
Embedded Systems

Embedded Systems
Development

Alberto Sangiovanni-Vincentelli
Haibo Zeng
Marco Di Natale
Peter Marwedel Editors

From Functional Models
to Implementations

Embedded Systems

Volume 20

Series Editors

Nikil D. Dutt, University of California, Irvine, USA
Grant Martin, Cadence Design Systems Inc., San Jose, California, USA
Peter Marwedel, TU Dortmund University, Dortmund, Germany

For further volumes:
http://www.springer.com/series/8563

http://www.springer.com/series/8563

Alberto Sangiovanni-Vincentelli
Haibo Zeng • Marco Di Natale
Peter Marwedel
Editors

Embedded Systems
Development

From Functional Models to Implementations

123

Editors
Alberto Sangiovanni-Vincentelli
Department of Electrical Engineering and

Computer Science
University of California
Berkeley, CA
USA

Haibo Zeng
Department of ECE
McGill University
Montreal
Canada

Marco Di Natale
TeCIP Institute
Scuola Superiore Sant’Anna
Pisa
Italy

Peter Marwedel
Embedded Systems Group
TU Dortmund University
Dortmund
Germany

ISSN 2193-0155 ISSN 2193-0163 (electronic)
ISBN 978-1-4614-3878-6 ISBN 978-1-4614-3879-3 (eBook)
DOI 10.1007/978-1-4614-3879-3
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013939569

� Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book is an edited collection of contributions in selected topics related to
embedded systems modeling, analysis, and synthesis. Most contributions are
extended versions of papers that were originally presented at several workshops
organized in the context of the Embedded Systems Week and Real-Time Systems
Symposium in the last months of 2011. The workshops targeted topics and chal-
lenges related to the use of models for the design, analysis, and synthesis of
Embedded Systems. These workshops were the WSS, Workshop on Software
Synthesis, the TiMoBD, Time Analysis and Model-Based Design, and the SOMRES,
Workshop on Synthesis and Optimization Methods for Real-Time Embedded
Systems. Problems and solutions were discussed for different stages in the devel-
opment process and applied to the system-level view, as well as to the design,
analysis, and synthesis of components and subsystems and the behaviors therein.

As workshop organizers and editors of this book, we believe that recent years
have brought renewed interest for the study and development of embedded and
cyber-physical systems by researchers and developers. The opportunity for the
development of new languages, methods, and tools comes from the emergence of
feature-rich, complex, distributed systems, and the need to tame their complexity
in new ways, is leading to the adoption of model-based development, new analysis
methods and design synthesis techniques, and true component-based development,
in which functional and platform assemblies are composable, analyzable, and,
possibly in the future, demonstrably correct-by-construction.

This book collects contributions on different topics, including system and
software models, innovative architectures (including OS and resource managers),
formal methods, model checking and analysis techniques, software synthesis,
system optimization and real-time networks, with the ambitious objective of
providing useful insights and innovative ideas on how to solve very complex
problems throughout the entire (model-based) development cycle. Contrary to
other books on the subject, we attempt at reconciling the two communities of
Model-Based Design and Model-Driven Engineering, which often operate in
independent ways, with only a few fortunate exceptions.

Regardless of the workshop organization, the selected papers have been reor-
ganized according to their topics and divided into parts that better fit the stages in
the development process rather than an abstract classification based, for example,

v

on languages, algorithmic solutions, or analysis and synthesis methods. The
intended audience includes of course the general community of embedded systems
researchers, but we believe several topics should be also of interest for developers,
tool vendors, and development process experts. Several contributions are provided
by industry developers and researchers, referring to upcoming commercial prod-
ucts, methods, and tools. The applicability of most other results is demonstrated by
use cases and/or project experiences.

We would like to acknowledge all authors for their hard work, the reviewers
and workshop audiences for their constructive feedback and interesting discussion,
which eventually paved the way for improved and new content, and the assistant
editors at Springer. We hope that this book will serve as an interesting source of
inspiration for new researches and applications, and help many readers to enter the
domain of model-based design of embedded systems.

Berkeley-Rome, March 2013 Alberto Sangiovanni-Vincentelli
Montreal Haibo Zeng
Pisa Marco Di Natale
Dortmund Peter Marwedel

vi Preface

Contents

1 Introduction: Modeling, Analysis and Synthesis of Embedded
Software and Systems . 1
Alberto Sangiovanni-Vincentelli, Haibo Zeng, Marco Di Natale
and Peter Marwedel

Part I Model-Based Design and Synthesis

2 Modeling, Analysis, and Implementation of Streaming
Applications for Hardware Targets . 19
Kaushik Ravindran, Arkadeb Ghosal, Rhishikesh Limaye,
Douglas Kim, Hugo Andrade, Jeff Correll, Jacob Kornerup,
Ian Wong, Gerald Wang, Guang Yang, Amal Ekbal, Mike Trimborn,
Ankita Prasad and Trung N. Tran

3 Dataflow-Based, Cross-Platform Design Flow
for DSP Applications . 41
Zheng Zhou, Chung-Ching Shen, William Plishker
and Shuvra S. Bhattacharyya

Part II Model-Driven Design, Integration and Verification
of Heterogeneous Models

4 Model-Driven Design of Software Defined Radio Applications
Based on UML . 69
Jair Gonzalez and Renaud Pacalet

5 On Integrating EAST-ADL and UPPAAL for Embedded
System Architecture Verification . 85
Tahir Naseer Qureshi, De-Jiu Chen, Magnus Persson
and Martin Törngren

vii

http://dx.doi.org/10.1007/978-1-4614-3879-3_1
http://dx.doi.org/10.1007/978-1-4614-3879-3_1
http://dx.doi.org/10.1007/978-1-4614-3879-3_2
http://dx.doi.org/10.1007/978-1-4614-3879-3_2
http://dx.doi.org/10.1007/978-1-4614-3879-3_3
http://dx.doi.org/10.1007/978-1-4614-3879-3_3
http://dx.doi.org/10.1007/978-1-4614-3879-3_4
http://dx.doi.org/10.1007/978-1-4614-3879-3_4
http://dx.doi.org/10.1007/978-1-4614-3879-3_5
http://dx.doi.org/10.1007/978-1-4614-3879-3_5

6 Schedulability Analysis at Early Design Stages with MARTE 101
Chokri Mraidha, Sara Tucci-Piergiovanni and Sebastien Gerard

Part III Component-Based Design and Real-Time Components

7 Early Time-Budgeting for Component-Based Embedded
Control Systems . 123
Manoj G. Dixit, S. Ramesh and Pallab Dasgupta

8 Contract-Based Reasoning for Component Systems
with Rich Interactions . 139
Susanne Graf, Roberto Passerone and Sophie Quinton

9 Extracting End-to-End Timing Models from
Component-Based Distributed Embedded Systems 155
Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin

Part IV Timing Analysis and Time-Based Synthesis

10 Distributed Priority Assignment in Real-Time Systems 173
Moritz Neukirchner, Steffen Stein and Rolf Ernst

11 Exploration of Distributed Automotive Systems Using
Compositional Timing Analysis . 189
Martin Lukasiewycz, Michael Glaß, Jürgen Teich
and Samarjit Chakraborty

12 Design and Evaluation of Future Ethernet AVB-Based
ECU Networks . 205
Michael Glaß, Sebastian Graf, Felix Reimann and Jürgen Teich

Index . 221

viii Contents

http://dx.doi.org/10.1007/978-1-4614-3879-3_6
http://dx.doi.org/10.1007/978-1-4614-3879-3_7
http://dx.doi.org/10.1007/978-1-4614-3879-3_7
http://dx.doi.org/10.1007/978-1-4614-3879-3_8
http://dx.doi.org/10.1007/978-1-4614-3879-3_8
http://dx.doi.org/10.1007/978-1-4614-3879-3_9
http://dx.doi.org/10.1007/978-1-4614-3879-3_9
http://dx.doi.org/10.1007/978-1-4614-3879-3_10
http://dx.doi.org/10.1007/978-1-4614-3879-3_11
http://dx.doi.org/10.1007/978-1-4614-3879-3_11
http://dx.doi.org/10.1007/978-1-4614-3879-3_12
http://dx.doi.org/10.1007/978-1-4614-3879-3_12

Chapter 1
Introduction: Modeling, Analysis and Synthesis
of Embedded Software and Systems

Alberto Sangiovanni-Vincentelli, Haibo Zeng, Marco Di Natale and Peter
Marwedel

Abstract Embedded systems are increasingly complex, function-rich and required
to perform tasks that are mission- or safety-critical. The use of models to specify
the functional contents of the system and its execution platform is today the most
promising solution to reduce the productivity gap and improve the quality, correctness
and modularity of software subsystems and systems. Models allow to advance the
analysis, validation, and verification of properties in the design flow, and enable the
exploration and synthesis of cost-effective and provably correct solutions. While
there is (relative) consensus on the use of models, competing (and not necessarily
compatible) approaches are explored in the academic and industrial domain, each
with its distinctive features, strengths, and weaknesses. Modeling languages (and the
accompanying methodologies) are today roughly divided as belonging to the Model-
Based Design (MBD) or Model-Driven Engineering (MDE) approach. Component-
based development is a desirable paradigm that applies to both modeling styles.
Research work tries to define (and possibly widen) the range of model properties that
can be analyzed and demonstrated as correct, providing methods and tools to this
purpose. Time properties are an important subset, since they apply to the majority

A. Sangiovanni-Vincentelli (B)

Department of Electrical Engineering and Computer Science (EECS),
University of California, Berkeley, 253 Cory Hall MC# 1770,
Berkeley, CA 94720-1770, USA
e-mail: alberto@eecs.berkeley.edu

H. Zeng
Department of ECE, McGill University, Montreal H3A 2A7, Canada
e-mail: haibo.zeng@mcgill.ca

M. Di Natale
TeCIP Institute, Scuola Superiore Sant’Anna, via Moruzzi 1, Pisa 56124, Italy
e-mail: marco.dinatale@sssup.it

P. Marwedel
Embedded Systems Group, TU Dortmund University, Otto-Hahn-Str. 16,
Dortmund 44221, Germany
e-mail: peter.marwedel@tu-dortmund.de

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 1
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_1,
© Springer Science+Business Media New York 2014

2 A. Sangiovanni-Vincentelli et al.

of the complex and distributed systems in the automotive, avionics, and controls
domains. A synthesis path, with the methods and tools to generate a (provably correct)
software or hardware implementation of a model is a necessary complement to the use
of an analyzable modeling language, not only to improve efficiency, but to avoid the
introduction of unwanted errors when the model is refined into its implementation.

Embedded systems are pervasive in today’s society, and everybody can witness
the increasing number of intelligent functions in everyday devices. What is probably
less evident is the number of problems faced by the industry in coping with the
increasing complexity of embedded functionality. The need for more contents and
new intelligent functions is openly in a mismatch with the request for a reduced
time-to-market, more robustness, and future extensibility.

Traditional programming techniques, including object-oriented languages, are not
able to reduce the productivity gap, and embedded system development processes
demand new methods and techniques that can improve the quality, correctness, and
modularity of systems and subsystems by advancing the analysis and verification of
properties as early as possible in the design flow.

The use of models can help the analysis of the system properties and verification
by simulation, the documentation of the design decisions, and possibly the automatic
generation of the software implementation. Each of the previous topics is the sub-
ject of a number of relevant research domains, but all of them are also part of the
industrial practice, at least to some degree, backed by several commercial products
and standards.

The Model-Based Design approach (MBD) prescribes the use of models based
on a mathematical formalism and executable semantics to represent the controller
system (to be realized in SW or HW) and the controlled device or environment
(often referred to as Plant). Examples of available commercial tools for model-based
development are Simulink [1], SCADE [2], NI LabVIEW [3], and Modelica [4].
Academic projects that fit this definition are Ptolemy [5] and Metro II [6].

These tools are feature-rich and allow the modeling of continuous or discrete time,
or hybrid systems in which functionality is typically represented using a dataflow
or an extended finite-state machine formalism (or a combination of them). MBD
languages enable the realization of mathematical specifications that can be used for
system simulation, testing and behavioral code or firmware generation. Very often
these languages and tools tend to be domain-specific; subtle semantic differences may
characterize each of them. The way in which time, time events, and time specifications
are handled by these languages is a main variation point. In many cases, especially
when an implementation is automatically generated from a model, time events belong
to a discrete lattice and all time properties are expressed in terms of multiples of
the system base rate. For discrete-time models, several analysis and verification
techniques that are typical of hardware design can be reused. When continuous-
time modeling is required and controller events can happen at any point in time,
timed automata [7] models can provide an adequate formal backing and verification
capability.

The strength of MBD tools is the analysis, synthesis and verification capabil-
ity. However, when the software/hardware implementation of models needs to be

1 Introduction: Modeling, Analysis and Synthesis 3

considered at simulation time to account for computation and communication delays,
or at code generation time, most commercial MBD tools lack expressive power to
represent complex system architectural aspects and execution platforms. Moreover,
their management of types, components and extension mechanisms are often limited
in scope.

Originated from the software engineering research community, Model-Driven
Engineering (MDE) is a methodology which focuses on creating and exploiting
domain specific models with abstract representations of the knowledge and activities
in a particular application domain. The Model-Driven Architecture (MDA) [8] ini-
tiative was started by the Object Management Group (OMG) as the driver for the use
of models in a process where the functional description is separated from the plat-
form model and later bound together in the development stages. The binding of the
two models and the generation of a platform-specific model (PSM) is to be achieved
through suitable model-to-model transformations. The languages prescribed by the
OMG for the MDA approach derive from experiences in the (object-oriented) soft-
ware engineering. These (graphical) languages are suited at representing architec-
tural aspects and are designed for extensibility. In addition, OMG provided standard
means for the definition of metamodels and standard languages for model-to-model
transformations and model-to-text (model-to-code) generation. However, the behav-
ioral semantics of the languages recommended by OMG for the MDA (including
UML [9], and SysML [10], purposely defined for modeling systems and embedded
systems) had not been completely and formally specified until very recently, with
the new OMG Action Semantics language ALF [11] (the semantics is specified as
fUML [12]). Thus, model execution and simulation are today tool-specific and often
characterized by a limited scope.

The extensibility features of these languages have been exploited for the definition
of a domain-specific extension for Real-time and Embedded systems, called MARTE
[13]. MARTE includes a set of specialized definitions for time, timed events, time
attributes such as worst-case execution times, and time constraints. It is today the
natural candidate for the definition of large-scale embedded systems with real-time
constraints under the MDE approach. Several groups proposed the use of worst-case
timing analysis techniques, working at the level of software tasks and messages to
analyze the correctness of systems modeled using UML and SysML with MARTE.

Model-Driven Engineering (MDE) and Model-Based Development (MBD) are
possible choices to form the backbone of the design flow. Albeit MDE and MBD
share the same principle (using models as primary artifacts to drive the design and
development process), they differ substantially in their details. Each on its own
is incapable of addressing all the challenges of modern system design. However,
their strengths and weaknesses can be seen as complementary, and they can be
complemented by domain-specific languages or other formal models. Among those,
Architecture Description Languages or ADL for the architecture-level views and
Timed-Automata for the description of the behavior and the formal verification of
timing properties are proposed in one of our featured contributions.

4 A. Sangiovanni-Vincentelli et al.

Book Outline
The book chapters are organized around four main subjects. The first part focuses
on model-based design languages and tools with emphasis on the analysis (by sim-
ulation and early prototyping), and especially synthesis capabilities offered by these
languages. The chapters in this part discuss dataflow models, languages, and tools,
and their application to streaming and signal-processing applications.

The second part discusses the languages belonging to the Model-Driven Engi-
neering approach and domain-specific architecture-description languages. These lan-
guages are used to describe, analyze, and demonstrate time properties of systems,
perform synthesis of software and hardware (at least under some restrictions), and
integrate the architecture-level description with formal descriptions of the behavior
(using timed automata) to demonstrate properties of interest by model-checking.

The third part focuses on components, composability, and compositionality.
Composability means that the properties of a component are preserved when the
component is connected to or operates in conjunction with other components. Com-
positionality means that the properties of an assembly of components (or composite)
can be analyzed starting from the properties of the atomic components. The contri-
butions to this part are largely independent from the specific language that is used to
define the component structure and behavior, but rather focus on the properties that
such languages should have, and the required assumptions and assertions on each
component for each property of interest. Time properties play an important role and
are the subject of two of the three contributions.

Finally, the subject of the fourth part is timing analysis in the general sense. In
this part, the definition and use of domain-specific languages for the description of
timing-properties in large-scale embedded systems are discussed. Also, analysis and
synthesis techniques for the optimal assignment of architecture-level parameters and
attributes (task and message priorities) are presented. Timing analysis (as discussed
in the very last chapter of this part) should not be a tool simply for verifying the
correctness of a design solution to a real-time specification, but is highly valuable
for the selection of the best platform support and architecture-level solution to the
specification problem in the architecture evaluation and selection stage.

1.1 Recommended Reading

The purpose of this section is to provide the background and references that are
necessary for reading the book chapters and catching up on some concepts, terms,
languages, and methods that may be assumed as part of the readers’ background.
In addition, we take this opportunity to provide an overview of other results and
research projects that we consider important to have a comprehensive view of the
state of the art in embedded system development and the use of models therein.

The separation of the two main concerns of functional and architectural specifica-
tion and the mapping of functions to architecture elements are among the founding
principles of many design methodologies such as Y-chart [14], platform-based design

1 Introduction: Modeling, Analysis and Synthesis 5

(PBD) [15] , Model-Driven Engineering MDE [16], and tools like the Ptolemy [5]
and Metropolis [17] frameworks. In the MDE staged development, a Platform Inde-
pendent Model or PIM is transformed into a Platform Specific Model (PSM) by
means of a Platform Definition Model (PDM). The match of a functional and exe-
cution architecture is advocated by many in the academic community and in the
industry as a way of obtaining modularity and separation of concerns between func-
tional specifications and their implementation on a target platform. It is therefore
also the foundation of emerging standards and recommendations, such as the UML
MARTE [13] profile from the Object Management Group (OMG) [18] , as well as
the best practices in industry, such as the V-cycle of software development [19] and
the AUTOSAR standard [20] from the automotive industry.

A short review of the most common models of computation (formal languages)
proposed by academia and possibly supported by the industry with the objective of
formal or simulation-based verification is necessary for understanding opportunities
and challenges in the use of models for the development of embedded and cyber-
physical systems (please refer to [21, 22] for more detail).

Formal models are mathematical-based languages that specify the semantics of
computation and communication (also defined as Model of Computation or MOC
[23]). MOCs may be expressed, for example, by means of a language or automaton
formalisms. A system-level MOC is used to describe the system as a (possibly hierar-
chical) collection of design entities (blocks, actors, tasks, and processes) performing
units of computations represented as transitions or actions, characterized by a state
and communicating by means of events (tokens) carried by signals. Composition and
communication rules, concurrency models, and time representation are among the
most important characteristics of an MOC.

Once the system specifications are given according to a formal MOC, formal
methods can be used to achieve design-time verification of properties and imple-
mentation. In general, properties of interest go under the two general categories of
Ordered Execution and Timed Execution: Ordered Execution attains to verification
of event and state ordering. Properties such as safety, liveness, absence of deadlock,
fairness, and reachability belong to this category. Timed Execution attains to event
enumeration, such as checking that no more than n events (including timed events)
occur between any two events in the system. Timeliness and some notions of fairness
are examples of this type. Verification of some desirable system properties may be
quite hard or even impossible to achieve by logical reasoning on formal models.
Formal models are usually classified according to the decidability of properties (the
interested reader may refer to [22] for a survey on the subject). In practice [21],
decidability should be carefully evaluated. In some cases, even if it is decidable, the
problem cannot be practically solved since the required run-time may be prohibitive;
in other instances, even if undecidability applies to the general case, it may happen
that the problem at hand admits a solution.

In Finite State Machines (FSM), process behavior is specified by enumerating
the (finite) set of system states and the transitions among them. In the Synchronous
FSM model, signal propagation is assumed to be instantaneous, and transitions and
the evaluation of the next state happen for all the system components at the same

6 A. Sangiovanni-Vincentelli et al.

time. Synchronous languages [24], such as Esterel [25, 26] and Lustre [27, 28] and,
to some degree, the Simulink graphical language are based on this model. In the
Asynchronous FSM model, two asynchronous FSMs never execute a transition at
the same time except when explicit rendezvous is specified (a pair of transitions of
the communicating FSMs occur simultaneously).

In the Statecharts extension of FSMs [29], Harel proposed three mechanisms
to reduce the size of a Finite State Machine for modeling practical systems: state
hierarchy, simultaneous activity, and non-determinism. In Petri Net (PN) models, the
system is represented by a graph of places connected by transitions. Places represent
unbounded channels that carry tokens, and the state of the system is represented at any
given time by the number of tokens existing in a given subset of places. Transitions
represent the elementary reaction of the system.

The FSM and PN models have been originally developed with no reference to time
or time constraints, but the capability of expressing and verifying timing requirements
is key in many design domains (including embedded systems). Hence, both have
been extended in order to allow time-related specifications. Time extensions differ
according to the time model that is assumed. Models that represent time with a
discrete time base are said to belong to the family of discrete time models, while the
others are based on continuous (dense) time. Many models have been proposed in the
research literature for time-related extensions. Among those, Time Petri Nets (TPN)
[30] and Timed Automata [7] are probably the best known. Timed automata (TA)
operate with a finite set of locations (states) and a finite set of real-valued clocks. All
clocks proceed at the same rate and measure the amount of time that passed since they
were started (reset). Each transition may reset some of the clocks. It also defines a set
of restrictions on the value of the symbols as well as on the clock values. A few tools
based on the timed automata models have been developed. Among those, we cite
Kronos [31] and Uppaal [32]. Kronos is a tool developed to check whether a timed
automaton satisfies requirements expressed using the real-time temporal logic TCTL.
The Uppaal tool allows modeling, simulation and verification of real-time systems
modeled as a collection of non-deterministic processes with finite control structure
and real-valued clocks, communicating through channels or shared variables. The
tool is free for no profit and academic institutions.

The UML Unified Modeling Language was developed in the context of gen-
eral purpose computing as the merger of many object-oriented design methodolo-
gies aimed at the definition of generic software systems. Its semantics intentionally
retains many variation points in order to adapt to different application domains. To be
practically applicable to the design of embedded systems, further characterization
(a specialized profile in UML terminology) is required. In the revision 2.0 of the
language, the system is represented by a (transitional) model where active and pas-
sive components, communicating by means of connections through port interfaces,
cooperate in the implementation of the system behavior. As a joint initiative between
OMG and INCOSE (International Council on Systems Engineering), the SysML lan-
guage has been defined as an UML extension to provide the additional features that
are needed for system-level modeling (UML was developed for modeling software

1 Introduction: Modeling, Analysis and Synthesis 7

systems only). Clearly, the development of SysML was strongly motivated by the
emergence of embedded and cyber-physical systems.

In UML and SysML, the development of a platform model for (possibly large and
distributed) embedded systems and the modeling of concurrent systems with resource
managers (schedulers) require domain-specific concepts. The OMG MARTE [13]
standard is very general, rooted on UML/SysML and supported by several tools.
MARTE has been applied to several use cases, most recently to automotive projects
[33]. However, because of the complexity and the variety of modeling concepts it has
to support, MARTE can still be considered as work in progress, being constantly eval-
uated [34] and subject to future extensions. Several other domain-specific languages
and architecture description languages of course exist, for example, EAST-ADL [35]
and the DoD Architectural Framework [36].

Several other authors [37] acknowledge that future trends in model engineering
encompass the definition of integrated design flows exploiting complementarities
between UML [9] or SysML [10] and Matlab/Simulink [1], although the combination
of the two models is affected by the fact that Simulink lacks a publicly accessible
meta-model [37].

Work on the integration of UML and synchronous reactive languages [24] has
been performed in the context of the Esterel language (supported by the commercial
SCADE tool), for which transformation rules and specialized profiles have been
proposed to ease integration with UML models [38].

With respect to the general subject of model-to-model transformations and het-
erogenous models integration, several approaches, methods, tools, and case studies
have been proposed. Some proposed methods, such as the GME framework [39],
consist of the use of a general meta-model as an intermediate target for the model
integration. In Metropolis [17], an abstract semantics is defined to yield a metamodel
that has precise properties and can be used as an intermediate target as well but with
formal guarantees for analysis and integration [40].

Other projects [5] have developed the concept of studying the conditions for inter-
face compatibility between heterogeneous models. Examples of formalisms devel-
oped to study compatibility conditions between different Models of Computation are
the Interface Automata [41] and the Tagged Signal Model [42].

If specification of functionality aims at producing a logically correct representa-
tion of system behavior, architecture-level design is where physical concurrency and
schedulability requirements are expressed. At this level, the units of computation are
the processes or threads. Formal models, exhaustive analysis techniques, and model
checking are now evolving towards the representation and verification of time and
resource constraints together with the functional behavior. However, applicability
of these models is strongly limited by state space explosion. In this case, exhaus-
tive analysis and joint verification of functional and non-functional behavior can be
sacrificed for the easier goal of analyzing only the worst case timing behavior of
coarse-grain design entities representing concurrently executing threads. Fixed Pri-
ority Scheduling and Rate Monotonic Analysis (RMA) [43, 44] are by far the most
common real-time scheduling and analysis methodologies. RMA provides a very
simple procedure for assigning static priorities to a set of independent periodic tasks

8 A. Sangiovanni-Vincentelli et al.

together with a formula for checking schedulability against deadlines on a single
processor. Their extensions to distributed systems depend on the semantics of infor-
mation passing among tasks and messages. Common models are communication by
sampling [45], in which periodic tasks and messages exchange information through
(protected) shared variables (the analysis and possible synthesis of optimal architec-
ture configurations is discussed in [46, 47]), the holistic, or jitter propagation model
[48], in which tasks are activated by the arrival of messages and messages are queued
at the completion of a sender task, and the transactional model with activation offsets
[49]. A combination of the previous two models is discussed in [50], and the analysis
models are nicely summarized in [51].

The following sections provide an introduction to the topics of the book chap-
ters, with a summary discussion of the involved issues and solutions and additional
background information.

1.2 Model-Based Design and Synthesis

Model-based design flows are based on the use of models with a mathematical back-
ing and a strong semantics characterization. These models (dataflows and extended,
hierarchical state machines are by far the most common formalisms) are often also
characterized by an executable semantics and allow for simulation, formal verifica-
tion of properties on the model and, most often, an available path to implementation.

However, the timing behavior of the system depends on features of the compu-
tation and communication architecture that are modeled later or not modeled at all,
resulting in the possibility for an inappropriate selection of the computing platform
(over- or under-performing) and an incorrect software implementation of the func-
tional model. To this end, simulation and timing analysis techniques can provide
support for the analysis of architecture solutions and system configurations, as well
as the synthesis of feasible/correct solutions.

The verification of the model properties will become a significant asset with
the increasing need for safety and mission-critical systems, where certification is
required with the extensive coverage of decisions/conditions (as imposed by the
industrial safety standards DO-178B [52] and ISO26262 [53]), which is going to be
impractical, because of combinatorial explosion, if performed at test time.

Automated verification by theorem proving/model checking seems to be the only
option, but certified model verification requires demonstrated semantics preserva-
tion in the generation of refinements/implementations. Unfortunately, the available
paths to implementation are de-facto for single-core platforms only, or at most time-
triggered platforms and the generated code is statically scheduled or adheres to a
very simple task model.

Typically, not many commercial tools provide adequate means to represent the
execution platform and the task/message models. Large-scale embedded/Cyber-
Physical Systems (CPS) might require the platform modeling and the modeling of
the mapping of functionality to platform where the platform is not necessarily time-
triggered (a formalization of the concept of a Loosely Time-Triggered Architecture,

1 Introduction: Modeling, Analysis and Synthesis 9

or LTTA, can be found in [54]). Platform modeling may allow for virtual prototyp-
ing and the early evaluation of the timing properties and the feasibility of the model
implementation. In one step further, programmable hardware (FPGAs) can be used
for the rapid prototyping of systems to be implemented in HW.

The Chap. 2 (Modeling, Analysis, and Implementation of Streaming Applications
for Hardware Targets) describes a new framework, developed at National Instruments
R&D for the development of streaming applications. The framework supports a high-
level model or specification based on the static dataflow model of computation and its
extensions for cyclo-static data rates and parameterization, the early prototyping and
performance estimation on FPGAs, and the synthesis of a HW or SW implementation.
The effectiveness of the approach is demonstrated with a case study of an OFDM
transmitter and receiver.

The Chap. 3 (Dataflow-based, Cross-platform Design Flow for DSP Applica-
tions) presents a design methodology based on the core functional dataflow (CFDF)
model of computation, where actors must proceed deterministically to one particu-
lar mode of execution whenever they are enabled. It supports efficient design space
exploration on a variety of platforms including graphics processing units (GPUs),
multicore programmable digital signal processors (PDSPs), and FPGAs. It uses a
“minimalist” approach for integrating coarse grain dataflow programming structures
into DSP simulation, and the dataflow interchange format to provide cross-platform
actor design support.

1.3 Model-Driven Design, Integration and Verification
of Heterogeneous Models

Model-Driven Engineering encompasses both a set of tools and a methodological
approach to the development of software. The software engineer is trying to automate
the processes by building and using abstractions, and the produced software will be of
better quality than by using a general purpose programming languages. The reasoning
behind this claim is that abstractions of concepts and of processes manipulating those
concepts are easier to understand, verify, and simulate than computer programs,
as those abstractions are close to the domain being addressed by the engineers.
Of course, this holds only when the used abstractions are suitable to describe the
addressed domain.

To apply such a development flow to the domain of real-time embedded systems,
there is a need for better integrations of analysis and verification technologies for real-
time embedded systems with methods and tools in model-based and model-driven
development flows. In particular, domain-specific concepts that support the devel-
opment of a platform model for embedded systems and the modeling of concurrent
systems with resource managers are required. For example, the UML and SysML
modeling languages have been extended to support model-driven development of
real-time and embedded application, which is documented in the OMG standard
MARTE.

http://dx.doi.org/10.1007/978-1-4614-3879-3_2
http://dx.doi.org/10.1007/978-1-4614-3879-3_3

10 A. Sangiovanni-Vincentelli et al.

A typical issue with the model-based design and model-driven engineering
approaches, or in particular, the integration of real-time analysis and synthesis meth-
ods and tools with them, is the gap between different behavioral models used during
different development stages by different experts. For example, model transformation
techniques are needed to transform UML and SysML (or other architecture-level)
models into timed automata (for formal verification) and Simulink models (for analy-
sis, simulation, and code generation). Another possible solution is to rely on a com-
mon specification for defining different formalisms used for different purposes, and
rightfully refining it when applied to a specific application domain. Recent researches
attempt at bridging the gap between the three communities of model-based design,
real-time analysis and model-driven development, for a better understanding of the
ways in which new development flows can be constructed that go from system-level
modeling to the correct and predictable generation of a distributed implementation.
The following three chapters provide further progress in this direction.

The Chap. 4 (Model-Driven Design of Software Defined Radio Applications
based on UML) describes a complete model-driven design methodology for soft-
ware defined radio (SDR) applications. It includes a domain specific UML profile,
DiplodocusDF, for SDR applications; a synthesis step that generates SystemC or
C code from DiplodocusDF models; and a runtime environment for execution of
the generated code. Finally, the proposed DiplodocusDF UML profile is supported
by tools (TTool) for design exploration and formal verification at model level. The
design methodology is illustrated with an example of a Welch periodogram detector.

The Chap. 5 (On Integrating EAST-ADL and UPPAAL for Embedded System
Architecture Verification) is motivated by the need of a seamlessly integrated devel-
opment environment that can ensure consistency between the constraints specified
for different parts of a system. The chapter introduces a method to transform between
EAST-ADL and timed automata, to facilitate the formal analysis of the consistency
of EAST-ADL based timing constraint specifications. To verify the effectiveness of
this method, a case study of a brake-by-wire system is used with analysis of the
constraints specified on the periodicity and precedence of event occurrences, such
as function triggers and data arrival on a port.

The Chap. 6 (Schedulability Analysis at Early Design Stages with MARTE)
presents Optimum, a UML front-end for the designer that conforms to a formal
model for schedulability analysis and supports the evaluation of different architec-
ture candidates. It specifies a subset of MARTE concepts that restricts the use of some
elements to express a precise semantics, but is sufficient for integrating schedulabil-
ity analysis in specification, design and verification/validation stages of the software
life cycle. The methodology has been successfully applied in the automotive domain
in the context of two collaborative projects, the European INTERESTED project and
the French national EDONA project.

http://dx.doi.org/10.1007/978-1-4614-3879-3_4
http://dx.doi.org/10.1007/978-1-4614-3879-3_5
http://dx.doi.org/10.1007/978-1-4614-3879-3_6

1 Introduction: Modeling, Analysis and Synthesis 11

1.4 Component-Based Design and Real-Time Components

Component-based or component-oriented development places emphasis on the
capability of defining units of reuse at different levels of granularity and possibly
at different levels in the refinement flow that can ease the task of building a correct
complex system by leveraging a number of assets:

• A formal language for the definition of the structure and behavior of the compo-
nent. The extent of this language can be quite broad. All the interaction points of the
component with the external world need to be defined, whether in a data-oriented
or service-oriented way. Similarly, the internal behavior must be formally speci-
fied and connected to the interface specification defining, when necessary, which
sequences of data exchanges and service requests over the interface correspond to
legal behaviors.

• The capability of analyzing and verifying the properties of the component if taken
in isolation.

• The capability of guaranteeing the correct functioning of the component (the
preservation of its properties) under any legal composition with other components
(this of course entails the definition of a legal composition).

• The capability of analyzing properties of the composites starting from the prop-
erties of the components or, even better, of guaranteeing such properties by
construction.

The specification of a component structure and behavior is often performed under
the terms of a contract [55]. This definition, which originated the term design-by
contract [56], has the merit of emphasizing the relationship between the component
and the outside world, consisting of the other components and the environment that
the system is controlling or in which it executes, and bringing to the foreground
the necessary consideration that each component works under a set of Assumptions
on the outside components and environment. If these assumptions are met, then the
component guarantees the truth of a set of Assertions, which is the promise that the
component developer makes on its side of the contract.

Building a full-fledged component specification language that satisfies the above
requirements for an arbitrarily wide set of properties is unfortunately still utopistic,
and most languages for the definition of components and the expression of com-
positionality rules focus on a specific set of requirements (or preferably assump-
tions/assertions).

Recently, time specifications have acquired a special importance, not only because
of the growing use of models and electronics/software content for the development
of time-critical functionality, but also because of the importance that an accurate
timing analysis may have for the selection of the best execution architecture for a
given set of functional components.

The Chap. 7 (Early Time-Budgeting for Component-Based Embedded Control
Systems) focuses on the definition of a set of parametric specifications for the def-
inition of the timed behavior of components. The time specification, formalized

http://dx.doi.org/10.1007/978-1-4614-3879-3_7

12 A. Sangiovanni-Vincentelli et al.

using Parametric Temporal Logic, can be used to expresses properties related to
the worst-case response of component reactions. The compositionality of the PTL
specifications allows to analyze system properties resulting from the composition
of components in a large system architecture. The authors show how this analysis
capability can be used not only for system analysis and verification, but also, in an
architecture exploration process, to define the best decomposition and placement of
functions.

The Chap. 8 (Contract-Based Reasoning for Component Systems with Rich Inter-
actions) provides the formal definition of a language for the definition of components
contracts. A rule unifying circular and non-circular assume-guarantee reasoning is
proposed to check contract dominance which does not require the explicit compo-
sition of contracts. It is in particular useful to combine contract-based verification
tools and corresponding results from two different component frameworks.

The Chap. 9 (Extracting End-to-end Timing Models from Component-based Dis-
tributed Embedded Systems) discusses a method for extracting system-level time
assertions from the time specifications of distributed real-time components. It finds
solutions to issues involved during model extraction, such as extraction of timing
information from all nodes and networks in the system, and linking of trigger and
data chains in distributed transactions.

1.5 Timing Analysis and Time-Based Synthesis

Embedded systems are very different from general purpose computing because of
their dedication to control and because they interact with the physical environment.
One of the most important constraints is that the time needed to perform a computat-
tion or control task may be critical to the system correctness (this property defines the
hard real-time systems). Starting from the 90s, the results of the real-time research
community have been increasingly used in the industry for the development and
analysis of operating systems scheduling policies and network medium access con-
trol protocols. The real-time systems community has traditionally considered tasks or
jobs (from the operating system concept of thread) as the units for the analysis model.
In hard real-time systems, the design space (or the feasibility region) must satisfy the
schedulability constraints, requiring that tasks complete before their deadlines. In the
design of these time-critical applications, schedulability analysis is used to define
the feasibility region of tasks with deadlines, so that iterative analysis or optimization
techniques can find the best design solution within the feasibility region.

Today, the increasing complexity and distribution of real-time embedded systems
(e.g. around one hundred electronic control units, ten communication buses, and
millions of lines of code in a modern automobile) often results in long design iter-
ations to improve the design and fix errors, and ultimately sub-optimal solutions.
The perspective of using timing analysis techniques has been largely changed: it
needs to be put forward as much as possible in the design flow, from the analysis
of a given configuration to the synthesis of an optimal design. Developers are today

http://dx.doi.org/10.1007/978-1-4614-3879-3_8
http://dx.doi.org/10.1007/978-1-4614-3879-3_9

1 Introduction: Modeling, Analysis and Synthesis 13

increasingly faced with design problems, including the optimal placement of func-
tions, the optimal assignment of priorities (or time slots) to tasks and messages, and
the optimal packing of communication signals in frames.

Practical design problems, are typically very complicated. For example, even if we
only consider the problem of optimal priority assignment, there are many cases where
finding the optimal solution is of exponential complexity (and deadline monotonic
(DM) [57] (that is, executing first the most urgent tasks) is no longer guaranteed to
be optimal):

• systems with non-preemptive scheduling [58] or in which tasks share resources
[59];

• systems in which the designer seeks an optimal solution that maximizes the robust-
ness (for example, the difference between the deadline and the worst-case response
time) [60];

• systems in which preemption thresholds are used to optimize stack memory usage
[61];

• systems that contain computing paths deployed on a distributed platform and
constrained by end-to-end deadlines (like those dealt in the first chapter of the
fourth part);

• systems with multiple control loops scheduled on the same processor and the
objective function is the overall control performance [62, 63].

Because of the extremely large design space, a trial-and-error approach, in which
a configuration is manually defined, analyzed for schedulability, and then possibly
improved or fixed, is no longer practical. This calls for synthesis and optimization
methods that can close the design loop automatically. The problem is of course also
relevant for purely hardware (or programmable hardware) embedded designs, where
the need for design synthesis has been established for quite some time now.

The Chap. 10 (Distributed Priority Assignment in Real-Time Systems) presents
a recent advance on the problem of scheduling priority assignment for distributed
real-time systems scheduled with preemptive static-priority under the consideration
of end-to-end path latencies. The proposed algorithm relies on a distributed imple-
mentation of compositional performance analysis. It is implemented distributedly
to reduce runtime overhead and to integrate with the admission control scheme. To
prevent oscillation and help the distributed algorithm to converge, a time-discrete
PID feedback control technique is proposed. The proposed algorithm can compete
with state-of-the-art design time tools but only requires a fraction of the runtime.

The Chap. 11 (Exploration of Distributed Automotive Systems using Composi-
tional Timing Analysis) presents a design space exploration approach for real-time
automotive systems. First, it introduces the system model and a binary encoding to
represent the design space. Then the chapter focuses on the timing analysis aspect
(assuming the design choices have been made), in particular the issue of addressing
cyclic dependencies in fixed-point iteration for timing analysis. The key idea is to
build a dependency graph and leverage it for efficient analysis, and further improve
the method by clustering local nodes and performing a hierarchical analysis.

http://dx.doi.org/10.1007/978-1-4614-3879-3_10
http://dx.doi.org/10.1007/978-1-4614-3879-3_11

14 A. Sangiovanni-Vincentelli et al.

The Chap. 12 (Design and Evaluation of Future Ethernet AVB-based ECU
Networks) considers the design of automotive architectures based on the new
high-speed communication media, Ethernet AVB, which is a light-weight Ether-
net extension with prioritization and traffic shaping techniques to enhance its QoS
aspects. The chapter presents a virtual prototyping approach with key features for the
sake of design space exploration of extensive automotive architectures, such as static
routing and stream reservation, fixed topology, and real-time applications. The pro-
posed technique is an important step towards automatic optimization of architecture
design in the presence of high-speed bus systems with enhanced QoS capabilities.

References

1. The MathWorks Inc.: Simulink User’s Guide (2005). http://www.mathworks.com
2. Esterel Technologies: SCADE suite. http://www.esterel-technologies.com/products/scade-

suite/
3. Andrade, H.A., Kovner, S.: Software synthesis from dataflow models for G and LabVIEW. In:

Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers, 1705–
1709 (1998)

4. Modelica Association: Modelica and the modelica association. http://www.modelica.org/
5. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,

Xiong, Y.: Taming heterogeneity-the Ptolemy approach. Proc. IEEE 91(1), 127–144 (2003)
6. Davare, A., Densmore, D., Meyerowitz, T., Pinto, A., Sangiovanni-Vincentelli, A., Yang, G.,

Zeng, H., Zhu, Q.: A next-generation design framework for platform-based design. DVCon,
In (2007)

7. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994).
http://dx.doi.org/10.1016/0304-3975(94)90010--8

8. Object Management Group: Omg model driven architecture. http://www.omg.org/mda/
9. Unified Modeling Language, 2.0. http://www.omg.org/uml

10. System Modeling Language. http://www.omg.org/sysml
11. Object Management Group: Concrete syntax for uml action language (action language for

foundational uml - alf). http://www.omg.org/spec/ALF
12. Object Management Group: Semantics of a foundational subset for executable uml models

(fuml). http://www.omg.org/spec/FUML
13. Object Management Group: UML profile for modeling and analysis of real-time and embedded

systems (MARTE), version 1.1, formal/2011-06-02 (June 2011). http://www.omg.org/spec/
MARTE/1.1/

14. Kienhuis, B., Deprettere, E.F., Wolf, P.v.d., Vissers, K.A.: A methodology to design program-
mable embedded systems–the y-chart approach. In: Embedded Processor Design Challenges:
Systems, Architectures, Modeling, and Simulation–SAMOS, pp. 18–37. Springer-Verlag,
London, UK, (2002)

15. Keutzer, K., Newton, A., Rabaey, J., Sangiovanni-Vincentelli, A.: System-level design: orthog-
onalization of concerns and platform-based design. Comput.-Aided Des. Integr. Circuits Syst.,
IEEE Trans. on 19(12), 1523–1543 (2000)

16. Mukerji, J., Miller, J.: Overview and guide to omg’s, architecture. http://www.omg.org/cgi-
bin/doc?omg/03-06-01

17. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A.L.:
Metropolis: An integrated electronic system design environment. IEEE Comput. 36(4), 45–52
(2003)

18. Object Management Group: Home page. http://www.omg.org/

http://dx.doi.org/10.1007/978-1-4614-3879-3_12
http://www.mathworks.com
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
http://www.modelica.org/
http://dx.doi.org/10.1016/0304-3975(94)90010--8
http://www.omg.org/mda/
http://www.omg.org/uml
http://www.omg.org/sysml
http://www.omg.org/spec/ALF
http://www.omg.org/spec/FUML
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/

1 Introduction: Modeling, Analysis and Synthesis 15

19. T., B.: Current trends in the design of automotive electronic systems. Proceedings of the Design
Automation and Test in Europe Conference (2001)

20. AUTOSAR consortium: automotive open system architecture. http://www.autosar.org
21. Edwards, S., Lavagno, L., Lee, E.A., Sangiovanni-Vincentelli, A.: Design of embedded sys-

tems: Formal models, validation and synthesis. Proc. IEEE 85(3), 366–390 (1997)
22. Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. Real-Time: Theory in

Practice, REX Workshop, LNCS 600pp, 74–106 (1991)
23. Lee, E., Sangiovanni-Vincentelli, A.: A framework for comparing models of computation.

Comput.-Aided Des. Integr. Circuits Syst., IEEE Trans. on 17(12), 1217–1229 (1998)
24. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., Robert, Simone, D.:

The synchronous languages 12 years later. In: Proceedings of The IEEE, pp. 64–83 (2003)
25. Berry, G., Gonthier, G.: The esterel synchronous programming language: design, semantics,

implementation. Sci. Comput. Program. 19(2), 87–152 (1992)
26. Boussinot, F., De Simone, R.: The esterel language. Proc. IEEE 79(9), 1293–1304 (1991)
27. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: Lustre: a declarative language for real-time

programming. In: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, POPL ’87, pp. 178–188. ACM (1987)

28. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming
language lustre. In: Proceedings of the IEEE, pp. 1305–1320 (1991)

29. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8(3),
231–274 (1987)

30. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time
petri nets. Softw. Eng., IEEE Trans. 17(3), 259–273 (1991)

31. Yovine, S.: Kronos: A verification tool for real-time systems. (kronos user’s manual release
2.2). Int. J. Softw. Tools Technol. Transf. 1, 123–133 (1997)

32. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: M. Bernardo, F. Corradini
(eds.) Formal methods for the design of real-time systems: 4th International School on Formal
Methods for the Design of Computer, Communication, and Software Systems, SFM-RT 2004,
no. 3185 in LNCS, pp. 200–236. Springer-Verlag (2004)

33. Wozniak, E., Mraidha, C., Gerard, S., Terrier, F.: A guidance framework for the generation
of implementation models in the automotive domain. In: Software Engineering and Advanced
Applications (SEAA), 2011 37th EUROMICRO Conference on, pp. 468–476 (2011)

34. Koudri, A., Cuccuru, A., Gerard, S., Terrier, F.: Designing heterogeneous component based
systems: evaluation of MARTE standard and enhancement proposal. In: Model Driven Engi-
neering Languages and Systems, pp. 243–257 (2011)

35. EAST-ADL Overview. http://www.atesst.org/home/liblocal/docs/ConceptPresentations/01_
EAST-ADL_OverviewandStructure.pdf

36. Department of Defense: DoD architecture framework v2.02. http://dodcio.defense.gov/Portals/
0/Documents/DODAF/DoDAF_v2-02_web.pdf

37. Vanderperren, Y., Dehaene, W.: From uml/sysml to matlab/simulink: current state and future
perspectives. In: Proceedings of the conference on Design, automation and test in Europe,
DATE ’06. Leuven, Belgium (2006)

38. Berry, G., Gonthier, G.: The synchronous programming language esterel: Design, semantics,
implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

39. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The generic modeling environment. Workshop on Intelligent Signal
Processing, In (2001)

40. Sangiovanni-Vincentelli, A., Shukla, S., Sztipanovits, J., Yang, G., Mathaikutty, D.: Meta-
modeling: An emerging representation paradigm for system-level design. Special Section on
Meta-Modeling, IEEE Des. Test 26(3), 54–69 (2009)

41. Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of ESEC/SIGSOFT FSE’01,
pp. 109–120. ACM Press (2001)

42. Lee, E., Sangiovanni-Vincentelli, A.: A unified framework for comparing models of computa-
tion. In. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 17, 1217–1229 (1998)

http://www.autosar.org
http://www.atesst.org/home/liblocal/docs/ConceptPresentations/01_EAST-ADL_OverviewandStructure.pdf
http://www.atesst.org/home/liblocal/docs/ConceptPresentations/01_EAST-ADL_OverviewandStructure.pdf
http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF_v2-02_web.pdf
http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF_v2-02_web.pdf

16 A. Sangiovanni-Vincentelli et al.

43. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20, 46–61 (1973)

44. Lehoczky, J.P., Sha, L., Ding, Y.: The rate-monotonic scheduling algorithm: exact characteri-
zation and average case behavior. In: Proceedings of the 10th IEEE RTSS, pp. 166–171. Santa
Monica, CA USA (1989)

45. Benveniste, A., Caillaud, B., Carloni, L.P., Caspi, P., Sangiovanni-Vincentelli, A.L., Tripakis,
S.: Communication by sampling in time-sensitive distributed systems. In: EMSOFT, pp. 152–
160 (2006)

46. Zheng, W., Natale, M.D., Pinello, C., Giusto, P., Sangiovanni-Vincentelli, A.: Synthesis of
task and message activation models in real-time distributed automotive systems. In: DATE’07:
Proceedings of the Design, Automation and Test in Europe Conference. Nice, France (2007)

47. Davare, A., Zhu, Q., Natale, M.D., Pinello, C., Kanajan, S., Sangiovanni-Vincentelli, A.: Period
optimization for hard real-time distributed automotive systems. In: DAC ’07: Proceedings of
the 44th annual conference on Design automation, pp. 278–283. ACM, New York, NY, USA
(2007) http://doi.acm.org/10.1145/1278480.1278553

48. Tindell, K.W.: Holistic schedulability analysis for distributed hard real-time systems. Tech.
Rep. YCS 197, Department of Computer Science, University of York (1993)

49. Palencia, J., Harbour, M.G.: Schedulability analysis for tasks with static and dynamic offsets.
In: 19th IEEE Real-Time Systems Symposium. Madrid, Spain (1998)

50. Di Natale, M., Zheng, W., Pinello, C., Giusto, P., Sangiovanni Vincentelli, A.: Optimizing
end-to-end latencies by adaptation of the activation events in distributed automotive systems.
In: Proceedings of the IEEE Real-Time Application Symposium. Bellevue, WA (2007)

51. Hamann, A., Henia, R., Jerzak, M., Racu, R., Richter, K., Ernst, R.: SymTA/S symbolic timing
analysis for systems. available at http://www.symta.org (2004)

52. RTCA: Do-178b: Software considerations in airborne systems and equipment certification.
http://www.rtca.org/

53. ISO: Iso 26262 road vehicles-functional safety. http://www.iso.org/
54. Benveniste, A., Caspi, P., Guernic, P.L., Marchand, H., Talpin, J.P., Tripakis, S.: A protocol for

loosely time-triggered architectures. In: Proceedings of the Second International Conference
on Embedded Software, EMSOFT ’02, pp. 252–265. Springer-Verlag, London, UK, (2002)

55. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein: Contract-
based design for cyber-physical systems. Eur. J. Control 18(3), 217–238 (2012). doi:10.3166/
EJC.18.217-238

56. B., M.: An overview of Eiffel. In: The Handbook of Programming Languages, vol. 1, Object-
Oriented Languages, ed. Peter H. Salus, Macmillan Technical Publishing (1998)

57. Audsley, N.C., Burns, A., Davis, R., Tindell, K.W., Wellings, A.J.: Fixed priority pre-emptive
scheduling: an historical prespective. Real-Time Syst. 8, 173–198 (1995)

58. George, L., Rivierre, N., Spuri, M.: Preemptive and Non-Preemptive Real-Time UniProcessor
Scheduling. Research Report RR-2966, INRIA (1996)

59. Mok, A.K.: Fundamental design problems of distributed systems for the hard-real-time envi-
ronment. Ph.d. thesis, Cambridge, MA, USA (1983)

60. Hamann, A., Racu, R., Ernst, R.: Multi-dimensional robustness optimization in heterogeneous
distributed embedded systems. In: Proceedings of the 13th IEEE Real Time and Embedded
Technology and Applications Symposium, RTAS ’07, pp. 269–280. IEEE Computer Society,
Washington, DC, USA (2007)

61. Ghattas, R., Dean, A.G.: Preemption threshold scheduling: Stack optimality, enhancements
and analysis. In: Proceedings of the 13th IEEE Real Time and Embedded Technology and
Applications Symposium, RTAS ’07, pp. 147–157. IEEE Computer Society, Washington, DC,
USA (2007)

62. Cervin, A., Henriksson, D., Lincoln, B., Eker, J., Arzen, K.: How does control timing affect
performance? analysis and simulation of timing using jitterbug and truetime. Control Syst.,
IEEE 23(3), 16–30 (2003)

63. Velasco, M., Martí, P., Bini, E.: Control-driven tasks: Modeling and analysis. In: Proceedings
of the 2008 Real-Time Systems Symposium, RTSS ’08, pp. 280–290. IEEE Computer Society,
Washington, DC, USA (2008)

http://doi.acm.org/10.1145/1278480.1278553
http://www.symta.org
http://www.rtca.org/
http://www.iso.org/
http://dx.doi.org/10.3166/EJC.18.217-238
http://dx.doi.org/10.3166/EJC.18.217-238

Part I
Model-Based Design and Synthesis

Chapter 2
Modeling, Analysis, and Implementation
of Streaming Applications for Hardware Targets

Kaushik Ravindran, Arkadeb Ghosal, Rhishikesh Limaye, Douglas Kim,
Hugo Andrade, Jeff Correll, Jacob Kornerup, Ian Wong, Gerald Wang,
Guang Yang, Amal Ekbal, Mike Trimborn, Ankita Prasad and Trung N. Tran

Abstract Application advances in the signal processing and communications
domains are marked by an increasing demand for better performance and faster
time to market. This has motivated model-based approaches to design and deploy

K. Ravindran (B) · A. Ghosal · R. Limaye · D. Kim · H. Andrade · J. Correll · J. Kornerup ·
I. Wong · G. Wang · G. Yang · A. Ekbal · M. Trimborn · A. Prasad · T. N. Tran
National Instruments Corporation, Berkeley, CA, USA
e-mail: kaushik.ravindran@ni.com

A. Ghosal
e-mail: arkadeb.ghosal@ni.com

R. Limaye
e-mail: rhishikesh.limaye@ni.com

D. Kim
e-mail: douglas.kim@ni.com

H. Andrade
e-mail: hugo.andrade@ni.com

J. Correll
e-mail: jeff.correll@ni.com

J. Kornerup
e-mail: jacob.kornerup@ni.com

I. Wong
e-mail: ian.wong@ni.com

G. Wang
e-mail: gerald.wang@ni.com

G. Yang
e-mail: guang.yang@ni.com

A. Ekbal
e-mail: amalekbal@ni.com

M. Trimborn
e-mail: mike.trimborn@ni.com

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 19
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_2,
© Springer Science+Business Media New York 2014

20 K. Ravindran et al.

such applications productively across diverse target platforms. Dataflow models are
effective in capturing these applications that are real-time, multi-rate, and streaming
in nature. These models facilitate static analysis of key execution properties like
buffer sizes and throughput. There are established tools to generate implementations
of these models in software for processor targets. However, prototyping and deploy-
ment on hardware targets, in particular reconfigurable hardware such as FPGAs,
are critical to the development of new applications. FPGAs are increasingly used in
computing platforms for high performance streaming applications. They also facili-
tate integration with real physical I/O by providing tight timing control and allow the
flexibility to adapt to new interface standards. Existing tools for hardware implemen-
tation from dataflow models are limited in their ability to combine efficient synthesis
and I/O integration and deliver realistic system deployments. To close this gap, we
present the LabVIEW DSP Design Module from National Instruments, a framework
to specify, analyze, and implement streaming applications on hardware targets. DSP
Design Module encourages a model-based design approach starting from stream-
ing dataflow models. The back-end supports static analysis of execution properties
and generates implementations for FPGAs. It also includes an extensive library of
hardware actors and eases third-party IP integration. Overall, DSP Design Module
is an unified design-to-deployment framework that translates high-level algorithmic
specifications to efficient hardware, enables design space exploration, and generates
realistic system deployments. In this chapter, we illustrate the modeling, analysis,
and implementation capabilities of DSP Design Module. We then present a case
study to show its viability as a model-based design framework for next generation
signal processing and communications systems.

2.1 Introduction

Dataflow models are widely used to specify, analyze, and implement multi-rate com-
putations that operate on streams of data. Static Dataflow (SDF)1 is a well known
model of computation for describing signal processing applications [1]. An SDF
model is a graph of computation actors connected by channels that carry data tokens.
The semantics require the number of tokens consumed and produced by an actor per
firing be fixed and pre-specified. This guarantees static analyzability of key execution
properties, such as deadlock-free operation and bounded memory requirements [2].

A. Prasad
e-mail: ankita.prasad@ni.com

T. N. Tran
e-mail: trung.tran@ni.com

1 SDF was called Synchronous Dataflow in the original works that introduced the model [1, 2]. But
the model is fundamentally asynchronous, since actors can fire independently and asynchronously.
For this reason, and in order not to confuse SDF with truly synchronous models such as synchronous
FSMs, we prefer the term Static Dataflow.

2 Modeling, Analysis, and Implementation of Streaming Applications 21

The expressiveness of dataflow models in naturally capturing streaming
applications, coupled with formal analyzability properties, has made them popular in
the domains of multimedia, signal processing, and communications. These high level
abstractions are the starting points for model-based design approaches that enable
productive design, fast analysis, and efficient correct-by-construction implementa-
tions. Ptolemy II [3], Grape-II [4], LabVIEW [5], and Simulink [6] are examples of
successful tools built on the principles of model-based design from dataflow models.
These tools provide a productive way to translate domain specific applications to
efficient implementations.

Most of these tools predominantly deliver software implementations for gen-
eral purpose and embedded processor targets. However, ever-increasing demands on
performance and throughput of new applications and standards have motivated pro-
totyping and deployment on hardware targets, in particular reconfigurable hardware
such as Field Programmable Gate Arrays (FPGAs). FPGAs are integral compo-
nents of modern computing platforms for high performance signal processing. The
configurability of FPGAs and constraints of hardware design bring unique imple-
mentation challenges and performance-resource trade-offs. FPGAs permit a range
of implementation topologies of varying degrees of parallelism and communication
schemes. Another requirement for hardware design is the integration of pre-created
configurable intellectual property (IP) blocks. Actor models must capture relevant
variations in data access patterns and execution characteristics of IP configurations.

Common software synthesis techniques for dataflow models are not immediately
applicable to hardware synthesis. Related tools from prior works either make restric-
tive assumptions about the dataflow models to simplify hardware generation, or do not
provide a complete path to implementation on realistic targets supporting established
design methodologies and IP libraries. They do not fully address the complexities of
connecting hardware actors and IP with differing interfaces. The tools are limited in
their ability to deliver realistic system deployments, combining efficient hardware
synthesis and physical I/O integration.

In this work, we advance a design framework to enable the design and deployment
of streaming applications on FPGA targets. The objective is to empower application
and domain experts without specialized knowledge in hardware design to create
efficient implementations on FPGA targets. Founded on model-based design prin-
ciples, the framework emphasizes six key elements to address the hardware design
challenge:

• An appropriate model of computation to capture high-level intent.
• An IP library for general computing and domain specific functions.
• A graphical interface that incorporates latest interactive technologies.
• Measurement and control I/O to design and test such systems.
• Static analysis and evaluation of key trade-offs at design time.
• Efficient deployments on high performance hardware platforms.

We combine these elements in the National Instruments (NI) LabVIEW DSP
Design Module, a framework for hardware-oriented specification, analysis, and

22 K. Ravindran et al.

implementation of streaming dataflow models. The framework enables DSP domain
experts to express complex applications and performance requirements in an algo-
rithmic manner and automatically generate efficient hardware implementations. The
main components of DSP Design Module are: (a) a graphical specification language
to design streaming applications, (b) an analysis engine to validate the model, select
buffer sizes and optimize resource utilization to meet throughput constraints, and
perform other pertinent optimizations, and (c) implementation support to generate
an efficient hardware design and deploy it on Xilinx FPGAs.

