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  Abstract   Adenosine belongs to the class of neuromodulators rather than 
neurotransmitters, since it is not stored in vesicles, nor released by exocytosis as a 
classical neurotransmitter. Moreover, it does not induce synaptic potentials but 
in fl uences the release and the action of neurotransmitters. This mostly occurs 
through interactions with other G protein-coupled receptors as well as of receptors 
for neurotrophic factors, ion channels, ionotropic receptors, and neurotransmitter 
transporters. The actions of adenosine are operated by four different G protein-
coupled membrane receptors (A 

1
 , A 

2A
 , A 

2B
 , A 

3
 ), which activate several downstream 

signaling pathways, the main focus of the present review. Cross talk between 
adenosine receptors and receptors for neurotransmitters or other neuromodulators 
may result from interactions between common signaling cascades, as well as through 
receptor–receptor interactions, including receptor heteromerization. The key receptor 
in this synaptic interplay appears to be the A 

2A
  receptor, whereas A 

1
  receptors mainly 

act as modulators of neurotransmitter release or by counteracting A 
2A

  receptor-
mediated actions. We herein review some of the most recent data on the regulation 
of adenosine availability, as well as on the consequences of adenosine actions in 
synapses and the corresponding downstream signaling pathways. Moreover, we 
discuss how activation of adenosine receptors and regulation of extracellular ade-
nosine levels is operated by combined mechanisms. It is highlighted that modula-
tion of neuronal activity by adenosine involves a diversity of enzymes, receptors 
and signaling cascades that act in a concerted way to  fi ne tune the activity of neu-
rons and glia, including astrocyte-to-neuron signaling.  
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    7.1   Introduction 

 Adenosine, due to the way it operates in the nervous system, belongs to the class of 
neuromodulators rather than neurotransmitters (for a review on these concepts see, 
for instance, Ribeiro and Sebastião  2010  ) . So, intracellular adenosine is not stored 
in vesicles, nor released by exocytosis as a classical neurotransmitter. Instead, ade-
nosine is released to the extracellular space through equilibrative nucleoside trans-
porters that function bidirectionally according to the gradient across the cell 
membrane. Adenosine is also formed in the extracellular space through degradation 
of released ATP. Once in the extracellular space, adenosine activates membrane 
located G protein-coupled receptors (GPCR) and through these receptors affects 
neuronal functioning at different levels, including changes in the ability to release 
or respond to neurotransmitters or even gliotransmitters, but so far, no neurotrans-
mitter-like actions for adenosine have been identi fi ed. 

 Adenosine also behaves as a retaliatory metabolite, in fl uencing and re fl ecting cell 
energy state, as well as metabolic demand and nutrient supply. More than 25 years 
have elapsed since it was  fi rst proposed that adenosine ef fi ciently connects synaptic 
activity, energy expenditure, and nucleic acid metabolism by acting as a sensor of the 
bioenergetic state of the cell (Newby et al.  1985  ) . Moreover, intracellular adenosine 
directly regulates transmethylation reactions, including DNA methylation (Boison 
et al.  2002  ) , which can lead to long-lasting epigenetic modi fi cations. Other than at 
the nerve tissue level, the in fl uence of adenosine upon cerebral blood  fl ow enables it 
to further act as an energy balancing metabolite. Thus, when metabolism is increased, 
the elevated ATP catabolism will produce higher amounts of adenosine, which 
through the activation of A 

2A
 R, (Phillis  1989  )  will induce vasodilation, allowing an 

improvement of oxygen and nutrient delivery via the cerebral vasculature. 
 In the present work we discuss some of the most recent data on the regulation of 

adenosine availability and its effects through adenosine receptors and how their 
activation is regulated by extracellular adenosine levels. Downstream mechanisms 
of receptor activation and receptor cross talk are then reviewed on the basis of 
recently published data, highlighting the functional outcomes of the subtle ways 
adenosine  fi ne-tunes neuronal activity.  

    7.2   Adenosine Formation 

 The main source of adenosine, in the central nervous system, is the dephosphorylation 
of 5 ¢ -AMP by 5 ¢ -nucleotidases (5 ¢ -NTs) (Meghji  1993  ) . These enzymes dephospho-
rylate noncyclic nucleoside monophosphate to nucleosides and inorganic phosphate. 
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So far, seven distinct nucleoside monophosphate phosphohydrolases or 5 ¢ -nucleotidases 
(EC 3.1.3.5 and EC 3.1.3.6) have been cloned. Five are localized in the cytosol; one 
is attached to the outer side of the plasma membrane and one in the mitochondrial 
matrix. Nucleotidases are responsible for both intracellular and extracellular synthesis 
of adenosine from the dephosphorylation of AMP. An alternative source of adenosine 
synthesis results from the hydrolysis of  S -adenylhomocysteine (SAH), which is 
catalyzed by SAH hydrolase (SAHH) (Palmer and Abeles  1979  )  (see Fig.  7.1 ).  

    7.2.1   Extracellular Formation of Adenosine 

 Adenosine found in the extracellular space can be released via equilibrative nucleotide 
transporters or be synthesized locally via ATP catabolism, which involves several 
enzymes, including the enzymes of ectonucleoside triphosphate diphosphohydrolase 
(E-NTPDase) family, ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) 
family, ecto-5 ¢ -nucleotidase/CD73, and alkaline phosphatases (Yegutkin  2008  ) . 
Through this cascade, adenine nucleotides are dephosphorylated into 5 ¢ -AMP, 

  Fig. 7.1    Adenosine metabolism. Adenosine can be synthesized intra- and extracellularly. Inside 
the cell adenosine is formed from AMP metabolism through endo-5 ¢ -nucleotidase (5 ¢ NT) or by the 
transmethylation reaction catalyzed by SAHH, which converts SAH into adenosine and homo-
cysteine. At the extracellular space, adenosine derives from the metabolism of ATP/ADP/AMP, 
being the last reaction catalyzed by the ectonucleotidase (Ecto 5 ¢ NT). The release of adenosine 
through equilibrative nucleoside transporters is an alternative source of adenosine. Regarding 
clearance of extracellular adenosine, in some cases it can be converted into inosine by ecto-adenosine 
deaminase (ecto-ADA) in the extracellular space, but in most cases adenosine is taken up by the 
equilibrative nucleoside transporter into cells where adenosine can be phosphorylated to AMP by 
adenosine kinase (ADK) or deaminated to inosine by adenosine deaminase (ADA)       
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which is then dephosphorylated by ecto-5 ¢ -nucleotidase into adenosine. The entire 
catalytic pathway is complete in a few hundred milliseconds, and the rate-limiting 
step being the dephosphorylation of AMP into adenosine by ecto-5 ¢ -nucleotidase 
(Dunwiddie et al.  1997  ) . 

