
Chapter 5
On Integrating EAST-ADL and UPPAAL for
Embedded System Architecture Verification

Tahir Naseer Qureshi, De-Jiu Chen, Magnus Persson and Martin Törngren

Abstract Model-based development (MBD) is a common approach adopted in
many engineering disciplines for handling complexity. For distributed microprocessor
based systems MBD approaches include the use of architecture description languages
(ADL’s), modeling and simulation tools and tools for formal verification. To increase
their combined effectiveness, the various MBD methods, tools and languages are
required to be integrated with each other. This chapter addresses the connection
between ADL’s and formal verification in the context of automotive embedded sys-
tems. A template-based mapping scheme providing formal interpretation of EAST-
ADL, an automotive specific ADL with timed automata (TA) is the main contribution
providing a possibility of automated analysis of timing constraints specified for the
execution behavior and events of a system. One benefit of using TA is the fact that
it can also be used for generating test cases for their usage during late development
phases.

5.1 Introduction

The complexity related to automotive embedded systems has increased signifi-
cantly during the last few decades. While a product is composed of a large num-
ber of interconnected software and hardware components, the development process

T. N. Qureshi (B) · D. J. Chen · M. Persson · M. Törngren
Department of Machine Design, KTH - The Royal Institute of Technology, Stockholm, Sweden
e-mail: tnqu@md.kth.se

D.-J. Chen
e-mail: chen@md.kth.se

M. Persson
e-mail: magnper@md.kth.se

M. Törngren
e-mail: martin@md.kth.se

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 85
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_5,
© Springer Science+Business Media New York 2014



86 T. N. Qureshi et al.

is also distributed spatially and temporally among different engineering teams.
A model-based development (MBD) approach, i.e., the use of computerized models
for different activities [1] is followed in various engineering domains to manage com-
plexity. For embedded systems several powerful but disconnected MBD solutions
like architectural description languages (ADL) for managing engineering informa-
tion, tools like Matlab/Simulink and formal methods like model checking for various
kind of analysis are used. Furthermore, a lot of faults are discovered during the late
development stages (i.e., integration and testing) resulting in an increased develop-
ment time and cost [2]. Inconsistency between the behavioral specifications, related
constraints and requirements is one of the major factors contributing to the faults.
A seamless integrated development environment incorporating several model-based
methods and tools is envisioned to deal with the issues [3].

This chapter is motivated by the above mentioned needs for a seamless integrated
development environment. The main objective is an architecture-centric analysis sup-
port for architectural specifications in the context of model-based development of
automotive embedded systems. A method which paves a way for automated model
transformation between Electronics Architecture and Software Technology- ADL
(EAST-ADL); an automotive specific ADL [4] and timed automata (a formalism for
verifying real-time systems) [5] is introduced. EAST-ADL provides a multi-viewed
and structured information management support at multiple abstraction levels. As
compared to languages like UML or AADL, EAST-ADL has a broader coverage in
terms of development life-cycle. The support is both product-related, such as hard-
ware, software and infrastructure, as well as concern related, such as requirements,
safety, dependability etc. Timed automata (TA) on the other hand is a widely used
formalisms for verifying real-time systems.

Provision of a generalized solution for analyzing specifications based on EAST-
ADL’s design level of abstraction is the main focus of the chapter. Furthermore, the
work focuses on domain specific language and generic automotive systems which is
in contrast with other approaches like [6, 7] focusing on either a generic language
like UML or requirements organized in the form of AND/OR hierarchies.

The chapter mainly presents a mapping framework based on predefined timed
automata templates. It is shown that EAST-ADL timing constraint specifications
and the execution behavior of a component can be abstracted as a network of timed
automata. The considerations required for the usage of the mapping scheme are also
discussed. A case study of a brake-by-wire system is used to demonstrate the usage of
the framework with PapyrusUML (a UML modeling tool) and UPPAAL (a TA-based
model checker) as the tools for modeling and analysis respectively.

5.2 Related Work

Verification based on timed automata (TA) of automotive applications is presented
in [8]. The TA models were used to derive the templates related to function execution
in this chapter.



5 EAST-ADL and UPPAAL Integration 87

A TA-based analysis method for analyzing embedded system architectures is
presented in [6]. TA models are derived from UML sequence diagrams augmented
with performance data. The TA models are application specific, limited to only a few
message lengths for the communication bus, etc. In addition, the generalization of
the work is yet to be determined especially with the presence of variation points in
sequence diagrams. In contrast, the work in this chapter can be applied to multiple
applications focusing on EAST-ADL which does not not have variation points like
UML.