The specification is based on the Static Dataflow (SDF) model of computation
with extensions to support cyclo-static data rates and parameterization. Prior studies
on modeling requirements for wireless communications applications endorse that
this model is sufficiently expressive in capturing relevant execution and performance
characteristics [7, 8]. DSP Design Module provides an extensive library of math and
signal processing functions that harness the resource elements on the FPGA. It also
facilitates integration of custom-designed hardware blocks and third-party IP into
the design. The back-end eases exploration of design trade-offs and translates a high
level algorithmic specification to an efficient hardware implementation.

DSP Design Module enables application domain experts implement complex
streaming applications on FPGAs. The hardware implementations are currently tar-
geted to Xilinx Virtex-5 FPGAs on the National Instruments PXIe platform. This
is an important distinction from prior works which stop with RTL synthesis from
high level models. In contrast, DSP Design Module is integrated with LabVIEW,
a commercial framework for deploying systems that combine processors, FPGAs,
real-time controllers, and analog and digital I/O. In particular, the tight contract-based
integration between DSP Design Module and LabVIEW FPGA enables orthogonal-
ization of design. One designer can focus on the details of integration to I/O via
LabVIEW FPGA and control the tight timing requirements of hardware interfaces
at the cycle level. Another designer can specify the I/O requirements as equivalent
port constraints on a DSP Design Module algorithm description, so that the tool can
generate code that satisfies these constraints. DSP Design Module hence delivers a
unified design-to-deployment framework for streaming applications.

In this chapter, we highlight salient features of the NI LabVIEW DSP Design
Module and illustrate a design flow to implement streaming applications. We then
present a case study on the design and implementation of a real-time single antenna
Orthogonal Frequency Division Multiplexing (OFDM) wireless communication link
transmitter and receiver. The OFDM is part of the Long Term Evolution (LTE)
mobile networking standard [9]. The system is implemented on the National Instru-
ments PXIe platform equipped with Xilinx Virtex-5 FPGAs, real-time controllers,
and baseband and RF transceivers. We demonstrate the design of key application
components in DSP Design Module and show how the analysis capabilities of the
tool help the designer make key performance and resource trade-offs. We finally
show the deployment of the system on the PXIe platform. The study illustrates how
DSP Design Module serves as a model-based design framework that translates high
level streaming models to efficient hardware implementations.

2 Modeling, Analysis, and Implementation of Streaming Applications 23

2.2 Related Work

Synthesis flows from Register Transfer Level (RTL) logic and behavioral languages
(typically C, C++, or SystemC) for hardware targets has been a popular topic of
several studies. However, there is limited prior art on hardware generation from non-
conventional high level models like dataflow. Ptolemy II is a prominent academic
framework for graphical specification and analysis of multiple models of compu-
tation [3]. Grape-II facilitates emulation of SDF models on FPGAs and explores
memory minimization techniques [4]. While these tools provide some support for
RTL generation from restricted models, the focus is more on proof-of-concept and
less on optimized hardware implementation.

The work of Edwards and Green also confirms these limitations [10]. They explic-
itly address hardware generation and evaluate architectures for implementation of
SDF models. They also discuss strategies to optimize function parallelism and token
buffering on FPGAs. Horstmannshoff et al. [11] and Jung et al. [12] also discuss
hardware synthesis techniques from SDF models. They develop analysis methods
for resource allocation and schedule computation suitable for hardware. However,
these prior works do not consolidate the proposed techniques into a comprehen-
sive design framework that enables implementation on realistic targets. They do not
support established synthesis methodologies and IP libraries. Actor definition and
IP integration are practical challenges in hardware design, yet these works do not
address them adequately.

On the commercial front, LabVIEW FPGA from National Instruments is a pop-
ular tool that supports FPGA deployment from dataflow models [13]. However,
LabVIEW FPGA only supports the Homogeneous Static Dataflow (HSDF) model
of computation, which does not natively capture streaming multi-rate computations.
Furthermore, it requires explicit specification of cycle-level behavior for generating
efficient hardware. System Generator from Xilinx is another related offering that
supports FPGA implementations of synchronous reactive and discrete time models
of computation [14]. However, these models are not suitable for data driven stream-
ing specifications that are better expressed in dataflow. SystemVue ESL from Agilent
supports more expressive dataflow models and provides libraries and analysis tools
for the RF and DSP domains [15]. However, it primarily serves as an exploration and
simulation environment, and does not offer a path to implementation in hardware. To
our knowledge, there is no integrated tool that addresses the challenges in translating
dataflow models to implementations on practical hardware targets.

The closest effort in synthesizing hardware from dataflow programs is the Open
Dataflow framework [16]. The CAL actor language in Open Dataflow is an impor-
tant step in formalizing actor and interface definitions. It has been adopted by the
MPEG Video Coding group to develop codecs for future standards [17]. CAL builds
on the Dynamic Dataflow model of computation, which allows specifications with
variable data rates and non-deterministic behaviors. But this model is undecidable
and cannot be subject to static analysis. There have been recent efforts to detect ana-
lyzable regions in a CAL model that adhere to restricted models of computation [18].

24 K. Ravindran et al.

However, the language does not constrain the designer from introducing structures
that might prohibit analysis. In contrast, the DSP Design Module model of computa-
tion is intentionally restrictive in order to enable efficient analysis of deadlock-free
execution, buffer size, and throughput. While the model may not be as expressive as
CAL, it is nevertheless applicable to a range of interesting signal processing applica-
tions. Also, CAL is a textual specification language, whereas DSP Design Module is
a graphical design environment. We believe a graphical framework built on analyz-
able models provides an intuitive design approach for domain experts not specialized
in hardware design to create efficient system deployments.

In summary, DSP Design Module is an attempt to integrate the respective strengths
of the previously discussed tools into a unified design-to-deployment framework for
streaming applications on hardware targets. The graphical design environment is
intended for algorithm designers who are generally not experts in hardware design.
The framework supports analysis capabilities relevant to hardware implementation
and includes an extensive library of common math, signal processing, and commu-
nications functions. It also enables integration of IPs from native and third-party
libraries, like the Xilinx CoreGen library [19], which are essential to practical effi-
cient hardware design. Finally, it delivers implementations on realistic hardware
targets that can be combined with other processors, memories, and physical I/O to
build high performance embedded systems.

2.3 DSP Design Module: Models and Analysis

The DSP Design Module captures specifications based on the Static Dataflow (SDF)
model of computation, with extensions for cyclo-static data rates and parameteriza-
tion. This section presents the relevant characteristics of these models and illustrates
their suitability for specifying signal processing applications.

2.3.1 Static Dataflow

A dataflow model consists of a set of actors (which represent computational
units) inter-connected via channels (which communicate data, abstracted as tokens,
between actors). In the Static Dataflow (SDF) model of computation, at each firing,
an actor consumes a fixed number of tokens from each input channel, and produces
a fixed number of tokens on each output channel . A channel stores the generated
tokens until an actor consumes the tokens. We illustrate the SDF model and rele-
vant properties using the model shown in Fig. 2.1. The model is composed of two
actors: distribute stream, and interleave stream, henceforth referred to as distribute
and interleave actors. The distribute actor splits an incoming stream of data into two
output streams, while the interleave actor merges two incoming streams into one
outgoing stream. The distribute actor consumes 2 tokens from the incoming channel
and produces 1 token on each of the two output channels; the effect of the actor

2 Modeling, Analysis, and Implementation of Streaming Applications 25

Fig. 2.1 This is the LabVIEW DSP design module graphical user interface in which an SDF model
is captured. At the top is the tool bar, where the user can set platform characteristics and select
different analysis functions. At the left is the tool library with different math and signal processing
primitives and third party actors. In the middle is the graphical canvas where the SDF model is
specified. The lower part shows the execution schedule along with any errors and warnings

processing is that the first (resp. second) outgoing stream consists of tokens from
odd (resp. even) numbered positions of the incoming stream. The interleave actor
consumes 128 tokens from each of the two incoming channels and produces 256
tokens on the outgoing channel. The actor interleaves the tokens such that the out-
going stream is a concatenation of blocks of 128 tokens taken in alternating fashion
from the two input streams. The model has two instances of the distribute and inter-
leave actors, with each instance of the distribute actors connected to both instances
of the interleave actors. The actors do not change the tokens; they only rearrange
the tokens at the outputs so that outgoing streams consist of a different sequence of
tokens from the incoming streams.

Each actor is associated with an execution time and an initiation interval. Execu-
tion time is the time (in clock cycles) that the actor needs to process inputs, perform
computation, and generate outputs. Initiation interval is the minimum time (in clock
cycles) between consecutive firings of an actor. If initiation interval is less than exe-
cution time for an actor, the actor may fire in an overlapping (pipelined) fashion.
In the above example, the execution time and the initiation interval of the distribute
actor are 2 cycles each; the execution time and the initiation interval of the interleave
actor are 257 cycles each.

26 K. Ravindran et al.

2.3.2 SDF: Properties and Analysis

The SDF model of computation permits decidability of key properties of streaming
applications, such as bounded memory and deadlock free execution [1]. A model is
bounded if it can be executed without termination using buffers with finite capacity.
An execution of an SDF model can achieve periodic behavior because the token
consumption and production rates are constant. In SDF models, bounded execution
is verified by proving that the model is sample rate consistent [2]. An SDF model
is sample rate consistent if there exists a fixed non-zero number of firings for each
actor such that executing these firings reverts the model to its original state. A vector
denoting this number for each actor is called the repetitions vector. Consider a channel
between any distribute and interleave actors in Fig. 2.1. Given that the distribute
actor produces 1 token and the interleave actor consumes 128 tokens, the distribute
actor needs to fire 128 times more often than the interleave actor in each round of
firing. Hence, the repetitions count for the distribute actors is 128, while that for
the interleave actors is 1. These repetition counts ensure that the number of tokens
produced over a channel is equal to the number of tokens consumed. This in turn
guarantees that any non-terminating periodic execution of the SDF model can be
implemented with buffers that have bounded capacity.

In addition to boundedness, deadlock-free operation is essential for most stream-
ing applications. Dataflow models that are bounded and deadlock-free are viable for
implementation in hardware and software. An SDF model is deadlock-free if at any
point in its execution, there is at least one actor that can fire. For a sample rate consis-
tent SDF model, it suffices to verify that a single iteration (in which each actor fires
as many times as specified in the repetitions vector) of the model can be completely
executed. The solution is to compute a self timed schedule (in which an actor fires as
soon as all input tokens are available) for one iteration [2]. As the model is consis-
tent, this schedule can be executed infinitely often. This computation assumes that
channels in the SDF model are implemented as FIFO buffers with infinite capacity.
Nevertheless, a bound on the buffer size can be encoded as a back edge in the SDF
model with initial tokens corresponding to the size of the buffer [20]. The model in
Fig. 2.1 is bounded and deadlock free.

Important performance metrics for real-time streaming applications are through-
put (i.e., rate of tokens produced by an actor) and memory (i.e., buffer sizes to
implement channels). Each actor needs to wait until the respective producing actor
has generated the required number of tokens, which imposes restrictions on the min-
imum buffer sizes required to implement the channels. For the example model in
Fig. 2.1, the interleave actor needs 128 tokens per firing, whereas the distribute
actor produces 1 token per firing, i.e., one firing of the interleave actor depends on
128 firings of the distribute actor. Hence any channel between the two actors must
accommodate at least 128 tokens. Static analysis can also determine the buffer sizes
of the channels needed to meet the throughput requirements of the model. Buffer
sizes are dictated by the data rates on the channels, the throughput requirements,
and the clock rate at which the model is executed. Throughput is usually specified in

2 Modeling, Analysis, and Implementation of Streaming Applications 27

engineering units such as Mega-Samples per second (MSps). Setting the throughput
at the outputs as 10 MSps for a clock rate of 40 MHz in the example model, the
buffer size required for each channel is 255; the buffer size can achieve a maximum
throughput of 37.23 MSps for the clock rate of 40 MHz. The schedule (i.e., order of
firings) of the actors captures how the actors are executed in time. The schedule for
the example (shown at the bottom of Fig. 2.1) shows that the distribute and interleave
actors fire in parallel, with the distribute actors firing 128 times more often than the
interleave actors.

2.3.3 Extensions for Cyclo-Static Data Rates
and Parameterization

The SDF model of computation accurately captures fixed-length computations on
streams. But there are some actors that follow a pre-specified cyclic pattern in the
number of tokens processed. For such computations, the Cyclo-Static Dataflow
(CSDF) [21] model of computation generalizes SDF by allowing the number of
tokens consumed or produced by an actor to vary according to a fixed cyclic pat-
tern. Each firing of a CSDF actor corresponds to a phase of the cyclic pattern. In
Fig. 2.1, if the input token count of the interleave actors is replaced by a cyclic pattern
(64, 128, 256), then the result is a CSDF model that interleaves incoming streams
following a deterministic cyclic pattern of input token counts. As the cyclic pattern is
fixed and known at design time, all static analysis properties of SDF are also applica-
ble [22]. We refer to [20, 23] for details on analysis algorithms to compute buffer
sizes and throughput.

SDF and CSDF are static in nature. However, some applications may require that
the number of tokens processed by an actor vary at run-time. For example, consider
a variant of the interleave actor that can be configured to consume 64, 128, or 256
tokens on its input channels per firing. The token consumption count on its input
channels is no longer a fixed value; it is denoted by a parameter N , where N is
from the set {64, 128, 256}. Note that this behavior is different from the CSDF actor
discussed earlier. In successive firings, the CSDF actor consumes {64, 128, 256} in
a cyclical pattern. In contrast, the parameterized actor consumes N tokens per firing,
but the value the parameter is determined by external input and need not follow a pre-
specified pattern. The Parameterized Static Dataflow (PSDF) model of computation
is an extension to SDF that allows such parameterized actors [24].

The PSDF model can be viewed as a composition of several SDF models. At any
point in execution, the behavior of a PSDF model corresponds to the underlying SDF
model with all parameters fixed to a specific value. However, if the parameter values
are allowed to change in any arbitrary manner, the problem of verifying whether
the PSDF model is bounded and deadlock-free becomes undecidable. One useful
restriction to facilitate static analysis is to allow changes in parameter values to take
effect only at iteration boundaries. This restriction ensures that a PSDF model can
be statically analyzed to verify bounded deadlock-free execution by verifying that

28 K. Ravindran et al.

the individual SDF models corresponding to different combinations of parameter
values are bounded and deadlock-free. Subsequent analysis of throughput and buffer
sizes can be computed as the worst case from among all combinations of parameter
values. The CSDF model can similarly be parameterized to form the Parameterized
Cyclo-Static Dataflow (PCSDF) model.

2.4 DSP Design Module: Implementation Flow

DSP Design Module is a graphical environment tool which allows user to specify
streaming applications, explore optimizations, and generate synthesizable FPGA
designs. Fig. 2.2 summarizes the design and implementation flow in DSP Design
Module. In this section we discuss this flow using an OFDM transmitter application
as a driving example.

2.4.1 Design Environment

The user works in a graphical environment as shown in Fig. 2.1. The starting point
is the Application, e.g. a DSP algorithm, which the user starts drawing by selecting
actors from the Actor Library and placing them on the editor canvas. This begins the

Fig. 2.2 Design and implementation flow in DSP design module

2 Modeling, Analysis, and Implementation of Streaming Applications 29

Model Specification step. The actor library consists of a rich set of primitive actors,
including computational actors (add, multiply, square root, sine, log etc.), stream
manipulation actors (upsample, downsample, distribute stream, interleave stream,
etc.), third-party actors (e.g. FFT and FIR blocks from Xilinx Coregen [19]), and
user-defined actors that are either specified in the LabVIEW programming language
or previously defined models constructed using DSP Design Module. This reuse of
actors allows for hierarchical composition of designs within the tool.

Figure 2.3 shows the SDF model for the OFDM Transmitter. The basic building
blocks of the transmitter consist of data and reference symbol interleaving and zero
padding the signal, followed by FFT processing and sample rate conversion. The
input signals are first interleaved and distributed followed by zero padding. The
streams are then processed by an FFT actor, and subsequently down sampled using
two FIR filters. The FFT (Xilinx 7.0) and FIR (Xilinx 5.0) filters are third party
actors. The other actors are primitives of the DSP Design Module. The user can also
define actors using DSP Design Module. Figure 2.4 shows the same model where the
computations for zero padding (performed by the distribute stream, the interleave
stream, and the split number actors in Fig. 2.3) are grouped under an actor named
ZeroPad (the first actor from left following the input ports).

The user describes the models by connecting the actors, and optionally config-
ures their properties; e.g., FIR filter actors can be configured for different down-
sampling/up-sampling scenarios. Configurable properties of an actor include the data
types and the number of tokens for the input and output channels. For some actors,
throughput, pipeline depth, resource usage, or other implementation-specific options
can also be configured by the user. The actor library includes cycle-accurate charac-
teristics for each actor configuration, including initiation interval and execution time.

Fig. 2.3 SDF model of the OFDM transmitter

Fig. 2.4 Analysis results for the SDF model of the OFDM transmitter

30 K. Ravindran et al.

In the OFDM example, the first FIR filter is configured with a user-defined coefficient
file, and the interpolation and decimation factors are set to 25 and 8, respectively.
The second FIR filter is configured with another user defined coefficient file, and the
interpolation and decimation factors are set to 25 and 12, respectively.

The second input from the user is the Constraints for hardware generation. This
includes minimum throughput requirements and target clock frequency. Throughputs
can be associated with input/output ports or internal channels of the design, and are
specified in engineering units, such as Mega-Samples per second (MSps). The model
in Fig. 2.4 sets the minimum required throughput at the output ports to be 20 MSps
and the target frequency to be 40 MHz.

The tool performs several types of analysis on the design in the background while
the user is constructing it, with immediate feedback on the current state of the design.
Validity Checking verifies bounded and deadlock-free execution of the model. It also
performs automatic type checking and type propagation across the design. Errors
or warnings are immediately annotated on the offending nodes on the canvas and
reported under the Errors and Warning tab in the tool. On a valid design, the tool
performs Clumping to identify homogeneous and simple regions that fit specialized
implementation schemes (see Sect. 2.4.3). Buffer Sizing and Throughput Analysis
are then performed on the design. This determines the buffer sizes required on the
channels to satisfy user constraints such as minimum throughput. If the constraints
cannot be met, the tool reports errors. Schedule Generation establishes a valid, cycle-
accurate schedule (Fig. 2.5) for the design, given the determined buffer sizes and
clumped regions. Thus the tool provides instant feedback on the run-time behavior
of the design, including the achievable throughput.

The user can simulate the functional behavior on the development platform before
invoking the hardware implementation stage. As a part of the simulation, the user
can specify stimulus data and add graphical displays to the design to visualize the
response on output ports or on any wire in the design.

The final step is Code Generation that uses the results of analysis to emit an
FPGA design in the form of synthesizable LabVIEW files. The tool can also gen-
erate a synthesizable testbench that allows the user to stimulate the design from the
development computer and compare the response to validated signals. The testbench
includes the necessary code for DMA communication between the FPGA device and
the development computer. The LabVIEW files can be used to generate a bitfile used
to implement the design on Xilinx FPGA devices or for timing-accurate hardware
simulation. Currently the tool supports targeting Virtex 5 devices from Xilinx.

Fig. 2.5 Schedule for the SDF model of the OFDM transmitter

2 Modeling, Analysis, and Implementation of Streaming Applications 31

2.4.2 Implementation Strategy

DSP Design Module uses a FIFO-based, self-timed implementation strategy to realize
the designs on FPGA fabrics [23]. In the FIFO-based strategy every channel in a
model is conceptually mapped to a hardware FIFO of appropriate size and every
actor is mapped to a dedicated hardware block that implements its functionality.
There is no resource sharing among two different channels or two different actors in
the current state of the tool, but the model does not preclude this. In the self-timed
implementation strategy every actor is fired whenever it has a sufficient number of
tokens on each of its input channels, sufficient number of vacancies on each of its
output channels, and the initiation interval of the previous firing has expired. This
evaluation is done for an actor on every clock cycle, and is independent of the state
of the other actors in the model. As a consequence, there is no global scheduling
logic in this implementation strategy, reducing the complexity of the controller for
each actor in the design.

2.4.3 Glue Design and IP Integration

The FIFO-based, self-timed implementation strategy surrounds each actor with a har-
ness that provides a FIFO interface to realize the SDF model and its extensions dis-
cussed in Sect. 2.3. The generated code for an actor presents a standardized interface
to the harness, with designated lines for data and handshaking signals. A standard-
ized harness simplifies glue design, i.e., the design of communication and control
logic to stich hardware blocks together. Further, a standardized harness provides a
mechanism to integrate native and third-party IP. The IP interfaces can be adapted
to the harness template, which facilitates the generation of the glue to connect them
to actors in the model.

A faithful realization of the SDF model of computation requires extra resources for
the harness logic and the FIFOs on each channel. However, in the synthesized design
this overhead can be significant compared to the resource usage of the actors them-
selves. To reduce this overhead the tool applies a series of clumping transformations
to reduce the number of harnesses and FIFOs in the design. These transformations
preserve the observable flow of tokens on the input and output ports, while pre-
serving or increasing throughput. A clump is either a single actor or a collection of
neighboring actors connected using direct locally synchronized connections without
a FIFO-based harness interface. A clump exports a standard actor interface at its
boundary. Hence it is a candidate for further clumping with other actors or clumped
regions.

The supported clumping transformations are Simple, Combinational, and Homo-
geneous clumps. In a simple clump, design constants and downstream branches are
merged with connected actors, resulting in a clump where the constant inputs are
replaced with directly wired constants and the branches translate directly to branched

32 K. Ravindran et al.

output wires. Combinational clumps are constructed explicitly in the tool when the
user selects connected actors in the design that can complete their entire execution in
a single cycle, and designates them as executing jointly in a single cycle. The result is
a clump with direct wire connections between the synthesized actors. Homogeneous
clumps are regions where all actors are homogeneous, i.e., all the input and output
counts are one. These actors are connected in a synchronous fashion, using registers
to equalize delays along each path and by using a simple state machine to throttle
the inputs to the clump, based on the actor with the greatest initiation interval. The
clumping transformation is akin to the process of converting an asynchronous design,
where all actors are connected by FIFOs, into a Globally Asynchronous Locally Syn-
chronous architecture (GALS) [25], where FIFOs connect regions of synchronously
connected actors called clumps.

2.4.4 I/O Integration

As discussed in the introduction, there is a the tight contract-based integration
between DSP Design Module and LabVIEW FPGA, where the actual I/O takes
place. Logically, however, we can view I/O operations as being proxied to DSP
Design Module via constraints on ports of the actor diagram, that describe the maxi-
mum rate at which data is going to be fed from I/O or other FPGA IP modules to the
input ports of a DSP diagram, and the minimum rate required at the output ports of
the DSP diagram, to feed the I/O or other FPGA IP modules. This separation of con-
cerns allows the LabVIEW FPGA designer to focus on timed behavior, i.e., details
of interacting with the I/O, where the effects of time are clearly observable, while
the DSP designer can focus on the (untimed) algorithm and let the tools help with
the interaction with the timed boundary to LabVIEW FPGA. In the future, we intend
to bring the I/O actors directly onto the DSP diagram as special actors that the user
can configure, and automatically modify the properties to propagate the constraints
onto the surrounding terminals.

2.5 OFDM Transmitter and Receiver Case Study

In this section, we present a case study on the design and implementation of a real-time
single antenna OFDM transmitter and receiver using LabVIEW DSP Design Mod-
ule. The single antenna OFDM link design is based upon the LTE standard [9] with
system specifications that include a transmission bandwidth of 5 MHz, 7.68 MSps
sampling rate, 512 FFT length, 128 cyclic prefix (CP) length (extended mode), 250
data subcarriers, 50 reference subcarriers, and variable 4/16/64 Quadrature Ampli-
tude Modulation (QAM). The proposed communication system is implemented on
an NI PXI Express platform shown in Fig. 2.6, where the transmitter and receiver
consist of the following four main components: (a) PXIe-8133 Real-time controller

2 Modeling, Analysis, and Implementation of Streaming Applications 33

Fig. 2.6 NI PXI Express Real-Time Signal Processing Platform with Ettus Research RF front-end

equipped with a 1.73 GHz quad-core Intel Core i7-820 processor; (b) PXIe-7965R
FPGA module with a Virtex-5 SX95T FPGA; (c) NI-5781 40 MHz baseband trans-
ceiver module; and (d) Ettus Research XCVR-2450 802.11a/b/g compliant 40 MHz
RF transceiver.

Figure 2.7 shows the transmitter and receiver block diagram of the various signal
processing tasks. The figure also shows a mapping of the various blocks to the under-
lying hardware targets and the respective design tools used in their implementation;
e.g., the transmitter Data Bit Generation block (programmed using LabVIEW Real-
time) executes on the PXIe-8133 real-time controller, while the higher rate 512 IFFT
with 128 CP Insertion block (programmed using DSP Design Module) executes on
the PXIe-7965R FPGA module. The various data rates associated with the inputs and

 Single Antenna Transmitter Baseband Signal Processing Block Diagram

 Single Antenna Receiver Baseband Signal Processing Block Diagram

Data Bit
Generation

4/16/64-QAM
Modulation

Ref. Symbol
Generation

6/12/18 Mbps 3 MSps

0.6 MSps

Data & Reference
Symbol Interleaving

Zero
Padding

512 IFFT
with 128

CP Insertion

LabVIEW

3.6 MSps 6.144 MSps
Sample Rate
Conversion

7.68 MSps DAC

DSP Designer

NI-5781FlexRIO FPGA ModuleRT Controller

50 MSps

RT Controller

LabVIEW

ADC

NI-5781

50 MSps
Sample Rate
Conversion

7.68 MSps
Time & Frequency
Offset Correction

7.68 MSps
512 FFT
with CP
Removal

6.144 MSps
Zero Pad
Removal

3.6 MSps
Data & Reference

Symbol
Demultiplexing

Channel
Equalization

Reference Symbol
Generation

0.6
MSps

Channel
Estimation

3 MSps

0.6 MSps

0.6 MSps

BER
Calculation

3 MSps

DSP Designer

FlexRIO FPGA Module

4/16/64-QAM
Demodulation

6/12/18 Mbps

Fig. 2.7 Hardware and software mapping of Transmitter and Receiver block diagrams

34 K. Ravindran et al.

outputs of each block are also shown; e.g., the transmitter Sample Rate Conversion
block up-samples input data streaming at 7.68–50 MSps in order to meet the sample
rate constraints of the NI-5781 DAC.

2.5.1 Transmitter and Receiver Overview

We provide an overview of how DSP Design Module implements the transmitter and
receiver; refer to [26] for a detailed discussion. In the transmitter, random bytes of
data generated by a real-time controller are sent to the FPGA module for Multilevel
QAM (M-QAM) [27]. Depending upon the modulation order value, the bytes of
data are unpacked into groups of 2, 4, or 6 bits corresponding to 4/16/64-QAM,
respectively which are then mapped to their respective complex symbols. After QAM
modulation, 250 data symbols are interleaved with 50 reference symbols stored in a
look-up table forming an array of 300 interleaved symbols which is then split into
two equal groups and padded with zeros forming an array of 512 samples. The 512
samples are passed through a 512 point IFFT block translating the frequency domain
samples into the time domain. A 128 point CP is also inserted such that the output of
the block consists of 640 samples streaming at 7.68 MSps which is then converted
to 50 MSps using two sets of FIR filters. The samples are forwarded to the NI-5781
for digital-to-analog conversion followed by RF up-conversion.

The receiver begins with sample rate down-conversion of the incoming 50 MSps
signal (from the ADC) to 7.68 MSps. This is followed by time and carrier fre-
quency offset (CFO) estimation using the blind estimation technique proposed in
[28]. After CFO correction, the received OFDM symbol is passed on for CP removal
and FFT transformation returning the signal to the frequency domain. Zero pads are
then removed, and the reference and data symbols are separated in a de-interleave
operation; the data is subsequently processed for channel estimation and channel
equalization. Once channel equalization is complete, the data symbol estimates are
transferred to the real-time controller at 3 MSps for QAM demodulation and bit error
rate calculation.

2.5.2 Hardware Implementation

In addition to the portions of the design implemented in the DSP Design Module,
the compilation results include nominal logic implemented in LabVIEW FPGA that
manages data transfer across the NI-5781 baseband transceiver and PXIe-7965R
FPGA module, and the PXIe-7965R FPGA module and PXIe-8133 controller which
is running LabVIEW Real-time. The results also include additional logic to control
the NI-5781 module including ADC/DAC read/write operations, sampling frequency
configurations, and clock selections.

2 Modeling, Analysis, and Implementation of Streaming Applications 35

Table 2.1 shows the summary of the compiled FPGA resource utilization. The
first two columns show the various resources available on the PXIe-7965R’s Virtex-5
SX95T FPGA and the total number of elements associated with each resource; the
percentage utilization by the transmitter and receiver modules are listed in the last
two columns. Note that the receiver uses more than twice the registers and LUTs than
the transmitter due to significant difference in computational complexity. The DSP
diagrams for the transmitter and receiver are configured for 125 MHz clocks, and
both successfully met timing during compilation. Figure 2.8 is a screen shot of the
OFDM receiver front panel taken during an over-the-air test of the communications
link. In addition to carrier frequency, modulation order, and LNA gain controls, a
sample 16-QAM signal constellation plot is shown along with two average bit error
rate (BER) curves, one taken on a single subframe basis (lower right hand plot), and
the other taken over all received subframes (upper right hand plot). The average BER
over all subframes converges to an approximate value of 8 × 10−4, which is viable
for a practical implementation.

2.5.3 Design Exploration

Furthermore, the designer can use the analysis framework to explore trade-offs
between the throughput and buffer resources used by the implementation. Table 2.2

Table 2.1 Resource utilization of the OFDM transmitter and receiver on a virtex-5 SX95T FPGA

Resource name Available elements Transmitter utilization (%) Receiver utilization (%)

Slices 14720 43.1 79.2
Slice registers 58880 21.6 54.6
Slice LUTs 58880 24.7 57.3
DSP48s 640 2.7 8.3
Block RAM 244 8.2 19.7

Fig. 2.8 OFDM receiver front panel

36 K. Ravindran et al.

Table 2.2 Throughput and buffer size trade-offs for the OFDM transmitter and receiver models

Name #Actors, Firings/ Throughput BlockRAM Run-time
#channels iteration (MSps) utilization (%) (seconds)

OFDM 1114 6250 2 3.6 0.7
Transmitter 5 4.1 1

25 6.4 1
50 8.2 2

OFDM 4666 25000 15 3.1 40
Receiver 50 19.7 39

summarizes these trade-offs for the OFDM transmitter and receiver models. The table
reports the number of actors, channels, and firings per iteration for each model. The
target throughputs are specified in Mega-Samples-per-second (MSps). The buffer
resources required by the design to meet the target throughput are specified in terms
of the percentage utilization of the BlockRAM on the PXIe-7965R’s Virtex-5 SX95T
FPGA target. The CPU run time for the analysis on an Intel Core i7 2.8 GHz processor
is also reported.

As expected, lower target throughputs require fewer buffer resources. The graph-
ical environment allows the designer to quickly explore different design config-
urations and inspect the resource utilization and schedule without generating full
hardware implementations. The run times for the more complex receiver models is
still less than a minute, which is reasonable for an interactive exploration framework.

2.5.4 Extensions

Following on from these results, we have been able to demonstrate enhancements
in resource utilization and performance by using more detailed actor information,
in particular data access patterns for SDF actors. The SDF model is limited in its
ability to specify how data is accessed in time which often leads to sub-optimal
implementations using more resources than necessary. An extension to the SDF
model, called Static Dataflow with Access Patterns (SDF-AP), overcomes this limi-
tation by including access patterns which captures the precise time when tokens are
read and written at ports. The SDF-AP model retains the analyzability of SDF-like
models while accurately capturing the interface timing behavior. References [29,
30] introduce the theory behind the SDF-AP model of computation and demonstrate
throughput and resource usage improvements in resulting hardware implementations.
[31] presents analysis methods for key execution properties (boundedness, deadlock,
throughput, and buffer size) of the SDF-AP model. Experimental results indicate that
the SDF-AP model can reduce the buffer size requirements of the OFDM applica-
tion discussed earlier by about 63 %. We have developed a research prototype that
extends DSP Design Module to generate hardware implementations from SDF-AP

2 Modeling, Analysis, and Implementation of Streaming Applications 37

models. Even though the DSP Design Module application language is expressive
enough to capture a variety of communication applications, there are some applica-
tions that could benefit from additional modal behavior. To that effect, we are also
studying extensions to the application language based on Heterochronous Dataflow
(HDF) [32] and Scenario-Aware Data Flow (SADF) [33].

2.6 Summary

In this article, we presented National Instruments LabVIEW DSP Design Module,
a framework to specify dataflow models of streaming applications, analyze them,
and generate efficient implementations for hardware targets. The Static Dataflow
model with extensions for cyclo-static data rates and parameterization is sufficiently
expressive in specifying high level streaming applications that underlie today’s com-
plex communications systems. The back-end performs key optimizations related to
buffer sizing and scheduling. The framework has a rich actor library and facilitates
integration of custom-designed IPs from native and third-party sources. Thus, Lab-
VIEW DSP Design Module serves as a system design and exploration framework that
enables domain experts, who are not specialized in hardware design, to productively
specify applications using high level models of computation and still create realistic
deployments, combining efficient hardware synthesis and physical I/O integration.
The case study of the OFDM transmitter and receiver shows its viability as a model-
based design framework for next generation signal processing and communications
systems. Recent advances related to the specification of access patterns and modal
behavior in dataflow models are promising extensions to this work.

References

1. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. of the IEEE 75(9), 1235–1245
(1987)

2. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Software Synthesis from Dataflow Graphs.
Kluwer Academic Press, Norwell (1996)

3. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,
Xiong, Y.: Taming heterogeneity: the Ptolemy approach. Proc. of the IEEE 91(1), 127–144
(2003)

4. Lauwereins, R., Engels, M., Adé, M., Peperstraete, J.A.: Grape-II: a system-level prototyping
environment for DSP applications. Computer 28(2), 35–43 (1995)

5. Andrade, H.A., Kovner, S.: Software synthesis from dataflow models for G and LabVIEW.
In: Proceedings of the IEEE Asilomar conference on signals, systems, and computers,
pp. 1705–1709 (1998)

6. The MathWorks Inc.: Simulink user’s guide (2005). http://www.mathworks.com
7. Kee, H., Shen, C.C., Bhattacharyya, S.S., Wong, I., Rao, Y., Kornerup, J.: Mapping parame-

terized cyclo-static dataflow graphs onto configurable hardware. J. Signal Process. Syst. vol.
66, pp. 285–301 (2012). doi:10.1007/s11265-011-0599-5

http://www.mathworks.com
http://dx.doi.org/10.1007/s11265-011-0599-5

38 K. Ravindran et al.

8. Berg, H., Brunelli, C., Lücking, U.: Analyzing models of computation for software defined
radio applications. In: International symposium on system-on-chip (SOC), pp. 1–4. Tampere,
Finland (2008)

9. 3GPP LTE: The mobile broadband standard (2008) http://www.3gpp.org/
10. Edwards, M., Green, P.: The implementation of synchronous dataflow graphs using reconfig-

urable hardware. In: Proceedings of FPL ’00, pp. 739–748 (2000)
11. Horstmannshoff, J., Meyr, H.: Optimized system synthesis of complex RT level building blocks

from multirate dataflow graphs. In: Proceedings of ISSS ’99, pp. 38–43 (1999)
12. Jung, H., Lee, K., Ha, S.: Optimized RTL code generation from coarse-grain dataflow specifi-

cation for fast HW/SW cosynthesis. J. Signal Process. Syst. 52(1), 13–34 (2008)
13. National Instruments Corp.: LabVIEW FPGA. http://www.ni.com/fpga
14. Xilinx Inc.: System generator for DSP: getting started guide. http://www.xilinx.com
15. Hsu, C.J., Pino, J.L., Hu, F.J.: A mixed-mode vector-based dataflow approach for modeling

and simulating lte physical layer. In: Proceedings of the 47th design automation conference,
DAC ’10, pp. 18–23. ACM, New York, USA (2010)

16. Janneck, J.W.: Open dataflow (OpenDF). http://www.opendf.org/
17. Janneck, J., Miller, I., Parlour, D., Roquier, G., Wipliez, M., Raulet, M.: Synthesizing hardware

from dataflow programs: an MPEG-4 simple profile decoder case study. In: IEEE workshop
on signal processing systems, pp. 287–292 (2008)

18. Gu, R., Janneck, J.W., Raulet, M., Bhattacharyya, S.S.: Exploiting statically schedulable regions
in dataflow programs. In: Proceedings of the 2009 IEEE international conference on acoustics,
speech and signal processing, ICASSP ’09, pp. 565–568. IEEE Computer Society, Washington,
USA (2009)

19. Xilinx Inc.: Xilinx core generator, ISE design suite 12.1. Xilinx Inc. (2010)
20. Stuijk, S., Geilen, M., Basten, T.: Exploring trade-offs in buffer requirements and throughput

constraints for synchronous dataflow graphs. In: Proceedings of DAC ’06, pp. 899–904 (2006)
21. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-static dataflow. IEEE Trans.

Signal Process. 44(2), 397–408 (1996)
22. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cyclo-static data flow. In: IEEE inter-

national conference acoustics, speech, and signal processing. vol. 5, pp. 3255–3258 (1995)
23. Moreira, O.M., Bekooij, M.J.G.: Self-timed scheduling analysis for real-time applications.

EURASIP J.n Adv. Signal Process. 2007(83710), 1–15 (2007)
24. Bhattacharya, B., Bhattacharyya, S.: Parameterized dataflow modeling for DSP systems. IEEE

Trans. Signal Process. 49(10), 2408–2421 (2001)
25. Chapiro, D.M.: Globally-asynchronous locally-synchronous systems. Ph.D. thesis, Stanford

University, CA (1984)
26. Andrade, H., Correll, J., Ekbal, A., Ghosal, A., Kim, D., Kornerup, J., Limaye, R., Prasad, A.,

Ravindran, K., Tran, T.N., Trimborn, M., Wang, G., Wong, I., Yang, G.: From streaming models
to FPGA implementations. In: Proceedings of the conference for engineering of reconfigurable
systems and algorithms (ERSA-IS). Las Vegas, USA (2012)

27. Proakis, J.: Digital communications, 4th edn. McGraw-Hill Science/Engineering/Math (2000)
28. Sandell, M., van de Beek, J.J., Brjesson, P.O.: Timing and frequency synchronization in OFDM

systems using the cyclic prefix. In: Proceedings of international symposium synchronization,
pp. 16–19 (1995)

29. Ghosal, A., Limaye, R., Ravindran, K., Tripakis, S., Prasad, A., Wang, G., Tran, T.N., Andrade,
H.: Static dataflow with access patterns: semantics and analysis. In: Proceedings of the 49th
annual design automation conference, DAC ’12, pp. 656–663. ACM, New York, USA (2012)

30. Tripakis, S., Andrade, H., Ghosal, A., Limaye, R., Ravindran, K., Wang, G., Yang, G., Kornerup,
J., Wong, I.: Correct and non-defensive glue design using abstract models. In: Proceedings of the
seventh IEEE/ACM/IFIP international conference on hardware/software codesign and system
synthesis, CODES+ISSS ’11, pp. 59–68. ACM, New York, USA (2011)

31. Ravindran, K., Ghosal, A., Limaye, R., Wang, G., Yang, G., Andrade, H.: Analysis techniques
for static dataflow models with access patterns. In: Proceedings of the 2012 conference on
design and architectures for signal and image processing, DASIP ’12 (2012)

http://www.3gpp.org/
http://www.ni.com/fpga
http://www.xilinx.com
http://www.opendf.org/

2 Modeling, Analysis, and Implementation of Streaming Applications 39

32. Girault, A., Lee, B., Lee, E.A.: Hierarchical finite state machines with multiple concurrency
models. IEEE Trans. Comput. Aided Des. 18(6), 742–760 (1999)

33. Theelen, B.D., Geilen, M.C.W., Basten, T., Voeten, J.P.M., Gheorghita, S.V., Stuijk, S.: A
scenario-aware data flow model for combined long-run average and worst-case performance
analysis. In: Proceedings of MEMOCODE’06, pp. 185–194 (2006)

Chapter 3
Dataflow-Based, Cross-Platform Design
Flow for DSP Applications

Zheng Zhou, Chung-Ching Shen, William Plishker
and Shuvra S. Bhattacharyya

Abstract Dataflow methods have been widely explored over the years in the digital
signal processing (DSP) domain to model, design, analyze, implement, and opti-
mize DSP applications, such as applications in the areas of audio and video data
stream processing, digital communications, and image processing. DSP-oriented
dataflow methods provide formal techniques that facilitate software design, simula-
tion, analysis, verification, instrumentation and optimization for exploring effective
implementations on diverse target platforms. As the landscape of embedded plat-
forms becomes increasingly diverse, a wide variety of different kinds of devices,
including graphics processing units (GPUs), multicore programmable digital signal
processors (PDSPs), and field programmable gate arrays (FPGAs), must be consid-
ered to thoroughly address the design space for a given application. In this chapter,
we discuss design methodologies, based on the core functional dataflow (CFDF)
model of computation, that help engineers to efficiently explore such diverse design
spaces. In particular, we discuss a CFDF-based design flow and associated design
methodology for efficient simulation and implementation of DSP applications. The
design flow supports system formulation, simulation, validation, cross-platform soft-
ware implementation, instrumentation, and system integration capabilities to derive
optimized signal processing implementations on a variety of platforms. We pro-
vide a comprehensive specification of the design flow using the lightweight dataflow
(LWDF) and targeted dataflow interchange format (TDIF) tools, and demonstrate it

Z. Zhou (B) · C.-C. Shen ·W. Plishker · S. S. Bhattacharyya
Department of Electrical and Computer Engineering and Institute for Advanced
Computer Studies, University of Maryland, College Park, Maryland, USA
e-mail: zhengzho@umd.edu

C.-C. Shen
e-mail: ccshen@umd.edu

W. Plishker
e-mail: plishker@umd.edu

S. S. Bhattacharyya
e-mail: ssb@umd.edu

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 41
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_3,
© Springer Science+Business Media New York 2014

42 Z. Zhou et al.

with case studies on CPU/GPU and multicore PDSP designs that are geared towards
fast simulation, quick transition from simulation to the implementation, high perfor-
mance implementation, and power-efficient acceleration, respectively.

3.1 Introduction

As embedded processing platforms become increasingly diverse, designers must
evaluate trade-offs among different kinds of devices such as CPUs, graphics process-
ing units (GPUs), multicore programmable digital signal processors (PDSPs), and
field programmable gate arrays (FPGAs). The diversity of relevant platforms is com-
pounded by the trend towards integrating different kinds of processors onto hetero-
geneous multicore devices for DSP (e.g., see [1]). Such heterogeneous platforms
help designers to simultaneously achieve manageable cost, high power efficiency,
and high performance for critical operations. However, there is a large gap from the
simulation phase to the final implementation. Simulation is used extensively in the
early stage of system design for high-level exploration of design spaces and fast val-
idation. In contrast, in the implementation phase, there is strong emphasis platform
dependent issues, performance centric optimization, and tuning low-level implemen-
tation trade-offs. A seamless design flow is needed to help designers to effectively
bridge this gap.

Dataflow models of computation have been widely used in the design and imple-
mentation of DSP applications, such as applications for audio and video stream
processing, digital communications, and image processing (e.g., see [1, 2]). These
applications often require real-time processing capabilities and have critical per-
formance constraints. Dataflow provides a formal mechanism for specifying DSP
applications, imposes minimal data-dependency constraints in specifications, and is
effective in exposing and exploiting task or data level parallelism for achieving high
performance implementations.

A dataflow graph is a directed graph, where vertices (actors) represent com-
putational functions (actors), and edges represent first-in-first-out (FIFO) channels
for storing data values (tokens) and imposing data dependencies between actors. In
DSP-oriented dataflow models of computation, actors can typically represent compu-
tations of arbitrary complexity as long as the interfaces of the computations conform
to dataflow semantics. That is, dataflow actors produce and consume data from their
input and output edges, respectively, and each actor executes as a sequence of discrete
units of computation, called firings, where each firing depends on some well-defined
amount of data from the input edges, and produces some well-defined amount of
data onto the output edges of the associated actor [3].

Dataflow modeling has several advantages, which facilitate its use as a single,
unified model across the simulation phase and implementation phases of the design
flow. First, dataflow utilizes simple, standard, and loosely coupled interfaces (in the
form of FIFOs), which can be easily implemented on individual platforms and across
different platforms. Second, the structure of actor interfaces can be cleanly separated

3 Dataflow-Based, Cross-Platform Design Flow 43

from the internal operation of actors. As long as the predefined amounts of data
from the input edges are consumed and the predefined amounts of data to the output
edges are produced on each firing, the implementation of an actor can be changed
without violating key higher level properties of the enclosing dataflow model. Third,
dataflow models enable a wide variety of powerful techniques for design analysis
and optimization—e.g., for evaluating or optimizing performance, memory usage,
throughput and latency [1].

Based on Core Functional Dataflow (CFDF) [4] , two complementary tools have
been developed in recent years. First, the lightweight dataflow (LWDF) program-
ming methodology [5] provides a “minimalistic” approach for integrating coarse
grain dataflow programming structures into DSP simulation for fast system formula-
tion, validation and profiling with arbitrary languages. Second, the targeted dataflow
interchange format (TDIF) framework [6] provides cross-platform actor design sup-
port, and the integration of (1) code generation for programming interfaces, and (2)
low level customization for implementations targeted to homogeneous and heteroge-
neous platforms alike. In this chapter, we present a novel dataflow-based design flow
that builds upon on both LWDF and TDIF to allow rapid transition from simulation
to optimized implementations on diverse platforms. In this chapter, we present this
design flow, and provide case studies to demonstrate its application.

3.2 Background

In this section, we review background that is needed to introduce our design flow,
which is introduced in the next section.

3.2.1 CFDF Dataflow Model

Enable-Invoke Dataflow (EIDF) is a dataflow model [4] that facilitates the design
of applications with structured dynamic behavior. EIDF divides actors into sets of
modes. Each mode, when executed, consumes and produces a fixed number of tokens.
The fixed behavior of a mode provides structure that can be exploited by analysis and
optimization tools, while dynamic behavior can be achieved by switching between
modes at run-time.

Each mode is defined by an enable method and an invoke method, which corre-
spond, respectively, to testing for sufficient input data and executing a single quantum
(“invocation”) of execution for a given actor. After a successful invocation, the invoke
method returns a set of admissible next modes, any of which may be then checked
for readiness using the enable method and then invoked, and so on. By returning a
set of possible next modes (as opposed to being restricted to a single next mode), a
designer can model non-deterministic applications in which execution can proceed
down multiple alternative paths.

44 Z. Zhou et al.

In the implementation of dataflow tools, functionality corresponding to the enable
and invoke methods is often interleaved—for example, an actor firing may have
computations that are interleaved with blocking reads of data that provide successive
inputs to those computations. In contrast, there is a clean separation of enable and
invoke capabilities in EIDF. This separation helps to improve the predictability of
an actor invocation (since availability of the required data can be guaranteed in
advance by the enable method), and in prototyping efficient scheduling and synthesis
techniques (since enable and invoke functionality can be called separately by the
scheduler).

CFDF is a special case of the EIDF model. Recall that in EIDF, the invoking func-
tion in general returns a set of valid next modes in which the actor can subsequently
be invoked. This allows for non-determinism as an actor can be invoked in any of
the valid modes within the next-mode set. In the deterministic CFDF model, actors
must proceed deterministically to one particular mode of execution whenever they
are enabled. Hence, the invoke function should return only a single valid mode of
execution instead of a set of arbitrary cardinality. In other words, CFDF is the model
of computation that results when EIDF is restricted so that the set of next modes
always has exactly one element. With this restricted form of invoke method, only
one mode can meaningfully be interrogated by the enable method, ensuring that the
application is deterministic.

3.2.2 Lightweight Dataflow

Lightweight dataflow (LWDF) [5] is a programming approach that allows designers
to integrate various dataflow modeling approaches relatively quickly and flexibly
into existing design methodologies and processes. LWDF is designed to be mini-
mally intrusive on existing design processes and requires minimal dependence on
specialized tools or libraries. LWDF can be combined with a wide variety of dataflow
models to yield a lightweight programming method for those models. In our design
flow, the LWDF is used for system simulation.

In LWDF, an actor has an operational context, which encapsulates the following
entities related to an actor design [7]:

• Actor parameters.
• Local actor variables—variables whose values store temporary data that does not

persist across actor firings.
• Actor state variables—variables whose values do persist across firings.
• References to the FIFOs corresponding to the input and output ports (edge con-

nections) of the actor as a component of the enclosing dataflow graph.
• Terminal modes: a (possibly empty) subset of actor modes in which the actor

cannot be fired.

In LWDF, the operational context for an actor also contains a mode variable
whose value stores the next CFDF mode of the actor and persists across firings. The

3 Dataflow-Based, Cross-Platform Design Flow 45

LWDF operational context also includes references to the invoke function and enable
function of the actor. The concept of terminal modes, defined above, can be used to
model finite subsequences of execution that are “re-started” only through external
control (e.g., by an enclosing scheduler). This is implemented in LWDF by extending
the standard CFDF enable functionality such that it unconditionally returns false
whenever the actor is in a terminal mode.

3.2.3 The Targeted DIF Framework

TDIF [6] is a two layer framework with each design involving a system layer and
actor layer. This two layer architecture helps to separate system design from actor
design, which reduces total design complexity and enhances modularity. Based on
this two layer approach, TDIF provides a systematic solution for developing DSP
applications on diverse platforms. The CFDF dataflow model used in TDIF provides
capabilities for formal analysis of system behavior, while providing the programmer
with design flexibility and multi-level implementation tuning.

An illustration of the TDIF environment and its associated design flow is shown in
Fig. 3.1. By applying this methodology, the designer can focus on design, implemen-
tation and optimization for dataflow actors and experiment with alternative schedul-
ing strategies for the targeted platforms based on programming interfaces that are
automatically generated from the TDIF tool. These automatically-generated inter-
faces provide structured design templates for the designer to follow in order to gener-
ate dataflow-based actors that are formally integrated into the overall synthesis tool.

Fig. 3.1 TDIF-based design and synthesis flow

46 Z. Zhou et al.

In Fig. 3.1, dashed lines indicate design considerations that need to be taken into
account jointly to achieve maximum benefit from TDIF-based system design. In our
proposed design flow, the TDIF framework is used primarily in the implementation
phase (not for simulation).

The TDIF tool is based on four software packages—the TDIF compiler, TDIFSyn
software synthesis package, TDIF run-time library, and Software Synthesis Engine.
Interactions among these packages are illustrated in Fig. 3.1.

3.3 From Simulation to Implementation

In this section, we elaborate on the process of applying our proposed design flow
based on LWDF and TDIF, and we discuss useful features of the design flow.

3.3.1 Step 1: System Formulation

In the first step of the design flow, the targeted DSP application is modeled in
terms of CFDF semantics. Decisions are made on how to decompose the appli-
cation specification into actors, along with the functionality of and parameterization
associated with each actor.

Next, we design FIFOs and actors or select such design components from
predefined libraries. Actor design in LWDF includes four interface functions—the
construct, enable, invoke, and terminate functions. The construct function can be
viewed as a form of object-oriented constructor, which connects an actor to its input
and output edges (FIFO buffers), and performs any other pre-execution initialization
associated with the actor. Similarly, the terminate function performs any operations
that are required for “closing out” the actor after the enclosing graph has finished
executing (e.g., deallocation of actor-specific memory or closing of associated files).

In the enable function for an LWDF actor a, a true value is returned if

population(e) ≥ cons(a,m, e) for all e ∈ inputs(a); (3.1)

population(e) ≤ (capacity(e)− prod(a,m, e)) for all e ∈ outputs(a); and (3.2)

m /∈ τ(a), (3.3)

where m is the current mode of a.
In other words, the enable function returns true if the given actor is not in

a terminal mode, and has sufficient input data to execute the current mode, and the
output edges of the actor have sufficient data to store the new tokens that are produced
when the mode executes. An actor can be invoked at a given point of time if the enable
function is true-valued at that time.

3 Dataflow-Based, Cross-Platform Design Flow 47

In the invoke function of an LWDF actor a, the operational sequence associated
with a single invocation of a is implemented. Based on CFDF semantics, an actor
proceeds deterministically to one particular mode of execution whenever it is enabled,
and in any given mode, the invoke method of an actor should consume data from
at least one input or produce data on at least one output (or both) [4]. Note that
in case an actor includes state, then the state can be modeled as a self-loop edge
(a dataflow edge whose source and sink actors are identical) with appropriate delay,
and one or more modes can be defined that produce or consume data only from
the self-loop edge. Thus, modes that affect only the actor state (and not the “true”
inputs or outputs of the actor) do not fundamentally violate CFDF semantics, and
are therefore permissible in LWDF.

After completing actor design and selection, we focus an analogous process for
FIFOs. FIFO design for LWDF dataflow edge implementation is orthogonal to the
design of dataflow actors in LWDF. That is, by using LWDF, application designers can
focus on design of actors and mapping of edges to lower level communication proto-
cols through separate design processes (if desired) and integrate them later through
well-defined interfaces. Such design flow separation is useful due to the orthogo-
nal objectives, which center around computation and communication, respectively,
associated with actor and FIFO implementation.

Standard FIFO operations in LWDF include operations that perform the following
tasks:

• Create a new FIFO with a specified capacity;
• Read and write tokens from and to a FIFO;
• Check the capacity of a FIFO;
• Check the number of tokens that are currently in a FIFO;
• Deallocate the storage associated with a FIFO (e.g., for dynamically adapting

graph topologies or, more commonly, as a termination phase of overall application
execution).

The buffer sizes used during simulation and implementation are determined based
on the scheduling strategies that are employed. Our proposed design flow facili-
tates experimentation with alternative scheduling strategies to help designers explore
trade-offs involving buffer sizes and other relevant implementation metrics, such as
latency and throughput. More details on scheduling are provided later in this section.

3.3.2 Step 2: System Validation and Profiling

After system formulation, we need a schedule to validate the correctness of the system
and the behavior of each actor. A CFDF canonical schedule [8] can be employed for
this purpose. A canonical schedule repeatedly traverses the list of actors in a CFDF
graph according to some pre-defined sequence. When an actor is visited during this
traversal process, its enable function is first called. If the enable function returns

48 Z. Zhou et al.

true, the invoke function for the actor is subsequently called; otherwise, firing of
the actor is effectively “skipped”, and traversal continues with the next actor in the
sequence.

During simulation, profiling information for each actor is obtained to extract
relevant performance characterizations that will be employed to inform the imple-
mentation phase. For example, execution time statistics for each actor mode are
extracted. Such profiling can help to identify modes that are bottlenecks of individ-
ual actors, and actors that are bottlenecks of the overall system.

3.3.3 Step 3: System Optimization

In this step, we enter the implementation phase, which is where TDIF comes into
play. There are two main kinds of optimization techniques supported in the TDIF
framework. One is cross-platform implementation for actor-level optimization, and
the other is scheduling and mapping for system or subsystem optimization.

After we identify the bottleneck actors, cross-platform implementation of actors
allows designers to efficiently experiment with alternative actor realizations on differ-
ent kinds of platforms, such as GPUs, multicore PDSPs, and FPGAs, to help derive
a platform or mix of platforms that will be strategic in terms of the given design
constraints (e.g., constraints involving cost, performance, and energy consumption).
During this process, much of the code from the simulation phase can be reused. Only
the functionality associated with selected actor modes (e.g., bottleneck modes of
bottleneck actors) needs to be rewritten or selected from available platform-specific
libraries.

The TDIF environment currently supports C-like programming languages—i.e.,
languages that are targeted to CPU, GPU and multicore PDSP platforms. The GPU-
based capabilities of TDIF are currently oriented towards NVIDIA GPUs, based on
the CUDA programming language [9], which can be viewed as an extension of C. The
multicore PDSP capabilities currently in TDIF are oriented towards Texas Instru-
ments (TI) PDSP devices, and are interoperable with the multithreading libraries
provided by TI [10].

TDIF also provides a library of FIFO implementations that are optimized for
different platforms. These FIFOs all adhere to standard operations defined in LWDF
so that they can be integrated in a manner that is consistent with the CFDF graph
model from the simulation phase. After simulation-mode FIFOs are mapped into
platform-specific FIFOs, optimized actors can communicate in a manner that is
efficient, and consistent with the designer’s simulation model.

The scheduling strategy employed determines the execution order of the actors
while the mapping process, which is typically coupled closely with scheduling, deter-
mines which resource each actor is executed on. TDIF provides the generalized
schedule tree (GST) [11] representation to facilitate implementation of and experi-
mentation with alternative scheduling and mapping schemes for system optimization.
GSTs are ordered trees with leaf nodes and internal nodes. An internal node of a GST

3 Dataflow-Based, Cross-Platform Design Flow 49

in TDIF represents iteration control (e.g., a loop count) for an iteration construct that
is to be applied when executing the associated subtree. On the other hand, a GST leaf
node includes two pieces of information that are used to carry out individual actor
firings—one is an actor of the associated dataflow graph, and the other is mapping
information associated with the actor. The GST representation provides designers
with a common interface through with topological information and algorithms for
ordered trees can be applied to access and manipulate schedule elements.

Execution of a GST involves traversing the tree to iteratively enable (and then
execute, if appropriate) actors that correspond to the schedule tree leaf nodes. Note
that if actors are not enabled, the GST traversal simply skips their invocation. Sub-
sequent schedule rounds (and thus subsequent traversals of the schedule tree) will
generally revisit actors that were unable to execute in the current round.

For schedule construction in the implementation phase, the CFDF graph decom-
position approach of [12] is integrated in the TDIF framework. This approach allows
designers to decompose a CFDF graph into a set of SDF subgraphs. Each SDF sub-
graph can be scheduled by existing static scheduling algorithms, such as an APGAN-
based scheduler [13]. The GST schedule trees that result from scheduling these SDF
subgraphs are then systematically combined into a single, “execution-rate-balanced”
GST using profiling and instrumentation techniques that are discussed in next section.

3.3.4 Step 4: System Verification and Instrumentation

Given a GST together with a set of actor and FIFO implementations, the TDIF
framework automatically generates a complete CFDF graph implementation for the
target platform. Performance metrics, such as latency and throughput, can then be
evaluated using platform-specific simulation tools, or using execution on actual target
hardware.

The TDIF framework also provides an instrumentation approach to help assess
generated implementations. Such instrumentation facilitates experimentation with
and tuning of alternative scheduling and mapping techniques. The instrumentation
approach integrated in TDIF also facilitates trade-off assessment across different
implementation metrics, and helps designers steer implementations towards effec-
tive solutions.

Our approach to instrumentation in TDIF is designed to support the following
features: (1) no change in functionality (instrumentation directives should not change
application functionality); (2) operations for adding and removing instrumentation
points should be performed by designers in a way that is external to actors (i.e., does
not interfere with or require modification of actor code); and (3) instrumentation
operations should be modular so that they can be mixed, matched, and migrated with
ease and flexibility.

