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         Introduction 

 The treatment of infectious disease centers around the goals of both curing the 
patient and preventing or at least restricting the spread of disease. In a perfect world, 
health care professionals would know that these goals have been achieved when the 
patient’s health is restored and there are no new occurrences of infected patients. 
However, the real world of infectious disease is far from perfect. The individual 
patient may present with evidence of recurring or additional infection by a pathogen 
(e.g., at a different body site). Different members of a patient population may yield 
cultures of the same organism. In both instances, the question commonly asked is 
whether multiple isolates of a given pathogen represent the same strain. In the indi-
vidual patient, this question commonly relates to issues of therapeutic ef fi cacy while 
in a patient population the concern is infection control. However, in both settings, 
the resolution of these questions is aided by speci fi c epidemiological assessment. In 
the past, a variety of methods based on phenotypic characteristics have been used for 
this purpose including biotype, serotype, susceptibility to antimicrobial agents, or 
bacteriophages, etc.  [  1–  4  ] . However, in the 1970s, techniques developed for the 
recombinant DNA laboratory began to  fi nd application in the molecular character-
ization of clinical isolates. These included comparing protein molecular weight dis-
tributions by polyacrylamide gel electrophoresis, relative mobility of speci fi c 
enzymes by starch-gel electrophoresis (multi-locus enzyme electrophoresis), speci fi c 
antibody reactions with immobilized cellular proteins (immunoblotting), and cellu-
lar plasmid content (i.e., plasmid  fi ngerprinting)  [  2,   5,   6  ] . However, by the 1980s it 
was clear that comparisons at the genomic level would provide the most fundamen-
tal measure of epidemiological relatedness. Thus, molecular typing was born. 
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While a wide range of etiological agents are of clinical concern, this review focuses 
on molecular approaches to the epidemiological analysis of bacterial pathogens.  

   What Does “State of the Art” Mean? 

 In any area of scienti fi c investigation, state of the art methodology may be viewed 
from two different perspectives. There are cutting-edge techniques requiring spe-
cialized equipment and expertise that perform remarkably well but are of limited 
availability to many investigators. Alternatively, there are functional state of the art 
approaches, meaning that one is using the best method available within the prevail-
ing ( fi nancial, geographic, technical expertise, etc.) environment. In this context, it 
is important to recognize that while one may not have access to the most recently 
published sophisticated methods, from an epidemiological standpoint, it is better to 
do something rather than nothing. Thus, this review begins with examples of estab-
lished molecular typing techniques which, depending on the ( fi nancial, geographic, 
scienti fi c) environment, may still be viewed as state of the art while also consider-
ing more recently described cutting-edge approaches.  

   The Ultimate Foundation for Epidemiological Comparison: 
The Bacterial Genome 

 Advances in DNA sequencing have shown that what was once thought of as the 
bacterial chromosome is actually a core genome plus a variety of inserted mobile 
genetic elements  [  7–  9  ] . Nevertheless, the totality of these sequences makes the cell 
a speci fi c strain of  Pseudomonas aeruginosa ,  Staphylococcus aureus ,  Escherichia 
coli , etc. Thus, the bacterial genome represents the most fundamental molecule of 
identity in the cell and the common goal of molecular typing approaches is to pro-
vide a measure of isolate genomic relatedness  [  10  ] . While the methodological 
aspects of these techniques differ, they can generally be grouped into two categories 
of data output, either electrophoretic “bands” or DNA sequences.  

   Methods with Electrophoretic Output 

 Restriction Enzyme-Based  

 Chromosomal Restriction Enzyme Analysis 

 The ubiquitous presence of chromosomal DNA in all bacterial pathogens made 
restriction enzyme analysis (REA) an attractive early approach to molecular strain 
typing. While all bacterial cells can theoretically be analyzed by such a process, the 
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DNA sequences recognized by common restriction enzymes such as  Eco RI,  Hind III, 
etc., are abundantly dispersed (e.g., on average >600 copies) throughout a typical 
2–3 Mb bacterial chromosome. This is illustrated in Fig.  13.1  with a comparison of 
 Eco RI REA for  S. aureus  strains COL and NCTC8325. Thus, the resulting chal-
lenge is to accurately compare electrophoretic patterns that comprise hundreds of 
restriction fragments, often co-migrating in clusters of similar size, and potentially 
including resident plasmid DNA  [  11  ] . Consequently, at the present time this method 
continues to be recommended only for use with  Clostridium dif fi cile   [  12  ] .  

