)

where

2
4F x

F y

F z

3
5 D

2
4X b CG x

Y b CG y

Z b CG z

3
5;

2
4X b

Y b

Z b

3
5 D d .Hb/ V

2
b

2
Sb �Moz �

2
4CxCy
Cz

3
5C

2
4Pb

0

0

3
5;

Vb D
q

u2b C v2b C w2b;



234 5 Gyroscopic Control in Self-Guidance Systems of Flying Objects

Moz D
2
4 cos�b cos�b sin�b cos�b

sin 'b cos�b sin�b � cos'b sin�b sin'b sin�b sin�b C cos'b cos�b
cos'b cos�b sin�b C sin 'b sin�b cos'b sin�b sin�b � sin 'b cos�b

� sin�b
sin'b cos�b
cos'b cos�b

3
5 ;

2
64
Cx

Cy

Cz

3
75 D

2
64
Cxo

Cyo

Czo

3
75C

2
666664

@Cx

@˛

@Cx

@̌

@Cx

@ps

@Cx

@qs

@Cx

@rs

@Cx

@ıl

@Cx

@ım

@Cx

@ın

@Cx

@ıt
@Cy

@˛

@Cy

@̌

@Cy

@ps

@Cy

@qs

@Cy

@rs

@Cy

@ıl

@Cy

@ım

@Cy

@ın

@Cy

@ıt
@Cz

@˛

@Cz

@̌

@Cz

@ps

@Cz

@qs

@Cz

@rs

@Cz

@ıl

@Cz

@ım

@Cz

@ın

@Cz

@ıt

3
777775

�

2
66666666666666664

˛b

ˇb

Opb
Oqb
Orb
ıl

ım

ın

ıt

3
77777777777777775

;

Opb D pb � bb
Vb

; Oqb D qb � Ncb
Vb

; Orb D rb � bb
Vb

;

2
4G x

G y

G z

3
5 D Moz �

2
4 0

0

mbg

3
5;

where mb is the bomb’s mass; Lb; Mb; Nb are the components of the vector of
moment of force acting on the bomb; ub; vb; wb are the components of the vector
of linear velocity of the bomb flight; pb; qb; rb are the components of the vector
of angular velocity of the bomb flight; Fx; Fy; Fz are the components of the net
vector of external forces acting on the bomb; Sx; Sy; Sz are the static moments with
respect to particular axes; Cx; Cy; Cz are the coefficients of the components of the
net aerodynamic force; d.Hb/ is the density of the air at a given altitude of bomb
flight Hb .

Equations of motion about a point of the FO

Equations of motion about a point of the FO in its associated coordinate system
OSxyz are described by the following system:

Jx
dpb
dt

� .Jy � Jz/qbrb � Jxz

 
drb
dt

C qbpb

!

� Sz

 
dvb
dt

� wbpb C ubrb

!
D Lb; (5.65a)
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2
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(5.65b)
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DN b; (5.65c)

where Jx; Jy; Jz are the moments of inertia of the bomb with respect to particular
axes; Jxy; Jyz; Jzx are products of inertia of the bomb.

Furthermore, we have
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where Cl; Cm; Cn are the aerodynamic coefficients of a rolling moment Lb ,
a pitching moment Mb , and a yawing moment Nb, respectively; and g is the
acceleration of gravity.



236 5 Gyroscopic Control in Self-Guidance Systems of Flying Objects

The Kinematic relationships between angular velocities follow

d�b
dt

D .qb sin'b C rb cos'b/ sec�b; (5.66a)

d�b
dt

D qb cos'b � rb sin 'b; (5.66b)

d'b
dt

D pb C .qb sin'b C rb cos'b/ tan�b; (5.66c)

where �b , �b , 'b are the angles of pitch, yaw, and roll of the longitudinal axis of
the bomb, respectively.

The kinematic relationships between linear velocities (a trajectory of a bomb
flight) are as follows

dxo
dt

D ub cos�b cos�b C vb.sin 'b sin�b cos�b

� cos'b sin�b/C wb .cos'b sin�b cos�b C sin 'b sin�b/ ; (5.67a)

dyo
dt

D ub cos�b sin�b C vb.sin'b sin�b sin�b

C cos'b cos�b/C wb .cos'b sin�b cos�b C sin 'b sin�b/ ; (5.67b)

dzo
dt

D �ub sin�b C vb sin 'b cos�b C wb cos'b cos�b; (5.67c)

where xo; yo; zo are the coordinates of the center of mass of the bomb in an Earth-
fixed coordinate system.