A number of efforts have been carried out to enable the analysis, verification and
validation of system architecture design captured in EAST-ADL. This work is an
extension of [9] and [10]. In [9] the work was limited to the reaction time constraint
and evaluation of the possibility of model transformation between EAST-ADL and
UPPAAL. This chapter presents a few selected templates from [10] and provides an
account of experiences and observations.

In [11] an effort to integrate the SPIN model checker for formal verification of
EAST-ADL models is presented. The automata addressed by SPIN are untimed and
therefore, less suitable for the execution behavior targeted in this chapter.

The specification and analysis of EAST-ADL models can be carried out in sev-
eral ways. One way is to specify the structure using its core part and define behavior
related aspects using external representations such as Simulink. This approach is used
by Wang et al. [12] and Enoiu et al. [13] where timed automata is used as the exter-
nal representation of EAST-ADL functional behavior. An issue with this approach
is the gap between different behavioral models used during different development
stages by different experts. For example, relation between timed automata models for
formal verification and Simulink models for analysis and code generation. A more
suitable approach is the usage of EAST-ADL native specifications for defining a
common behavior and interpreting them with different formalisms used for different
purposes. This approach enables the utilization of the benefits provided by EAST-
ADL to a greater extent. This chapter follows the latter approach with focus on the
timing model part of EAST-ADL. In [14] we have also complemented the work
by addressing the internal behavior of EAST-ADL functions by transforming the
EAST-ADL behavioral specifications to timed automata.

5.3 EAST-ADL and Timing Extension - Concept and Notations

EAST-ADL [4] evolved through several European projects since 2001. It comple-
ments the best industrial practices of requirements specification, system design, doc-
umentation etc. with the goal to facilitate the management of engineering information
throughout a vehicle’s development life cycle. The language is modular with a core
part for specifying structure, and extensions for the specification of logical and execu-
tion behavior, requirements, product variations etc. This modular approach not only
separates the definition of functional and non-functional aspects but also enables the
use of existing tools for various development activities.



88 T. N. Qureshi et al.

A system can be specified atfour different abstraction levels (namely vehicle,
analysis, design and implementation) using EAST-ADL. For example, product line
features (end-to-end functionality) and their variations are specified at the vehicle
level, whereas the detailed design of functional components, connections and allo-
cations to various hardware components is carried out at the design level. The subset
of EAST-ADL addressed in this chapter is as follows.

5.3.1 EAST-ADL Core and Behavior Model

The core and behavior artifacts focused in this chapter are shown in Fig. 5.1 where
the artifacts prefixed with Behavior:: are part of the behavior model. A concept of
type and prototype is used for reusability. For example, a function representing a
wheel can be instantiated as a prototype within another function representing the
overall vehicle. The behavior model is mainly used to specify operational modes and
triggering policy for a function or its prototype. For logical behavior (i.e., internal
logics or a transfer-function between the inputs and outputs) of a function EAST-ADL
relies on external representations like Simulink and SCADE.

5.3.2 Function Behavior Semantics

Every time a function is triggered it reads data at its input ports, executes computations
and writes data on its output ports. The EAST-ADL specifications specify concurrent

FunctionPort

FunctionConnector

FunctionPrototype DesignFunctionPrototype

DesignFunctionType

FunctionType

FunctionFlowPort

direction:EADirectionKind

FunctionClientServerPort

clientServerType:ClientServerKind

<<enumeration>>
Behavior::FunctionBehaviorKind

+SIMULINK
+UML
+Other

Behavior::FunctionTrigger
triggerCondition: string
triggerPolicy:TriggerPolicyKind

Behavior::FunctionBehavior
path: string
representation:FunctionBehaviorKind

<<enumeration>>
Behavior::TriggerPolicyKind

+EVENT
+TIME

<<enumeration>>
ClientServerKind

+client
+server

<<enumeration>>
EADirectionKind

+in
+out

port *
port 

*

port 2
function 0..1

type 1

part *

connector *

Fig. 5.1 EAST-ADL core structure and behavior model



5 EAST-ADL and UPPAAL Integration 89

execution and run-to-completion semantics of a function. i.e., a function runs all the
steps before it starts to execute again. The behavior in terms of interruptions and
preemption is considered as a part of implementation level of abstraction which is
out of scope of the EAST-ADL specifications. Moreover, the ports of an EAST-ADL
function have single-sized overwritable and non-consumable buffer semantics.

