
Chapter 8

Protein Dynamics

High-resolution NMR spectroscopy has become a unique and powerful approachwith

atomic resolutionnot only for determining structures of biologicalmacromolecules but

also for characterizing the overall and internal rotational motions in proteins. The

dynamic behavior of proteins at different timescales can be monitored experimen-

tally by different methods because it is difficult, if not impossible, to completely

characterize all motional processes by a single approach. Nuclear spin relaxation

measurement provides information on fast motions on the timescales of picosec-

ond to nanosecond (laboratory frame nuclear spin relaxation experiments), and

slow motions on the timescales of microsecond to millisecond (rotating frame

nuclear spin relaxation measurements), whereas magnetization exchange spectros-

copy deals with motions on the timescales of millisecond to second. This chapter

focuses on the experiments and data analysis for heteronuclear spin relaxation

approaches used to characterize the dynamic processes of proteins in solution.

Key questions to be addressed include the following:

1. What is spectral density?

2. What is correlation time?

3. How can they be interpreted to describe protein dynamics?

4. What types of nuclear interactions can be used for dynamics study?

5. How can these interactions be used to obtained spectral density and correlation

time?

6. How are T1, T2, and NOE measured?

7. How are the relaxation parameters derived from the experimental data?

8. What timescales of protein internal motions can NMR be used to study?

9. How are the results of relaxation parameters presented to illustrate the protein

motions?

10. How are the experiments for protein dynamics measurements set up?
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8.1 Theory of Spin Relaxation in Proteins

The relaxation rates of proteins are affected primarily by dipolar interactions and

chemical shift anisotropy (CSA). For 2H labeled proteins, the 2H quadrupolar interac-

tion also contributes to the relaxation rates. The overall relaxation rates are the linear

combination of all rates of the interactions. The relaxation rates can be expressed in

terms of the combination of spectral density functions (Abragam 1961; Kay et al.

1989). For an isolated XH spin system, the relaxation rate constants of the X spin (15N

or 13C) caused by the dipolar interaction of the X spin with the 1H spin and by

the magnetic shielding arising from the CSA interaction of the X spin are given by:

R1 ¼ RD
1 þ RCSA

1

¼ d2

4
½6JðoH þ oXÞ þ JðoH � oXÞ þ 3JðoXÞ� þ c2JðoXÞ (8.1)

R2 ¼ RD
2 þ RCSA

2

¼ d2

8
½6JðoH þ oXÞ þ 6JðoHÞ þ JðoH � oXÞ þ 3JðoXÞ þ 4Jð0Þ�

þ c2

6
½3JðoXÞ þ 4Jð0Þ� (8.2)

sXH ¼ d2

4
½6JðoH þ oXÞ � JðoH � oXÞ� (8.3)

in which R1, R2, and sXH are the rate constants of spin–lattice relaxation, spin–spin

relaxation, and cross-relaxation, respectively, which are dependent on the spectral

density functions evaluated at five frequencies (oH ¼ oX, oH, oH � oX, oX, and

0); d ¼ m0�hgXgHhr�3
XHi=8p; m0 is the permeability of vacuum (4p � 10�7 T mA); �h

is reduced Plank’s constant; rXH is the XH bond length; gX and gH are the

gyromagnetic ratios; c ¼ DsoX=
ffiffiffi
3

p
; Ds is the CSA of the X spin with the

assumption that the chemical shift tensor is axially symmetrical, which has been

demonstrated to be valid for peptide bond 15N with Ds ¼ �160 to �170 ppm

(Hiyama et al. 1988), Ds ¼ 25 � 35 ppm for peptide carbonyl 13C and Ds ¼
30 ppm for 13Ca (Ye et al. 1993). The R1 and R2 rate constants can be directly

determined experimentally (R1 ¼ 1/T1 and R2 ¼ 1/T2), whereas sXH is

determined from stead-state {1H}-X NOE via the relationship (Kay et al. 1989;
Yamazaki et al. 1994):

sXH ¼ d2

4
½6JðoH þ oXÞ � JðoH � oXÞ� ¼ gX

gH
R1ðNOE� 1Þ (8.4)

which can be recast to:

NOE ¼ 1þ sXH
R1

gX
gH

¼ 1þ d2

4R1

gX
gH

½6JðoH þ oXÞ � JðoH � oXÞ� (8.5)
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Without any assumptions, the spectral density functions at the five frequencies

cannot be determined from the three experimentally determined relaxation rate

constants by measuring T1, T2, and NOE. Assumptions must be made so that only

three unknowns need to be determined from the three known values.

There are various mathematical models for mapping the spectral density

functions (Wittebort et al. 1978; London 1980), of which the model-free analysis

is widely used to obtain information about site-specific internal motions of proteins

(Lipari and Szabo 1982a, b; Clore et al. 1990a, b; Dayie et al. 1996; Palmer 2001).

Rather than fitting the experimental data to any specific physical models, the

method depends on the mathematical analysis of spectral density functions by

assuming two types of motions contributing to the dynamic process for isotropically

tumbling proteins: overall tumbling of the protein as a whole and internal dynamics

for the heteronuclear bonds. Therefore, the analysis characterizes the amplitude and

rate of internal dynamics for individual chemical bond vectors (e.g., peptide NH

bond) via model-free order parameters S (or the generalized order parameter), the

overall rotational correlation time tm (or global correlation time) and effective

correlation time te according to the relationship:

JðoÞ ¼ 2

5

S2tm
1þ ðotmÞ2

þ ð1� S2Þt
1þ ðotÞ2

" #
(8.6)

in which t is given by

t ¼ 1

tm
þ 1

te

� ��1

(8.7)

The effective correlation time te is the internal correlation time for motions of a

bond vector in a molecular frame. The squared generalized order parameter S2

measures the degree of spatial restriction of the bond vector in a molecular frame,

which provides information about the angular amplitude of the internal motions of

bond vectors. If the bond vector diffuses in a cone with an angle y defined by the

diffusion tensor and the equilibrium orientation of the bond vector, S2 is highly

sensitive to the cone angle in the range from 0� to 75�, and decreases dramatically

as the cone angle increases (Ishima and Torchia 2000; Fig. 8.1). The value of y
may vary from 1 when the bond is rigid to 0 when the internal motion is completely

isotropic. The overall rotational correlation time tm characterizes the molecular

tumbling whereas internal correlation time te describes the internal dynamics.