Supplementary relationships are

˛b D arctan
wb
ub
; (5.68a)

ˇb D arcsin
vbq

u2b C v2b C w2b

; (5.68b)

where ˛b; ˇb are the angles of attack and slip.

5.2.3 A Gyroscopic System of Bomb Control

The task of a gyroscope in a self-guidance system of a bomb can be the determi-
nation of a TOL at every time instant. The TOL can be determined in two different
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Fig. 5.15 Simplified schematic of bomb self-guidance to a ground target

ways: (1) for targets that are mobile and emit a heat wave (e.g., tanks, armored
fight vehicles)—a follow-up control of the orientation of the gyroscope axis based
on signals from the head equipped with an infrared detector or (2) for stationary
targets (e.g., underground bunkers, bridges)—a program control of the orientation of
a gyroscope axis based on exact data about the target’s positions. The determination
of the TOL corresponds to the solution of the system of differential equations (5.52)
and (5.53). Next, an on-board computer calculates the kinematic path of a bomb
flight for one of the previously considered cases (target attack at an angle of 0ı, 90ı,
and 180ı). The obtained data are transmitted to the bomb’s automatic pilot, where
control signals are elaborated for actuators of a rudder and an elevator.

In general, the schematic of gyroscopic control of a bomb control automatically
moving toward a ground target is presented in Fig. 5.15.

Programmed control moments for the case of tracking of a stationary target (very
often a hidden, underground one) are as follows:

Mb D Mn
b D Jgk

d2#gz

dt2
C 1

2
Jgk P 2gz sin 2#gz

CJgong P gz cos#gz C �b P#gz; (5.69a)

Mc D Mn
c D Jgk

d2 gz

dt2
cos2#gz � Jgk P gz

P#gz sin 2#gz

�Jgong P#gz cos#gz C �c P gz; (5.69b)

where #gz D �,  gz D � are the angles defining the required orientation of the
gyroscope axis in space.
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Quantities � and � and their first and second time derivatives are determined from
relationship (5.52a) and then substituted into (5.69a)

d2"

dt2
D rb P" P� sin � � Prb P" cos �

rb cos�

C Vc P�c sin�c sin ." � �c/ � PVc cos�c sin ." � �c/� Vc .P" � P�c/ cos�c cos ." � �c/

rb cos �

C Vb P�b sin�b sin ."��b/� PVb cos�b sin ."��b/CVb .P"� P�b/ cos�b cos ."��b/
rb cos�

;

d2�

dt2
D � Prb

rb
P� �

PVc
rb
Œcos ." � �c/ sin � cos�c � cos� sin�c�

� Vc

rb
Œ P�c sin�c sin � cos ." � �c/� P� cos�c cos � cos ." � �c/

C . P" � P�c/ cos�c sin � sin ."� �c/C P�c cos�c cos� � P� sin�c sin ��

C
PVb
rb
Œcos ." � �b/ sin � cos�b � cos � sin�b�

� Vb

rb
Œ P�b sin�b sin � cos ." � �b/C P� cos�b cos � cos ." � �b/

C . P" � P�b/ cos�b sin � sin ." � �b/C P�b cos�b cos� � P� sin�b sin �� ;

where

d2rb
dt2

D PVc Œcos ." � �c/ cos � cos�c C sin � sin�c�

� Vc Œ P�c sin�c cos� cos ." � �c/C P� cos�c sin � cos ." � �c/

C . P" � P�c/ cos�c cos� sin ." � �c/� P�c cos�c sin � � P� sin�c cos��

� Vb Œcos ." � �b/ cos � cos�b C sin � sin�b�

� PVb Œcos ." � �b/ cos � cos�b C sin � sin�b�

� Vb Œ P�b sin�b cos� cos ." � �b/C P� cos�b sin � cos ." � �b/
C . P" � P�b/ cos�b cos � sin ." � �b/ � P�b cos�b sin � � P� sin�b cos �� :

In the case where Vc D 0 (a stationary target), we have

#gz D ";  gz D �; (5.70)

d#gz

dt
D d"

dt
D Vb sin ." � �b/ cos�b

r cos�
; (5.71)
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d gz

dt
D d�

dt
D Vb

cos ." � �b/ sin � cos�b � cos � sin�b
r

; (5.72)

d2#gz

dt2
D d2"

dt2
D sin ." � �b/ cos�b

r cos �

 
dVb
dt

� Vb

dr
dt cos � � r d�

dt sin �

r cos�

!

