
Chapter 8
Forensic Reasoning upon Pre-Obtained
Surveillance Metadata Using Uncertain
Spatio-Temporal Rules and Subjective Logic

Seunghan Han, Bonjung Koo, Andreas Hutter and Walter Stechele

Abstract This chapter presents an approach to modeling uncertain contextual rules
using subjective logic for forensic visual surveillance. Unlike traditional real-time
visual surveillance, forensic analysis of visual surveillance data requires mating
of high level contextual cues with observed evidential metadata where both the
specification of the context and the metadata suffer from uncertainties. To address this
aspect, there has been work on the use of declarative logic formalisms to represent and
reason about contextual knowledge, and on the use of different uncertainty handling
formalisms. In such approaches, uncertainty attachment to logical rules and facts
are crucial. However, there are often cases that the truth value of rule itself is also
uncertain thereby, uncertainty attachment to rule itself should be rather functional.
The more X then the more Y type of knowledge is one of the examples. To enable such
type of rule modeling, in this chapter, we propose a reputational subjective opinion
function upon logic programming, which is similar to fuzzy membership function but
can also take into account uncertainty of membership value itself. Then we further
adopt subjective logic’s fusion operator to accumulate the acquired opinions over
time. To verify our approach, we present a preliminary experimental case study on
reasoning likelihood of being a good witness that uses metadata extracted by a person
tracker and evaluates the relationship between the tracked persons. The case study
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is further extended to demonstrate more complex forensic reasoning by considering
additional contextual rules.

Keywords Visual surveillance · Forensic reasoning · Logic programming ·
Subjective logic

8.1 Introduction

As traditional computer vision technology further matures, higher level forensic
semantic understanding of visual surveillance data has been gaining increasing atten-
tion. Such forensic semantic analysis deals with a propositional assumption to be
investigated after an incident and the answer to the propositional assumption should
be an epistemic reasoning result upon pre-observed evidential and contextual cues.
Therefore, such forensic semantic analysis of visual surveillance data requires intel-
ligent reuse of low level vision analytic results with additional visual, and non visual,
contextual cues. However, unlike domains that can solely rely on deterministic knowl-
edge model, in visual surveillance, contextual knowledge as well as low level vision
analytic results are fraught with facets of uncertainties, incompleteness and incon-
sistencies. Therefore, the key challenges for such high level analysis approaches are
the choice of an appropriate contextual knowledge representation and the proper
reasoning mechanism under uncertainty. Depending on how such approaches han-
dle uncertainty, they can be roughly categorized into intensional and extensional
approaches [1]. In intensional approaches, also known as state based approaches,
uncertainty is attached to ‘subsets of possible states’ and handle uncertainty taking
into account relevance between the states. In extensional approaches, also known as
rule-based systems treat uncertainty as a generalized truth value attached to formulas
and compute the uncertainty of any formula as a function of the uncertainties of its
sub formulas. There is trade-off between the two approaches. Intentional approaches
assume completeness of the state model, therefore, semantically clear but computa-
tionally clumsy. Extensional approaches are computationally convenient but seman-
tically sloppy. In forensic visual surveillance, however, considering the variety of
possible semantics in scenes, extensional approaches have advantages in the flexi-
bility and expressive power due to their ability to derive a new proposition based
only on what is currently known (a) regardless of anything else in the knowledge
base (locality) and (b) regardless of how the current knowledge was derived (detach-
ment). locality and detachment are together referenced to as modularity [1]. Due to the
advantage of extensional approaches, there has been some extent of work on the use
of logic programming language with different uncertainty handling formalisms for
visual surveillance and computer vision problems. In such approaches, intermediate
metadata comes from vision analytics and additional visual or non visual contextual
cues are encoded as either symbolized facts or rules. Then uncertainty comes with
vision analytics are represented according to the chosen uncertainty formalism and
attached to their symbolized facts. Similarly, uncertainty as general trustworthiness
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or priority among rules is also represented according to the chosen uncertainty for-
malism and attached to given contextual rules. Once such an uncertainty attachment
is done, principled inference, which is often nonmonotonic, is conducted. The exam-
ples of such principled inferences are default reasoning [2] to handle inconsistent
information, abduction [3] to find most probable hypothesis of given observation
and belief revision over time upon the change of observation, etc. In this pipeline,
therefore, appropriate uncertainty assignment as well as proper uncertainty formal-
ism plays an important role. However, there are often cases that the trustworthiness
of rule itself is also uncertain thereby, uncertainty attachment to rule itself should
be rather functional. the more X then the more Y type of knowledge is one of the
examples. To enable such type of rule modeling, in this chapter, we further explorer
our previous work [4–6], where we proposed the use of subjective logic [7] with
logic programming and demonstrated that the proposed approach can cover incon-
sistent information handling as default reasoning and bidirectional reasoning as can
be typically done in intensional approaches. We first propose a reputational subjective
opinion function that is similar to fuzzy membership function but also can take into
account uncertainty of membership value itself. Then we further adopt subjective
logic’s fusion operator to accumulate the acquired opinions over time. To demon-
strate reasoning under uncertain rules, we present a preliminary experimental case
study by intentionally restricting the type of available metadata to the results from
human detection and tracking algorithms. Automatic human detection and tracking
is one of the common analytics and becoming more widely employed in automated
visual surveillance systems. The typical types of meta-information that most human
detection analytic modules generate comprise, for instance, localization information
such as coordinate, width, height, time and (optionally) additional low-level visual
feature vectors. We intend to use further such information for evaluating the relation-
ship between two persons and, more specifically, for estimating whether one person
could serve as a witness of another person in a public area scene. Examples for
(linguistic) domain knowledge applicable to this scenario include: (1) (At least) two
distinct people are required for building a relationship. (2) The closer the distance
between two people is, the higher is the chance that they can identify each other.
(3) If two persons approach each other directly (face-to-face) then there is a higher
chance that they can identify each other. Such linguistic knowledge can be modeled
and encoded as rules by the proposed approach. The case study is further extended to
demonstrate more complex forensic reasoning by considering additional contextual
rules together with the shown uncertain rules.