The model-free formalism has been extended to include internal motions both on a

fast timescale and slow timescale (Clore et al. 1990a, b; Farrow et al. 1994). The

spectral density function described by the extendedmodel-free formalism is given by:

JðoÞ ¼ 2

5

S2tm
1þ ðotmÞ2

þ ðS2f � S2Þt
1þ ðotÞ2

" #
(8.8)
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in which

t ¼ 1

tm
þ 1

ts

� ��1

(8.9)

and ts is the internal correlation time for slow motion, S2, the squared generalized

order parameter ¼ S2f S
2
s, and S

2
f and S

2
s are the squared generalized order parameters

characterizing the fast and slow internal motions, respectively.

The squared generalized order parameter S2 and correlation times tm, te, tf,
and ts can be determined by two different types of approaches. The first type of

approach relies on valid assumptions to simply the equations for spectral density

functions, including the R2/R1 ratio method and the constant high-frequency

spectral density method. The second type is based on the optimization of fitting

the data to obtain the dynamic parameters, which tends to generate quantitative

analysis. From the expressions for R2 and R1, the ratio R2/R1 is given by (Kay

et al. 1989; Mayo et al. 2000):

R2

R1

¼ d2½6JðoH þ oXÞ þ 6JðoHÞ þ JðoH � oXÞ� þ ðd2 þ ð4c2=3ÞÞ½3JðoXÞ þ 4Jð0Þ�
2d2½6JðoH þ oXÞ þ JðoH � oXÞ þ 3JðoXÞ� þ c2JðoXÞ

(8.10)

R1 and R2 are the relaxation rates for each backbone 15N spin. The R2/R1 ratio

method assumes that internal motions of bond vectors are sufficiently faster than

overall tumbling (te � 200 ps) and have low amplitude (S2 � 0.5) so that the ratio

of 15N R2 and R1 relaxation rate constants is essentially independent of the internal

correlation time te. Since te is relatively small based on the assumption, the spectral

Fig. 8.1 Model-free parameters for characterizing dynamics of proteins. (a) Relationship of bond

vector m and the angular amplitude of the internal motion of the bond with respect to its

equilibrium position, defined by y. (b) The value of the squared generalized order parameter S2

changes as a function of y described by (8.26) for diffusion in a cone as shown in (a) (reproduced

with permission from Ishima and Torchia (2000), Copyright # 2000 Nature Publishing Group)
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density function J(o) primarily relies only on single correlation time—overall

correlation time tm, which simplifies the expression to the form of:

JðoÞ ¼ 2

5

S2tm
1þ ðotmÞ2

(8.11)

By replacing J(o) in (8.10) with (8.11), the R2/R1 ratio is independent of S
2 and the

overall correlation time tm can be determined via computer minimization of the

deviation of the following equation using all observed values of the R2/R1 ratio at

different static magnetic field strengths for each backbone 15N site:

tm ¼ 1

oN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6R2

R1

� 17

r
(8.12)

The R2 and R1 constants are sensitive to motions on different timescales. R1 is

sensitive to the dynamics on the timescale of picosecond to microsecond, whereas

R2 is sensitive to the motions on both the picosecond to microsecond and micro-

second to millisecond timescales. For the 15N spins that have a R2/R1 ratio below

the average value by a difference larger than the standard deviation, local confor-

mational averaging at a rate comparable to the chemical shift difference between

the conformational forms is assumed to be responsible for the shortening of the T2
relaxation. For the 15N sites at which the R2/R1 ratio is above the average value by a

difference larger than the standard deviation, the prolongation of T1 is caused by a

motion on a timescale comparable to tm. The squared generalized order parameter

S2 for an individual site can in turn be obtained using the expression either for R1 or

R2 ((8.1) or (8.2)) with the average value of tm. In practice, S2 is obtained using R1

and NOE (8.1) without T2 relaxation data because the measured T2 may contain

contributions from other mechanisms, such as slow motions, scalar relaxation,

chemical exchange, antiphase magnetization, pulse imperfection, off-resonance

effect of the CPMG pulse train, cross-correlation of dipolar/CSA interactions, etc.

Another simplification method is to approximate the spectral density functions

in (8.1)–(8.3) to the first order as a single term aJ(bo), in which a and b are

constants (Farrow et al. 1995; Ishima and Nagayama 1995a, b), by assuming that it

can be described by a linear combination of the contributions from overall rotation

and internal motions. The spectral density function is given by:

JðoÞ ¼ l1
o2

þ l2 (8.13)

in which the first term and second term are the contributions from overall rotation

and internal motions, respectively. The rate constants consisting of the linear

combination of the five spectral densities may then be simplified as:

R1 ¼ d2

4
½7Jðb1oHÞ þ 3JðoXÞ� þ c2JðoXÞ (8.14)
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R2 ¼ d2

8
½13Jðb2oHÞ þ 3JðoXÞ þ 4Jð0Þ� þ c2

6
½3JðoXÞ þ 4Jð0Þ� (8.15)

NOE ¼ 1þ 5d2

4R1

gX
gH

Jðb3oHÞ (8.16)

in which b1, b2, and b3 can be obtained using the relationships (Farrow et al. 1995):

6

ðoH þ oXÞ2
þ 1

ðoH � oXÞ2
¼ 7

ðb1oXÞ2
(8.17)

6

ðoH þ oXÞ2
þ 6

o2
H

þ 1

ðoH � oXÞ2
¼ 13

ðb2oXÞ2
(8.18)

6

ðoH þ oXÞ2
� 1

ðoH � oXÞ2
¼ 5

ðb3oHÞ2
(8.19)

The equations yield b1 ¼ 0.921, b2 ¼ 0.955, and b3 ¼ 0.87 for 15N spin relaxa-

tion, and b1 ¼ 1.12, b2 ¼ 1.06, and b3 ¼ 1.56 for 13C spin relaxation. The method

does not assume that the molecular tumbling is isotropic. The spectral density

functions are first obtained from experimental data of T1, T2, and NOE, and then

used to determine the squared generalized order parameter and correlation times.