    7.2.1.1   Ecto-5 ¢ -Nucleotidase 

 After the vesicular release of ATP (which is cosecreted with neurotransmitters or 
even released as a neurotransmitter), ATP is metabolized by a cascade of ectonucle-
otidases, including ecto-ATPase, ecto-ADPase (E-NTPDase family) and apyrase 
(E-NPP family) and  fi nally ecto-5 ¢ -nucleotidase, producing adenosine (Ribeiro and 
Sebastião  1987 ; Richardson and Brown  1987 ; Zimmermann et al.  1986  ) . Additionally 
cAMP can also be released into the extracellular space, by a probenecid-sensitive 
transporter (Rosenberg and Li  1995  )  in suf fi cient amounts to increase extracellular 
adenosine concentrations (Brundege et al.  1997 ; Dunwiddie et al.  1992  ) . 

 In neuronal cells, ectonucleotidases are able to convert most adenine nucleotides 
(except cAMP) into adenosine in less than a second (Dunwiddie et al.  1997  ) . Indeed, 
even stable ATP analogues can be converted into adenosine by ectonucleotidases 
(e.g., Cascalheira and Sebastião  1992 ; Cunha et al.  1998  ) . Several ectonucleoti-
dases, including alkaline phosphatase and nucleoside triphosphate diphosphohydro-
lase 2, are associated with subsets of progenitor cell populations in the mouse 
embryonic, postnatal, and adult neurogenic zones (Langer et al.  2007  ) . Knockdown 
of tissue nonspeci fi c alkaline phosphatase impairs neural stem cell proliferation and 
differentiation (Kermer et al.  2010  ) , highlighting their relevance in neurogenesis, 
including adult neurogenesis (see Zimmermann  2011  ) . 

 The ecto-5 ¢ -nucleotidase is a cell surface protein attached to the plasma mem-
brane by a glycosyl phosphatidylinositol (GPI) anchor at its C terminal (Misumi 
et al.  1990  ) . The hydrolysis of extracellular AMP is considered the main function of 
this enzyme, but 5 ¢ -nucleotidase is also involved in cell adhesion, as it also binds 
laminin and  fi bronectin (Mrhul et al.  1993 ; Olmo et al.  1992  ) . Ecto-5 ¢ -nucleotidase 
acts also as a coreceptor in T cell activation (see    Resta and Yamashita  1998  ) . 

 Ecto-5 ¢ -nucleotidase is highly expressed in the brain, where it is mainly associated 
with glial cell membranes, namely, astrocytes, oligodendrocytes, and also microglia 
(Kreutzberg et al.  1978 ; Naidoo  1962 ; Schoen and Kreutzberg  1995  ) . In fact, the 
predominant glial expression of ecto-5 ¢ -nucleotidase is related to an enhancement in 
the contribution of extracellular conversion of AMP into adenosine when astrocytes 
are cocultured with neurons (Zamzow et al.  2008a  ) . 

 Regarding localization in neurons, some initial cytochemical studies associated 
ecto-5 ¢ -nucleotidase with the surface of migrating and immature nerve cells and 
with subsets of synapses during part of their regeneration period as well as during 
synapse remodeling and regeneration (Schoen et al.  1991,   1993  ) . Later on, the ecto-
5 ¢ -nucleotidase expression by mature neurons was also demonstrated in the cerebel-
lum (Maienshein and Zimmermann  1996  )  and in hippocampal nerve terminals 
(Cunha et al.  2000  ) . More recently, it has been demonstrated that ecto-5 ¢ -nucleotidase 
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is expressed by nociceptive neurons in dorsal root ganglia and on terminals in 
substantia gelatinosa of spinal cord, where the conversion of AMP into adenosine 
promotes antinociception (Sowa et al.  2010  ) . 

 Functionally, there is some evidence that ectonucleotidases are in close physical 
proximity with presynaptic adenosine receptors (Cunha et al.  1996 ; Dunwiddie and 
Masino  2001  ) , so that recently formed adenosine becomes immediately available to 
the presynaptic receptors involved in modulation of neurotransmitter release. 
Topographical arrangement of membrane bound molecules involved in purinergic 
signaling may determine the type of receptor activated by adenosine, since there is 
evidence that adenosine formed from released ATP preferentially activates facili-
tatory receptors (Cunha et al.  1996  ) .   

    7.2.2   Intracellular Synthesis of Adenosine 

 For the net extracellular adenosine levels, intracellular synthesis of adenosine is at 
least as important as adenosine formation from breakdown of extracellular ATP 
(Lloyd and Fredholm  1995  ) . Intracellular synthesis of adenosine occurs mainly by 
AMP dephosphorylation, which is catalyzed by cytosolic nucleotidases. The pres-
ence of cytosolic 5 ¢ -nucleotidase in the brain was  fi rstly demonstrated in 1982 
(Montero and Fes  1982  ) . Although differential expression of 5 ¢ -nucleotidase among 
different brain areas has not been established so far, its ubiquitous role in the intracel-
lular synthesis of adenosine is well known. Additionally, the cytosolic nucleotidases 
participate in substrate cycles that regulate the cellular levels of ribo- and deoxyribo-
nucleoside monophosphates, regulating the intracellular pools of ribo- and deoxyri-
bonucleotides (Reichard  1988  )  which are crucial for DNA/RNA synthesis. 

 Furthermore, adenosine produced inside the cell contributes to restoring ATP 
levels by decreasing ATP utilization and increasing oxygen and nutrients supply via 
blood  fl ow (Newby  1984  ) . Thus, adenosine is commonly considered to be a retaliatory 
metabolite, since adenosine produced during cytosolic ATP degradation behaves 
as a metabolic stress sign promoting retaliatory effects against the stress-causing 
conditions (Newby  1984  ) . 

 Another source of adenosine is the transmethylation pathway, where adenosine 
results from the hydrolysis of  S -adenosylhomocysteine (SAH) catalyzed by SAH 
hydrolase (SAHH, EC 3.3.1.1), which also produces  l -homocysteine (Palmer and 
Abeles  1979 ; Schrader et al.  1981  ) . This enzyme was  fi rstly described in 1959, in 
rat liver. SAHH catalyzes a reversible reaction, that preferentially evolves towards 
 S -adenosylhomocysteine synthesis (de la Haba and Cantoni  1959  ) . In the heart, this 
pathway provides one-third of the total cardiac adenosine at normoxic conditions 
but generates undetectable levels under hypoxic conditions (Deussen et al.  1989  ) . 
SAHH expression is widespread in the brain, with higher expression levels present 
in cortex and cerebellum. Inside the cell, SAHH displays a nuclear expression where 
it is involved in transmethylation mechanisms. In detail, different methyltransferases 
convert  S -adenosylmethionine (SAM) into SAH, which is then metabolized into 
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adenosine and  l -homocysteine by SAHH. So, adenosine is an obligatory end product 
of SAM-dependent transmethylation reactions and because of that is able to inhibit 
methylation reactions. To avoid this inhibition, adenosine is phosphorylated into 
AMP by a long isoform of adenosine kinase (ADK), which was described as a 
nuclear ADK (Cui et al.  2009  ) . 

 Under normal conditions SAHH has low impact upon neuronal excitability 
(Pak et al.  1994  ) , suggestive of a minor role in the control of cytoplasmic levels of 
adenosine in neurons.   