5.3.3 Timing Model

The timing model of EAST-ADL is derived from Time Augmented Description
Language (TADL). The readers are referred to [15] for a conceptual overview of
TADL. As shown in Fig. 5.2, the timing extension is based on the concepts of
event and event chain. EventFunction, EventFunctionFlowPort and EventFunction-
ClientServerPort are the three event kinds, referring to the triggering of a function
by some sort of dispatcher, arrival of a data and service requested (or received) by a
port. The dashed instanceRef relations indicate the context dependency of an artifact.
For example, an EventFunctionClientServerPort is applicable on ports of prototypes
instead of their respective function types. An event chain comprises of one or more
stimulus and response events. An event chain can further be refined into smaller event
chains called strands (parallel chains) or segments (sequenced).

Timing constraints can be specified on function executions (e.g. execution time,
period, execution time budgets), event occurrences (e.g. arrival or departure of data
on a function port) and event chains. The constraints addressed in this chapter are
shown in Fig. 5.3. PeriodicEventConstraint and DelayConstraint in Fig. 5.3 are
examples of the constraints applied on event and event chain respectively. For addi-
tional information, the readers are referred to [4].

EventChain

Events::EventFunction

FunctionModeling::
FunctionType

Events::
EventFunctionFlowPort

Events::EventFunctionClientServerPort

eventKind:EventFunctionclientServerPortKind

FunctionModeling::
FunctionClientServerPort

FunctionModeling::
FunctionFlowPort

Event

isStateChanged:bool

response
1..*

stimulus
1..*

strand *segment *

<<instanceRef>>

<<instanceRef>> <<instanceRef>>

<<enumeration>>
Events::

EventFunctionClientServerPortKind
+SentRequest
+ReceivedResponse
+ReceivedRequest
+SentResponse

Fig. 5.2 Events and event chains in EAST-ADL



90 T. N. Qureshi et al.

PrecedenceConstraint

preceeding[1]:DesignFunctionPrototype
Successive[1..*]:DesignFunctionPrototype

TimingConstraint

lower[0..1]:TimeDuration
Upper[0..1]:TimeDuration

ExecutionTimeConstraint

variation[1]:TimeDuration
targetDesignFunctionType[0..1]:DesignFunctionType
targetDesignFunctionPrototype[0..1]:DesignFunctionPrototype

EventConstraint

event[0..1]:Event

TimeDuration

value[1]:float

PeriodicEventConstraint

period[1]:TimeDuration
jitter[1]:TimeDuration
minimumArrivalTime[1]:TimeDuration

ArbitraryEventConstraint

minimumArrivalTime[1..*]:TimeDuration
maximumArrivalTime[1..*]:TimeDuration

DelayConstraint

Scope[0..1]:EventChain
nominal[0..1]:TimeDuration

InputSynchronizationConstraint

width[0..1]:TimeDuration

OutputSynchronizationConstraint

width[0..1]:TimeDuration

Reaction
Constraint

AgeTiming
Constraint

Fig. 5.3 EAST-ADL timing constraints

5.4 Timed Automata and UPPAAL

A timed automaton (TA) [5] is an automaton augmented with clocks and time
semantics to enable formal analysis of real-time systems. For example, to spec-
ify the maximum time duration for which a location (or state) can remain active, a
clock invariant is used. Similarly, it is also possible to specify guards based on clock
values on transitions between two locations.

Often a set of TA are used in a networked form with a common set of clocks
and actions. A special synchronization action denoted by an exclamation sign (!)
or a question mark (?) is used for synchronization between different TA. A timed-
automaton in a network is concurrent unless and until mechanisms like synchroniza-
tion actions are applied. The readers are referred to [5] for a formal definition and
semantics of a network of TA.

UPPAAL is a model checker based on TA for modeling, validation and verifica-
tion of real-time systems. The tool has three main parts: an editor, a simulator and
a verifier, for modeling, debugging and verification (covering exhaustive dynamic
behavior) respectively. A system in UPPAAL is modeled as a network of TA. A sub-
set of CTL (computation tree logic) is used as the query language in UPPAAL for
verification. In addition to the generic TA, UPPAAL uses the concepts of broad-
cast channels for synchronizing more than two automata. The concepts of urgent
and committed states are also introduced to force a transition without time delay.
Similar to other model checking tools, UPPAAL can be used to verify (1) Reacha-
bility i.e., some condition can possibly be satisfied, (2) Safety i.e., some condition
will never occur and (3) Liveness i.e., some condition will eventually become true.
UPPAAL uses the concept of templates to provide reusability and prototyping of



5 EAST-ADL and UPPAAL Integration 91

system components. Each template can be instantiated multiple times with varying
parameters. The instantiation is called a process.