In schedule tuning mode, TDIF allows designers to augment the GST repre-
sentation with functional modules, encapsulated as instrumentation nodes, which
are dedicated to instrumentation tasks. Like iteration nodes, instrumentation nodes

50 Z. Zhou et al.

are incorporated as internal nodes. We refer to GSTs that are augmented with
instrumentation nodes as instrumented GSTs (IGSTs). The instrumentation tasks
associated with an instrumentation node are in general applied to the corresponding
IGST sub-tree.

An IGST allows software synthesis for a schedule together with instrumentation
functionality that is integrated in a precise and flexible format throughout the sched-
ule. Upon execution, software that is synthesized from an IGST produces profiling
data (e.g., related to memory usage, performance or power consumption) along with
the output data that is generated by the source application. Modeling techniques,
metrics, and measurements related to the coding efficiency of TDIF-based imple-
mentations are discussed in [14].

3.3.5 Determining Buffer Sizes

During simulation, estimated buffer size bounds are provided by the designer. If the
these bounds are not sufficient to keep the graph running without deadlock, then
simulation is terminated with an appropriate diagnostic message. The designer can
then increase selected buffer sizes, and retry the simulation. This process is repeated
until the simulation completes for the desired number of iterations, or the buffer
size constraints of the design are exhausted. In the latter case, the designer needs to
re-examine the system for sample-rate inconsistencies (unbounded buffer sizes), and
re-design the system to reduce buffer sizes. Such an iterative process is needed for
general CFDF specifications, which are highly expressive, and therefore do not pro-
vide the kinds of guaranteed buffer size bounds that are available with less expressive
models, such as synchronous dataflow (SDF) or cyclo-static dataflow (CSDF) [2, 15] .

During the implementation phase, subgraphs corresponding to specialized mod-
els, such as SDF or CSDF, can be extracted from the CFDF specification and opti-
mized with appropriate guaranteed-buffer-bound algorithms. In particular, we apply
the APGAN scheduling technique to optimize buffer sizes for SDF subgraphs [13].
Furthermore, quasi-static scheduling techniques, such as the CFDF mode grouping
technique, can be applied to provide buffer optimization for CFDF specifications that
contain certain kinds of dynamic dataflow structures (e.g., see [16]).

3.3.6 Discussion

Integration of the following four features distinguish the CFDF-based design flow
developed in this chapter:

1. Support for dynamic dataflow behavior in the system;
2. Use of a common formal model for simulation and implementation, which

provides rapid transition between the simulation and implementation phases,
and promotes consistency between simulation and implementation versions of
a design;

3 Dataflow-Based, Cross-Platform Design Flow 51

3. Support for diverse target platforms;
4. Support for significant code reuse across the simulation and implementation

phases.

One limitation of TDIF is that due to the high expressive power of the underlying
CFDF model of computation, key analysis and verification problems are undecidable
for general TDIF-based applications (e.g., see [8]). However, the CFDF model helps
to expose and exploit subsystems within an overall dataflow graph specification that
adhere to more specialized (static) dataflow modeling techniques, so that decidable
verification properties can be exploited at a “local” level on those subsystems. Some
work has also been developed on quasi-static scheduling of CFDF specifications,
where fully-verified schedules for static dataflow subsystems are integrated sys-
tematically with global dynamic schedulers [16]. Efficient and reliable quasi-static
and dynamic scheduling of CFDF specifications are useful directions for further
investigation.

3.4 Case Study 1:CPU/GPU

To demonstrate our design flow, we first experiment with an image processing
application centered on Gaussian filtering. Two-dimensional Gaussian filtering is
a common kernel in image processing that is used for preprocessing. Gaussian filter-
ing can be used to denoise an image or to prepare for multiresolution processing. A
Gaussian filter is a filter whose impulse response is a Gaussian curve, which in two
dimensions resembles a bell.

For filtering in digital systems, the continuous Gaussian filter is sampled in a
window and stored as coefficients in a matrix. The filter is convolved with the input
image by centering the matrix on each pixel, multiplying the value of each entry in
the matrix with the appropriate pixel, and then summing the results to produce the
value of the new pixel. This operation is repeated until the entire output image has
been created.

The size of the matrix and the width of the filter may be customized according to
the application. A wide filter will remove noise more aggressively but will smoothen
sharp features. A narrow filter will have less of an impact on the quality of the image,
but will be correspondingly less effective against noise.

It should also be noted that the tiles indicated in Fig. 3.2 do vary somewhat
between edges. Gaussian filtering applied to tiles must consider a limited neighbor-
hood around each tile (called a halo) for correct results. Therefore, tiles produced by
bmp_file_reader overlap, while the halo is discarded after Gaussian filtering.
As a result, non-overlapping tiles form the input to bmp_file_writer.

Figure 3.2 shows a simple application based on Gaussian filtering. It reads bitmap
files in tile chunks, inverts the values of the pixels of each tile, runs Gaussian filtering
on each inverted tile, and then writes the results to an output bitmap file. The main
processing pipeline is single-rate in terms of tiles, and can be statically scheduled, but

52 Z. Zhou et al.

Fig. 3.2 Dataflow graph of an image processing application for Gaussian filtering

after initialization and end-of-file behavior is modeled, there is conditional dataflow
behavior in the application graph, which is represented by square brackets in the
figure.

Such conditional behavior arises, first, because the Gaussian filter coefficients are
programmable to allow for different standard deviations. The coefficients are set once
per image—coefficient_filter_reader produces a coefficient matrix for
only the first firing. To correspond to this behavior, the gaussian_filter actor
consumes the coefficient matrix only once, and each subsequent firing processes
tiles. Such conditional firing also applies to bmp_file_reader, which produces
tiles until the end of the associated file is reached.

As shown in Fig. 3.2, our dataflow graph of the image processing applica-
tion for Gaussian filtering is specified as a CFDF graph. The graph includes
five actors: bmp_file_reader, coefficient_filter_reader, invert,
gaussian_filter, and bmp_file_writer. We first use the LWDF program-
ming methodology, integrated with the C language, to construct the system for
simulation.

3.4.1 Simulation

In our design, the bmp_file_reader actor is specified using two CFDF modes,
and one output FIFO. The two modes are the process mode and the inactive
mode. It is the actor programmer’s responsibility to implement the functionality of
each mode. In the processmode, the bmp_file_reader reads image pixels of
a given tile and the corresponding header information from a given bitmap file, and
produces them to its output FIFOs. Then the actor returns the processmode as the
mode for its next firing. This continues for each firing until all of the data has been
read from the given bitmap file. After that, the actor returns the inactive mode,
which is a terminal mode. Arrival at a terminal mode indicates that the actor cannot
be fired anymore until its current mode is first reset externally (e.g., by the enclosing
scheduler).

The coefficient_filter_reader actor is also specified in terms of two
modes and one output FIFO. The two modes are again labeled as the processmode

3 Dataflow-Based, Cross-Platform Design Flow 53

and the inactive mode, and again, the inactive mode is a terminal mode.
On each firing when it is not in the inactive mode, the coefficient_fil-
ter_reader actor reads filter coefficients from a given file, stores them into a filter
coefficient vector (FCV) array, and produces the coefficients onto its output FIFO.
The FCV V has the form

V = (sizeX,sizeY, c0, c1, . . . , cn−1), (3.4)

wheresizeX andsizeY denote the size of the FCV represented in two dimensional
format; each ci represents a coefficient value; and n = sizeX × sizeY. After
firing, the actor returns the process mode if there is data remaining in the input
file; otherwise, the actor returns the inactive mode.

The bmp_file_writer actor contains only a single mode and one input FIFO.
The single mode is called the process mode. Thus, the actor behaves as an SDF
actor. On each firing, the bmp_file_writer actor reads the processed image
pixels of the given tile and the corresponding header information from its input
FIFOs, and writes them to a bitmap file, which can later be used to display the
processed results. The actor returns the process mode as the next mode for firing.

The gaussian_filter actor contains one input FIFO, one output FIFO and
two modes: the store coefficients (STC) mode and the process mode. On each
firing in the STC mode, the gaussian_filter actor consumes filter coefficients
from its coefficient input FIFO, caches them inside the actor for further reference,
and then returns the process mode as the next mode for firing. In the process
mode, image pixels of a single tile will be consumed from the tile input FIFO of the
actor, and the cached filter coefficients will be applied to these pixels. The results
will be produced onto the tile output FIFO. The actor then returns the process
mode as the next mode for firing. To activate a new set of coefficients, the actor must
first be reset, through external control, back to the STC mode.

The invert actor also contains a single mode called the process mode, and
contains one input FIFO and one output FIFO. Because it has only one mode, it
can also be viewed as an SDF actor. On each firing, the invert actor reads the
image pixels of the given tile from its input FIFOs, inverts the color of the image
pixels, and writes the processed result to its output FIFO. The actor always returns
the process mode as the next mode for firing.

After designing the actors, as described above, we connect the actors with the
appropriate FIFOs. For our simulation setup, we use 256× 256 images decomposed
into 128× 128 tiles, and filtered with different sizes of matrices for Gaussian filter
coefficients. The canonical scheduler (see Sect. 3.3.2) is used to run the simulation
on 3GHz Intel Xeon processors. The profiling results are reported in Table 3.1. As
can be observed from this table, increases in the matrix size lead to increases in the
processing time for the Gaussian filter and the overall application. Furthermore, the
Gaussian filter actor accounts for most of the processing time in the application in
all cases. Thus, if we can optimize the Gaussian filter actor, the performance of the
overall application will be enhanced.

54 Z. Zhou et al.

Table 3.1 Execution time of the gaussian_filter (GF) actor and the Gaussian filtering appli-
cation (App) during simulation

Filter size 5× 5 11× 11 21× 21 25× 25 37× 37

GF. SIM (ms) 50 280 1080 1540 3310
App. SIM (ms) 70 295 1100 1550 3340
Percentage 71.4 % 95 % 98.2 % 99.3 % 99.1 %

3.4.2 Implementation

From the experiments discussed in the previous section, we identified the bottleneck
actor to be the Gaussian filtering actor. To improve the performance of this actor,
we apply the cross-platform implementation features of TDIF. In particular, we use
TDIF to experiment with a new version of the implementation in which the Gaussian
filtering actor is executed on a graphics processing unit (GPU).

GPUs provide a class of high performance computing platforms that provide
high peak throughput processing for certain kinds of regularly structured computa-
tions [17]. Typically, a GPU architecture is structured as an array of hierarchically
connected cores as shown in Fig. 3.3. Cores tend to be lightweight as the GPU will
instantiate many of them to support massively parallel graphics computations. Some
of the memories are small and scoped for access to small numbers of cores, but can be
read or written in one or just a few cycles. Other memories are larger and accessible
by more cores, but at the cost of longer read and write latencies.

Using TDIF, we explore the use of GPUs to accelerate the gaussian_filter
actor. We employ an NVIDIA GTX 285 GPU and employ the CUDA programming
environment to specify the internal functionality of the gaussian_filter actor
for GPU acceleration. This CUDA based actor implementation is integrated sys-
tematically into the overall application-level CFDF graph through the TDIF design
environment. We apply actor-level vectorization to exploit data parallelism within
the actor on the targeted GPU.

Fundamentals of vectorized execution for dataflow actors have been developed by
Ritz [18], and explored further by Zivojnovic [19], Lalgudi [20], and Ko [21]. In such
vectorization, multiple firings of the same actor are grouped together for execution to
reduce the rate of context switching, enhance locality, and improve processor pipeline
utilization. On GPUs, groups of vectorized firings can be executed concurrently to
achieve parallel processing across different invocations of the associated actor. Each
instance of a “vectorized actor” may be mapped to an individual thread or process,
allowing the replicated instances to be executed in parallel.

An application developer may consider vectorization within and across actors
while writing kernels for CUDA acceleration. In TDIF, the actor interface need
not change as the vectorization degree changes, which makes it relatively easy for
designers to start with the programming framework provided by CUDA and wrap the
resulting vectorized kernel designs in individual modes of an actor for integration at
the dataflow graph level.

3 Dataflow-Based, Cross-Platform Design Flow 55

Fig. 3.3 A typical GPU architecture

In the GPU-targeted version of our Gaussian filtering application, a CUDA kernel
is developed to accelerate the core Gaussian filtering computation (the process
mode), and each thread is assigned to a single pixel, which leads to a set of parallel
independent tasks. The threads are assembled into blocks to maximize data reuse.
Each thread uses the same matrix for application to the local neighborhood, and
there is significant overlap in the neighborhoods of the nearby pixels. To this end,
the threads are grouped by tiles in the image. Once the kernel is launched, threads
in a block cooperate to load the matrix, the tile to be processed, and a surrounding
neighborhood of points. The image load itself is vectorized to ensure efficient bursting
from memory. Because CUDA recognizes the contiguous accesses across threads,
the subsequent image processing operations induce vectorized accesses to global
memory.

We use the same canonical scheduler in the GPU implementation that we used
in in the simulation phase. The performance of our Gaussian filtering application
in simulation and GPU-accelerated implementation is compared to demonstrate the

56 Z. Zhou et al.

Table 3.2 Execution time of the gaussian_filter (GF) actor and the Gaussian filtering appli-
cation (App) in simulation and GPU-accelerated implementation

Filter size 5× 5 11× 11 21× 21 25× 25 37× 37

GF. SIM (ms) 50 280 1080 1540 3310
GF. GPU (ms) 4.228 4.874 10.257 12.759 21.72
GF. Speedup 11.83 57.45 105.29 120.70 152.39
App. SIM (ms) 70 295 1100 1550 3340
App. GPU (ms) 70 80 140 115 130
App. Speedup 1 3.69 7.86 13.48 25.69

ability of our design flow to support cross-platform actor implementation exploration
in a manner that is systematically coupled with the simulation-level application
model. We use the same experimental setup—in terms of input and output images
and overall dataflow graph structure—as used in the simulation. To accelerate the
Gaussian Filtering actor, we applied an NVIDIA GTX 285 running CUDA 3.1 and
compared the associated implementation to the simulation system. The measurement
results are reported in Table 3.2.

As shown in Table 3.2, our design flow provides flexible and efficient transition
from the simulation system to a GPU-accelerated implementation that has superior
performance compared to the corresponding simulation design for these experiments.
The actor-level speedup realized by this acceleration process is in the range of 10X
to 100X . However, the application-level speedup levels, while still significant (up
to 25X speedup), are consistently less than the corresponding actor-level speedup
levels. This is due to factors such as context switch overhead and communication
cost for memory movement, which are associated with overall schedule coordination
in the application implementations.

3.5 Case Study 2:Multicore PDSP

A programmable digital signal processor (PDSP) is a specialized kind of micro-
processor with an architecture optimized for the operational needs of real-time dig-
ital signal processing [22]. In multicore PDSPs, such as those available in the Texas
Instruments TMS320C6678 family of fixed point and floating point processors [10],
multiple PDSP cores are integrated on a single chip and connected with shared mem-
ory. A typical multicore PDSP is shown in Fig. 3.4, where each core has private L1
cache as well as L2 cache. All cores share on-chip SRAM and DRAM. High peak
throughput can be achieved if all PDSP cores can operate parallel.

Multicore PDSPs are increasingly employed in wireless communication systems,
such as systems for software defined radio (SDR). Figure 3.5 shows a CFDF graph
model for the mp-sched benchmark [23], which is representative of an important
class of digital processing subsystems for wireless communication, and is designed
for use with the GNU Radio environment [24]. There are two paths between SRC and

3 Dataflow-Based, Cross-Platform Design Flow 57

Fig. 3.4 Block diagram of TI TMS320C6678 8-core PDSP device

Fig. 3.5 An illustration of the mp-sched benchmark

58 Z. Zhou et al.

SNK , which represent two different signal processing procedures on the incoming
signals. In the upper path, from SRC to SNK , the signal is first filtered in the time-
domain and then transformed to the frequency-domain. In the lower path, from SRC
to SNK , the signal is first transformed to the frequency-domain and then filtered in the
frequency-domain. We illustrate the utility of our design flow to conduct simulation
and implementation of the mp-sched benchmark on a TI TMS320C6678 8-core PDSP
device.

3.5.1 Simulation

The mp-sched application involves mainly two actors: finite impulse response (FIR)
filtering and fast Fourier transform (FFT) computation, which are fundamental
operations in SDR applications.

Our FIR filter actor is specified using a single input FIFO, a single output FIFO,
and one mode, the process mode. In this mode, the core operation of an FIR filter
is developed in terms of the C language. The functionality is developed from the
following equation, which defines the output sequence y[n] in terms of the input
sequence x[n]:

y[n] = b0x[n] + b1x[n − 1] + · · · + bN x[x − M + 1]

=
M−1∑

i=0

bi x[n − i], (3.5)

where x[n] is the input signal, y[n] is the output signal, the bi s are the filter coefficients,
and M is the filter order, which is set to 79 in our design.

An FFT is an efficient algorithm to compute the discrete Fourier transform (DFT)
and its inverse. FFTs are of great importance in a wide variety of applications, from
digital signal processing and solving partial differential equations to algorithms for
fast multiplication of large integers. Let x0, x1, …, xN−1 be complex numbers. The
DFT is defined by the following formula:

Xk =
N−1∑

n=0

xne−i2πk n
N . (3.6)

There are N outputs {Xk}. Each output requires a sum of N items, which leads to
O(N 2) operations overall.

The most common form of FFT is the Cooley-Tukey algorithm, which calculates
the DFT and its inverse using O(N log N) operations. This is a divide and conquer
algorithm that recursively breaks down a DFT of any composite size N = N1 ×
N2 into smaller DFTs of sizes N1 and N2, along with O(N) multiplications by
complex roots of unity. A radix-2 decimation-in-time (DIT) FFT is the simplest and

3 Dataflow-Based, Cross-Platform Design Flow 59

most common form of the Cooley-Tukey algorithm. A Radix-2 DIT FFT computes
the DFTs of the even-indexed inputs x2m(x0, x2, . . . , xN−2) and of the odd-indexed
inputs x2m+1(x1, x3, . . . , xN−1), and then combines those two results to produce the
DFT of the whole sequence. Then the same procedure is performed recursively to
reduce the overall running time to O(N log N). The recursive tree of the Radix-2
DIT FFT is illustrated in Fig. 3.7a. Each white node in the figure represents a DFT
computation involving the number of points annotated next to the node, and each
black node merges two smaller DFT results together.

The FFT actor connects to one output FIFO and one input FIFO, and has one
mode, the process mode. In this mode, we carry out the steps of the Radix-2 DIT
FFT algorithm.

On each firing, the SRC node generates 1024 samples to each of its two output
FIFOs. These blocks of 1024 samples are packaged into single tokens—i.e., each
token encapsulates a complete block of 1024 samples. Such “blocking” of the data
does not affect overall system input/output functionality, but it influences the internal
dataflow structure of the design model and the associated analysis and implementa-
tion steps. The canonical scheduler is used to simulate the dataflow graph on a single
core of 8-core PDSP. The processing time for the core computation (as shown in the
dashed rectangle in Fig. 3.5) is 98.8 % of the computation time for the overall system.
The overall computation time is 24.6 ms. The FFT computation takes 8.6 ms, while
the FIR filter takes 3.55 ms. To improve the overall system performance, we need to
optimize the core computation.

3.5.2 Implementation

In this section, we demonstrate, through the core computation of mp-sched, the
use of both cross-platform implementation and scheduling/mapping in our proposed
LWDF- and TDIF-based design flow.

3.5.2.1 Cross-Platform Implementation

To optimize the system, we first port the FIR filter and FFT actors to multiple PDSP
cores by employing the multithreading libraries provided by TI. These libraries are
provided with the TI PDSP platform to help DSP system designers express and
exploit parallelism for efficient execution on the PDSP cores.

The FIR filtering operation provides a significant amount of data parallelism (DP).
For demonstration purposes, this “intra-actor” DP is exploited across two cores on
the targeted multicore PDSP using multithreading techniques. Our implementation
can be readily adapted to utilize additional cores if desired.

Operation of our TDIF based FIR filter design is shown in Fig. 3.6, where X
is single input token containing N input samples, Y is the output token, and B is
the coefficient vector. In order to exploit DP, blocks of N input samples are divided

60 Z. Zhou et al.

Fig. 3.6 Multithreaded FIR filter for PDSP implementation

(b)(a)

Fig. 3.7 Parallel FFT actor implementation using TDIF. a Recursive tree for Radix-2 DIT FFT.
b Thread construction on recursive tree

into two groups, each for execution across two threads. Blocks of output samples
are similarly divided into two groups each. The common coefficient vector B is
shared by both threads, and each thread executes the fir calculation independently.
This provides a multi-threaded FIR filter implementation, which exploits intra-actor
parallelism in a manner that can be integrated systematically, through TDIF, with
higher level parallelism exposed by the application dataflow graph. The overlap on
the inputs of thread 0 and thread 1 arises because the current output depends on the
previous (M − 1) input samples.

To demonstrate the performance gain from multithreading, the execution time
of a sequential 79th order FIR filter (Seq-FIR) design in simulation is compared
to that of our parallel FIR (Par-FIR) implementation using identical input streams
on the targeted multicore PDSP platform. The results for multiple input sizes are

3 Dataflow-Based, Cross-Platform Design Flow 61

Table 3.3 Execution time comparison between sequential FIR in simulation and parallel FIR
implementations for different input sizes

Input size 1079 10079 100079 1000079

Seq-FIR (s) 0.0036 0.0336 0.334 3.34
Par-FIR (s) 0.0017 0.015 0.147 1.47
Speedup 2.11 2.24 2.27 2.27

demonstrated in Table 3.3. The input size is the number of signal samples. The
reported execution time is the processing time, excluding the time for reading from the
input FIFO and writing to the output FIFO. The FIFO reading and writing operations
involve only pointer manipulations and no actual data movement, and thus have
negligible impact on actor performance. The speedup is defined as the ratio between
the execution time of Par-FIR and that of Seq-FIR. The super-linear speedup observed
is due to the VLIW feature of the targeted kind of PDSP core. As more data is
processed, more ILP is available to be exploited within each core.

DP and temporal parallelism (TP) from the recursive tree of Fig. 3.7a are utilized
for multithreading in the FFT actor, as illustrated in Fig. 3.7b. With DP, two threads
T1 and T2 each calculate half of the overall DFT(N), which is DFT(N/2) using the
Cooley-Turkey algorithm. Another single thread T0 merges the two results together.
We experiment with two different implementations, Ia and Ib. In Implementation
Ia , T1 and T2 are assigned to two separate cores, and T0 is assigned to one of
these two cores. In this implementation, only DP is exploited. On the other hand, in
Implementation Ib, T1 and T2 are assigned to two separate cores, as in Ia , but T0 is
assigned to another (third) core. In this way, T1 and T2 can execute concurrently in
a software pipelined manner with T0 in a separate “pipeline stage”. Implementation
Ib thus exploits both DP and TP.

The execution time of the sequential FFT (Seq-FFT) in simulation is compared to
the two different parallel FFT implementations, Ia and Ib. The execution time of Ia

is the time for its longest pipeline stage. The speedup is defined by the ratio between
the execution time of the parallel implementation (Ia or Ib) and that of Seq-FFT.
The latency is another important figure of merit. The latency in these experiments
is defined by the time difference (tw − tr), where tr denotes the time when the FFT
actor reads the first token from its input FIFO, and tw denotes the time when the actor
writes the first result token to its output FIFO. The results are shown in Table 3.4. For
Seq-FFT and Ia , the latency is the same as the execution time, so the latency values
are not shown separately. We see from the results that Ib achieves more speedup than
Ia , but introduces more latency.

3.5.2.2 Scheduling and Mapping

Using the GST representation for dataflow graph schedules, we have derived, by hand,
three different scheduling and mapping schemes for the core computation of the mp-
sched benchmark, and we have implemented these different schemes using the TDIF

62 Z. Zhou et al.

Table 3.4 Execution time and latency comparisons between Seq-FFT in simulation, and the two
parallel FFT implementations Ia and Ib

Input size 64 256 1024 4096

Seq-FFT (s) 0.00028 0.0016 0.0086 0.045
Ia (s) 0.00021 0.001 0.005 0.255
Speedup 1.3 1.61 1.72 1.788
Ib (s) 0.00023 0.00073 0.0039 0.021
Speedup 1.21 2.19 2.20 2.14
Latency (s) 0.00038 0.00118 0.00517 0.0257

scheduling APIs. Due to the use of a common underlying CFDF-based modeling
foundation, the actor design from LWDF can be scheduled with no change in the
TDIF scheduling APIs. Our experiments with these different scheduling and mapping
schemes demonstrate the utility of our design flow for assessing design trade-offs
based on alternative implementation strategies for a given application dataflow graph.

Note that the two paths in the graph of Fig. 3.5 are independent so that control
parallelism can be used. Additionally, in each path, the individual actors can be
pipelined to exploit more temporal parallelism. In the first scheme, we use a sequential
implementation for each actor; however, we distribute different actors across different
PDSP cores. In particular, the actors are mapped onto 4 DSP cores—FIR1 is assigned
to DSP0; FFT1 is assigned to DSP1; FFT2 is assigned to DSP2; and FIR1 is assigned
to DSP3.

The second and third schemes in our experimentation are derived by replac-
ing sequential actor implementations in the graph with corresponding parallel actor
implementations. In the second scheme, FIR1 is assigned to DSP0,DSP1; FFT1 is
assigned to DSP2,DSP3; FFT2 is assigned to DSP4,DSP5; and FIR1 is assigned to
DSP6,DSP7. On the other hand, in the third schedule, FIR1 is assigned to DSP0;
FFT1 is assigned to DSP1,DSP2,DSP3; FFT2 is assigned to DSP4,DSP5,DSP6;
and FIR1 is assigned to DSP7. Thus, in the second scheme, intra-actor parallelism is
exploited for all actors, while in the third scheme, intra-actor parallelism is exploited
only for the FFT actors. The GSTs with the associated actor and FIFO implemen-
tations are processed to generate corresponding application implementations for the
targeted PDSP platform.

We experiment with three different implementations, corresponding to the three
different schemes described above. The implementations are evaluated using the
same input stream used in simulation, which contains 1024 samples. The execution
time, speedup and latency values for these implementations are compared on the
core computation shown in Fig. 3.5. The remaining actors (SRC and SNK) take only
approximately 1.2 % of the computation time for sequential execution and thus do
not have a significant impact on overall performance. The execution time is taken to
be the processing time in the core computation region defined above. If pipelining is
used, then the execution time is the time for the longest pipeline stage. The latency is
defined as the elapsed time during the first iteration of graph execution between when
the first input token enters the region and the time when the first output token leaves

3 Dataflow-Based, Cross-Platform Design Flow 63

Table 3.5 Execution time and latency comparisons among 3 different scheduling and mapping
schemes and simulation for the mp-sched benchmark

Schedule Execution time (s) Speedup Latency (s)

Simulation 0.0243 1 0.0243
1 0.00878 2.77 0.0089
2 0.00517 4.7 0.0052
3 0.0041 5.9 0.0092

the region. The results of the three implementations are compared to the simulation,
as shown in Table 3.5.

The results demonstrate the capabilities in our design flow for supporting flexible
design exploration in terms of different implementation constraints. For example,
Scheme 2 has higher execution time but less latency compared to Scheme 3. If the
system has a tight latency constraint, then Scheme 2 should be chosen, whereas
Scheme 3 is preferable if throughput is the most critical constraint. Using our design
flow, the designer can experiment with such alternatives to efficiently arrive at an
implementation whose trade-offs are well matched to the design requirements.

3.6 Summary

In this chapter, we have introduced dataflow-based methods that facilitate software
simulation and implementation for digital signal processing (DSP) applications.
Specifically, we have demonstrated use of a design flow, based on core func-
tional dataflow (CFDF) graphs, for simulation and implementation of diverse DSP
systems—(1) an image processing application on a CPU/GPU platform, and (2)
a software defined radio benchmark on a multicore programmable digital signal
processor (PDSP).

Through these case studies on diverse platforms, we show that our design flow
allows a designer to formulate and simulate DSP systems efficiently using lightweight
dataflow (LWDF) programming. Then, from the profiling results in the simulation,
the designer can identify bottlenecks in the system. To alleviate these bottlenecks,
optimization techniques in the targeted dataflow interchange format (TDIF) are
applied. While TDIF provides a framework where platform-specific optimizations
can be applied and experimented with in a flexible way, our design methodology
ensures that such experimentation adheres to the high level application structure
defined by the simulation model. Such consistency is maintained as a natural by-
product of the common CFDF modeling foundation that supports both LWDF and
TDIF. The flexibility with which designers can implement different mapping and
scheduling strategies using our design flow, and the efficiency with which such
strategies can be integrated into complete implementations further facilitate explo-
ration of optimization trade-offs.

64 Z. Zhou et al.

Acknowledgments This research was sponsored in part by the Laboratory for Telecommunications
Sciences, Texas Instruments, and US Air Force Research Laboratory.

References

1. Bhattacharyya, S.S., Deprettere, E., Leupers, R., Takala, J. (eds.): Handbook of Signal Process-
ing Systems. Springer, Berlin (2010)

2. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)
3. Lee, E.A., Parks, T.M.: Dataflow process networks. Proc. IEEE 83(5), 773–799 (1995)
4. Plishker, W., Sane, N., Kiemb, M., Anand, K., Bhattacharyya, S.S.: Functional DIF for rapid

prototyping. In: Proceedings of the International Symposium on Rapid System Prototyping,
pp. 17–23. Monterey, California (2008)

5. Shen, C., Plishker, W., Wu, H., Bhattacharyya, S.S.: A lightweight dataflow approach for design
and implementation of SDR systems. In: Proceedings of the Wireless Innovation Conference
and Product Exposition, pp. 640–645. Washington DC, USA (2010)

6. Shen, C., Wu, S., Sane, N., Wu, H., Plishker, W., Bhattacharyya, S.S.: Design and synthesis for
multimedia systems using the targeted dataflow interchange format. IEEE Trans. Multimedia
14(3), 630–640 (2012)

7. Shen, C., Plishker, W., Bhattacharyya, S.S.: Dataflow-based design and implementation of
image processing applications. In: Guan, L., He, Y., Kung, S. (eds.) Multimedia Image and
Video Processing, 2nd edn., pp. 609–629. CRC Press, Boca Raton (2012). Chapter 24

8. Plishker, W., Sane, N., Kiemb, M., Bhattacharyya, S.S.: Heterogeneous design in func-
tional DIF. In: Stenström, P. (ed.) Transactions on High-Performance Embedded Architectures
and Compilers IV, Lecture Notes in Computer Science, vol. 6760, pp. 391–408. Springer,
Berlin/Heidelberg (2011)

9. NVIDIA: NVIDIA CUDA Compute Unified Device Architecture: Programming Guide, Ver-
sion 1.0 (2007)

10. Texas Instruments, Inc.: TMS320C6678 Multicore Fixed and Floating-Point Digital Signal
Processor Data Manual (2012)

11. Ko, M., Zissulescu, C., Puthenpurayil, S., Bhattacharyya, S.S., Kienhuis, B., Deprettere, E.:
Parameterized looped schedules for compact representation of execution sequences in DSP
hardware and software implementation. IEEE Trans. Signal Process. 55(6), 3126–3138 (2007)

12. Plishker, W., Sane, N., Bhattacharyya, S.S.: A generalized scheduling approach for dynamic
dataflow applications. In: Proceedings of the Design, Automation and Test in Europe Confer-
ence and Exhibition, pp. 111–116. Nice, France (2009)

13. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: APGAN and RPMC: Complementary heuristics
for translating DSP block diagrams into efficient software implementations. J. Des. Autom.
Embed. Syst. 2(1), 33–60 (1997)

14. Wu, S., Shen, C., Sane, N., Davis, K., Bhattacharyya, S.: Parameterized scheduling for signal
processing systems using topological patterns. In: Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing, pp. 1561–1564. Kyoto, Japan (2012)

15. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-static dataflow. IEEE Trans.
Signal Process. 44(2), 397–408 (1996)

16. Plishker, W., Sane, N., Bhattacharyya, S.S.: Mode grouping for more effective generalized
scheduling of dynamic dataflow applications. In: Proceedings of the Design Automation Con-
ference, pp. 923–926. San Francisco (2009)

17. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU computing.
Proc. IEEE 96(5), 879–899 (2008)

18. Ritz, S., Pankert, M., Meyr, H.: Optimum vectorization of scalable synchronous dataflow
graphs. Proceedings of the International Conference on Application Specific Array Processors,
In (1993)

3 Dataflow-Based, Cross-Platform Design Flow 65

19. Zivojnovic, V., Ritz, S., Meyr, H.: Retiming of DSP programs for optimum vectorization. In:
Proceedings of the International Conference on Acoustics, Speech, and, Signal Processing, pp.
492–496 (1994)

20. Lalgudi, K.N., Papaefthymiou, M.C., Potkonjak, M.: Optimizing computations for effective
block-processing. ACM Trans. Des. Autom. Electron. Syst. 5(3), 604–630 (2000)

21. Ko, M., Shen, C., Bhattacharyya, S.S.: Memory-constrained block processing for DSP software
optimization. J. Signal Process. Syst. 50(2), 163–177 (2008)

22. Lapsley, P., Bier, J., Shoham, A., Lee, E.A.: DSP Processor Fundamentals. Berkeley Design
Technology, Inc. (1994)

23. Zaki, G., Plishker, W., Bhattacharyya, S., Clancy, C., Kuykendall, J.: Vectorization and map-
ping of software defined radio applications on heterogeneous multi-processor platforms. In:
Proceedings of the IEEE Workshop on Signal Processing Systems, pp. 31–36. Beirut, Lebanon
(2011)

24. Blossom, E.: GNU radio: Tools for exploring the radio frequency spectrum. Linux J. 2004(122),
4 (2004)

Part II
Model-Driven Design, Integration and
Verification of Heterogeneous Models

Chapter 4
Model-Driven Design of Software Defined
Radio Applications Based on UML

Jair Gonzalez and Renaud Pacalet

Abstract Model-driven design (MDD) is considered a very promising approach
to cope with the design of complex software applications such as software defined
radio (SDR). This chapter proposes an MDD methodology for SDR applications.
Our approach comprises: (1) DiplodocusDF, a domain-specific modelling language
for SDR applications, it is a domain specific UML profile. (2) The mechanism to
transform DiplodocusDF models into C-language code ready for compilation, and (3)
a runtime environment for execution of the generated code. Moreover, the proposed
UML profile is supported by TTool, which is a framework for design exploration
and formal verification at model level. We illustrate the potential of our methodology
designing a SDR application.

4.1 Introduction

Current design methodologies cannot cope efficiently with the high complexity of
software defined radio (SDR) applications [1]. SDR applications are extremely com-
plex as they have to conciliate many different opposing factors, for example: high-
performance and hard-real-time, inter-operability and safety, etc. Also, novel SDR
platforms, such as expressMIMO [2], account for the software complexity, as they
are tuned for computation efficiency, in terms of speed and power consumption,
but its operation is hard and error-prone. It is compulsory to introduce a new design
methodology where the execution platform is abstracted, allowing the domain expert
to concentrate only on the pure application matters.

Jair Gonzalez (B) · Renaud Pacalet
Telecom ParisTech, LTCI CNRS, 2229 Route des Cretes,
B. P. 193, Sophia-Antipolis Cedex, 06904 Paris, France
e-mail: Jair@telecom-paristech.fr

Renaud Pacalet
e-mail: Renaud.Pacalet@telecom-paristech.fr

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 69
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_4,
© Springer Science+Business Media New York 2014

70 J. Gonzalez and R. Pacalet

Model driven design (MDD)is considered to be a promising approach to handle
the development of complex software systems [3–5]. MDD allows for describing the
applications in the problem-space rather than in the solution-space. In MDD, the prob-
lem is described by the designer using an intuitive domain-specific modelling lan-
guage, and the implementation solution is (ideally) found automatically by synthesis
mechanisms. This releases the designer from having to be a platform and a low-level
language expert. This sole abstraction simplifies the design effort and reduces the
possibility of implementation errors.

This chapter describes a MDD methodology for the domain of SDR applications.
It includes a domain-specific modelling language called DiplodocusDF, the synthe-
sis mechanisms capable of transforming a DiplodocusDF model into C-language
code, and an execution environment. DiplodocusDF is based on UML and dataflow
modelling. dataflow modelling is a good candidate to describe SDR applications as
it helps to exhibit the potential parallelism among SDR operations, and thus take
profit from multiprocessing platforms such as expressMIMO [2] or others. UML
was chosen given its capabilities to describe the application and the architecture
independently, this permits the description of portable applications. UML allows
incremental refinement and abstract simulation, therefore we can evaluate design
choices in several steps. Also, the UML descriptions can be translated into formal
ones for formal verification. Last but not least, UML poses robust and well accepted
graphical notations and flexibility to be extended to cover domain-specific applica-
tions such as SDR. The approach is exemplified by designing a SDR application,
which is modeled, simulated, mapped into a given architecture model, translated into
executable C-code and executed. Our methodology is supported by TTool [6].

The rest of the chapter is organized as follows: the related work is described in
Sect. 4.2. Section 4.3 discus with more details the MDD methodology proposed in
this chapter. Section 4.4 describes the proposed modelling profile DiplodocusDF.
Section 4.5.2 explains briefly the transformation mechanisms from DiplodocusDF
to C-language. Section 4.6 elaborates on the runtime environment that supports the
execution of the generated applications. A case of study is presented in Sect. 4.7. The
future work and conclusions are discussed in Sect. 4.8.

4.2 Related Work

Software defined radio are in fact dataflow applications. There exist already some
languages to describe them, for example StreamIt [7], which is a textual language
for dataflow applications to be executed in symmetric multicore platforms (SMP).
While there exist some SMP SDR platforms, the bast majority have an heterogeneous
architecture, making the StreamIt concepts unsuitable. Another language is the radio
description language (RDL) [8], which is a domain specific language for SDR, they
follow the same approach as us in dividing the processing functionality in two: in
one side the SDR operations (a unit of digital signal processing, for example FFT), in
the other side the SDR waveform which configures the DSP operations and triggers
its execution.

4 Model-Driven Design of Software Defined Radio Applications Based on UML 71

Domain specific languages should have certain characteristics to be successfully
adopted [9]. This characteristics can be achieved by using UML as description lan-
guage [4], bib1231146. The authors of [10], bib1541072, and [12] propose method-
ologies to generate SDR operations from UML models. The author of [13] discusses
the feasibility of mixing UML and SCA to create an hybrid methodology for the
codesign of SDR applications. He suggests using UML RT to describe the SDR
waveforms. Using UML RT, as it is meant for embedded control applications, results
in complex models difficult to maintain and which constraint the solution space by
providing a fixed scheduling of SDR operations, it is necessary to extend UML to
cover dataflow applications [14]. The paper [15] presents an approach to use activity
diagrams of UML 2.0 for dataflow applications. Their proposal is similar to ours in
covering flat control-flow and dataflow, as suggested in [16], but their objective is
only modelling and no concepts of synthesis are taken into account.

The contribution of this work is the definition and implementation of a method-
ology for SDR applications, which covers not only the performance but also wave-
form portability requirements. Portability means that we can use the same waveform
description for different platforms, for example, a cell phone and a base station. We
achieve portability by two means: First, we divided the SDR applications in two
parts: The SDR operations and the SDR waveforms. The SDR operations repre-
sent the actual signal processing mechanisms and are modeled as components of a
given platform. The SDR waveforms are coordination applications that trigger and
configure the execution of the SDR operations. Second, by introducing an extra
layer to the execution platform called runtime environment. This layer interprets the
waveforms and resolves its intra/inter data dependencies. Although the runtime envi-
ronment introduces some processing overhead, its benefits are more important, as it
also helps to satisfy the field reconfigurability and system multimodal requirements.

4.3 Proposed Design Methodology

We propose a model driven design methodology (depicted in Fig. 4.1) for software
defined radio applications. It is composed of the following steps:

1. Abstract modelling of waveforms and architectures independently one from the
other.

2. Mapping the waveforms to the selected architecture.
3. Formal verification by transforming the mapped application into a formal rep-

resentation to validate liveness properties.
4. Code generation to systemC or c-language. To generate C-language, it is nec-

essary an extended description of the target architecture, called Model extension
constructs (MEC), which provides the constructions that are relevant for code
generation but not for simulation.

5. Cycle-accurate simulation based on the generated systemC code, required to
validate performance requirements at model level.

72 J. Gonzalez and R. Pacalet

intermediate

SystemC
code

Formal verif.
Fast simul &

C−language
code

RunTime
C−code

executable

Code generation

Mapping

Model
capture DiplodocusDF(1)

(2)
model

Architecture
model

Waveform

(5)

(4)(3)

(6)
simulation

Cycle−aqurated.

simulation
Functional

Arch API

MEC

Fig. 4.1 Proposed model-driven design methodology

6. Functional simulation based on the generated C-language code and the an API
which describes the function calls to the SDR operations supported by the given
architecture.

Steps (1), (2), (3) and (6) have been integrated into current design flows, but as
noted in [3, 5], there remains a synchrony problem between the model and the final
implementation, i.e., the final implementations does not reflect the initial model. To
solve this, MDD methodology includes step (4), which is the automatic generation
of code based on the model.

In this chapter we concentrate on steps (1), (2), and (4). The synthesis step cor-
responds only to code translation. Further development of the synthesis mechanism
will include automatic search of memory allocation and scheduling solutions.

4.4 DiplodocusDF

DiplodocusDF is a UML profile specific for SDR applications. A key component of a
MDD methodology is the domain-specific modelling language (DSML) that captures
accurately the semantics of SDR applications. A DSML should meet certain criteria
in order to get to be effective. First, it should differentiate the pure application aspects
from the implementation choices, i.e., the models should avoid (as much as possible)
the implementation constraints, as they reduce the solution-space. Second, it should

4 Model-Driven Design of Software Defined Radio Applications Based on UML 73

be complete in the sense that it captures all the information that is necessary to
generate executable code. Other aspects to consider when defining a DSML are: it
should be an intuitive language for the domain expert and it should be predictive,
that is, it should be evident what the result will be after automatic code generation.

DiplodocusDF follows a declarative/dataflow approach. This allows describing
the pure applications aspects, without considering the implementation details. The
declarative approach contrasts to the procedural approach (followed by regular
UML/MARTE profiles) in that declarative describes what the solution is, while the
procedural approach describes how to find the solution. Procedural approaches lead
to models where one component is on charge of controlling the execution of the
rest. That controlling component represents in fact scheduling design choices, which
limit the solution space. DiplodocusDF describes only data dependencies between
process operators, it does not constrain the order of execution of two non-dependent
operators.

DiplodocusDF is in a high degree similar to Kahn process networks [17] (KPN),
KPN are appropriate for SDR as it enforces portability, determinism and parallelism
[16], although Kahn networks imply unbounded memory, this is not true for real
target architectures. Therefore the execution of operations hast to be constrained
to limit memory usage, an operator cannot be executed if its previously generated
data has not been consumed. The resulting execution is still a valid Kahn execution,
holding the property of determinism, i.e., for the same inputs, it always produces the
same outputs.

4.4.1 SDR Waveform Notations

DiplodocusDF is based on three model notations to create SDR waveform models:
(1) Dataflow operators (2) Dataflow ports and (3) Dataflow links. They extend, in
the same order, the component, port and link concepts of DIPLODOCUS to support
the pair (data-block, clock) of synchronous dataflow models.

Dataflow ports are the interface to exchange dataflow between dataflow opera-
tors. They support dataflow semantics, i.e., data-block and clock transference. For
this they merge two types of ports supported in DIPLODOCUS: channels and events.
The channel part models the data-block component of dataflow, while the event part
models the clock component. The event signals the presence of a valid data-block
in the channel. The channel is configured to be non-blocking read/non-blocking
write (NBR/NBW), allowing dynamic data-block size during simulation, therefore
component re-utilization. Each dataflow port can be linked to only one other port.
A dataflow operator can have one or more input and output ports.

Dataflow links are used to describe data-block dependencies among the dataflow
operators, data is sent/received from/to an operator through its dataflow ports, links
only describe dependency.

Dataflow operators there are two types of operators: execution operators and
router operators. The execution operators transform the data-block values while

74 J. Gonzalez and R. Pacalet

the router operators transform the sequence of the values in the data-block. For
example, a component-wise addition operator will change the values of the input
data, while an overlapping operator will not change the values but its sequence.
This approach permits defining reusable model operators, which are instantiated
and configured by the user. There are two subcomponents for the operators, DBox
and FBox. DBox describes the actual execution of data transformation, while FBox
describes the dataflow. The execution operators are composed both, FBox and DBox.
While the router operators require only FBox (as data is not transformed by these
operators). The FBox waits for input clock signal, generates the configuration para-
meters, fires the corresponding DBox, and sends a clock event through the output
dataflow port(s). The parameters of execution are sent to the DBox through an inter-
nal request port. The process in a DBox involves: reading the data-block from the
input dataflow port(s), execute the operation, and sending the resulting data-block
though the NBR/NBW output port.

The behaviour of both sub-components is described using activity diagrams. The
Fig. 4.2 shows two operators, OVLP and FFT and its activity diagrams, F_fft and
X_fft for FFT, and OVLP for OVLP, as OVLP is a router operator, it does not require
DBox.

The behaviour of FFT is as follows: It waits in F_fft for the arrival of a clock event
in the FFT_in port, the event should come together with the parameter fft_size.
After having received the clock event, F_fft request the execution of X_fft through
r_fft and blocks. Then the X_fft is executed, it reads from FFT_in the data-block
of size fft_size, the processing is modeled by I, then the resulting data is sent
through FFT_out and the execution returns to F_fft, where an clock event is sent
through FFT_outwith the sizefft_size, but before the event FFT_in is cleared
to indicate that the input data was consumed.

4.4.2 Target Architecture Notations and Mapping

As mentioned before, in DiplodocusDF, the application model is described indepen-
dently of the architecture model. The architecture profile of DiplodocusDF allows

Fig. 4.2 Router (OVLP) and execution (FFT) operators and its activity diagrams

4 Model-Driven Design of Software Defined Radio Applications Based on UML 75

describing a wide range of target architectures, which can be based on a single
processor, or multiple processors, either homogeneous or heterogeneous, combined
with a large variety of memory schemes. DiplodocusDF architecture profile is based
on three main notations:

Data processing nodes can be of two types: general-purpose or specific-purpose.
All FBoxes have to be mapped to general-purpose processors, while the DBox
can be mapped to both types. The difference between both types is that general-
purpose processing nodes implement a sharing policy to execute two or more tasks
simultaneously, while the specific-purpose processing nodes execute one task at a
time until completion. Fig. 4.5 shows an architecture with three processing nodes
� C PU R R �, FEP, DMA, and LEON. The Fig. 4.5 also show the mapping of all
DBoxes and FBoxes of the waveform described in Sect. 4.7.
Data storage nodes are used to describe the memory components. They are com-
posed of buffer blocks, which is has two basic parameters: base address and size.
Dataflow links are mapped to buffers statically by the user. Later the synthesis
mechanism will be improved in such a way that the buffer configurations (base
address and size) and mappings will be generated automatically. The Fig. 4.5
shows two storage nodes� M E M O RY �, FEP_MSS and main.
Data transference nodes can be of types: bus and bridge. Bus nodes are placed
between two processing nodes or one processing node and one storage node. They
describe data accessibility, for example node FEP from Fig. 4.5 can share data
with nodes FEP_MSS and DMA, but not with nodes LEON or main. Each bus has
a particular arbitration policy. Bridges are meant to communicate two buses.

4.4.3 Performance Requirements Notations

SDR applications have soft/hard real-time requirements. For example, LTE has syn-
chronization information that has to be processed periodically. If this data is not
processed on time, the terminal will loose synchronization. The SDR waveform car-
ries required processing time (RPT). This information is complemented by the SDR
platform model, which has information on how much time it takes to process an unit
of information. At mapping time we know how much information will be processed
by each SDR platform element, and therefore how much time this processing element
will take to process the incoming signal, we call this platform processing time (PPT).
The RPT and PPT are used to calculate a dynamic priority for each SDR operation
available for execution.

76 J. Gonzalez and R. Pacalet

4.5 Code Generation

The execution code is generated from the intermediate description (ID) (see Fig. 4.1).
The ID includes information from the waveform model, architecture model, mapping
and Model Extension Constructs (MEC). The ID is translated to C-language by our
code generation mechanism.

4.5.1 Model Extension Constructs

The MECs describe the particular function call constructions for a given opera-
tion/architecture. While the application describes what function will be called, the
MECs add information on how the function calls look like. For example, the FBox
F_fft of operator FFT shown in Fig. 4.2, request the execution of the DBox though
the rFFT request, this is noted in the intermediate format as RE QU E ST r F FT ,
which is architecture independent notation. The mapping information shows that the
requested DBox is assigned to the FFT processing node, which has an associated
MEC. The associated MEC for FFT operation is f ep_start (&X O P), where X O P
is replaced by X_ f f t (name of the DBox of FFT), as shown in the generated code,
Fig. 4.6 line 33.

4.5.2 DiplodocusDF Translation Semantics

Operators The model operators are translated to C as coordination functions (CF)
which are executed when their input data is available. The attributes of the UML
operator model are translated as variables and the activity diagram of the FBox is
translated to C-code. The logic of the code is obtained from the activity diagrams,
while the particular constructions are obtained from the model extension construc-
tions associated to a given architecture.

Dataflow ports A dataflow port is an abstract representation of an operand, includ-
ing its name and its memory location. Writing to a dataflow port means writing to a
memory location, same for reading. A dataflow port is translated as an instance of a
dataflow signal class. This class has different attributes, some depend on the target
platform and some are common to all the platforms. The common attributes are: (1)
a flag to indicate when the data-block is valid, (2) the length of the data-block, and
(3) the block number. The block number is used by the routing operators to take
decisions on how to deal with that block. If the target platform was expressMIMO
[2], then the dataflow signal class includes: (1) a base address, (2) a bank number,
and (3) the type of data to be stored. If the platform was a PC, it would only be
required a pointer to memory. Other platforms might require different attributes to
describe the location of the operands.

4 Model-Driven Design of Software Defined Radio Applications Based on UML 77

Dataflow links Represent dataflow dependencies among operators. After mapping
once data-transference operators were inferred, When the ports connected by a
dataflow link have the same name, they refer to the same signal. Then the link
inherits that name and it is shown in the model as such.

4.6 Runtime Environment

The applications are executed with the support of a runtime environment. The
functioning of the environment is depicted in Fig. 4.3, it shows a configuration
made of n applications that are executed on a m + 1 processors platform. At least
one of the processors should be a general purpose, it is on charge of executing the
coordination applications, the rest of the processors (potentially specialized) execute
the SDR operations.

The runtime environment architecture follows a data-driven approach. In a data-
driven approach, the functions are executed when its input data is available. It was
said before that a DiplodocusDF model is translated into a coordination application.
In the proposed Runtime environment, The coordination applications are composed
of a scheduler, a set of coordination functions (list CF in Fig. 4.3), one for each oper-
ator in the model, and a set of signals (list S in Fig. 4.3), one for each dataflow link.
The scheduler executes the coordination functions when its input(s) are valid and its
output(s) are marked as consumed. This is similar to what happens at model level. It
was chosen in this way in order to maintain the determinism and parallelism prop-
erties as described by the model. It also allows to generate regular code, predictable
from the model, as suggested in [3] for effective model-driven design.

The coordination function manages the parameters of the SDR operations, and sets
them for execution by aggregating them into the execution queue of a co-processor.

S SS CF CF CF

Proc1

App1 App2 Appn

ISR x

ProcmProc2

oPL1 oPL 2 oPL m

Fig. 4.3 Runtime environment

78 J. Gonzalez and R. Pacalet

In Fig. 4.3, there are m ordered priority lists (oP Lm) which hold the operations from
all the applications in the configuration. The ordered list is reordered every time a
new operation is pushed into, such a way that a pop from the list will return the
operator with the highest priority. The idea is to keep the co-processors in constant
execution.

The scheduling of the coordination applications is done in a cooperative way,
similar to the time-triggered hybrid (TTH) approach proposed in [18], where a set
of software applications are executed according to a schedule defined before of
execution. The applications cannot preempt each other but can be preemted by a
third type of tasks that are interrupt dependent, for example, an interrupt coming
from a analog-to-digital converter, signalling the reception of data. Another source
of interruption can be an specialized co-processor signalling that it is ready to execute
another SDR operation. The interruption routines should be very quick, in such a
way that its execution does not deviate significantly the static scheduling of the
coordination applications.

In the coordination functions, there are two main classes of objects, the coordi-
nation functions (CF) and the signals (S). Each CF object corresponds to one of the
components from its DiplodocusDF model. Each S object in the system corresponds
to one of the dataflow links. The CF class has two properties, CF id, and CR priority.
The Signal class is more complex, it does not carry the actual data but its location in
memory. This is platform dependent information that is added to the model by the
user at mapping time. For the case of expressMIMO, the signal parameters are: base
address, length of data vector, data type, memory bank, and memory block. It also
includes a valid flag to indicate when the data is ready to be read. The Operator class
has four methods: the constructor, the execution, the fire rule, and the destructor. The
constructor method initializes the parameters of its corresponding output signal(s).
That means that the operators know in advance where in memory they will write
their results. This information is captured in the model by the user at mapping time.
There is also the execution method, which implements a c-language version of its
activity diagram from the SDR waveform model. The method is implemented in a
run-to-completion approach, i.e., the method should not block. The fire rule method
is used to evaluate the signals condition before firing the execution method. For
example, while the A component is executed whenever one of its inputs is valid, the
CWA component requires both input signals to be present.

4.7 DiplodocusDF example: Welch Periodogram Detector

This section demonstrates the use of DiplodocusDF by describing the Welch peri-
odogram application for opportunistic spectrum sensing, recently proposed in [19].
Welch periodogram helps to identify the significance of the frequency contributors in
a signal by calculating sub-band’s energy, and comparing to its designated threshold.
The algorithm is described in Algorithm 4.1 and the model is shown in Fig. 4.4. The
application was mapped into the target architecture of Fig. 4.5.

4 Model-Driven Design of Software Defined Radio Applications Based on UML 79

Fig. 4.4 DiplodocusDF application model of Welch detector

Fig. 4.5 DiplodocusDF architecture model and mapping of Welch periodogram application

Algorithm 1: Welch detector algorithm
input : rk , m, Ns , Os , data block, Number of blocks, block size, and block overlapp size .
input : I , Number of sub-bands (SBs) of interest.
input : fi , Li , Yi , Ti , Di , Lists SB’s central frequencies, widths, thresholds, statistics, and decisions.
temporal: X, Y, Z , Rs , Buffers of size Ns .

1 t ← Ns − Os ;
2 for k ← 0 to m − 1 do
3 rk ← [r(kt), r(1+ kt), . . . , r(kt + Ns + 1)];
4 X ← FFT(Ns , rk);
5 Y ← MOD(Ns , X);
6 Z ← CWA(Ns , Z , Y);
7 end
8 for i ← 1 to I do
9 start ← fi − Li

2 ;
10 Ti ← SUM(Li , start, Z) ;
11 if Ti > Yi then
12 Di ← 1;
13 else
14 Di ← 0;
15 end
16 end

Model capture The line 3 in Algorithm 4.1 describes the overlapping of block
elements. This operation is modelled in Fig. 4.4 by component OVLP. The behaviour
of OVLP is described by the activity diagram OVLP of Fig. 4.2 . It simply waits for the
arrival of data-blocks at its input port (ovlp_in), whenever Ns elements are available,

80 J. Gonzalez and R. Pacalet

they are sent to the next component through the output port (ovlp_out). After sending,
the first Os received elements are discarded. The size Os of the received data-block
is received together with the data-block.

The line 4 corresponds to the component FFT in the model. Here the input data
is transformed to the frequency domain. The line 5 corresponds to MOD component
in the model, there the magnitude of each element of the input block is calculated.
Line 6 accumulates the magnitude of each element of the block, this corresponds to
CWA in the model. These three execution operations have similar behaviours, they
wait for the input signals, after receiving them they are operated and the output is
sent through the output port. In the case of CWA, it waits for the two input signals
and they have to be present before proceeding. The difference between the operators
is more important at runtime, described in Sect. 4.6.

The components A, B and C are used to construct the dataflow loop of line 2. The
A component is described in such a way that the first block is routed to the output port
out2 (the lower one), the rest of the blocks are routed to the output port out1 (upper
one). It is important to note that each data-block carries its data-block identifier. The
component B is described to retransmit from input port in1 only the first block, its
port in2 is always retransmitted. These components are executed when at least one
of the input signals is available. Component C is described in such a way that the
input is retransmitted through output out1 only when it is the number m − 1, the
block is retransmitted through out2 in any other case.

The execution operator SUM corresponds to line 10, it adds the elements of the
received block and sends the one-element result block through its output. The REP
receives one full block of Ns elements and sends L sub-blocks of its corresponding
Li size. The parameters (L , Li , f i

o f f) are also received as part of the input block
information. The COLL dataflow operator receives m one-element blocks and sends
one block of m elements. The DES operator receives the block and compares each of
its elements to its corresponding threshold Ywd.DES generates a block of L elements
containing the decisions for each element (sub-band). This corresponds to the output
of the Welch periodogram model, which will activate a next operator in the overall
model.

Architecture and Mapping The application is mapped into the heterogeneous
multiprocessor architecture, expressMIMO [2]. The architecture model of Fig. 4.5
shows only the front-end processing shell, composed of an IP-core (FEP), memory
sub-system(FEP_MSS), and DMA engine (DMA). It also shows the general purpose
processor (LEON), which is on charge of executing the FBoxes. The DBoxes where
mapped to either FEP processing node or the DMA processing node.

Code translation The Fig. 4.6 shows part of the final C-code generated automat-
ically. Line 3 and 22 show two coordination functions (CFs), op_OV L P is a router
function and op_F_ f f t is the CF corresponding to the FBox of the FFT operator.
Lines 43 and 47 show the corresponding fire rule functions. The structure of at line
55 shows a MEC corresponding to the expressMIMO platform, if the application
was mapped to a different platform, the BU F_T Y P E declaration would follow the
particularities of the corresponding target. The list of operations(ops_enu) and links
(sigs_enu) are shown in lines 78 and 72 respectively. A very simple scheduling

4 Model-Driven Design of Software Defined Radio Applications Based on UML 81

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

80
81
82
83
84
85
86
87
88
89

91
92
93
94
95
96
97
98

79

90

99
100
101
102
103
104

Fig. 4.6 Extracts from the code that was generated automatically

implementation is shown in the main function at line 84. The code was executed
with results that are functionally correct.

4.8 Conclusions

This work presents a model-driven design methodology for the design of software
defined radio applications, which present the challenge of reconciliation of real-time
requirements and portability requirements. We achieve this by dividing the SDR
system in two: The SDR waveforms and the SDR operations provided by SDR
platforms. We provide the UML profiles to describe separately the waveforms from
the platforms. We also designed and implemented the mechanisms to transform the
UML model into executable code. The transformation is supported by a a model
extension language, which provides the specific language constructs related to the

82 J. Gonzalez and R. Pacalet

given platform. We designed and implemented a runtime environment, which gives
a standard interface to the generated waveforms. The runtime allows portability and
reconfigurability as the same waveform description can be executed by any platform
equipped with the runtime. It also helps to retain the determinism properties of the
SDR waveform model.

