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Boundedness Estimates to a Steady State

Nonlinear Fourth Order Elliptic Equation

Bo Liang, Xiaoming Dai, and Meishan Wang

Abstract In the paper, we study a fourth order partial differential equation which

appears in the description of the motion of a very thin layer of viscous incompress-

ible fluids and in the phase transformation theory. In order to prove the existence, a

truncation system is studied. By applying the test function method and an iteration

technique, some a-prior estimates of solutions to the steady state problem are

obtained. Finally, the boundedness estimates are gained for the truncation problem.

The results will have important in the existence of steady state thin film equations.

Keywords Fourth order • Parabolic • Higher order

197.1 Introduction

Many people have begun to study the nonlinear fourth order partial differential

equations including the thin film equation and Cahn-Hilliard equation. The thin film

equation reads

ut þ ðunuxxxÞx ¼ 0

Which appears in the description of the motion of a very thin layer of viscous

incompressible fluids along an inclined plane and is derived from a lubrication

approximation. Here the index n > 0 is a constant and the unknown function u

represents the thickness of some flow films. The readers may refer to [1–8].

If letting n ¼ 0, the thin film equation is the classic Cahn-Hilliard-type equation

(see [3]):
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ut þ ðAðuÞuxxx � BðuÞuxÞx ¼ 0

Bernis and Friedman [1] firstly proved the existence of weak solutions in the

distributional sense for the thin film equation. Bertozzi and Pugh [2] studied the

problem with a second-order diffusion term. They obtained the existence and long

time decay.

In the paper [4] and [5], the authors have studied the existence and blow-up

behavior for Cahn-Hilliard equation. For the Cahn-Hilliard model with a grads

mobility, Xu, Zhou in [9, 10] applied the semi-discrete method to get the existence

and stability results.

We introduce some notations:Cm;yðΩÞ denotes the Hölder space.CmðΩÞ denotes
the uniformly continuous space.Wm;pðΩÞ denotes the Sobolev space. (see [11]) C is

denoted as a positive constant and may change from line to line.

197.2 Main Results

In the paper, we study the following steady state thin film model with a second-

order diffusion term in the multi-dimensional space:

rðunrΔuÞ � δuσΔu ¼ f ðx; uÞ in Ω; (197.1)

u ¼ uD;Δu ¼ 0 on @Ω; (197.2)

where Ω � RN is a bound domain and @Ω is smooth enough. n; δ; σ are all

nonnegative real constants.

We will employ the truncation function method, which has been successfully

applied to the steady state quantum hydrodynamic model (see [7]), to get the

existence of the stationary thin film equation. By letting

V ¼ �Δu;

the (197.1) can be transformed into a second-order elliptic system:

�rðunrVÞ þ δuσV ¼ f ðx; uÞ in Ω; (197.3)

� Δu ¼ V; in Ω (197.4)

u ¼ uD;V ¼ 0 on @Ω; (197.5)

If we solve the problem (197.3), (197.4), (197.5) completely, the original

problem (197.1)–(197.2) could be solved in the same time.
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The following assumption is needed for the two variable function f ðt; sÞ defined
in Ω� ð0;þ1Þ:

0 � f ðx; sÞ � η1 þ η2s
α for some α 2 ð0; 1Þ:

For this purpose of existence, we study the following truncation problem in the

paper:

�rðgm;KðuÞnrVÞ þ δgm;KðuÞσV ¼ f ðx; gm;KðuÞÞ in Ω;
�Δu ¼ V in Ω;

u ¼ uD;V ¼ 0 on @Ω
(197.6)

where m and K are both undetermined positive constants and the truncation

function gm;Kð�Þ is defined by

gm;KðsÞ ¼ s;
K; s � K;
m < s < K;
m; s � m:

8<
: (197.7)

Now we list main results for the steady state problem as below:

Theorem 1. (Boundedness of weak solutions) Suppose inf
x2@Ω

uDðxÞ > 0 and uD

2 W2;pðΩÞ for p > N
2
Let ðu;VÞ 2 H1ðΩÞ � H1

0ðΩÞ be a weak solution of

�rðgm;KðuÞnrVÞ þ δgm;KðuÞσV ¼ f ðx; gm;KðuÞÞ in Ω;
�Δu ¼ V in Ω;

u ¼ uD;V ¼ 0 on @Ω
(197.8)

Then

m � u � K; 0 � V � Cð1þ KÞ;
k ukW2;pþ k VkC1;y � C: (197.9)

197.3 Proof

The proof is arranged as follows. We will prove the a-prior estimates of solutions to

the steady state problem.