5.5 EAST-ADL and Timed Automata Relationship

Both timed automata (TA) and EAST-ADL are developed for real-time embedded
systems. TA is a formalism which can be used for model-checking of real-time
system. EAST-ADL has a broader coverage which includes but is not limited to
structural and some behavioral aspects of embedded systems. There exist at least
four different possibilities for relating EAST-ADL with timed automata. (1) Use TA
for defining the behavior of a system by exploiting EAST-ADL external behavior
representation support (Function Behavior in Fig. 5.1) as done in [12]. (2) Trans-
form the EAST-ADL behavior description annex [16] to TA for a holistic behavioral
analysis including logical, execution, nominal and error behavior. (3) Model tim-
ing constraints with timed automata with a suitable behavior abstraction. As the
internal functional behavior and hence the associated constraints are out of scope of
this work, only the timing constraints and design level of abstraction is considered,
corresponding to option (3), with the following assumptions and limitations

• Only the Functional Design Architecture (FDA) is considered. The design level
has two parts, namely Functional design architecture (FDA) and Hardware Design
Architecture (HDA). While HDA covers hardware topology, FDA is used to model
software components, middleware functions, device drivers and hardware transfer-
functions. Hence, FDA together with constraints such as time budgets applied on
its contained functions can provide a suitable abstraction for the target analysis.

• The sum of maximum execution time of all the functions having the same period-
icity and allocated to same processing units is less then or equal to their period.
This ensures that functions when refined to an implementation will be schedulable.
For other cases, it is recommended to perform a schedulability analysis for each
set of functions allocated on a single processor. This can be done by tools like
Times (a TA-based tool for schedulability analysis). The deadline of a function
execution is considered equal to its period.

• EAST-ADL supports hierarchical modeling (i.e., function types and prototypes)
whereas UPPAAL does not have such support. Therefore, only one function type,
i.e., the FDA (related to the software architecture) is allowed to have prototypes
of other functions in its composition for the sake of simplicity.

5.5.1 Mapping Scheme

The following discusses a subset of mapping scheme between EAST-ADL and timed
automata based on the experiences from a previous work [9]. An existing timed
automata model of an emergency braking system (EBS) [8] was transformed to



92 T. N. Qureshi et al.

EAST-ADL to derive the relationship followed by the validation of the mapping
by transforming a brake-by-wire system, a representative industrial case study in
EAST-ADL to timed automata. The fundamental concepts of the presented method
is the main focus, therefore only a few templates, especially those which are related
to the case-study in the next section are discussed. Therefore, the interested readers
are referred to [10] for additional details.

The relationship is in the form of timed automata templates for function execution
and timing constraints shown in Fig. 5.3. The templates for the timing constraints
act as monitors indicating if a constraint is satisfied or not.

In the following figures, all the templates have their own clocks named ‘Local-
Clock’ and all the synchronization actions and variables like MinArrivalTime, period
are their input parameters in the form of bounded integer variables. The bound rep-
resents the minimum and maximum time values in the overall system specifications.
The following text covers the fundamental concepts of the presented method, how-
ever, only a few templates, especially those which are related to the case-study in the
next section are discussed. Therefore, the interested readers are referred to [10] for
additional details.

Event: An EAST-ADL event is modeled as a synchronization action. For example,
the synchronization action output! for the transition from Execute to Init state in Fig.
5.4b can be considered as an event corresponding to an EventFunctionFlowPort
referring to a port with direction out or EventFunctionClientServerPort with kind
of either sentRequest or sentResponse. The synchronization actions correspond to a
simultaneous read or write on a function’s ports.

Function execution behavior: As shown in Fig. 5.4, a function can be modeled
with three or two locations for time-triggered and event triggered systems respectively
depending on the triggering policy of the function trigger (Fig. 5.1) specified for
the function under consideration. In Fig. 5.4 , the transition from Init to Execute
and Execute to Finished represent the reading and writing of data on a function
port respectively. The state Execute abstracts the logical behavior and periodicity
is modeled by the Finished state together with its invariant and the guard of the
following transition. The parameters maxexecTime and minexecTime are obtained
from ExecutionTimeConstraint (Fig. 5.3) where max- and minexecTime correspond
to the upper and lower limits of the execution time budgets. On the other hand,
the period is obtained from PeriodicEventConstraint applied on the EventFunction
referring to the DesignFunctionType under consideration.