We demonstrated the use of our methodology, profiles, transformation mecha-
nisms, and runtime, by designing an energy detection waveform. Energy detection is
a fundamental component for SDR/cognitive radio applications, necessary to detect
available radio spectrum. Welch periodogram has been proved [19] to be very effec-
tive for fast energy detection. We demonstrate the design and deployment on the
expressMIMO platform [2].

Much remains to be done, until now, the memory allocation and scheduling
solutions are provided by the user. we continue working in to provide the algo-
rithms/mechanisms that will generate the buffers addressing automatically. Also, it
is necessary to enhance the requirements and constraints profile to direct/generate
correct scheduling solutions in terms of performance requirements.

Acknowledgments The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement SACRA
no 249060.

References

1. Ulversoy, T.: Software defined radio: Challenges and opportunities. Communications surveys
tutorials, IEEE PP(99), 1–20 (2010). doi:10.1109/SURV.2010.032910.00019

2. Nussbaum, D., Kalfallah, K., Knopp, R., Moy, C., Nafkha, A., Leray, P., Delorme, M., Palicot,
J., Martin, J., Clermidy, F., Mercier, B., Pacalet, R.: Open platform for prototyping of advanced
software defined radio and cognitive radio techniques. In: Digital system design, architectures,
methods and tools, 2009. DSD ’09. 12th euromicro conference on, pp. 435–440 (2009). doi:10.
1109/DSD.2009.123

3. Schmidt, D.: Guest editor’s introduction: Model-driven engineering. Computer 39(2), 25–31
(2006). doi:10.1109/MC.2006.58

4. France, R., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development using uml 2.0:
Promises and pitfalls. Computer 39(2), 59–66 (2006). doi:10.1109/MC.2006.65

5. Selic, B.: The pragmatics of model-driven development. Software IEEE 20(5), 19–25 (2003).
doi:10.1109/MS.2003.1231146

6. Apvrille, L., Courtiat, J.P., Lohr, C., de Saqui-Sannes, P.: Turtle: A real-time uml profile sup-
ported by a formal validation toolkit. Softw. Eng. IEEE Trans. 30(7), 473–487 (2004). doi:10.
1109/TSE.2004.34. http://labsoc.comelec.enst.fr/turtle/ttool.html

7. Che, W., Panda, A., Chatha, K.: Compilation of stream programs for multicore processors that
incorporate scratchpad memories. In: Design, automation test in Europe conference exhibition
(DATE), 2010, pp. 1118–1123 (2010)

8. Chapin, J., Lum, V., Muir, S.: Experiences implementing gsm in rdl (the vanu radio description
language trade;). In: Military communications conference, 2001. MILCOM 2001. Commu-
nications for network-centric operations: Creating the information force. IEEE, vol. 1, pp.
213–217 vol. 1 (2001). doi:10.1109/MILCOM.2001.985792

http://dx.doi.org/10.1109/SURV.2010.032910.00019
http://dx.doi.org/10.1109/DSD.2009.123
http://dx.doi.org/10.1109/DSD.2009.123
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1109/MC.2006.65
http://dx.doi.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.1109/TSE.2004.34
http://dx.doi.org/10.1109/TSE.2004.34
http://labsoc.comelec.enst.fr/turtle/ttool.html
http://dx.doi.org/10.1109/MILCOM.2001.985792

4 Model-Driven Design of Software Defined Radio Applications Based on UML 83

9. Jair Gonzalez-Pina, R.A.B.R.P.: Diplodocusdf, a domain-specific modelling language for soft-
ware defined radio applications. In: Software engineering and advanced applications (SEAA),
2012 38th EUROMICRO conference on, vol. 1, pp. 213–217 vol. 1 (2012)

10. Papadopoulos, G.: Automatic code generation: a practical approach. In: Information technology
interfaces, 2008. ITI 2008. 30th international conference on, pp. 861–866 (2008). doi:10.1109/
ITI.2008.4588524

11. Zhu, Y., Sun, Z., Wong, W.F., Maxiaguine, A.: Using uml 2.0 for system level design of real
time soc platforms for stream processing. In: Embedded and real-time computing systems and
applications, 2005. Proceedings of 11th IEEE international conference pp. 154–159 (2005).
doi:10.1109/RTCSA.2005.101

12. Vidal, J., de Lamotte, F., Gogniat, G., Soulard, P., Diguet, J.P.: A co-design approach for
embedded system modeling and code generation with uml and marte. In: Design, automation
test in Europe conference exhibition, 2009. DATE ’09, pp. 226–231 (2009)

13. Yang, X.: A feasibility study of uml in the software defined radio. In: Electronic design, test
and applications, 2004. DELTA 2004. Second IEEE international workshop on, pp. 157–162
(2004). doi:10.1109/DELTA.2004.10050

14. Green, P., Essa, S.: Integrating the synchronous dataflow model with uml. In: Design, automa-
tion and test in Europe conference and exhibition, 2004 Proceedings, vol. 1, pp. 736–737 Vol.
1 (2004). doi:10.1109/DATE.2004.1268954

15. Störrle, H.: Semantics of UML 2.0 activities with data-flow. In: Nordic workshop on UML
(NWUML’04) (2004)

16. Dennis, J.: Data flow supercomputers. Computer 13(11), 48–56 (1980). doi:10.1109/MC.1980.
1653418

17. Kahn, G.: The semantics of a simple language for parallel programming. IFIP Cong (1974)
18. Pont, M.J.: Applying time-triggered architectures in reliable embedded systems: Challenges

and solutions. e & i Elektrotechnik und Informationstechnik 125, 401–405 (2008). http://dx.
doi.org/10.1007/s00502-008-0587-z

19. Hekkala, A., Harjula, I., Panaitopol, D., Rautio, T., Pacalet, R.: Cooperative spectrum sensing
study using welch periodogram. In: Telecommunications (ConTEL), Proceedings of the 2011
11th international conference on, pp. 67–74 (2011)

http://dx.doi.org/10.1109/ITI.2008.4588524
http://dx.doi.org/10.1109/ITI.2008.4588524
http://dx.doi.org/10.1109/RTCSA.2005.101
http://dx.doi.org/10.1109/DELTA.2004.10050
http://dx.doi.org/10.1109/DATE.2004.1268954
http://dx.doi.org/10.1109/MC.1980.1653418
http://dx.doi.org/10.1109/MC.1980.1653418
http://dx.doi.org/10.1007/s00502-008-0587-z
http://dx.doi.org/10.1007/s00502-008-0587-z

Chapter 5
On Integrating EAST-ADL and UPPAAL for
Embedded System Architecture Verification

Tahir Naseer Qureshi, De-Jiu Chen, Magnus Persson and Martin Törngren

Abstract Model-based development (MBD) is a common approach adopted in
many engineering disciplines for handling complexity. For distributed microprocessor
based systems MBD approaches include the use of architecture description languages
(ADL’s), modeling and simulation tools and tools for formal verification. To increase
their combined effectiveness, the various MBD methods, tools and languages are
required to be integrated with each other. This chapter addresses the connection
between ADL’s and formal verification in the context of automotive embedded sys-
tems. A template-based mapping scheme providing formal interpretation of EAST-
ADL, an automotive specific ADL with timed automata (TA) is the main contribution
providing a possibility of automated analysis of timing constraints specified for the
execution behavior and events of a system. One benefit of using TA is the fact that
it can also be used for generating test cases for their usage during late development
phases.

5.1 Introduction

The complexity related to automotive embedded systems has increased signifi-
cantly during the last few decades. While a product is composed of a large num-
ber of interconnected software and hardware components, the development process

T. N. Qureshi (B) · D. J. Chen · M. Persson · M. Törngren
Department of Machine Design, KTH - The Royal Institute of Technology, Stockholm, Sweden
e-mail: tnqu@md.kth.se

D.-J. Chen
e-mail: chen@md.kth.se

M. Persson
e-mail: magnper@md.kth.se

M. Törngren
e-mail: martin@md.kth.se

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 85
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_5,
© Springer Science+Business Media New York 2014

86 T. N. Qureshi et al.

is also distributed spatially and temporally among different engineering teams.
A model-based development (MBD) approach, i.e., the use of computerized models
for different activities [1] is followed in various engineering domains to manage com-
plexity. For embedded systems several powerful but disconnected MBD solutions
like architectural description languages (ADL) for managing engineering informa-
tion, tools like Matlab/Simulink and formal methods like model checking for various
kind of analysis are used. Furthermore, a lot of faults are discovered during the late
development stages (i.e., integration and testing) resulting in an increased develop-
ment time and cost [2]. Inconsistency between the behavioral specifications, related
constraints and requirements is one of the major factors contributing to the faults.
A seamless integrated development environment incorporating several model-based
methods and tools is envisioned to deal with the issues [3].

This chapter is motivated by the above mentioned needs for a seamless integrated
development environment. The main objective is an architecture-centric analysis sup-
port for architectural specifications in the context of model-based development of
automotive embedded systems. A method which paves a way for automated model
transformation between Electronics Architecture and Software Technology- ADL
(EAST-ADL); an automotive specific ADL [4] and timed automata (a formalism for
verifying real-time systems) [5] is introduced. EAST-ADL provides a multi-viewed
and structured information management support at multiple abstraction levels. As
compared to languages like UML or AADL, EAST-ADL has a broader coverage in
terms of development life-cycle. The support is both product-related, such as hard-
ware, software and infrastructure, as well as concern related, such as requirements,
safety, dependability etc. Timed automata (TA) on the other hand is a widely used
formalisms for verifying real-time systems.

Provision of a generalized solution for analyzing specifications based on EAST-
ADL’s design level of abstraction is the main focus of the chapter. Furthermore, the
work focuses on domain specific language and generic automotive systems which is
in contrast with other approaches like [6, 7] focusing on either a generic language
like UML or requirements organized in the form of AND/OR hierarchies.

The chapter mainly presents a mapping framework based on predefined timed
automata templates. It is shown that EAST-ADL timing constraint specifications
and the execution behavior of a component can be abstracted as a network of timed
automata. The considerations required for the usage of the mapping scheme are also
discussed. A case study of a brake-by-wire system is used to demonstrate the usage of
the framework with PapyrusUML (a UML modeling tool) and UPPAAL (a TA-based
model checker) as the tools for modeling and analysis respectively.

5.2 Related Work

Verification based on timed automata (TA) of automotive applications is presented
in [8]. The TA models were used to derive the templates related to function execution
in this chapter.

5 EAST-ADL and UPPAAL Integration 87

A TA-based analysis method for analyzing embedded system architectures is
presented in [6]. TA models are derived from UML sequence diagrams augmented
with performance data. The TA models are application specific, limited to only a few
message lengths for the communication bus, etc. In addition, the generalization of
the work is yet to be determined especially with the presence of variation points in
sequence diagrams. In contrast, the work in this chapter can be applied to multiple
applications focusing on EAST-ADL which does not not have variation points like
UML.

A number of efforts have been carried out to enable the analysis, verification and
validation of system architecture design captured in EAST-ADL. This work is an
extension of [9] and [10]. In [9] the work was limited to the reaction time constraint
and evaluation of the possibility of model transformation between EAST-ADL and
UPPAAL. This chapter presents a few selected templates from [10] and provides an
account of experiences and observations.

In [11] an effort to integrate the SPIN model checker for formal verification of
EAST-ADL models is presented. The automata addressed by SPIN are untimed and
therefore, less suitable for the execution behavior targeted in this chapter.

The specification and analysis of EAST-ADL models can be carried out in sev-
eral ways. One way is to specify the structure using its core part and define behavior
related aspects using external representations such as Simulink. This approach is used
by Wang et al. [12] and Enoiu et al. [13] where timed automata is used as the exter-
nal representation of EAST-ADL functional behavior. An issue with this approach
is the gap between different behavioral models used during different development
stages by different experts. For example, relation between timed automata models for
formal verification and Simulink models for analysis and code generation. A more
suitable approach is the usage of EAST-ADL native specifications for defining a
common behavior and interpreting them with different formalisms used for different
purposes. This approach enables the utilization of the benefits provided by EAST-
ADL to a greater extent. This chapter follows the latter approach with focus on the
timing model part of EAST-ADL. In [14] we have also complemented the work
by addressing the internal behavior of EAST-ADL functions by transforming the
EAST-ADL behavioral specifications to timed automata.

5.3 EAST-ADL and Timing Extension - Concept and Notations

EAST-ADL [4] evolved through several European projects since 2001. It comple-
ments the best industrial practices of requirements specification, system design, doc-
umentation etc. with the goal to facilitate the management of engineering information
throughout a vehicle’s development life cycle. The language is modular with a core
part for specifying structure, and extensions for the specification of logical and execu-
tion behavior, requirements, product variations etc. This modular approach not only
separates the definition of functional and non-functional aspects but also enables the
use of existing tools for various development activities.

88 T. N. Qureshi et al.

A system can be specified atfour different abstraction levels (namely vehicle,
analysis, design and implementation) using EAST-ADL. For example, product line
features (end-to-end functionality) and their variations are specified at the vehicle
level, whereas the detailed design of functional components, connections and allo-
cations to various hardware components is carried out at the design level. The subset
of EAST-ADL addressed in this chapter is as follows.

5.3.1 EAST-ADL Core and Behavior Model

The core and behavior artifacts focused in this chapter are shown in Fig. 5.1 where
the artifacts prefixed with Behavior:: are part of the behavior model. A concept of
type and prototype is used for reusability. For example, a function representing a
wheel can be instantiated as a prototype within another function representing the
overall vehicle. The behavior model is mainly used to specify operational modes and
triggering policy for a function or its prototype. For logical behavior (i.e., internal
logics or a transfer-function between the inputs and outputs) of a function EAST-ADL
relies on external representations like Simulink and SCADE.

5.3.2 Function Behavior Semantics

Every time a function is triggered it reads data at its input ports, executes computations
and writes data on its output ports. The EAST-ADL specifications specify concurrent

FunctionPort

FunctionConnector

FunctionPrototype DesignFunctionPrototype

DesignFunctionType

FunctionType

FunctionFlowPort

direction:EADirectionKind

FunctionClientServerPort

clientServerType:ClientServerKind

<<enumeration>>
Behavior::FunctionBehaviorKind

+SIMULINK
+UML
+Other

Behavior::FunctionTrigger
triggerCondition: string
triggerPolicy:TriggerPolicyKind

Behavior::FunctionBehavior
path: string
representation:FunctionBehaviorKind

<<enumeration>>
Behavior::TriggerPolicyKind

+EVENT
+TIME

<<enumeration>>
ClientServerKind

+client
+server

<<enumeration>>
EADirectionKind

+in
+out

port *
port

*

port 2
function 0..1

type 1

part *

connector *

Fig. 5.1 EAST-ADL core structure and behavior model

5 EAST-ADL and UPPAAL Integration 89

execution and run-to-completion semantics of a function. i.e., a function runs all the
steps before it starts to execute again. The behavior in terms of interruptions and
preemption is considered as a part of implementation level of abstraction which is
out of scope of the EAST-ADL specifications. Moreover, the ports of an EAST-ADL
function have single-sized overwritable and non-consumable buffer semantics.

5.3.3 Timing Model

The timing model of EAST-ADL is derived from Time Augmented Description
Language (TADL). The readers are referred to [15] for a conceptual overview of
TADL. As shown in Fig. 5.2, the timing extension is based on the concepts of
event and event chain. EventFunction, EventFunctionFlowPort and EventFunction-
ClientServerPort are the three event kinds, referring to the triggering of a function
by some sort of dispatcher, arrival of a data and service requested (or received) by a
port. The dashed instanceRef relations indicate the context dependency of an artifact.
For example, an EventFunctionClientServerPort is applicable on ports of prototypes
instead of their respective function types. An event chain comprises of one or more
stimulus and response events. An event chain can further be refined into smaller event
chains called strands (parallel chains) or segments (sequenced).

Timing constraints can be specified on function executions (e.g. execution time,
period, execution time budgets), event occurrences (e.g. arrival or departure of data
on a function port) and event chains. The constraints addressed in this chapter are
shown in Fig. 5.3. PeriodicEventConstraint and DelayConstraint in Fig. 5.3 are
examples of the constraints applied on event and event chain respectively. For addi-
tional information, the readers are referred to [4].

EventChain

Events::EventFunction

FunctionModeling::
FunctionType

Events::
EventFunctionFlowPort

Events::EventFunctionClientServerPort

eventKind:EventFunctionclientServerPortKind

FunctionModeling::
FunctionClientServerPort

FunctionModeling::
FunctionFlowPort

Event

isStateChanged:bool

response
1..*

stimulus
1..*

strand *segment *

<<instanceRef>>

<<instanceRef>> <<instanceRef>>

<<enumeration>>
Events::

EventFunctionClientServerPortKind
+SentRequest
+ReceivedResponse
+ReceivedRequest
+SentResponse

Fig. 5.2 Events and event chains in EAST-ADL

90 T. N. Qureshi et al.

PrecedenceConstraint

preceeding[1]:DesignFunctionPrototype
Successive[1..*]:DesignFunctionPrototype

TimingConstraint

lower[0..1]:TimeDuration
Upper[0..1]:TimeDuration

ExecutionTimeConstraint

variation[1]:TimeDuration
targetDesignFunctionType[0..1]:DesignFunctionType
targetDesignFunctionPrototype[0..1]:DesignFunctionPrototype

EventConstraint

event[0..1]:Event

TimeDuration

value[1]:float

PeriodicEventConstraint

period[1]:TimeDuration
jitter[1]:TimeDuration
minimumArrivalTime[1]:TimeDuration

ArbitraryEventConstraint

minimumArrivalTime[1..*]:TimeDuration
maximumArrivalTime[1..*]:TimeDuration

DelayConstraint

Scope[0..1]:EventChain
nominal[0..1]:TimeDuration

InputSynchronizationConstraint

width[0..1]:TimeDuration

OutputSynchronizationConstraint

width[0..1]:TimeDuration

Reaction
Constraint

AgeTiming
Constraint

Fig. 5.3 EAST-ADL timing constraints

5.4 Timed Automata and UPPAAL

A timed automaton (TA) [5] is an automaton augmented with clocks and time
semantics to enable formal analysis of real-time systems. For example, to spec-
ify the maximum time duration for which a location (or state) can remain active, a
clock invariant is used. Similarly, it is also possible to specify guards based on clock
values on transitions between two locations.

Often a set of TA are used in a networked form with a common set of clocks
and actions. A special synchronization action denoted by an exclamation sign (!)
or a question mark (?) is used for synchronization between different TA. A timed-
automaton in a network is concurrent unless and until mechanisms like synchroniza-
tion actions are applied. The readers are referred to [5] for a formal definition and
semantics of a network of TA.

UPPAAL is a model checker based on TA for modeling, validation and verifica-
tion of real-time systems. The tool has three main parts: an editor, a simulator and
a verifier, for modeling, debugging and verification (covering exhaustive dynamic
behavior) respectively. A system in UPPAAL is modeled as a network of TA. A sub-
set of CTL (computation tree logic) is used as the query language in UPPAAL for
verification. In addition to the generic TA, UPPAAL uses the concepts of broad-
cast channels for synchronizing more than two automata. The concepts of urgent
and committed states are also introduced to force a transition without time delay.
Similar to other model checking tools, UPPAAL can be used to verify (1) Reacha-
bility i.e., some condition can possibly be satisfied, (2) Safety i.e., some condition
will never occur and (3) Liveness i.e., some condition will eventually become true.
UPPAAL uses the concept of templates to provide reusability and prototyping of

5 EAST-ADL and UPPAAL Integration 91

system components. Each template can be instantiated multiple times with varying
parameters. The instantiation is called a process.

5.5 EAST-ADL and Timed Automata Relationship

Both timed automata (TA) and EAST-ADL are developed for real-time embedded
systems. TA is a formalism which can be used for model-checking of real-time
system. EAST-ADL has a broader coverage which includes but is not limited to
structural and some behavioral aspects of embedded systems. There exist at least
four different possibilities for relating EAST-ADL with timed automata. (1) Use TA
for defining the behavior of a system by exploiting EAST-ADL external behavior
representation support (Function Behavior in Fig. 5.1) as done in [12]. (2) Trans-
form the EAST-ADL behavior description annex [16] to TA for a holistic behavioral
analysis including logical, execution, nominal and error behavior. (3) Model tim-
ing constraints with timed automata with a suitable behavior abstraction. As the
internal functional behavior and hence the associated constraints are out of scope of
this work, only the timing constraints and design level of abstraction is considered,
corresponding to option (3), with the following assumptions and limitations

• Only the Functional Design Architecture (FDA) is considered. The design level
has two parts, namely Functional design architecture (FDA) and Hardware Design
Architecture (HDA). While HDA covers hardware topology, FDA is used to model
software components, middleware functions, device drivers and hardware transfer-
functions. Hence, FDA together with constraints such as time budgets applied on
its contained functions can provide a suitable abstraction for the target analysis.

• The sum of maximum execution time of all the functions having the same period-
icity and allocated to same processing units is less then or equal to their period.
This ensures that functions when refined to an implementation will be schedulable.
For other cases, it is recommended to perform a schedulability analysis for each
set of functions allocated on a single processor. This can be done by tools like
Times (a TA-based tool for schedulability analysis). The deadline of a function
execution is considered equal to its period.

• EAST-ADL supports hierarchical modeling (i.e., function types and prototypes)
whereas UPPAAL does not have such support. Therefore, only one function type,
i.e., the FDA (related to the software architecture) is allowed to have prototypes
of other functions in its composition for the sake of simplicity.

5.5.1 Mapping Scheme

The following discusses a subset of mapping scheme between EAST-ADL and timed
automata based on the experiences from a previous work [9]. An existing timed
automata model of an emergency braking system (EBS) [8] was transformed to

92 T. N. Qureshi et al.

EAST-ADL to derive the relationship followed by the validation of the mapping
by transforming a brake-by-wire system, a representative industrial case study in
EAST-ADL to timed automata. The fundamental concepts of the presented method
is the main focus, therefore only a few templates, especially those which are related
to the case-study in the next section are discussed. Therefore, the interested readers
are referred to [10] for additional details.

The relationship is in the form of timed automata templates for function execution
and timing constraints shown in Fig. 5.3. The templates for the timing constraints
act as monitors indicating if a constraint is satisfied or not.

In the following figures, all the templates have their own clocks named ‘Local-
Clock’ and all the synchronization actions and variables like MinArrivalTime, period
are their input parameters in the form of bounded integer variables. The bound rep-
resents the minimum and maximum time values in the overall system specifications.
The following text covers the fundamental concepts of the presented method, how-
ever, only a few templates, especially those which are related to the case-study in the
next section are discussed. Therefore, the interested readers are referred to [10] for
additional details.

Event: An EAST-ADL event is modeled as a synchronization action. For example,
the synchronization action output! for the transition from Execute to Init state in Fig.
5.4b can be considered as an event corresponding to an EventFunctionFlowPort
referring to a port with direction out or EventFunctionClientServerPort with kind
of either sentRequest or sentResponse. The synchronization actions correspond to a
simultaneous read or write on a function’s ports.

Function execution behavior: As shown in Fig. 5.4, a function can be modeled
with three or two locations for time-triggered and event triggered systems respectively
depending on the triggering policy of the function trigger (Fig. 5.1) specified for
the function under consideration. In Fig. 5.4 , the transition from Init to Execute
and Execute to Finished represent the reading and writing of data on a function
port respectively. The state Execute abstracts the logical behavior and periodicity
is modeled by the Finished state together with its invariant and the guard of the
following transition. The parameters maxexecTime and minexecTime are obtained
from ExecutionTimeConstraint (Fig. 5.3) where max- and minexecTime correspond
to the upper and lower limits of the execution time budgets. On the other hand,
the period is obtained from PeriodicEventConstraint applied on the EventFunction
referring to the DesignFunctionType under consideration.

(a) (b)

Fig. 5.4 Function templates a Periodic b Aperiodic

5 EAST-ADL and UPPAAL Integration 93

Timing constraints: A constraint is either satisfied or not; therefore, a minimum
of four locations corresponding to initial, intermediate, success, fail states are neces-
sary to model a constraint. On occurrence of an event, the automaton proceeds to an
intermediate state. Based on the applicable guard conditions (obtained from a con-
straint attribute) the fail or success state is reached. The transitions to reach a fail or
a safe state are enabled by clock guards and synchronization actions representing the
timing bounds and event occurrences respectively. The following are two examples
of the constraints applied on event and event chain respectively.

Periodic event constraint: A periodic event constraint is used to specify con-
straints on the periodicity of an event. An UPPAAL template for a periodic event
constraint is shown in Fig. 5.5a. The three applied parameters (also shown in Fig. 5.3)
are period (P), jitter (J) and the minimum arrival times of the event representing
ideal, maximal and minimal time interval between occurrence of two events. The
synchronization action “event?” refers to the EAST-ADL event under consideration.

Reaction constraint: A reaction constraint specifies a bound between the occur-
rences of stimuli and responses of an event chain. According to the EAST-ADL
specifications, there exist five possible specification combinations ({upper, lower},
{upper, lower, jitter}, {upper}, {lower}, {nominal, jitter}) for the reaction constraint.
The presented work considers only one combination i.e., {upper} which corresponds
to the maximum time allowed between the stimulus and the response. In the reac-
tion constraint template (Fig. 5.5b) the clock is reset when a stimulus event occurs.
As soon as the response event occurs the automata transits to Fail or Success state
depending on the elapsed time i.e., the ‘LocalClock’ value.

Rate Transition Templates: An EAST-ADL system is inherently deadlock free
(Sect. 5.3.2) however, a deadlock due to blocked transitions is highly likely with
the templates described earlier with functions having different execution rates. To
avoid such condition, rate transition templates shown in Fig. 5.6 are introduced. The
templates and the name are inspired by the Simulink1 rate-transition block.

(a) (b)

Fig. 5.5 Periodic event and reaction constraint templates

1 http://www.mathworks.se/help/toolbox/simulink/slref/ratetransition.html

http://www.mathworks.se/help/toolbox/simulink/slref/ratetransition.html

94 T. N. Qureshi et al.

Fig. 5.6 Rate transition tem-
plates a Fast to slow rate
transition b Slow to fast rate
transition

(a) (b)

The template in Fig. 5.6a is used when the sender is running at a faster rate (less
period) than the receiver. The actions input? and output! correspond to the input from
the sender and output to the receiver respectively. The difference parameter is the
difference of frequencies obtained by dividing the period of the receiver with that of
sender. For the case where the sender has low frequency, the template in Fig. 5.6b is
used.

5.5.2 Usage and Automation Considerations

The following is required for the transformation and its automation:

1. A pre-defined set of templates in UPPAAL with different combination of channel
types (i.e., ‘chan’ and ‘broadcast chan’ in UPPAAL) and inclusion/exclusion of
synchronization actions from function temples. In this way the automation process
will simply require template instantiations as UPPAAL process corresponding to
EAST-ADL functions. For example, for a function in EAST-ADL representing a
sensor having no input, an UPPAAL function template without ‘input?’ synchro-
nization will be used. Similarly, if a constraint is applied on an EAST-ADL event
or if it is transmitted to multiple receivers then the corresponding channel type in
UPPAAL should be ‘broadcast’ type.

2. An appropriate rate transition template should be used for two functions executing
at different rates and communicating with each other. This in turn requires dec-
laration of additional channels. For example, consider a process ‘A’ in UPPAAL
is communicating with process ‘B’ using channel ‘channel1’. If a rate transition
‘RT1’ is used then an additional channel, i.e., ‘channel2’ is defined. In this case
‘channel1’ is used between ‘A’ and ‘RT1’ whereas ‘channel2’ is used between
‘RT1’ and ‘B’. If the two communicating functions have the same frequency then
no rate-transition process is required.

3. The minimum resolution of time has to be decided beforehand where time values
are declared as a multiple of minimum time unit. For example, if the minimum
unit is defined as 1µs then 1 ms will be written as 1,000.

5 EAST-ADL and UPPAAL Integration 95

5.5.3 System Verification

With the introduced relationship between EAST-ADL and timed automata, the
analysis becomes verification of a safety property in the following form: (1) A given
constraint is satisfied iff for all initial conditions, the state “Fail” is never reached for
all cases. (2) A system is free of any inconsistencies iff there is no deadlock and all
the constraints are satisfied. ToS verify a given set of timing constraints of a system
specification, the following two query language syntaxes have to be used.

• A [] (not deadlock) to verify if there exist any deadlock. Three possible reasons for
a deadlock can be (1) the absence of one or more rate-transition templates in case
of different frequency between two communicating functions and (2) an incorrect
synchronization channel type and (3) Incompleteness of the specifications being
verified.

• A [] (not XX.Fail) to verify that a timing constraint modeled with an UPPAAL
process named XX never reaches the failed state. In case a fail state is reached,
the timing constraints have one or more inconsistencies.

5.6 Brake-by-Wire Case Study

The brake-by-wire (BBW) system is a representative industrial case study. This case
has been used in several EAST-ADL related projects funded by the European Com-
mission. It provides coverage of EAST-ADL artifacts and methodology at multiple
abstraction levels. A simplified version of the case study is shown in Fig. 5.7 which
is a snapshot from its EAST-ADL (UML profile) implementation. For simplicity,
three actuators, ABS functions and their connections are not shown in the figure.

In the simplified system, the Brake Torque Calculator (BTC) periodically (period =
10 ms) calculates the desired torque utilizing the percent value of the brake pedal. This

Fig. 5.7 UML implementation of the brake-by-wire system

96 T. N. Qureshi et al.

desired torque is utilized by the GlobalBrakeController (GBC) which periodically
(period = 20 ms) calculates the torque for each wheel. The ABS functions on each
wheel are responsible to control the locking of the wheel and provide the required
braking torque. Both ABS and the actuators are triggered on the events related to the
arrival of a data on their ports. This implies that after transformation to UPPAAL
BTC and GBC will be represented by the template shown in Fig. 5.4a and the ABS
by the one in Fig. 5.4b. In addition a rate transition template will also be required
between BTC and GBC.

Four different events listed in Fig. 5.8 are defined for the EAST-ADL model.
Furthermore, only one event chain (see also Fig. 5.2) is defined with the events
‘CalculatedTorque’ and ‘actuation1’ as the stimulus and response respectively. The
constraints are listed in Fig. 5.9.

An UPPAAL model of a subset of the constraints and functions described above
is shown in Fig. 5.10 where the red color represents the active locations during a
simulation . The model is manually generated. Compare the process names, syn-
chronization actions and constraints, i.e., PCC1, RC1 and PEC1 with the discussion
and figures earlier in this section.

Fig. 5.10 shows three constraints i.e., PEC1 (Periodic Event Constraint), PCC1
(Precedence Constraint) and RC1 (Reaction Constraint). To verify the consistency
the CTL syntax as described in Section 5.5.3 were used. For example, A[] (not
deadlock) to check if the system is deadlock free and A[] (not PEC1.Fail) to check if

Event Name Type Attributes

BTCTriggerEvent EventFunction TargetFunctionPrototype=pBTC

GBCTriggerEvent EventFunction TargetFunctionPrototype=pGBC

CalculatedTorque EventFunctionFlowPort TargetFunctionFlowPort=DesiredTorque
TargetFunctionPrototype=pBTC

actuation1 EventFunctionFlowPort TargetFunctionFlowPort=ActOut

TargetFunctionPrototype=pABSFR

Fig. 5.8 Events

Constraint Name Type Attributes

BTCExecution Execution time TargetFunctionPrototype=pBTC , Lower = 3 , Upper =5

GBCExecution Execution time TargetFunctionPrototype=pGBC, Lower = 2, Upper =6

ABSFRExecution Execution time TargetFunctionPrototype=pABSFR, Lower = 2, Upper =3

ABSFLExecution Execution time TargetFunctionPrototype=pABSFL, Lower = 2, Upper =3

ABSRRExecution Execution time TargetFunctionPrototype=pABSRR, Lower = 2, Upper =3

ABSRLExecution Execution time TargetFunctionPrototype=pABSRL, Lower = 2, Upper =3

RC1 Reaction Scope = EC1, ReactionTime = 50 ms

PEC1 Periodic event TargetEvent= CaclulatedTorque, MinArrivalTime= 3ms, Ide-

alPeriod = 10 ms, Jitter = 9 ms

PCC1 Precedence Preceding = CalculatedTorque, Successive = actuation1

Fig. 5.9 Timing and event constraints

5 EAST-ADL and UPPAAL Integration 97

pBTC Rate Transition
between pBTC and

pGBC

pGBC

pABSFR

RC1 PEC1PCC1

Fig. 5.10 Brake-by-wire model in UPPAAL

the periodic event constraint is satisfied. All the properties were found to be satisfied
using the UPPAAL verifier. The time taken for the verification was less than a second.

5.7 Discussion

A method to analyze consistency of timing constraints specified using EAST-ADL is
presented. The proposed mapping scheme is a basis for automated transformations
between EAST-ADL and timed automata based tools. We have experimented with
different model transformation technologies such as Atlas Transformation Language
(ATL) or Model Query Language (MQL) [9]. Transformation of EAST-ADL specifi-
cations is a complex and non-trivial task due to the distribution of information among
its extensions. One of the main benefits of the presented approach is that it reduces
the effort related to model-transformation and related complexity. Instead of creat-
ing a new TA process for every timing constraint, the transformation requires only
instantiation of the templates. This is especially true for imperative transformation
languages like MERL (MetaEdit+ Reporting Language). Furthermore, the template-
based approach is also a scalable solution where the templates can be extended
for as many events as required to be considered for an event chain. The extension
mechanisms are discussed in [10].

While there exist otherapproaches targeting different types of constraints for
example, dependency graph for checking function precedence [17], the presented
work is suitable in the context of MBD. The use of TA can enable bridging the
gap between the design and testing phase. Generation of test cases from the timed
automata analysis of EAST-ADL specifications for carrying out testing at different
design phases is one of the future possible extensions.

At first glance, the use of techniques like scheduling analysis might seem to
be more appropriate than the use of timed automata. The use of such techniques are

98 T. N. Qureshi et al.

applicable at the implementation level of EAST-ADL which in turn corresponds to the
AUTOSAR standard [18] instead of the design level of abstraction addressed by this
chapter. To enable analysis such as schedulability, the design level of abstraction has
be augmented with additional details as presented in [19]. In addition, the concurrency
of functions at the design level of abstraction and the fact that there exists an n-to-m
relationship between EAST-ADL functions and AUTOSAR software components as
well as runnables [20, 21] further motivates the use of timed automata based analysis.

In Sect. 5.5, three different possibilities for relating EAST-ADL and timed
automata were mentioned. Based on the experiences from the work presented in
this chapter, the possibility of transforming the EAST-ADL behavior description
annex (BDA) to timed automata has also been studied [14]. The BDA provides sup-
port for relating different kind of behavior such as execution behavior and timing
constraints considered in this chapter, logical behavior, and error behavior specified
by the EAST-ADL’s dependability modeling extension. The templates described in
this chapter can serve as a monitor to verify different types of timed behavioral.

The main focus of the work presented in this chapter was on exploring a rela-
tionship between EAST-ADL and timed automata as a step towards an integrated
environment providing architecture-centric development of automotive embedded
systems in a seamless manner. This also implies that aspects like state space cov-
erage were not the major focus however, discussed in [14]. The timed automata
semantics and the assumptions presented in this chapter pose some limitations on
EAST-ADL modeling and transformation work. For example, the function templates
assumes one input and one output port which in turn requires that a function can only
be triggered by arrival of data on one port only etc. in contrast to EAST-ADL sup-
port for multiple triggers. Another issue related to the fast to slow rate transition
template is that it is only applicable for the cases where the frequencies are multiples
of each other. Similarly, aspects like jitter are considered to a limited extent. Efforts
to overcome this limitations are one of the planned future activities.

Other issueswhich require further investigation are automatic test-case generation
directly from EAST-ADL specifications, combined analysis of internal and execution
behavior and methods for transferring the analysis results back for storing them as
part of the EAST-ADL model using its verification and validation extension.

References

1. Törngren, M., Chen, D., Malvius, D., Axelsson, J.: Automotive embedded systems handbook.
In: Model-Based Development of Automotive Embedded Systems. CRC Press, Boca Raton,
FL (2009)

2. Lönn, H., Freund, U.: Automotive embedded systems handbook. In: Automotive Architecture
Description Languages, CRC Press, Boca Raton, FL (2009)

3. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless model-based
development: from isolated tools to integrated model engineering environments. Proc. IEEE
98(4), 526–545 (2010)

5 EAST-ADL and UPPAAL Integration 99

4. The ATESST2 Consortium: EAST ADL 2.0 Specification. Project Deliverable D4.1.1. http://
www.east-adl.info/repository/EAST-ADL2.1/EAST-ADL-Specification_2010-06-30.pdf
(2010)

5. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Lectures on Con-
currency and Petri Nets, LNCS, vol. 3098, pp. 87–124. Springer, Berlin (2004)

6. Hendriks, M., Verhoef, M.: Timed automata based analysis of embedded system architectures.
In: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th, International,
p. 8 (2006)

7. Ponsard, C., Massonet, P., Molderez, J.F., Rifaut, A., Lamsweerde, A.V., Van, H.T.: Early
verification and validation of mission critical systems. Form. Methods Syst. Des. 30(3), 233–
247 (2007)

8. Montag, P., Nowotka, D., Levi, P.: Verification in the design process of large real-time systems:
a case study. In: Automotive Safety and Security 2006, Stuttgart (Germany), October 12–13,
2006, pp. 1–13 (2006)

9. Qureshi, T.N., Chen, D.J., Persson, M., Törngren, M.: Towards the integration of UPPAAL
for formal verification of EAST-ADL timing constraint specification. In: Workshop on Time
Analysis and Model-Based Design, from Functional Models to Distributed Deployments (2011)

10. Qureshi, T.N., Chen, D.J., Törngren, M.: A timed automata-based method to analyze EAST-
ADL timing constraint specifications. In: Modelling Foundations and Applications, Lecture
Notes in Computer Science, vol. 7349, pp. 303–318. Springer, Berlin (2012)

11. Feng, L., Chen, D.J., Lönn, H., Törngren, M.: Verifying system behaviors in EAST-ADL2
with the SPIN model checker. In: Mechatronics and Automation (ICMA), 2010 International
Conference on, pp. 144–149 (2010)

12. Kang, E.Y., Schobbens, P.Y., Pettersson, P.: Verifying functional behaviors of automotive prod-
ucts in EAST-ADL2 Using UPPAAL-PORT. In: Computer Safety, Reliability, and Security,
LNCS, vol. 6894, pp. 243–256. Springer, Berlin (2011)

13. Enoiu, E.P., Marinescu, R., Seceleanu, C., Pettersson, P.: ViTAL : A verification tool for EAST-
ADL models using UPPAAL PORT. In: Proceedings of the 17th IEEE International Conference
on Engineering of Complex Computer Systems. IEEE Computer Society Press (2012)

14. Qureshi, T.N.: Enhancing model-based development of embedded systems: modeling, simula-
tion and model-transformation in an automotive context. Trita-mmk, issn 1400–1179; 2012:16,
isbn 978-91-7501-465-4, Department of Machine Design, KTH - The Royal Institute of Tech-
nology, Sweden (2012)

15. Stappert, F., Jonsson, J., Mottok, J., Johansson, R.: A design framework for End-To-End timing
constrained automotive applications. Embedded Real-Time Software and Systems (ERTS’10)
(2010)

16. The MAENAD consortium: language concepts supporting engineering scenarios. Project
Deliverable D3.1.1. http://www.maenad.eu/publications.html (2012)

17. Zhao, Y.: On the design of concurrent, distributed real-time systems. Ph.D. thesis, EECS Depart-
ment, University of California, Berkeley (2009)

18. AUTOSAR Consortium: AUTomotive Open System ARchitecture. http://www.autosar.org
19. Anssi, S., Tucci-Pergiovanni, S., Mraidha, C., Albinet, A., Terrier, F., Gerard, S.: Completing

EAST-ADL2 with MARTE for Enabling Scheduling Analysis for Automotive Applications.
Conference ERTS, In (2010)

20. Cuenot, P., Frey, P., Johansson, R., Lönn, H., Reiser, M.O., Servat, D., Tavakoli Kolagari, R.,
Chen, D.: Developing automotive products using the EAST-ADL2, an AUTOSAR compli-
ant architecture description language. In: Proceedings of the 4th European Congress ERTS
(Embedded Real Time Software) (2008)

21. Qureshi, T.N., Chen, D., Lönn, H., Törngren, M.: From EAST-ADL to AUTOSAR. Tech. Rep.
TRITA-MMK 2011:12, ISSN 1400–1179, ISRN/KTH/MMK/R-11/12-SE, Mechatronics Lab,
Department of Machine Design, KTH, Stockholm, Sweden (2011)

http://www.east-adl.info/repository/EAST-ADL2.1/EAST-ADL-Specification_2010-06-30.pdf
http://www.east-adl.info/repository/EAST-ADL2.1/EAST-ADL-Specification_2010-06-30.pdf
http://www.maenad.eu/publications.html
http://www.autosar.org

Chapter 6
Schedulability Analysis at Early Design
Stages with MARTE

Chokri Mraidha, Sara Tucci-Piergiovanni and Sebastien Gerard

Abstract The construction of a design model is a critical phase in real-time systems
(RTS) development as the choices made have a direct impact on timing aspects. In
traditional model-based approaches, the design relies largely on the designer expe-
rience. Once the design model is constructed, a convenient schedulability test has
to be found in order to ensure that the design allows the respect of the timing con-
straints. This late analysis does not guarantee the existence of a test for the given
design and does not allow early detection of unfeasible designs. In order to over-
come this problem, this chapter proposes the first UML/MARTE methodology for
schedulability-aware real-time software design models construction.

6.1 Introduction

Model-based approaches for real-time systems (RTS) development aim at going from
requirements specification to binary code production with the insurance of respecting
the functional and non-functional requirements of the system. These model-based
approaches (e.g. [1–3]) introduce a number of intermediate models between the
requirements and the binary code. Requirements are usually formalized with use
case scenarios. Even when modeled with other formalisms, critical scenarios that
represent the system response to external stimuli are specified along with the system
response deadlines. The functional model aims at representing functional blocks and

C. Mraidha (B) · S. Tucci-Piergiovanni · S. Gerard
CEA, LIST, 91191 Gif-sur-Yvette CEDEX, France
e-mail: chokri.mraidha@cea.fr

S. Tucci-Piergiovanni
e-mail: sara.tucci@cea.fr

S. Gerard
e-mail: sebastien.gerard@cea.fr

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 101
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_6,
© Springer Science+Business Media New York 2014

102 C. Mraidha et al.

their interactions and to show how functional blocks participate in above defined
scenarios.

The functional model is then refined in a design model that introduces the mecha-
nisms/patterns for the realization of the functional model on the underlying platform.
Actually, the design model defines the architecture of the system still being indepen-
dent of specific platforms. To this end abstracted resources and services are assumed.
Threads, which are the unit of execution handled by OS platform services, have to be
structured to determine the threading strategy of the system. By defining a mapping
of functional blocks on threads, it is defined how the system reacts to external stimuli.
Finding a convenient threading strategy is a complex task. The designer has a set
of real-time design patterns [4] that he can use to determine the adequate number
of threads and the good grouping of functions to threads towards the definition of
a of the system. This concurrency model is of primary importance with respect to
the system’s . In order to ensure that the concurrency model satisfies timing require-
ments, a timing validation , like schedulability analysis , is necessary at this point.
However, this timing validation can lead to the following problems: (1) the resulting
design model can be too difficult or even impossible to analyze [5], (2) the resulting
design model is analyzable but the designer would like to explore other possible
design models, to explore several candidates from a schedulability point of view.
From these considerations, it follows that it is necessary to guide the designer in the
construction of an analyzable design model, i.e., a design model for which a schedu-
lability test there exists and possibly support the cohabitation of several analyzable
design candidates in order to support a comparative analysis.

This chapter focuses on a real-time methodology, called Optimum, offering a
UML front-end for the designer that conforms to a formal model for schedulability
analysis and supports the evaluation of different architecture candidates. In order to
offer such a UML front-end, standard UML needs, on one hand, to be extended to
schedulability concepts and, on the other hand, to be restricted in the use of some
elements to express a precise semantics. To this purpose Optimum uses MARTE [6], a
standard specialization of UML for real-time and embedded systems development. It
provides support for specification, design and verification/validation stages. Actually,
before MARTE, the UML SPT profile [7] was available. In [8] authors show how SPT
was not sufficient to express some basic concepts for schedulability and they propose
to extend the profile in ad hoc way with those concepts. Optimum, which uses similar
concepts used in [8], does not need to extend MARTE. MARTE proved to be enough
rich to express all the concepts needed to build schedulability models. However, as
the MARTE profile is quite rich, a restriction of the language is necessary in order to
delimit the usage of MARTE concepts in the context of the Optimum methodology.
Nevertheless, this restriction of the language has to preserve the compatibility with
MARTE standard. In the best of our knowledge, Optimum is the first methodology
for schedulability analysis using a standard specialization of UML.

The chapter is organized as follows. Section 6.2 presents an overview of the Opti-
mum methodology. Section 6.3 presents the formal schedulability analysis model
considered in the Optimum methodology. In Sect. 6.4, a detailed description of
the methodology and its conformance to the formal schedulability model is given.

6 Schedulability Analysis at Early Design Stages with MARTE 103

Section 6.5 illustrates the methodology usage on an automotive example. Related
work is discussed in Sect. 6.6. Section. 6.7 concludes the chapter.

6.2 Overview of the Optimum Process

The Optimum process guides the selection and the design of the concurrency model
on the base of hard real-time constraints, expressed at the end of the requirement
specification phase, towards the construction of concurrency models analyzable in
automated way. To this end the methodology defines a process depicted on Fig. 6.1
for the generation of the architecture model specifying a concurrency model and a
deployment model on the execution platform .

The methodology process has as entry point two artifacts: (1) the functional model,
i.e., a description of system end-to-end scenarios and (2) the description of timing
requirements . Both artifacts are assumed to be available at this stage of the devel-
opment process. Some basic characteristics of the hardware abstraction layer are
also assumed to be available, as the type of the execution hosts that constitute the
resource platform for the execution of identified scenarios. In fact, the type of exe-
cution host is used to allow the assignment of time budgets to the functions in the
scenarios. This available information is organized in a specific UML model enriched
with the MARTE profile called Workload model . The Workload model specifies

Fig. 6.1 Optimum process overview

104 C. Mraidha et al.

two concerns: a graph of function activations along with execution time budgets
and end-to-end deadlines, and an abstract layer representing the execution platform.
In order to obtain a satisfactory architecture model, the methodology provides at
this point a way of exploring different alternatives by setting a so-called analysis
context. Each analysis context contains an architecture model subject to evaluation.
The architecture model contains two views. The first view is generated by transfor-
mation of the graph of function activations contained in the Workload model. This
transformation, also called, defines the tasks and the functions allocated on them.
The second view represents the software platform resources in terms of tasks along
with their scheduling parameters , and the hardware resources in terms of processing
and communication. More in detail, this architecture model describes the evaluated
concurrency model by schedulability analysis techniques and embeds also the fol-
lowing information (1) the mapping of functional blocks on tasks, (2) the level of
threading for each functional block and possible synchronization resources needed to
manage multithreading (if any), (3) the needed OS support in terms of the scheduler
algorithm and preemption capabilities, (4) the policy for serving external events, (5)
the needed to protect . The evaluation of the dynamics paradigm can cover different
aspects such as resource utilization, response times, jitters, etc.

6.3 The Schedulability Model

In this section we present the formal model to analyze the schedulability of a real-
time system. We introduce the formal notation to later show the conformance of the
UML/MARTE model to the presented formal model.

The presented model captures a distributed system with fixed-priority tasks and
task dependencies. This model is the one assumed by the test of Palencia and Harbour
[9] and available in the MAST open source tool. The model is quite general, con-
sidering that fixed-priority scheduling is the most common scheduling algorithm
available in practice. Let us also remark that whenever the tasks set under considera-
tion is deployed on a single CPU, the Palencia and Harbour test is anyway applicable,
reducing to the Lehoczky test [10]. Tasks are characterized by an arrival pattern that
can be periodic or aperiodic with minimum inter-arrival time. We consider an event-
activation paradigm. Given a set of external events, each external event triggers one
computation, the system response for that event. One single task may execute the
whole response or the response may be "segmented" by a sequence of tasks possibly
spanning several computation resources. In case of segmentation, a number of tasks
are not directly triggered by the external event. For those tasks, the event-activation
paradigm states that the trigger for activation is execution’s end of the previous task.
In case more than one trigger there exists for the same task, AND/OR semantics
may be specified. The OR semantics implies that the task is triggered by the execu-
tion’s end of any of the previous tasks, while the AND semantics implies that the
task is triggered only when all the previous tasks have completed. In this chapter we
restrict our attention to the OR semantics. The reason of this choice is twofold: on

6 Schedulability Analysis at Early Design Stages with MARTE 105

one hand this assumption let simplify the model and makes the presentation clearer,
on the other hand the test of Palencia and Harbour does not fully support the AND
semantics (the AND semantics can be specified only among events of the same sys-
tem response, events with the same rate), therefore we could not use available open
source tools to analyze a model containing AND semantics.

The model is characterized by a set of events E = (e1, e2, . . . , en), a set of
tasks T = (τ1, τ2, . . . , τm), a set of computational/communication resources R =
(r1, r1, . . . , rl), a characterization of event occurrences and a characterization of task
executions. The characterization of event occurrences is constituted by a set of tuples,
one for each event ei ∈ E of the form (ei , ti , Ri , Di ,W Ri), where ei is the event
whose occurrence being characterized, ti is the period of the event, Ri is the response
to the event ei . Ri is a total order of tasks (Ti ,→i), where ∅ ⊂ Ti ⊆ T is the set of
tasks to be executed in response to the event ei . For any two tasks τh , τk ∈ T : the
task τh has to be executed before τk , in the response Ri if and only if τh →i τk . Di

is the end-to-end deadline for response Ri . W Ri is the worst case response time for
response Ri .

Characterization of task executions is constituted by a set of tuples, one for each
task τh ∈ T of the form (τh, Ph, r,C Sh,Ch, Bh,W T Rh), where: τh is the task being
characterized, Ph is the assigned priority, r ∈ P , is the computational/communication
resource the task is executed on, Ch is the computational cost of the task (not consid-
ering any contention time), C Sh : ordered list of critical sections (csh1, csh2, ..., cshl)

the task will pass through. A critical section represents an interval of non-preemption.
The scheduler cannot interrupt a task in critical section even if a higher priority task is
ready for execution. Critical section cshi has a duration chi ≤ Ch . Bh is the blocking
time, i.e., the time a task is blocked by another task with lower priority. This happens
during concurrent access to critical sections: when a lower priority task is in critical
section as it cannot be preempted until it releases its lock. A higher priority task has
to wait the lock release before acquiring the lock. W T Rh is the worst-case response
time of the task τh .

Note that in our model the same task can appear in more than one response and
that each response establishes a total order in the tasks execution during the response.
For the model to be valid, the following property must hold:

Partial-Order Property: the set of event characterizations induces a cyclic-free
partial order on the set of tasks T . This property means that a unique order between
dependent tasks can be established.

Schedulability condition: The model is schedulable if and only if all responses
Ri have a worst-case response time W Ri ≤ Di .

In our model the following additional assumptions hold:
Assumption 1. (Fixed-priority scheduler). We assume that for each computa-

tional/communication resource there exists one scheduler arbitrating the access to
the resource by a fixed-priority policy.

Assumption 2. (Priority-ceiling). We assume that passive resources, accessed in
critical section regions, are protected by a priority ceiling protocol (to avoid priority
inversion).

106 C. Mraidha et al.

Assumption 3. (CAN-like channels). We assume that communication channels
are arbitrated by a CAN-like protocol, where messages inherit the priority level of
sending tasks. At destination buffered messages are dequeued on priority basis.

6.4 Detailed Optimum Methodology

In this section a description of the standard modeling language on which the Optimum
methodology is based is given. Then the models used and produced by the Optimum
process will be characterized. A third subsection will present the conformance of the
produced software architecture model with the formal schedulability analysis model
presented in Sect. 6.2. At last, the software architecture exploration phase will be
detailed.

6.4.1 Modeling Language Description

The MARTE standard [6] provides all the concepts needed for the analysis and design
of real-time and embedded systems (RTES) in a model-based approach. As a stan-
dard, MARTE proposes 158 concepts in order to cover a large broad of development
needs for RTES. Furthermore, MARTE gives several concepts with a close seman-
tics to represent a common global notion. For instance, a schedulable resource could
be a SwSchedulableResource from MARTE::SRM or a SchedulableResource from
MARTE::GRM. Differentiation of these nearby equivalent concepts can be difficult
to make. Thus, a MARTE-based methodology should specify a subset of MARTE
concepts that is sufficient for its purpose.

This section introduces the concepts of MARTE on which the Optimum method-
ology relies. The usage of these concepts in the methodology is then restricted by a
profile, called the MARTE4Optimum profile.

6.4.1.1 The MARTE4Optimum Profile

Table 6.1 enumerates the 14 useful concepts for the Optimum methodology out
of the 158 ones offered by MARTE. The needed concepts deal with platform
re-sources modeling, schedulability analysis modeling and allocation modeling.
MARTE stereotypes extend too general metaclasses of UML. Allowing such a large
applicability may make validation of methodological rules more complex and limit
automation of a refinement process for the methodology. The Fig. 6.2 below rep-
resents a stereotype specialization principle. A MARTE4Optimum GaWorkloadBe-
havior stereotype that specializes the MARTE GaWorkloadBehavior stereotype is
created. The specialization does not add any property and preserves all properties
of the original stereotype but the extension of the NamedElement metaclass. We

6 Schedulability Analysis at Early Design Stages with MARTE 107

Table 6.1 Optimum restriction of MARTE subset

MARTE4Optimum stereotype UML extensions

Alloc::Allocate Abstraction
Alloc::Allocated CallAction, Property
GRM::SchedulableResource Property
GQAM::GaPlatformResources Class
GQAM::GaWorkloadBehavior Activity
GQAM::GaWorkloadEvent AcceptEventAction
HRM::HwComputing::HwProcessor Class
SAM::SaAnalysisContext Package
SAM:: SaEndToEndFlow ActivityPartition
SAM:: SaCommHost Connector
SAM::SaExecHost Property
SAM::SaSharedResource Property
SAM::SaCommStep ControlFlow
SAM::SaStep CallBehavior Action

Fig. 6.2 Stereotype specialization principle

make use of the UML redefinition capability to redefine this extension with a more
special one (a UML Activity is also a UML NamedElement). Therefore, we restrict
the application of the GaWorkloadBehavior stereotype to a UML Activity which is
a rule of the Optimum methodology described in the following section.

Table 6.1 lists the UML extensions specialization for the MARTE subset.

6.4.1.2 MARTE Compatibility

The MARTE4Optimum profile is constructed with respect to the following rules:
(1) MARTE4Optimum stereotypes and general MARTE stereotypes have the same
name, (2) MARTE4Optimum stereotypes inherit from MARTE stereo-type proper-
ties and no additional property is added to them, (3) UML metaclass used in the
extension redefinition is necessary a specialization of the UML meta-class used in
the general MARTE stereotype extension.

108 C. Mraidha et al.

Compatibility with the MARTE profile is then preserved by the MARTE4Optimum
profile. The export of a MARTE4Optimum model in MARTE can be easily realized
by a one-to-one mapping consisting in unapplication of Optimum4MARTE stereo-
types and the application of the corresponding MARTE stereotypes.

6.4.2 The Optimum Models

6.4.2.1 The Workload Model

The Workload model is constituted of a workload behavior specifying the con-trolled
sequence of actions triggered by external stimuli enriched with timing in-formation.
The construction of the workload behavior proceeds by the generation of a UML
Activity diagram containing a canonical form of the controlled sequence of actions
contained in the functional model. For the canonical form, the following properties
hold.
Properties on the Activity diagram are:

P1—The subset of activity diagram elements used is: AcceptEventAction nodes,
CallBehaviorAction nodes, FlowFinalNode, MergeNode, ControlFlow, ActivityPar-
tition. All other activity diagram elements are not used.

P2—Events are modeled as UML AcceptEventActions that have UML Triggers
referencing the Events. These events are modeled with UML SignalEvents.

P3—In response to an event, the invocation of a function (modeled as UML Activ-
ity) is modeled with UML CallBehaviorAction. The CallBehaviorAction represents
the call to the UML Activity representing the function.

P4—The last action to be executed in response to an event is always followed by
exactly one UML FinalFlowNode.

P5—For each path connecting an AcceptEventAction to a FlowFinalNode, there
exist an ActivityPartition containing all the nodes of the path.

P6—An AcceptEventAction has exactly one outgoing control flow that targets a
CallBehaviorAction.

P7—Each path of the Activity begins with an AcceptEventAction node, termi-
nates with a FlowFinalNode.

P8—The controlled sequence of actions does not contain cycles.
Properties on MARTE-based annotations are:

P9—The Activity is stereotyped «GaWorkloadBehavior».
P10—Each UML AcceptEventAction is stereotyped «GaWorkloadEvent». The

arrival pattern (periodic, sporadic) of the event is specified in the arrivalPattern prop-
erty. For the periodic pattern the period is specified following the Value Specification
Language (VSL) syntax periodic=(value, unit) where value is a nu-merical value and
unit is the time unit used (e.g. s, ms,..). Similarly, the minimum inter-arrival time is
specified with the following syntax sporadic(value, unit).

P11—Each UML ActivityPartition is stereotyped «SaEndToEndFlow». An end-
to-end deadline is specified in the end2EndD property of the «SaEndToEndFlow»

6 Schedulability Analysis at Early Design Stages with MARTE 109

stereotype. This property is a duration specified with the following VSL syntax
(value, unit).

P12—Each action of type CallBehaviorAction is stereotyped «SaStep». Each
step has a computational budget (execTime property) specified for a given type of
execution host (host property).

At this stage of the process, the platform is not determined yet because no deploy-
ment is specified. However, as previously explained we need to specify an estimation
of computation time budget for the actions stereotyped «SaStep». A computation time
budget makes sense if it is related to a type of execution host. This type of execution
host is modeled with a UML Class stereotyped «HwProcessor». We can notice that
this type can be modeled in model library and reused in several workload models.
This type of execution host will be used in the architecture model for the definition
of the platform processing resources.

6.4.2.2 The Architecture Model

The architecture model enriches the workload model with (1) an explicit con-currency
strategy and (2) a deployment model on a target hardware platform.
The concurrency model

A new UML Activity is built for the modeling of the concurrency strategy. This
activity contains the information provided in the workload model and adds to it
the information on the mapping of function executions (steps) to tasks. Moreover,
this UML activity will explicitly describe synchronization resources used to treat
contention in the multi-threading case. All the properties defined above for the char-
acterization of the UML Activity for the workload model specification are valid for
this new Activity. Yet, the following additional properties characterize the new UML
Activity for the concurrency strategy modeling:

P13—A UML ActivityPartition is created for each task. The property “represents“
of this ActivityPartition is valuated with a reference to the corresponding element
modeling the task in the platform resources (see next section).

P14—Each CallBehaviorAction is mapped to at least one task. This mapping is
modeled by including the CallBehaviorAction in the ActivityPartitions representing
the tasks.