    7.3   Nucleoside Transporters 

 The relevance of adenosine uptake by nucleoside transporters in terminating 
adenosine effects was  fi rst supported by different studies showing that the nucleo-
side transporter blockade produces vasodilation, potentiates the ability of adenosine 
to decrease locomotor activity (Crawley et al.  1983  ) , depresses neuronal activity 
(Motley and Collins  1983  ) , increases nociceptive thresholds (Yarbrough and 
McGuf fi n-Clineschmidt  1981  ) , and exerts anticonvulsive effects (Dragunow and 
Goddard  1984  ) . Therefore, nucleoside transporter inhibitors exacerbate the effects 
mediated by adenosine. 

 Nucleoside transporters can be divided in two main classes: the equilibrative 
(Na + -independent) nucleoside transporters (ENTs) and the concentrative (Na + -
dependent) nucleoside transporters (CNTs) (Baldwin et al.  1999  ) . Six isoforms of 
CNTs (CNT1–CNT6) and four isoforms of ENTs (ENT1–ENT4) have been cloned, 
to date. Equilibrative transporters mediate nucleoside transport in both directions, 
depending on the nucleoside concentration gradient across the membrane. The four 
transporters are widely distributed, and all of them are able to transport adenosine 
but they have different abilities to transport other nucleosides (   Baldwin et al.  2004 ). 
The transport mediated by concentrative transporters is independent of nucleoside 
gradient and is coupled to sodium gradient. As intracellular concentrations of ade-
nosine are kept low due to its conversion into AMP, and as catabolism of released 
nucleotides constitutes an additional and transporter-independent source of extra-
cellular adenosine, the extracellular concentrations of adenosine are usually higher 
than the intracellular ones. Therefore, the usual direction of equilibrative adenosine 
transport is uptake into cells, rather than release. Indeed, adenosine uptake in the 
brain occurs primarily by facilitated diffusion via equilibrative transporters, although 
some of it (10–20 %) can be mediated by concentrative transporters (Geiger and 
Fyda  1991 ; Parkinson et al.  1994  ) . 

 Equilibrative nucleoside transporters are crucial to regulate the levels of extracel-
lular adenosine, being the main entity responsible for removing adenosine from the 
extracellular space. They are thus responsible for restraining, both spatially and 
temporally, adenosinergic modulation. Due to the equilibrative nature of the adenosine 
transporters in neuronal cells, changes in the activity of enzymes involved in ADO 
metabolism will modify the transporters’ activity. Accordingly, transporter inhibitors 
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can either increase (Dunwiddie and Diao  1994 ; Phillis et al.  1989 ; Sanderson and 
Schol fi eld  1986  )  or decrease (Gu et al.  1995  )  extracellular adenosine levels, depend-
ing on the transmembrane adenosine gradient and consequently depending on trans-
port direction, into or out of the cell. However, because the extracellular synthesis 
of adenosine from catabolism of nucleotides constitutes an alternative source of 
adenosine, which is not affected by transport blockade, the transporters inhibitors 
usually lead to an increase in the extracellular levels of the nucleoside. 

 The amount of adenosine released by nucleoside transporters is enhanced under 
some circumstances such as hypoxia or ischemia, when a massive increase in extra-
cellular adenosine levels is observed, a process prevented by transporter blockade 
(Parkinson et al.  2002  ) . At the synaptic level, however, the rise in extracellular lev-
els of adenosine during hypoxia may increase rather than decrease upon inhibition 
of equilibrative nucleoside transporters (Frenguelli et al.  2007  ) . Furthermore, recent 
evidence (Zhang et al.  2011  )  showed that neuronal nucleoside transporters contribute 
to the removal of extracellular adenosine from the synaptic space even during 
hypoxic or ischemic insults. Therefore, evidence now available allows suggesting 
that the control of extracellular adenosine levels may differ in different microdomains. 
As highlighted recently (Sebastião  2011  ) , a deeper understanding of those microdo-
mains as well as of the relative contribution of the different cell types (i.e., neurons 
vs. astrocytes) for the net production of adenosine is required to better predict the 
direction of the changes in adenosine levels after pharmacologic or genetic manipu-
lation of adenosine transporters in pathological conditions. 

 Interestingly, adenosine release by nucleoside transporters is promoted by neu-
rotransmitters. For example, glutamatergic agonists such as NMDA and kainate 
increase, in a dose-dependent manner, adenosine release (Carswell et al.  1997 ; 
Delaney et al.  1998  ) . In fact, activation of NMDA receptors seems to promote 
release of adenosine itself instead of its precursor, ATP (Harvey and Lacey  1997 ; 
Manzoni et al.  1994  ) . This may be part of a protective feedback loop since adenos-
ine released through the transporters seems to preferentially activate adenosine A 

1
  

receptors (A 
1
 R; Cunha et al.  1996  )  and these are neuroprotective, namely, through 

inhibition of NMDA currents not only under normoxic (de Mendonça et al.  1995  )  
but also under hypoxic (Sebastião et al.  2001  )  conditions.  

    7.4   Intracellular Adenosine Clearance 

 After being taken up through nucleoside transporters, adenosine is inactivated 
either by deamination through adenosine deaminase or by phosphorylation through 
adenosine kinase (Fig.  7.1 ). It is accepted that the pathway responsible for intracel-
lular adenosine clearance is dependent on its concentration. As such, at low concen-
trations, adenosine is mainly inactivated by phosphorylation while at higher 
concentrations adenosine is predominantly deaminated by adenosine deaminase 
(Meghji and Newby  1990  ) , in accordance with the af fi nity for adenosine and 
enzymatic capacity of those two enzymes. 



138 A.M. Sebastião et al.

    7.4.1   Adenosine Kinase 

 ADK (EC 2.7.1.20) phosphorylates intracellular adenosine into AMP. Due to its 
low  K  

m
  for adenosine, it is the main enzyme responsible for intracellular adenosine 

catabolism, at least, for low adenosine concentration. ADK is therefore a key target 
whenever manipulation of the neuromodulatory actions of adenosine is desirable. 
By phosphorylating adenosine into AMP, ADK has a double role for maintaining a 
homeostatic energy  fl ux: (1) a direct ability to in fl uence the cellular energy pool 
(AMP, ADP, and ATP) and (2) an in fl uence upon intra- and extracellular levels of 
the homeostatic regulator, adenosine. The relevance of ADK for the homeostatic 
control (Boison et al.  2011  )  is supported by several lines of evidence, namely, 
(1) the release of higher amounts of adenosine by ADK-de fi cient  fi broblasts in cul-
tures, when compared to that released by ADA-de fi cient  fi broblasts (Huber et al. 
 2001  ) , (2) the ability of ADK inhibition to depress neuronal activity in hippocampal 
slices, in a way sensitive to A 

1
 R antagonists (Diógenes et al.  2004 ; Pak et al.  1994  ) , 

and (3) the suppression of seizure activity caused by ADK inhibition in various 
models for epilepsy (Kowaluk and Jarvis  2000  ) . 