CVb

�
d"
dt � d�b

dt

�
cos ." � �b/ � d�b

dt sin ." � �b/ sin�b

r cos�
; (5.73)

d2 gz

dt2
D d2�

dt2
D cos ." � �b/ sin � cos�b � cos � sin�b

r

�
dVb
dt

� Vb

r

dr

dt

�

CVb

r

	�
d�b
dt

�d"

dt

�
sin ."��b/ sin � cos�b C d�

dt
sin � sin�b�d�b

dt
cos � cos�b




C cos ." � �b/

�
d�

dt
cos � cos�b � d�b

dt
sin � sin�b

�
: (5.74)

As a result of the influence of all kinds of external disturbances on a gyroscope,
the gyroscope axis can perform a prescribed motion with certain unacceptable
errors. In this case one should additionally apply correcting control moments Mk

b

andMk
c , which can be represented in the following way:

Mk
b D kb

�
#g � "

� � kc
�
 g � �

�C hg

�
d#g
dt

� d"

dt

�
; (5.75a)

Mk
c D kb

�
 g � �

� � kc
�
#g � "�C hg

�
d g
dt

� d�

dt

�
; (5.75b)

where kb , kc , hg are the gain coefficients of the system of automatic control of a
gyroscope.

5.2.4 Control Law for Automatic Pilot of a Guided Bomb

The steering of the flight of a guided bomb is accomplished by means of displace-
ment of control surfaces of ailerons, a rudder, and an elevator respectively by the
angles ıl , ım, and ın. However, the change in the bomb’s flight path is influenced
only by the rudder and elevator, which means that we should limit ourselves to
determining a control rule for the change in displacement of angles ım and ın.

The realization of the desired flight path of the guided bomb is carried out by the
automatic pilot (AP), which elaborates control signals for the actuator system of the
control.
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Let us write the control rule for the AP, with the dynamics of displacement of
control surfaces taken into account, using the following relationships:

d2ım
dt2

C hmb
dım
dt

C kmbım D km1 .�br � �b/

C km2

�
d�br
dt

� d�b
dt

�
C hm

�
d2�br
dt2

� d2�b
dt2

�
; (5.76a)

d2ın
dt2

C hnb
dın
dt

C knbın D kn1 .�br � �b/

C kn2

�
d�br

dt
� d�b

dt

�
C hn

�
d2�br

dt2
� d2�b

dt2

�
; (5.76b)

where �br ; �br are the actual angles of the bomb’s flight; hmb , kmb , hnb , knb
are coefficients of appropriately selected constants of control surface drives; and
hm, kmb , hn, kn are coefficients of appropriately selected constants of a PD-type
controller in the autopilot of the bomb.

5.2.5 Results and Final Conclusions

In order to validate the system operation, a numerical simulation for a “hypothetical”
bomb equipped with a self-guidance system was conducted, where the drive was a
controlled gyroscope with the following parameters:

Jgk D 2:5 � 10�4 kg � m2; ng D 600
rad

s
; �b D �c D 0:01

N � m � s

rad
:

Parameters of the gyroscope controller were selected in an optimal way with
respect to minimal error between the prescribed and actual motions. The value of
the coefficient was taken as

kb D 10
N � m

rad
;

whereas the remaining ones are determined in the following way [19]:

kc D 1

2

J 2gon
2
g

Jgk

q
2J 2gon

2
g C 4Jgkkb; hg D

q
2J 2gon

2
g C 4Jgkkb:
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Fig. 5.16 Change in time of relative distance r between bomb and target

The coefficients of gain and damping of the autopilot of the guided bomb are
obtained in a similar way:

km1 D kn1 D 2:703; km2 D kn2 D 11:439; hm D hn D 9:887:

Some results of investigations are presented in Figs. 5.16–5.31, where Figs. 5.16–
5.19 show the flight trajectories of a bomb guiding itself to a stationary ground
target. For comparison we refer to the trajectories for guidance with proportional
navigation method (dashed lines) and trajectories for attacks on the aforementioned
ground targets at different angles: 90ı, 0ı, 180ı (dashed lines).