The rest of the chapter is organized as follows. In Sect. 8.2, we briefly review
related work regarding intensional and extensional approaches with more focus on
the latter one. In Sect. 8.3, we will first give a short introduction to subjective logic the-
ory. In Sect. 8.4, we introduce our approach to modeling uncertain rules. Section 8.5
presents a case study scenario in a typical public area scene and deals with rule
encoding and preliminary experimental demo results. Section 8.6 further extend the
scenario with more complex situational rules. Finally, Sect. 8.7 concludes with dis-
cussions and future research directions.
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Table 8.1 A comparison of previous extensional approaches

Approach Akdemir
et al. [9]

Jianbing
et al. [10]

Shet et. al
[11, 12]

Anderson
et al. [13]

Han et al.
[4–6]

Knowledge modeling Ontology Rule
based

Rule
based

Rule
based

Rule
based

Uncertainty formalism – Dempster
Shafer

Bilattice Fuzzy
logic

Subjective
logic

Traditional logic
operators

– –
√ √ √

Arithmetic operators – – – –
√

Info. fusion operators –
√ √

–
√

Extra operators (MP,
MT, reputation,
etc.)

– – – –
√

Default reasoning – –
√

–
√

Belief revision – –
√

–
√

Bidirectional inference – – – –
√

Uncertain rule
modeling

– – –
√ √

(by this
work)