 Since the mid 1970 Southern hybridization  [  13  ]  has been a staple of molecular 
biology, and its power to probe for speci fi c DNA sequences soon began to  fi nd clini-
cal application. For diagnostic purposes, tests to detect the presence or absence of 
clinically relevant sequences (e.g., related to organism identi fi cation, antibiotic 
resistance) began to be developed. For epidemiological analysis, probes speci fi c for 
sequences found at multiple chromosomal locations can be hybridized against chro-
mosomal restriction enzyme fragments which have been electrophoretically sepa-
rated. The resulting hybridization patterns (restriction fragment length polymorphisms 
(RFLPs)) provide an indication of chromosomal relatedness between different bac-
terial isolates. However, at present this approach is not widely used for epidemio-
logical analysis with the exception of probes for the insertion sequence IS 6110  in 
the RFLP analysis of  Mycobacterium tuberculososis   [  14,   15  ] .  

  Fig. 13.1    Diagrammatic 
representation of REA with 
chromosomal DNA from  S. 
aureus  strains COL and 
NCTC8325 digested with the 
restriction enzyme  Eco RI. 
Data were generated using 
the Comprehensive Microbial 
Resource of the J. Craig 
Venter Institute Web site: 
  http://cmr.jcvi.org/cgi-bin/
CMR/shared/Menu.
cgi?menu=genome           

 

http://cmr.jcvi.org/cgi-bin/CMR/shared/Menu.cgi?menu=genome
http://cmr.jcvi.org/cgi-bin/CMR/shared/Menu.cgi?menu=genome
http://cmr.jcvi.org/cgi-bin/CMR/shared/Menu.cgi?menu=genome
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   Pulsed-Field Gel Electrophoresis 

 In contrast to conventional REA, rare-cutting restriction enzymes cleave the bacterial 
chromosome into a relatively small number of fragments (e.g., 10–30) due to the 
length and/or DNA base composition of their recognition sequences,. However, 
electrophoretic analysis of the megabase-size restriction fragments generated is 
complicated by their size-independent migration during conventional agarose-gel 
electrophoresis  [  16,   17  ] . In 1980, alternative electrophoretic approaches were devel-
oped based on the principal of periodic reorientation of the electric  fi eld (and DNA 
migration) relative to the direction of the gel. The pulsed electric  fi eld separates 
DNA fragments over a wide range of sizes from kilobytes to megabytes (Fig.  13.2 ) 

  Fig. 13.2    Illustration of PFGE work fl ow moving from chromosomal digestion with rare-cutting 
restriction enzymes to macro-restriction fragment separation by PFGE to the  fi nal analysis of frag-
ment patterns from different (patient) sources       
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thus allowing a more manageable comparison of isolate patterns. The usefulness of 
pulsed- fi eld gel electrophoresis (PFGE) for molecular typing has been recently 
reviewed  [  18,   19  ] . However, it is important to note that while the method is far from 
new, PFGE has exhibited enormous staying power as a valuable method of genomic 
analysis and comparison. This is especially true for molecular typing where for the 
majority of bacterial pathogens it remains the acknowledged “gold standard” for 
assessing isolate interrelationships. The reason for this longevity is multifold. 
Overall, the method for chromosomal DNA isolation (i.e., the in situ lysis of bacte-
rial cells encased in agarose plugs) requires only minor variation with different 
bacterial species. A wide range of bacterial pathogens can be analyzed using a small 
number of different restriction enzymes (commonly  Sma I and  Xba I for gram-posi-
tive and -negative isolates, respectively). Despite the fact that PFGE obviously does 
not detect every genetic change and macro-restriction fragment, for most organisms 
analyzed the sum of the visible fragment sizes represents greater than 90% of the 
chromosome. This visual sense of global chromosomal monitoring can be highly 
informative not only for isolate comparisons, but also in associating characteristic 
PFGE patterns with speci fi c (e.g., internationally recognized) bacterial strains  [  20  ] . 
In addition, the chromosomal overview provided by PFGE allows visualization of 
genomic rearrangements as in the case of  S. aureus  strain USA300 where changes 
in PFGE patterns can be speci fi cally associated with loss of the staphylococcal 
chromosomal cassette encoding methicillin resistance (SCC mec ) or the adjacent 
arginine catabolic mobile element (ACME)  [  21  ]  (Fig.  13.3 ).    

  Fig. 13.3     Sma I-digested 
chromosomal DNA from 
USA300  S. aureus  isolates 
which are ( lane 1 ) methicillin 
resistant and PCR positive for 
the adjacent ACME  arcA  
gene ( lane 2 ), methicillin 
susceptible due to loss of 
SCC mec  but  arcA  positive, or 
( lane 3 ) negative for both 
SCC mec  and  arcA . (Modi fi ed 
from Goering et al.  [  21  ] )       
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   Optical Mapping 

 Optical mapping (OM) is an interesting variation of the REA-PFGE method with 
potential epidemiological application. Similar to PFGE, high molecular weight 
genomic DNA is obtained by agarose-encased lysis of cells. As illustrated in 
Fig.  13.4 , single DNA molecules are then electrostatically  fi xed to the surface of 
material amenable to scanning by  fl uorescent microscopy. The DNA molecules are 
exposed to restriction endonuclease digestion but the order of the resulting frag-
ments is maintained since each molecule is immobilized. After staining with a 
 fl uorescent dye,  fl uorescent microscopy coupled with appropriate software converts 
the optical image to a digital format producing restriction maps of the individual 
molecules. The overlapping maps are then assembled to produce an ordered restric-
tion map of the entire chromosome. Overall hands-on time of a few hours with  fi nal 
genomic data output in less than 2 days from start to  fi nish makes OM an interesting 
technology which has shed recent light on a variety of microbial strain interrelation-
ships  [  22,   23  ] . However, a per-isolate cost of several thousand dollars (total instru-
mentation list price >$200,000) currently makes OM impractical for infection 
control surveillance or routine multi-isolate epidemiological analysis.   