For backbone 15N spins, the value of J(0.78oH) is calculated directly from the

observed values of T1 and NOE using the equation:

Jð0:87oHÞ ¼ 4sNH
5d2

(8.20)

in which d is defined as in (8.1) and sNH is given in (8.4).

The spectral density functions for the other four frequencies are extracted either

by assuming J(o) / 1/o2 in the range of oH � oN, or from the values of J(0.78o)
obtained at different field strengths. When J(oH) / 1/oH

2, J(bioH) can be

estimated according to (Farrow et al. 1995)

JðbioHÞ 	 0:87

bi

� �2

Jð0:87oHÞ (8.21)

in which i ¼ 1, 2 or 3. Therefore, J(o) at 0 and oN are given by:

Jð0Þ ¼ 6R2 � 3R1 � 2:72sNH
3d2 þ 4c2

(8.22)

JðoNÞ ¼ 4R1 � 5sNH
3d2 þ 4c2

(8.23)
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If values of J(0.78oH) obtained at different field strengths are employed, J(bioH)

can be estimated from:

JðbioHÞ 	 Jð0:87oHÞ � ðbi � 0:87ÞoH

Jð0:87oHÞ � Jð0:87o0
HÞ

0:87ðoH � o0
HÞ (8.24)

in which o0
H is the proton Larmor frequency at which Jð0:78o0

HÞ is obtained and

o0
H is different than oH.

The second type of method utilizes extensive optimization of data fitting glob-

ally or locally for all peptide residues by minimizing an error function to obtain the

overall correlation time tm (Dellwo and Wand 1989; Palmer et al. 1991; Mandel

et al. 1995). For global fitting, the global error function may have a form of:

w2 ¼
XM
j¼1

Robs
1j � Rcal

1j

lR1j

 !2
þ Robs

2j � Rcal
2j

lR2j

 !2
þ NOEobs

j � NOEcal
j

lNOEj

 !22
4

3
5 (8.25)

in whichM is the number of residues for which the relaxation parameters have been

measured; l is the standard deviation in R1, R2 or NOE for residue j; the superscripts
obs and cal denote the observed and calculated relaxation parameters, respectively.

The minimization can also be done for a local error function with M ¼ 1 for an

individual residue. In either case, an array of presumed values of correlation time is

selected for fitting the parameters (S2 and te) for internal motion. The correlation

time tm is identified when the sum of the deviations between the observed and

calculated relaxation parameters has reached a minimum. Using the data observed

at different field strengths reduces the fitting error and improves the quality of the

extracted dynamic parameters.

The squared generalized order parameter, S2, is the measure of the orientational

distribution of internal motions by the bond vector in the molecular frame. For the

model describing the internal motion of bond vector as a restricted diffusion in a

cone, the quantity S2 is given by (Lipari and Szabo 1982a, b):

S2 ¼ cos yð1þ cos yÞ
2

� �2
(8.26)

in which y is the angle between the bond vector and the diffusion cone as defined in
Fig. 8.1a, which characterizes the angular amplitude of the internal motion. When y
is equal to zero, the motion of the vector is restricted to the fixed orientations and S2

is unity, the maximum value. As y increases, S2 decreases rapidly and the motion of

the bond vector becomes less restricted. The motion becomes completely isotropic

when y is 75�, leading to an S2 of almost zero.

In addition to S2, the internal correlation time te also is an important quantity for

characterizing the internal motions. Although quantitative interpretation of te relies
on how realistic the model is to describe the motion, the determined value provides a

8.1 Theory of Spin Relaxation in Proteins 295



qualitative insight about the rate of internal motion. However, as (8.11) (J(o) / S2,
tm, te) indicates, te can precisely be characterized only over a very narrow frequency

range. In general, the accurate determination of te based on the equation is limited in

the range of >30 ps (slower than 30 ps) and 
tm (much faster than tm; Palmer

2001). The accuracy of te determination can be significantly increased by applying

the relaxation data obtained for additional nuclei besides 15N, such as 13C and/or 2H.

For quadrupolar interaction of spin-1 nuclei such as 2H bound to 13C, the

quadrupolar relaxation is much more efficient than the dipolar interaction and

hence the relaxation rate constants contain only quadrupolar relaxation and are

expressed by (Wittebort and Szabo 1978):

R1 ¼
3C2

Q

16
½2Jð2oDÞ þ JðoDÞ� (8.27)

R2 ¼ 3

32
C2
Q½2Jð2oDÞ þ 5JðoDÞ þ 3Jð0Þ� (8.28)

in which CQ ¼ e2qQ/�h is the quadrupolar coupling constant, e is the charge of an

electron, q is the principal value of the electric field gradient tensor, Q is the nuclear

quadrupolar moment, oD is the 2H frequency, and J(0), J(oD) and J(2oD) corre-

spond to the spectral density function at the zero-, single- and double-quantum 2H

frequencies. Generally, the assumption that the principal axis of the electric field

gradient tensor is collinear with the C–2H bond vector is valid except for methyl

groups.

Cross-correlation between different nuclear interactions may potentially compli-

cate the determination of molecular dynamics based on spin relaxation measurement.