 The immature brain is more vulnerable to seizure activity than the adult brain 
(Moshe  2000  ) , an action probably related to the higher expression of ADK at early 
developmental stages (Studer et al.  2006  ) . Interestingly, during maturation, there is 
a shift from neuronal to glial expression of ADK, suggestive of distinct functions of 
ADK and adenosine in immature and adult brain; thus, during neuronal development 
expression of ADK in neurons may provide a salvage pathway to utilize adenosine 
in nucleic acid synthesis, whereas in the mature brain predominant ADK expression 
in astrocytes contributes to maintenance of tonic adenosinergic inhibition in the 
central nervous system (Studer et al.  2006  ) . Overexpression of adenosine kinase in 
epileptic hippocampus contributes to epileptogenesis (Gouder et al.  2004  ) . 
Furthermore, there is a prominent upregulation of ADK in astrocytes after induction 
of status epilepticus (SE) in animals as well as in humans with temporal lobe epilepsy 
(Aronica et al.  2011  ) . Selective ADK downregulation in astrocytes almost completely 
abolishes spontaneous recurrent seizures in epileptic mice (Theo fi las et al.  2011  ) . 
Thus, ADK emerges as a key link in astrocyte-to-neuron communication, and its 
dysregulation after intense neuronal activity may contribute to epileptogenesis. 
Permanent changes in ADK expression in astrocytes will be re fl ected in decreases 
in ambient adenosine, leading to a further enhancement of neuronal activity and in 
such a way being part of a positive feedback loop to promote epileptogenesis. 
Accordingly, focal adenosine augmentation therapeutic strategies, mainly based in 
local manipulation of ADK activity, have been proposed as a useful strategy to 
control pharmacoresistant seizures (Boison et al.  2011  ) . 

 The regulation of ambient adenosine levels by ADK might also have a key role 
in the susceptibility of brain tissue to ischemic injury (Lynch et al.  1998 ; Pignataro 
et al.  2007 ; Shen et al.  2011  ) . Indeed, pharmacological inhibition of ADK in animal 
models is also an effective strategy to protect from stroke (Boison  2006 ; Kowaluk 
and Jarvis  2000  ) .  
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    7.4.2   Adenosine Deaminase 

 Adenosine deaminase (ADA, EC 3.5.4.4) catalyzes the hydrolytic deamination of 
adenosine into inosine. It has been known for several years that inhibition of ADA 
causes adenosine-like effects such as sedation (Major et al.  1981 ; Radulovacki et al. 
 1983  ) , reduction of the infarct area in the hippocampus and decrease in neuronal 
degeneration in animal models of global forebrain ischemia or focal ischemia (Lin 
and Phillis  1992 ; Phillis and O’Regan  1989  ) . Although ADA is expressed by both 
neurons and astrocytes (Haun et al.  1996 ; Nagy et al.  1984  )  it seems that it is in glial 
cells that this enzyme assumes a major role in the control of adenosine levels. This 
role is more relevant during stress conditions (like trauma or ischemia), when ade-
nosine levels rise and astrocytes became reactive, probably playing an important 
role in adenosine conversion to inosine (Zamzow et al.  2008b  ) . Inosine by itself can 
have a protective effect in stroke models (Shen et al.  2005  ) . However, neuroprotection 
conferred by inhibitors of ADA during hypoxia or ischemia (Lin and Phillis  1992  )  
mostly results from potentiation of the stress-induced increase in intracellular 
adenosine, which leads to enhanced adenosine release through transport reversal 
(Phillis and O’Regan  1989  ) . 

 Although the enzyme localization is mainly cytosolic, there is evidence of the 
existence of an ectoenzyme, bound to the extracellular side of the membrane (Franco 
et al.  1998  ) . The A 

1
 R may act as an anchoring protein for ecto-ADA, which through 

a nonenzymatic but allosteric interaction facilitates agonist and antagonist binding to 
A 

1
 R (Ciruela et al.  1996 ; Gracia et al.  2008 ; Ruíz et al.  2000 ; Saura et al.  1998  ) . Like 

A 
1
 R, A 

2B
 R was also found to be anchored to ADA in lymphocytes and cultured cells. 

Similarly, binding of enzymatically active or inactive ADA to this receptor increases 
its af fi nity and signaling by a protein–protein interaction (Herrera et al.  2001  ) .   

    7.5   Control of Extracellular Adenosine Levels by Astrocytes 

 In the brain, extracellular adenosine concentrations are normally kept in the range 
of 25–250 nM, therefore at concentrations that can tonically activate a substantial 
proportion of the high af fi nity A 

1
 R and A 

2A
 R (Dunwiddie and Masino  2001  ) . A major 

player in the steady-state levels of adenosine is ADK, which has high af fi nity for 
adenosine and is mostly expressed in astrocytes (see above and Boison et al.  2010  ) . 
ADA also predominates in astrocytes. Equilibrative nucleoside transporters are also 
expressed in astrocytes. Therefore, under physiological conditions astrocytes prob-
ably function as a major sink for adenosine, since its uptake is driven by the intracel-
lular activity of ADK. It is also likely that under conditions that prompt increases in 
intracellular adenosine, such as hypoxia or ischemia, astrocytes provide a major 
source of adenosine, which is released by reversal of transport direction, but direct 
evidence for a predominant astrocytic origin of extracellular adenosine during 
hypoxic/ischemic insults is still lacking. 
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 The levels of extracellular adenosine can be regulated by both A 
1
 R and A 

2
 R 

activity since A 
1
 R blockade increases extracellular levels of adenosine in cardiac 

 fi broblasts (Andresen et al.  1999  )  and activation of A 
2
 R promotes adenosine trans-

port in chromaf fi n cells (Delicado et al.  1990  ) . Furthermore, it has been shown that 
A 

2A
 R activation at nerve endings enhances the activity of nucleoside transporters, 

leading to a decrease in the availability of adenosine to activate A 
1
 R under high 

frequency neuronal  fi ring (Pinto-Duarte et al.  2005  ) . Again, information is still 
lacking regarding the role of astrocytes in this process. In astrocytes, A 

1
 R and A 

2A
 R 

form tetramers constituted by two A 
1
 R and two A 

2A
 R molecules bound to G 

i/0
  and 

G 
s
  proteins to regulate GABA transport in a deeply interactive and concerted way 

(Cristóvão-Ferreira et al.  2011  ) . Whether these A 
1
 R-A 

2A
 R tetramers control adenosine 

transporters is also unknown.  

    7.6   Purines and Intracellular Signaling 

 ATP acts upon different classes of membrane receptors, the ionotropic P2X and the 
metabotropic P2Y (for reviews see, for instance, Illes and Ribeiro  2004 ; Ralevic and 
Burnstock  1998  ) . Adenosine operates through activation of four distinct metabotro-
pic receptors: A 

1
 R, A 

2A
 R, A 

2B
 R, and A 

3
 R. All these receptors are expressed in the 

brain, where adenosine is involved in a variety of physiological and pathological 
processes, namely, regulation of sleep–arousal cycle, neuroprotection, epilepsy, 
pain,  fi ne control of movement,  fi ne-tuning of neurotransmission (see Boison  2006 ; 
Dunwiddie and Masino  2001 ; Ribeiro  2005 ; Sebastião and Ribeiro  2009a  ) .  