   PCR-Based 

 Ampli fi ed Fragment-Length Polymorphism 

 Ampli fi ed fragment-length polymorphism (AFLP) remains in current use as an 
interesting approach that combines the use of restriction enzymes and PCR to poten-
tially analyze a wide range of bacterial pathogens  [  24  ] . The process involves cre-
ation of typing patterns based on PCR ampli fi cation of a subset of chromosomal 
restriction fragments (Fig.  13.5 ). This is accomplished by digesting isolated DNA 
with two different restriction endonucleases, usually chosen so that one cuts more 
frequently than the other (e.g.,  Eco RI and  Mse I). While a large group of restriction 
fragments are initially created, only speci fi c subsets are utilized for isolate compari-
son. Adapters speci fi c for the cleaved restriction-sites are ligated to the fragment 
ends thus extending the length of the known end sequences and serving as primer 
binding sites for PCR. The adapter design includes extra nucleotides beyond the 
restriction-site sequence allowing only a subset of fragments to be ampli fi ed. Using 
labeled primers the speci fi city of the process may be further controlled, ultimately 
leading to an electrophoretic pattern of ampli fi ed products that becomes the basis 
for assessing isolate interrelationships. Recent AFLP improvements have included 
multiple enzyme–adapter combinations and either  fl uorescent or radioactively 
labeled primers, allowing high-throughput analysis to be achieved using an auto-
mated DNA sequencer, phosphoimager, etc.  [  24,   25  ] . However, issues regarding 
data analysis and inter-laboratory sharing, and the specialized equipment required 
for electrophoresis have limited the use of this method in the clinical setting.   
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  Fig. 13.4    Protocol for 
optical mapping. ( a ) DNA is 
electrostatically immobilized, 
( b ) digested, DNA and 
 fl uorescently imaged. 
( c ) Restriction fragments are 
sized and ( d ) assembled into 
a ( e ) consensus optical map. 
(Modi fi ed from the 
OptiGen®, LLC Web site  
     http://www.optigen.com    )       

 

http://www.optigen.com
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   Repetitive Sequence-Based PCR 

 Well before our current level of technology and understanding regarding bacterial 
genomics, speci fi c DNA sequences were known to be repeated at multiple chromo-
somal sites in a variety of clinically important pathogens. Enterobacteria were found 
to contain several hundred copies of repetitive extragenic palindromic (REP) ele-
ments and enterobacterial repetitive intergenic consensus (ERIC) sequences  [  26  ] . 
Repeated BOX element sequences were observed in the chromosome of 
 Streptococcus pneumoniae   [  27  ] . Multiple copies of IS 256  were found in staphylo-
coccal genomes  [  28  ] . These and other repeat elements represent genomic landmarks 
of known sequence to which PCR primers may be speci fi cally anchored in an out-
wardly oriented direction. The resulting amplicons represent inter-repeat distances 
that do not exceed the capability of the  Taq  polymerase (Fig.  13.6 ). Thus, strain typ-
ing by repetitive sequence-based PCR (rep-PCR) is accomplished by comparing the 
chromosomal distribution of such repeated sequences as re fl ected by the resulting 
pattern of amplicon sizes. Performed under relatively stringent conditions, rep-PCR 
is much more reproducible than other more generic PCR approaches such as 

  Fig. 13.5    AFLP protocol. ( a ) Genomic DNA is restricted using two different enzymes to yield 
fragments ( b ) with a mixture of restriction sequence ends. ( c ) Restriction-site speci fi c adapters are 
ligated to the fragment ends. ( d ) PCR primers complementary to the adapters with additional bases 
at their 3 ¢  ends restrict ampli fi cation to a subset of fragments ( e ) the sizes of which are then ana-
lyzed by electrophoresis ( f ). (Modi fi ed from Rademaker and Savelkoul  [  84  ] )       
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randomly ampli fi ed polymorphic DNA (RAPD) and arbitrarily primed-PCR 
(AP-PCR) which are not considered here  [  1,   5  ] . Initial “home brew” efforts at rep-
PCR encountered issues such as appropriate primer combinations, PCR conditions, 
and optimum visualization of amplicon fragment patterns by agarose gel electro-
phoresis  [  29  ] . However, the process has become highly reproducible via commer-
cial automation. The DiversiLab System (bioMérieux) employs optimized protocols, 
separation of PCR products in a charged micro fl uidic  fi eld (i.e., on a chip) rather 