It should be emphasized that the TOL in the considered self-guidance system
of a bomb is identified with the axis of the controlled gyroscope. An open-loop
control system of a gyroscope axis does not function properly (it indicates the
target inaccurately), even when there are no external disturbances (Figs. 5.20–5.23).
The cause of errors is the friction in the bearings of the gyroscope’s suspension.
If additionally there appears a disturbance (acting in the time interval 3:0 s 	 t 	
4:5 s), then a large discrepancy occurs between the prescribed and actual (realized)
motions of both the axis of the gyroscope (Figs. 5.24 and 5.25) and the flight path
of the bomb itself (Figs. 5.26 and 5.27).
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Fig. 5.17 Bomb flight trajectory in accordance with proportional navigation (dashed line) and
during attack at an angle of 90ı (continuous line)

Fig. 5.18 Bomb flight trajectory in accordance with proportional navigation (dashed line) and
during attack at an angle of 0ı (continuous line)
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Fig. 5.19 Bomb flight trajectory in accordance with proportional navigation (dashed line) and
during attack at an angle of 180ı (continuous line)

Fig. 5.20 Change in time of angles �; � of TOL position (prescribed) and angles #g; �g of
gyroscope axle position, without correcting moments
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Fig. 5.21 Motion paths of
TOL and gyroscope axis,
without correcting moments

Fig. 5.22 Prescribed and actual paths of bomb flight, without correcting moments
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Fig. 5.23 Errors of self-guidance of a bomb without correcting moments

Fig. 5.24 Change in time of angles �; � of TOL position (prescribed) and angles #g;  g of
gyroscope axis position during appearance of disturbances, without correcting moments
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Fig. 5.25 Motion paths of TOL (prescribed) and gyroscope axis (actual) during appearance of
disturbance, without correcting moments

Fig. 5.26 Prescribed and actual flight paths of bomb during appearance of disturbance, without
correcting moments
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Fig. 5.27 Errors of self-guidance of bomb during appearance of disturbance, without correcting
moments

Fig. 5.28 Change in time of angles �; � of TOL position (prescribed) and angles #g;  g of
gyroscope axis position during appearance of disturbances, with application of correcting moments
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Fig. 5.29 Motion paths of TOL (prescribed) and gyroscope axis (actual) during appearance of
disturbance, with application of correcting moments

Fig. 5.30 Prescribed and actual flight paths of bomb during appearance of disturbance, with
application of correcting moments
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Fig. 5.31 Bomb self-guidance errors during appearance of disturbance, with application of
correcting moments

The application of additional feedback in a system of automatic control of motion
of the axis of a gyroscope with optimally selected parameters [12] substantially
improves the accuracy of the TOL (the alignment of the TOL with the axis of the
gyroscope) and consequently the minimization of errors between prescribed and
actual motions of both gyroscope and guided bomb. This is clearly illustrated in
Figs. 5.28–5.31.

To sum up, it may be stated that preliminary investigations confirm the possibility
of application of a gyroscopic system in a guided bomb self-guidance to a ground
target. However, in further research the influence of the following factors should be
subjected to a more detailed analysis: (a) dry and viscous friction in frame bearings;
(b) frame inertia; (c) unbalance (static and dynamic) of a rotor with respect to the
intersection of frame axes, that is, the center of rotation; (d) the linear and angular
acceleration of the base; (e) the elasticity of structural elements; (f) the errors
of a Cardan suspension; (g) the instability of the rotor drive; (h) the intersection
of the frames at angles other than 90ı; (i) large angles and angular velocities of
deviation of the main axis of the gyroscope from the prescribed direction; and (j)
the Earth’s rotational motion about its axis. Those factors have ultimate influence
on the accuracy of the bomb. Moreover, various methods of self-guidance should
be investigated with respect to the time to reach targets and the minimization of a
gravity load acting on a bomb when approaching a target.
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