(a) (b)

Fig. 5.4 Function templates a Periodic b Aperiodic



5 EAST-ADL and UPPAAL Integration 93

Timing constraints: A constraint is either satisfied or not; therefore, a minimum
of four locations corresponding to initial, intermediate, success, fail states are neces-
sary to model a constraint. On occurrence of an event, the automaton proceeds to an
intermediate state. Based on the applicable guard conditions (obtained from a con-
straint attribute) the fail or success state is reached. The transitions to reach a fail or
a safe state are enabled by clock guards and synchronization actions representing the
timing bounds and event occurrences respectively. The following are two examples
of the constraints applied on event and event chain respectively.

Periodic event constraint: A periodic event constraint is used to specify con-
straints on the periodicity of an event. An UPPAAL template for a periodic event
constraint is shown in Fig. 5.5a. The three applied parameters (also shown in Fig. 5.3)
are period (P), jitter (J) and the minimum arrival times of the event representing
ideal, maximal and minimal time interval between occurrence of two events. The
synchronization action “event?” refers to the EAST-ADL event under consideration.

Reaction constraint: A reaction constraint specifies a bound between the occur-
rences of stimuli and responses of an event chain. According to the EAST-ADL
specifications, there exist five possible specification combinations ({upper, lower},
{upper, lower, jitter}, {upper}, {lower}, {nominal, jitter}) for the reaction constraint.
The presented work considers only one combination i.e., {upper} which corresponds
to the maximum time allowed between the stimulus and the response. In the reac-
tion constraint template (Fig. 5.5b) the clock is reset when a stimulus event occurs.
As soon as the response event occurs the automata transits to Fail or Success state
depending on the elapsed time i.e., the ‘LocalClock’ value.

Rate Transition Templates: An EAST-ADL system is inherently deadlock free
(Sect. 5.3.2) however, a deadlock due to blocked transitions is highly likely with
the templates described earlier with functions having different execution rates. To
avoid such condition, rate transition templates shown in Fig. 5.6 are introduced. The
templates and the name are inspired by the Simulink1 rate-transition block.

(a) (b)

Fig. 5.5 Periodic event and reaction constraint templates

1 http://www.mathworks.se/help/toolbox/simulink/slref/ratetransition.html

http://www.mathworks.se/help/toolbox/simulink/slref/ratetransition.html


94 T. N. Qureshi et al.

Fig. 5.6 Rate transition tem-
plates a Fast to slow rate
transition b Slow to fast rate
transition

(a) (b)

The template in Fig. 5.6a is used when the sender is running at a faster rate (less
period) than the receiver. The actions input? and output! correspond to the input from
the sender and output to the receiver respectively. The difference parameter is the
difference of frequencies obtained by dividing the period of the receiver with that of
sender. For the case where the sender has low frequency, the template in Fig. 5.6b is
used.

5.5.2 Usage and Automation Considerations

The following is required for the transformation and its automation:

1. A pre-defined set of templates in UPPAAL with different combination of channel
types (i.e., ‘chan’ and ‘broadcast chan’ in UPPAAL) and inclusion/exclusion of
synchronization actions from function temples. In this way the automation process
will simply require template instantiations as UPPAAL process corresponding to
EAST-ADL functions. For example, for a function in EAST-ADL representing a
sensor having no input, an UPPAAL function template without ‘input?’ synchro-
nization will be used. Similarly, if a constraint is applied on an EAST-ADL event
or if it is transmitted to multiple receivers then the corresponding channel type in
UPPAAL should be ‘broadcast’ type.

2. An appropriate rate transition template should be used for two functions executing
at different rates and communicating with each other. This in turn requires dec-
laration of additional channels. For example, consider a process ‘A’ in UPPAAL
is communicating with process ‘B’ using channel ‘channel1’. If a rate transition
‘RT1’ is used then an additional channel, i.e., ‘channel2’ is defined. In this case
‘channel1’ is used between ‘A’ and ‘RT1’ whereas ‘channel2’ is used between
‘RT1’ and ‘B’. If the two communicating functions have the same frequency then
no rate-transition process is required.

3. The minimum resolution of time has to be decided beforehand where time values
are declared as a multiple of minimum time unit. For example, if the minimum
unit is defined as 1µs then 1 ms will be written as 1,000.



5 EAST-ADL and UPPAAL Integration 95

5.5.3 System Verification

With the introduced relationship between EAST-ADL and timed automata, the
analysis becomes verification of a safety property in the following form: (1) A given
constraint is satisfied iff for all initial conditions, the state “Fail” is never reached for
all cases. (2) A system is free of any inconsistencies iff there is no deadlock and all
the constraints are satisfied. ToS verify a given set of timing constraints of a system
specification, the following two query language syntaxes have to be used.

• A [] (not deadlock) to verify if there exist any deadlock. Three possible reasons for
a deadlock can be (1) the absence of one or more rate-transition templates in case
of different frequency between two communicating functions and (2) an incorrect
synchronization channel type and (3) Incompleteness of the specifications being
verified.