  Fig. 13.6    Illustration of rep-PCR. ( a ) Repetitive sequences in the bacterial chromosome are rec-
ognized by outwardly directed primers ( b ) allowing PCR ampli fi cation of the inter-repetitive 
regions ( c ) when are then analyzed by electrophoresis ( d )       
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than by conventional agarose gel electrophoresis, and software for data analysis. 
While in some instances less discriminatory than PFGE  [  30,   31  ] , rep-PCR remains 
an interesting typing method although issues regarding database libraries and inter-
laboratory data sharing  [  4  ]  as well as costs associated with the commercial approach 
are factors to be considered.   

   PCR Ribotyping 

 Bacteria typically contain multiple chromosomal copies of rRNA genes. Conventional 
ribotyping exploits the fact that strain-to-strain differences in the chromosomal 
regions  fl anking rRNA genes affect restriction enzyme recognition sites producing 
different RFLP hybridization patterns with rRNA probes  [  32  ] . However, this 
approach is no longer considered state of the art. PCR-ribotying, based on primers 
amplifying polymorphisms in the 16–23S intergenic spacer region, continues to be 
used as an important tool in the epidemiological monitoring of  C. dif fi cile   [  33  ] . 
However, it is important to note that the amplicons generated typically include a 
variety of similar sizes which are a challenge to separate by agarose gel electropho-
resis. Nevertheless, the patterns obtained are amenable to databasing and inter-
laboratory comparison especially with regard to highly toxigenic strains such as 
 C. dif fi cile  ribotype 027  [  34–  36  ] .  

   Staphylococcal Cassette Chromosome  mec  Typing 

 Staphylococci resistant to the antibiotic methicillin, especially  S. aureus  (MRSA), 
represent an infectious disease problem of global concern. Central to this issue is 
the mobile genetic element staphylococcal cassette chromosome  mec  (SCC mec ) 
encoding the altered penicillin-binding protein (known as PBP2a or PBP2’) respon-
sible for resistance  [  37  ] . Increased understanding of staphylococcal genomics has 
revealed SCC mec  variations (termed SCC mec  types) which differ with regard to 
their internal organization and total size (<30–>60 kb)  [  38  ] . A variety of multiplex 
PCR approaches have been developed with primers positioned to detect type-
speci fi c differences re fl ected by amplicon banding patterns in agarose gels  [  39–  41  ] . 
However, SCC mec  represents one of the most highly recombinogenic regions in the 
staphylococcal genome. This is re fl ected in the increasing complexity associated 
with newly described SCC mec  types and subtypes and the multiplex PCR protocols 
required for their detection (  http://www.sccmec.org/Pages/SCC_TypesEN.html)     
 [  38  ] . Nevertheless, SCC mec  typing represents an important means of studying the 
element’s organization, persistence, and movement in staphylococcal populations. 
In this context, SCC mec  type has become a landmark trait in the de fi nition of 
speci fi c staphylococcal epidemic strains (especially MRSA). However, the method 
is not discriminating enough to stand alone as an approach to epidemiological mon-
itoring and SCC mec  differences do not signi fi cantly impact anti-staphylococcal 
chemotherapy  [  42  ] .  

http://www.sccmec.org/Pages/SCC_TypesEN.html)
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   Multiple-Locus VNTR Analysis 

 Similar to the repetitive sequences discussed earlier (i.e., rep-PCR), advances in 
bacterial genomics have revealed the presence of chromosomal regions consisting of 
tandemly repeated sequence “units” varying both in the number and sequence of the 
individual repeats (Fig.  13.7 ). These occur by slipped strand mispairing during chro-
mosomal replication resulting in the insertion or deletion of repeat units  [  43–  45  ] . 
Bacterial genomes may contain different variable number tandem repeats (VNTR) 
at multiple chromosomal sites. Properly designed multiplexed PCR primers thus 
produce multiple-locus VNTR analysis (MLVA) banding patterns by electrophoresis 
with potential application for strain typing  [  46  ] . Finding and validating the epide-
miological usefulness of speci fi c MLVA approaches is a deliberative process which 
varies depending on a number of factors including the degree of VNTR polymor-
phisms, the organism being analyzed, etc.  [  3,   46  ] . Nevertheless, MLVA strain typing 
has been described for a variety of clinically important bacterial pathogens including 
 Bacillus anthracis ,  Brucella  spp.,  E. coli ,  Legionella pneumophila ,  Leptospira inter-
rogans ,  Mycobacterium tuberculosis ,  P. aeruginosa ,  Yersitia pestis ,  Shigella  spp. , 
S. aureus , and  S. pneumonia  (see  [  46  ]  for a review). This trend has been facilitated 
by a number of advances including digitized MLVA pattern nomenclature based on 
VNTR repeat numbers, improved accuracy with pattern visualization by capillary, 
rather than agarose-gel, electrophoresis, and proper molecular size standards.  