8.2 Related Work

To address high level context modeling and reasoning in the visual surveillance
domain, traditionally, whole model based approaches such as Bayesian networks
have been used. Such approaches are called ‘intensional’. Bremont et al. [8] employs
a context representation scheme for surveillance systems. Hongeng et al. [14] con-
siders an activity to be composed of action threads and recognizes activities by
propagating constraints and likelihood of event threads in a temporal logic network.
Other approaches use a qualitative representation of uncertainty [15], HMM to reason
about human behaviors based on trajectory information [16], a use of bayesian net-
work and AND/OR tree for the analysis of specific situations [17] or a GMM based
scene representation for reasoning upon activities [18]. In such approaches, contex-
tual knowledge is represented as a graph structure having nodes that are considered
as symbolic facts. In the sense of logic, connected two nodes can be interpreted as a
propositional logic rule that can consider only one relation, the causality implication.
A piece of propositional knowledge segment should exist within the whole graph
structure, thereby, once uncertainty propagation mechanism is learnt, adding addi-
tional pieces of knowledge will require restructuring causality influence relation of
the whole graph structure. This aspect restricts expressive power and increases the
modeling cost. Due to this complexity and lack of modularity, such approaches have
been focusing on relatively narrow and specific semantics. However, as forensic sense
of semantics in visual surveillance is gaining more attention, more flexible knowledge
representation and uncertainty handling mechanism is required. For this reason, there
has been some work on the use of logic programming languages to achieve better
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expressive power and on the use of different uncertainty handling formalisms to rea-
son under uncertainty. The achievement of better expressive power is mainly due to
the first-order predicate logic that logic programming provides. While propositional
logic deals with simple declarative propositions, first-order logic additionally covers
predicates and quantifiers. Akdemir et al. [9] proposed an ontology based approach
for activity recognition, but without uncertainty handling mechanism (In ontology
community, Description Logics (DLs) are often used as knowledge representation
formalism and DLs are decidable fragments of first-oder-logic.). Shet et al. [11] pro-
posed a system that adopts Prolog based logic programming for high-level reasoning.
In [12] the same authors extended their system with the bilattice framework [19] to
perform the task of detecting humans under partial occlusion based on the output of
parts based detectors. Jianbing et al. [10] used rule-based reasoning with Dempster
Shafer’s Theory [20] for a bus surveillance scenario. Anderson et al. [13] used fuzzy
logic [21] to model human activity for video based eldercare. Han et al. [4–6] pro-
posed the use of logic programming and subjective logic [7] to encode contextual
knowledge with uncertainty handling, then demonstrated bidirectional conditional
inference and default reasoning. Such logic framework based uncertainty handling
approaches can be categorized as ‘extensional’. Table 8.1 shows a brief comparison
of the previously proposed extensional approaches. the table shows that the cover-
age of the subjective logic based approach is most broad. For example, while some
provides information fusion capability for fusing two contradictory information
sources, such as Dempster Shafer’s fusion operator, bilattice’s operator and sub-
jective logic’s consensus operator, only some of them support default reasoning
that handles such contradictory information to draw reasonable decision and belief
revision. Indeed, bidirectional inference is only supported by subjective logic based
approach. In this chapter, we further propose an approach to modeling uncertain
propositional rules and inference under such uncertain rules for high level semantic
analysis of visual surveillance data. In the sense of linguistic interpretation of the
rules, the most similar previous approach to the proposed work would be [13]. In the
work, quantitative low level features from human detection are linguistically sym-
bolized into terms such as ‘high’, ‘medium’, ‘low’ and ‘very low’ according to their
corresponding membership functions. Therefore, in such approach, defining mem-
bership function is critical. Then the linguistic symbols are used to form a conjunctive
logical patterns of a human activities. This means, rules contain symbolized static
facts. In our approach, rules allow to contain variable itself. Indeed, our approach
even allows uncertainty on a membership-like function by the use of the reputation
operator in subjective logic thereby, relieves the burden of defining exact form of
membership-like function.

8.3 Subjective Logic Theory

Jøsang [22, 7] introduced subjective logic as a framework for artificial reasoning.
Unlike traditional binary logic or probabilistic logic (the former can only consider
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Fig. 8.1 Opinion triangle and beta distribution (Colour figure online)