P15—Let us consider two ActivityPartitions representing tasks t1 and t2 and two
sets of CallBehaviorActions A1 and A2. If there exists a path from one or more actions
of A1 to one or more actions of A2 and there exists a path from one or more actions
of A2 to one or more actions of A1, then the mapping actions to tasks is not valid.
Additional properties on MARTE-based annotations are:

P16—A UML Package is stereotyped «SaAnalysisContext»is created. The plat-
form property of this stereotype is valuated with a reference to the classifier stereo-
typed «GaResourcesPlatform»that models the platform resources (see next section).
The workload property is valuated with a reference to the Activity representing the
concurrency model. Note that this stereotype is the key language concept to support
architecture exploration as detailed below.

110 C. Mraidha et al.

P17—Each ActivityPartition representing a task is stereotyped «SaStep».
P18—For each task the execution time is derived by making the additions of the

computational budgets of each step allocated to the task. The value of this execution
time is saved in the execTime property of the «SaStep»stereotype of the Activity-
Partition representing the task.

P19—For each task, the priority is automatically assigned using the rate mono-
tonic priority assignment algorithm [9]. The assigned priority is saved in the priority
property of the «SaStep»stereotype of the ActivityPartition representing the task.

P20—Each ActivityPartition representing a task is mapped to an execution host.
A reference to this execution host is saved in the host property of «SaStep»stereotype
of the ActivityPartition representing the task.

P21—For CallBehaviorActions that are shared between tasks and whose code
must be protected the sharedResources property of these actions, stereotyped «Sa-
Step»are valuated with a reference to synchronization resource that is add-ed in the
platform resources (see next section). The UML Behavior associated to the shared
CallBehaviorActions are non-reentrant (isReentrant property is set to false).

P22—Schedulability analysis results for the tasks are serialized in «SaStep»stereo-
type properties of ActivityPartitions representing the tasks: respT for the response
time and blockT for the blocking time. End-to-end response time is serialized in the
endToEndT property of the «SaEndToEndFlow»stereotype.
Platform resources

The platform resources are modeled in a classifier stereotyped by «GaResources-
Platform». The platform resources model is an abstraction of the underlying software
and hardware platform that is needed to define the deployment of the concurrency
model on the available resources.

The following resources are considered in this abstraction: (1) tasks, here called
schedulable resources, along with their scheduling parameters, (2) synchronization
resources used to solve contention in case of multi-threading (if necessary) and the
protocol used for accessing them, (3) the processing and communication resources
topology, (4) the scheduler algorithm used by the processing resources.

Each task, represented as an ActivityPartition in the concurrency model, is rep-
resented in the platform as a UML property stereotyped «SchedulableResource».
The element ActivityPartition for the task is bound to corresponding UML prop-
erty through the Activity Partition’s meta-attribute "represents" which will reference
the corresponding UML property stereotyped «SchedulableResource». Scheduling
parameters for the task have to be specified. In the case a scheduling algorithm
based on fixed priorities is assumed, priorities have to be specified as scheduling
parameters. Scheduling parameters are specified through the schedParams property
of «SchedulableResource». The value of a priority is in form of a VSL expression:
schedParams=[fp(priority-value)]

Each synchronization resource is stereotyped as «SaSharedResource». The syn-
chronizing protocol has to be specified in the protectKind property of the stereotype
«SaSharedResource». The PriorityCeilingProtocol is used to protect the access to
these critical section regions.

6 Schedulability Analysis at Early Design Stages with MARTE 111

Table 6.2 Conformance on sets

Conformance property Formal model Optimum model

Event conformance E = (e1, e2, ..., en) Set of AcceptEventActions in the Activity
Diagram stereotyped
«GaWorkloadEvent»(property P10)

Task conformance T = (τ1, τ2, ..., τm) In the Optimum model, each task corresponds to
one ActivityPartition stereotyped
«SaStep»and representing a UML property
stereotyped «SchedulableResource»(P13)

Resource conformance P = (r1, r2, ..., rl) Set of UML properties stereotyped
«SaExecHost»/«SaCommHost», properties of
the UML Class stereotyped
«GaResourcePlatform»

The processing resources are modeled with UML Properties stereotyped «SaExec-
Host»and typed with the «HardwareProcessor»Class used in the workload model
for the definition of the computation time budgets of functions. These processing
resources are interconnected with communication resources that are modeled with
UML Connectors stereotyped «SaCommHost».

The offered scheduling algorithm is specified for the processing and communi-
cation hosts. The scheduling algorithm is specified through the property schedPolicy.
The value of schedPolicy is equal to FixedPriority.

6.4.3 Conformance to the Formal Schedulability Model

In this section we formally show in Tables 6.2, 6.3 and 6.4 the conformance of the
Optimum model to the formal model of Sect. 6.3.

As for assumptions on the formal model, Assumption 1 (Fixed-priority sched-
uler) is specified by property schedPolicy in the stereotype «saExecHost»applied
to processing/communication resources. The schedPolicy is equal to FixedPrior-
ity. Assumption 2 (Priority-ceiling) is expressed by the protectKind property of
the stereotype «SaSharedResource»applied to shared re-sources. The protectKind is
equal to PriorityCeilingProtocol. Assumption 3 (CAN-like channels) means consid-
ering a communication channel where policy on messages to be sent/received is based
on fixed-priorities. The assumption implies thus to have each «saCommHost»with
schedPolicy equal to FixedPriority. As for the Partial-order property on the set of
task T, this property is satisfied in the Optimum model by property P15 Tables 6.2,
6.3, 6.4 and 6.5.

112 C. Mraidha et al.

Table 6.3 Conformance on event occurrences characterization

Formal model Optimum model

ti From property P10 each AcceptEventAction is stereotyped
«GaWorkloadEvent». The period is specified in the arrivalPattern
property

Ri = (Ti ,→i),∅ ⊂ Ti ⊆
T, T = (τ1, τ2, ..., τm)

Ti is obtained as follows: For each CallBehaviorAction cbh belonging
to the ActivityPartition stereotyped
«SaEndToEndFlow»containing AcceptEventAction (ei), take the
ActivityPartition stereotyped «saStep»representing a schedulable
resource (τh) that contains cbh. By property P1 no fork node there
exists in the Activity diagram and by property P6 each
AcceptEventAction is connect to exactly one CallBehaviorAction,
this ensures that for each event there exists only one path towards
the final flow node. The set of CallBehaviorActions in the
«SaEndToEndFlow»is then totally ordered. The order on tasks is
the order established by control flows sequencing the actions and
by property P15, no cycles can occur, reducing to a total order on
tasks. By property P5, exactly one ActivityPartition stereotyped
«SaEndToEndFlow»there exists. By property P14 at least one
ActivityPartition stereotyped «saStep»representing a schedulable
resource (τh) there exists, thus the set of tasks TI �= ∅

Di By properties P1, P5 and P6, each AcceptEventAction belongs to only
one ActivityPartition stereotyped «SaEndToEndFlow»(as already
shown for Ri conformance). Deadline Di corresponds to the
property end2EndD of the stereotype «SaEndToEndFlow »(P11)

W Ri By properties P1, P5 and P6, each AcceptEventAction belongs to
only one ActivityPartition stereotyped «SaEndToEndFlow». W Ri
corresponds to the endToEndT (P22)

6.4.4 Software Architecture Exploration Phase

Architecture exploration aims at finding an architecture model satisfying timing
requirements of the system and possibly other designer criteria. Many techniques
can be employed in order to explore the design space, but here we are only inter-
ested in supporting some comparative process in which different architecture mod-
els can be built and co-habit for comparison. The key MARTE concept to support
architectural exploration is the «SaAnalysisContext»concept used in P16. Different
UML packages stereotyped «SaAnalysisContext»can be organized in order to store
different candidates. Let us remind that the stereotype «SaAnalysisContext»allows
making reference to a platform and workload, which can be different for each con-
text. Interestingly this stereotype has an attribute optCriterion used to annotate the
context with designer criteria (optimization objectives) and their weights used for
the context. When the designer is satisfied by one candidate, the exploration phase
terminates and the candidate architecture is given as output to the process.

6 Schedulability Analysis at Early Design Stages with MARTE 113

Table 6.4 Conformance on task execution characterization

Formal model Optimum model

Ph «SaStep»stereotype, attached to the ActivityPartitions representing
schedulable resources, contains the property
schedParam:SchedParameters[0..*]=[fp(priority-value)]

r ∈ P The «SaStep»stereotype, attached to the ActivityPartitions representing
schedulable resources, contains the property host by property P20

Ci The «SaStep»stereotype, attached to the ActivityPartitions representing
schedulable resources, contains the property execTime by property P18

C Sh The list of critical sections the task pass through is specified in the property
sharedResources of the stereotype «SaStep »applied to the
CallBehaviorActions belonging to the ActivityPartition representing the
task by property P21

chi The duration of the critical section csi is equal to the execution time of the
CallBehaviorAction that includes the csi value in sharedResources of the
applied «SaStep».

Bh «SaStep»stereotype, attached to the ActivityPartitions representing
schedulable resources, contains the property blockT (P22)

W T Rh «SaStep»stereotype, attached to the ActivityPartitions representing
schedulable resources, contains the property respT (P22)

6.5 Application on an Automotive Case Study

In this section we will illustrate the application of the methodology on an automotive
case study. This subsystem is a sensor-controller-actuator system com-posed of the
following functions: a data processing function for data coming from the sensor, the
anti-locking brake function calculating the command to send to the actuator, and
a diagnosis function that disables the anti-locking function in case a fault in the
subsystem is detected.

Figure 6.3 below presents the functional model describing the system end-to-end
scenarios. Each function has an associated behavior modeled as a UML Activity
which is referenced by a CallBehaviorAction. Two events (acquisitionForAbs and
acquisitionForDiagnosis) are triggering the sequences of functions behavior exe-
cution. Between these events and the final flow node, there are respectively two
end-to-end timing requirements of 60 ms and 100 ms.

6.5.1 Workload Model

The set of system’s end-to-end computations, called workload behavior, is rep-
resented with a UML activity diagram stereotyped with MARTE «GaWorkload-
Behavior»stereotype. This workload behavior actually represents the behaviors
activation graph. Each behavior is specified by a UML CallBehaviorAction annotated
with MARTE «SaStep»stereotype. Each step has a computational budget (execTime

114 C. Mraidha et al.

Fig. 6.3 System-level end-to-end scenarios

<<gaWorkLoadBehavior>> ElectronicBrakeControlWorkload

acquisitionForAbs DataProcessingBehavior

AntiLockBehavior
«saStep»

{execTime = (13, ms)
host=HECU}

acquisitionForDiagnosis SelfDaignosisBehavior

«gaWorkloadEvent»
 arrivalPattern = sporadic(100, ms)

«saEndtoEndFlow»
 end2EndD = (100, ms)

«saStep»
 execTime = (9, ms)
 host=HECU

«saEndtoEndFlow»
 end2EndD = (60, ms)

«gaWorkloadEvent»
 arrivalPattern = periodic(60, ms)

«saStep»
 execTime = (17, ms)
 host=HECU

ab
sE

2E
F

lo
w

fa
u

lt
D

ia
g

n
o

si
sE

2E
F

lo
w

Fig. 6.4 Workload behavior

property) specified for a given type of execution host (host property). A step can be
linked to a successor step with a control flow.

The workload behavior also specifies external events that trigger the steps. Each
external event is modeled with a UML AcceptEventAction stereotyped «GaWork-
loadEvent». The arrival pattern of the event is specified in the arrivalPattern property.
For instance on Fig. 6.4, aquisitionForAbs event is periodic with a period of 60 ms.

Once that control flow graph is defined, the steps and their respective activation
events are grouped in so called end-to-end flows. An end-to-end flow is modeled with
a UML activity partition stereotyped «SaEndToEndFlow». An end-to-end deadline
can be specified for each end-to-end flow in the end2EndD property of the «SaEnd-
ToEndflow»stereotype. The absE2EFlow has an end-to-end deadline equal to 60

6 Schedulability Analysis at Early Design Stages with MARTE 115

ms. Let us to note that AntilockBehavior is a shared step between the two specified
end-to-end flows.

As explained previously, at this stage of the methodology, we needed to define
a type of processing resource in order to specify an estimation of computation time
budgets for steps. This estimation can be used to perform feasibility tests with respect
to expressed end-to-end deadlines and external events activation rates. The processing
resource type is modeled with a UML class stereotyped «HwProcessor». In this
example, HECU is the type of execution host for the steps. This type will be used in
the architecture model to type the platform processing resources.

6.5.2 Generation of the Architecture Model

The following subsections give details of the generation of the Architecture Model
starting from the Workload Model.

6.5.2.1 Mono-Processor Platform Definition

The proposed generation produces a mono-processor architecture. The platform
(SaResources Class) includes then the property hecu of the type HECU. Inside the
property host of the stereotype «saStep»applied on CallBehaviorActions, the hecu
value is set. For the execution host hecu the FixedPriority scheduling algorithm is set.

6.5.2.2 Independent Tasks Generation: Protecting Shared Functions

In order to apply a scenario-based task model generation (to get one single thread of
execution for each event), the situation of a function belonging to two different end-to-
end flows turning at two different rates and with different dead-lines must be handled.
If we map the function on two different threads (one per scenario), schedulability
analysis will compute an additional blocking time necessary to protect the function
code duplicated in the two threads. In fact, to avoid inconsistencies the function
virtually shared by two threads has to be accessed in mutual exclusion. Blocking
time for the access at the critical section (shared function code) is thus computed.

The transformed graph, therefore, will explicitly describe synchronization
re-sources used to treat contention in this case. In our example the step Antilock-
Behavior, originally shared between the two specified end-to-end flows, is here
mapped into two different threads, namely task1 and task2. The synchronization
among the two steps preceding AntilockBehavior, i.e., DataProcessingBehavior
and SelfDiagnosisBehavior is modeled through the presence of a synchroniza-
tion resource here named AntiLock, appearing in the property sharedResources,
which actually represents a critical section for the execution of AntilockBehavior.
In our example a UML property AntiLock of type SharedResource is stereotyped as

116 C. Mraidha et al.

AbsConcurrencyModel

acquisitionForAbs DataProcessingBehavior AntiLockBehavior

acquisitionForDiagnosis DiagnosisBehavior

«gaWorkloadEvent»
 arrivalPattern = sporadic(200, ms)

«saStep»
 execTime = (9, ms)
 host=hecu

«gaWorkloadEvent»
 arrivalPattern = periodic(100, ms)

«saStep»
 execTime = (17, ms)
 host=hecu

«saStep»
 execTime = (13, ms)
 host=hecu

sharedRes=[AntiLock]

ab
sE

2E
F

lo
w

fa
u

lt
D

ia
g

n
o

si
sE

2E
F

lo
w

AntilockBehavior

«saAnalysisContext»
workload=AbsConcurrencyModel
platform=SaResources

«saAnalysisContext»
ArchitectureModel

task1

task2
«saStep»
 execTime = (13, ms)
 host=hecu

sharedRes=[AntiLock]

Fig. 6.5 Task mapping

«saSharedResource», and then it is included in SAResources and the synchronization
protocol specified (Fig. 6.5).

6.5.2.3 Rate-Monotonic Priority Assignment

In the example the two threads task1 and task2 are included in the platform resources
for schedulability analysis SaResources along with priorities. Priorities are assigned
as inversely proportional to deadlines following a rate-monotonic priority assignment
[11] that is optimal in case of independent tasks and fixed-priority.

6.5.3 Schedulability Analysis Results

The Optimum model as defined in the previous subsection contains all the needed
information to perform schedulability analysis. Let us note that in this case responses
are constituted by one single task, tasks are independent (no order) but contain a
critical section with duration equal to the execution time of the Control action (13 ms).
A schedulability analysis test can be carried out on this model. Such test calculates

6 Schedulability Analysis at Early Design Stages with MARTE 117

Table 6.5 Schedulability
analysis results

Task Bi WRi

τ1 13 43
τ2 0 52

worst case response times for each event. Note that the worst-case response time
include the blocking time Bi calculated by the test.

Note that in this case as illustrated on Table 6.5, the highest priority task experi-
ences a blocking time. In fact in the worst case, the lower priority task (which has a
computational time lower than the highest priority task) acquires the lock before the
highest priority task. Only after the lock is released (after 13 ms), task τ1 continues
its execution. For task τ2, the worst case response time takes into account, the time
for the highest priority task to execute (30) and its execution time (22).

These results can be satisfactory for the designer, but he can also evaluate other
alternative architectures. In that case, multiple analysis contexts can be defined. Each
analysis context will contain the evaluated architecture completed by schedulability
results. Among these analysis contexts, the designer will choose the one that better
satisfies its own criteria.

6.6 Related Works

In order to support the development of real-time applications a wide number of
methodologies have been proposed for early analysis of non-functional require-
ments. While a vast number of model-based approaches have been proposed for
performance prediction [12], methodologies for schedulability prediction are more
recent and are gaining a growing interest with the increasing complexity of embedded
real-time systems [1, 8, 13]. COMET [2] proposes a methodology for the develop-
ment of concurrent and distributed real time systems but does not directly deal with
the issue of defining a methodology for schedulability validation. In Saksena et al.
[14] a methodology for schedulability validation of object-oriented models is pro-
posed. The methodology starts from a design model where specification of active and
passive objects, message semantics and object interaction is available. Two threading
strategies are proposed: a single threading solution and a multi-threading solution.
Unfortunately, while the single threading solution is analyzable and applicable, the
multi-threading solution is difficult to analyze or inapplicable [5]. The problem with
schedulability analysis at the design level is that a non schedulability aware design
could have a concurrent model too difficult to analyze or for which no automated
support exists. This problem is also shared by other methodologies such as [8, 15].
In [8], for instance, the UML-based methodology envisages and supports the use of
task mapping algorithms and edf schedulability tests developed in [5] but there is
no automated support for the test which is ad-hoc. In [16], the author has explored
the usage of MARTE to perform schedulability analysis with the MAST tool. In this

118 C. Mraidha et al.

work MARTE has been used to build a MAST model library to build MAST-specific
analysis models. Unlike this approach, our approach proposes methodological rules
to build schedulability analysis models which are independent from any schedula-
bility analysis tool.

6.7 Conclusions and Future Work

A lot of work has been achieved in formal approaches for timing analysis during the
past decades. Despite the importance of applying timing analysis for real-time sys-
tems development, the formal nature of these approaches is an obstacle for their adop-
tion by the software engineering community. This chapter presented a UML/MARTE
front-end for these formal timing analysis approaches, focusing on the schedulabil-
ity aspect and integrated in the software life cycle since the very beginning. The
methodology is fully implemented in the UML modeling tool Papyrus [17]. Bridges
to the MAST [18] and Rt-Druid [19] tools are integrated for schedulability tests.
Let us remark that the methodology has been successfully applied in the automotive
domain in the context of two collaborative projects, the European INTERESTED
project [20] and the French national EDONA [21] project.

References

1. Chen, R., Sgroi, M., Lavagno, L., Martin, G., Sangiovanni-Vincentelli, A., Rabaey, J.: Uml and
platform-based design pp. 107–126 (2003)

2. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with Uml, 1st
edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2000)

3. Phan, T.H., Gerard, S., Terrier, F.: Languages for system specification. In: Real-time system
modeling with ACCORD/UML methodology: illustration through an automotive case study,
pp. 51–70. Kluwer Academic Publishers, Norwell, MA (2004) http://dl.acm.org/citation.cfm?
id=1016425.1016431

4. Douglass, B.P.: Real Time UML: Advances in the UML for Real-Time Systems, 3rd edn.
Addison Wesley Longman Publishing Co., Inc., Redwood City (2004)

5. Bartolini, C., Lipari, G., DiNatale, M.: From functional blocks to the synthesis of the archi-
tectural model in embedded real-time applications. In: Proceedings of the 11th IEEE Real
Time on Embedded Technology and Applications Symposium, RTAS ’05, pp. 458–467. IEEE
Computer Society, Washington, DC, USA (2005). http://dx.doi.org/10.1109/RTAS.2005.24

6. Object Management Group: UML profile for modeling and analysis of real-time and embedded
systems (MARTE), version 1.1, formal/2011-06-02 (June 2011). http://www.omg.org/spec/
MARTE/1.1/

7. Object Management Group: UML profile for schedulability, performance, and time (spt),
formal/2005-01-02 (2005). http://www.omg.org/spec/SPTP/

8. Bartolini, C., Bertolino, A., De Angelis, G., Lipari, G.: A uml profile and a methodology for
real-time systems design. In: Proceedings of the 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications, EUROMICRO ’06, pp. 108–117. IEEE Computer
Society, Washington, DC, USA (2006). http://dx.doi.org/10.1109/EUROMICRO.2006.14

http://dl.acm.org/citation.cfm?id=1016425.1016431
http://dl.acm.org/citation.cfm?id=1016425.1016431
http://dx.doi.org/10.1109/RTAS.2005.24
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/SPTP/
http://dx.doi.org/10.1109/EUROMICRO.2006.14

6 Schedulability Analysis at Early Design Stages with MARTE 119

9. Palencia, J.C., González Harbour, M.: Schedulability analysis for tasks with static and dynamic
offsets. In: Proceedings of the IEEE Real-Time Systems Symposium, RTSS ’98, pp. 26-. IEEE
Computer Society, Washington, DC, USA (1998). http://dl.acm.org/citation.cfm?id=827270.
829048

10. Lehoczky, J.P., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: Exact characteri-
zation and average case behavior. In: RTSS, pp. 166–171 (1989)

11. Audsley, N.: Optimal Priority Assignment And Feasibility Of Static Priority Tasks With Arbi-
trary Start Times. Department of Computer Science, University of York, England, Tech. rep.
(1991)

12. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction
in software development: A survey. IEEE Trans. Softw. Eng. 30(5), 295–310 (2004). http://dx.
doi.org/10.1109/TSE.2004.9

13. Jin, D., Levy, D.C.: An approach to schedulability analysis of uml-based real-time systems
design. In: Proceedings of the 3rd international workshop on Software and performance, WOSP
’02, pp. 243–250. ACM, New York, NY, USA (2002). http://doi.acm.org/10.1145/584369.
584409

14. Saksena, M., Karvelas, P.: Designing for schedulability: integrating schedulability analysis
with object-oriented design. In: Proceedings of the 12th Euromicro conference on Real-time
systems, Euromicro-RTS’00, pp. 101–108. IEEE Computer Society, Washington, DC, USA
(2000). http://dl.acm.org/citation.cfm?id=1947412.1947431

15. Gu, Z., He, Z.: Real-time scheduling techniques for implementation synthesis from component-
based software models. In: Proceedings of the 8th international conference on Component-
Based Software Engineering, CBSE’05, pp. 235–250. Springer, Berlin (2005)

16. Kenneth, J.: Schedulability analysis of embedded applications modelled using marte. Ph.D.
thesis, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark (2009)

17. Eclipse Foundation: Papyrus (2010). http://www.eclipse.org/modeling/mdt/papyrus/
18. Pasaje, J.L.M., et al.: UML-MAST (2005). http://mast.unican.es/umlmast/
19. Evidence: Home page (2009). http://evidence.eu.com
20. Interested, EU Project ICT-2007-3.3 B,: Project web page (2009). http://www.interested-ip.

eu/
21. Edona, P.: Environnements de Développement Ouverts aux Normes de l’Automobile (2009).

http://www.edona.fr

http://dl.acm.org/citation.cfm?id=827270.829048
http://dl.acm.org/citation.cfm?id=827270.829048
http://dx.doi.org/10.1109/TSE.2004.9
http://dx.doi.org/10.1109/TSE.2004.9
http://doi.acm.org/10.1145/584369.584409
http://doi.acm.org/10.1145/584369.584409
http://dl.acm.org/citation.cfm?id=1947412.1947431
http://www.eclipse.org/modeling/mdt/papyrus/
http://mast.unican.es/umlmast/
http://evidence.eu.com
http://www.interested-ip.eu/
http://www.interested-ip.eu/
http://www.edona.fr

Part III
Component-Based Design and Real-Time

Components

Chapter 7
Early Time-Budgeting for Component-Based
Embedded Control Systems

Manoj G. Dixit, S. Ramesh and Pallab Dasgupta

Abstract One of the challenging steps in the development of component based
embedded control systems involves decomposition of feature or system level timing
requirements into component level timing requirements. Often it is observed that the
timing is introduced at a later stage in the development cycle and ad hoc estimates
are made which lead to costly and multiple design iterations. This chapter proposes
a methodology that addresses this problem using a simple but powerful idea of
using parametric specification. A key step in the methodology is component time-
budgeting, which involves identifying a set of parametric timing requirements for the
components realizing a feature functionality. This is followed by a verification step
which computes a set of constraints on the parameters such that any valuation of the
parameters satisfying the constraints achieves the feature requirements. This avoids
the ad hoc time estimates and the consequent design iteration. The methodology is
formalized using Parametric Temporal Logic and illustrated on a reasonably sized
automotive case study.

7.1 Introduction

Modern automobiles and aircrafts are complex embedded control systems hav-
ing hundreds of features like collision mitigation [1] and Brake By-Wire [2]. The
software engineering methodologies for such real-time embedded systems have

M. G. Dixit (B) · S. Ramesh
India Science Lab, GM R&D, Bangalore, India
e-mail: mgdixit@gmail.com

S. Ramesh
e-mail: ramesh.s@gm.com

P. Dasgupta
I.I.T Kharagpur, Kharagpur, India
e-mail: pallab@cse.iitkgp.ernet.in

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 123
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_7,
© Springer Science+Business Media New York 2014

124 M. G. Dixit et al.

recommended hierarchical decomposition techniques for implementing features
using multiple components [3–8]. In our view, there are two distinct steps found in
these methodologies: functional decomposition and component implementation. The
functional decomposition identifies components and their requirements for achieving
feature requirements.The component implementation step involves mapping com-
ponent functionality to a set of tasks which are executed over one or more computing
nodes in a distributed network. The component-node allocation [9], component-task
mapping [10], task-period synthesis [11] and schedule definition [12] are some prob-
lems that get addressed during this step.

To manage the increasing complexity and scalability issues, there is a further need
to refine the above steps and bring verification and validation flow much earlier in
the development phase. This poses several challenges in specifying the given system
at right level abstraction so that formal reasoning can be done. Specifically, we focus
on component timing requirements and observe that due to lack of effective methods
for identifying them at an early stage of functional decomposition, ad hoc estimates
are made in practice. This usually leads to costly design iterations.

In order to bridge the above gap, we have proposed an early stage component time-
budgeting methodology. A salient feature of this methodology is the use of parametric
timing in the requirement specifications. As shown in Fig. 7.1, we have enhanced
the present functional decomposition step to identify the component level paramet-
ric timing requirements from feature level real-time requirements. This is followed
with a verification step which computes a set of constraints from such parameter-
ized specifications. The computed constraints provide guarantee that any common
solution provides the values for the parameters so that the component requirements
instantiated with these parameter values imply the feature requirements. The com-
puted constraints are then used in the design space exploration stage. At this stage,
application specific additional constraints can be placed on the parameters and a
suitable optimization criteria can be selected. The combined set of constraints can
be optimized with respect to the selected criteria to obtain a parameter valuation.
We observe that separating out constraints in this way provides significant flexibil-
ity in selecting suitable concrete component specifications for the later stages of
development.

Fig. 7.1 Component time-budgeting methodology

7 Early Time-Budgeting for Component-Based Embedded Control Systems 125

In this chapter we have presented the above methodology by using Parametric
Temporal Logic (PLTL) [13] for specifying requirements. PLTL is suitable for spec-
ifying qualitative and symbolic temporal relationships between important events of
the given system. This provides a right level of abstraction for specifying early stage
requirements. We reduce the component time-budgeting computation to checking
validity of parametric PLTL formulae and used some of the interesting properties of
PLTL for computing the constraints. A preliminary version of this methodology has
been presented in Refs. [14, 15]. A more comprehensive description including case
studies is available in Ref. [16].

7.1.1 Related Work

In the traditional development, the configuration of timing values is usually restricted
to the attributes of tasks/messages [10, 12, 17, 18]. Our work focuses on early phase
of requirements engineering and on configuring timing bounds in component timing
requirements. The automotive standard AUTOSAR [19] has proposed the use of
TADL specification language and TIMMO methodology [20] for an early modeling
and analysis of timing requirements. The primary difference as we see between the
two approaches is the use of parameters to represent the component level timing.
The constraints computed in our approach provide more flexibility in selection of
suitable values for timing constants. TADL on the other hand, is a domain specific
language and suitable for specifying architectural level timing properties. Temporal
logics have always been a natural choice as a specification language for real-time
embedded systems [13, 21–25]. The time-budgeting approach outlined in this chapter
uses temporal logic PLTL [13] for specifying feature level real-time and component
level parametric real-time requirements. In this work, we have provided more scalable
algorithms for computing a constraint based representation of the validity set for a
given parametric formula than the solutions given in Ref. [13].

The rest of the chapter is organized as follows: Sect. 7.2 formalizes the compo-
nent time-budgeting methodology, Sect. 7.3 describes the constraint computation
methods for parameterized specifications, Sect. 7.4 describes the results on some of
the case studies and Sect. 7.5 concludes by providing future directions for research.

7.2 Time-Budgeting Methodology

At the broad level, the time-budgeting methodology takes the following (extended)
functional decomposition as its inputs:

• A set of features and their real-time requirements,
• A component hierarchy implementing these features along with the parametric-

time requirements identified for each component while decomposing the feature
requirements, and

126 M. G. Dixit et al.

• Add-on constraints and optimization criteria over component parameters to con-
strain their values.

The methodology outputs a parameter valuation called component time-budget such
that component requirements when instantiated with this valuation together satisfy
feature requirements. In the next subsection, we have formalized all inputs and
defined a component time-budget based on it. In the subsequent subsection, the
component time-budget computation procedure is given.

7.2.1 Formalization of Component Time-Budgeting

For specifying requirements, we have used Parametric Temporal Logic (PLTL) pro-
posed by Alur et al. [13]. PLTL extends the well known Linear Temporal Logic (LTL)
[25] operators with quantitative and parametric bounds over the set N of non-negative
integers on event occurrences. Given a set P of atomic propositions and two disjoint
sets X,Y of parameter variables, let p ∈ P, x ∈ X ∪N, y ∈ Y ∪N. PLTL formulae
are defined using the following grammar1:

φ := p | ¬φ | φ ∨ φ | φ ∧ φ | Oφ | �φ | ♦φ | φ U φ | φ R φ | �≤yφ | ♦≤xφ

∨,∧,¬ are standard propositional connectives; � (‘Globally’), ♦ (‘Eventually’),
U (‘Until’), R (‘Release’), O (‘Next’) are temporal operators.For example, the
PLTL formula �≤10 p requires the event p to occur continuously for 10 units of
time, whereas, the PLTL formula ♦≤x q requires that the event q should occur within
x units of time. Let α : X ∪ Y → N be a parameter valuation. A PLTL formula
Φ is satisfiable with respect to α iff the parameter-free formula Φ(α) obtained by
substituting z ∈ X ∪ Y with α(z) is satisfiable. For checking the satisfiability of
Φ(α), a simple extension of the standard semantic rules for LTL is used. PLTL� is
a fragment of PLTL in which parameter variables are associated only with �≤y and
PLTL♦ is a fragment of PLTL in which parameter variables are associated only with
♦≤x . A requirement pattern that is of particular interest to this work is the bounded-
response pattern. A bounded-response formula has the form �(φ ⇒ ♦≤xψ), where,
φ and ψ are Boolean formulae and x ∈ X ∪ N.

The component hierarchy for the given feature set is specified by a Directed
Acyclic Graph (DAG), in which the root nodes (i.e., those without incoming edges)
correspond to features, whereas, the remaining ones represent components. We
specify the feature requirement decomposition across the component hierarchy
by a collection of Requirement Decomposition Pairs (RDPs). An RDP is a pair
(f, {g1, . . . , gn}) such that g1, . . . , gn are the requirements identified while decom-
posing the requirement f . Note that these requirements correspond to feature/
components in the successive levels of the hierarchy.

1 The logic given in [13] has formulae only in negation normal form (‘¬’ precedes only members
of P), whereas, we use ‘¬’ with arbitrary formulae. However, two logics are equivalent.

7 Early Time-Budgeting for Component-Based Embedded Control Systems 127

Add-on constraints are standard linear constraints over component parameters.
An optimization criterion is an objective function like maximizing or minimizing
parameter-sum for selecting a suitable valuation of parameters. This criterion is
specified at each successive levels of decomposition in the hierarchy.

Example 1 Fig. 7.2a shows the component decomposition DAG for two automotive
features: Adaptive Cruise Control (ACC) and Collision Mitigation (CM). ACC pro-
vides control functionality to maintain vehicle at driver set-speed or set-gap from
a lead vehicle. CM provides functionality to mitigate intensity of collision through
braking. All internal nodes are components implementing these two features. For
example, Sensor Subsystem provides functionality for lead vehicle detection. This
component is further divided into three subcomponents: Radar, Dynamics and Data
Fusion. The table in Fig. 7.2b shows an illustrative example of decomposition of
ACC feature requirement φ1 into component level requirements ψ1 and ψ2. This
decomposition is described by an RDP (φ, {ψ1, ψ2}). Note that the time-bound is
specified by a constant (500) in the feature requirement, whereas, it is parametric
(x1, x2) in component requirements. �

For the given functional decomposition, a component time-budget is defined as
follows:

(a)

(b)

Fig. 7.2 Functional decomposition of ACC feature

128 M. G. Dixit et al.

Definition 1 (Component Time-budget) A component time-budget is a parameter
valuation α such that for any RDP (Φ, {�1, . . . , �n}) in the given functional decom-
position, the parameter-free formula (

∧n
i=1�i ⇒ Φ)(α) is valid. �

Observe that there may be many choices for a component time-budget. For exam-
ple, if we restrict the functional decomposition to the requirements given in the table
from Fig. 7.2b, any solution satisfying x1 + x2 ≤ 500 is a component time-budget.

7.2.2 Component Time-Budget Computation

For a given functional decomposition, we now describe a method for the component
time-budget computation. At the broad level, this method involves traversing the
given component hierarchy and incrementally deriving parameter values resulting
in a component time-budget. For example, the given feature level timing constants
are first used in finding a suitable valuation of parameters defined for all top level
components. These values are subsequently used in finding a suitable valuation of
parameters defined for their sub-components and so on.

As discussed in the previous subsection, there may be various choices for a suitable
parameter valuation which results in a component time-budget. Hence, to provide
necessary flexibility, our method involves computing a constraint viz. requirement
decomposition constraint (RDP constraint) corresponding to each RDP in the given
functional decomposition. Formally,

Definition 2 (Requirement Decomposition Constraint) A constraint C(X,Y) is a
requirement decomposition constraint for an RDP (Φ, {�1, . . . , �n}) provided for
any valuation α satisfying C(X,Y), the parameter-free formula (

∧n
i=1�i ⇒ Φ)(α)

is valid. �

For simplicity of description below, we assume that component hierarchy involved
in the functional decomposition is defined for a single feature. The component level
time-budgeting method is a semi-decision procedure involving traversal of the DAG
for the given component hierarchy in the depth-first fashion starting from the feature
node. At each non-leaf component node in the traversal, as shown in Fig. 7.3, the Time
Budgeting Step uses the following two sub-steps to compute a suitable valuation of
parameters defined for its child node components:

• The Requirements Decomposition Constraint Extractor sub-step computes RDP
constraints for all RDPs identified for the next-level functional decomposition of
the given component node. It outputs Requirement Decomposition Constraint as
a conjunction of all computed RDP constraints.
• The Design Space Explorer sub-step combines the requirement decomposition

constraint with add-on constraints defined by the user and outputs a parameter
valuation satisfying the optimization criteria for the given node. Observe that this
defines a valuation of all parameters used in the requirements of child nodes of the

7 Early Time-Budgeting for Component-Based Embedded Control Systems 129

Fig. 7.3 Computing parameter valuation at a node in DAG

node under processing. The child node timing requirements are instantiated with
the corresponding parameter values before advancing the traversal.

The requirement decomposition constraint computed above, may be unsatisfiable
in some cases. In such cases, the traversal is back-tracked and the design space
exploration sub-step is repeated at the parent node to select another valuation so that
traversal can be advanced. It is easy to check that when DAG traversal is complete,
the resulting parameter valuation is a component time-budget.

We now discuss the important sub-step of computing an RDP constraint in the
time-budgeting algorithm. Given an RDP, we compute the RDP constraint in the
form of a linear predicate. Formally,

Definition 3 (Linear Predicate) A linear predicate is either a linear inequality or a
Boolean combination of linear inequalities. �

The required RDP constraint computation is achieved in the following two steps:

1. For an RDP, Emptiness and Universality Checker finds out whether the corre-
sponding RDP constraint is trivial or not.

2. If the RDP constraint is found to be non-trivial in the previous step, then:

• If all formulae involved in the given RDP are in bounded response form, then
Bounded Response Extractor computes the required RDP constraint.
• F or an RDP having more general formulae, Corner Point Extractor computes

the required RDP constraint.

In the next section we describe the details of the constraint computation methods
used by the above constraint extractors.

130 M. G. Dixit et al.

7.3 RDP Constraint Computation Methods

Given an RDP (�, {�1, . . . , �n}), we present methods to compute a linear predicate
as its RDP constraint. Recall that any solution to the computed linear predicate makes
the RDP implication formula valid.

7.3.1 Emptiness and Universality Check Method

For the given RDP, we have defined a method to check whether the corresponding
RDP constraint is trivial i.e., whether the set of valuations that make the RDP impli-
cation formula valid is empty or universal [15]. If the set of valuations that make
the RDP implication valid is found to be empty, then the RDP constraint is false,
which represents an unsatisfiable constraint. If the set of valuations is found to be
universal, then the RDP constraint is

∧
x∈X∪Y x ≥ 0.

Our method involves reducing the RDP implication formulaΦ � (
∧n

i=1�i ⇒ �)

to a parameter-free formula and then carry out the validity check over the reduced
formula. To obtain a parameter-free formula, a simple parameter abstraction opera-
tion has been defined for PLTL formulae. This operation reduces a PLTL formula�
to the parameter-free formula �̃ by simply dropping the parameter subscripts from
the temporal operators. For example, let� = �≤y p1∧�≤10 p2 where p1, p2 ∈ P .
Then the parameter-abstraction of� is the formula �̃ = � p1 ∧�≤10 p2. Note that
we do not drop the subscript ‘≤ 10’ while defining Φ̃.

Let VΦ represent the set of all valuations that make the RDP implication for-
mula Φ valid. 0X and 0Y are (partial) parameter valuations that assign the value
0 to all members of the sets X and Y respectively. We are now ready to describe
the solution for emptiness and universality checks. For PLTL fragments and empti-
ness/universality problems, the entries in Table 7.1 contain parameter-free formulae
derived from the given RDP implication formula Φ. The row entries are classified
based on whether Φ is equivalent to a formula in PLTL�, PLTL♦ fragments (Rows
2 and 3 respectively) or not (Row 4). For example, the entry, Φ(0X), corresponding
to ‘PLTL♦ fragment’2 and ‘VΦ universality’ is obtained by substituting all members
of the parameter set X in Φ with the constant 0. For each fragment, the set VΦ is

Table 7.1 Parameter-free formulae for emptiness and universality checks

VΦ is Non-Empty VΦ is Universal

PLTL� Φ(0Y) Φ̃

PLTL♦ Φ̃ Φ(0X)

PLTL ˜Φ(0Y) ˜Φ(0X)

2 Recall for PLTL♦ formulae, parameters from the set X are only used.

7 Early Time-Budgeting for Component-Based Embedded Control Systems 131

non-empty whenever the corresponding formula in Column 2 is valid. For example,
in case of PLTL� fragment, VΦ is non-empty when Φ(0Y) is valid. In the similar
way, the set VΦ is universal whenever the corresponding formula in Column 3 is
valid. For example, in case of PLTL� fragment, VΦ is universal when Φ̃ is valid.

7.3.2 Bounded Response Constraint Extraction Method

We consider the constraint computation case when the given RDP (�, {�1, . . . , �n})
contains only bounded-response formulae. A bounded-response formula �(φ ⇒
♦≤xψ)has two main Boolean subformulae viz. antecedent,φ, and consequent,ψ . For
a bounded-response formulaΦ, we represent antecedent and consequent subformulae
by Φa and Φc respectively.

Our constraint computation method starts with the set of antecedent and conse-
quent subformulae obtained from the given RDP and constructs a rooted tree. The
tree consists of three types of nodes: property-nodes labeled with one of the formulae
in the given RDP and two special types of nodes viz. and-node and or-node. Once
the tree is constructed, the linear predicate computation involves assigning a linear
predicate to each node in the tree.

In the tree construction process, we have used a notion of an irreducible cover for
a collection of Boolean formulae. Specifically, we are given a Boolean formula γ
and a set {γ1, . . . , γn} of Boolean formulae. An irreducible cover of γ is a minimal
subset H of {γ1, . . . , γn} such that the Boolean implication formula γ ⇒∨

γ ′∈H γ
′

is valid. For example, for the formula p ∨ q, p, q ∈ P and the set {p, q}, there is a
single irreducible cover viz. {p, q}, whereas, for the formula p ∧ q with the same
set, there are two irreducible covers: {p} and {q}.

Tree Construction: We are now ready to describe the details of tree construction
for the RDP (�, {�1, . . . , �n}). The root of the tree is a property-node labeled�. The
tree expansion happens only at a property-node provided the following conditions
are met: (a) the RDP formula labeling the node is different from formulae labeling
any of its predecessor property-nodes and (b) the consequent of the RDP formula
labeling the node does not logically imply consequent of�. The expansion involves
the following steps:

1. Let the given property-node be labeled with the formula � from the RDP. We
consider a Boolean formula γ as follows: If the property-node is the root, then γ
is�a ∧¬�c, otherwise γ is�c ∧¬�c. We compute all irreducible covers of γ
defined by the set {�a

1 , . . . , �
a
n }. If at least one irreducible cover exists, then one

or-node is added as a child of the current property-node.
2. Let H be an irreducible cover obtained in the previous step. Then we define

H ′ ⊆ {�1, . . . , �n} such that δ ∈ H ′ iff δa ∈ H .
3. For every set H ′ obtained in the previous step, one and-node is added as a child

of the or-node added in step 1. Additionally, for every member of H ′, a property-
node labeling it is added as a child of the newly added and-node for H ′.

132 M. G. Dixit et al.

Example 2 Let p, q, r and s be the atomic propositions. We consider two different
definitions of the RDP (Φ, {�1, �2}):
1. Φ � �(p ⇒ ♦≤5r) and �1 � �(p ⇒ ♦≤x q), �2 � �(q ⇒ ♦≤yr). Fig. 7.4a

shows the tree for this RDP.
2. Φ � �(p ∨ q ⇒ ♦≤5r) and �1 � �(p ⇒ ♦≤xr), �2 � �(q ⇒ ♦≤yr).

Fig. 7.4b shows the tree for this RDP. �

Constraint Computation: Once the tree is constructed for the given RDP, we
associate a constraint with each node in the tree. If the tree has single node and
�a ⇒ �c is a valid formula, then the node constraint is

∧
x∈X∪Y x ≥ 0, otherwise

it is false. If the tree is non-trivial, we assign a node constraint as follows:

• property-node: If the property-node is a non-leaf node, the node constraint is
same as the constraint associated with its or-child. In the other case, let � be
the label of the node, if �c ⇒ �c is a valid formula, then the node constraint
is

∑
x∈X ′ x ≤ n, where, X ′ is the set of parameters associated with the formulae

labeling all property-nodes on the path from root to current node and n is the
constant (or a parameter) used in the formula � from the RDP. If the implication
is not valid, then the node constraint is false.
• or-node: the node constraint equals disjunction of all node constraints associated

with and-child nodes.
• and-node: the node constraint equals conjunction of all node constraints associated

with property-child nodes.

We have the following result which is proved in [16].

Theorem 1 For the given RDP, the linear predicate computed for the root node of
the constructed tree is an RDP constraint.

For example, the RDP constraint for the tree in Fig. 7.4a is x + y ≤ 5, whereas,
it is (x ≤ 5) ∧ (y ≤ 5) for the tree in Fig. 7.4b.

7.3.3 Corner Point Constraint Extraction Method

We now discuss RDP constraint computation for the general case. We consider the
RDP implication formula (

∧n
i=1 Ψi ⇒ Ψ) and consider the three cases depending

(a) (b)

Fig. 7.4 Trees constructed for RDPs in Example 7.2 a Tree for (1) b Tree for (2)

7 Early Time-Budgeting for Component-Based Embedded Control Systems 133

on whether this formula: (a) belongs to PLTL� fragment (b) belongs to PLTL♦
fragment and (c) neither of the two subfragments.

For a PLTL� formulaΦ, let VΦ be the set of all valuations that makeΦ valid. We
have developed a prune and search based algorithm for computing the linear predicate
based representation of the set VΦ [14, 16]. The use of downward closure property
satisfied by PLTL� formulae is central to this approach. According to this property,
for a formulaΦ, if α ∈ S, then a valuation β, such that ∀y ∈ Y, β(y) ≤ α(y) (i.e., α
dominates β), also belongs to S. Based on this, our method computes all members of
VΦ which are not dominated by any other valuation. We call these as corner points
of VΦ . Let α1, . . . , αk be all corner points of VΦ , then the constraint represented by
them is:

∨k
i=1(

∧
y∈Y y ≤ αi (y)). The following result ensures the correctness of the

corner point based constraint computation [16].

Theorem 2 For a PLTL� formula Φ, let C(X,Y) be the corner point based con-
straint, then C(X,Y) is a representation of VΦ .

The prune and search algorithm searches the space of parameter valuations
exhaustively to find all corner points. An example of the search step for two dimen-
sional case is shown in Fig. 7.5a. The figure shows the region below staircase con-
sisting of valuations that make the implication formula corresponding to the RDP 1
from Example 7.2 valid. α1, . . . , α6 are the corner points of this validity region. The
search-step iteratively finds a corner point starting from the given base point (origin
in the figure). The iteration 1 finds the farthest member β in the validity set lying on
the diagonal originating at the base point. Note that β has optimal value in at least
one of x1 or x2. The parameter x2 is fixed because it is optimal and the iteration 2 is
carried out in the similar way as the iteration 1 but in the reduced dimension. This
results in finding the corner point α4. The prune-step shown in Fig. 7.5b partitions
N

2 into 4 parts at α4: R1, . . . ,R4. Note that regions R1 and R3 can-not contain any
corner points, hence are pruned from further search. The search-step is repeated by
selecting new base-points in the remaining two regions. For the k dimensional case,

(a) (b)

Fig. 7.5 Corner point extraction steps for RDP 1 in Example 7.2

134 M. G. Dixit et al.

at most k search iterations are required to reach a corner point, whereas, prune step
finds at most k new base-points.

For the unbounded sets, we allow ‘∞’ as an additional value that a parameter
can have in a corner point. To locate the farthest point, we use the universality test
discussed previously. We have proved a more general result that any downward closed
subset of k ≥ 1, (N ∪∞)k has only finite number of corner points [16]. This result
ensures the termination of our algorithm.

Based on duality relationship [13] between PLTL� and PLTL♦, the same algo-
rithm can be adapted for PLTL♦ fragment [16]. For the general case, it is shown
that there does not exist an algorithm that given a PLTL formula Φ, computes a
linear predicate over X ∪ Y which defines the set VΦ [15] . Hence, the constraint
computation method uses the heuristic of reducing the given PLTL formula to one
or more formulae in PLTL� or PLTL♦ fragments by fixing one or more parameters
with constants. The corner point algorithm on reduced formulae is used to compute
a linear predicate which is an under-approximation of the original set VΦ [16].

7.4 Case Studies

We have implemented a prototype version of our methodology in Eclipse [26], using
the Java programming language, the NuSMV model checker [27] and the Yices
constraint solver [28]. The experiments were carried out on a machine with Intel
Centrino Duo Processor (2.2 GHz) and 2GB RAM. For demonstration, we considered
the two automotive features, ACC and CM introduced earlier in Example 1.

We started with a single-level functional decomposition. For specifying complex
temporal relationships involved in the decomposition, we needed general PLTL for-
mulae. In the time-budgeting step, only corner-point constraint extraction method
was used. In our experimentation we have found that corner points are only a small
fraction of total points in the solution region. Figure 7.6a shows their distribution.
The horizontal axis shows the RDP identifiers and the vertical axis shows the per-
centage split between non-corner points (light shade) and corner points (dark shade).
The average run-time of constraint computation is observed to be increasing rapidly
with search dimension leading to scalability issues.

To get around the scalability issues, we experimented with a separate multi-level
functional decomposition shown in Fig. 7.2a. In this decomposition, all top level com-
ponents had requirements in the bounded-response form. The hierarchical decompo-
sition resulted in all leaf level components having requirements in simpler form as
compared to the ones in our earlier decomposition. In the time-budgeting step all con-
straint extraction methods were used. The analysis time was found to be substantially
improved in this case.

In all, we considered around 120+ feature and component timing requirements
in our analysis. The table in Fig. 7.6b shows the performance metric for a single
and multilevel component decomposition approach. The latter one is more scalable
and has significantly better run-time due to the use of bounded-response pattern in

7 Early Time-Budgeting for Component-Based Embedded Control Systems 135

(a)

(b)

(c)

Fig. 7.6 Illustrative results for ACC and CM time-budgeting a Corner Point-Internal Point Distribu-
tion b Single Level/Multi Level Decomposition Comparison c Illustration of Varying Time-Budgets

the requirements. Our experimental results have shown that a combination of these
analysis methods supported by hierarchical decomposition will improve overall run-
time of the analysis and provide scalability to handle functional decompositions
found in practice.

For the design space exploration, 100+ add-on constraints were used. The add-on
constraints were of two types: (a) range constraint for a parameter and (b) synchro-
nization constraint to bind the relative difference between one or more parameters.
We have additionally defined a hierarchical multi-parameter optimization scheme.
In this scheme, we assign a priority to each parameter and parameter valuations are
selected in the priority order. For selecting optimal valuation at each priority level,
maximizing sum of parameters was used as an optimization criteria.

We repeated the time-budgeting step for the three feature combinations: ACC
only, CM only and ACC/CM together. Figure 7.6c shows the computed parameter
values for two components in the decomposition. The highlighted gray cells show
the impact of feature level timing on component level timing and how component

136 M. G. Dixit et al.

level time-budget varies with the selected feature combination. For example, when
ACC is only present, the value of parameter w1 for Brake Controller Component is
200 ms, whereas, it reduces to 160 ms, whenever CM is present.

7.5 Conclusion and Future Work

We have presented an early stage time-budgeting methodology to address the prob-
lem of decomposition of feature level timing requirements to component level timing
requirements. A salient feature of this methodology is the use of parametric speci-
fications for modeling requirements. A suitable valuation of parameters is found by
computing constraints over these parameters.

The work done here can be extended in many ways: To improve scalability,
specially tuned constrained computation algorithms for widely used requirement
patterns are required. Another similar interesting problem to explore is to define
a more efficient satisfiability checking method for parameter-free PLTL formulae.
For embedded systems development, an important problem is to define an integrated
methodology consisting of time-budgeting methodology and architecture exploration
methods so as to refine the feature and component level timing into architectural level
attributes like periods of tasks.

References

1. FMCSA: Forward Collision Warning Systems (CWS) (2005). http://www.fmcsa.dot.gov/facts-
research/research-technology/report/forward-collision-warning-systems.htm

2. Plunkett, D.: Safety critical software development for a brake by-wire system. In: SAE Tech-
nical Paper Series, 01-1672 (2006)

3. Cameron, J.: An overview of JSD. IEEE Trans. Softw. Eng. 12(2), 938–949 (1986)
4. Douglass, B.: Real Time UML. Pearson, Education, Boston (2004)
5. Gomma, H.: A software design method for real-time systems. Commun ACM 27(9), 938–949

(1984)
6. Hatley, D., Pirabhai, I.: Strategies for Real-time System Specificaiton. Dorset House, New York

(1988)
7. Ward, P., Mellor, S.: Structured Development for Real-time Systems. Prentice Hall, Upper

Saddle River, NJ (1985)
8. Parnas, D., Clements, P., Weiss, D.: The modular structure of complex systems. In: IEEE

Conference on, Software Engineering, pp. 551–556 (1984)
9. Wang, S., Merrick, J.R., Shin, K.G.: Component allocation with multiple resource constraints

for large embedded real-time software design. In: IEEE Real-Time and Embedded Technology
and Applications, Symposium, pp. 219–226 (2004)

10. Wang, S., Shin, K.G.: Task construction for model-based design of embedded control software.
IEEE Trans. Softw. Eng. 32(4), 254–264 (2006)

11. Davare, A., Zhu, Q., Natale, M.D., Pinello, C., Kanajan, S., Sangiovanni-vincentelli,
A.L.: Period optimization for hard real-time distributed automotive systems. In: Design
Automation Conference, pp. 278–283 (2007). <error l="82" c="Undefined command"
/>10.1109/DAC.2007.375172.

http://www.fmcsa.dot.gov/facts-research/research-technology/report/forward-collision-warning-systems.htm
http://www.fmcsa.dot.gov/facts-research/research-technology/report/forward-collision-warning-systems.htm

7 Early Time-Budgeting for Component-Based Embedded Control Systems 137

12. Natale, M.D., Zheng, W., Pinello, C., Giusto, P., Sangiovanni-Vincentelli, A.L.: Optimizing
end-to-end latencies by adaptation of the activation events in distributed automotive systems.
In: IEEE Real-Time and Embedded Technology and Applications Symposium, (2007)

13. Alur, R., Etessami, K., Torre, S.L., Peled, D.: Parametric temporal logic for “Model Measuring”.
ACM Trans. Comput. Logic 2(3), 388–407 (2001)

14. Dixit, M.G., Dasgupta, P., Ramesh, S.: Taming the component timing: A CBD methodology
for component based embedded systems. In: Design Automation and Test in Europe (DATE),
(2009)

15. Dixit, M., Ramesh, S., Dasgupta, P.: Some results on parametric temporal logic. Inf. Process.
Lett. 111(3), 994–998 (2011)

16. Dixit, M.G.: Formal methods for early time-budgeting in component based embedded control
systems. Ph.D. thesis, IIT Kharagpur (2012)

17. Bartolini, C., Lipari, G., Natale, M.D.: From functional blocks to the synthesis of the architec-
tural model in embedded real-time applications. In: IEEE Real-Time and Embedded Technol-
ogy and Applications, Symposium, pp. 458–467 (2005)

18. Hamann, A., Jersak, M., Richter, K., Ernst, R.: Design space exploration and system opti-
mization with SymTA/S - symbolic timing analysis for systems. In: IEEE Real-Time Systems,
Symposium, pp. 469–478 (2004)

19. AUTOSAR Consortium: AUTomotive Open System ARchitecture. http://www.autosar.org
20. Klobedanz, K., Kuznik, C., Thuy, A., Mueller, W.: Timing modeling and analysis for

AUTOSAR-based software development - A case study. In: Design Automation and Test in,
Europe, pp. 642–645 (2010)

21. Alur, R., Henzinger, T.: Real-time logics: Complexity and expressiveness. Inf. Comput. 104(1),
35–77 (1993)

22. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge, MA,
USA (2000)

23. Emerson, A.E., Mok, A., Sistla, A., Srinivasan, J.: Quantitative temporal reasoning. In: Com-
puter Aided Verification, pp. 136–145 (1994)

24. Emerson, A.E., Trefler, R.: Parametric quantitative temporal reasoning. In: IEEE Symposium
on Logic in Computer Science, pp. 336–343 (1999)

25. Pnueli, A.: The temporal logic of programs. In: 18th IEEE. Foundations of Computer Science,
pp. 46–57 (1977)

26. Eclipse Modeling Framework. http://www.eclipse.org
27. NuSMV: A New Symbolic Model Checker. http://nusmv.fbk.eu//
28. Yices: An SMT Solver. http://yices.csl.sri.com/

http://www.autosar.org
http://www.eclipse.org
http://nusmv.fbk.eu//
http://yices.csl.sri.com/

Chapter 8
Contract-Based Reasoning for Component
Systems with Rich Interactions

Susanne Graf, Roberto Passerone and Sophie Quinton

Abstract In this chapter we propose a rule unifying circular and non-circular
assume-guarantee reasoning and show its interest for contract-based design and ver-
ification. Our work was motivated by the need to combine, in the top-down method-
ology of the FP7 SPEEDS project, partial tool chains for two component frameworks
derived from the HRC model and using different refinement relations. While the L0
framework is based on a simple trace-based representation of behaviors and uses
set operations for defining refinement, the more elaborated L1 framework offers the
possibility to build systems of components with complex interactions. Our approach
in L1 is based on circular reasoning and results in a method for checking contract
dominance which does not require the explicit composition of contracts. In order to
formally relate results obtained in L0 and L1, we provide a definition of the minimal
concepts required by a consistent contract theory and propose abstract definitions
which smoothly encompass hierarchical components. Finally, using our relaxed rule
for circular reasoning, we show how to use together the L0 and L1 refinement rela-
tions and as a result their respective tool chains.

S. Graf (B)
VERIMAG / CNRS, 2 avenue de Vignate, 38610 Gières, France
e-mail: susanne.graf@imag.fr

R. Passerone
DISI / University of Trento,via Sommarive 5, 38123 Trento, Italy
e-mail: roberto.passerone@unitn.it

S. Quinton
IDA / TU Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
e-mail: quinton@ida.ing.tu-bs.de

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 139
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_8,
© Springer Science+Business Media New York 2014

140 S. Graf et al.

8.1 Introduction

Contract and interface frameworks are emerging as the formalism of choice for sys-
tem designs that require large and distributed teams, or where the supply chain is
complex [1–3]. This style of specification is typically employed for top-down design
of systems of components, where the system under design is built by a sequence of
decomposition and verification steps. In this chapter we present and study some dis-
tinctive features of contract theories for frameworks in which the interaction between
components is “rich”, i.e., more complex than the usual input/output (I/O) communi-
cation. One such component framework is BIP [3] which allows multi-party synchro-
nizations scheduled according to priorities. In addition, we show how to combine
results obtained using different contract refinement relations.

Our work has its practical motivation in the component framework HRC [2–
5] (standing for Heterogeneous Rich Components) defined in the FP7 IP project
SPEEDS [6], which has been reused in the FP7 STREP project COMBEST [7] and
the ARTEMIS project CESAR [8]. The HRC model defines component properties
in terms of extended transition systems and provides several composition models,
ranging from low-level semantic composition to composition frameworks underlying
the design tools used by system designers. More precisely, HRC is organized around
two abstraction levels called L0 and L1 and describing respectively the core level
and the analysis tool level of HRC [9]. That is, L0 determines the expressive power
of the entire model and there exist translations from L1 models to L0. On the other
hand, L1 extends the core model with concepts such as coordination mechanisms —
the rich interactions mentioned in the title. Analysis tools can then take advantage of
these additional concepts to make system descriptions more concise and therefore
verification more efficient.