 Overall, with some exceptions such as PFGE, electrophoretic-based typing 
methods tend to be relatively simple to perform and also bene fi t from the potential 
for decreased cost when agarose-gels are used for analysis. However, it is important 
to emphasize that strain typing based on electrophoretic banding patterns is primarily 
a comparison of chromosomal fragment sizes rather than speci fi c genomic content. 
With the exception of PCR ribotyping and MLVA this is true for both restriction enzyme 
and PCR-based methods but is especially the case with the former where equivalent-
sized fragments in different isolate patterns may or may not represent the same 
chromosomal sequence. Electrophoresis-based typing approaches are also challenged 

  Fig. 13.7    Diagram of a chromosomal VNTR where ( a ) a sequence unit of “X” base pairs is 
( b ) tandemly repeated “Y” number of times during chromosomal replication. PCR primers 
anchored to chromosomal regions adjacent to the VNTR ( c ) allow ampli fi cation with subsequent 
electrophoretic analysis to determine the VNTR “Y” repeat number       
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regarding issues of typing pattern nomenclature, databasing, and interlaboratory 
sharing. Nevertheless, as noted earlier, in the context of locally available economic 
and scienti fi c resources these methods continue to remain of value as options for the 
epidemiological evaluation of problem bacterial pathogens.  

   DNA Sequence-Based Methods 

 Since the bacterial chromosome is the most fundamental molecule of identity in the 
cell, strain typing based on DNA sequence analysis is the most direct approach to 
assessing isolate relatedness. Sequence-based approaches have a number of addi-
tional advantages over electrophoresis-based typing methods including:

    1.    Simplicity and reproducibility. 
 Older molecular methods for epidemiological analysis involve numerous experi-
mental variables including types of equipment, reagents, experimental protocols, 
etc., all of which affect inter- and intra-laboratory reproducibility. With enough 
time and effort, any epidemiological method can be standardized as evidenced 
by classical bacteriophage typing of staphylococci  [  47  ]  or the success of the 
nationwide PFGE Pulse-Net System for the investigation of foodborne outbreaks 
designed by the United Stated Centers for Disease Control  [  48  ] . However, DNA 
sequence analysis is a more straightforward process that can be performed in a 
more controlled, uniform, and reproducible manner with speci fi c known chro-
mosomal loci.  

    2.    Data sharing and storage. 
 Electronic storage and sharing of data from electrophoresis-based typing meth-
ods is accomplished using bitmapped (e.g., .tiff, .jpeg) computer images. 
However, the larger the number of isolates the more unwieldy the process can 
become. In addition, some form of nomenclature must be used to identify and 
interrelate isolate banding patterns. With large data sets, the use of appropriate 
computer software is essential to accomplish this process. However, the frame-
work for data sharing, storage, and retrieval is necessarily based on visual images 
and the limits that format imposes. Conversely, nucleotide sequences represent 
simple, highly portable, quaternary data that can much more easily be shared, 
stored, and retrieved.  

    3.    Data interpretation and detection of signi fi cant differences. 
 As will be discussed more fully later, the most crucial aspect of any typing 
method is its ability to detect signi fi cant (epidemiologically-relevant) differ-
ences between isolates. While the goal of molecular typing is a comparison of 
chromosomal similarity, electrophoretic banding patterns only indirectly address 
this issue. Despite computer programs which can assist the process, there is 
always an element of end user judgment that can affect the  fi nal evaluation. 
In contrast, nucleotide sequence data allows direct and unambiguous genomic 
comparison. 
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 Advances in DNA sequencing and the rapidly expanding database of sequenced 
microbial genomes have served as the foundation for a variety of typing approaches 
which can generally be categorized as single-locus, multiple-locus, or whole-
genome sequence typing.      

   Single-Locus Sequence Typing 

 Since the genome of bacterial pathogens is mega-base in size, it is remarkable to 
think that a single locus of ca. 1,000 bases could contain suf fi cient information to be 
epidemiologically relevant. Nevertheless, three instances where this is the case are 
detailed below.  

    S. aureus  Protein A Typing 

 The production of protein A is a hallmark characteristic of  S. aureus . Thus, the gene 
for protein A ( S. aureus  protein A,  spa ) is found in all  S. aureus  strains. The 3 ¢  end 
of the  spa  locus (i.e., the polymorphix “X” region) contains a 24-bp VNTR which 
can be ampli fi ed with appropriate primers (e.g., see Fig.  13.7 ) and sequenced to 
determine the speci fi c  spa  type. Software packages such as StaphType (Ridom 
GmbH, Münster, Germany) and BioNumerics (Applied Maths NV, Sint-Martens-
Latem, Belgium) are available to assist with the sequence analysis process. 
Numerous studies have shown that comparisons of  S. aureus spa  types, facilitated 
by an Internet-based  spa  server (  http://spaserver.ridom.de    ), provide epidemiologi-
cally-relevant information that correlates well with other typing methods such as 
PFGE  [  42,   49–  52  ] . In Europe this has led to the formally organized use of  spa  typ-
ing in the epidemiological monitoring of speci fi c  S. aureus  strains (i.e., SeqNet; 
  http://www.seqnet.org    ) involving 60 laboratories from 39 countries.  