For an isolated HX spin system, the relaxation rates including cross-correlation (or

cross correlated relaxation) of dipolar and CSA interactions are different for the

downfield and upfield lines of an 15N or 13C doublet (Goldman 1984; Bull 1992):

Rþ ¼ Rþ Rc and R� ¼ R� Rc (8.29)

in which R� are the rate constants for the upfield (right) and downfield (left) line,

respectively, R is defined as in (8.1) and (8.2), and Rc is the rate from the cross-

correlation between the two interactions. The influence of the cross-correlation on

the spin relaxation is usually removed during spin relaxation rate measurements by

applying a continuous inversion of the proton resonance during the relaxation

periods. However, this interaction provides useful information in such cases as

when the relative orientation of the CSA tensor with respect to the dipolar interac-

tion or bond vector is known. For an axially symmetric CSA tensor, the rate

constants from cross-correlation with the dipolar interaction can be described in

terms of:

RC
1
¼ �

ffiffiffi
3

p
dcP2ðcos yÞJðoXÞ (8.30)
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RC
2 ¼ �

ffiffiffi
3

p

6
dcP2ðcos yÞ½3JðoXÞ þ 4Jð0Þ� (8.31)

in which RC
1

and RC
2 are the longitudinal and transverse relaxation rates of the

cross-correlation, respectively, c and d are the constants defined in (8.1), P2(x)
¼ (3x2 � 1)/2 is the second Legendre polynomial, and y is the angle between the

HX bond vector and the symmetric axis of the CSA tensor. By measuring R1 and R2

in the absence and presence of 1H decoupling during the relaxation period T, the
contribution from the cross-correlation of the heteronuclear dipole and CSA

interactions can be obtained according to the expression for R+ or R�.
The spin–spin relaxation can also be affected by additional internal motions

induced by chemical exchange processes such as those arising from microsecond to

millisecond exchange of spins between magnetic environments during the d delays

of a CPMG sequence. Consequently, the J(0) determined according to (8.30) and

(8.31) or (8.22) may not be accurate. The exchange rate constant Rex was proposed

to add to the expression of transverse relaxation rate R2:

R2 ¼ RD
2 þ RCSA

2 þ Rex (8.32)

The exchange rate can be determined by its magnetic field dependence with the

assumption Rex ¼ lexB2
0, in which lex is a constant (Peng and Wagner 1995; Phan

et al. 1996; Kroenke et al. 1999):

R2 � 1

2
R1 ¼ d2

4
½3JðoHÞ þ 2Jð0Þ� þ 2

9
g2XDs

2Jð0Þ þ lex

� �
B2
0 (8.33)

By fitting the relaxation data obtained at different field strengths vs. the squared

static field strengthB2
0, Rex as well as J(0) can be calculated from the intercept since

J(oH) is determined from tm and te by the methods described previously. Alterna-

tively, the transverse rates of the dipole/CSA cross-correlation, which are not

affected by chemical exchange processes, can be used to directly identify the

contribution to R2 arising from chemical exchange effects. The spectral density

function J(0) can be represented in terms of RC
1 and RC

2 :

Jð0Þ ¼ � 2
ffiffiffi
3

p

dcP2ðcos yÞ RC
2 � 1

2
RC
1

� �
(8.34)

Once J(0) is obtained, Rex can be determined from the slope of fitting (R2 � ½R1)

vs. B2
0 in (8.33).

For anisotropically tumbling proteins with axially symmetric rotational diffusion

tensors, the model-free spectral density functions are given by (Br€uschweiler et al.
1995):

JðoÞ ¼ 2

5

X2
j¼0

Aj
S2tj

1þ ðotjÞ2
þ ð1� S2Þt0j
1þ ðot0jÞ2

" #
(8.35)
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in which 1=t0j ¼ ð1=tjÞ þ ð1=teÞ ; 1/tj ¼ 6D⊥ � j2(D⊥ � Dk); D⊥ and Dk are

the perpendicular and parallel components of the axially symmetric diffusion tensor;

A0 ¼ P2ðcos yÞ=2; A1 ¼ 3cos2ysin2y; A2 ¼ ð3sin4yÞ=4; and y is the angle between

the average orientation of the bond vector and the parallel component of the axially

symmetric diffusion tensor (Fig. 8.1a), which is obtained from the known structure of

the protein. For isotropic rotational motions, D⊥ ¼ Dk. Then, tj ¼ tm and t0j ¼ t,
and

P
Aj ¼ 1. Equation (8.35) reduces to themodel-free expression for isotropically

tumbling proteins.

8.2 Experiments for Measurement of Relaxation Parameters

The measurement of spin relaxation rates is achieved by carrying out a series of 2D

heteronuclear HSQC- or HMQC-type experiments. The pulse sequences for T1 and
T2 relaxation measurement include a relaxation period inserted either before or after

the t1 evolution period, whereas for heteronuclear NOE measurement, the cross-

relaxation period (saturation period) is incorporated into the preparation period in

the 2D steady-state NOE sequence.

8.2.1 T1 Measurement

8.2.1.1 Water Flip-Back Sensitivity-Enhanced T1 HSQC

The inversion technique described in Chap. 1 is widely used to measure the

longitudinal relaxation time T1. The scheme (Fig. 8.2a, Farrow et al. 1994; Kay

et al. 1992) consists of a 180� inversion pulse that inverts the heteronuclear

magnetization Sz to �Sz, a relaxation period T during which the magnetization

relaxes along the z axis, and a 90� pulse to create observable transverse magnetiza-

tion for detection. For T1 measurement, this relaxation block is inserted to the

seHSQC sequence before the t1 evolution time. The HSQC is slightly different than

the 15N seHSQC, in which double refocused INEPT-type sequences are utilized to

transfer the magnetization from the directly bound proton to the heteronucleus and

back to the proton for observation via the reversed refocused-INEPT pathway.

In-phase magnetization is generated before the relaxation period rather than the

antiphase coherence created in the conventional seHSQC sequence. The selective

water flip-back pulse is used to ensure that the water magnetization remains along

the z axis during the experiment so that saturation transfer is minimized. 1H

decoupling consisting of 180� pulses is used during the relaxation period T to

eliminate effects of the cross-correlation between dipolar and CSA interactions.