    7.7   Adenosine Receptors and Signaling Pathways 

 All four adenosine receptors have been cloned. Being GPCRs, adenosine recep-
tors are formed by a single peptide chain, with seven alpha-helical transmem-
brane domains, an intracellular C-terminal, and an N-terminal facing the 
extracellular space. The N-terminal usually contains one or more glycosylation 
sites. The C-terminal contains phosphorylation and palmitoylation sites, which 
are involved in regulation of receptor desensitization and internalization (Perez 
and Karnik  2005  ) . 

 Adenosine receptors are widely distributed throughout the body. In the brain 
they can be found pre-, post-, or nonsynaptically, in neurons as well as in glia. 
Their expression is not homogenous in the central nervous system (Fig.  7.2 ). 
Higher A 

1
 R expression levels are found in the cortex, hippocampus, cerebellum, 

thalamus, brain stem, and spinal cord (see Ribeiro et al.  2002  and references 
therein). Though at low density, A 

1
 Rs are also present in basal ganglia, both on 

dopaminergic nigrostriatal and glutamatergic corticostriatal terminals. Adenosine 
A 

2A
 Rs are mostly expressed in the basal ganglia and olfactory bulb. However, it is 
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possible to  fi nd mRNA encoding A 
2A

 Rs or the A 
2A

 R protein in other brain regions 
where they are weakly expressed, namely, in the hippocampus and the cortex (see 
Sebastião and Ribeiro  1996  ) . The A 

2B
 Rs are mainly expressed in peripheral organs, 

being weakly expressed in the whole brain (Dixon et al.  1996  ) . Finally, A 
3
 Rs have 

an intermediate expression level in the human cerebellum, and as A 
2B

 Rs, they 
display a low expression in the entire brain (see Fredholm et al.  2001  ) . The A 

1
 R 

and A 
2A

 R are high af fi nity receptors, with adenosine  K  
d
  values of 70 and 150 nM, 

for A 
1
 R and A 

2A
 R respectively, which allow their tonic activation by basal adenos-

ine levels. The A 
2B

 R and A 
3
 R are considered low af fi nity receptors, with adenosine 

af fi nity constant values around 5,100 and 6,500 nM, respectively (see Dunwiddie 
and Masino  2001  ) .  

 Classically, A 
1
 R and A 

3
 R inhibit adenylate cyclase (AC) through coupling to G 

i/0
 . 

A 
2A

 R and A 
2B

 R are coupled to G 
s
  or G 

olf
 , promoting AC activity. The A 

2B
 R subtype 

is also coupled to G 
q/11

 , through which it can activate phospholipase C (Ryzhov et al. 
 2006  ) . The A 

3
 R can also couple to G 

q/11
 , also activating phospholipase C (Fredholm 

et al.  2001  ) . The increase of cAMP mediated by AC leads to activation of cAMP 
dependent protein kinase (PKA), which then phosphorylates different targets such 
as ionotropic receptors or neurotransmitter transporters. On the other hand, activa-
tion of phospholipase C converts phosphatidylinositol 4,5-bisphosphate (PIP 

2
 ) into 

diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP 
3
 ). Then DAG activates 

protein kinase C (PKC), which phosphorylates different substrates, while IP 
3
  trig-

gers calcium release from intracellular stores. Then, elevation of cytosolic Ca 2+  can 
stimulate a variety of signaling pathways, including a family of phosphatidyl serine-
dependent serine/threonine-directed kinases collectively called protein kinase C 
(PKC), phospholipase A 

2
  (PLA 

2
 ), as well as Ca 2+ -dependent K +  channels, and nitric 

oxide synthase (NOS). IP 
3
  can also promote calcium in fl ux from extracellular 

sources if Ca 2+  intracellular stores are depleted due to previous activation of IP 
3
  

receptors (see Ralevic and Burnstock  1998  ) . 

  Fig. 7.2    Differential distribution of adenosine receptors (A 
1
 , A 

2A
 , A 

3
 ) among the brain (adapted 

from Ribeiro et al.  2002  ) . Higher expression corresponds to  larger text size        
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 The activation of G proteins can also directly modify the activity of several 
enzymes and ion channels that directly or indirectly in fl uence intracellular calcium 
levels. For example, A 

1
 R, via G 

i/0
  activation, leads to activation of several types of 

K +  channels and to blockade of N-, P-, and Q-type Ca 2+  channels (see Fredholm 
et al.  2001  ) . Direct evidence that A 

1
 R can inhibit calcium channels in nerve termi-

nals under hypoxic conditions has been reported (Coelho et al.  2002  ) . A 
3
 R are also 

able to modulate Ca 2+  levels, through the inhibition of AC. Both A 
2A

 R and A 
2B

 R can 
also modify the levels of intracellular calcium (see Fredholm et al.  2001  ) . 

 Aside from the involvement of AC/cAMP/PKA and PLC/IP 
3
 -DAG/PKC, other 

transduction pathways are associated with adenosine receptor activation, namely, 
the mitogen-activated protein kinase (MAPKs) (Schulte and Fredholm  2003  ) . The 
MAPK family is constituted by three main groups: extracellular regulated kinases 
(ERK) such as ERK1 and ERK2, stress-activated protein kinases (SAPK) such as 
p38, and jun-N-terminal kinase (JNK). These kinases are usually activated by 
receptors with tyrosine-kinase activity (Seger and Krebs  1995  ) , but GPCR can also 
signal through them (Gutkind  1998 ; Liebmann  2001 ; Marinissen and Gutkind 
 2001  ) . In fact, all adenosine receptors can affect the MAPK pathway. This was  fi rst 
shown in COS-7 cells transiently transfected with A 

1
 R, leading to activation of 

ERK1/2 via G 
i/0

  (Faure et al.  1994  ) . It was also early recognized that activation 
of A 

2A
 R can increase MAPK activity (Sexl et al.  1997  ) . Interestingly, the signal 

pathway used by A 
2A

 R to activate MAPK can vary, depending on the cellular 
machinery available. Thus, in CHO cells, A 

2A
 R-mediated ERK1/ERK2 activation 

involves G 
s
 -AC-cAMP-PKA-MEK1, while in HEK-293 cells, MAPK activation 

by A 
2A

 R involves PKC but not PKA, even though cAMP levels are found to be 
enhanced by G 

s
  activity (Seidel et al.  1999  ) . A 

2A
 R can also inhibit ERK phospho-

rylation (Hirano et al.  1996  ) . The activation of A 
2B

 R can trigger the three main 
branches of MAPK family (ERK1/2, p38, and JNK) (see Fredholm et al.  2001  ) . 
Finally, the A 

3
 R activate ERK1/2 in human fetal astrocytes (Neary et al.  1998  ) . 

Also, the phosphorylation of ERK1/2 was also clearly demonstrated in CHO cells 
transfected with A 

3
 R (see Schulte and Fredholm  2000  ) . 

 To conclude, MAPK activation by adenosine receptors is quite similar to that 
prompted by other GPCR (Gutkind  1998 ; Luttrell et al.  1999 ; Sugden and Clerk 
 1998  ) . Interestingly, ERK1/2 phosphorylation is promoted either by receptors 
coupled to G 

s
  (A 

2A
 /A 

2B
 ) or to G 

i/0
  (A 

1
 /A 

3
 ) proteins. The MAPK-mediated effects of 

adenosine receptors mainly impact modulation of DNA synthesis, cellular differen-
tiation, proliferation, and apoptosis (see Schulte and Fredholm  2003  ) . 