    Strepcococcus pyogenes  M Protein ( emm ) Typing 

 The cell surface M protein is an important virulence factor in  S. pyogenes   [  53  ] . 
Genomic analysis has revealed that the M protein locus ( emm ) is variable and can 
encode at least 100 different M protein types which were initially detected and cata-
loged serologically. However, PCR primers  fl anking the hypervariable region of the 
 emm  gene allow direct sequencing to determine speci fi c isolate  emm  types. As a 
result, sequence-based  emm  typing is currently the most widely used approach to 
group A streptococcal epidemiology  [  53–  56  ] . As with  S. aureus spa  typing,  emm  
typing is facilitated by an Internet-based server (hosted by the US Centers for 
Disease Control) which houses the  S. pyogenes emm  sequence database (  http://
www.cdc.gov/ncidod/biotech/strep/strepblast.htm    ). This resource has allowed the 
CDC to follow speci fi c  S. pyogenes  epidemiological trends such as the proportion 

http://spaserver.ridom.de
http://www.seqnet.org
http://www.cdc.gov/ncidod/biotech/strep/strepblast.htm
http://www.cdc.gov/ncidod/biotech/strep/strepblast.htm
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of  emm  types contributing to speci fi c disease in different global regions (e.g., Africa, 
Asia, Latin America, Middle East, Australia/Paci fi c Island) (  http://www.cdc.gov/
ncidod/biotech/strep/emmtype_proportions.htm    ).  

    mec -Associated Direct Repeat Unit Typing 

 In 1991, Ryffell et al.  [  57  ]  identi fi ed a cluster of repeated imperfect 40-bp sequences 
(i.e., direct repeat units,  dru ) adjacent to IS 431  within the SCC mec  element of 
 S. aureus  isolates. While the  dru  VNTR is absent in a minority of MRSA isolates  [  58  ] , 
its constant location in different SCC mec  types of both coagulase-positive and -neg-
ative staphylococcal species represents a valuable and stable internal SCC mec  char-
acteristic  [  59  ] . As with staphylococcal  spa  typing, properly positioned PCR primers 
allow ampli fi cation and sequencing of the  dru  region. Software such as BioNumerics 
(Applied Maths NV, Sint-Martens-Latem, Belgium) and DruID (  http://www.
mystrains.com/druid    ) is available to assist with assignment of  dru  types the central 
repository for which is an Internet-based server (  http://www.dru-typing.org    ). 
As with SCC mec  typing,  dru  typing has become an increasingly important means of 
characterizing the persistence and movement of SCC mec  in staphylococcal popula-
tions. While not discriminating enough to serve as a standalone approach to epide-
miological monitoring,  dru  typing has proven helpful in assessing movement of 
SCC mec  in staphylococcal populations and in subtyping highly clonal (i.e., dif fi cult 
to differentiate) staphylococcal strains  [  58,   60,   61  ] . In addition, a combination of  dru  
typing and analysis of SCC mec  ( ccr ) recombinase genes, has proved highly infor-
mative with regard to the phylogeny of speci fi c  S. aureus  MRSA strains  [  62,   63  ] .  

   Multi-Locus Sequence Typing 

 Since its initial description in 1998  [  64  ]  multi-locus sequence typing (MLST) has 
become one of the most popular approaches to microbial strain typing with demon-
strated utility for a wide range of clinically relevant pathogens (  http://www.mlst.
net/databases/default.asp    ). The method is based on PCR ampli fi cation and subse-
quent sequencing of the internal regions (450–500 bp) of multiple essential (i.e., 
housekeeping) genes. Seven genes are typically employed, the sequences of which 
are assigned numeric allelic designations (Fig.  13.8a ). Individual strains are thus 
characterized by a seven digit MLST sequence type (ST). For a given organism, 
individual STs are interrelated based on an algorithm that identi fi es a parent or 
“founding” ST as that which has the greatest number of single-locus variants (SLV). 
Using online graphic tools (eBURST;   http://saureus.mlst.net/eburst/    ) the STs can be 
further grouped into clonal complexes (CC) where members of the group share a 
minimum of  fi ve or six of the seven allellic designations (Fig.  13.8b ). The highly 
portable nature of such data and availability of online databases has facilitated 
the use of MLST for global epidemiological analysis  [  65,   66  ]  and long-term 