The decoupling pulse train should not perturb the longitudinal water magnetization,

and consists of shaped selective 180� pulses such as cosine-modulated 180� pulses.
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Fig. 8.2 Pulse sequences for spin relaxation measurements of 15N (a) T1, (b) T2 relaxation times

and (c) NOE value with sensitivity enhancement and gradient coherence selection. R1 ¼ 1/T1 and
R2 ¼ 1/T2. In all experiments, narrow and wide bars represent 90� and 180� pulses, respectively;
water flip-back selective pulses are shown in rounded small bars which are 1.8-ms rectangular
pulses. Unless otherwise specified, all pulses have x phase. The coherence selection is achieved by
the black gradients and k ¼ �1 and stored in different memory locations. For PEP sensitivity

enhancement two FIDs are recorded by inverting the phase f4 and the sign of k in second

experiment for every t1. The T1 and T2 relaxation data are recorded by a series of experiments

with different relaxation periods T. In all experiments, the delay t is set to 2.25 ms, t1 to 2.75 ms,

t01 ¼ t1 þ 2pw in which pw is 1H 90� pulse length, t001 ¼ t1 þ ð2=pÞpwN in which pwN is 15N 90�

pulse length, and d2 to 0.5 ms. Recycle delays are 1.5 s for T1 and T2 experiments and 5 s for NOE

and NONOE experiments. For the T1 experiment (a) the gradient pulses are applied as g1 ¼ 1 ms,

5 G cm�1, g2 ¼ 0.5 ms, 4 G cm�1, g3 ¼ 2 ms, 10 G cm�1, g4 ¼ 0.5 ms, 8 G cm�1, g5 ¼ 1 ms,

10 G cm�1, g6 ¼ 1.25 ms, 30 G cm�1, g7 ¼ g8 ¼ 0.5 ms, 4 G cm�1, g9 ¼ 0.125, 27.8 G cm�1.

The phase cycle is f1 ¼ x,�x, f2 ¼ y, +States–TPPI, f3 ¼ 2(x), 2(y), 2(�x), 2(�y), f4 ¼ x, and
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The relaxation-encoded 15N magnetization consequently evolves with the scalar

coupling being refocused during the t1 evolution period. During the “back” transfer
pathway, the relaxation-encoded frequency-labeled 15N magnetization is trans-

ferred back to the directly bound proton and a PEP sequence is used to increase

the sensitivity by as much as a factor of
ffiffiffi
2

p
compared to the unenhanced spectrum.

Quadrature detection in the F1 dimension is obtained by shifting the phases of

f2 and the receiver for each FID using the States–TPPI method (see Sect. 4.10.2).

The 15N 90� pulse combined with the gradient at the beginning of the pulse

sequence is used to ensure that the initial magnetization originates only from

amide proton spins. The magnetization transfer during the experiment can be

described in terms of product operators:

Hz�����!
p
2

� �
Hx

� Hy��������������������������!
t ! pðHxþNxÞ ! t ! p

2

� �
ðHyþNxÞ

�2HzNy (8.36)

������������������!t1 ! pðHx þNxÞ ! t1
Nx������!

p
2

� �
Ny

��Nz�!
T � xNz (8.37)

The factor x is the T dependence of the magnetization (signal amplitude), which

is given by:

x ¼ 1� 2e�T=T1 ¼ 1� 2e�TR1 (8.38)

The 1H–15N scalar coupling is decoupled during the relaxation period T. After
being brought to the transverse plane by the following 90� 15N pulse, the 15N

magnetization evolves while the heteronuclear scalar coupling is decoupled during

the t1 period. The 15N magnetization is transferred back to proton during the

evolution of 2t1 period.

�xNz����!
p
2

� �
Nx

xNy

�!t1 xNy cos ðONt1Þ � xNx sin ðONt1Þ (8.39)

Fig. 8.2 (continued) receiver phase frec ¼ x, �x, �x, x, +States–TPPI. The T2 experiment (b)

uses the same levels and durations of the gradient pulses as used in the T1 experiment (a), and the

phase cycle is the same as in (a). During CPMG pulse trains, the 15N 180� pulses are applied every
0.9 ms and 1H 180� pulses are applied every 4 ms. The 1H 180� pulses are calibrated to ~40 ms
corresponding to a field of 3.4 kHz to avoid sample heating problems. (c) The saturation in both

NOE and NONOE experiments is achieved by applying 1H 120� pulses every 5 ms for 3 s. The

gradient pulses are used as g1 ¼ 3ms,�20 G cm�1, g2 ¼ 1.25 ms, 30 G cm�1, g3 ¼ g4 ¼ 0.5 ms,

4 G cm�1, g5 ¼ 0.125 ms, 27.8 G cm�1. The phase cycle is f2 ¼ y + States–TPPI, f3 ¼ x, y,�x,
�y, f4 ¼ x, and receiver phase frec ¼ x, �x, +States–TPPI. The saturation frequency is placed

off-resonance for NONOE and switched back to on-resonance before the first 1H 180� pulse. The
phase of the last 1H 90� pulse is used to ensure the water magnetization is along the z axis (not the
�z axis) immediately before acquisition (Farrow et al. 1994)

300 8 Protein Dynamics

http://dx.doi.org/10.1007/978-1-4614-3964-6_4#Sec33


�!2t1 � x2HzNx cos ðONt1Þ � x2HzNy sin ðONt1Þ

Both components are retained to generate two time domain data sets by the PEP

sequence:

������������!
p
2

� �
ðHx þNxÞ

x2HyNx cos ðONt1Þ þ x2HyNz sin ðONt1Þ
������������!t!pðHx þNxÞ!t

x2HyNx cos ðONt1Þ � xHx sin ðONt1Þ

�����������!
p
2

� �
ðHy þNyÞ

� x2HyNz cos ðONt1Þ � xHz sin ðONt1Þ

��������������������!
t!pðHx þNxÞ!t! p

2

� �
Hx

xHx cos ðONt1Þ þ xHy sin ðONt1Þ (8.40)

The second FID is obtained by inverting both phase f and the sign of gradient

factor k:

xHx cos ðONt1Þ � xHy sin ðONt1Þ (8.41)

The two FIDs are recorded for a given t1 value and stored in separate memory

locations. The data are manipulated as described in Chap. 5 for the seHSQC to

obtain pure phase data, which are processed using the States–TPPI method.