Our objective is to allow combined use of synchronous tools like Simulink [10]
for L0 and synchronization-based tools like BIP for L1, which have complementary
strengths. For example, Simulink is very convenient for modeling physical dynamic
systems or streaming applications. In contrast BIP, which encompasses rich inter-
actions, is well adapted for describing the dynamic behavior of sets of components
depending on available resources for memory, energy, communication bandwidth
etc. We are interested in this chapter in the relation between the L0 and L1 con-
tract frameworks as we want to use verification results established in L1 for further
reasoning within L0. The presence of rich interactions in L1 makes contract compo-
sition problematic and leads us to focus instead on circular reasoning, which allows
a component and its environment to be refined concurrently—each one relying on
the abstract description of its context—and entails an interesting rule for proving
dominance, i.e., refinement between contracts. In order to relate L0 and L1, we
define a generic contract framework that uses abstract composition operators and
thus encompasses a variety of interaction models, including those for L0 and L1.
Finally, we show how to use a relaxed rule for circular reasoning to combine partial
tool chains for both frameworks into a complete tool chain for our methodology.

8 Contract-Based Reasoning for Component Systems with Rich Interactions 141

To the best of our knowledge, this is the first time that a rule combining dif-
ferent refinement relations is proposed and used to unify two contract frameworks.
While circular reasoning has been extensively studied, e.g., in [11, 12], existing work
focuses on finding sufficient conditions for soundness of circular reasoning while we
focus on how to use circular reasoning in a contract-based methodology. Non-circular
assume-guarantee reasoning is also a topic of intense research focused on finding a
decomposition of the system that satisfies the strong condition imposed on at least
one of its components [13]. Finally, our contract frameworks are related to interface
automata [14]. Since de Alfaro and Henzinger’s seminal paper many contract and
interface theories have been developed for numerous frameworks (see e.g. [15–20] to
name just a few). However these theories focus on composition of contracts while we
strive to avoid that and furthermore they do not handle rich interactions. Examples
include [20, 21] based on modal I/O automata and [16] defining relational interfaces
for capturing functional dependencies between inputs and outputs of an interface.
Preliminary versions of our contract framework appeared in [22, 23] but did not
address the question of combining results obtained for different refinements.

This chapter is structured as follows: Sect. 8.2 describes our design and verification
methodology as well as generic definitions of component and contract framework.
It then discusses sufficient reasoning rules for establishing dominance without com-
posing contracts. Section 8.3 presents how the proposed approach is applied to the
L0 and L1 frameworks. In particular it shows how their different satisfaction rela-
tions may be used together using relaxed circular reasoning and discusses practical
consequences of this result. Section 8.4 concludes the chapter. The proofs of all
theorems presented in this paper are described in [24].

8.2 Design Methodology

Our methodology is based on an abstract notion of component. We characterize a
component K by its interface defined as a set P of ports which describe what can
be observed by its environment. We suppose given a global set of ports Ports, which
all sets of ports in the following are subsets of. In addition, components are also
characterized by their behavior . At this level of abstraction, we are not concerned
with how behaviors are represented and develop our methodology independently
of the particular formalism employed. Interactions (potentially complex) between
components are expressed using the concept of glue operator [25] . A glue defines
how the ports of different components are connected and the kind of synchronization
and data exchange that may take place. We denote the composition of two components
K1 and K2 through a glue gl as gl{K1, K2}. The glue must be defined on the union
of the ports P1 and P2 of the components.

In order to separate the implementation phase of a component from its integration
into the system under design, we use contracts [5, 22, 26] . A contract for a component
K describes the interface P of K , the interaction between K and its environment E ,
the expected behavior of E , called the assumption A of the contract, and the expected

142 S. Graf et al.

Fig. 8.1 A contract (A, gl,G) for an interface P

behavior of K , called the guarantee G. Assumptions and guarantees are in turn
expressed as components, defining the interface and the behavior that are considered
acceptable from the environment and from the component. Thus, formally, a contract
C for an interface P is a triple (A, gl,G), where gl is a glue operator on P ∪PA

for some PA disjoint from P; the assumption A is a component with interface PA;
and the guarantee G is a component with interface P . Note that the interface of the
environment is implicitly defined by gl. Graphically, we represent contracts as in
Fig. 8.1.

From a macroscopic point of view, we adopt a top-down design and verification
methodology (see Fig. 8.2) in which global requirements are pushed progressively
from the top-level system to the low-level atomic components. As usual, this is just a
convenient representation; in real life, the final picture is always obtained in several
iterations alternatively going up and down the hierarchy [27].

While the refinement relation between a specification and an implementation is
at the core of component-based design, in contract-based design refinement takes
different forms depending on whether it relates a system to a specification, two
contracts or an implementation to a contract. In this chapter we use a methodology
which divides the design and verification process into three steps corresponding to
these three forms of refinement.

We assume that the system K under construction has to realize a global require-
ment ϕ together with an environment on which we may have some knowledge,
expressed by a property A. Both ϕ and A are expressed w.r.t. the interface P of
K . We proceed as follows: (1) define a contract C = (A, gl,G) for P such that
gl{A,G} conforms to ϕ; (2) decompose K as subcomponents Ki connected through
a glue operator glI and provide a contract Ci for each of them; possibly iterate this
step if needed; (3) prove that whenever a set of implementations Ki satisfy their
contracts Ci , then their composition satisfies the top-level contract C (dominance)
— and thus guarantee ϕ; (4) provide such implementations.

The correctness proof for a particular system is therefore split into 3 phases:
conformance (denoted �) of the system defined by the top-level contract C to ϕ;
dominance of C by the composition of the set of contracts {Ci } through glI ; and
satisfaction (denoted |=) of each Ci by the corresponding implementation Ki . Thus,
conformance relates closed systems, dominance relates contracts, while satisfaction
relates components to contracts.

8 Contract-Based Reasoning for Component Systems with Rich Interactions 143

Fig. 8.2 Proof of gl{A, glI {K1, K2, K3}} � ϕ

Note that the assumption of C1 is represented as one component A1 while in the
actual system K1 will be used in the context of three components, namely K2, K3
and A. Thus, we need to relate the actual glues gl and glI to the glue gl1 of C1. In
other words, we need a glue glE1

to compose K2, K3 and A as well as an operation ◦
on glues such that gl◦glI = gl1◦glE1

. In most cases, ◦ cannot simply be composition
of functions and has to involve some flattening of the system.

8.2.1 Contract Framework

To summarize, we consider a component framework that smoothly supports complex
composition operators and hierarchical components. The elements of the component
framework are as follows:

Definition 1 (Component framework). A component framework is defined by a tuple
(K ,GL, ◦,∼=) where:

• K is a set of components. Each component K ∈ K has as interface a set of ports,
denoted PK and subset of our global set of ports Ports.

144 S. Graf et al.

• GL is a set of glues. A glue is a partial function 2K −→ K transforming a
set of components into a new composite component. Each gl ∈ GL is defined
on a set of ports Sgl, called support set, and defines a new interface Pgl for the
new component, called exported interface. K = gl({K1, . . . , Kn}) is defined if
K1, . . . , Kn ∈ K have disjoint interfaces, Sgl =⋃n

i=1 PKi and PK =Pgl.
• ◦ is a partial operator on GL, called flattening, to compose glues. gl ◦gl′ is defined

if Pgl′ ⊆ Sgl. Its support set is Sgl\Pgl′ ∪ Sgl′ and its interface is Pgl.
• ∼= ⊆ K ×K is an equivalence relation between components.

We simplify our notation by writing gl{K1, . . . , Kn} instead of gl({K1, . . . , Kn}).
The equivalence relation∼= is typically used for relating composite components with
their semantics given as an atomic component. More importantly, ◦must be coherent
with ∼= in the sense that gl{gl′{K1},K2} ∼= (gl ◦ gl′){K1 ∪ K2} for any sets of
components Ki such that all terms are defined.

After formalizing generic properties required from a component framework, we
now define the relations used in the methodology for dealing with contracts. Satis-
faction is usually considered as a derived relation and chosen as the weakest rela-
tion implying conformance and preserved by composition. We loosen the coupling
between satisfaction and conformance to obtain later stronger reasoning schemata
for dominance. Furthermore, we propose a representation of satisfaction as a set
of refinement under context relations denoted 	A,gl and such that K 	A,gl G iff
K |= (A, gl,G).

Definition 2 (Contract framework) A contract framework is defined by a tuple
(K ,GL, ◦,∼=,�, |=) where:

• (K ,GL, ◦,∼=) is a component framework.
• � ⊆ K ×K is a preorder called conformance relating components having the

same interface.
• |= is a relation called satisfaction between components and contracts s.t.: the

relations 	A,gl defined by K 	A,gl G iff K |= (A, gl,G) are preorders; and, if
K |= (A, gl,G) then gl{A, K } � gl{A,G}.
Our definition of satisfaction emphasizes the fact that |= can be seen as a set of

refinement relations where K 	A,gl G means that K refines G in the context of A
and gl. The condition which relates satisfaction and conformance ensures that the
actual system gl{A, K } will conform to the global requirement ϕ discussed in the
methodology because � is transitive and gl{A,G} � ϕ.

Example 1 Typical notions of conformance for labeled transition systems are trace
inclusion and its structural counterpart simulation. For these, satisfaction is usually
defined as the weakest relation implying conformance.

K |= (A, gl,G) � gl{K , A} � gl{G, A}

Dominance is a key notion for reasoning about contracts rather than using refine-
ment between components. Proving that a contract C dominates C ′ means showing

8 Contract-Based Reasoning for Component Systems with Rich Interactions 145

that every component satisfying C also satisfies C ′.1 However, a dominance check
involves in general not just a pair of contracts: a typical situation would be the one
depicted in Fig. 8.2, where a set of contracts {Ci }ni=1 are attached to disjoint inter-
faces {Pi }ni=1. Besides, a glue glI is defined on P = ⋃n

i=1 Pi and a contract C is
given for P . In this context, a set of contracts {Ci }ni=1 dominates a contract C w.r.t.
a glue glI if any set of components satisfying contracts Ci , when composed using
glI , makes a component satisfying C .

Definition 3 (Dominance) Let C be a contract on P , {Ci }ni=1 a set of contracts
on Pi and glI a glue such that SglI

= ⋃n
i=1 Pi and P = PglI

. Then {Ci }ni=1
dominates C with respect to glI iff for all components {Ki }ni=1:

(∀i : Ki |= Ci) =⇒ glI {K1, . . . , Kn} |= C

Note that this formal definition of dominance does not help establishing domi-
nance in practice because looking at all possible components satisfying a contract is
not realistic. What we need is a sufficient condition that refers to assumptions and
guarantees, rather than components. One such condition exists when the composition
of the low-level guarantees Gi satisfies the top-level contract C and furthermore each
low-level assumption Ai is discharged by the abstraction of its environment defined
by the guarantees of the other components. Formally:

{
glI {G1, ... ,Gn} |= C

∀i : glEi
{A,G1, ... ,Gi−1,Gi+1, ... ,Gn} |= C−1

i
(8.1)

where for any contract Ci = (Ai , gli ,Gi) we use the notation C−1
i to denote the

contract (Gi , gli , Ai).
In the next subsection, we provide two rules which indeed make the previous

condition sufficient for establishing dominance: one is similar to circular assume-
guarantee reasoning and the other one deals with preservation of satisfaction by
composition. This result is particularly significant because one can check dominance
while avoiding composition of contracts, which is impossible in the general case and
leads to state explosion in most concrete contract frameworks.

1 One may also need to ensure that the assumptions of the low-level contracts are indeed satisfied
in the actual system. This is achieved by strengthening the definition with:

∀E on PA, if E |= (G ′, gl′, A′) then E |= (G, gl, A)

146 S. Graf et al.

8.2.2 Reasoning Within a Contract Framework

We use here the representation of satisfaction as a set of refinement under context
relations 	A,gl where K 	A,gl G if and only if K |= (A, gl,G). The usual non-
circular assume-guarantee rule reads as follows in our context:

K 	A,gl G ∧ E 	 A =⇒ K 	E,gl G (8.2)

where E 	 A denotes that for any component G and gl such that 	G,gl is defined
E 	G,gl A. This rule relates the behavior of K , when composed with the abstract
environment A, to the behavior of K , when composed with its actual environment
E . However it is quite limited as it imposes a very strong condition on E . Hence the
following rule which is commonly referred to as circular reasoning.

K 	A,gl G ∧ E 	G,gl A =⇒ K 	E,gl G

Note that E and K may symmetrically rely on each other. For a given contract
framework, this property can be proven by an induction based on the semantics
of composition and refinement. Unfortunately, circular reasoning is not sound in
general. In particular it does not hold for parallel composition with synchronizations
(as in Petri nets or process algebras) or instantaneous mutual dependencies between
inputs and outputs (as in synchronous formalisms). The following example illustrates
one possible reason for the non validity of circular reasoning.2

Example 2 Consider a contract framework where components are labeled transition
systems and composition is strong synchronization between corresponding labels and
interleaving of others denoted ‖. Define conformance as simulation and satisfaction
as the usual relation defined in Example 1. The circular reasoning rule translates into:
if K ‖ A is simulated by G ‖ A and E ‖G is simulated by A‖G then K ‖E is simulated
by G ‖E . In the example of Fig. 8.3, both G and A forbid a synchronization between
bK and bE from occurring. This allows their respective refinements according to	�,
namely K and E , to offer respectively bK and bE , since they can rely on respectively
G and A to forbid their actual occurrence. But obviously, the composition K ‖ E
now allows a synchronization between bK and bE .

Note that this satisfaction relation can be strengthened to obtain a more restrictive
relation for which circular reasoning is sound. This is the approach taken for the
L1 contract framework in Sect. 8.3.2, where we need circular reasoning to avoid
composition of contracts.

A second rule which is used for compositional reasoning in most frameworks is:
if I 	 S, then I ‖ E 	 S ‖ E . It states that if an implementation I refines its
specification S then it refines it in any environment E . The equivalent of this rule for
satisfaction is more complex as refinement here relates closed systems.

2 Note that non-determinism is another reason here for the non validity of circular reasoning.

8 Contract-Based Reasoning for Component Systems with Rich Interactions 147

Fig. 8.3 K ‖ A � G ‖ A
and E ‖ G � A ‖ G but
K ‖ E �� G ‖ E

Definition 4 Satisfaction |= is preserved by composition iff for any component E ,
gl such that Sgl = PE ∪P for some P such that P ∩PE = ∅ and glE , E1, E2
such that E = glE {E1, E2}, the following holds for any components I , S on P:

I 	E,gl S =⇒ gl1{I, E1} 	E2,gl2 gl1{S, E1}

where gl1 and gl2 are such that gl ◦ glE = gl2 ◦ gl1.

We now have the ingredients to formalize our sufficient condition for dominance.
This condition reduces a dominance proof to a set of satisfaction checks, one for the
refinement between the guarantees and n for discharging individual assumptions.
Theorem 1 Suppose that circular reasoning is sound and satisfaction is preserved
by composition. If∀i ∃glEi

: gl◦glI = gli ◦glEi
then to prove that {Ci }ni=1 dominates

C w.r.t. gl, it is sufficient to prove that condition (1) holds.

8.3 Circular Reasoning in Practice

In this section, we show how the results presented in the previous section have been
applied within the SPEEDS project: we define two contract frameworks, called L0
and L1, and show how to combine them.

8.3.1 The L0 Framework

A component K with interface PK at level L0 of HRC is defined as a set of behaviors
in the form of traces, or runs, over PK . The behaviors correspond to the history of
values seen at the ports of the component for each particular behavior. For instance,
these histories could be the traces generated by a labeled transition system (LTS).
Composition is defined as a composite that retains only the matching behaviors of the
components. If the ports of the two components have the same names, composition
at the level of trace sets boils down to a simple intersection of the sets of behaviors.
Because in our framework components must have disjoint sets of ports under compo-
sition, we must introduce glues, or connectors, as explicit components that establish
a synchronous relation between the histories of connected ports. The collection of
these simple connectors forms the glues gl ∈ GL of our framework at the L0 level.

148 S. Graf et al.

We can model a glue as an extra component Kgl, whose set of ports includes all the
ports of the components involved in the composition. This component has as the set
of behaviors all the identity traces. Composition can then be taken as the intersection
of the sets of behaviors of the components, together with the glue. To make this work,
we must also equalize the ports of all trace sets using inverse projection proj−1

Pi ,P
,

which extends behaviors over P1 with the appropriate additional ports of P . If we
denote the interface of the composite as Pgl, and if K = {K1, . . . , Kn} is a set of
components such that P1, . . . ,Pn are pairwise disjoint, then a glue gl for K is a
component Kgl defined on the ports P =Pgl ∪ (⋃n

i=1 Pi), and:

K = gl{K1, . . . , Kn}
= projpgl,P

(
Kgl ∩ proj−1

P1,P
(K1) ∩ · · · ∩ proj−1

Pn ,P
(Kn)

)

The definition of ◦ is straightforward: since glues are themselves components, their
composition follows the same principle as component composition. Finally, the ∼=
relation on K is taken as equality of sets of traces.

In the L0 model there exists a unique maximal component satisfying a contract
C , namely MC = G ∪ ¬A, where ¬ denotes the operation of complementation
on the set of all behaviors over ports PA. A contract C = (A,G) is in canonical
form when G = MC . Every contract has an equivalent contract in canonical form,
which is obtained by replacing G with MC . The operation of computing a canon-
ical form is well defined, since the maximal implementation is unique, and it is
idempotent. It is easy to show that K |= C if and only if K ⊆ MC .

The L0 contract framework has strong compositional properties, which derive
from its simple definition and operators [26]. The theory, however, depends on the
effectiveness of certain operators, complementation in particular, which are necessary
for the computation of canonical forms. While the complete theory can be formu-
lated without the use of canonical forms, complementation remains fundamental in
the definition of contract composition, which is at the basis of system construction.
Circular reasoning is not sound for contracts which are not in canonical form (Exam-
ple 2 is a counter-example in that case). This is a limitation of the L0 framework,
since working with canonical forms could prove computationally hard.

8.3.2 The L1 Framework

L1 composition is based on interactions, which involve non-empty sets of ports. An
interaction is defined by the components that synchronize when it takes place and the
ports through which these components synchronize. Interactions are structured into
connectors which are used as a mechanism for encapsulation: only these connec-
tors appear at the interface of a composite component. This enables to abstract the
behavior of a component in a black-box manner, by describing which connector is
triggered but not exactly which interaction takes place. Furthermore L1 is expressive
enough to encompass synchronous systems.

8 Contract-Based Reasoning for Component Systems with Rich Interactions 149

Fig. 8.4 The role of connec-
tors in a composition

Definition 5 An atomic component on an interface P is defined by an LTS K =
(Q, q0, 2P ,−→), where Q is a set of states, q0 an initial state and −→ ⊆ Q ×
2P × Q is a transition relation.

Note that atomic components are labeled by sets of ports rather than ports because
we allow several ports of a component to be triggered at the same time.

Definition 6 An interaction is a non-empty set of ports. A connector γ is defined
by a set of ports Sγ called the support set of γ , a port pγ called its exported port and
a set I(γ) of interactions in Sγ .

The notions of support set and exported port are illustrated in Fig. 8.4, where
connectors relate in a composition a set of inner ports (of the subcomponents) to an
outer port (of the composite component). One should keep in mind that a connector
γ , and thus the exported port pγ , represents a set of interactions rather than a single
interaction.

Typical connectors represent rendezvous (only one interaction, equal to the sup-
port set), broadcast (all the interactions containing a specific port called trigger) and
also mutual exclusion (some interactions but not their union).

We now define glues as sets of connectors which may be used together in order
to compose components.
Definition 7 A glue gl on a support set Sgl is a set of connectors with distinct
exported ports and with support sets included in Sgl.

A glue gl defines as exported interface Pgl the set {pγ | γ ∈ gl}. Besides, I(gl)
denotes the set of all interactions of the connectors in gl, i.e.: I(gl) =⋃

γ∈gl I(γ). In
Fig. 8.4, gl is composed of connectors γ and γ ′ and defines a composite component
denoted gl{K1, K2}.
Definition 8 A component is either an atomic component or it is inductively defined
as the composition of a set of components {Ki }ni=1 with disjoint interfaces {Pi }ni=1
using a glue gl on P = ⋃n

i=1 Pi . Such a composition is called a composite com-
ponent on Pgl and it is denoted gl{Ki }ni=1.

So far, we have defined components and glues. Glues can be composed so as to
allow flattening of components. Such a composition requires to handle hierarchical
connectors built by merging connectors defined at different levels of hierarchy. The
definition of the operator ◦ used for this purpose is omitted here and can be found
in [24]. Connectors whose exported ports and support sets are not related are called
disjoint and need not be composed. The operator ◦ is then easily extended to glues:

150 S. Graf et al.

the composition gl◦gl′ of two glues gl and gl′ is obtained from gl∪gl′ by inductively
composing all connectors which are not disjoint.

We can now formally define the flattened form of a component. This in turn
will allow us to provide an equivalence relation between components based on
the semantics of their flattened form. A component is called flat if it is atomic or
of the form gl{K1, . . . , Kn}, where all Ki are atomic components. A component
that is not flat is called hierarchical. A hierarchical component K is of the form
gl{K1, . . . , Kn} such that at least one Ki is composite. Thus, such a K can be rep-
resented as gl{gl′{K 1},K 2}, where K 1 and K 2 are sets of components.
Definition 9 The flattened form of a component K is denoted �(K) and defined
inductively as:

• if K is a flat component, then �(K) is equal to K .
• otherwise, K is of the form gl{gl′{K 1},K 2}, and then �(K) is the flattened form

of (gl ◦ gl′){K 1 ∪K 2}.
Definition 10 The semantics [[K]] of a flat component K = gl{K1, . . . , Kn} is
defined as (Q, q0, I(gl),−→), where Q = ∏n

i=1 Qi , q0 = (q0
1 , . . . , q0

n) and −→
is such that: given two states q1 = (q1

1 , . . . , q1
n) and q2 = (q2

1 , . . . , q2
n) in Q and an

interaction α ∈ I(gl), q1 α−→ q2 if and only if ∀i, q1
i

αi−→i q2
i , where αi = α ∩Pi .

We use the convention that ∀q : q
∅−→ q so components not involved in an

interaction do not move. Thus the semantics of a flat component is obtained as the
composition of its constituting LTS where labels are synchronized according to the
interactions of I(gl).

We then define equivalence ∼= as follows: two components are equivalent if their
flattened forms have the same semantics. Note that in practice one would prefer to
define the semantics of a hierarchical component as a function of the semantics of
its constituting components. In presence of encapsulation this requires to distinguish
between closed and open systems and thus to provide two different semantics. Details
can be found in [24].

We now have the ingredients for defining the L1 component framework and we
focus on its contract framework.
Definition 11 K1 �L1 K2 if and only if [[K1]] is simulated by [[K2]].

Thus L1-conformance is identical to L0-conformance for components without
non-observable non-determinism, and otherwise stronger. Note that in verification
tools, in order to check trace inclusion efficiently, one will generally check simulation
anyway. Satisfaction is defined as follows.

Definition 12 A component K satisfies a contract C = (A, gl,G) for PK , denoted
K |=L1 (A, gl,G), if and only if:

{
gl{K , Adet} �L1 gl{G, Adet}
(qK , qA)R (qG , q ′A) ∧ ∃q ′K : qK

α−→K q ′K =⇒ ∃q ′G : qG
α−→G q ′G

8 Contract-Based Reasoning for Component Systems with Rich Interactions 151

where Adet is the determinization of A, R is the relation on states proving that
gl{K , Adet} �L1 gl{G, Adet} and α ∈ 2PK is such that ∃α′ ∈ I(gl) : α ⊆ α′.

Thus |=L1 strengthens the satisfaction relation used in the L0 framework by: 1)
determinizing A; 2) requiring every transition of K to have a counterpart in each
related state of G — unless it is structurally forbidden by gl — but the target states
of the transition need to be related only if the environment allows this transition. As
a consequence, |=L1 allows circular reasoning.

8.3.3 Relaxed Circular Reasoning

We have presented in the previous sections two contract frameworks developed in
the SPEEDS project. We show now how we use their respective tool chains together.
Unifying the L0 and L1 component frameworks is quite straightforward. Neverthe-
less, we have introduced two different notions of satisfaction: |=L0 and |=L1 where
the second one is strictly stronger than the first one. To combine results based on
L0 and L1, we propose a rule called relaxed circular reasoning for two (possibly
different) refinement relations:

K 	1
A,gl G ∧ E 	2

G,gl A =⇒ K 	1
E,gl G (8.3)

This rule generalizes circular and non-circular reasoning by not restricting 	2
G,gl

to refinement under context 	1
G,gl or refinement in any context 	1. Depending on

which relation is the most restrictive it can be used in two different ways:

1. If the first relation allows circular reasoning and is stronger than the second one
(i.e. K 	1

A,gl G =⇒ K 	2
A,gl G) then our new rule relaxes circular reasoning

by requiring E 	2
G,gl A rather than E 	1

G,gl A.
2. Symmetrically, if the first relation does not allow circular reasoning and refine-

ment in any context	1 is stronger than the second one then this rule relaxes non
circular reasoning by requiring E 	2

G,gl A rather than E 	1 A.

Interestingly, relaxed circular reasoning can be used both ways for L0- and L1-
satisfaction. First it leads to a relaxed sufficient condition for dominance in L1.

Theorem 2 K 	L1
A,gl G ∧ E 	L0

G,gl A implies K 	L1
E,gl G.

Theorem 3 If ∀i ∃glEi
: gl ◦glI = gli ◦glEi

the following is sufficient to prove that
C dominates {Ci }i=1..n w.r.t. gl:

{
glI {G1, . . . ,Gn} |=L1 C

∀i : glEi
{A,G1, . . . ,Gi−1,Gi+1, . . . ,Gn} |=L0 C−1

i

In that case, checking that contracts {Ci }ni=1 L1-dominate a contractC requires one
L1-satisfaction check and n L0-satisfaction checks. This is particularly interesting

152 S. Graf et al.

since checking L0-satisfaction may be achieved by using other tools or approaches
(that may not need circular reasoning). Moreover, dominance can be established
more often as L1-satisfaction is stronger than L0-satisfaction. Second:

Theorem 4 K 	L0
A,gl G ∧ E 	L1

G,gl A implies K 	L0
E,gl G.

This result made it possible in SPEEDS to incorporate results from tools checking
L0-satisfaction with results obtained through L1-dominance (implemented by a set
of L1-satisfaction checks), thus building a complete tool chain.

8.4 Conclusion and Future Work

The work presented in this chapter has been motivated by the necessity of combin-
ing contract-based verification tools and corresponding results for two component
frameworks L0 and L1 defined in the context of the European SPEEDS project. In
particular, we were interested in using dominance results established in L1 – and
which cannot be obtained using the L0 refinement relation – for further reasoning in
L0. To that purpose, we have presented an abstract notion of contract framework for
a given component framework that defines three different notions of refinement, that
is, conformance, dominance and satisfaction. We show how to derive these notions
from refinement of closed systems and refinement under context and we provide a
methodology for compositional and hierarchical verification of global properties.

We have studied circular reasoning as a powerful means for proving dominance.
As circular reasoning does not always hold for usual notions of refinement, we
provide proof rules for dominance relying on a relaxed notion of circular reasoning
based on two notions of refinement. We have then shown that our abstract framework
is general enough to represent both L0 and L1 as specific instances and proved that the
L0 and L1 refinement relations satisfy the condition for relaxed circular reasoning.

This approach was applied to only simple case studies in the SPEEDS project
and should therefore rather be seen as a proof of concept. The practical relevance of
such an approach is that it opens up ways of connecting tools that work at different
levels of abstraction, and relate their results to prove stronger properties. In addition,
our results relax the requirements on the tools, since circular reasoning would not be
needed at the L0 level.

Acknowledgments This work was supported in part by the EU projects COMBEST (n. 215543)
and ArtistDesign (n. 214373).

References

1. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein: Contract-
based design for cyber-physical systems. J. Control 18(3), 217–238 (2012). doi:10.3166/EJC.
18.217-238

http://dx.doi.org/10.3166/EJC.18.217-238
http://dx.doi.org/10.3166/EJC.18.217-238

8 Contract-Based Reasoning for Component Systems with Rich Interactions 153

2. Damm, W.: Controlling speculative design processes using rich component models. In: Pro-
ceedings of ACSD’05, pp. 118–119. IEEE Computer Society (2005)

3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In:
Proceedings of SEFM’06, pp. 3–12. IEEE Computer Society (2006)

4. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.: Multi-
ple viewpoint contract-based specification and design. In: F.S. de Boer, M.M. Bonsangue, S.
Graf, Willem-Paul de Roever (eds.) Formal Methods for Components and Objects, 6th Interna-
tional Symposium (FMCO 2007), Amsterdam, The Netherlands, October 24–26, 2007, Revised
Papers, Lecture Notes in Computer Science, vol. 5382, pp. 200–225. Springer (2008). doi:
10.1007/978-3-540-92188-2

5. Benvenuti, L., Ferrari, A., Mangeruca, L., Mazzi, E., Passerone, R., Sofronis, C.: A contract-
based formalism for the specification of heterogeneous systems. In: Proceedings of the Forum
on Specification, Verification and Design Languages (FDL08), pp. 142–147. Stuttgart, Ger-
many (2008). doi: 10.1109/FDL.2008.4641436

6. SPEEDS Consortium: Home page. http://www.speeds.eu.com
7. COMBEST Consortium: Home page. http://www.combest.eu
8. CESAR Consortium: Home page. http://www.cesarproject.eu/
9. Partners, S.: SPEEDS metamodel. SPEEDS project deliverable D2.1.5 (2009)

10. The Mathworks, Inc.: MATLAB simulink. http://www.mathworks.com
11. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1), 7–48 (1999)
12. Maier, P.: A lattice-theoretic framework for circular assume-guarantee reasoning. Ph.D. thesis,

Universität des Saarlandes (2003)
13. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An evaluation of

automated assume-guarantee reasoning. ACM Trans. Softw. Eng. Methodol. 17(2) (2008)
14. Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of ESEC/SIGSOFT FSE’01,

pp. 109–120. ACM Press (2001)
15. Larsen, K.G., Nyman, U., Wasowski, A.: Interface input/output automata. In: Proceedings of

FM’06, LNCS, vol. 4085, pp. 82–97 (2006)
16. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: On relational interfaces. In: Proceedings

of EMSOFT’09, pp. 67–76 (2009)
17. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: A compositional reasoning

methodology for the design of stochastic systems. In: Proceedings of ACSD’10, pp. 223–232
(2010)

18. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: Modal inter-
faces: Unifying interface automata and modal specifications. In: Proceedings of the Ninth
International Conference on Embedded Software (EMSOFT09), pp. 87–96. Grenoble, France
(2009)

19. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are modalities good
for Interface Theories? In: Proceedings of the Ninth International Conference on Application
of Concurrency to System Design (ACSD09), pp. 119–127. Augsburg, Germany (2009)

20. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A modal
interface theory for component-based design. Fundamenta Informaticae 108(1–2), 119–149
(2011). 10.3233/FI-2011-416

21. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and product line
theories. In: Proceedings of ESOP’07, LNCS, vol. 4421, pp. 64–79 (2007)

22. Quinton, S., Graf, S.: Contract-based verification of hierarchical systems of components. In:
Proceedings of SEFM’08, pp. 377–381. IEEE Computer Society (2008)

23. Hafaiedh, I.B., Graf, S., Quinton, S.: Reasoning about safety and progress using contracts. In:
Proceedings of ICFEM’10, pp. 436–451 (2010)

24. Graf, S., Passerone, R., Quinton, S.: Contract-based reasoning for component systems with
complex interactions. Research report TR-2010-12, VERIMAG (2010 updated 2013)

25. Sifakis, J.: A framework for component-based construction. In: Proceedings of SEFM’05, pp.
293–300. IEEE Computer Society (2005)

http://dx.doi.org/10.1007/978-3-540-92188-2
http://dx.doi.org/10.1109/FDL.2008.4641436
http://www.speeds.eu.com
http://www.combest.eu
http://www.cesarproject.eu/
http://www.mathworks.com

154 S. Graf et al.

26. Benveniste, A., Caillaud, B., Passerone, R.: A generic model of contracts for embedded systems.
Rapport de recherche 6214, Institut National de Recherche en Informatique et en Automatique
(2007)

27. Pinto, A., Bonivento, A., Sangiovanni-Vincentelli, A.L., Passerone, R., Sgroi, M.: System level
design paradigms: Platform-based design and communication synthesis. ACM Trans. Des.
Autom. Electron. Syst. 11(3), 537–563 (2006). http://doi.acm.org/10.1145/1142980.1142982

http://doi.acm.org/10.1145/1142980.1142982

Chapter 9
Extracting End-to-End Timing Models
from Component-Based Distributed
Embedded Systems

Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin

Abstract In order to facilitate the end-to-end timing analysis, we present a method
to extract end-to-end timing models from component-based distributed embedded
systems that are developed using the existing industrial component model, Rubus
Component Model (RCM). RCM is used for the development of software for vehic-
ular embedded systems by several international companies. We discuss and solve the
issues involved during the model extraction such as extraction of timing information
from all nodes and networks in the system and linking of trigger and data chains in
distributed transactions. We also discuss the implementation of the method for the
extraction of end-to-end timing models in the Rubus Analysis Framework.

9.1 Introduction

The model- and component-based development [1, 2] is often considered a promis-
ing choice for the development of distributed embedded systems for many reasons
such as handling complexity of embedded software; lowering development costs;
reducing time-to-market and time-to-test; allowing reusability; providing flexibil-
ity, maintainability and understandability; supporting modeling at higher level of
abstraction and timing analysis during the process of system development. In dis-
tributed embedded systems with real-time requirements, the timing behavior of the
system is as important as its functional behavior. The current trend for the industrial

S. Mubeen (B) · J. Mäki-Turja ·M. Sjödin
Mälardalen University, Västerås, Sweden
e-mail: saad.mubeen@mdh.se

M. Sjödin
e-mail: mikael.sjodin@mdh.se

J. Mäki-Turja
Arcticus Systems, Västerås, Sweden
e-mail: jukka.maki-turja@mdh.se

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 155
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_9,
© Springer Science+Business Media New York 2014

156 S. Mubeen et al.

development of such systems, especially in automotive domain, is focused towards
handling timing related information and performing timing analysis as early as pos-
sible during the development process [3–5]. Hence, the component technology for
the development of distributed embedded systems should support the extraction of
required timing information into the end-to-end timing model.
Goals and Chapter Contribution. Our main goal is to extract the end-to-end timing
models from component-based distributed embedded systems that are modeled with
the existing industrial component model, i.e., the RCM [6, 7]. We focus on the
following issues.

1. Extraction of timing information from all nodes and networks in a distributed
embedded application into the end-to-end timing model.

2. Linking of trigger and data chains in distributed transactions, i.e., chains of tasks
that are distributed over more than one node in a distributed embedded system.

3. Implementation of the timing model extraction method in the Rubus Analysis
Framework.

Chapter Layout. The rest of the chapter is organized as follows. In Sect. 9.2, we dis-
cuss the background and research problem. In Sect. 9.3, we discuss main constituents
of the end-to-end timing model. In Sect. 9.4, we discuss the model extraction method.
Section 9.5 presents the related work. Section 9.6 concludes the chapter.

9.2 Background and Research Problem

9.2.1 The Rubus Concept

Rubus is a collection of methods and tools for model- and component-based devel-
opment of dependable embedded real-time systems. Rubus is developed by Arcticus
Systems [7] in close collaboration with several academic and industrial partners.
Rubus is today mainly used for development of control functionality in vehicles by
several international companies [8–11]. The Rubus concept is based around RCM
and its development environment Rubus-Integrated Component development Envi-
ronment (ICE) [7], which includes modeling tools, code generators, analysis tools
and run-time infrastructure. The overall goal of Rubus is to be aggressively resource
efficient and to provide means for developing predictable and analyzable control
functions in resource-constrained embedded systems.

9.2.1.1 The Rubus Component Model

Rubus Component Model expresses the infrastructure for software functions, i.e.,
the interaction between the software functions in terms of data and control flow
separately. The control flow is expressed by triggering objects such as clocks and

9 Extracting End-to-End Timing Models 157

events as well as other components. In RCM, the basic component is called Soft-
ware Circuit (SWC). The execution semantics of an SWC are: upon triggering, read
data on data in-ports; execute the function; write data on data out-ports; and acti-
vate the output trigger. RCM separates the control flow from the data flow among
SWCs within a node. Thus, explicit synchronization and data access are visible at
the modeling level. One important principle in RCM is to separate functional code
and infrastructure implementing the execution model. RCM facilitates analysis and
reuse of components in different contexts (SWC has no knowledge how it connects to
other components). The component model has the possibility to encapsulate SWCs
into software assemblies enabling the designer to construct the system at different
hierarchical levels.

9.2.1.2 The Rubus Code Generator and Run-Time System

From the resulting architecture of connected SWCs, functions are mapped to run-
time entities; tasks. Each external event trigger defines a task and SWCs connected
through the chain of triggered SWCs (trigger chain) are allocated to the corresponding
task. All clock triggered “chains” are allocated to an automatically generated static
schedule that fulfills the precedence order and temporal requirements. Within trigger
chains, inter-SWC communication is aggressively optimized to use the most efficient
means of communication possible for each communication link. Allocation of SWCs
to tasks and construction of schedule can be submitted to different optimization
criterion to minimize, e.g., response times for different types of tasks, or memory
usage. The run-time system executes all tasks on a shared stack, thus eliminating the
need for static allocation of stack memory to each individual task.

9.2.1.3 The Rubus Analysis Framework

The Rubus model allows expressing real-time requirements and properties at the
architectural level. For example, it is possible to declare real-time requirements from
a generated event and an arbitrary output trigger along the trigger chain. For this
purpose, the designer has to express real-time properties of SWCs, such as worst-case
execution times and stack usage. The scheduler will take these real-time constraints
into consideration when producing a schedule. For event-triggered tasks, response-
time calculations are performed and compared to the requirements. The analysis
supported by the model includes shared stack analysis [12] and distributed end-to-
end response time and delay analysis [13].

9.2.1.4 The Rubus Simulation Model

The Rubus SIMulation Model (RSIM) and accompanying tools enable simulation
and testing of applications modeled with RCM at various hierarchical levels such

158 S. Mubeen et al.

as an SWC or a function, a hierarchical RCM component structure as an Assembly
(ASM), a complete Electronic Control Unit (ECU) application (may require I/O
simulation), a set of ECU’s, a distributed system (may require I/O simulation of each
ECU). To verify the logical functionality of these objects, RSIM supports testing in
an automatic generated framework based on the Rubus OS Simulator.

The input data is read from external tools or files, e.g., MATLAB, and fed to the
simulation process that controls the stimulation of input ports and state variables
using probes. The output from the simulation process is fed back to the external
tools. By building a simulated environment around the application to be simulated,
the execution of the application can be controlled from a high-level tool such as
LabVIEW or MATLAB/Simulink. The high-level tools control the execution of the
simulated target by means of commands to stop and run the target clock a specified
number of ticks. The high-level tool sets the input data to the control function to be
tested, performs a number of execution steps, and then reads the generated output
data. In this way the execution flow can be visualized in each time increment.

9.2.2 Problem Statement: Linking of Distributed Chains

The distributed transactions in a distributed embedded system may consist of trigger
chains, data chains or a combination of both. The first task (component) in a trigger
chain is triggered independently, while the rest of the tasks are triggered by their
respective predecessors as shown in Fig. 9.1a. Each task in a data chain is triggered
independently as shown in Fig. 9.1b. A mixed chain is a combination of both trigger
and data chains as shown in Fig. 9.1c. The end-to-end timing model should include
linking and mapping information of all these chains. Moreover, the model should
also identify the type of each chain because different timing constraints are specified
on different types of chains [13].

The linking and mapping problem is common to all types of chains. For simplicity,
we consider a distributed embedded system modeled with only trigger chains as
shown in Fig. 9.2. There are two nodes in the system with three SWCs in node
A and four SWCs in node B. SWCs communicate with each other by using both
inter- and intra-node communication. The intra-node communication takes place via
connectors whereas the inter-node communication takes place via a real-time network
to which the nodes are connected. One trigger chain (distributed transaction) that is

(a) (b) (c)

Fig. 9.1 Example of (a) Trigger chain (b) Data chain (c) Mixed chain

9 Extracting End-to-End Timing Models 159

Fig. 9.2 Trigger chains in distributed transactions

activated by a clock consists of four Software Circuits, i.e., SWC1, SWC2, SWC4
and SWC5. It is identified with a solid-line arrow in Fig. 9.2. In this transaction, a
clock triggers SWC1 which in turn triggers SWC2. SWC2 then sends a signal to
the network. This signal is transmitted over the network in a message (frame) and is
received by SWC4 at the receiver node. SWC4 processes it and sends it to SWC5.
The elapsed time between the arrival of a triggering event at the input of the task
corresponding to SWC1 and the production of response of the task corresponding
to SWC5 is referred to as the holistic or end-to-end response time of the distributed
transaction and is also identified in Fig. 9.2. The second trigger chain that is activated
by an external event consists of three Software Circuits, i.e., SWC3, SWC6 and
SWC7. It is identified by a broken-line arrow in Fig. 9.2.

There may not be direct triggering connections between any two neighboring
SWCs in the chain which is distributed over more than one node, e.g., SWC2 and
SWC4 in Fig. 9.2. In this case, SWC2 communicates with SWC4 by sending signals
via the network. Here, the problem is that when a trigger signal is produced by
SWC2, it may not be sent straightaway as a message on the network. A message may
combine several signals and hence, there may be some waiting time for the signal
to be sent on the network. The message may be sent periodically or sporadically or
by any other rule defined by the underlying network protocol. When such trigger
chains are modeled using the component-based approach, it is not straightforward
to link them to extract the end-to-end timing model. For example, if a message is

160 S. Mubeen et al.

received at node B then the following information should be available to correctly
link the received message in the chain: the I D of the sender node; the I D of the task
that generated this message; the I D of the destination node; and the I D(s) of the
task(s) that should receive this message. In order to get a bounded end-to-end delay,
a more important question is when and who will trigger the destination SWC when
a message is received at node B.

The existing modeling components in RCM do not provide enough support to link
and extract the corresponding timing information of distributed chains. Therefore,
special objects in the component technology are needed to provide the linking infor-
mation of distributed chains to extract end-to-end timing information. Further, there
is a need to model mapping between signals and messages and vice versa. SWCs
inside a node communicate via signals whereas they communicate via messages if
located on different nodes in a distributed transaction. Moreover, there is a need to
model exit and entry points for RCM models. An exit point is where a message
(data) leaves the model and is transmitted according to the protocol-specific rules of
the network. Similarly, an entry point is where a message enters the model from the
model of the network or any other model. The reason for the need of modeling exit
and entry points for RCM models is to get the bounded delays in distributed trans-
actions. The model of entry and exit points will support the use of nodes developed
using RCM with the nodes developed by other component technologies.

9.3 End-to-End Timing Model

The end-to-end timing model consists of timing properties, requirements and depen-
dencies concerning all tasks, messages, task chains and distributed transactions in a
distributed embedded system under analysis. Basically, it consists of two models, i.e.,
system timing model and system linking model. All the required timing information
of each node in a distributed embedded application is extracted into a node timing
model. Similarly, the timing information of all networks in a distributed embedded
application is extracted into a network timing model. Together the node and net-
work timing model comprise the system timing model. All mapping and linking
information of distributed chains is extracted into the system linking model.

9.3.1 System Timing Model

Node Timing Model. The node timing model contains node-level timing infor-
mation. It is based on a transaction model with offsets developed by [14] and later
on, extended by many researchers, e.g., [15, 16]. A node, �, consists of a set of k
transactions �1, . . . , �k . Each transaction �i is activated by mutually independent
events, i.e., the phasing between them is arbitrary. The activating events can be a
periodic sequence of events with a period Ti . In case of sporadic events, Ti denotes
the minimum inter-arrival time between two consecutive events.

9 Extracting End-to-End Timing Models 161

There are |�i | tasks in a transaction �i and each task may not be activated until a
certain time, called an offset, elapses after the arrival of the external event. By task
activation we mean that the task is released for execution. A task is denoted by τi j .
The first subscript, i, specifies the transaction to which this task belongs and the
second subscript, j, denotes the index of the task within the transaction.

A task, τi j , is defined by the following attributes: a priority (Pi j), a worst-case
execution time (Ci j), an offset (Oi j), maximum release jitter (Ji j), an optional dead-
line (Di j), maximum blocking time which is the maximum time the task has to wait
for a resource that is locked by a lower priority task (Bi j). In order to calculate the
blocking time for a task, usually, a resource locking protocol like priority ceiling or
immediate inheritance is used. Each task has a worst-case response time denoted by
Ri j . In this model, there are no restrictions placed on offset, deadline or jitter, i.e.,
they can each be either smaller, greater or equal to the period.
Network Timing Model. This model contains network-level timing information

of a distributed embedded system. A network consists of a number of nodes that
are connected through a real-time network. Currently, the model supports Controller
Area Network (CAN) and its higher-level protocols such as CANopen, CAN for
Military Land Systems domain (MilCAN) and Hägglunds CAN (HCAN) [17]. If a
task on one node intends to communicate with a task on another node, it queues a
message in the send queue of its node. The network communication protocol ensures
the arbitration and transmission of all messages over the network.

Each message m has the following attributes: a unique identifier (IDm); trans-
mission type showing whether the message is periodic or sporadic or mixed [17];
a unique priority (Pm); transmission time (Cm); release jitter (Jm) which is inher-
ited from the difference between the worst- and best-case response times of the task
queueing the message; data payload (sm) in the message; period (Tm) in the case of
periodic transmission, Minimum Update Time (MUTm) which is the minimum time
that should elapse between the transmission of any two sporadic messages in the case
of sporadic transmission, or both Tm and MUTm in the case of mixed transmission
[17–20]; blocking time (Bm) which is the maximum time a message can be blocked
by lower priority messages; and worst-case response time (Rm).

9.3.2 System Linking Model

In distributed embedded systems, the transactions are usually distributed over several
nodes. Hence, there exist chains of components (tasks) that may be distributed over
more than one node. A task chain consists of a number of tasks that are in a sequence
and have one common ancestor. A task in a chain may receive trigger, data or both
from its predecessor. Two neighboring tasks in a distributed transaction may reside
on two different nodes, while the nodes communicate with each other via a network.
When there are chains in a distributed embedded system, the end-to-end timing model
should not only contain timing related information but also the linking information
among all tasks and messages within each distributed chain (see Sect. 9.2.2) . The

162 S. Mubeen et al.

extraction of linking information from chains in a distributed real-time system is
more complex compared to a single node real-time system.

9.4 Extraction of End-to-End Timing Model

In this section, we resolve the issues discussed in the previous section. We also show
the applicability of our approach by modeling a two-node distributed embedded
application with RCM. Finally, we present the conceptual organization of the method
for the extraction of end-to-end timing models in Rubus-ICE.

9.4.1 Proposed Solution

9.4.1.1 Addition of Special Components in RCM

In order to model real-time network communication and legacy communication in
distributed embedded systems, we introduced special purpose Software Circuits in
RCM, i.e., Output Software Circuit (OSWC) and Input Software Circuit (ISWC)
in [21]. There is one OSWC for each message that a node sends to the network.
Similarly, there is one ISWC for each message that a node receives from the network.
It should be noted that each of these special-purpose components is translated to an
individual task at run time. We also introduced a new object in RCM, i.e., the Network
Specification (NS) that represents the model of communication in a physical network
[21]. There is one NS for each network protocol. NS contains Signal Mapping which
includes the following information: How are signals mapped to messages? How
many signals a message contains? How are signals encoded in a message at the
sender node? How are signals decoded from a message at the receiving node? The
model representation of OSWC, ISWC and NS in a two-node distributed embedded
system modeled with RCM is shown in Fig. 9.3.

When the OSWC component is triggered, it executes the required functionality
(e.g., mapping of signals to a message) and then the data (message) is transferred
from the RCM model of a node to the network controller or another model of com-
munication network. Therefore, OSWC also represents the model of an exit point
for RCM models. Similarly, ISWC component also represents the model of an entry
point for RCM models. Since the trigger in-ports of all OSWC components and trig-
ger out-ports of all ISWC components along a distributed transaction are referenced
in NS, the end-to-end timing delay can be bounded by specifying the delay in the
extra-model medium.

9 Extracting End-to-End Timing Models 163

Fig. 9.3 Example of a two-node distributed embedded system modeled with RCM

9.4.1.2 Identification of Distributed Chains

In order to unambiguously identify each individual chain, we attach “trigger depen-
dency” attribute with each task. This attribute is part of the data structure of tasks
in the end-to-end timing model. If a task is triggered by an independent source such
as a clock then this attribute will be assigned “independent”. On the other hand, if
the task is triggered by another task then this parameter will be assigned “depen-
dent”. Moreover, a precedence constraint will also be specified on this task in the
case of dependent triggering. If this attribute for all tasks (except the first) has value
“dependent”, the chain will be identified as a trigger chain. On the other hand, if this
attribute for more than one task in a chain has “independent” value then the chain
will identified as a data chain.

9.4.1.3 Linking and Mapping of Distributed Chains

The linking information of all distributed chains in the modeled distributed embedded
application is provided in the Network Specification. We assign pointers (references)
to trigger in-ports of OSWCs and the trigger out-ports of ISWCs along the same
distributed transaction. All such pointers for all trigger chains in the system are
specified in the NS.

An example of a two-node distributed embedded system modeled in RCM is
shown in Fig. 9.3. There are four SWCs in Node A while three SWCs in Node B.
We consider CAN or any of its high-level protocols for inter-node communication.
In this example, the nodes are connected to a CAN network. There are three trigger
chains in the system that are distributed over two nodes:

164 S. Mubeen et al.

• EC1 : SWC1→ SWC2→ O SW C_A1→ I SWC_B1→ SWC5→ SWC6.
• EC2 : SWC3→ O SW C_A1→ I SWC_B1→ SWC5→ SWC6.
• EC3 : SWC7→ O SW C_B1→ I SWC_A1→ SWC4.

The trigger chains EC1 and EC2 are triggered by external events whereas the
trigger chain EC3 is triggered by a clock. The references to the trigger ports of
OSWC and ISWC in each trigger chain are specified in NS. There is a pointer array
P1 that references the trigger in-port of OSWC B1 in Node B and trigger out-port
of ISWC A1 in node A. Similarly, a pointer array P2 is stored in NS that points
to the trigger in-port of OSWC A1 in Node A and trigger out-port of ISWC B1
in node B. In this way, all the neighboring components located in different nodes
within a distributed trigger chain can be linked to each other. The grey boxes outside
the model are specific for each network communication protocol. In this example
they represent CAN SEND and CAN RECEIVE routines. The CAN SEND grey box
represents a CAN controller in a node and is responsible for receiving messages from
the corresponding OSWC and queueing them for transmission over the network.

When a message arrives at the receiving node, it is transferred by the physical
network drivers to the CAN RECEIVE grey box which is responsible for raising an
interrupt request and passing the message to the corresponding ISWC component. In
this case, the TrigInterrupt object in RCM corresponding to the interrupt is connected
to the in-port of the ISWC component. If CAN drivers use polling-based processing
instead of interrupts then the in-port of the ISWC component is connected to the
clock object in RCM whose period is equal to the polling period. Upon receiving a
message, an ISWC component decodes it, extracts signals from it, places the data on
the corresponding data port (connected to the data in-port of the destination SWC)
and triggers the corresponding trigger port by using the linking information in NS.
It should be noted that there can be more than one ISWC and OSWC components in
a node. It can be seen from Fig. 9.3 that OSWC and ISWC essentially make the exit
and entry points for the node models.

9.4.2 Extraction of End-to-End Timing Model in Rubus-ICE

In Rubus-ICE, a distributed embedded application is modeled in Rubus Designer. It is
then compiled to the Intermediate Compiled Component Model (ICCM). Apart from
the compiled component model, ICCM file also includes timing and linking infor-
mation of the modeled system. The end-to-end timing model that is implemented in
the Rubus Analysis Framework, extracts the required timing and linking information
from ICCM file as shown in Fig. 9.4. The end-to-end timing model consists of three
models, i.e., node timing model, network timing model and system linking model.
From the extracted timing model, the Rubus Analysis Framework performs the end-
to-end timing analysis and then provides the results, i.e., response times of individual
tasks, response times of network messages, end-to-end response times and delays of
distributed chains, network utilization, etc., back to the Rubus-ICE tool suite. The

9 Extracting End-to-End Timing Models 165

Fig. 9.4 Extraction of end-to-end timing model in Rubus tool-suite

schedulability analysis results of a case study, performed using our timing model
extraction method, are presented in [13].

9.5 Related Work

There are very few commercial component models for the development of distrib-
uted embedded systems especially in automotive domain. In our previous work,
we carried out a detailed comparison of RCM with various models for distributed
embedded systems [21]. We briefly highlight a few of them. AUTomotive Open Sys-
tem ARchitecture (AUTOSAR) [22] is a standardized software architecture for the
development of software in automotive domain. It can be viewed as a standardized
distributed component model [23]. When AUTOSAR was being developed, there
was no focus placed on its ability to specify and handle real-time requirements and
properties. On the other hand, such requirements and capabilities were strictly taken
into account right from the beginning during the development of RCM. AUTOSAR
describes embedded software development at a relatively higher level of abstraction
compared to RCM. A Software Circuit in RCM more resembles to a runnable entity
(a schedulable part of AUTOSAR software component) instead of AUTOSAR soft-
ware component. As compared to AUTOSAR, RCM clearly distinguishes between
control flow and data flow among software components in a node. AUTOSAR hides
the modeling of execution environment. Whereas, RCM explicitly allows the model-
ing of execution requirements, e.g., jitter and deadlines, at an abstraction level close
to the functional modeling while abstracting the implementation details.

TIMing MOdel (TIMMO) [5] project is an initiative to provide AUTOSAR with
a timing model. The timing extensions proposed in this project are included in the
version 4.0 of AUTOSAR specification [24]. It describes a predictable methodology
and a language, Timing Augmented Description Language (TADL) [4], to express
timing requirements and timing constraints in all design phases during the devel-
opment of automotive embedded systems. Both TIMMO methodology and TADL

166 S. Mubeen et al.

have been evaluated on prototype validators. To the best of our knowledge there is
no concrete industrial implementation of TIMMO. In the TIMMO-2-USE project
[3], the TADL2 language has been introduced which includes a major redefinition
of TADL. TADL2 also supports the AUTOSAR extensions regarding timing model.
Apart from the redefinition of the language, algorithms, tools and a methodology
have been developed to model advanced timing at different levels of abstraction. The
use cases and validators indicate that the project results are in compliance with the
AUTOSAR-based tool chain [24]. Since this project is recently finished, it may take
some time for the results of the project to become mature and find their way into
industrial applications.

ProCom [25] is a two-layer component model for the development of distributed
embedded systems. ProCom is inspired by RCM, and there are a number of similar-
ities between the ProSave modeling layer (a lower layer in ProCom) and RCM. For
example, components in both ProSave and RCM are passive. Similarly, both models
clearly separate data flow from control flow among their components. Moreover, the
communication mechanism for component interconnection used in both models is
pipe-and-filter. The validation of a complete distributed embedded system, modeled
with ProCom, is yet to be done. Moreover, the development environment and the
tools accompanying ProCom are still evolving.

BIP framework [26] provides a 3-layered representation, i.e., behavior, interaction
and priority for modeling of heterogeneous real-time components. Unlike RCM, it
does not distinguish between required and provided or input and output interfaces
(or ports). BIP uses triggering, rendezvous and broadcast styles for component inter-
action, while RCM uses the pipe-and-filter style for interaction among components.
BIP provides connections to IF Toolset [27] and PROMETHEUS tools [28] to sup-
port modeling, validation, static analysis, model checking and simulation. On the
other hand, RCM is supported by the Rubus-ICE tool suite that provides a complete
modeling, analysis and simulation support for the component-based development of
distributed real-time systems.

Robocop [29, 30] is a component-based framework for the development of mid-
dleware in the consumer electronics domain, e.g., consumer devices like mobile
phones, DVD players, ATM machines, etc. On the other hand, RCM is intended for
the development of real-time embedded systems in the automotive domain. The inter-
action mechanism among components in both models is also different as Robocop
uses request response while Rubus uses pipe and filter. However, there are several
similarities between Robocop and RCM, e.g., both have a low resource footprint,
both are able to generate C code and both support deployment at the compilation
step (in addition, Robocop supports deployment at run time).

A related research presents a detailed overview of timing aspects during the design
activities of automotive embedded systems [31]. In [32], the authors define end-to-
end delay semantics and present a formal framework for the calculation of end-to-end
delays for register-based multi-rate systems. Like any other timing analysis, they
assume that the timing information of the system is available as an input. On the
other hand, our focus is on the extraction of required information into an end-to-end
timing model to carry out end-to-end timing analysis.

9 Extracting End-to-End Timing Models 167

In our previous work, we extended RCM to support modeling and analysis of
distributed embedded systems. In [33], we explored various options for modeling of
real-time network communication in RCM. In [21], we discussed modeling of legacy
communication in component-based distributed embedded systems. We added new
components in RCM to encapsulate and abstract the communication protocols, allow
use of legacy nodes and legacy protocols in a component- and model-based software
engineering environment, and support model- and component-based development of
new nodes that are deployed in legacy systems that use predefined communication
rules. Further, we highlighted the problem of linking trigger chains in the transactions
that are distributed over several nodes in a distributed embedded system [34].

9.6 Conclusion

In this chapter, we discuss the extraction of end-to-end timing models from
component-based distributed embedded systems modeled with the industrially avail-
able component model, the Rubus Component Model (RCM). The purpose of
extracting such models is to perform the end-to-end timing analysis during the
development process. We discussed and resolved various issues during the model
extraction such as extraction of timing information from all nodes and networks in
the system and extraction of linking model containing the linking information of all
distributed chains. We also described the implementation of the end-to-end timing
model extraction method in the Rubus Analysis Framework.

Although, we discussed the extraction of end-to-end timing models from RCM
models, we believe that the model extraction method is also suitable for other com-
ponent models for the development of distributed embedded systems that use a pipe-
and-filter style for component interconnection, e.g., ProCom [25], COMDES [35].
Moreover, our approach can be used for any type of “inter-model signaling”, where
a signal leaves one model (e.g. a node, or a core, or a process) and appears again in
some other model.

Acknowledgments This work is supported by the Swedish Knowledge Foundation (KKS) within
the project FEMMVA. The authors thank the industrial partners Arcticus Systems, BAE Systems
Hägglunds and Volvo Construction Equipment (VCE), Sweden.