http://www.cdc.gov/ncidod/biotech/strep/emmtype_proportions.htm
http://www.cdc.gov/ncidod/biotech/strep/emmtype_proportions.htm
http://www.mystrains.com/druid
http://www.mystrains.com/druid
http://www.dru-typing.org
http://www.mlst.net/databases/default.asp
http://www.mlst.net/databases/default.asp
http://saureus.mlst.net/eburst/
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(i.e., phylogenetic) investigation of bacterial lineages  [  67–  69  ] . However, the method 
has not found routine clinical application since MLST housekeeping gene sequences 
are too conserved to reliably differentiate the closely related isolates typically 
encountered during short-term outbreaks (e.g., MRSA and MSSA could both have 
the same ST). The time and cost associated with multiple-gene sequencing (a total 
of ca. 3–4 kb for 7 loci) has also been a disincentive to routine use.   

   Other Multi-Locus Approaches: Hybridization-Based Typing 

 As noted earlier, only a small number of loci may be simultaneously queried using 
DNA hybridization with restriction fragment-based typing. However, this is not the 
case with array-based methods where thousands of speci fi c oligonucleotide probes 

  Fig. 13.8    Illustration of MLST with hypothetical  S. aureus  strains A and B depicting the seven 
chromosomal housekeeping genes with an example of allelic differences (e.g., in  yqiL ) constitut-
ing different STs ( a ). An eBURST example of a clonal complex with central founding ST and 
associated SLVs is also shown ( b )       
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(e.g., representing species-speci fi c, antimicrobial resistance, and virulence-associated 
genes) can be anchored to solid surfaces such as glass, plastic, or silicone chips. The 
hybridization pattern of labeled genomic DNA from isolates to be analyzed thus has 
the potential to provide a wealth of information regarding genomic content (e.g., the 
presence or absence of speci fi c genes). Depending on the length of the anchored 
array sequences even minor sequence variations including insertions, deletions, or 
changes in a single base of a sequence (single nucleotide polymorphism, SNP) can 
be detected. The power of this approach has been applied to the characterization of 
a wide variety of clinically relevant organisms  [  3,   70–  72  ] . However, while microar-
rays have the potential for high-throughput genomic analysis their use is not cost-
effective for routine clinical use. In addition, a high level of technical expertise is 
required especially for data analysis which can be complicated by “background” 
noise due to partial hybridization, etc. An interesting variation on microarray analy-
sis, developed by Luminex (Luminex, Austin), involves the use of  fl ow cytometry 
to detect hybridization of test DNA to  fl uorochrome-labeled beads conjugated with 
speci fi c sequence probes  [  73  ] . However, the utility of this suspension-based 
approach for strain typing remains to be thoroughly evaluated.  

   Whole Genome Sequence Typing 

 As noted earlier, the goal of molecular strain typing is epidemiological assessment 
based on the most fundamental molecule of identity in the cell—the bacterial chro-
mosome. Thus, the ability to compare whole genome sequences (WGS) represents the 
ultimate molecular typing approach. While this was impossible with older dideoxy/
chain termination sequencing technology  [  74  ] , newer (i.e., next-generation sequenc-
ing, NGS) methods have made this goal a reality. The technology behind NGS is 
discussed in Chap. 37 of this book and is not considered further here. However, from 
a strain typing standpoint it is important to note that revolutionary developments in 
NGS have made (WGS) possible with benchtop instrumentation such as the Ion 
Torrent PGM (Life Technologies, Guilford) and the MiSeq (Illumina, San Diego). 
Such instrumentation now allows WGS to be completed in only a few hours with 
extensive multifold coverage allowing isolates to be compared down to the level of 
SNPs. However, for NGS, as for previous sequencing iterations, the critical issues 
are throughput, quality, read length and cost. All of these are currently in a state of 
 fl ux as commercial technology improves and positions itself in the scienti fi c market-
place. However, an example of these concerns is seen in the application of WGS to 
the analysis of a recent  E. coli  outbreak in Europe which claimed more than 50 lives. 
One report, based on sequencing with the Ion Torrent PGM, concluded that the out-
break strain and an older 2001 isolate arose from a common ancestor with the current 
outbreak resulting from gene loss  [  75  ] . However, another study, using single-molecule 
real-time (third-generation) DNA sequencing (Paci fi c Biosciences, Menlo Park), 
proposed that the outbreak strain evolved by acquiring the gene for Shiga toxin  [  76  ] . 
These con fl icting reports underscore what will clearly become the greatest need as 
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WGS-based strain typing rapidly develops—bioinformatic data interpretation and 
analysis. Nevertheless, these are exciting “problems” to have and the scienti fi c stage 
is clearly set for additional remarkable developments in this most fundamental 
approach to determine isolate epidemiological interrelationships.  