8.2.1.2 Experiment Setup and Data Processing

In addition to the setup procedure common to 2D heteronuclear experiments such as

90� pulse calibrations for transmitter and decoupler and spectral window selection,

the typical setup for heteronuclear T1 relaxation measurement includes a recycle

delay set to 1.5–2.0 s; an array of 8–12 T delays ranging from 5 ms to 1.5 s; for 15N,

the delay t for the INEPT sequence set to 2.25 ms [<1/(4JXH) ¼ 2.75 ms], t1 set to
2.75 ms [¼1/(4JXH)], t01 and t001 are set according to the figure legend (Fig. 8.2) and
the delay d2 is usually set to 0.5 ms. During period T, 180� shaped pulses selected for
amide protons (or 120� hard 1H pulses) are spaced at 5-ms intervals to eliminate the

effects of dipole/CSA cross-correlation and cross-relaxation. The gradient pulses are

set to 2 ms with ~10 G cm�1 for residual water suppression (g3), 1 and 0.1 ms with

~30 G cm�1 for coherence dephase (g6) and refocus (g9), respectively, and 0.5 ms

with 4–8 G cm�1 for all other gradients. The carrier frequency is set to the water

resonance for 1H and 118 ppm for the 15N dimension. The data are acquired with 128

complex t1 (15N) increments and 1,024 complex t2 (1H) points, with the same

spectral windows in ppm for 1H (~15 ppm) and 15N (~35 ppm) in all data sets.

Prior to Fourier transformation, it is necessary to rearrange the data according to

the procedure described in Sect. 5.1.3 (PEP seHSQC). The arranged PEP data can be
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processed separately as States–TPPI data and then the resulting in spectra combined

together, or the data sets can be combined first and then processed in the conven-

tional manner for States–TPPI. Prior to Fourier transformation, the FIDs are first

multiplied by a 90�-shifted squared sine-bell or Gaussian window function and zero-

filled twice to yield a digital resolution better than 2 Hz/point. A 90�-shifted squared
sine-bell window function is applied to the indirect 15N dimension. The data are

zero-filled twice before the second Fourier transformation is applied. In general,

linear prediction to improve digital resolution of the indirect dimension is not used

since it may introduce a deviation from the real value of the T1 relaxation rate. Each
of the series of spectra is phase-corrected after being Fourier transformed: phase of
1H dimension is adjusted according to the phase of the first FID of the shuffled data,

whereas the phase of the 15N dimension is corrected using two F1 slices. The

amplitudes of the cross-peaks are measured using either peak volume integrals or

intensities if signal overlapping becomes severe. The intensity or volume integral

Ij(T) of the cross-peak for residue j is measured for all spectra with different values of

T. The longitudinal relaxation time constant is calculated by fitting (1.83b) in Chap.

1 for all Ij(T) values with the approximation that I0j ¼ Ij(1.5 s).

8.2.2 T2 and T1r Measurements

8.2.2.1 Sensitivity-Enhanced HSQC for T2 and T1r Measurements

The sequence for T2 measurement (Fig. 8.2b, Farrow et al. 1994; Messerlie et al.

1989) is identical to the sequence used for T1 measurement if the inversion scheme

is replaced with a CPMG or spin lock sequence (Carr and Purcell 1954; Meiboom

and Gill 1958). Rather than decaying along the longitudinal direction, the

heteronuclear magnetization relaxes on the transverse plane during the T period

of the T2 pulse sequence. In addition to spin–spin interactions, the inhomogeneity of

the magnetic field also contributes to the transverse relaxation. To remove the effect

of field inhomogeneity, a CPMG spin echo sequence, which was developed by Carr

and Purcell, and by Meiboom and Gill, is frequently applied in the measurement of

transverse relaxation. In the CPMG scheme, the heteronuclear magnetization Sx
evolves during a period e under the interaction of the chemical shift and field

inhomogeneity. After the 180� 15N pulse reverses the direction of precession of

the nuclear spins, the evolution due to the chemical shift and field inhomogeneity is

refocused during the second e period, provided that the spins being refocused

remain in the identical magnetic field during both e periods. The resulting trans-

verse magnetization at the end of an even number of echoes in a CPMG pulse train

has an amplitude decayed according to:

I ¼ I0e
�TR2 (8.42)
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in which T ¼ 2n(2e + pw180�), n is an integer and pw180� is the pulse length of a

180� 15N pulse in the CPMG pulse train.

In the R1r experiment, the transverse magnetization is locked in the rotating

frame by applying a spin lock train or continuous radio frequency field (Peng et al.

1991; Desvaux and Berthault 1999). The relaxation rate constant of the magnetiza-

tion along the effective field direction in the rotating frame is called R1r. The R1r

measurement depends on such experimental parameters as the amplitudes of the

applied B1 field, o1, and the effective field in the rotating frame, oe, and the offset

frequency O, o2
e ¼ O2 þ o2

1 . In the rotating frame, the tilt angle of the effective

field from the RF field is given by:

tan y ¼ o1

O
(8.43)

The measured R1r is the combination of R1 and R2 via the dependence of the tilt

angle:

R1r ¼ R2sin
2yþ R1cos

2y (8.44)

For an on-resonance spin lock field, y is close to 90� for all resonances and the

effective field is along the applied B1 field (Meiboom 1961; Szyperski et al. 1993).