• A [] (not XX.Fail) to verify that a timing constraint modeled with an UPPAAL
process named XX never reaches the failed state. In case a fail state is reached,
the timing constraints have one or more inconsistencies.

5.6 Brake-by-Wire Case Study

The brake-by-wire (BBW) system is a representative industrial case study. This case
has been used in several EAST-ADL related projects funded by the European Com-
mission. It provides coverage of EAST-ADL artifacts and methodology at multiple
abstraction levels. A simplified version of the case study is shown in Fig. 5.7 which
is a snapshot from its EAST-ADL (UML profile) implementation. For simplicity,
three actuators, ABS functions and their connections are not shown in the figure.

In the simplified system, the Brake Torque Calculator (BTC) periodically (period =
10 ms) calculates the desired torque utilizing the percent value of the brake pedal. This

Fig. 5.7 UML implementation of the brake-by-wire system



96 T. N. Qureshi et al.

desired torque is utilized by the GlobalBrakeController (GBC) which periodically
(period = 20 ms) calculates the torque for each wheel. The ABS functions on each
wheel are responsible to control the locking of the wheel and provide the required
braking torque. Both ABS and the actuators are triggered on the events related to the
arrival of a data on their ports. This implies that after transformation to UPPAAL
BTC and GBC will be represented by the template shown in Fig. 5.4a and the ABS
by the one in Fig. 5.4b. In addition a rate transition template will also be required
between BTC and GBC.

Four different events listed in Fig. 5.8 are defined for the EAST-ADL model.
Furthermore, only one event chain (see also Fig. 5.2) is defined with the events
‘CalculatedTorque’ and ‘actuation1’ as the stimulus and response respectively. The
constraints are listed in Fig. 5.9.

An UPPAAL model of a subset of the constraints and functions described above
is shown in Fig. 5.10 where the red color represents the active locations during a
simulation . The model is manually generated. Compare the process names, syn-
chronization actions and constraints, i.e., PCC1, RC1 and PEC1 with the discussion
and figures earlier in this section.

Fig. 5.10 shows three constraints i.e., PEC1 (Periodic Event Constraint), PCC1
(Precedence Constraint) and RC1 (Reaction Constraint). To verify the consistency
the CTL syntax as described in Section 5.5.3 were used. For example, A[] (not
deadlock) to check if the system is deadlock free and A[] (not PEC1.Fail) to check if

Event Name Type Attributes 

BTCTriggerEvent EventFunction TargetFunctionPrototype=pBTC 

GBCTriggerEvent EventFunction TargetFunctionPrototype=pGBC 

CalculatedTorque EventFunctionFlowPort TargetFunctionFlowPort=DesiredTorque 
TargetFunctionPrototype=pBTC 

actuation1 EventFunctionFlowPort TargetFunctionFlowPort=ActOut 

TargetFunctionPrototype=pABSFR 

Fig. 5.8 Events

Constraint Name Type Attributes 

BTCExecution Execution time TargetFunctionPrototype=pBTC , Lower = 3 , Upper =5 

GBCExecution Execution time TargetFunctionPrototype=pGBC, Lower = 2, Upper =6 

ABSFRExecution Execution time TargetFunctionPrototype=pABSFR, Lower = 2, Upper =3 

ABSFLExecution Execution time TargetFunctionPrototype=pABSFL, Lower = 2, Upper =3 

ABSRRExecution Execution time TargetFunctionPrototype=pABSRR, Lower = 2, Upper =3 

ABSRLExecution Execution time TargetFunctionPrototype=pABSRL, Lower = 2, Upper =3 

RC1 Reaction Scope = EC1, ReactionTime = 50 ms

PEC1 Periodic event TargetEvent= CaclulatedTorque, MinArrivalTime= 3ms, Ide-

alPeriod = 10 ms, Jitter = 9 ms 

PCC1 Precedence Preceding = CalculatedTorque, Successive = actuation1

Fig. 5.9 Timing and event constraints



5 EAST-ADL and UPPAAL Integration 97

pBTC Rate Transition 
between pBTC and 

pGBC

pGBC

pABSFR

RC1 PEC1PCC1

Fig. 5.10 Brake-by-wire model in UPPAAL

the periodic event constraint is satisfied. All the properties were found to be satisfied
using the UPPAAL verifier. The time taken for the verification was less than a second.