true or false, and the latter can consider degrees of truth or falseness), subjective logic
explicitly represents the amount of ‘lack of information (ignorance) on the degree
of truth about a proposition’ in a model called opinion and comes with a rich set of
operators for the manipulation of opinions [7]. The idea of explicit representation
of ignorance is introduced from belief theory and the interpretation of an opinion in
bayesian perspective is possible by mapping opinions to beta distributions. It is also
different from fuzzy logic: while fuzzy logic maps quantitative measure to non-crisp
premises called fuzzy sets (e.g. ‘fast’, ‘slow’, ‘cold’, ‘hot’ etc.), subjective logic deals
with the uncertain belief itself on a crisp premise (e.g. ‘intrusion happened’, ‘accident
happened’, etc.). However, in the sense of interpretation, mapping of an opinion into
the linguistic certainty fuzzy set (i.e., ‘very certainly true’, ‘less certainly true’, etc)
is also possible. In general, subjective logic is suitable for modeling real situations
under partial ignorance on a proposition’s being true or false. Known application
areas are trust network modeling, decision supporting, etc. However, to the best of
our knowledge, the application of subjective logic in computer vision related domains
has been limited to [4–6] that demonstrated the capability of default reasoning and
bidirectional interpretation of conditional rules. In this section, we will give a brief
introduction to subjective logic theory.

Definition 8.1 (Opinion) [7] Let Θ = {x, x} be a state space containing x and its
complement x . Let bx , dx , ix represent the belief, disbelief and ignorance in the
truth of x satisfying the equation: bx + dx + ix = 1 and let ax be the base rate
of x in Θ . Then the opinion of an agent ag about x , denoted by wag

x , is the tuple
wag

x = (bag
x , dag

x , iag
x , aag

x ).

Definition 8.2 (Probability expectation) [7] Let wag
x = {bag

x , dag
x , iag

x , aag
x } be an

opinion about the truth of x, then the probability expectation of wag
x is defined by:

E(wag
x ) = bag

x + aag
x iag

x .

Opinions can be represented on an so called opinion triangle as shown in Fig. 8.1.
A point inside the triangle represents a (bx , dx , ix ) triple. The corner points marked
with Belief, Disbelief or Ignorance represent the extreme cases, i.e., no knowledge
(0, 0, 1), full disbelief (0, 1, 0) and full belief (1, 0, 0). The base rate ax represents
the prior knowledge on the tendency of a given proposition to be true and can be
indicated along the base line (the line connecting Belief and Disbelief). The prob-
ability expectation E is then formed by projecting the opinion onto the base line,
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parallel to the base rate projector line (see the blue line) that is built by connecting
the ax point with the Ignorance corner (see the red line). An interesting property
of subjective opinions is their direct mapping to beta distributions. Beta distribu-
tions are normally denoted as Beta(α, β) where α and β are its two parameters
(α represents the number of positive observations and β represents amount of nega-
tive observations about a crisp proposition respectively). The beta distribution of an
opinion wx = (bx , dx , ix , ax ) is the function Beta(α, β) where α = 2bx/ ix + 2ax

and β = 2dx/ ix + 2(1 − ax ). In Fig. 8.1, Example (1) shows an opinion about a
proposition of an agent, that can be interpreted as seems likely and slightly uncertain
true, and Example (2) shows full ignorance (a.k.a. vacous opinion) at the time of
judgement about a proposition. Assuming base rate to be 0.7 in the example we get
expectation value also to be 0.7 and the beta distribution appears biased towards
‘True’ though the opinion represents full ignorance.

8.4 Modeling Uncertain Rule Using Subjective Logic

The proposed uncertain rule modeling approach mainly relies on rule-based system
that enables logic programming. The traditional rule-based system, which can only
handle binary logic, is extended to allow representation of uncertainty using sub-
jective opinions and operators. For a given propositional knowledge, we assume a
fuzzy-like membership function that grades degree of truth. Then we focus on that
the interpretation of such membership function can be dogmatic, thereby, when the
function is projected on the opinion space, it only lays on the bottom line of the opin-
ion space. Indeed, in many cases, the exact shape of the function is hard to determine.
To address this aspect, we introduce a reputational function that evaluates the trust
worthiness of the fuzzy-like membership function. Then we introduce accumulation
of the resulted opinions overtime. In this section, we will first give a brief overview
how rules are expressed in logic programming. Thereafter, comes with further details
of the uncertain rule modeling.