References

1. Crnkovic, I., Larsson, M.: Building Reliable Component-Based Software Systems. Artech
House, Inc., USA (2002)

2. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Proceedings of the
14th international symposium on formal methods (FM), Lecture Notes in Computer Science,
pp. 1–15. Springer, Heidelberg (2006)

3. TIMMO Consortium: TIMMO-2-USE. http://www.timmo-2-use.org/

http://www.timmo-2-use.org/

168 S. Mubeen et al.

4. TIMMO Consortium: TADL: Timing Augmented Description Language, Version 2. TIMMO
(TIMing MOdel), Deliverable 6 (2009)

5. TIMMO Consortium: TIMMO Methodology, Version 2. TIMMO (TIMing MOdel), Deliver-
able 7. The TIMMO Consortium (2009)

6. Hänninen K., et al.: The rubus component model for resource constrained real-time systems.
In: 3rd IEEE International Symposium on Industrial Embedded Systems (2008)

7. Arcticus Systems AB: Arcticus Systems home page. http://www.arcticus-systems.com
8. BAE Systems: BAE Systems Hägglunds. http://www.baesystems.com/hagglunds
9. Volvo AB: Volvo Construction Equipment. http://www.volvoce.com

10. Mecel AB: Home page. http://www.mecel.se
11. Knorr-Bremse AG: Home page. http://www.knorr-bremse.com
12. Hänninen, K.: Efficient memory utilization in resource constrained real-time systems. Ph.D.

thesis, Mälardalen University, Sweden (2008)
13. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Support for end-to-end response-time and delay

analysis in the industrial tool suite: Issues, experiences and a case study. Comput. Sci. Inf.
Sys. 10(1), 453–482, ISSN: 1361–1384, (2013)

14. Tindell, K.: Adding time-offsets to schedulability analysis. Department of Computer Science,
University of York, England, Tech. rep (1994)

15. Palencia, J., Harbour, M.G.: Schedulability analysis for tasks with static and dynamic
offsets. Real-Time Systems Symposium, IEEE International p. 26 (1998). URLhttp://doi.
ieeecomputersociety.org/10.1109/REAL.1998.739728

16. Mäki-Turja, J., Nolin, M.: Efficient implementation of tight response-times for tasks with
offsets. Real-Time Syst. 40(1), 77–116 (2008). URLhttp://dx.doi.org/10.1007/s11241-008-
9050-9

17. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Extending schedulability analysis of controller area
network (CAN) for mixed (periodic/sporadic) messages. In: 16th IEEE Conference on Emerg-
ing Technologies and Factory Automation (ETFA) (2011). doi:10.1109/ETFA.2011.6059010.

18. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Extending response-time analysis of controller area
network (CAN) with FIFO queues for mixed messages. In: 16th IEEE Conference on Emerg-
ing Technologies and Factory Automation (ETFA), pp. 1–4 (2011). doi:10.1109/ETFA.2011.
6059188.

19. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Response-time analysis of mixed messages in con-
troller area network with priority- and FIFO-queued nodes. In: 9th IEEE International Work-
shop on Factory Communication Systems (WFCS) (2012)

20. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Worst-case response-time analysis for mixed messages
with offsets in controller area network. In: 17th IEEE Conference on Emerging Technologies
and Factory Automation (ETFA) (2012)

21. Mubeen, S., Mäki-Turja, J., Sjödin, M., Carlson, J.: Analyzable modeling of legacy commu-
nication in component-based distributed embedded systems. In: 37th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pp. 229–238 (2011). doi:10.
1109/SEAA.2011.43

22. AUTOSAR Consortium: AUTOSAR Technical Overview, Version 2.2.2. AUTOSAR - AUTo-
motive Open System ARchitecture, Release 3.1, The AUTOSAR Consortium, Aug (2008).
http://autosar.org

23. Heinecke, H., et al.: AUTOSAR - Current results and preparations for exploitation. In: Pro-
ceedings of the 7th Euroforum Conference, EUROFORUM ’06 (2006)

24. TIMMO Consortium: Mastering Timing Information for Advanced Automotive Systems
Engineering - In the TIMMO-2-USE Brochure (2012). http://www.timmo-2-use.org/pdf/
T2UBrochure.pdf

25. Sentilles, S., Vulgarakis, A., Bures, T., Carlson, J., Crnkovic, I.: A Component Model for
Control-Intensive Distributed Embedded Systems. In: 11th International Symposium on Com-
ponent Based Software Engineering (CBSE2008), pp. 310–317. Springer, Heidelberg (2008)

26. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In:
Proc. of SEFM’06, pp. 3–12. IEEE Computer Society (2006)

http://www.arcticus-systems.com
http://www.baesystems.com/hagglunds
http://www.volvoce.com
http://www.mecel.se
http://www.knorr-bremse.com
http://doi.ieeecomputersociety.org/10.1109/REAL.1998.739728
http://doi.ieeecomputersociety.org/10.1109/REAL.1998.739728
http://dx.doi.org/10.1007/s11241-008-9050-9
http://dx.doi.org/10.1007/s11241-008-9050-9
http://dx.doi.org/10.1109/ETFA.2011.6059010
http://dx.doi.org/10.1109/ETFA.2011.6059188
http://dx.doi.org/10.1109/ETFA.2011.6059188
http://dx.doi.org/10.1109/SEAA.2011.43
http://dx.doi.org/10.1109/SEAA.2011.43
http://autosar.org
http://www.timmo-2-use.org/pdf/T2UBrochure.pdf
http://www.timmo-2-use.org/pdf/T2UBrochure.pdf

9 Extracting End-to-End Timing Models 169

27. Bozga, M., et. al.: The IF Toolset. In: Formal Methods for the Design of Real-Time Systems,
Lecture Notes in Computer Science, vol 3185, pp. 237–267. Springer, Hedielberg (2004)

28. Gssler, G.: Prometheus - A Compositional Modeling Tool for Real-Time Systems.In, Work-
shop on Real-Time Tools (RT-TOOLS) (2001). (2001)

29. ROBOCOP Team: ROBOCOP project. http://www.hitech-projects.com/euprojects/robocop/
deliverables.htm

30. Muskens, J., Chaudron, M.R.V., Lukkien, J.J.: A component framework for consumer elec-
tronics middleware. In: Component-Based Software Development for Embedded Systems.
pp 164–184, (2005)

31. Scheickl, O., Rudorfer, M.: Automotive real time development using a timing-augmented
AUTOSAR specification. ERTS, (2008)

32. Feiertag, N., Richter, K., Nordlander, J., Jonsson, J.: A compositional framework for end-to-
end path delay calculation of automotive systems under different path semantics.In:Workshop
on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS)(2008)

33. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Exploring Options for Modeling of Real-Time
Network Communication in an Industrial Component Model for Distributed Embedded
Systems. In: The 6th International Conference on Embedded and Multimedia Computing
(EMC-2011), Lecture Notes in Electrical Engineering, vol. 102, pp. 441–458. Springer
Berlin / Heidelberg (2011)

34. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Tracing event chains for holistic response-time
analysis of component-based distributed real-time systems. In: 23rd Euromicro Conference
on Real-Time Systems (ECRTS 2011), WIP Session. ACM SIGBED, Review (2011)

35. Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: A Component-Based Framework for Gen-
erative Development of Distributed Real-Time Control Systems. In: 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
2007, pp. 199–208 (2007). doi:10.1109/RTCSA.2007.29

http://www.hitech-projects.com/euprojects/robocop/deliverables.htm
http://www.hitech-projects.com/euprojects/robocop/deliverables.htm
http://dx.doi.org/10.1109/RTCSA.2007.29

Part IV
Timing Analysis and Time-Based Synthesis

Chapter 10
Distributed Priority Assignment
in Real-Time Systems

Moritz Neukirchner, Steffen Stein and Rolf Ernst

Abstract Recent advances in in-system performance analysis allow to determine
feasibility of a system configuration within the system itself. Such methods have
been successfully used to perform admission control for updates in distributed real-
time systems. Parameter synthesis, which is necessary to complement the admission
control with self-configuration capabilities, lags behind because current approaches
cannot be distributed properly or due to necessary design-time preprocessing steps.
In this chapter we present a distributed algorithm to find feasible execution priorities
in distributed static-priority-preemptively (SPP) scheduled real-time systems under
consideration of end-to-end path latencies. The presented algorithm builds on top of
an existing distributed feasibility test, which is derived from compositional perfor-
mance analysis [1]. With an extensive set of pseudo-randomly generated testcases
we demonstrate the applicability of the approach and show that the proposed algo-
rithm can even compete with state-of-the-art design time tools at a fraction of the run
time. Thus, despite its application to admission control, the approach is generally
applicable to the problem of scheduling priority assignment.

10.1 Introduction

The integration of several components to a complex real-time system, such as an
automotive platform, is a challenging task, as the integration process may intro-
duce non-functional dependencies among otherwise independent components. Such
dependencies arise through e.g. use of a common communication bus. Correct func-
tioning is usually assured through means of extensive testing and formal verification.
When such systems are being updated or extended after deployment, the feasibility

M. Neukirchner (B) · S. Stein · R. Ernst
Institute of Computer and Network Engineering, Technische Universität Braunschweig,
Braunschweig, Germany
e-mail: neukirchner@ida.ing.tu-bs.de

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 173
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_10,
© Springer Science+Business Media New York 2014

174 M. Neukirchner et al.

of the system has to be re-verified considering the changes imposed through the
update.One option to address this problem is by admission control mechanisms, that
perform a formal verification in the system itself [2]. In this case the feasibility of
the update is analyzed prior to system reconfiguration/update and infeasible changes
are rejected.

However, in real-time systems feasibility of a system configuration heavily
depends on the assignment of scheduling parameters. Thus, when updating a system,
by e.g. adding a new software component, the update may be deemed infeasible by
the admission control, although it may be feasible under a different assignment of
scheduling parameters. To address this issue, we propose to extend admission con-
trol by a self-configuration service, which reassigns scheduling parameters such that
configurations, that would otherwise be rejected, can be allowed to execute.

Specifically, we address the constraint satisfaction problem of finding feasible
priority assignments in SPP scheduled real-time systems under consideration of
end-to-end path latency constraints. The algorithm that we present relies on a dis-
tributed implementation of compositional performance analysis [1, 3], which has
been successfully used for a distributed admission control scheme [2]. In order to
reduce runtime overhead and to integrate with the admission control scheme the
proposed algorithm is also implemented distributedly. Despite its application to the
above admission control scheme, the approach is generally applicable to the problem
of distributed priority assignment and not bound to any specific framework. As we
show later, the algorithm can even outperform a state of the art design time tool.

The remainder of this work is structured as follows. First we will review previ-
ous approaches for priority assignment in real-time systems (Sect. 10.2). We will
then provide a brief description of the system model and provide some insight
on the underlying admission control scheme and its distributed feasibility test [1]
(Sect. 10.3). In Sect. 10.4 we will outline the general strategy for the distributed
self-configuration algorithm and Sect. 10.5 introduces the local improvement tar-
get, which forms the basic metric used for priority assignment. Section 10.6 then
describes the proposed algorithm for distributed priority assignment, which inte-
grates into the general strategy. We evaluate its performance with two benchmark
algorithms (Sect. 10.7). Section 10.8 concludes the chapter.

10.2 Related Work

The problem of priority assignment has been studied intensively in the scope of
scheduling analysis. First approaches addressed uni-processor systems and the ques-
tion of schedulability of periodic tasks with task deadlines equal to their periods [4].
Later work reduced the restrictions on task deadlines [5, 6] and on periodicity [7, 8].
Extensions to multi-processor systems were then presented in [9–11]. In our scenario
of admission control and self-configuration we consider tasks with communication
dependencies and constraints on end-to-end path latencies. As the above approaches

10 Distributed Priority Assignment in Real-Time Systems 175

consider independent tasks and task- rather than path-latencies they are of limited
applicability.

Hamann et al. [12] and Glaß et al. [13] both presented frameworks for design-space
exploration of real-time systems that do not pose these restrictions on the system
model. Both approaches use a genetic algorithm (GA) and a tool for performance
analysis [3] to explore the design space. They support a multitude of parameters for
optimization, among which is priority assignment. In this work we will use [12] as a
benchmark. Genetic algorithms are generally computationally expensive due to the
large number of individuals that are required to derive a solution. This is undesirable
for use in self-configuration in resource-constrained embedded systems.

Another approach that is specifically targeted at runtime assignment of scheduling
parameters was presented by [14, 15]. Here, a control-theoretic approach is taken
to dynamically adjust scheduling parameters based on the actual workload of the
system. This approach, however, is only suitable for soft real-time systems and cannot
be applied if hard constraints have to be considered.

An approach that is more suitable for use in in-system admission control, that
shall ensure adherence to hard constraints, is to divide end-to-end deadlines into
local deadlines. Based on local algorithms tasks are then scheduled w.r.t. their local
deadlines. Jonsson and Shin [16] provides a good overview of work following this
approach. While most of these approaches target design-time optimization, e.g. [17],
the algorithm presented in [18] aims to find feasible schedules in-system. However,
the calculation of the local deadlines has to be performed in an offline pre-processing
step, which can significantly limit the exploitation of available system slack.

In [19] a distributed algorithm for local deadline assignment in earliest deadline
first (EDF) scheduled systems is presented. This approach can also be used for priority
assignment in systems with static priorities. However, it is not applicable to systems
which contain cyclic scheduling dependencies.

Neukirchner et al. [20] presented a distributed heuristic priority assignment algo-
rithm, that does not require division of path latency deadlines into local task deadlines,
while still allowing an efficient distributed implementation. The algorithm presented
in this chapter builds on the same distribution approach as [20] (see Sect. 10.4).
However, as will be shown in Sect. 10.7, our algorithm provides greatly improved
results and even outperforms the design-time solution [12], which was chosen as
benchmark.

10.3 System Model and Admission Control Concept

In this section, we introduce the system model and admission control concept, which
forms the basis for our algorithm.

We use the system model as in [3]. In this system model a hardware platform P
consists of multiple processors interconnected by communication media. We will
refer to processors and communication media as (computational and communication)
resources ρ j . On this platform a set of communicating tasks� = {τi } are executed. A

176 M. Neukirchner et al.

set of paths� = {ψk}with constraints on end-to-end latencies C = {χψk : ψk ∈ �}
are specified for the task set.

The distributed priority assignment algorithm presented in this chapter relies on
compositional performance analysis (CPA) [3, 21] as feasibility test, while also other
modular analyses as e.g. Modular Performance Analysis (MPA) [22] can be used.
CPA composes local schedulability analysis algorithms using event model interfaces.
Schedulability analysis algorithms derive worst-case response times from worst-case
execution times of tasks for a given scheduling policy. Algorithms exist for a mul-
titude of scheduling and bus arbitration schemes, e.g. for static priority preemptive
scheduling [23], Round Robin [24], or CAN Bus [25]. Using these functions, CPA
derives bounds on the individual response time of each task in the system also under
the assumption of communicating tasks. The response times are aggregated to com-
pute bounds on path latencies [26].

Stein et al. [1] has presented a distributed performance analysis (DPA) based on
CPA, which can be used for admission control within a real-time system. The dis-
tributed priority assignment algorithm, which we present in this chapter, is designed
to be used as self-configuration service along with this DPA-based admission con-
trol scheme. The DPA implementation is composed of several DPA instances, one
residing at each resource in the system. The single instances communicate the worst-
case timing behavior of their tasks and cooperatively determine worst-case system
level timing. Each DPA instance only contains model data of tasks that reside on the
resource of that DPA. We refer to this information as the local model of the DPA
instance. Specifically, a DPA instance can provide information on worst-case task
response times ωτi (WCRT), worst-case path latencies λψk and path latency con-
straints χψk ∈ C of tasks that reside on the same resource as the DPA instance.
The provided estimations on WCRTs are monotonic, i.e. if a task’s priority is
increased/decreased and all other parameters remain equal, its worst-case response
time can only decrease/increase or remain equal, respectively.

To be able to reason about data within the local model of a DPA instance we
introduce some sets of variables. Let �ρ j be the set of tasks that are mapped on
resource ρ j and �ψk be the set of tasks that are part of path ψk . Furthermore let �ρ j

be the set of paths that have at least one task mapped on resource ρ j (τi ∈ �ρ j) and
�τi be the set of paths that task τi is part of (τi ∈ �ψk). These definitions are later
required to define the self-configuration algorithm.

10.4 Self-Configuration Strategy

In this section we present the general approach to self-configuration.The distributed
self-configuration (DSC) algorithm relies on the model-based Distributed Perfor-
mance Analysis (DPA) algorithm [1] which is used for admission control. Each DPA
instance is complemented by a DSC instance - both instances residing at the same
resource (Fig. 10.1a). The DSC can request estimations on WCRTs and path laten-
cies from the DPA. Due to the distribution of the model and the DPA, each DSC

10 Distributed Priority Assignment in Real-Time Systems 177

(a) (b)

Fig. 10.1 General algorithm flow a architecture view. b logic view

instance can only access the information provided by its attached DPA instance, i.e.
the DPA’s local model. Each DSC instance can reassign task priorities in the local
model of its attached DPA instance. While the DPA instances communicate to ana-
lyze a system configuration, the DSC instances do not require to communicate except
for synchronization.

Fig. 10.1b shows the DSC flow. The DPA analyzes the system model. A DSC
instance becomes active when its DPA instance reports a constraint violation on its
respective resource, i.e. if the worst-case path latency of any path on that resource
exceeds its constraint. Based on local rules and data available from their attached DPA
instances all active DSC instances concurrently compute new priority assignments
and insert them into the model of the DPA. All active DSC instances synchronize
(e.g. using a barrier synchronization protocol as described in [27]) to ensure a con-
sistent model. Then the DPA analyzes the modified configuration again. This loop is
executed on a resource whenever the current priority assignment does not satisfy all
path latency constraints. Each execution of this loop is referred to as a DSC step. As
the DPA is performed synchronized across all affected resources, DPA and DSC are
performed in a lock-step manner. If a global solution is found (i.e. all constraints are
satisfied), a feasible configuration has been found and the update to the system con-
figuration can be accepted. To avoid endless loops in case of unsatisfiable constraints
in an update, the number of DSC steps can be supervised and bounded by an addi-
tional software component. When used as self-configuration algorithm in a running
system, all computation and communication of DPA and DSC can be performed on
lowest priority, to minimize the effect on running applications.

178 M. Neukirchner et al.

10.5 The Local Improvement Target

In this section we will introduce a metric for evaluation of constraint violations. We
will show how this new metric can be calculated solely from local information from
the DPA instances making it highly suitable for a distributed algorithm. Then we will
outline a naïve distributed algorithm and demonstrate how such a DSC algorithm
may lead to oscillations. In the following section, we will then provide a distributed
algorithm, based on the same metric, which avoids this issue.

First, we define the local improvement target (LIT) of a task as a metric for the
violation of that task’s path latency constraints.

Definition 1 Let the local improvement target δτi of task τi ∈ �ρ j be defined as

δτi = max
ψk∈�τi

(
0,
ωτi

λψk

∗ (λψk − χψk)
)

(10.1)

The LIT indicates the “responsibility” of a task for a path latency constraint
violation. To obtain a task’s LIT, the quotient of the task’s WCRT and the path
latency multiplied by the path violation is calculated for all paths, that the task is part
of. The task’s LIT is the maximum value obtained for this task. The calculation only
requires the task’s worst-case response times ωτi , and path latencies λψk and latency
constraints χψk of all paths ψk ∈ �τi , that the task is part of. All of this information
is provided by the DPA based on its local model. Thus, LITs can be calculated at
DSC instances without the necessity of explicit communication among the different
DSC instances.

A naïve algorithm to priority assignment is to assign priorities directly with
ascending LITs, i.e. tasks with higher LITs receive higher priorities. This algo-
rithm requires all DSC instances to concurrently calculate the LITs for all tasks on
their respective resources. If any LIT is greater than 0, i.e. a constraint is violated,
the corresponding DSC instance would sort the tasks in descending order of their
respective LITs and assign priorities in descending order of that sorted list. This
direct LIT-based approach proves feasible if applied to only one resource at a time
as was shown with a similar metric in [1]. However, if applied to several resources
concurrently, this algorithm may lead to oscillatory, as we show in the following.

Again, consider the example system shown in Fig. 10.2a. The system is com-
posed of two resources connected over a bus and of two task sets (τ1,τ2 and τ3,τ4)
with constraints on their end-to-end path latencies. For simplicity we shall disregard
transmission times and scheduling on the bus. In this setup the path latency con-
straints may be assigned such that both constraints can only be satisfied if τ1 > τ3
and τ2 < τ4 or if τ1 < τ3 and τ2 > τ4 (τx > τy denotes a higher priority for
τx). This scenario is depicted in Fig. 10.2b. If in the initial state either τ1 and τ2 or
τ3 and τ4 hold the higher priorities, the concurrent distributed priority assignment
on both resources will result in oscillation. As the lower priority path will violate
its constraint, both resources will give the corresponding tasks the higher priorities
simultaneously, resulting in the inverted situation in the following DSC step. The

10 Distributed Priority Assignment in Real-Time Systems 179

(a) (b)

Fig. 10.2 Example system a example system. b possible configurations

other two states are the feasible solutions, that are never reached, i.e. the distrib-
uted algorithm gets stuck and alternates between the same infeasible configurations.
As we will see in the evaluation (Sect. 10.7), such oscillations occur frequently if
the direct LIT-based algorithm is used in a distributed setup, i.e. approaches as pre-
sented in [1] do not generalize to concurrent distributed setups. In the remainder of
this chapter, we explain, how the problem of priority assignment can nonetheless be
addressed with a highly efficient distributed algorithm.

10.6 Distributed Self-Configuration Algorithm

We propose to use a control-theory inspired approach within each DSC instance to
assign priorities without causing oscillatory loops.

In the previous section we have seen, that oscillations may occur because DSC
instances do not consider the behavior of other DSC instances in the priority assign-
ment process. We propose to address this by considering past DSC steps in each
instance. However, logging all evaluated configurations of previous DSC steps is
intractable because 1. no DSC instance has a complete view of the system model and
thus cannot decide alone whether a configuration has already been evaluated 2. log-
ging all previous configurations introduces significant memory overhead, which may
be prohibitive, if the algorithm is used in-system along with an admission control
scheme.

We propose a DSC algorithm that complements the priority assignment in decreas-
ing order of the LIT with a time-discrete PID filter, as depicted in Fig. 10.3. Such
a filter allows to track past DSC steps with minimal memory overhead. In a first
step (1. in Fig. 10.3) set point priorities Sτi are assigned in decreasing order of the
tasks’ LIT. This is the direct LIT-based priority assignment, which tends to oscil-
late if no further counter-measures are taken. These set point priorities are input to
a feedback PID-controller (2. in Fig. 10.3). This filter returns a priority rating Rτi

which incorporates the set-point priorities Sτi , the currently assigned priorities Pτi

and the history of DSC steps through a proportional (P), an integral (I) and a deriva-
tive (D) component. The proportional component is equivalent to a scalable priority

180 M. Neukirchner et al.

Fig. 10.3 Feedback control for priority assignment

assignment in direct correlation with the LIT. The integral component allows to
super-proportionally increase the priority rating of a task if it violates any of its path
latency constraints over several subsequent DSC steps. The derivative component
dampens this effect by decreasing the priority rating if it increased in the previous
DSC step. In combination all three components allow to calculate a sufficiently sta-
ble priority rating. Once the priority ratings have been calculated tasks are assigned
priorities in decreasing order of these ratings (3. in Fig. 10.3).

The described flow is further detailed in algorithm 2, which shows the l-th DSC
step. In a first step all local improvement targets are calculated (line 3). To assign the
set point priorities for each task τi ∈ �ρ j , �ρ j is sorted in descending order of the
LITs δτi (line 6). The set point priority of a task τi is then set to its position in
the sorted �ρ j (line 7).

The set point priorities S serve as input for the filter. Let �τi (l) be the difference
of assigned priority and set point priority in the l-th DSC step, i.e.

�τi (l) = Sτi (l)− Pτi (l − 1) (10.2)

The priority rating Rτi (l) in the l-th DSC step is then calculated by

Rτi (l) = Pτi (l − 1)

+ kP ∗�τi (l)

+ kI ∗ Iτi (l)

+ kD ∗ Dτi (l) (10.3)

with

Iτi (l) = Iτi (l − 1)+�τi (l) (10.4)

Dτi (l) = �τi (l − 1)−�τi (l) (10.5)

10 Distributed Priority Assignment in Real-Time Systems 181

Algorithm 1: l-th DSC Step (filtered LIT-based)
1: for ρ j ∈Ps ⊆P concurrently do
2: for τi ∈ �ρ j do
3: calculate δτi

4: end for
5: if any δτi > 0 : τi ∈ �ρ j then
6: sort �ρ j descending in δτi

7: assign set point priorities in order of sorted �ρ j

8: for τi ∈ �ρ j do
9: calculate Rτi (l)
10: end for
11: sort �ρ j descending in Rτi (l)
12: assign priorities in order of sorted �ρ j

13: end if
14: end for

and
kP , kI , kD ∈ R (10.6)

The parameters kP , kI and kD are the gain parameters of the proportional, integral
and differential components of the filter, respectively. After calculation of the priority
ratings Rτi (l) for all τi ∈ �ρ j (line 9), the set �ρ j is sorted in descending order of
the priority ratings Rτi (l) (line 11). The priority of all tasks τi ∈ �ρ j is then set to
their respective position in the sorted �ρ j (line 12).

Note that the addition of the filter does not prevent oscillations from ever occurring.
The inputs of each DSC instance depend on the behavior of potentially several other
DSC instances - while these dependencies change with different priority assignments.
Thus, stability of the constraint solving process cannot be guaranteed. Furthermore,
as the feedback path of the filter includes a sorting operation, it is intractable to
calculate optimal gain parameters to achieve a certain damping. Instead we have
determined suitable gain parameters (Eq. 10.7–10.9) empirically on the testcases
that were used in the evaluation (Sect. 10.7).

In order to find suitable gain parameters we have observed the change of path
latencies of several testcase systems over the course of several DSC steps. Fig. 10.4
shows a plot of this for one testcase system, which consists of 4 resources, 10 tasks
and 5 communication channels on one communication medium. Three paths with
constrained latency are defined. The plot shows the path latencies in solid lines and the
respective constraint in the same color as dashed line. We see that the experimentally
chosen gain parameters cause a decent settling behavior of the path latencies towards
their respective constraints, rendering the system feasible after 5 DSC steps. The gain
parameters that were used for this testcase as well as the evaluation in Section 10.7
are given below.

182 M. Neukirchner et al.

Fig. 10.4 Example: Path
latency over several DSC
steps

kP = −0, 4 (10.7)

kI = 0, 05 (10.8)

kD = −0, 1 (10.9)

Although, the gain parameters define the settling behavior, their experimental
determination has shown, that their influence is continuous and the distributed priority
assignment algorithm is not overly sensitive to small changes in these parameters.

Furthermore, although we cannot guarantee optimality of the filter we observe,
that the possibility to rank tasks based on their value-continuous priority rating—
instead of the stepwise changing path latency—and because these priority ratings
incorporate the history of DSC steps, a more stable trend for priority assignment is
obtained. In the following section we demonstrate on a larger set of testcases that
this filtering approach indeed poses a suitable approach to priority assignment.

10.7 Evaluation

In this section we evaluate the performance of the proposed algorithm. As it employs
a heuristic, we have tested it on an extensive set of testcases. As baseline for the
comparison we use a state of the art design-time tool, which is based on a genetic
algorithm [12]. Furthermore, we compare the performance to the lazy algorithm
presented in [20], which builds on the same general DSC approach as this chapter
while reducing oscillations by means of a lazy threshold.

The testcase systems were generated with the open-source tool System Models
for Free (SMFF) [28, 29], which pseudo-randomly generates completely specified
system models. We have used two different parameter sets to evaluate scalability
of the approach. The first parameter set generates smaller systems with 4 compu-
tational resources, 2–3 communication resources and 2–4 tasks per task set. The
second parameter set generates system models with 12 computational resources,
3–5 communication resources and 3–7 tasks per task set. The number of task sets
per testcase depends on the success of the filtered LIT-based algorithm and the GA.

10 Distributed Priority Assignment in Real-Time Systems 183

Fig. 10.5 Parameters for testcase generation

We have added additional task sets until the system turned infeasible. Then we have
used both algorithms to find a feasible configuration. If one succeeded, we added
another task set. This was repeated until neither algorithm was able to find a feasible
configuration. As a result the different testcases contained between 2 and 10 task sets
(i.e. in total 4–70 tasks) and in total 118 testcases were analyzed per parameter set.
For both parameter sets the worst-case execution times of each task were set such that
it caused a load (i.e. WCET/Period) between 1 and 5 %. Constraints on end-to-end
path latency were set to values 3–5 times larger than the sum of the WCETs of all
tasks along the path. For reproducibility of results we provide the complete set of
parameters in Fig. 10.5.

10.7.1 Number of Feasible Priority Assignments

First, we regard the number of testcase systems, for which the LIT-based algorithm
could find a feasible priority assignment. In many cases it is intractable, to ana-
lyze whether a system has a feasible priority assignment at all, as the number of
possible configurations easily reaches values greater than several 100 million. As a
consequence we perform this evaluation relative to the genetic algorithm of [12].

We will call an optimization run a false negative for the filtered LIT-based algo-
rithm/GA, if the filtered algorithm/GA failed to find a solution, while the other
did find a feasible priority assignment, respectively. The LIT-based algorithm was
restricted to 500 DCS steps, while the GA analyzed 50 individuals over 10 genera-
tions. Fig. 10.6a shows the percentage of testcases where only the filtered LIT-based
algorithm (green), both algorithms (yellow) and only the GA (red) found a solution.
For the small systems the filtered LIT-based algorithm and the genetic algorithm [12]
performed equally well. In more than 80 % of the testcases both algorithms found
a solution. In ∼8 % of the testsystems each algorithm was able to find a solution
while the other failed to find a feasible priority assignment. From the larger testcase

184 M. Neukirchner et al.

(a)

(b) (c)

Fig. 10.6 Comparison w.r.t. solved testcases a filtered LIT-based b direct LIT-based [20] c 15 %-
lazy LIT-based [20]

systems we see that the filtered algorithm scales significantly better than the GA. In
∼90 % of the large testcase systems only the filtered algorithm was able to find a
feasible priority assignment while the GA failed to find a solution. Conversely, in
only ∼1 % of the larger testcases the GA found a solution while our novel approach
failed to solve the priority assignment problem.

As we have used the same test setup as [20] we can also compare the performance
of the filtered algorithm to the direct LIT-based algorithm (Fig. 10.6b) and to the
lazy LIT-based algorithm [20] (Fig. 10.6c). We see that both previous LIT-based
approaches, unlike the proposed filtered algorithm, were outperformed by the GA.

10.7.2 Runtime

Next we compare the runtime of the algorithms. Because the runtime of the self-
configuration algorithm is dominated by the underlying DPA, and the benchmark
GA uses the same performance analysis, we use the number of required performance
analysis runs (i.e. number of DSC steps) to obtain a solution as runtime metric. We
introduce the comparison factor c, that signifies the relation of the number of analysis
runs needed by the GA b and the number of analysis runs needed by the distributed
LIT-based algorithm a.

c =

⎧
⎪⎨

⎪⎩

b/a if a < b

0 if a = b

−a/b if b < a

(10.10)

For both parameter sets Fig. 10.7 shows histograms over the comparison factor c
for those testcases where both algorithms found a solution. Regardless of the testcase
size the proposed LIT-based algorithm requires an order of magnitude less perfor-
mance analyses to derive a feasible priority assignment than the GA, which is a state
of the art design time tool (12.75× and 11.48× average improvement for the small
and large testcase systems, respectively). For the same set of testcase generation para-
meters the lazy LIT-based algorithm of [20] states average runtime improvements vs.

10 Distributed Priority Assignment in Real-Time Systems 185

(a) (b)

Fig. 10.7 Improvement histograms a filtered LIT-based, Param. Set 1 b filtered LIT-based, Param.
Set 2

the GA of 5× and 7× for the two testcase parameter set. Thus, the presented filtered
algorithm is∼2× faster than the lazy algorithm while it is able to solve significantly
more testcases.

10.8 Conclusion

In this chapter we have presented an algorithm that distributedly finds feasible priority
assignments in distributed SPP scheduled systems under consideration of end-to-
end path latency constraints. Due to the possibility of distributed implementation
the algorithm can be used to complement an admission control scheme as in [2] to
enhance a system by self-configuration capabilities.

In an evaluation based on an extensive set of pseudo-randomly generated testcases
we have shown that the proposed filtered LIT-based algorithm was able to solve as
many small testcases systems as a current design-time tool. For larger more complex
systems it even outperformed the existing software significantly. At the same time,
irrespective of the testcase size the proposed algorithm was more than an order of
magnitude faster than the design-time tool.

Thus, although designed for an in-system distributed implementation, the algo-
rithm poses an attractive choice for design-time configuration synthesis.

References

1. Stein, S., Hamann, A., Ernst, R.: Real-time property verification in organic computing sys-
tems. In: Second Int’l. Symp. on Leveraging Applications of Formal Methods, Verification and
Validation (2006)

2. Neukirchner, M., Stein, S., Schrom, H., Ernst, R.: A software Update Service with Self-
Protection Capabilities. In: Conf. on Design, Automation and Test in Europe (DATE) (2010)

3. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level performance
analysis - the SymTA/S approach. Computers and Digital Techniques, IEE Proc. - 152, 148–166
(2005).doi:10.1049/ip-cdt:20045088

http://dx.doi.org/10.1049/ip-cdt:20045088

186 M. Neukirchner et al.

4. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20, 46–61 (1973)

5. Leung, J.Y.T., Whitehead, J.: On the complexity of fixed-priority scheduling of periodic, real-
time tasks. Perform. Eval. 2, 237–250 (1982)

6. Audsley, N., Burns, A., Richardson, M.F., Wellings, A.J.: Hard real-time scheduling: The
deadline-monotonic approach. In: proceeding IEEE Workshop on Real-Time Operating Sys-
tems and Software (1991)

7. Lehoczky, J., Ramos-Thuel, S.: An optimal algorithm for scheduling soft-aperiodic tasks
in fixed-priority preemptive systems. Real-Time Systems Symposium (RTSS), pp. 110–123
(1992)

8. Davis, R., Burns, A.: Optimal priority assignment for aperiodic tasks with firm deadlines in
fixed priority pre-emptive systems. Inf. Process. Lett. 53, 249–254 (1995)

9. Bertogna, M., Cirinei, M., Lipari, G.: New schedulability tests for real-time task sets sched-
uled by deadline monotonic on multiprocessors. Principles of Distributed Systems. Springer,
Heidelberg, (2006)

10. Andersson, B.: Global static-priority preemptive multiprocessor scheduling with utilization
bound 38%. Principles of Distributed Systems. Springer, Heidelberg (2008)

11. Davis, R.I., Burns, A.: Priority assignment for global fixed priority pre-emptive scheduling in
multiprocessor real-time systems. In: Real-Time Systems Symposium (RTSS) (2009)

12. Hamann, A., Jersak, M., Richter, K., Ernst, R.: A framework for modular analysis and explo-
ration of heterogeneous embedded systems. Real-Time Syst. 33, 101–137 (2006)

13. Glaß, M., Lukasiewycz, M., Teich, J., Bordoloi, U., Chakraborty, S.: Designing heterogeneous
ECU networks via compact architecture encoding and hybrid timing analysis. In: Proceedings
of Design Automation Conference (DAC), pp. 43–46 (2009)

14. Palopoli, L., Abeni, L., Cucinotta, T., Lipari, G., Baruah, S.: Weighted feedback reclaiming
for multimedia applications. In: Workshop on Embedded Systems for Real-Time Multimedia
(ESTImedia) (2008). doi:10.1109/ESTMED.2008.4697009

15. Cucinotta, T., Palopoli, L.: QoS control for pipelines of tasks using multiple resources. IEEE
Trans. Comput. 59, 416–430 (2010)

16. Jonsson, J., Shin, K.G.: Robust adaptive metrics for deadline assignment in distributed hard
real-time systems. Real-Time Syst. 23, 239–271 (2002)

17. García, J.G., Harbour, M.G.: Optimized priority assignment for tasks and messages in dis-
tributed hard real-time systems. Workshop on Parallel and Distributed Real-Time Systems,
(1995)

18. Natale, M.D., Stankovic, J.A.: Dynamic end-to-end guarantees in distributed real time systems.
In: Real-Time Systems Symp. (RTSS) (1994)

19. Hong, S., Chantem, T., Hu, X.S.: Meeting end-to-end deadlines through distributed local dead-
line assignments. In: Real-Time Systems Symposium (RTSS) (2011)

20. Neukirchner, M., Stein, S., Ernst, R.: A lazy algorithm for distributed priority assignment in
real-time systems. Workshop on Self-Organizing Real-Time Systems (SORT), (2011)

21. Richter, K.: Compositional scheduling analysis using standard event models. Ph.D. thesis,
Technical University of Braunschweig, Department of Electrical Engineering and Information
Technology (2004)

22. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard real-time
systems. In: Symposium on Circuits and Systems (ISCAS) (2000). doi:10.1109/ISCAS.2000.
858698

23. Tindell, K.W.: An extendible approach for analysing fixed priority hard real-time systems. J.
Real-Time Syst. 6, 133–152 (1994)

24. Racu, R., Li, L., Henia, R., Hamann, A., Ernst, R.: Improved response time analysis of tasks
scheduled under preemptive round-robin. Conference on Hardware-Software Codesign and
System Synthesis, (2007)

25. Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (can) schedulability
analysis: Refuted, revisited and revised. Real-Time Syst. 35, 239–272 (2007)

http://dx.doi.org/10.1109/ESTMED.2008.4697009
http://dx.doi.org/10.1109/ISCAS.2000.858698
http://dx.doi.org/10.1109/ISCAS.2000.858698

10 Distributed Priority Assignment in Real-Time Systems 187

26. Schliecker, S., Ernst, R.: A recursive approach to end-to-end path latency computation in
heterogeneous multiprocessor systems. In: Conference on Hardware Software Codesign and
System Synthesis (CODES-ISSS) (2009)

27. Stein, S., Neukirchner, M., Schrom, H., Ernst, R.: Consistency challenges in self-organizing
distributed hard real-time systems. Workshop on Self-Organizing Real-Time Systems (SORT),
(2010)

28. Neukirchner, M., Stein, S., Ernst, R.: SMFF: System Models for Free. In: 2nd Int’l. Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS) (2011)

29. Neukirchner, M.: System models for free. http://smff.sourceforge.net (2011). http://smff.
sourceforge.net

http://smff.sourceforge.net
http://smff.sourceforge.net
http://smff.sourceforge.net

Chapter 11
Exploration of Distributed Automotive Systems
Using Compositional Timing Analysis

Martin Lukasiewycz, Michael Glaß, Jürgen Teich and Samarjit Chakraborty

Abstract This chapter presents a design space exploration method for mixed event-
triggered and time-triggered real-time systems in the automotive domain. A design
space exploration model is used that is capable of modeling and optimizing state-
of-the-art automotive systems including the resource allocation, task distribution,
message routing, and scheduling. The optimization is based on a heuristic approach
that iteratively improves the system design. Within this iterative optimization it is
necessary to analyze each system design where one of the major design objectives that
needs to be evaluated is the timing behavior. Since timing analysis is a very complex
design task with high computational demands, it might become a bottleneck within
the design space exploration. As a remedy, a clustering strategy is presented that
is capable of reducing the complexity and minimizing the runtime of the timing
analysis. A case study gives evidence of the efficiency of the proposed approach.

11.1 Introduction

Automotive electronics are constantly becoming more complex due to the innovation
pressure in the automotive domain. A vast majority of innovations in the automotive
domain is nowadays driven by embedded systems. In the last years such innovations

M. Lukasiewycz (B)
TUM CREATE, Singapore, Singapore
e-mail: martin.lukasiewycz@tum-create.edu.sg

M. Glaß · J. Teich
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
e-mail: glass@cs.fau.de

J. Teich
e-mail: teich@cs.fau.de

S. Chakraorty
TU Munich, Munich, Germany
e-mail: samarjit@tum.de

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 189
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_11,
© Springer Science+Business Media New York 2014

190 M. Lukasiewycz et al.

were for example adaptive cruise control, pedestrian detection, or intelligent parking
assist systems. However, these innovations require increasingly sophisticated system
architectures. As a result, top-of-the-range vehicles already contain up to 100 Elec-
tronic Control Unit (ECU) and a multitude of different bus systems. In case functions
have stringent latency and jitter constraints, these systems often require a complex
validation of end-to-end timing behavior, using tools like Sympolic Timing Analy-
sis for Systems (SymTA/S) [1] or Modular Performance Analysis (MPA) [2, 3].
This evaluation is a challenging design task and might become a bottleneck within
a Design Space Exploration (DSE) where an optimization of the resource alloca-
tion, task mapping, message routing, and scheduling is performed. As a remedy,
this chapter presents a (DSE) approach that uses efficient timing analysis based on a
graph-based representation and a fine-grained fixed-point iteration that partitions the
problem in case of cyclic dependencies. In the following, the DSE model is intro-
duced. Based on this model, an approach is presented that is capable of reducing the
runtime of the timing analysis significantly. This is done by a decomposition of the
timing analysis problem and an ordered evaluation. Finally, a case study is presented
that gives evidence of the efficiency of the proposed approach.

11.2 Design Space Exploration Model

In the following, the Design Space Exploration (DSE) model is introduced,
see [4, 5]. It is based on the optimization approach presented in [6]. This opti-
mization approach is based on an Evolutionary Algorithm (EA), supporting multiple
and non-linear objectives. For this purpose it becomes necessary to define the model
formally and encode it into a set of linear constraints with binary variables such that a
feasible implementation corresponds to a feasible solution. The remaining optimiza-
tion, including load balancing and non-linear constraint satisfaction, is automatically
carried out in an iterative search process of the optimization approach. This proce-
dure significantly reduces the efforts to implement a new optimization approach or
define complex constraints to direct the search towards the optimal implementations.

11.2.1 Model Description

The used exploration model is defined by a specification that consists of an appli-
cation and an architecture. Mappings represent the relation between the process
tasks from the application to the architecture, indicating which process task can be
implemented on which resource. The application model also supports multi-cast
and multi-hop communication by introducing messages additionally to the process
tasks. A message can be routed on every resource except those where a routing is
explicitly prohibited. From this specification, various implementations are derived.
The implementation is defined by the allocation of architecture resources from a set

11 Exploration of Distributed Automotive Systems 191

application architecture

implementation

DesignSpaceExploration
(1) allocation
(2) binding
(3) routing

Fig. 11.1 Illustration of the Y-chart approach for the Design Space Exploration (DSE) model. An
application is mapped to an architecture, resulting in an implementation. The DSE performs an
allocation of resources, the binding of process tasks, and the routing of messages

of predefined components, the binding of process tasks to resources and routing of
messages. The Y-chart approach for this model is illustrated in Fig. 11.1.

The specification consists of an architecture graph G R , an application graph GT ,
and mapping edges EM :

• The architecture is given by a directed graph G R(R, ER). The vertices R represent
resources such as ECUs, gateways, and bus systems. The directed edges ER ⊆
R × R indicate available communication connections between resources.
• The application is given by a directed graph GT (T, ET) with T = P ∪ C . The

vertices T are either process tasks p ∈ P or messages c ∈ C . Each edge e ∈ ET

connects a vertex in P to one in C , or vice versa. Each process task can have
multiple incoming edges that indicate the data dependencies to communication
information of the predecessor messages. A process task can also have multiple
outgoing edges to allow the sending of multiple different messages. On the other
hand, each message has exactly one predecessor process task as the sender. To allow
multi-cast communication, each message can have multiple successor process
tasks.
• The set of mapping edges EM contains the mapping information for the process

tasks. Each mapping edge m = (p, r) ∈ EM indicates a possible implementation

192 M. Lukasiewycz et al.

p1

c1

p2 p3

c2 c3

p4

re1

r f rre2

rgw

rcanre3

re4

re5

re1 re2

rgw

re4 re3

r f r

re5

rcan

(a) (b) (c)

Fig. 11.2 Specification with the application graph GT (a) and architecture graph G R
(b) for a given architecture (c). The mapping edges are defined as follows: EM =
{(p1, re1), (p1, re2), (p2, re2), (p3, re2), (p3, re3), (p3, re4), (p4, re5)}

of the process p ∈ P on the resource r ∈ R. Without loss of generality it is
assumed that messages can be routed on every resource.

A sample specification is given in Fig. 11.2. This specification comprises a Control
Area Network (CAN) bus (rcan), a FlexRay bus (r f r), and a gateway (rgw) that
interconnects the buses. The communication over the buses and the gateway can
only be established by multiple hops.

One implementation consists of the allocation graph Gα that is deduced from the
architecture graph G R and the binding Eβ as a subset of EM that maps the application
to the allocation. Additionally, for each message c ∈ C a sub-graph of the allocation
Gγ,c is determined that fulfills the data dependencies such that the communication is
established between each sender process task and the corresponding receiver process
tasks.

• The allocation is a directed graph Gα(α, Eα) that is an induced sub-graph of the
architecture graph G R . The allocation contains all resources that are available in
the current implementation. The edges are induced from the graph G R such that
Gα is aware of all communication connections.
• The binding is performed by a mapping of the tasks to the allocated resources by

deducing Eβ from EM such that the following requirements are fulfilled.
Each process task p ∈ P in the application is bound to exactly one resource:

∀p ∈ P : |{m|m = (p, r) ∈ Eβ}| = 1 (11.1)

Each task can only be bound to allocated resources:

∀m = (p, r) ∈ Eβ : r ∈ α (11.2)

11 Exploration of Distributed Automotive Systems 193

• Each message in c ∈ C is routed on a tree Gγ,c that is a sub-graph of the allocation
Gα . The routings have to be performed such that all data dependencies given by
the following two conditions are satisfied.
For each message c ∈ C , the root of the routing has to equal the binding resource
of the predecessor sender process task p ∈ P:

∀(p, c) ∈ ET ,m = (p, r) ∈ Eβ : |{e|e = (r̃ , r) ∈ Gγ,c}| = 0 (11.3)

Each message c ∈ C has to be routed on the same resource as the binding resource
of the successive process tasks p ∈ P:

∀(c, p) ∈ ET ,m = (p, r) ∈ Eβ : r ∈ Gγ,c (11.4)

An implementation is feasible if all requirements on the process task binding
and the routing of the messages, i. e., the data dependencies, are fulfilled. A feasible
implementation for the specification in Fig. 11.2 is given in Fig. 11.3.

11.2.2 Binary Encoding

In the following, a set of linear constraints with binary variables is defined such that
a solution x ∈ {0, 1}n corresponds to a feasible implementation x for the given DSE
problem. The symbolic encoding uses the following binary variables:

r–binary variable for each resource r ∈ R indicating whether this resource is in
the allocation α (1) or not (0)
m–binary variable for each mapping m ∈ EM indicating whether the mapping
edge is in Eβ (1) or not (0)

Fig. 11.3 Implementation for
the specification in Fig. 11.2.
Illustrated is the allocation Gα ,
binding Eβ , and routing Gγ .
All routings are performed
within multiple hops using
the available buses and the
gateway

re1 re2

rgw

re4 re3

r fr

rcan

p1 p2

p3 p4

c1

c2

c3

194 M. Lukasiewycz et al.

cr–binary variable for each message c ∈ C and the available resources r ∈ R
indicating whether the message is routed on the resource (1) or not (0)
cr,t–binary variable for each message c ∈ C and resource r ∈ R indicating on
which communication step t ∈ T = {1, .., |T |} (messages are propagated in
steps or hops, respectively) a message is routed on the resource

The linear constraints are formulated as follows:
∀p ∈ P : ∑

m=(p,r)∈EM

m = 1 (11.5)

∀m = (p, r) ∈ EM :
r −m ≥ 0 (11.6)

∀c ∈ C, r ∈ R, (c, p) ∈ ET ,m = (p, r) ∈ EM :

cr −m ≥ 0 (11.7)

∀c ∈ C : ∑

r∈R

cr,1 = 1 (11.8)

∀c ∈ C, r ∈ R, (p, c) ∈ ET ,m = (p, r) ∈ EM :

m− cr,1 = 0 (11.9)

∀c ∈ C, r ∈ R : ∑

t∈T
cr,t ≤ 1 (11.10)

∀c ∈ C, r ∈ R : ⎛

⎝
∑

t∈T
cr,t

⎞

⎠− cr ≥ 0 (11.11)

∀c ∈ C, r ∈ R, t ∈ T :
cr − cr,t ≥ 0 (11.12)

∀c ∈ C, r ∈ R, t = {1, .., |T |} :
⎛

⎝
∑

r̃∈R,e=(r̃ ,r)∈ER

cr̃,t

⎞

⎠− cr,t+1 ≥ 0 (11.13)

∀c ∈ C, r ∈ R :
r − cr ≥ 0 (11.14)

11 Exploration of Distributed Automotive Systems 195

∀r ∈ R : (
∑

c∈C∧r∈R

cr

)
+

⎛

⎝
∑

m=(p,r)∈EM

m

⎞

⎠− r ≥ 0 (11.15)

The constraints in Eqs. (11.5) and (11.6) fulfill the binding of each task to exactly
one resource and the requirement that tasks are only bound to allocated resources,
respectively, as stated in Eqs. 11.1 and 11.2. A message has to be routed on each target
resource of the successive process task mapping targets as stated in the requirement in
Eq. (11.4). This requirement is fulfilled by the constraints in Eq. (11.7). Analogously,
as stated in the requirement in Eq. (11.3), the constraints in Eqs. (11.8) and (11.9)
imply that each message has exactly one root that equals the target resource of the
predecessor mapping. The constraints in Eq. (11.10) ensure that a message can pass
a resource at most once such that cycles are prohibited. A message has to be existent
in one communication step on a resource in order to be correctly routed on this
resource as implied by the constraint in Eqs. (11.11) and (11.12). The constraints
in Eq. (11.13) state that a message may be routed only between adjacent resources
in one communication step. In order ensure that the routing of each message is a
sub-graph of the allocation, each message can be only routed on allocated resources
as stated in the constraints in Eq. (11.14). Additionally, the constraints in Eq. (11.15)
ensure that a resource is only allocated if it is used by at least one process or message
such that suboptimal implementations are removed effectively from the search space.
This minimizes the resulting allocation by redundant resources such that additional
unnecessary costs are prohibited.

Given a single solution x of the defined set of linear constraints, a corresponding
implementation x may be deduced as follows: The allocation Gα is deduced from
the variables r and the binding Eβ from the variables m. For each message c ∈ C ,
the routing Gγ,c is deduced from the variables cr and cr,t.

11.3 Compositional Timing Analysis

The previous section defines a DSE model that is used to obtain feasible implementa-
tions x . Additionally, the exploration may also define priorities and schedules for the
tasks and messages, respectively. For each implementation x , a timing analysis has to
be performed to discard implementations that do not fulfill the real-time constraints
of applications. In the following, a compositional timing analysis is proposed that is
capable of determining end-to-end latencies efficiently in case of cyclic dependen-
cies. Note that this approach reduces the runtime significantly without introducing
any errors or additional over-approximations in the results.

196 M. Lukasiewycz et al.

11.3.1 Timing Model

In the used model it is assumed that the Worst-Case Execution Times (WCET)
of all tasks and the transmission times of messages are known. Also the periods
of applications are predefined and the priorities of tasks and messages are either
predefined or determined by the DSE.

The proposed compositional timing analysis approach may take advantage of dif-
ferent analysis techniques. For example, Modular Performance Analysis (MPA) [3]
is used for modeling the FlexRay bus protocol. For analyzing the Control Area Net-
work (CAN) bus, the approach presented by Tindell et al. [7] is applied. Here, it may
be noted that these approaches have different mechanisms for representing timing
properties of message streams. The approach in [7] uses the traditional period and
jitter event model. On the other hand, MPA uses a more generic event model based
on arrival curves. Further details on arrival curves may be found in [3]. A method to
convert arrival curves into standard event models and vice versa is presented in [8].
Using this method, the proposed compositional timing analysis enables a hybrid
approach such that standard event models like periodic, periodic with jitter, and spo-
radic might be used as well as arbitrary arrival patterns represented by appropriate
arrival curves.

Though the timing analysis may be performed efficiently with the described mod-
els, cyclic dependencies in the timing analysis require a fixed-point iteration that may
become computationally expensive. Due to the dependencies, the timing properties
have to be calculated iteratively until there are no changes anymore. For this pur-
pose, different approaches for an efficient fixed-point iteration for timing analysis are
proposed. The model requires a graph-based representation of timing dependencies
where the basic element is the timing entity. A timing entity might, for example, be
the execution of a process on an ECU or a transmission of a message on a bus or
gateway. The goal of the timing analysis is to determine the timing properties for
each timing entity within a compositional approach, i. e., separately from other cal-
culations. The timing properties are usually a delay and jitter where the jitter might
be a single real value or an arrival curve known from MPA.

In the following, a common global dependency-based fixed-point iteration as
well as the proposed fine-grained fixed-point iteration approach are presented. The
automotive network in Fig. 11.4 is introduced as an example to illustrate the proposed
approaches.

11.3.2 Dependency-Based Fixed-Point Iteration

The determination of the timing properties of a timing entity might depend on the
timing properties of other entities. It is suggested to use a graph-based representation
with Gχ (Vχ , Eχ) where Vχ is the set of timing entities and Eχ a set of directed
edges that define the dependency between timing entities. An edge (v, ṽ) ∈ Eχ

11 Exploration of Distributed Automotive Systems 197

Fig. 11.4 A small automo-
tive network consisting of
five ECUs ({re1, ..., re5}), a
CAN bus (rcan), a FlexRay
bus (r f r), and a gateway
(rgw). For the FlexRay bus,
the static segment is used.
The function consists of six
processes ({p1, ..., p6}) com-
municating via five messages
({c1, ..., c5}). The index of the
processes and messages rep-
resents the priority: A small
number implies a high priority

re1 re2

rgw

re4 re3

r fr

re5

rcan

p1 p2 p3

p4p5p6

c2

c1

c5

c3c4

indicates that the determination of the timing properties for ṽ depends on the timing
properties of v. If such a dependency graph Gχ is acyclic, the timing properties may
be determined in the partial order of the graph defined by the directed edges. In case
of cycles in the graph, a fixed-point iteration becomes necessary to determine the
timing properties of all entities. The dependency graph for the automotive network
in Fig. 11.4 is given in Fig. 11.5 (a):

• All tasks or messages have an influence on the successive tasks or messages,
respectively.
• Each process task on an ECU may delay the lower priority tasks on the same ECU

(p2 and p3).
• Each message on the CAN bus may delay lower priority messages on the same

CAN bus (c3, c4, and c5).
• All messages on the FlexRay bus do not influence each other directly since they

are routed on the static segment using Time Division Multiple Access (TDMA)
(c1 and c2).

An algorithm for a dependency-based fixed-point iteration is given in Algorithm
1: The algorithm determines a fixed point for a subset V ⊆ Vχ of all timing entities.
The set Va contains all timing entities that shall be evaluated, i. e., starting with V
(line 1). The iterative algorithm proceeds until the set Va is empty (line 2). In each
iteration, one element from Va is selected and removed (line 3, 4). If the determined
timing properties for v do not equal the previous value (line 5), all direct successive
timing entities in Gχ that are also in V have to be re-evaluated (line 6). Note that the
initial timing t0(v) for each entity, i. e., the initial jitter and delay, is 0 or is determined
by initial timing approximations like presented in [9, 10].

Applying the Algorithm 1 to all timing entities, i. e., V = Vχ , results a global
dependency-based fixed-point iteration. Apparently, this approach is more efficient
than a plain global fixed-point iteration that calculates the timing properties for all

198 M. Lukasiewycz et al.

t
r

task

resource

key:

A

B

p3
re2

c2
r fr

p1
re1

c1
r fr

p2
re2

c5
r fr

c5
rgw

c5
rcan

p5
re4

c4
rcan

p6
re5

p4
re3

c3
rcan

A

c5
r fr

c5
rgw

B

p6
re5

p4
re3

c3
rcan

(a) (b)

Fig. 11.5 Dependency graph Gχ (a) and acyclic dependency graph Gψ (b) with merged states
A = {(p1, re1), (p2, re2), (p3, re2), (c1, r f r), (c2, r f r)} and B = {(p5, re4), (c4, rcan), (c5, rcan)}
for the automotive network in Fig. 11.4

Algorithm 1: Dependency-based fixed-point iteration that is applied on a subset
V ⊆ Vχ of timing entities.

Va = V ;1
while Va 	= {} do2

v ∈ Va ;3
Va = Va \ {v} ;4
if ti (v) 	= ti−1(v) then5

Va = Va ∪ ({ṽ|(v, ṽ) ∈ Eχ } ∩ V) ;6
end7

end8

timing entities in each iteration until no value is changed. However, as shown in the
following, this approach can be further improved by a fine-grained approach.

11.3.3 Fine-Grained Fixed-Point Iteration

In the the following, a fixed-point iteration approach that is based on the stepwise
calculation of timing entities is proposed. For the fine-grained fixed-point iteration,

11 Exploration of Distributed Automotive Systems 199

an acyclic graph Gψ(Vψ, Eψ) is deduced from Gχ . The vertices of the graph Gψ

are subsets of timing entities such that for each subset V ∈ Vψ it holds V ⊆ Vχ .
Furthermore, each timing entity is included in exactly one vertex:

⋃

V∈Vψ

V = Vχ (11.16)

∀ V, Ṽ ∈ Vψ with V 	= Ṽ : V ∩ Ṽ = {} (11.17)

Based on the partial order in Gψ , a fixed-point iteration is applied to each node
V ∈ Vψ , i. e., the set of timing entities in V . These local fixed-point iterations
are performed with the efficient dependency-based fixed-point iteration approach
in Algorithm 1. Thus, a potentially inefficient global fixed-point iteration over all
timing entities in Vχ is avoided. The acyclic dependency graph for the automotive
network in Fig. 11.4 is given in Fig. 11.5 (b).

Given a dependency graph Gχ , an acyclic dependency graph Gψ fulfilling the
requirements in Eqs. (11.16) and (11.17) might be derived. To enable the best possible
benefit from the introduced fine-grained fixed-point iteration, the optimal graph Gψ

shall contain a maximal number of vertices. A high number of vertices in Gψ results
in a high number of separate fine-grained fixed-point iteration steps and, thus, a more
efficient approach is enabled.

In order to define the optimal graph Gψ , the following reachability analysis is
required. The function r : Vχ → 2Vχ determines the set of reachable nodes in the
graph Gχ from a node v and is defined recursively as follows:

r(v) = {ṽ ∪ r(ṽ)|(v, ṽ) ∈ Eχ } (11.18)

In a correct and optimal graph Gψ , all timing entities with the same reachability are
merged in the same vertex:

(∃V ∈ Vψ : v, ṽ ∈ V)⇔ r(v) = r(ṽ) (11.19)

The graph Gψ is defined as optimal if only vertices with the same reachability are
merged, i. e., the number of vertices in Gψ is maximal. On the other hand, Eq. (11.19)
ensures that a graph Gψ contains no cycles, i. e., it is correct.

An efficient approach that merges the vertices with the same reachability from
Gχ to the vertices in Gψ can be done in O(n2) with n = |Vψ | as presented in
the following: Correspondingly to the forward-reachability from Eq. (11.18), the
backward-reachability is defined by r : Vχ → 2Vχ in the following recursive for-
mulation:

r(v) = {ṽ ∪ r(ṽ)|(ṽ, v) ∈ Eχ } (11.20)

200 M. Lukasiewycz et al.

For any v ∈ Vχ , the operation

V = r(v) ∩ r(v) (11.21)

determines a vertex V ∈ Vψ containing all vertices on a cycle that contains v in
Gχ . As a result, all vertices ṽ ∈ V have the same reachability r(v) corresponding to
Eq. (11.19). Since Eq. (11.21) corresponds to the definition of a strongly connected
component, efficient algorithms from literature [11–14] might be applied such that
the complexity to remove all cycles becomes linear.