   Non-Sequence-Based Whole Cell Typing 

 While strain typing is  fi rmly directed toward sequence-based analysis, two whole-
cell methods deserve mention: Raman spectroscopy and MALDI-TOF mass spec-
trometry. Both technologies are not new but are  fi nding renewed emphasis in 
applications for application of strain typing. 

 The SpectraCell RA Bacterial Strain Analyzer (River Diagnostics, Rotterdam) 
employs Raman spectroscopy for isolate characterization. Sir C.V. Raman received 
the Nobel Prize in Physics in 1930 for his discovery of this light-scattering technol-
ogy. Since every molecule in the cell contributes to the generated spectrum of scat-
tered laser light, in principle different bacterial strains would be expected to generate 
different Raman spectra while highly related isolates would not. Thus, the 
SpectraCell system seeks to accomplish strain typing based on the quantitation of 
these spectral measurements. Early reports suggest that the method has promise in 
the typing of problem pathogens such as  P. aeruginosa  and  S. aureus   [  77,   78  ] . 
However, uniformity of pre-analysis bacterial growth conditions as well as method 
reproducibility and discriminatory power are key issues for the future of this 
approach to typing. 

 MALDI-TOF mass spectrometry is considered in detail in Chap. 10 of this book. 
The method has generated intense interest as a means of rapid microbial identi fi cation 
via the detection of unique cellular protein biomarkers. As a related issue, MALDI-
TOF is also being investigated as an approach to bacterial strain typing  [  79–  82  ] . 
However, as with Raman spectroscopy, experimental parameters (e.g., loading of 
the target plate, matrix composition) must be carefully controlled with optimized 
post-processing and analysis of the mass spectra. Nevertheless, as an adjunct to 
microbial identi fi cation, strain typing is a logical goal for MALDI-TOF technology 
which will most certainly see additional re fi nement and application in the future.  

   Strain Typing in the Context of the Epidemiological Window 

 In the  fi nal analysis, regardless of the quantity or quality of strain typing data, the 
issue ultimately comes down to data interpretation. In this context, it is important to 
note that while the term “molecular” epidemiology implies a precise process, this is 
not always the case regardless of the method employed since such investigations 
have an unavoidable context-driven component. A variety of environmental factors 
as well as interaction between the host and infectious agent may all in fl uence the 



256 R.V. Goering

course of disease transmission. In addition, infectious disease issues bene fi ting from 
epidemiological evaluation are not typically given advance warning. Thus, 
identi fi cation of the index patient in a particular outbreak is a common problem in 
epidemiological analysis. Nevertheless, the analysis must be conducted in the con-
text of the available isolate data (i.e., the epidemiological window  [  5,   83  ] ) which, 
unfortunately, does not always include the outbreak source. Thus, the analytical 
process is commonly one of attempting to work backward in time which, depending 
on the available data, may necessitate conclusions based on probabilities rather than 
hard data. For this reason, regardless of the sophistication of the typing approach, 
epidemiological analysis commonly contains an element of educated guess. 
Nevertheless, for most clinical scenarios (i.e., outbreak investigation) the key issue 
is whether or not a series of bacterial isolates are the result of person-to-person 
transfer. At the heart of this question is the concept of signi fi cant difference which 
for chromosomal comparison relates to epidemiologically relevant genomic clock 
speed. In the absence of an index case or isolate, all strain typing methods are chal-
lenged as the opportunity for chromosomal change over time increases the potential 
for genetic distance between epidemiologically related isolates. As illustrated in 
Fig.  13.9 , if one considers a simple reference genome of six characteristics (“x”) 
evolving through two generations with sequential genetic events of unknown com-
plexity (x→y), the resulting second-generation genomes would vary from each 
other by four differences. The potential complexity of the scenario obviously 
increases further over time. These issues underscore the potential dif fi culties one 
may encounter in attempting to discern lineages of infectious agent transmission, 
regardless of the typing method employed. Thus, for an optimum outcome (e.g., in 
an outbreak setting) analysis of strain typing data and its epidemiological relevance 
requires knowledge of (1) the limitations of the typing method, (2) the etiological 
agent (e.g., genomic clock speed), and (3) the clinical setting within which the issue 
is being studied.  

 For the future, it is exciting to consider the advances in strain typing that will 
continue to be made. The persistence and spread of problem pathogens in patient 
populations will obviously continue to occur. Thus, perhaps the most important point 
of all is to emphasize that, more than ever before, strain typing and epidemiological 

  Fig. 13.9    Depiction of the interrelationships between a reference genome containing six charac-
teristics (each designated “x”) with two subsequent generations each experiencing sequential 
single genetic events (x→y). Within and between each generation, the number of resulting genetic 
differences is indicated       
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analysis bene fi t from communication. It is when all interested parties participate 
(e.g., physician, nurse, infection control specialist, laboratory) that the epidemio-
logical educated guess is most likely to be correct, and that most certainly is a key 
goal for the treatment of infectious disease both now and in the future.      
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