 Adenosine receptor activity is regulated by its expression at the membrane level 
which results from a balance between endocytosis and exocytosis rates. An enhance-
ment of the endocytosis rate, which restrains the intensity and duration of the signal, 
is often preceded by receptor phosphorylation and uncoupling from G proteins, a 
well-known process of receptor desensitization. Adenosine receptor subtypes desen-
sitize differently. A 

1
 R are slowly phosphorylated and internalized, a time frame of 

several hours being needed to complete the process. A 
2A

 R and A 
2B

 R desensitize in a 
faster way, with downregulation kinetics less than 1 h. The A 

3
 R have the fastest desen-

sitization pro fi le, a process often occurring within minutes (Klaasse et al.  2008  ) .  
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    7.8   Implications for Modulation of Neuronal Function 

 The variety of downstream pathways operated by adenosine receptors highly 
supports the pluripotential of this nucleoside to interfere with a multiplicity of intra-
cellular functions essential to regulate neuronal activity either directly or indirectly 
via interaction with several neurotransmitters and/or neuromodulators. These inter-
actions can occur within the same cell, in some cases involving receptor heteromer-
ization, or be a result of transcellular communication. Being a small and easily 
diffusible molecule, adenosine easily acts in a paracrine way, affecting cells away 
from the release point. Its role as a trans-synaptic modulator, involving neuron-
to-astrocyte communication at tripartite synapses is now well accepted (Fields and 
Burnstock  2006 ; Hamilton and Attwell  2010 ; Perea et al.  2009  ) . 

 Within the same cell there are many possibilities of cross talk between transduc-
tion pathways that have several kinases and other key molecules in common (see 
Fig.  7.3 ). GPCRs can interact at the G protein level, by sharing  b  g -subunits or common 
 a -subunits, affecting the activation kinetics of other GPCRs. This also applies to 
A 

1
 R and A 

2A
 R, and related mechanisms are most probably involved in the ability of 

adenosine receptors to interact with other receptors for neurotransmitters or neuro-
modulators (Sebastião and Ribeiro  2000  ) .  

  Fig. 7.3    Schematic representation of the different signaling pathways associated with adenosine 
receptors. Adenosine receptors are GPCRs. A 

1
 R and A 

3
 R couple to G 

i/0
 , inhibiting AC, which will 

reduce cAMP levels and consequently decrease PKA activity. A 
2A

 R and A 
2B

 R are coupled to G 
s
 , 

promoting AC activity and consequently PKA activity. A 
3
 R and A 

2B
 R can also couple to G 

q/11
 , 

enhancing PLC activity. PLC catalyzes PIP 
2
  into DAG and IP 

3
 . DAG will directly activate PKC, 

while IP 
3
  will increase intracellular Ca 2+  levels. Furthermore, all adenosine receptors can activate 

the MAPK pathway       
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 A 
1
 R and A 

2A
 R can form heteromeric complexes (Ciruela et al.  2006  ) . As clearly 

shown in astrocytes, A 
1
 R-A 

2A
 R heteromers appear as heteromers of homomers with 

a minimal structure consisting of an A 
1
 R-A 

1
 R-A 

2A
 R-A 

2A
 R complex (Cristóvão-

Ferreira et al.  2011  ) . The heterotetramer makes it possible to accommodate the two 
different G proteins, and the A 

1
 R-A 

2A
 R heteromer in astrocytes is clearly coupled to 

G 
i/0

  and G 
s
  proteins (Cristóvão-Ferreira et al.  2011  ) . Importantly, the blockade of a 

single partner in the A 
1
 R/A 

2A
 R/G 

i/0
 /G 

s
  complex leads to adjustments in the function-

ing of the whole unit (Cristóvão-Ferreira et al.  2011  ) . 
 Heteromerization between adenosine receptors and receptors of other neu-

rotransmitters/neuromodulators also occurs, being the A 
2A

 R-D 
2
 R heteromer the  fi rst 

to be recognized (Hillion et al.  2002  ) . Through this heteromer, adenosine restrains 
D 

2
 R-mediated effects. The relevance of dopaminergic signaling and dysfunction in 

several pathologies turns A 
2A

 R-D 
2
 R heteromers into promising therapeutic targets 

(Altamura et al.  2005 ; Ferré et al.  1997  ) . A close interaction between A 
1
 R and D 

1
 R 

was also described (Ginés et al.  2000  ) . Once again, adenosine, through the activa-
tion of A 

1
 R, inhibits D 

1
 R-mediated effects. In detail, A 

1
 R activation leads to uncou-

pling of D 
1
 R from AC (Ginés et al.  2000  ) , reinforcing the A 

1
 R-induced inhibition 

of D 
1
 R, which is mediated by G 

i/0
  activation (Ferré et al.  1994,   1998  ) . 

 Adenosine A 
2A

 R can also heteromerize with cannabinoid CB 
1
 R in the striatum 

(Carriba et al.  2007  ) , and this has putative implications for pharmacotherapy drug 
addiction (Ferré et al.  2010  ) . Psychomotor stimulation by A 

2A
 R antagonists also 

depends upon A 
2A

 R-CB 
1
 R cross talk (Lerner et al.  2010  ) . A 

1
 R also interact with 

CB 
1
 R receptor-mediated actions in the hippocampus, a process with implications 

for CB 
1
 R induced memory impairment, which is exacerbated by chronic caffeine 

consumption (Sousa et al.  2011  ) . 
 The predominant neuromodulatory action of adenosine, inhibition of neurotrans-

mitter release, is controlled by A 
1
 R and relates to presynaptic inhibition of calcium 

responses (Fredholm et al.  1990 ; Fossier et al.  1999 ; Ribeiro  1978  ) . However, A 
2A

 R 
can also modulate extracellular transmitter levels and they do so either by enhanc-
ing release and/or by in fl uencing uptake. Indeed, A 

2A
 R activation in the hippocam-

pus facilitates GABA release (Cunha and Ribeiro  2000  )  and GABA uptake into 
presynaptic terminals (Cristóvão-Ferreira et al.  2009  )  and astrocytes (Cristóvão-
Ferreira et al.  2011  ) . In the striatum, where A 

2A
 R expression is higher, the activation 

of these receptors leads to an inhibition of GABA uptake (Gonzalez et al.  2006  ) . 
Glutamate release from hippocampal (Lopes et al.  2002  )  and cortical (Marchi et al. 
 2002  )  synaptosomes is also enhanced by A 

2A
 R activation. The same occurs with 

acetylcholine release from hippocampal nerve terminals (Cunha et al.  1995  ) . 
 During excitotoxic conditions, such as hypoxia, the A 