The measured R1r represents the transverse relaxation rate constant R2. For off-

resonance R1r experiment (Akke and Palmer 1996; Zinn-Justin et al. 1997; Mulder

et al. 1998), the RF transmitter frequency is placed far enough off-resonance so that

y in (8.43) is less than 70�. A pair of adiabatic ramp pulses is used to align the

magnetization along the spin lock axis and rotate it back to the original direction.

The magnetization at the beginning and the end of spin lock period is along the z
axis. A continuous and small increase in the amplitude of the RF field causes the

magnetization to follow the effective field in an adiabatic manner, resulting in a

rotation, instead of projection, of the magnetization. At the end of the spin lock, the

magnetization follows the effective field, by decreasing the amplitude of the B1

field, back to the z axis.
In both the R2 and R1r experiments, the two PEP FIDs obtained in the same

manner to those obtained in the T1 seHSQC sequence are given by:

xHx cos ðONt1Þ þ xHy sinðONt1Þ

xHx cos ðONt1Þ � xHy sinðONt1Þ (8.45)

in which x ¼ e�TR2. The two FIDs are recorded for each given t1 value and stored in
separate memory locations. The data are treated as described in Sect. 5.1.3 for the

PEP seHSQC to obtain pure phase data, which are processed using the States–TPPI

method.
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Analogous to the T1 measurement, the contribution to the T2 from cross-

correlation of dipole/CSA is required to be minimized during the CPMG spin

echo. The cross-correlation effect can be effectively removed by the combination

of applying 180� 15N pulses every 0.9 ms (e ¼ 0.45 ms) during the entire CPMG

pulse train and applying 180� 1H pulse centered in the CPMG pulse train. An

alternative way is to apply 180� 15N pulses every 0.9 ms and 180� 1H pulses every

4 ms during the CPMG pulse train.

8.2.2.2 Experiment Setup and Data Processing

The setup procedure for the heteronuclear T2 relaxation measurement is primarily

identical to the procedure for T1 relaxation measurement except for the setup of

parameters for the relaxation period T. The number of echo cycles must be chosen as

2n, in which n is an integer to ensure that the magnetization has same sign after the

echo period. An array of 8–12 relaxation delays ranging from 5 to 150ms is typically

used. The time of the CPMG pulse train is set to be shorter than 150 ms to avoid

sample heating problems caused by the pulse train. For the same reason, the 15N RF

field strength is set to less than 6 kHz, corresponding to a 90� 15N pulse length of

longer than 40 ms. As described previously, in order to remove the cross-correlation

effect, a combination of 180� 15N pulses every 0.9 ms during the entire CPMG pulse

train and 180� 1H pulses centered in the CPMG pulse train is applied. A different

approach is also often used by applying 180� 15N pulses every 0.9 ms and applying

180� (or 120�) 1H pulses every 4–5 ms during the CPMG pulse train. The gradient

pulse length and amplitude are the same as used in the T1 experiment.

In the R1r experiment, the 15N spin lock replaces the CPMG spin echo in the T2
experiment, and is applied with a continuous RF 15N pulse with a field strength less

than 3.5 kHz to minimize sample heating problems. The sample heating during the

spin lock can also be minimized by using a predelay time longer than 3 s. During

the spin lock, 180� 1H pulses spaced at 5-ms intervals are applied to eliminate the

effects of dipole/CSA cross-correlation and cross-relaxation.

The data are processed in the same procedure as described for T1 measurement

after the rearrangement of the data according the procedure for PEP FIDs. Fitting

for T1r values is required for the correction of the resonance offset effect (Peng and
Wagner 1994).

8.2.3 Heteronuclear NOE Measurement

8.2.3.1 Heteronuclear NOE Experiment

The heteronuclear NOE is determined from the change in intensity of the NMR

signal of heteronucleus X when the equilibrium magnetization of protons in the

vicinity is perturbed by saturation in experiments such as the transient NOE or
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steady-state NOE. The pulse sequence of a steady-state heteronuclear NOE experi-

ment shown in Fig. 8.2c utilizes a pulse train to saturate proton equilibrium

magnetization prior to the heteronuclear magnetization being excited. The first

90� 1H pulse combined with the gradient is used to ensure that the 15N magnetiza-

tion is the only initial magnetization of the experiment. After the first 90� X pulse,

the chemical shift of the heteronucleus X evolves during t1 and the heteronuclear

magnetization is transferred to proton with decoupling of the scalar coupling JXH.
In the final stage of the pulse sequence, the two orthogonal transverse magnetiza-

tion components generated during t1 are refocused by the PEP sequence for

simultaneous detection by inverting the phase of f4 and sign of k. The two FIDs

are recorded and stored in separated memory locations. Quadrature detection in the

F1 dimension is obtained by shifting the phases of f2 and the receiver for each FID

in a States–TPPI manner (see Sect. 4.10.2). To measure the NOE, a pair of

experiments is recorded with the saturation (NOE) and without the saturation

(NONOE) of the protons bound to the heteronuclei. The intensity of the

heteronuclear NOE can be obtained from the longitudinal magnetization and

relaxation rates of the heteronucleus X and proton H, which is the ratio of signal

intensities between the NOE and NONOE (unsaturation) spectra (Goldman 1998:

Farrow et al. 1994):

Isat ¼ hXzieq þ
sXH
R1

hHzieq ¼ Iunsat 1þ sXH
R1

gH
gX

� �
(8.46)

in which Isat and Iunsat represent the measured intensities of a resonance in the

presence and absence of proton saturation, respectively; sXH is the rate constant of

cross-relaxation; gX and gH are the gyromagnetic ratios. The values of NOE in (8.4)

are obtained by the steady-state NOE values which are determined by the ratios of

the peak intensities in the NOE and NONOE spectra:

NOE ¼ Isat
Iunsat

¼ 1þ sXH
R1

gH
gX

(8.47)

The standard deviation of NOE value, dNOE can be determined using the

measured background noise levels:

dNOE
NOE

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
2

sat

I2sat
þ d

2

unsat

I2unsat

s
(8.48)

in which �dsat and �d2unsat represent the standard deviations of Isat and Iunsat,
respectively, calculated from the root-mean-squared noise of background regions

(Nicholson et al. 1992). In the condition of the extreme narrowing limit (otm 
 1)

in which tm is short, sXH ¼ ½R1 which yields a maximum magnitude of NOE.