8.4.1 Logic Programming

Logic programming mainly consists of two types of logical formulae, rules and facts.
Rules are of the form A← f0, f1, . . . , fm where A is rule head and the right hand
side is called body. Each fi is an atom and ‘,’ represents logical conjunction. Each
atom is of the form p(t1, t2, . . . , tn), where ti is a term and p is a predicate symbol
that takes n terms (i.e. arity n). Terms could either be variables or constant symbols.
Negation is represented with the symbol ¬ such that ‘A = ¬¬A’. Both positive and
negative atoms are referenced to as literals. Given a rule head ← body, we interpret
the meaning as IF body THEN head. Traditionally, resolved facts that matches to a
rule is called extension. In extensional approaches [11, 12, 10, 4–6] mentioned in
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Sect. 8.2, rules have been used to define and reason about various contextual events
or activities.

8.4.2 Logic Programming Extended Using Subjective Logic

To extend logic programming with subjective logic, the CLIPS [23] rule engine was
used as a basis to provide flexibility for defining complex data structure as well as
for providing a rule resolving mechanism. To extend this system, a data structure
opinion(agent,proposition,b,d,i,a) was defined that can be interpreted as a fact of
arity 6 with the following terms, agent (opinion owner), proposition, belief, disbelief,
ignorance, and atomicity. To represent propositions, we extended the structure so that
it can take arity n properties as well. Therefore, given a predicate p the proposition can
be described as p(a1, a2, . . . , an). In our system, therefore, each fact is represented as
the form of wagent

p(a1,a2,...,an). Namely, rules are defined with the opinion and proposition
structure. Additionally, functions of subjective logic operators taking opinions as
parameters were defined. In this way, uncertainty in the form of opinion triangle is
attached to rules and facts. This aspect is depicted as follows:

Definition 8.3 (Opinion Assignment) Given a knowledge baseK in form of declara-
tive language and Subjective Opinion Space O , an opinion assignment over sentences
k ∈ K is a function φ : k → O . s.t.

1. φfact : Fact→ O , e.g. wa
p(a1,a2,...,a,n) = (b, d, u, i)

2. φRule : Rule → O , e.g. (wac
pc(ac1,...,acn) ← wa1

p1(a11,...,a1n), . . . , wai
pn(ai1,...,ain)) =

(b, d, u, i)

3. φRuleEval : Rule Head→
(

�
w

ai
pi ∈Rule Body

wai
pi (aai1,...,ain) = O

)
, where � indicates

one of subjective logic’s operators.

Example for a given rule wac
pc(ac1,...,acn) ← wa1

p1(a11,...,a1n), . . . , wai
pn(ai1,...,ain),

wac
pc(ac1,...,acn) = wa1

p1(a11,...,a1n) � · · ·� wai
pn(ai1,...,ain) = (b, d, u, i).

φinference denoted cl(φ) : q → O , where K |= q called Closure.

It is important to note that there are different ways of opinion assignment. While
Definition 8.3—2 assigns an opinion to a whole rule sentence itself, Definition 8.3—3
assigns an opinion to the consequence part of the rule (rule head). The assigned
opinion is functionally calculated out of opinions in the rule body using appropri-
ate subjective logic operators. Definition 8.3—2 especially plays an important role
for prioritizing or weighting rules for default reasoning [6]. Given the initial opin-
ion assignment by Definition 8.3—1 and 2, the actual inference is performed by
Definition 8.3—3 and 4, where Definition 8.3—4 is further defined as follows:
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Definition 8.4 (Closure) Given a knowledge baseK in form of declarative language
and an opinion assignment φ, labeling every sentence k ∈ K into Subjective Opinion
Space O , then the closure over k ∈ K , is the opinion assignment function cl(φ)(q)

that labels information q entailed by K (i.e. K |= q).