5.7 Discussion

A method to analyze consistency of timing constraints specified using EAST-ADL is
presented. The proposed mapping scheme is a basis for automated transformations
between EAST-ADL and timed automata based tools. We have experimented with
different model transformation technologies such as Atlas Transformation Language
(ATL) or Model Query Language (MQL) [9]. Transformation of EAST-ADL specifi-
cations is a complex and non-trivial task due to the distribution of information among
its extensions. One of the main benefits of the presented approach is that it reduces
the effort related to model-transformation and related complexity. Instead of creat-
ing a new TA process for every timing constraint, the transformation requires only
instantiation of the templates. This is especially true for imperative transformation
languages like MERL (MetaEdit+ Reporting Language). Furthermore, the template-
based approach is also a scalable solution where the templates can be extended
for as many events as required to be considered for an event chain. The extension
mechanisms are discussed in [10].

While there exist otherapproaches targeting different types of constraints for
example, dependency graph for checking function precedence [17], the presented
work is suitable in the context of MBD. The use of TA can enable bridging the
gap between the design and testing phase. Generation of test cases from the timed
automata analysis of EAST-ADL specifications for carrying out testing at different
design phases is one of the future possible extensions.

At first glance, the use of techniques like scheduling analysis might seem to
be more appropriate than the use of timed automata. The use of such techniques are



98 T. N. Qureshi et al.

applicable at the implementation level of EAST-ADL which in turn corresponds to the
AUTOSAR standard [18] instead of the design level of abstraction addressed by this
chapter. To enable analysis such as schedulability, the design level of abstraction has
be augmented with additional details as presented in [19]. In addition, the concurrency
of functions at the design level of abstraction and the fact that there exists an n-to-m
relationship between EAST-ADL functions and AUTOSAR software components as
well as runnables [20, 21] further motivates the use of timed automata based analysis.

In Sect. 5.5, three different possibilities for relating EAST-ADL and timed
automata were mentioned. Based on the experiences from the work presented in
this chapter, the possibility of transforming the EAST-ADL behavior description
annex (BDA) to timed automata has also been studied [14]. The BDA provides sup-
port for relating different kind of behavior such as execution behavior and timing
constraints considered in this chapter, logical behavior, and error behavior specified
by the EAST-ADL’s dependability modeling extension. The templates described in
this chapter can serve as a monitor to verify different types of timed behavioral.

The main focus of the work presented in this chapter was on exploring a rela-
tionship between EAST-ADL and timed automata as a step towards an integrated
environment providing architecture-centric development of automotive embedded
systems in a seamless manner. This also implies that aspects like state space cov-
erage were not the major focus however, discussed in [14]. The timed automata
semantics and the assumptions presented in this chapter pose some limitations on
EAST-ADL modeling and transformation work. For example, the function templates
assumes one input and one output port which in turn requires that a function can only
be triggered by arrival of data on one port only etc. in contrast to EAST-ADL sup-
port for multiple triggers. Another issue related to the fast to slow rate transition
template is that it is only applicable for the cases where the frequencies are multiples
of each other. Similarly, aspects like jitter are considered to a limited extent. Efforts
to overcome this limitations are one of the planned future activities.

Other issueswhich require further investigation are automatic test-case generation
directly from EAST-ADL specifications, combined analysis of internal and execution
behavior and methods for transferring the analysis results back for storing them as
part of the EAST-ADL model using its verification and validation extension.

References

1. Törngren, M., Chen, D., Malvius, D., Axelsson, J.: Automotive embedded systems handbook.
In: Model-Based Development of Automotive Embedded Systems. CRC Press, Boca Raton,
FL (2009)

2. Lönn, H., Freund, U.: Automotive embedded systems handbook. In: Automotive Architecture
Description Languages, CRC Press, Boca Raton, FL (2009)

3. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless model-based
development: from isolated tools to integrated model engineering environments. Proc. IEEE
98(4), 526–545 (2010)



5 EAST-ADL and UPPAAL Integration 99

4. The ATESST2 Consortium: EAST ADL 2.0 Specification. Project Deliverable D4.1.1. http://
www.east-adl.info/repository/EAST-ADL2.1/EAST-ADL-Specification_2010-06-30.pdf
(2010)

5. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Lectures on Con-
currency and Petri Nets, LNCS, vol. 3098, pp. 87–124. Springer, Berlin (2004)

6. Hendriks, M., Verhoef, M.: Timed automata based analysis of embedded system architectures.
In: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th, International,
p. 8 (2006)

7. Ponsard, C., Massonet, P., Molderez, J.F., Rifaut, A., Lamsweerde, A.V., Van, H.T.: Early
verification and validation of mission critical systems. Form. Methods Syst. Des. 30(3), 233–
247 (2007)