Therefore, 15N spins have NOE values between 1 and �4 because of its negative

gyromagnetic ratio, whereas 13C NOE values are in the range of 1–5.
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The magnetization transfer in the experiment can be described by product

operators. The transverse 15N magnetization is frequency-labeled and transferred

to 1H spins during the first period:

Nz�����!
p
2

� �
Nx

Ny�!
t1

Ny cos ðONt1Þ � Nx sin ðONt1Þ

�!2t1 � 2HzNx cos ðONt1Þ � 2HzNy sin ðONt1Þ (8.49)

The scalar coupling JXH is refocused during the t1 evolution time if t1 is set to
1/(4JXH). Both orthogonal components of the 1H magnetization are refocused and

observed by the PEP sequence (8.40), resulting in the two FIDs:

Hx cos ðONt1Þ þ Hy sin ðONt1Þ

Hx cos ðONt1Þ � Hy sinðONt1Þ (8.50)

8.2.3.2 Experiment Setup and Data Processing

The saturation of the 1H magnetization is obtained by applying either 120� 1H

pulses every 5 ms for 3 s or a WALTZ16 pulse train for 3 s. The 90� 1H pulse length

for the WALTZ16 is calibrated to about 30 ms. A total recycle time of at least 5 s is

used for 15N measurement to allow the longitudinal magnetization to relax back to

equilibrium. Usually, the NOE and NONOE spectra are recorded in an interleaved

manner to reduce artifacts. The gradient amplitude and durations are selected as

g1 ¼ 3 ms,�20 G cm�1; g2 ¼ 1.25 ms, 30 G cm�1; g3 ¼ g4 ¼ 0.5 ms, 4 G cm�1;

g5 ¼ 0.125, 27.8 G cm�1. The delays are set to t ¼ 2.25 ms, t1 ¼ 2.75 ms, and

d2 ¼ 0.5 ms. A total of 128 complex t1 points is usually recorded.

After rearrangement of the PEP data, the FIDs are processed into a 512 � 1,024

matrix with 90�-shifted squared sine-bell window functions in both dimensions.

The 15N NOE values are calculated from the ratio Isat/Iunsat of the cross-peak

intensities (8.47) in the NOE and NONOE spectra.

8.3 Relaxation Data Analysis

The R1 and R2 values are obtained by fitting the intensities of individual cross-peaks

with a series of values of relaxation times T using (1.83b) and (8.42), respectively.

The NOE values are extracted from the intensity ratios of individual cross-peaks in

the NOE and NONOE experiments using (8.47) for the data recorded at different

static magnetic field strengths. Once the values of the relaxation rates and NOE are
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calculated, the overall correlation time tm is usually determined from the 10 %

trimmed mean of the R2/R1 ratio (Mandel et al. 1995). In the next step, dynamic

parameters (squared generalized order parameter S2, and tc) are obtained via such

methods described in the theory section as a grid search by minimizing the global

error function or local error functions using the estimated tm value (Mandel et al.

1995; Dellow and Wand 1989). The program CurveFit is available for determining

R1 and R2 from experimental data, and the program “Modelfree” can be used to fit

the R1 and R2 and NOE data to heteronuclear relaxation data to obtain model-free

parameters according to the extended model-free formalism using minimization of

the error function (http://cpmcnet.columbia.edu/dept/gsas/biochem/labs/palmer/).

Once S2 and te are obtained, interpretation of the results is straightforward. The

dynamic parameters can be plotted for each residue as shown in Fig. 8.3. Backbone

and side-chain dynamics information can be obtained based on the distribution of S2

and te over the residues. As mentioned earlier, S2 with higher amplitude indicates

that the motion of the bond vector is restricted to the rigid orientations. As S2

decreases, the motion of the bond vector becomes less restricted. The motion

becomes completely isotropic as S2 approaches zero. In addition to S2, the internal

Fig. 8.3 Simple model-free parameters for local motion of the backbone amide N–H of

ferrocytochrome c2 derived from 15N relaxation data recorded at 30 �C and analyzed using an

axially symmetric diffusion tensor. (a) Squared generalized order parameters (S2). (b) Effective
correlation time constants (reproduced with permission from Flynn et al. (2001), Copyright

# 2001American Chemical Society)
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correlation time te characterizes how fast the internal motion is. As the example in

Fig. 8.3 indicates, the majority of the amide NH S2 are distributed near 0.8 with the
corresponding effective correlation times in the range of 1–50 ps. The obtained

model-free parameters of the protein are basically consistent with a well-ordered

polypeptide backbone. The values of S2 can be color-coded on the structure

(Fig. 8.4), which provides visualization of the backbone or side-chain dynamics.

Several backbone regions between regular secondary structure elements have

slightly lower order parameters (0.7 � 0.05). Overall, the backbone dynamics of

ferrocytochrome c2 reveals that the interior of the protein is unusually rigid.

Questions

1. What are the experimental parameters measured for the study of protein

dynamics?

2. What are the two methods for calculating the spectral density functions from

experimental data using model-free analysis?

3. What is the assumption of model-free analysis?

4. What is the physical meaning of the squared generalized order parameters S2?
What is the range of S2 value? What kind of motion does an S2 with a value near
0.8 describe?

5. What is the relationship of R1, R2, and R1r?

6. Derive (8.22) and (8.23) from (8.14) and (8.15) using (8.20) and (8.21), and

b1 ¼ 0.921 and b2 ¼ 0.955 for 15N. Hint: derive (8.23) first. J(oX) in (8.14) and

(8.15) equals J(oN). To derive (8.22) for 15N, substitute J(oN) with (8.23).
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