For example, if φ labels sentences {a, b, c← a, b} ∈ K as φfact(a), φfact(b) and
φRule(c← a, b), then cl(φ) should also label c as it is information entailed by K . The
assignment can be principled by the definition of closure. For example, an opinion
assignment to c, in a simple conjunctive sense can be φfact(a) · φfact(b) · φRule(c←
a, b), where · represent conjunction in Subjective Logic. In our system, to support
the rich set subjective logic operators, we made the specification of Definition 8.3—
3 in rule description as follows (note that, most of rule based systems also support
describing actions in the head part of a rule):

ACTION : Assert new Opinion wac
pc(ac1,...,acn), where wac

pc(ac1,...,acn) =
wa1

p1(a11,...,a1n) � · · ·� wai
pn(ai1,...,ain)← wa1

p1(a11,...,a1n), . . . , wai
pn(ai1,...,ain). (8.1)

Due to the redundancy that arises when describing rules at the opinion structure level,
we will use abbreviated rule formulae as follows:

wac
pc(ac1,...,acn)← wa1

p1(a11,...,a1n) � · · ·� wai
pn(ai1,...,ain). (8.2)

where � indicates one of subjective logic’s operators. This way of representing
rules, we can build a propositional rules that comprise opinions about a predicate
as facts, check logical conjunction based existence of involved opinions and finally
define resulted predicate with opinion attached by calculating opinion values with
subjective logic operators. To realize this concept, a prototype system integrating
binary logic programming and subjective logic calculus has been implemented. For
the logic programming part, the CLIPS [23] rule engine was used.

8.4.3 Uncertain Propositional Rules

In logic programming, a conditional proposition y← x is interpreted as IF x THEN
y. However, there are often cases that we may want to interpret the meaning as the
more x then the more y or the more x then the less y, etc. In this case, the opinion
attached to the consequence of the rule should be rather functional in terms of the
elements within the rule body. Therefore, the opinion assignment suit to this inter-
pretation is Definition 8.3—3. In the sense of intrinsic linguistic uncertainty of the
rule, it resembles fuzzy rules shown by Anderson et al. [13, 21]. In the work, quanti-
tative low level features of human detection results such as ‘centroid’, ‘eigen-based
height’ and ‘ground plane normal similarity’ are linguistically mapped into non-
crisp premises (i.e. fuzzy sets) as ‘(H)igh’, ‘(M)edium’, ‘(L)ow’ and ’(V)ery Low’.
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Then fuzzy rules defines the conjunctive combination of those linguistic symbols to
draw higher semantics such as ‘Upright’, ‘In Between’ and ‘On the ground’ (e.g.
U pright (L) ← Centroid(H), EigenHeight (M), Similari t y(H) [13]). There-
fore, introducing appropriate fuzzy membership functions for each linguistic terms
and proper handling of the membership functions is an important issue. In this view,
Mizumoto et al. [24] showed comparison of sophisticated mathematical handling
of ambiguous concepts such as ‘more or less’ having various shapes. One another
thing worth to note concerning fuzzy logic is that, even if there are Zadeh’s original
logical operators, there are yet another ways of defining logical operators as well.
For example, for given two quantitative variables x and y come with correspond-
ing membership functions μa and μb, Zadeh’s AND operator is defined as x AND
y = min(μa(x), μa(y)). In so-called ‘t-norm fuzzy logic’, any form of t-norms can
be considered as AND operators. For example, in the case of using product t-norm,
the AND operator can be defined as x AND y = μa(x) · μb(x) [25]. This aspect
still remains controversial among most statisticians, who prefer Bayesian logic [26].
Contrary, as explained in the Sect. 8.3, subjective logic can be interpreted in the sense
of bayesian and also the final quantitative opinion space can also be interpreted in
the sense of fuzziness (i.e. ‘very certainly true’, ‘less certainly true’, etc). This way,
we believe that subjective logic can better bridge the interpretation of fuzzy intuitive
concepts with better bayesian sense. The basic idea of our approach is as follows:

1. For a given propositional rule ‘the less (more) y← the more x’ we could intro-
duce a membership-like function μi : x → y.

2. It is clear that the function μi should be monotonically decreasing (increasing)
but the shape is not quite clear.

3. Considering potentially possible multiple membership like functions μi , how-
ever the values of μi (x) at the two extreme point of (minx ≤ x ≤ maxx ) tend
to converge but the values in between are diverge therefore, the values of later
cases are more uncertain.

4. Considering the aspect of 3. we introduce so-called reputational opinion function
on the function μi and combine it with raw opinion obtained from μi using
subjective logic’s reputation operator.