8. Montag, P., Nowotka, D., Levi, P.: Verification in the design process of large real-time systems:
a case study. In: Automotive Safety and Security 2006, Stuttgart (Germany), October 12–13,
2006, pp. 1–13 (2006)

9. Qureshi, T.N., Chen, D.J., Persson, M., Törngren, M.: Towards the integration of UPPAAL
for formal verification of EAST-ADL timing constraint specification. In: Workshop on Time
Analysis and Model-Based Design, from Functional Models to Distributed Deployments (2011)

10. Qureshi, T.N., Chen, D.J., Törngren, M.: A timed automata-based method to analyze EAST-
ADL timing constraint specifications. In: Modelling Foundations and Applications, Lecture
Notes in Computer Science, vol. 7349, pp. 303–318. Springer, Berlin (2012)

11. Feng, L., Chen, D.J., Lönn, H., Törngren, M.: Verifying system behaviors in EAST-ADL2
with the SPIN model checker. In: Mechatronics and Automation (ICMA), 2010 International
Conference on, pp. 144–149 (2010)

12. Kang, E.Y., Schobbens, P.Y., Pettersson, P.: Verifying functional behaviors of automotive prod-
ucts in EAST-ADL2 Using UPPAAL-PORT. In: Computer Safety, Reliability, and Security,
LNCS, vol. 6894, pp. 243–256. Springer, Berlin (2011)

13. Enoiu, E.P., Marinescu, R., Seceleanu, C., Pettersson, P.: ViTAL : A verification tool for EAST-
ADL models using UPPAAL PORT. In: Proceedings of the 17th IEEE International Conference
on Engineering of Complex Computer Systems. IEEE Computer Society Press (2012)

14. Qureshi, T.N.: Enhancing model-based development of embedded systems: modeling, simula-
tion and model-transformation in an automotive context. Trita-mmk, issn 1400–1179; 2012:16,
isbn 978-91-7501-465-4, Department of Machine Design, KTH - The Royal Institute of Tech-
nology, Sweden (2012)

15. Stappert, F., Jonsson, J., Mottok, J., Johansson, R.: A design framework for End-To-End timing
constrained automotive applications. Embedded Real-Time Software and Systems (ERTS’10)
(2010)

16. The MAENAD consortium: language concepts supporting engineering scenarios. Project
Deliverable D3.1.1. http://www.maenad.eu/publications.html (2012)

17. Zhao, Y.: On the design of concurrent, distributed real-time systems. Ph.D. thesis, EECS Depart-
ment, University of California, Berkeley (2009)

18. AUTOSAR Consortium: AUTomotive Open System ARchitecture. http://www.autosar.org
19. Anssi, S., Tucci-Pergiovanni, S., Mraidha, C., Albinet, A., Terrier, F., Gerard, S.: Completing

EAST-ADL2 with MARTE for Enabling Scheduling Analysis for Automotive Applications.
Conference ERTS, In (2010)

20. Cuenot, P., Frey, P., Johansson, R., Lönn, H., Reiser, M.O., Servat, D., Tavakoli Kolagari, R.,
Chen, D.: Developing automotive products using the EAST-ADL2, an AUTOSAR compli-
ant architecture description language. In: Proceedings of the 4th European Congress ERTS
(Embedded Real Time Software) (2008)

21. Qureshi, T.N., Chen, D., Lönn, H., Törngren, M.: From EAST-ADL to AUTOSAR. Tech. Rep.
TRITA-MMK 2011:12, ISSN 1400–1179, ISRN/KTH/MMK/R-11/12-SE, Mechatronics Lab,
Department of Machine Design, KTH, Stockholm, Sweden (2011)

http://www.east-adl.info/repository/EAST-ADL2.1/EAST-ADL-Specification_2010-06-30.pdf
http://www.east-adl.info/repository/EAST-ADL2.1/EAST-ADL-Specification_2010-06-30.pdf
http://www.maenad.eu/publications.html
http://www.autosar.org

	5 On Integrating EAST-ADL and UPPAAL for Embedded System Architecture Verification
	5.1 Introduction
	5.2 Related Work
	5.3 EAST-ADL and Timing Extension - Concept and Notations
	5.3.1 EAST-ADL Core and Behavior Model
	5.3.2 Function Behavior Semantics
	5.3.3 Timing Model

	5.4 Timed Automata and UPPAAL
	5.5 EAST-ADL and Timed Automata Relationship
	5.5.1 Mapping Scheme
	5.5.2 Usage and Automation Considerations
	5.5.3 System Verification

	5.6 Brake-by-Wire Case Study
	5.7 Discussion
	References