1
 R-mediated presynaptic 

inhibition of calcium responses (Coelho et al.  2002  ) , together with inhibition of 
NMDA responses (Sebastião et al.  2001  )  confers protection against synaptic 
damage. In contrast, A 

2A
 R may facilitate ionotropic receptor activation, as it is the 

case of their ability to enhance AMPA receptor-mediated responses at the postsyn-
aptic and extrasynaptic level, affecting the reserve of the GluR 

1
 -containing AMPA 

receptors at the extrasynaptic pool, priming them for synaptic insertion and for 
reinforcement of synaptic strength (Dias et al.  2012  ) . This action is sustained even 
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after brief A 
2A

 R activation, involves cyclic AMP and PKA activation and leads to 
enhancement of long-term potentiation (LTP) in Schaffer collateral-CA1 synapses 
of the hippocampus (Dias et al.  2012  ) . LTP facilitation by A 

2A
 R is also evident in 

aged animals (Costenla et al.  2011  ) . Interestingly, A 
2A

 R blockade in vivo impairs 
conditional learning as well as potentiation of CA1 hippocampal potentials recorded 
concomitantly in freely moving animals (Fontinha et al.  2009  ) . A 

2A
 R localized post-

synaptically at synapses between mossy  fi bers and CA3 pyramidal cells are essen-
tial for a form of long-term potentiation (LTP) induced by short bursts of mossy 
 fi ber stimulation, which requires the activation of NMDA and metabotropic gluta-
mate receptors (mGluR 

5
 ) to increase cytoplasmic Ca 2+  levels (Rebola et al.  2008  ) . 

 A 
2A

 R seem to be devoted to interacting with other metabotropic receptors, not 
only of the GPCR family (Sebastião and Ribeiro  2000  )  but also with tropomyosin-
related kinase (Trk) receptors (Sebastião and Ribeiro  2009b  ) . A 

2A
 R are able to trans-

activate TrkB receptors in the absence of the neurotrophin (Lee and Chao  2001  ) . 
This transactivation requires long-term incubation with A 

2A
 R agonist and requires 

receptor internalization (Rajagopal et al.  2004  ) . Furthermore, adenosine A 
2A

 R activation 
is also a crucial step for the functioning of neurotrophic receptors at synapses, 
through a mechanism most probably different from TrkB transactivation, and which 
involves translocation of TrkB molecules to lipid rafts (Assaife-Lopes et al.  2010  ) . 
The A 

2A
 R-mediated gating and/or facilitation of the actions of neurotrophins, has 

been shown for the facilitatory actions of brain derived neurotrophic factor (BDNF) 
on synaptic transmission (Diógenes et al.  2004 ; Tebano et al.  2008  )  and on plasticity 
(Fontinha et al.  2008  )  at the CA1 area of the hippocampus. The actions of BDNF are 
blocked by either A 

2A
 R blockade or inhibition of Trk phosphorylation, but a Trk 

phosphorylation inhibitor does not prevent A 
2A

 R-mediated facilitation of synaptic 
transmission (Pousinha et al.  2006 , indicating that A 

2A
 R operate upstream of TrkB 

activation. Synaptic actions of other neurotrophic factors, such as glial derived 
neurotrophic factor (GDNF) are also under in fl uence of A 

2A
 R in the striatum (Gomes 

et al.  2006,   2009  ) . Adenosine A 
2A

 R and BDNF TrkB receptors can coexist in the 
same nerve ending since the facilitatory action of A 

2A
 R upon TrkB-mediated BDNF 

action is also visible at the neuromuscular junction (Pousinha et al.  2006  ) , a single 
nerve ending synapse model. Colocalization of A 

2A
 R and Ret, a component of the 

GDNF receptor complex, has also been shown in single axon terminals in the 
striatum (Gomes et al.  2009  ) . 

 The ability of BDNF to facilitate synaptic transmission and synaptic plasticity 
is dependent on the age of the animals (Diógenes et al.  2007,   2011  )  and this may 
be related to the degree of activation of adenosine A 

2A
 R by endogenous adenosine 

at different ages. Thus, to trigger a BDNF facilitatory action at synapses of infant 
animals it is necessary to increase the extracellular levels of adenosine, either by 
inhibiting ADK or by a brief depolarization (Diógenes et al.  2004 ; Pousinha et al. 
 2006  )  or even by high frequency neuronal  fi ring (Fontinha et al.  2008  ) . These 
adenosine-triggered BDNF actions are lost by blocking adenosine A 

2A
 R with 

selective antagonists. In adult animals, BDNF per se can facilitate synaptic trans-
mission, but this effect is also fully lost with blockade of adenosine A 

2A
 R (Diógenes 

et al.  2007  )  or in A 
2A

 R knockout mice (Tebano et al.  2008  ) . Interestingly, the 
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enhanced hippocampal synaptic plasticity in aged animals can be related not only 
to a higher in fl uence of adenosine A 

2A
 R (Costenla et al.  2011  )  but also to an 

enhanced BDNF TrkB-mediated facilitatory tonus also dependent from cross talk 
with A 

2A
 R (Diógenes et al.  2011  ) . Nicotinic alpha7 cholinergic currents in 

GABAergic hippocampal neurons are inhibited by BDNF, and this also requires 
coactivation of adenosine A 

2A
 R (Fernandes et al.  2008  ) . Inhibition of GABA 

transporters (GAT) by BDNF at nerve terminals does not fully depend upon 
coactivation of A 

2A
 R, since it is not abolished by A 

2A
 R blockade, though this 

inhibitory BDNF action can be exacerbated by A 
2A

 R coactivation (Vaz et al. 
 2008  ) . Interestingly, in astrocytes BDNF facilitates GABA transport, and this 
facilitation is fully dependent upon A 

2A
 R activation (Vaz et al.  2011  ) . Contrasting 

with A 
2A

 R which promote the actions of neurotrophic factors, A 
1
 R inhibit neurite 

outgrowth of cultured dorsal root ganglion neurons, both in the absence and in the 
presence of NGF (Thevananther et al.  2001  ) . 

 A 
2A

 R, due to their ability to enhance excitotoxic phenomena, including glutamate 
release (Lopes et al.  2002 ; Marchi et al.  2002  ) , are mostly regarded as promoters of 
neuronal death. However, in some cases, such as cultured retinal neurones, A 

2A
 R 

have been shown to protect neurones against glutamate-induced excitotoxicity 
(Ferreira and Paes-de-Carvalho  2001  ) . Whether this is due to the ability of A 

2A
 R to 

facilitate actions of neurotrophic factors, as it has been shown to occur in relation to 
A 

2A
 R-mediated neuroprotection of motor neurones (Wiese et al.  2007  ) , is not yet 

known. The pathophysiological implications of the cross talk between A 
2A

 R and 
receptors for neurotrophic factors have been discussed in detail elsewhere (Sebastião 
and Ribeiro  2009c  ) . 