This idea is depicted in Fig. 8.2, where the actual reputational operation is defined
as follows:

Definition 8.5 (Reputation) [27] Let A and B be two agents where A’s opinion
about B’s recommendations is expressed as wA

B = {bA
B , d A

B , u A
B , a A

B }, and let x be
a proposition where B’s opinion about x is recommended to A with the opinion
wB

x = {bB
x , d B

x , u B
x , aB

x }. Let wA:B
x = {bA:B

x , d A:B
x , u A:B

x , a A:B
x } be the opinion such

that:
{

bA:B
x = bA

BbB
x d A:B

x = d A
B d B

x
u A:B

x = d A
B + u A

B + bA
Bu B

x a A:B
x = aB

x
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Fig. 8.2 Uncertain rule modeling using subjective logic’s reputation operator

then wA:B
x is called the reputation opinion of A. By using the symbol⊗ to designate

this operation, we get wA:B
x = wA

B ⊗ wB
x .

For actual evaluation of a given function μi , an opinion assignment function on
the given μi need to be defined. Although there could be also another ways of such
function, in our approach, this is modeled as follows:

wreputμi (x)

μi (x) =
⎧⎨
⎩

bx = k + 4(1− k)(μi (x)− 1
2 )2

dx = 1−bx
Dratio

ux = 1− bx − dx .

(8.3)

where k, represents the minimum boundary of belief about the value from μi (x), and
the Dratio indicates the ratio for assigning the residue of the value μi to disbelief
and uncertainty. This is depicted as Fig. 8.2d.

8.5 Case Study I

8.5.1 Scenario Setting for Case Study

At this stage we focused on evaluating the modeling approach itself rather than the
reliability of the person detection algorithm. Therefore, we manually annotated a test
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video from one of i-LIDS [28] data sample with ground truth metadata for human
detection comprising bounding boxes and timing information (shown in Fig. 8.3).
In total, 1 minute of test video was annotated in which there are 6 people. For our
purposes, we intentionally marked one person as suspect. Then we encoded following
linguistic contextual knowledge according to the proposed approach as explained in
Sect. 8.4. (1) (At least) two distinct people are required for building a relationship.
(2) The closer the distance between two people is, the higher is the chance that they
can identify each other. (3) If two persons approach each other directly (face-to-face)
then there is a higher chance that they can identify each other. Then we calculate
subjective opinions between the person marked as suspect and other human instances
over time.

8.5.2 Uncertainty Modeling

8.5.2.1 Distance

The distance between a pair of people would be one of the typical pieces of clue for
reasoning whether one person could serve as a witness of another person. This relates
to the general human knowledge that The closer two people are in distance, the more
chances of perceiving the other are. Humans are very adapted to operating upon such
type of uncertain and ambiguous knowledge. Exactly modeling such a relation is not
trivial, but we can approximate it with a monotonic decreasing function about the
possibility of perceiving each other. This aspect is depicted as three possible curves
in the middle of Fig. 8.4a, where x represents the distance between the persons as
calculated from the person detection metadata and μi represents the likelihood that
two persons at this distance would perceive each other, maxdist is the maximum
possible (i.e. diagonal) distance in a frame and ai is the estimated probability that
two humans could have recognized each other at the maxdist distance. However, the
value derived from such function is not fully reliable due to the variety of real world
and uncertainty in the correctness of the function and uncertainty in the distance
value itself. Considering the aspect of distance, it is clear that both the extreme cases
i.e. very close or very far are much more certain than in the middle of the range.
Thus, to better model the real world situation, the reputational opinion function need
to be applied to any chosen function μi . This is modeled as opinion on the reliability
of μi (x) by applying Eq. (8.3). In order to evaluate the impact of choosing different
functions in Fig. 8.4a, three different types of μi functions (a concave, convex and
linear) have been applied. The derived reputational opinions showed similar aspects
having peaks of certain belief at each extreme cases as shown in Fig. 8.5.
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Fig. 8.3 Scenario setting for case study I