The following a-prior estimates will play an important role to treat the existence.

Lemma1. Let ðu;VÞ 2 H1ðΩÞ � H1
0ðΩÞ be a weak solution. Then
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ðu;VÞ 2 H1ðΩÞ � H1
0ðΩÞ

Proof. (Positivity) Taking V� ¼ minfV; 0g as a test function for the problem, we

have

mn

ð
ΩjrV�j2dxþ δmσ

ð
ΩjV�j

2

dx

�
ð
Ωf ðx; gm;KðuÞÞV�dx

� 0:

(197.10)

It means V� ¼ 0 a.e. in Ω and so we conclude V � 0 a.e. in Ω.
Let m ¼ inf

x2@Ω
uDðxÞ > 0 and choose ðu� mÞ� as a test function to get

ð
Ωjrðu� mÞ�j2dx ¼

ð
ΩVðu� mÞ�dx � 0: (197.11)

Poincaré inequality yields u � m � 0 a.e. in Ω.
(L1-estimate) Next we will use the De Giorgi iteration technique to gain the L1-

bound of the solution. Taking as a test function, we have

mn

ð
ΩjrðV � KÞ

þ
j2dxþ δmσ

ð
VðV � KÞþdx

¼
ð
Ωf ðx; gm;KðuÞÞðV � KÞ

þ
dx

(197.12)

and then

mn

ð
ΩjrðV � KÞ

þ
j2dx

�
ð
Ωf ðx; gm;KðuÞÞðV � KÞ

þ
dx:

(197.13)

If f satisfies the condition of the assumption (a), we apply Hölder inequality to get

ð
Ωf ðx; gm;KðuÞÞðV � KÞ

þ
dx

� ðη1 þ η2K
αÞ
ð
fV>KgðV � KÞ

� ðη1 þ η2K
αÞ

ð
fV>KgjV � Kj2�dx

� �2�

jfV > Kgj1� 1
2�

(197.14)
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where the positive constant 2� is defined by

2� ¼
2N
N�2

;N > 2;

qð> 2Þ;N � 2:

(
(197.15)

The expression fV > Kg denotes the set fx 2 ΩjVðxÞ > Kg and the representa-

tion j � j denotes the set measure.

In view of the Sobolev embedding H1ðΩÞ ! L2
� ðΩÞ, we have

ð
fV>KgjðV � KÞj2�dx

� � 1
2�

(197.16)

� Cð1þ KαÞjfV > Kgj1� 1
2� (197.17)

where the constant 2� > 2 ensures 1� 1
2� > 0 Introducing a new constant H and for

H > K > 0, we get

ð
fV>KgjðV � KÞj2�dx

� � 1
2�

� jfV > Hgj 12� ðH � KÞ: (197.18)

Combining (197.5) and (197.6) yields

jfV > Kgj � ðCð1þ KαÞÞ2�

ðH � KÞ2� jfV > Kgj2��1: (197.19)

Apply Stampacchia’s Lemma (see [6]) to get

0 � V � c1ð1þ KαÞ (197.20)

where the constant is independent of K.

Similarly, using (197.2) and (197.3), we can receive the following estimate

m � u sup
x2@Ω

uDðxÞ þ c2ð1þ KαÞ (197.21)

where the constant c2 is independent of K. Taking advantage of the assumption (a),

we conclude that there exists a large enough constant K such that the inequality

sup
x2@Ω

uDðxÞ þ c2ð1þ KαÞ � K (197.22)

holds. Hence, we have obtained the estimate m � u � K.
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