 Adenosine receptor activation may also induce release of neurotrophic factors. 
Thus, the expression and/or release of NGF are enhanced by activation of A 

2A
 R in 

microglia (Heese et al.  1997  )  and by activation of A 
1
 R in astrocytes (Ciccarelli et al. 

 1999  ) . Adenosine A 
2B

 R in astrocytes are also able to enhance GDNF expression 
(Yamagata et al.  2007  ) . In the whole hippocampus, A 

2A
 R are required for normal 

BDNF levels (Tebano et al.  2008  ) . Interestingly, in a mouse model of Huntington’s 
disease, A 

2A
 R are also required to keep striatal BDNF levels close to those obtained 

in wild-type mice (Potenza et al.  2007  ) . 
 Finally, interactions among purinergic, growth factor, and cytokine signaling 

regulate neuronal and glial maturation as well as development. In neuronal-
dependent glial maturation both ATP and adenosine purinoceptors are involved 
(see, for instance, Fields and Burnstock  2006  ) . The extracellular adenosine levels 
during high frequency neuronal  fi ring are suf fi cient to stimulate adenosine receptors 
in oligodendrocyte ancestor cells inhibiting their proliferation and stimulating their 
differentiation into myelinating oligodendrocytes (Stevens et al.  2002  ) . In premyeli-
nating Schwann cells, A 

2A
 R activate phosphorylation of extracellular signal-

regulated kinases (ERKs), namely, ERK1/2, and inhibit Schwann cell proliferation 
without arresting differentiation (Stevens et al.  2004  ) . Contrasting with A 

2A
 R, which 

usually promote the actions of neurotrophic factors, adenosine A 
1
 R inhibit neurite 

outgrowth of cultured dorsal root ganglion neurons, both in the absence and in the 
presence of NGF (Thevananther et al.  2001  ) . 
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 Besides in fl uencing the activity of other neuromodulatory receptors, adenosine 
A 

2A
 R also affect the activity of equilibrative transporters, as in the case of adenosine 

transporters (Pinto-Duarte et al.  2005  ) . Thus, activation of A 
2A

 R with the selective 
agonist CGS 21680 facilitates adenosine uptake and enhances release of adenosine, 
which points to a direct effect of A 

2A
 R on nucleoside transporters, rather than an 

indirect action resulting from a modi fi cation of the adenosine gradient of concentra-
tions across the plasma membrane (i.e., a metabolic effect). Furthermore, high 
frequency neuronal  fi ring activates A 

2A
 R and concomitantly enhances nucleoside 

transporters. The main consequence of this A 
2A

 R-mediated enhancement of nucleo-
side transporters is a marked reduction of the tonic activation of inhibitory A 

1
 R 

upon high-frequency  fi ring. This action of A 
2A

 R on the activity of the adenosine 
transporters constitutes a clear demonstration that a neuromodulatory receptor is 
able to control the extracellular levels of its endogenous ligand and, hence, to 
in fl uence its ability to control neurotransmitter release (Pinto-Duarte et al.  2005  ) . 

 A 
2A

 Rs facilitate GAT-1 mediated GABA transport into nerve terminals, an effect 
that is mediated by AC activation, which restrains the inhibition of GAT-1 by PKC 
(Cristóvão-Ferreira et al.  2009  ) . Transport facilitation by A 

2A
 Rs is due to an increase 

in the membrane expression of GAT-1 molecules, re fl ected in increased maximum 
transport velocity (Cristóvão-Ferreira et al.  2009  ) . This A 

2A
 R-mediated facilitation 

of GABA transport into nerve endings, if coupled to an increase in the release of 
GABA (Cunha and Ribeiro  2000  ) , may contribute to faster neurotransmitter 
recycling, leading to an enhancement of phasic GABAergic signaling. 

 A 
2A

 Rs also facilitate GABA transport into astrocytes, by enhancing GAT-1 and 
GAT-3 mediated transport, an action under tight control of A 

1
 R, due to formation of 

A 
1
 R-A 

2A
 R heteromers (Cristóvão-Ferreira et al.  2011  ) . While the A 

1
  protomer of the 

heteromer inhibits GABA transport, the A 
2A

  protomer enhances it, the shift from 
inhibition to enhancement of GABA uptake probably occurring at low micromolar con-
centrations of extracellular adenosine (Cristóvão-Ferreira et al.  2011  ) . These 
concentrations are easily attained at a tripartite synapse, where astrocytes and neu-
rons release considerable amounts of ATP. The higher the release of ATP (as may 
occur at high neuronal  fi ring rates in reciprocal neuron-to-astrocyte communica-
tion) the higher the expected concentration of extracellular adenosine. It is therefore 
likely that sustained neuronal  fi ring promotes activation of the A 

2A
 R protomer of the 

A 
1
 R-A 

2A
 R heteromer leading to facilitation of GABA uptake. Activation of GABA 

uptake by astrocytes will lead to a decrease in ambient GABA and a subsequent 
depression of tonic GABAergic inhibition resulting in enhanced excitatory tonus. 
Conversely, at submicromolar adenosine concentrations, there is a preferential acti-
vation of the A 

1
  protomer of the heteromer and so, GABA uptake by astrocytes 

would be inhibited. Consequently, tonic inhibition by GABA would be enhanced. 
Thus, through an adenosine action upon A 

1
 R-A 

2A
 R heteromers, astrocytes might 

behave as dual ampli fi ers, facilitating excitation of intense astrocytic-to-neuronal 
signaling and increasing inhibition at low neuronal  fi ring rates. This switch in neural 
activity requires a highly ef fi cient control to avoid sudden state transitions, and this 
seems to be the main advantage of heteromerization of A 

1
 R and A 

2A
 R in astrocytes. 

Indeed, overstimulation of just one of the receptor protomers leads to internalization 
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of the whole functional unit (Cristóvão-Ferreira et al.  2011  ) , therefore allowing a 
double brake in the system and avoiding an abrupt inhibitory signaling and a sudden 
switch from excitation to inhibition as a consequence of desensitization of only the 
excitatory protomer.  

    7.9   Concluding Remarks 

 Operating on multiple downstream signaling pathways, adenosine receptors 
in fl uence the activity of other GPCRs as well as of receptors for neurotrophic factors, 
ion channels, ionotropic receptors, and neurotransmitter transporters. Modi fi cations 
of extracellular adenosine levels, due to changes in its metabolic pathways, lead to 
alterations in the degree of activation of adenosine receptors, which will impact 
their ability to enhance or restrain the action of other neurotransmitters or neuromodu-
lators. The cross talk between adenosine receptors and other membrane receptors 
results in part from intracellular cascade processes occurring between common 
transducing systems and through protein phosphorylation processes that involve 
PKC or PKA (Fig.  7.3 ). The key receptor in this synaptic interplay appears to be the 
A 

2A
 R, whereas the A 

1
 R can counteract A 

2A
 R mediated actions. 

 In summary, synaptic transmission is under tight control of endogenous extracel-
lular adenosine, which through pre- and postsynaptic actions interplays with other 
synaptic molecules involved in neurotransmission as well as with membrane 
proteins (receptors, and transporters) essential for transmission to harmonically 
in fl uence neuronal activity.      
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