For small problems, this reduction of complexity may not be significant, in par-
ticular because the timing analysis is done once at design time. However, an efficient
fixed-point iteration approach becomes highly important if one or more of the fol-
lowing attributes hold:

• Analysis of large real-world examples with hundreds of components resulting in
a high number of timing entities.
• Detailed modeling of also different (software) layers resulting in a high number

of timing entities.
• Timing analysis is applied within a DSE resulting in a high number of independent

timing analysis calculations.

In this case, the presented approach significantly outperforms known global fixed-
point iteration approaches. An evidence of the benefits of the fine-grained fixed-point
iteration is given in the experimental results in the following section.

11.4 Experimental Results

In order to give evidence of the efficiency of the proposed approach, a case study
is presented. All following experiments were carried out on an Intel Core 2 Quad
2.66 GHz machine with 3 GB RAM.

11.4.1 Automotive Case Study

We consider an automotive network exploration case study. The network architecture
consists of 15 ECUs, connected via 2 CAN buses, 1 FlexRay bus, and a central
gateway. The 9 sensors, and 5 actuators are connected via LIN buses to the ECUs.
An application consisting of four functions, an adaptive cruise control (ACC), a
brake-by-wire (BW), an air conditioning function (C1), and a multimedia control
(C2), with 46 processes and 42 messages in total, is mapped to the given architecture.
The functions and their real-time end-to-end constraints are listed in Table 11.1.

The functions are distributed according to state-of-the-art real-world networks
where the ACC is implemented in the FlexRay sub-network, BW and C1 are imple-
mented in one of the CAN sub-networks, and C2 is implemented over both CAN

11 Exploration of Distributed Automotive Systems 201

Table 11.1 Detailed information about the functions of the used case study in terms of numbers
of processes and messages as well as the maximal latency of each function

Function #Processes (|P|) #Messages (|C |) Max. latency [ms]

ACC 18 17 100
BW 8 7 50
C1 9 8 250
C2 10 9 150

sub-networks. This is regarded as the reference implementation. The reference imple-
mentation has the hardware cost of 216.80 e and an energy consumption of 11,745
mA and fulfills all real-time constraints. Additionally, several mapping and resource
alternatives are added to enable an effective DSE.

11.4.2 Design Space Exploration Results

To illustrate the advantages of the DSE and the presented timing analysis, the auto-
motive network is optimized in terms of the hardware cost in Euro (e) and energy
consumption in milliamperes (m A). The hardware costs are approximated by a linear
function based on the cost per resource whiles additional costs for wiring, etc. are
neglected. The energy consumption is approximated by a non-linear energy model
based on the average utilization of the ECUs. The timing constraints are not lineariz-
able and have to be handled by the EA separately such that implementations that do
not fulfill these constraints are discarded. The DSE includes a concurrent optimiza-
tion of parameters such as the priorities of the processes and messages as well as the
scheduling of the messages on the static or dynamic segment of the FlexRay bus.

The optimization requires 3,511 s using the fine-grained fixed point iteration.
Within the optimization process, the EA obtains 5,075 implementations that require
a timing analysis. Note that an exploration with the dependency-based approach
requires 3 hours and 120 s, leading to a significant speed-up already for the pre-
sented small case study. The plain global fixed point iteration requires more than
one day (after which it was aborted). The results of the optimization are illustrated
in Fig. 11.6. Four non-dominated high quality implementations are found improving
the reference implementation in both objectives, hardware cost and energy consump-
tion. The found implementations decrease the hardware cost by 11.8–15 % while the
energy consumption is decreased by about 3.6–8.7 % at the same time.

11.4.3 Timing Analysis Results

In the following, we want to focus on the reference implementation and just vary
the priorities and schedules to illustrate the strongly varying runtimes of the timing
analysis approaches even for a small case study. Here, 100 different configurations

202 M. Lukasiewycz et al.

190 200 210 220

11000

11500

xd

xc
xb xa

xr

fcosts(x) []

f e
ne

rg
y

(x
)

[m
A

]

Optimized implementation
Reference implementation

Fig. 11.6 The two dimensional plot of the optimization results and reference implementation of
the automotive exploration case study

are evaluated. A comparison to the plain global fixed point iteration is omitted due
to the long runtimes of this method. The runtime of the global dependency-based
approach is 192 s. The fine-grained approach including the generation of the acyclic
dependency graphs requires only 70 s and, thus, improves the runtime of a single
evaluation by a factor of approximately 2.75 on average. The runtimes for all 100
evaluations are illustrated in Fig. 11.7. The plot shows that in many cases the runtime
is approximately improved by a factor of two to four. On the other hand, the fine-
grained fixed point iteration is also more than 8 times faster for some test cases even
for this small case study.

The presented case study is rather small compared to real-world systems. For
instance, in the automotive area, state-of-the-art architectures consist of up to 100
ECUs connected via several buses with hundreds of tasks and messages. Using the
fine-grained fixed point iteration for such large systems shall improve the runtime
of the timing analysis even more significantly. Moreover, the growing amount of
computationally expensive timing analysis for some components that are based on
Integer Linear Programming (ILP) [15] or model checking [16] require an efficient
fixed point iteration approach in case of cyclic dependencies.

11.5 Concluding Remarks

This chapter presents an efficient Design Space Exploration (DSE) using a fast timing
analysis method. For the timing analysis, a timing entity graph is constructed and
partitioned to achieve a fine-grained fixed point analysis. In future work, the proposed
approach shall be combined with more complex timing analysis approaches that rely

11 Exploration of Distributed Automotive Systems 203

0 1 2 3 4
0

1

2

3

4

y > x

dependency-based (x) [s]

fin
e-

gr
ai

ne
d

(y
)[

s]

runtime of fixed-point iteration approaches

x
8 > y

x
4 > y

x
2 > y

x > y

Fig. 11.7 Runtime comparison of different fixed point iteration approaches for 100 different
priority-configurations for the reference implementation. Each dot specifies the runtime of the
respective methods to determine the timing properties for a given implementation

on ILP approaches or model checking. In this case, a fast timing analysis becomes
inevitable if cyclic dependencies exist to significantly minimize the runtime of a
DSE.

Acknowledgments This work was financially supported in part by the Singapore National
Research Foundation under its Campus for Research Excellence And Technological Enterprise
(CREATE) programme.

References

1. Richter, K., Ziegenbein, D., Jersak, M., Ernst, R.: Model composition for scheduling analysis
in platform design. In: Proceedings of the 39th Conference on Design Automation (DAC 2002),
pp. 287–292 (2002)

2. Anssi, S., Albers, K., Dörfel, M., Gérard, S.: ChronVAL/ChronSIM: a tool suite for timing
analysis of automotive applications. In: Proceedings of the Conference on Embedded Real-
time Software and Systems (ERTS 2012) (2012)

3. Chakraborty, S., Kunzli, S., Thiele, L.: A general framework for analysing system properties
in platform-based embedded system designs. In: Proceedings of the Conference on Design,
Automation and Test in Europe (DATE 2003), pp. 190–195 (2003)

4. Blickle, T., Teich, J., Thiele, L.: System-level synthesis using evolutionary algorithms. Des
Autom. Embed. Syst. 3(1), 23–62 (1998)

5. Lukasiewycz, M., Streubühr, M., Glaß, M., Haubelt, C., Teich, J.: Combined system synthesis
and communication architecture exploration for MPSoCs. In: Proceedings of the Conference
on Design, Automation and Test in Europe (DATE 2009), pp. 472–477 (2009)

6. Lukasiewycz, M., Glaß, M., Haubelt, C., Teich, J.: SAT-decoding in evolutionary algorithms for
discrete constrained optimization problems. In: Proceedings of CEC ’07, pp. 935–942 (2007)

204 M. Lukasiewycz et al.

7. Tindell, K., Burns, A., Wellings, A.: Calculating controller area network (CAN) message
response times. Control Eng. Pract. 3, 1163–1169 (1995)

8. Künzli, S., Hamann, A., Ernst, R., Thiele, L.: Combined approach to system level performance
analysis of embedded systems. In: Proceedings of the 5th IEEE/ACM International Confer-
ence on Hardware/Software Codesign and System, Synthesis (CODES+ISSS 2007), pp. 63–68
(2007)

9. Schioler, H., Jessen, J., Nielsen, J.D., Larsen, K.G.: Network calculus for real time analysis
of embedded systems with cyclic task dependencies. In: Proceedings of the 20th International
Conference on Computers and Their Applications (CATA 2005), pp. 326–332 (2005)

10. Jonsson, B., Perathoner, S., Thiele, L., Yi, W.: Cyclic dependencies in modular performance
analysis. In: Proceedings of the 8th ACM International Conference on Embedded software
(EMSOFT 2008), pp. 179–188 (2008)

11. Aho, A.V., Hopcroft, J.E.: Ullman. Data Structures and Algorithms. Addison-Wesley, J.D.
(1983)

12. Cheriyan, J., Mehlhorn, K.: Algorithms for dense graphs and networks on the random access
computer. Algorithmica 15(6), 521–549 (1996)

13. Sedgewick, R.: Algorithms in C, Part 5: Graph Algorithms. Addison-Wesley (2002)
14. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160

(1972)
15. Pop, T., Pop, P., Eles, P., Peng, Z., Andrei, A.: Timing analysis of the FlexRay communication

protocol. Real-Time Syst. 39(1), 205–235 (2008)
16. Lampka, K., Perathoner, S., Thiele, L.: Analytic real-time analysis and timed automata: a

hybrid method for analyzing embedded real-time systems. In: Proceedings of the 9th ACM
International Conference on Embedded software (EMSOFT 2009), pp. 107–116 (2009)

Chapter 12
Design and Evaluation of Future Ethernet
AVB-Based ECU Networks

Michael Glaß, Sebastian Graf, Felix Reimann and Jürgen Teich

Abstract Due to ever-increasing bandwidth requirements of modern automotive
applications, Ethernet AVB is becoming a standard high-speed bus in automotive
E/E architectures. Since Ethernet AVB is tailored to audio and video entertainment,
existing analysis approaches neglect the specific requirements and features of het-
erogeneous E/E architectures and their applications. This chapter presents a virtual
prototyping approach to consider Ethernet AVB in complex E/E architectures, reflect-
ing key features such as static routing and stream reservation, fixed topology, and
real-time applications. A comparison with a timing analysis on case studies from the
automotive domain gives evidence that the proposed simulation technique delivers
valuable bounds for complete sensor-to-actuator chains, enabling automatic system
synthesis and design space exploration approaches.

12.1 Future Communication Media for ECU Networks

Modern automotive E/E architectures consist of more than 100 Electronic Control
Units (ECUs), numerous sensors and actuators, as well as a complex communication
architecture comprising a heterogeneous system of (field) buses that are connected
via gateways. Already today and even more in the near future, the bandwidth of well-

M. Glaß (B) · S. Graf · F. Reimann · J. Teich
Hardware/Software Co-Design, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Erlangen, Germany
e-mail: glass@cs.fau.de

S. Graf
e-mail: sebastian.graf@cs.fau.de

F. Reimann
e-mail: felix.reimann@cs.fau.de

J. Teich
e-mail: teich@cs.fau.de

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development, 205
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3_12,
© Springer Science+Business Media New York 2014

206 M. Glaß et al.

established field bus technologies like LIN, CAN, or FlexRay will be exhausted by
infotainment and advanced driver assistance functions. To cope with this problem,
Ethernet as a well-established bus technology from the consumer electronics domain
has gained attention due to its high bandwidth and low cost components, cf. [1].
In particular, focus is currently put on Ethernet AVB [2], a light-weight Ethernet
extension towards enhanced Quality-of-Service (QoS) tailored to audio and video
transmission, suiting the infotainment domain well, see [3, 4].

However, automotive E/E architectures are known for their heterogeneous appli-
cations with respect to both their criticality in the sense of real-time and safety
requirements as well as their communication characteristics, see [5]. In particu-
lar, communication characteristics that range from streaming applications with high
throughput demands share one or several communication media with real-time crit-
ical control applications that require low latencies and jitter for periodic messages.
Given there exist suitable bus techniques for both domains, like MOST150 for stream-
ing media or FlexRay for real-time applications, using these techniques for either
domain exclusively results in highly increased cost and typically also a violation of
other constraints such as the available mounting space. To avoid such a heterogeneity,
Ethernet AVB with its prioritization and traffic shaping techniques known from the
QoS domain is an option to unify several bus systems and integrate applications of
mixed criticality. This requires sophisticated prototyping techniques to not only con-
sider applications that fit the QoS concept within Ethernet AVB, but to also properly
reflect the resulting delays and jitters for real-time applications.

Using Ethernet AVB as a case study, the work at hand investigates the use of
a high-bandwidth bus with QoS characteristics within a heterogeneous networked
embedded system. The carried out prototyping approach aims at analyzing the tim-
ing properties of the applications, given Ethernet AVB is employed as one of several
bus systems in a heterogeneous E/E architecture. This work incorporates Virtual
Processing Components (VPC) [6] and some extensions proposed in [7] as the basic
prototyping technique. Furthermore, the approach aims at being compatible to exist-
ing VPC modeling and timing analysis approaches which are used in the case study
to model other components for the sake of design space exploration of extensive E/E
architectures, see for example [8]. Moreover, it is prospected that Ethernet AVB will
be used without the optional dynamic stream reservation, but streams are statically
configured as typical for the automotive domain. Thus, this work makes use of this
fact and allows static as well as dynamic stream reservation.

The remainder of the chapter is outlined as follows: In Sect. 12.2, the related work
for timing simulation and analysis of Ethernet AVB is discussed. The traffic shaping
of Ethernet AVB is given in Sect. 12.3. Section 12.4 presents the basic model and
the proposed virtual prototyping extensions for Ethernet AVB. Experimental results
for a real-world case study are discussed in Sect. 12.5 while Sect. 12.6 concludes the
chapter.

12 Design and Evaluation of Future Ethernet AVB-Based ECU Networks 207

12.2 Related Work

Simulation-based approaches for standard Ethernet with focus on automotive appli-
cation and communication-based end-to-end delays for Ethernet AVB are presented
in [9–12]. All these approaches are based on the network simulator OMNet++ and
allow a very accurate simulation of the networking traffic and the involved protocols.
Moreover, they allow to simulate heterogeneous networking structures by combin-
ing different network models. Other simulation based approaches like [13] are able
to analyze an AVB network very accurately, while focusing on frames on network
level and, thus, neglect the impacts to the functionality. In contrast, the work at
hand focuses on the functional behavior of the automotive system and the effects of
the heterogeneous, underlying network on the involved applications. Especially the
distributed implementation of complex functions and real-time requirements within
the automotive domain show the importance of analyzing the systems timing and
functionality at the system level,regarding the application in combination with the
underlying architecture and communication infrastructure. This requires on the one
hand an efficient simulation of the networking systems as well as the integration of
timing chains and functionality.

Beside the simulation based approaches, real-time analysis approaches tackling
the problem of guaranteed delays are increasingly important. Real-time analysis
of standard Ethernet by employing and extending the commercially available tool
SymTA/S [14] is proposed in [15, 16]. For Ethernet AVB, the IEEE standard [2]
provides a formal worst case analysis for the local delay a frame may experience by
higher priority Credit-Based Shaper (CBS) queues at a single queue. The analysis
proposed in [17] considers Ethernet AVB streams over multiple communication
hops. In [18], a network calculus model to compute the worst case of Ethernet AVB
communication from sender to receiver is proposed. But, as distinct to our work, these
approaches neglect the influences of the communication behavior to the functional
behavior, especially the end-to-end delay. The work at hand is capable of analyzing
complete sensor-to-actuator task chains by considering data at the level of frames
as well as messages, but only delivers average-case and typical values, so that it is
common to use the presented simulation technique in combination with a real-time
analysis. Moreover our approach is also capable to gather the distribution of the
delays occurring at network layer as well as at application layer.

Furthermore, the proposed virtual prototyping approach is capable of investigating
the aspect of overreserved bandwidth as a means to satisfy real-time requirements
of control applications in QoS-driven network techniques.

12.3 Fundamentals

Ethernet AVB provides a QoS enhancement for Ethernet by (a) a synchronization
protocol, (b) a stream reservation protocol for dynamic message streams, and (c) the
forwarding and queuing enhancements for the hardware. Given (b) is not required

208 M. Glaß et al.

t

1 2 3

1 2 3

q in

rout

credit

Fig. 12.1 A simple example of a Credit-based Shaper (CBS). Three frames arrive in a burst. If
the credit is ≥ 0, one frame is sent while negative credit is accumulated as long as the frame is
transmitted. Once the transmission ends, the credit increases again until it reaches 0, enabling to
send the next frame

in automotive E/E architectures, this work focuses on (c). AVB enhances the VLAN
standard [19] which introduces traffic classes to Ethernet: Each network port has up
to eight output queues which can be addressed by a priority field in the Ethernet
frame header, the VLAN tag. Moreover, AVB introduces an optional Credit-based
Shaper (CBS) to an output queue, aiming at reducing bursts. If a CBS queue transmits
a frame, the credit is reduced linearly depending on the size of the frame and the
reserved bandwidth of the queue, see Fig. 12.1. A second frame can only be sent if the
credit has regenerated again, i. e., is greater or equal to 0. If the transmission of a frame
is delayed, either by a lower priority frame which is currently under transmission or
by higher priority CBS queues, the credit aggregates (becomes positive) and, thus,
more than one frame may be transmitted at once as long as the credit is positive.
Thus, bursts are still present in AVB networks. If no frame is enqueued, remaining
positive credit is discarded.

But, as multiple frames and multiple queues compete for the same network port,
frames might experience jitter. The jitter jQueue of a message m on an AVB queue q is
defined as the maximum variation from the best case delay dQueue(m, q). It consists
out of three different types: (1) the head-of-line blocking jhol introduced by a frame of
a lower traffic class, which is currently under transmission, (2) the high-priority jitter
jhp introduced by messages of higher priority transmitted in lower traffic classes, and
(3) the fan-in jitter jfan−in introduced by messages of the same traffic class which
are also in the output queue. Thus, the jitter of a message is given as follows:

jQueue(m, q) = jhol(m, q)+ jhp(m, q)+ jfan−in(m, q) (12.1)

The transmission of a single Ethernet frame is not preemptive. Thus, a frame may
be delayed by a frame currently under transmission at a lower priority queue. Here,
jhol is the time a maximum-sized frame of higher traffic classes (lower priority)
requires for transmission, see Fig. 12.2. Fan-in jitter jfan−in, see Fig. 12.3, is the
most important jitter introduced by AVB networks: As messages of the same traffic
class may be put in the output queue in arbitrary order, all frames already enqueued
need to be transmitted according to the reserved bandwidth before the message
under examination is transmitted. Thus, the time this amount of data requires for
transmission with the reserved bandwidth of the traffic class is the desired fan-in jitter.

Our simulation based approach abstracts from the low level effects and is able to
provide the overall distribution of delays that could occur in the system by analyzing

12 Design and Evaluation of Future Ethernet AVB-Based ECU Networks 209

r1
q10

q11
r2

q20

q21
r3

q30

q31
r4

r5
q50

q51
r6

m1

m2

t

1-1 1-2

2-1 2-2

1-1 2-1 2-2 1-2

q in
20

q in
21

rout
2

credit
jhol

Fig. 12.2 The message m1 may be delayed by jhol by the low priority message m2 at r2. Here, the
first frame of m1 arrives concurrently with the frame of m2 and is transmitted immediately. Thus, its
credit falls below 0 while the credit of delayed queue q21 increases. The second frame of m1 arrives
slightly after that of m2 and, thus, has to wait till the transmission is finished. In the meantime, the
credit of q21 increases due to the waiting frame

r4

r6

r1
q10

q11
r2

q20

q21
r3

q30

q31

r5
q50

q51

qq30qq20
1

m1

m2

t

1-1
2-1

1-2
2-2

1-1 2-1 1-2

qin
20

qout
20

credit

jfan-in

Fig. 12.3 The messages m1 and m2 share the same traffic classes and, thus, may be delayed by
jfan−in depending on the order they arrive at the output queue. Instead of being sent immediately
after m1, m2 has to wait until the credit has regenerated

the timing properties of a whole message possibly consisting of multiple frames at
application level. As can be seen in the case study, the delivered variations due to
introduced clock drift and local task jitters are able to project the real (simulated)
behavior to analytical best- and worst case timings delivering tight timing values.

The simulation based virtual prototyping approach used in this work is based on the
principles of the Y-chart approach introduced by Balarin et al. [20], which clearly
separates the functionality from the architecture and fits the automotive domain
well. In our case, the functionality is modeled as an executable specification in
SysteMoC [7] that merges the abilities of SystemC with well defined models of
computation. It allows an actor-based modeling of the functionality with dedicated
communication through channels.

210 M. Glaß et al.

o1
start

o1(1)/ fsensor

fsensor

o1[0]=curr sensor;

channel

f1

m1

f2

ECU1

AVB

switch

AVB

ECU2

(a) (b) (c)

Fig. 12.4 The overall modeling approach consists of three parts: a Functionality is modeled by mul-
tiple SysteMoC actors communicating via channels. b The actors and channels are transformed to the
functional network, consisting of tasks (actors) and messages (channels). To create the virtual pro-
totype, the functional network is mapped to c the component network that models sensors/actuators,
ECUs, as well as communication infrastructure

An actor, see Figure 12.4 a, can consist of actions implementing its various func-
tional parts. Additional to that, the activation and communication behavior of the
actor is controlled by a finite state machine. Multiple actors are connected via chan-
nels to a functional network, see Figure 12.4 b. The functional network is mapped to
Virtual Processing Components (VPC), which model the temporal behavior caused
by arbitration and scheduling technique of the represented hardware component as the
architectural part of the Y-Chart approach, see Figure 12.4 c. Both parts are modeled
independently and, thus, they have to be coupled to allow a combined simulation. In
case of our work, the whole coupling between various system threads is implemented
with the help of events (see Fig. 12.5).

During the simulation of the functional model, after each execution of an action
(state transition 1 in Fig. 12.5), the framework uses the coupling to the VPC frame-
work to inform the resource about the new task and to start the timing simulation,
e. g., determine the end of the current execution. The component itself is informed
about the new task1 that has to be executed on the component and, thus, tries to deter-
mine the point of time, the execution is finished. For that, the component knows the
current execution delay the tasks would have, if no preemption, resource contention,
and QoS happens or is applied. Moreover, to determine the current execution state
and the timing behavior, each component has a fixed scheduling strategy modeling
its arbitration and resource usage mechanism (e. g., the software scheduler within an
operating system or the arbitration protocol of a bus system).

This scheduler is called by the component each time a new task arrives (see
state transitions 2 and 5 in Fig. 12.5), a task has consumed its delay (see state
transitions 6 and 9 in Fig. 12.5), or in case of other timing events, e. g., due to time-
triggered scheduling occur. In case a task gets exclusive access to the computational or
communication resource (see state transition 3 in Fig. 12.5), the scheduler returns an

1 Task in this case could either be a functional task executed on or a message that is currently
transmitted over the component.

12 Design and Evaluation of Future Ethernet AVB-Based ECU Networks 211

f1 f2 ECU

1: compute

Scheduler

consume

execution delay
of f1

2: ready

3: assign

4: compute 5: ready

8: assign
consume

execution delay
of f 29: delay consumed10: finished

6: delay consumed7: finished

Fig. 12.5 The coupling between the functional and the component network. An actor’s method
(action) is atomically executed at time of activation (e. g., f1, f2). Then, the corresponding VPC
starts the timing simulation (1, 4) for this task and returns when the task has been finished and its
given execution delay has been consumed (7, 10). Moreover, the related scheduling mechanism (in
the example shown: first come first serve) is informed about a new task (2, 5), assigns the task in
case the resource is available (3, 8), and determines the end of the execution delay (6, 9). In case of
other scheduling mechanisms like priority based preemption, the timing behavior might be different

assign. After consuming the required delay, the VPC informs the framework that the
action was executed successfully and, thus, the simulation can advance, e. g., inform
the functional network that the action has performed and finished its execution on
the component or advance the static route of a message (see state transitions 7 and 10
in Fig. 12.5). Due to the separation of functionality and architecture, multiple tasks
might be executed on the same component in parallel. Thus, it is very important that
the scheduling mechanism is modeled as fine-grained as necessary, but, to lower the
simulation overhead, as abstract as possible.

To extend the existing framework to support QoS mechanisms, this work intro-
duces a VPC model for Ethernet AVB and employs existing VPC-like E/E architec-
ture modeling extensions (including models for ECUs, sensors, actuators, and other
buses) from [7]. Moreover, techniques like stream reservation and overreservation
are integrated. Additional to this, dynamic stream reservation as presented in [21]
could also be used.

12.4 VPC Model

As already mentioned, architectural components, especially their scheduling and
arbitration behavior, are modeled with the help of parameterized VPCs. Moreover,
as today’s automotive systems consist of many heterogeneous ECUs and various

212 M. Glaß et al.

networking components, the complete E/E architecture must be modeled with mul-
tiple instances of VPCs. Furthermore, special parameters like the scheduling used or
static stream reservation and configuration have to be annotated.

Moreover, some restrictions are taken into account: In the following, we dis-
tinct between messages m ∈ M , which model the complete amount of data being
sent between tasks in an application, and frames, which include the overhead of the
UDP/IP and Ethernet protocol headers and have a size up to the Maximum Transmis-
sion Unit (MTU), which is defined by the used physical layer. This distinction, of
course, enables to define messages of sizes larger than enabled by the communication
infrastructure. The derived virtual prototyping technique is capable of considering
this fact to achieve a reasonable analysis of the overall system incorporating message
fragmentation in case of production of multiple tokens (each is representing a frame)
that are transmitted over the channel. For each message its size (payload) pm and
the traffic class cm is given. Let pm be the size of message m. Then, s(m) is the
effective size of message m with all headers and footers of the used network stacks.
For example, for UDP/IP over Ethernet, s(m) for a message with a given payload
pm , is given by (see [15]):

s(m) = 58 ·
⌈

pm + 8

1472

⌉
+ pm + 8+max (0, 26− ((pm + 8) mod 1472)) (12.2)

Moreover, s f (m) is the size of frame f in case message m is larger than the
MTU and, thus, needs to be fragmented. The best case delay dQueue(f) of frame f
is determined by the transmission delay as follows:

dQueue(f) = 1

linespeed
∗ s f (m) (12.3)

A traffic class c : M �→ C;C = {0, . . . , 7} comprises distinct messages and
provides specific QoS mechanisms, see [19]. A network resource may provide up to
eight different outbound queues, where a message m with c(m) = 0 is best effort
traffic (lowest priority). The task of the network designer is to map each message to
one of the eight traffic classes. In particular, IEEE 802.1Qav [2] provides means to
map each class c(m) to the currently available queues.

In the following, we describe how the integration of Ethernet AVB with its credit-
based traffic shaping and the best effort queues can be efficiently integrated as a new
component to the Virtual Processing Component framework. Thus, we (1) describe
the general separation, (2) transform the CBS behavior to a scheduling behavior
usable within an event-based simulation, and (3) integrate best-effort behavior for
non reserved streams.

12 Design and Evaluation of Future Ethernet AVB-Based ECU Networks 213

classifier
input
stream

CBS

CBS

CBS

CBS

best effort

static
priority

output
port

Fig. 12.6 Model of an AVB output port with four CBS queues and one queue for best effort traffic

12.4.1 AVB Scheduling

As described before, the scheduling approach of Ethernet AVB uses two different
kinds of output queues: multiple queues with credit-based shaping (CBS) for reserved
communication and one best effort (BE) queue for ordinary messages. Therefore, the
standard provides a regulation, how to combine these different kinds of strategies as
a scheduling policy. In case of AVB, a fixed order by means of the VLAN priority tag
was defined. A higher priority instance (typically a CBS-queue) is allowed to access
the link if (a) it has at least a waiting packet (f ramecount > 0), (b) the instance
itself is allowed to send a packet due to its internal QoS-settings (e. g. Credc ≥ 0),
and (c) no higher priority queues fulfill the requirements (a,b).

In case of our modeling, the scheduler itself integrates an ordered list of all
instances, which are requested in a top down order as the primary scheduling policy.
Furthermore, as depicted in Fig. 12.6, the scheduler combines the classification of
incoming frames as well as the handling of the various queues and the arbitration of
the output port.

12.4.1.1 AVB CBS Scheduling Approach

Ethernet AVB ensures a quality of service by a CBS algorithm, which is partly defined
in [17]: The idleSlope i Sc denotes the reserved bandwidth in the percentage of the
line speed for the traffic class c. Thus, i Sc is defined as the sum of the bandwidth
fractions, given as bw(m) for each message m ∈ M mapped to c:

i Sc =
∑

∀m∈M, c(m)=c

bw(m) (12.4)

If overreservation is considered, e. g., to reduce the jitter, i Sc can be increased if the
overall reserved bandwidth is still less than the linespeed.

The credit counter Credc increases with the idleSlope while a frame is ready for
transmission, but is not allowed to access the outgoing port (see Sect. 12.4.1) due
to insufficient credit or usage of the port by another traffic class. Moreover, if the
traffic class c sends a frame, its credit is decreased and must be regenerated in order
to re-access the link (in case it became negative). Thus, Credc can be calculated as

214 M. Glaß et al.

following, given that�t is the time interval between the current simulation time and
the last scheduling decision at this component:

Credc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Credc + i Sc ∗�t if f ramecount > 0 and link is used

Credc − (1− i Sc ∗�t) else if Class c uses the link

Credc + i Sc ∗�t else if Credc < 0 and (Credc + i Sc ∗�t) < 0

0 else if (Credc + i Sc ∗�t) ≥ 0

0 else if Credc > 0 and f ramecount == 0

Credc, else.
(12.5)

In case of real hardware and also in case of other simulation approaches, this
requires an ongoing update of the available credit counters for all queues, as each
transmitted Byte causes multiple changes to the various credit counters, as could
also be seen in Fig. 12.1. In case of multiple CBS queues and large packets, this
may result in heavy additional control usage of the resource. But, as Ethernet-based
networks do not support preemption, i. e., a frame is always transmitted completely,
thus, this kind of behavior is not necessary.

In case of our event based simulation, this handicap can be omitted due to the clear
separation between functionality, communication, and architecture. As the scheduler
is only called in case of changes to the set of running and waiting tasks or messages
(e. g. arriving of a new task or finishing of an existing task), it is sufficient to update
the credit counters at these points in time. Furthermore, only in case the resource
gets unused, new scheduling decisions must be made, requiring a new examination
of the available credits. This substantial lowers the computational overhead of the
scheduling during the simulation and, thus, speeds up the simulation and evaluation
process using the virtual prototype.

Moreover, as (nearly) each of the eight traffic classes might be implemented as a
CBS queue, multiple instances of this approach must be able to be instantiated and,
of cause, be updated based on the related bandwidth allocation. Thus, a mapping of
each reserved stream to one of the given traffic classes by a classifier is mandatory
(see also Sect. 12.4).

12.4.1.2 Best Effort Scheduling Approach

Beside credit-based shaping and the use of guaranteed bandwidth, Ethernet AVB also
supports legacy frame transmission. As common in typical automotive networks, only
a single instance of the best effort queue is available. The local scheduling strategy
of the BE queue follows the priority-based scheduling by using the VLAN priority
field as input. If only the BE queue is used, the network as well as the simulation
decays to standard Ethernet.

In case of integration into our VPC model, the queue can be implemented as a
priority queue providing all the necessary abilities for modeling the BE behavior.

12 Design and Evaluation of Future Ethernet AVB-Based ECU Networks 215

r4

r5
q50

q51
r6

r1
q10

q11
r2

q20

q21
r3

q30

q31
r1

qq10
r2

qq20
r3

qq30

Fig. 12.7 A message m is sent by a task running on resource r1. It is transmitted to the output
queue q10 of the resource r1. From there, it is routed over switch r2 and its output queue q20 via
switch r3 and its output queue q30 to the resource r4 on which the receiving task is executed

Each time, no CBS queue is able to send a frame, the top element of the queue is
transmitted via the corresponding link. Again, due to performance issues, this is only
required in case the link gets unused.

Moreover, in case of reducing the diversity of the overall scheduling methodology,
this approach can also be transformed to be implemented with the help of the CBS
queue approach presented before. It can be shown that the BE behavior can be
implemented with the CBS approach by allocating the line speed for the lowest
traffic class, i. e., the credit does never increase and is also never decreased. To avoid
an overflow of the credit,2 it is reset after it exceeds a given threshold. Thus, we use
another instance of the CBS queue model and set the reserved bandwidth idleSlopec

for channel cB E to 1.

12.4.2 Overall Ethernet AVB Model

As the presented AVB abstraction (Sect. 12.4.1) models the timing behavior of an
AVB port, we also need models for active networking components like an Ethernet
switch. But, as a switch is something like a collection of AVB ports which are
connected by a highspeed backplane bus, most of the network can again be build upon
the basic VPCs as presented before. One example for a possible system configuration
can be seen in Fig. 12.7, where each link between two resources is implemented
as a dedicated VPC. Note that the handling of multiple queues is also integrated
in the scheduler and, thus, the example consists of four computational resources
(r1, r4, r5, r6), two switch instances (r2, r3) and five AVB port instances (all links
between resources as output ports). The VPC of an ECU like r1 depends on the
scheduler used there. Typically, priority-based or first-come-first-serve scheduling is
applied. Input queues of communication controllers can be ignored, as they do not
incorporate any additional delay or jitter not respected in switches or output queues,
cf. [2]. A possible result of the message shaping based on the architecture shown in
Fig. 12.7 can be seen in Fig. 12.8.

2 A credit overflow may happen in case of a permanent overloaded link by upper class CBS queues,
but should not be allowed, because it is a faulty system design.

216 M. Glaß et al.

t

1-1 1-2 1-3

1-1 1-2 1-3

1-1 1-2 1-3

d0 dx

ds dx

dn

rout
1

rout
2

rout
3

Fig. 12.8 The message m of Fig. 12.7: Let queue q20 = qs have the lowest reserved bandwidth
while q10 and q30 have a higher reserved bandwidth. dx is the delay incorporated by the switch
fabrics

The behavior of the involved network stacks at the sending and receiving ECUs
is not part of the AVB standard and, thus, has to be adapted to the specific operating
system of the target component. However, as measures of typical hard- and software
in [22] show, most network layers at the senders and receivers, namely sockets, IP, and
MAC layer introduce only a static delay to the transmission or a delay which depends
on the size of the frame (e. g., the UDP layer). This can be seamlessly modeled as an
additional static delay by standard VPC components introducing configured delays
to the used static route, e. g. they are added as a static offset in the calculation of the
transmission delay at the first and last hop.

The modeling of the backplane of the switch is discussed in the following. The
scheduling policy of switches is not standardized, neither for Ethernet AVB nor
for standard Ethernet, see [23, 2]. Thus, the response time analysis and simula-
tion modeling for switches depends on the used hardware. However, the typical
switches in embedded systems use a backplane bus which is non-waiting, i. e., the
bandwidth of the backplane bus is higher than the sum of all outbound queues. To
model our hardware, we use an existing model for round robin scheduling and a
user-definable backplane bandwidth and, thus, the switch is modeled as a usual VPC
instance.

12.5 Case Study

To show the applicability and accuracy of the proposed analysis method a real-world
automotive subsystem with Ethernet AVB for sensor-to-actuator task chains in a
heterogeneous E/E architecture is investigated. The case study is modeled with the
CASE tool PREEvision [24] for designing E/E architectures and semi-automatically
transformed to our simulation models and a real-time analysis approach.

The case study models a typical automotive subnetwork consisting of 48 tasks
running on 12 different ECUs, 43 messages routed over 3 switches, and 12 LIN buses
used for the low cost connection of sensors and actuators. Table 12.1 gives additional
information about the applications. Note that the messages of app3 and app5 are larger
than the MTU and, thus, will be fragmented. The message routings, traffic classes,
and the idleSlopes for the CBS queues are determined by employing an automatic

12 Design and Evaluation of Future Ethernet AVB-Based ECU Networks 217

Table 12.1 Applications of the case study

#tasks #messages payload period deadline
[Byte] [ms] [ms]

app1 1 0 – 4 –
app2 1 0 – 3 –
app3 2 1 1540 4–5 –
app4 17 18 4–480 1–10 10
app5 4 3 184320 5–40 100
app6 10 9 4–96 1–5 10
app7 13 12 20–1200 1–5 5

Table 12.2 Simulation runtimes [s]

frames # hops
3 5 11 21 41

103 0.07 0.09 0.16 0.28 0.50
104 0.64 0.84 1.42 2.44 4.94
105 6.25 8.26 13,94 24.40 49.10
106 63.61 81.86 143.8 243.5 489.5

design space exploration framework [25, 26]. To evaluate the timing behavior, the
simulation is configured automatically and simulates a given scenario of 10 seconds.
The execution of the simulation for this case study lasts about 14 seconds on a 3 GHz
single-core processor. For comparison, Table 12.2 provides runtime measurements
of a synthetic scenario with varying numbers of hops and frames. It shows that the
runtime scales linearly in the number of frames and used hops.

Figure 12.9 shows the end-to-end latency for app5, which is a video processing
application of an advanced driver assistance system, where two video streams from
two cameras are merged at a central Electronic Control Unit (ECU) and sent to the
display. The histogram shows the latency for the stream starting at one of the cameras
till the image is displayed. These three video streams result in 378 distinct Ethernet
frames per video frame. In contrast to related work, the proposed modeling needs
only to consider three messages per network resource but, however, is nonetheless
able to deliver a good distribution between tight bounds for the best and worst case
calculated by the real-time analysis. Moreover, the low jitter is remarkable and not
achievable with standard Ethernet although using 100 MBit/s links.

Figure 12.10 shows the control application app4, which messages are also routed
over the two switches used by app5. The model considers not only Ethernet AVB here,
but the complete sensor-to-actuator chain including scheduling on the ECUs, barrier
synchronization in the application (sensor fusion), etc. It highlights the applicability
of the proposed overall virtual prototyping approach that is now capable of consid-
ering the effects of a QoS high-speed bus within a heterogeneous E/E architecture.
Additionally, this enables automatic optimization approaches [25], particularly a

218 M. Glaß et al.

78.8 79 79.2 79.4 79.6 79.8 80 80.2
100

101

102

103

delay in [ms]

fr
eq

ue
nc

y

Fig. 12.9 The histogram shows the results of the timing simulation of the video processing appli-
cation app5. The black dots mark the best and worst case, respectively, as given by the real time
analysis

1 2 3 4 5 6 7
100

101

102

103

delay in [ms]

fr
eq

ue
nc

y

Fig. 12.10 The histogram shows the results of the timing simulation of the control application
app4 which messages are partly routed over the same network components as app5. The black dots
mark the best and worst case, respectively, as given by the real time analysis

parameter optimization. Moreover, it allows to evaluate the quality of results pro-
vided by a real-time analysis approach.

12.6 Conclusion

Ethernet AVB is a light-weight Ethernet extension to enhance its QoS aspects. In
this work, a virtual prototyping approach based on virtual processing components
which reflects features of future AVB-based E/E architectures such as static routing
and stream reservation, fixed topology, and real-time applications is presented. The
work at hand gives evidence that (a) the proposed methodology enables an efficient

12 Design and Evaluation of Future Ethernet AVB-Based ECU Networks 219

modeling of Ethernet AVB, especially the CBS queues and delivers timing deviations
that fit well to tight bounds calculated by a real-time analysis and allows an analysis
of the systems’ functionality and (b) that Ethernet AVB is superior to standard Ether-
net if designed well. A case study from the automotive domain gives further evidence
of the applicability of the proposed approach to the analysis of system-wide com-
plete sensor-to-actuator chains. The proposed technique is, thus, an important step
towards automatic optimized E/E architecture design in the presence of high-speed
bus systems with enhanced QoS capabilities.

Acknowledgments This work is supported in part by the German Federal Ministry of Education
and Research (BMBF) under project 01BV0914-SEIS.

References

1. Glaß, M., Herrscher, D., Meier, H., Piastowski, M., Schoo, P.: SEIS - Security in Embedded
IP-based Systems. ATZelektronik worldwide 1, 36–40 (2010)

2. The Institute of Electrical and Electronics Engineers, Inc.: IEEE Standard for Local and
metropolitan area networks - Virtual Bridged Local Area Networks, IEEE Std 802.1qav-2009
edn. (2009)

3. Lim, H., Volker, L., Herrscher, D.: Challenges in a future IP/Ethernet-based in-car network for
real-time applications. In: Design Automation Conference (DAC), pp. 7–12 (2011)

4. Streichert, T., Buntz, S., Leier, H., Schmerler, S.: Short and long term perspective for Ethernet
for vehicle-internal communication. 1st Ethernet & IP Automotive Techday (2011)

5. Sangiovanni-Vincentelli, A., Di Natale, M.: Embedded system design for automotive applica-
tions. IEEE Computer 40(10), 42–51 (2007)

6. Streubühr, M., Gladigau, J., Haubelt, C., Teich, J.: Efficient Approximately-Timed Performance
Modeling for Architectural Exploration of MPSoCs. In: Advances in Design Methods from
Modeling Languages for Embedded Systems and SoC’s, vol. 63, pp. 59–72. Springer (2010)

7. Graf, S., Streubühr, M., Glaß, M., Teich, J.: Analyzing automotive networks using virtual
prototypes. In: Proceedings of the Automotive meets Electronics (AmE), pp. 10–15 (2011)

8. Lukasiewycz, M., Glaß, M., Haubelt, C., Teich, J., Regler, R., Lang, B.: Concurrent topol-
ogy and routing optimization in automotive network integration. In: Proceedings of Design
Automation Conference (DAC), pp. 626–629 (2008)

9. Lim, H.T., Herrscher, D., Waltl, M.J., Chaari, F.: Performance analysis of the IEEE 802.1
Ethernet Audio/Video Bridging Standard. In: Proceedings of the International Conference on
Simulation Tools and Techniques (ICST) (2012)

10. Lim, H.T., Krebs, B., Völker, L., Zahrer, P.: Performance evaluation of the inter-domain com-
munication in a switched Ethernet based in-car network. In: Proceedings of the Conference on
Local Computer Networks (LCN) (2011)

11. Lim, H.T., Weckemann, K., Herrscher, D.: Performance study of an in-car switched Ethernet
network without prioritization. In: Communication Technologies for Vehicles, pp. 165–175.
Springer (2011)

12. Steinbach, T., Kenfack, H.D., Korf, F., Schmidt, T.C.: An extension of the OMNeT++ INET
framework for simulating real-time ethernet with high accuracy. In: Proceedings of the Inter-
national Conference on Simulation Tools and Techniques (ICST), pp. 375–382 (2011)

13. Garner, G., Gelter, A., Teener, M.: New simulation and test results for IEEE 802.1as timing per-
formance. In: International Symposium on Precision Clock Synchronization for Measurement,
Control and, Communication, pp. 1–7 (2009)

220 M. Glaß et al.

14. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level performance
analysis - the SymTA/S approach. Computers and Digital Techniques, IEE Proc. - 152, 148–166
(2005). doi:10.1049/ip-cdt:20045088.

15. Reimann, F., Kern, A., Haubelt, C., Streichert, T., Teich, J.: Echtzeitanalyse Ethernet-basierter
E/E-Architekturen im Automobil. In: GMM-Fachbericht - Automotive meets Electronics
(AmE), vol. 64, pp. 9–14 (2010)

16. Rox, J., Ernst, R., Giusto, P.: Using timing analysis for the design of future switched based
Ethernet automotive networks. In: Proceedings of Design, Automation and Test in Europe
(DATE 12), pp. 57–62 (2012)

17. Imtiaz, J., Jasperneite, J., Han, L.: A performance study of Ethernet Audio Video Bridging
(AVB) for industrial real-time communication. In: IEEE Conference on Emerging & Tech-
nologies Factory Automation (ETFA), pp. 1–8 (2009)

18. Manderscheid, M., Langer, F.: Network calculus for the validation of automotive Ethernet
in-vehicle network configurations. In: 2011 International Conference on Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery (CyberC), pp. 206–211 (2011)

19. The Institute of Electrical and Electronics Engineers, Inc.: IEEE Standard for Local and
metropolitan area networks-Media Access Control (MAC) Bridges and Virtual Bridged Local
Area, Networks (2011)

20. Balarin, F., Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., Lavagno, L., Passerone, C.,
Sangiovanni-Vincentelli, A., Sentovich, E., Suzuki, K., Tabbara, B. (eds.): Hardware-Software
Co-design of Embedded Systems: The POLIS Approach. Kluwer Academic Publishers, Nor-
well, MA, USA (1997)

21. Graf, S., Russ, T., Glaß, M., Teich, J.: Considering MOST150 during virtual prototyping of
automotive E/E architectures. In: Proceedings of the Automotive meets Electronics (AmE), pp.
116–121 (2012)

22. Kern, A., Schmutzler, C., Streichert, T., Hübner, M., Teich, J.: Network bandwidth optimization
of Ethernet-based streaming applications in automotive embedded systems. In: Proceedings
of 19th International Conference on Computer Communications and Networks (ICCCN), pp.
1–6 (2010)

23. The Institute of Electrical and Electronics Engineers, Inc.: Local and metropolitan area net-
works - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access
method and physical layer specifications, IEEE Std 802.3, 2000 edn. (2000)

24. aquintos GmbH: Preevision. http://www.aquintos.com
25. Glaß, M., Lukasiewycz, M., Teich, J., Bordoloi, U., Chakraborty, S.: Designing heterogeneous

ECU networks via compact architecture encoding and hybrid timing analysis. In: Proceedings
of Design Automation Conference (DAC), pp. 43–46 (2009)

26. Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4J - a modular framework for meta-
heuristic optimization. In: Proceedings of the Genetic and Evolutionary Computing Conference
(GECCO). Dublin, Ireland (2011)

http://dx.doi.org/10.1049/ip-cdt:20045088.
http://www.aquintos.com

Index

A
Access protocol, 104
Activity diagram, 74
Actor, 42, 46
Actor-based modeling, 29, 209

action, 210
actor, 24, 210
channel, 24, 209
Finite State Machine (FSM), 210
token, 24, 212

Admission control, 173
Analysis context, 104
Application, 190
Architecture, 102, 190
Architecture description language, 86
Architecture profile, 75
Assertion, 11
Assume-guarantee, 146
Assumption, 141
Automotive electronics, 189
Automotive system, 189
AUTOSAR, 165

B
Behavior, 141
Bip, 166
Bounded memory execution, 26
Brake-by-wire system, 95
Broadcast, 149
Buffer size, 50

C
Cal actor language, 23
Canonical form, 148
Circular reasoning, 146
Component, 143
Component-based development, 155
Component framework, 143

Component time-budget, 128
Compositional performance analysis (CPA),

173
Compositionality, 147
Concurrency model, 102
Conformance, 142, 144
Connector, 149
Constraint, 30, 176
Constraint satisfaction problem, 174
Contract, 141
Contract framework, 144
Coordination applications, 77
Coordination functions, 77
Core functional dataflow, 43, 44
Credit-based shaper (CBS), 208
Cyclo-static dataflow (CSDF), 27, 50

D
Data-driven execution, 77
Dataflow graph, 42
Dataflow links, 73
Dataflow modelling, 70
Dataflow operators, 73
Dataflow ports, 73
Dataflow signal, 76, 78
Deadlock-free execution, 26
Declarative language, 73
Design

contract-based, 11
Design model, 102
Design patterns, 102
Design space exploration, 190
Distributed performance analysis (DPA), 176
Distributed priority assignment, 176
Distributed self-configuration (DSC), 176
Domain-specific modelling language, DSML,

70, 72
Dominance, 142, 145
DSP, 46

A. Sangiovanni-Vincentelli et al. (eds.), Embedded Systems Development,
Embedded Systems 20, DOI: 10.1007/978-1-4614-3879-3,
� Springer Science+Business Media New York 2014

221

E
E/E architecture, 205
EAST-ADL, 10, 87
EAST-ADL timing

constraints, 89
Electronic control unit

(ECU), 190, 205
Enable-invoke dataflow, 43
End-to-end deadlines, 173, 176
End-to-end scenarios, 103
End-to-end-latency, 173, 176
Environment, 142
Ethernet AVB, 207
Event chain, 89
Execution hosts, 103
Execution platform, 103, 104
Execution time, 25

F
Feasibility, 173
FIFO, 46
Finite state machine, 5
Fire-rules, 78
Fixed-point iteration, 196
Flattening, 144
Frame, 212
FSM, 5

G
Gain parameter, 181
Generalized schedule tree, 48
Glue design, 31
Glue operator, 141, 144
Guarantee, 142

H
Hardware design, 21, 23, 30
Hardware platform, 175
Head-of-line blocking, 208
HRC, 147

I
I/O integration, 32
IGST, 50
In-system performance

analysis, 173
Initiation interval, 25
Instrumentation, 49
Interaction, 149
Interface, 141, 143

J
Jitter

fan-in, 208
high-priority, 208

Jitters, 104

K
Kahn process networks (KPN), 73

L
Labview, 2
Legal composition, 11
Lightweight dataflow, 43, 44
Local improvement target (LIT), 178

M
MARTE, 7, 10, 101, 102
Maximum transmission unit (MTU), 212
Message, 212

fragmentation, 212
Methodology, 102, 142
MOC, 5
Model driven design methodology, 71
Model driven design (MDD), 70
Model Extension Constructs (MECs), 76
Model of computation, 5
Model-based approach, 101
Model-based design, 2, 21, 28, 36
Model-based development, 86
Modelica, 2
Modular performance analysis, 176
Multiprocessor platform, 80
Multithreading, 48
Mutual exclusion, 149

N
NI LabVIEW DSP Design Module, 28, 32

O
OMG, 5
Orthogonal Frequency Division Multiplexing

(OFDM), 28, 32
Oscillation, 179

P
Parameterized Static Dataflow (PSDF), 27
Parametric Temporal Logic (PLTL), 125
Partial order, 105

222 Index

Path, 176
Performance analysis, 173
Pid filter, 179
Platform processing time, PPT, 75
Platform-based design, 5
Port, 143
Preemption, 104
Priority assigment, 176
Priority rating, 181
Procedural language, 73
Processing nodes, 75
Profiling, 8
Ptolemy, 2

R
Rate Transition, 93
RCM, 155
Real-Time Requirements, 75
Real-time system, 101, 173
Refinement, 144
Refinement under context, 146
Relaxed circular reasoning, 151
Rendezvous, 149
Repetitions vector, 26
Required processing time (RPT), 75
Requirement, 142
Requirement decomposition constraint, 128
Resource, 175
Resource utilization, 104
Response times, 104
RMA, 7
Robocop, 166
Robustness, 13
Rubus component model, 155
Rubus model, 157
Runtime environment, 77

S
Satisfaction, 142, 144
SCADE, 27
Schedulability, 101
Schedulability analysis, 102
Schedule, 27, 30
Scheduling parameters, 104
SDF, 49
SDR, 10
SDR applications, 69
SDR platforms, 69
SDR waveforms, 70
Self-configuration, 173
Set point priority, 180
Shared resources, 104

Simulation, 48, 144, 208
Specification, 190
Statecharts, 6
Static Dataflow (SDF), 20, 24
Static priority preemptive, 173
Storage nodes, 75
Support set, 149
Synchronization resources, 104
Synchronous Dataflow (SDF). See Static

Dataflow (SDF)
SystemC, 209
SystemC Models-of-Computation (Syste-

MoC), 209

T
TADL, 89
Targeted dataflow interchange format, 43, 45
Task, 175
Task mapping, 104
Throughput, 26, 30
Time Augmented Description Language, 89
Time budgets, 103
Time-budgeting methodology, 125
Timed automata, 6
Timed automaton, 90
Timing analysis, 190
Timing constraints, 102
Timing model, 160, 196
Timing requirements, 103
Timing validation, 102
Trace inclusion, 144
Transference nodes, 75
Transformation, 104

U
UML, 7, 10, 70, 102
UML Activity diagram, 108
UPPAAL, 10

V
Virtual Processing Component (VPC), 210

W
Waveform portability, 71
Welch periodogram detector, 78
Workload model, 103

Y
Y-chart approach, 191, 209

Index 223

	Preface
	Contents
	1 Introduction: Modeling, Analysis and Synthesis of Embedded Software and Systems
	1.1 Recommended Reading
	1.2 Model-Based Design and Synthesis
	1.3 Model-Driven Design, Integration and Verification of Heterogeneous Models
	1.4 Component-Based Design and Real-Time Components
	1.5 Timing Analysis and Time-Based Synthesis
	References

	Part IModel-Based Design and Synthesis
	2 Modeling, Analysis, and Implementation of Streaming Applications for Hardware Targets
	2.1 Introduction
	2.2 Related Work
	2.3 DSP Design Module: Models and Analysis
	2.3.1 Static Dataflow
	2.3.2 SDF: Properties and Analysis
	2.3.3 Extensions for Cyclo-Static Data Rates and Parameterization

	2.4 DSP Design Module: Implementation Flow
	2.4.1 Design Environment
	2.4.2 Implementation Strategy
	2.4.3 Glue Design and IP Integration
	2.4.4 I/O Integration

	2.5 OFDM Transmitter and Receiver Case Study
	2.5.1 Transmitter and Receiver Overview
	2.5.2 Hardware Implementation
	2.5.3 Design Exploration
	2.5.4 Extensions

	2.6 Summary
	References

	3 Dataflow-Based, Cross-Platform Design Flow for DSP Applications
	3.1 Introduction
	3.2 Background
	3.2.1 CFDF Dataflow Model
	3.2.2 Lightweight Dataflow
	3.2.3 The Targeted DIF Framework

	3.3 From Simulation to Implementation
	3.3.1 Step 1: System Formulation
	3.3.2 Step 2: System Validation and Profiling
	3.3.3 Step 3: System Optimization
	3.3.4 Step 4: System Verification and Instrumentation
	3.3.5 Determining Buffer Sizes
	3.3.6 Discussion

	3.4 Case Study 1:CPU/GPU
	3.4.1 Simulation
	3.4.2 Implementation

	3.5 Case Study 2:Multicore PDSP
	3.5.1 Simulation
	3.5.2 Implementation

	3.6 Summary
	References

	Part IIModel-Driven Design, Integration and Verification of Heterogeneous Models
	4 Model-Driven Design of Software Defined Radio Applications Based on UML
	4.1 Introduction
	4.2 Related Work
	4.3 Proposed Design Methodology
	4.4 DiplodocusDF
	4.4.1 SDR Waveform Notations
	4.4.2 Target Architecture Notations and Mapping
	4.4.3 Performance Requirements Notations

	4.5 Code Generation
	4.5.1 Model Extension Constructs
	4.5.2 DiplodocusDF Translation Semantics

	4.6 Runtime Environment
	4.7 DiplodocusDF example: Welch Periodogram Detector
	4.8 Conclusions
	References

	5 On Integrating EAST-ADL and UPPAAL for Embedded System Architecture Verification
	5.1 Introduction
	5.2 Related Work
	5.3 EAST-ADL and Timing Extension - Concept and Notations
	5.3.1 EAST-ADL Core and Behavior Model
	5.3.2 Function Behavior Semantics
	5.3.3 Timing Model

	5.4 Timed Automata and UPPAAL
	5.5 EAST-ADL and Timed Automata Relationship
	5.5.1 Mapping Scheme
	5.5.2 Usage and Automation Considerations
	5.5.3 System Verification

	5.6 Brake-by-Wire Case Study
	5.7 Discussion
	References

	6 Schedulability Analysis at Early Design Stages with MARTE
	6.1 Introduction
	6.2 Overview of the Optimum Process
	6.3 The Schedulability Model
	6.4 Detailed Optimum Methodology
	6.4.1 Modeling Language Description
	6.4.2 The Optimum Models
	6.4.3 Conformance to the Formal Schedulability Model
	6.4.4 Software Architecture Exploration Phase

	6.5 Application on an Automotive Case Study
	6.5.1 Workload Model
	6.5.2 Generation of the Architecture Model
	6.5.3 Schedulability Analysis Results

	6.6 Related Works
	6.7 Conclusions and Future Work
	References

	Part IIIComponent-Based Design and Real-Time Components
	7 Early Time-Budgeting for Component-Based Embedded Control Systems
	7.1 Introduction
	7.1.1 Related Work

	7.2 Time-Budgeting Methodology
	7.2.1 Formalization of Component Time-Budgeting
	7.2.2 Component Time-Budget Computation

	7.3 RDP Constraint Computation Methods
	7.3.1 Emptiness and Universality Check Method
	7.3.2 Bounded Response Constraint Extraction Method
	7.3.3 Corner Point Constraint Extraction Method

	7.4 Case Studies
	7.5 Conclusion and Future Work
	References

	8 Contract-Based Reasoning for Component Systems with Rich Interactions
	8.1 Introduction
	8.2 Design Methodology
	8.2.1 Contract Framework
	8.2.2 Reasoning Within a Contract Framework

	8.3 Circular Reasoning in Practice
	8.3.1 The L0 Framework
	8.3.2 The L1 Framework
	8.3.3 Relaxed Circular Reasoning

	8.4 Conclusion and Future Work
	References

	9 Extracting End-to-End Timing Models from Component-Based Distributed Embedded Systems
	9.1 Introduction
	9.2 Background and Research Problem
	9.2.1 The Rubus Concept
	9.2.2 Problem Statement: Linking of Distributed Chains

	9.3 End-to-End Timing Model
	9.3.1 System Timing Model
	9.3.2 System Linking Model

	9.4 Extraction of End-to-End Timing Model
	9.4.1 Proposed Solution
	9.4.2 Extraction of End-to-End Timing Model in Rubus-ICE

	9.5 Related Work
	9.6 Conclusion
	References

	Part IVTiming Analysis and Time-Based Synthesis
	10 Distributed Priority Assignment in Real-Time Systems
	10.1 Introduction
	10.2 Related Work
	10.3 System Model and Admission Control Concept
	10.4 Self-Configuration Strategy
	10.5 The Local Improvement Target
	10.6 Distributed Self-Configuration Algorithm
	10.7 Evaluation
	10.7.1 Number of Feasible Priority Assignments
	10.7.2 Runtime

	10.8 Conclusion
	References

	11 Exploration of Distributed Automotive Systems Using Compositional Timing Analysis
	11.1 Introduction
	11.2 Design Space Exploration Model
	11.2.1 Model Description
	11.2.2 Binary Encoding

	11.3 Compositional Timing Analysis
	11.3.1 Timing Model
	11.3.2 Dependency-Based Fixed-Point Iteration
	11.3.3 Fine-Grained Fixed-Point Iteration

	11.4 Experimental Results
	11.4.1 Automotive Case Study
	11.4.2 Design Space Exploration Results
	11.4.3 Timing Analysis Results

	11.5 Concluding Remarks
	References

	12 Design and Evaluation of Future Ethernet AVB-Based ECU Networks
	12.1 Future Communication Media for ECU Networks
	12.2 Related Work
	12.3 Fundamentals
	12.4 VPC Model
	12.4.1 AVB Scheduling
	12.4.2 Overall Ethernet AVB Model

	12.5 Case Study
	12.6 Conclusion
	References

	Index