Fig. 8.4 Candidate uncertainty functions regarding distance and direction

8.5.2.2 Direction

Similarly, we also used direction information between two persons. The linguistic
knowledge to be modeled is if two persons approach each other directly (face-to-
face) then there is a higher chances of perceiving each other. The corresponding
direction-based relevance function is shown in Fig. 8.4b, where Θ represents the
angle between the persons heading directions as calculated from the person detection
metadata and μi represents the likelihood that two persons at the angle would perceive
each other and ai is the expected minimum probability that two humans could have
recognized each other at any angle. However, again the trustworthiness of the values
from such functions μi is uncertain, especially in the middle range of the Θ . To
roughly model such aspect, for a chosen function μi (Θ), the same reputational
function from Eq. (8.3) was used again. The impact of choosing different μi showed
similar behavior as of direction based opinions as shown in Fig. 8.5.

8.5.3 Rule Encoding

In addition to the uncertainty modeling, logic programming is used to represent the
given contextual rules as explained in Sect. 8.4.2. Encoded rules in form of Eq. (8.2)
are as follows:
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Fig. 8.5 Samples of reputational opinion according to distance and Eq. (8.3)

wRule1
witness(H1,H2,T1)

←
(

wHumanDetector
human(H1,T1)

∧ wHumanDetector
human(H2,T1)

)

⊗
(

wμdist (d)

witness(H1,H2,T1)
⊗ wreputμ(d)

μdist (d)

)
. (8.4)
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wRule2
witness(H1,H2,T1)

←
(

wHumanDetector
human(H1,T1)

∧ wHumanDetector
human(H2,T1)

)

⊗
(

wμdir (d)

witness(H1,H2,T1)
⊗ wreputμ(d)

μdir (d)

)
. (8.5)

wRule3
witness(H1,H2,T1)

←
(

wRule1
witness(H1,H2,T1)

∧ wRule2
witness(H1,H2,T1)

)
. (8.6)

wRule4
witness(H1,H2,Tn)←⊕n

i=1wRule3
witness(H1,H2,Ti )

. (8.7)

The first rule (8.4) starts considering the necessary condition, meaning that there
should be a distinct pair of two people. Therefore the conjunction operation ∧ on
two opinions [29] is used that is very similar to the operation P(A) · P(B) except
that in subjective logic the opinion can additionally represent ignorance. Then, for
the resulting set of frames the reputational opinion about the distance opinions is
calculated as described in Sect. 8.5.2. Each result is assigned to a new opinion with
the predicate of the appropriate arity and is assigned the name of agent with the
final belief values. In this case, the final opinion value represents that there is an
opinion about two persons being potential witnesses of each other from an agent
named Rule1. The second rule (8.5) is almost same as rule (8.4). The only different
part of this rule is that the reputational opinion is about direction. The third rule
(8.6) combines the evidences coming from rule (8.4) and (8.5). The conjunction
operator∧ is used to reflect that for reliable positive resulting opinions both evidences
should have appeared with a certain amount of belief. The last rule (8.7) is about
accumulating the belief over time using the consensus operator ⊕ that is defined as
follows:

Definition 8.6 (Consensus) [30] Let wA
x = (bA

x , d A
x , i A

x , a A
x ) and wB

x = (bB
x , d B

x ,

i B
x , aB

x ) be opinions respectively held by agents A and B about the same state x , and
let k = i A

x + i B
x − i A

x i B
x . When i A

x , i B
x → 0, the relative dogmatism between wA

x and
wB

x is defined by γ so that γ = i B
x / i A

x . Let wA,B
x = (bA,B

x , d A,B
x , i A,B

x , a A,B
x ) be the

opinion such that:

k 
= 0 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bA,B
x = (bA

x i B
x + bB

x i A
x )/k

d A,B
x = (d A

x i B
x + d B

x i A
x )/k

i A,B
x = (i A

x i B
x )/k

a A,B
x = a A

x i A
x +aB

x i A
x −(a A

x +aB
x )i A

x i B
x

i A
x +i B

x −2i A
x i B

x

k = 0 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bA,B
x = γ bA

x +bB
x

γ+1

d A,B
x = γ d A

x +d B
x

γ+1

i A,B
x = 0

a A,B
x = γ a A

x +aB
x

γ+1 .
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Fig. 8.6 Tree representation of rules

Then wA,B
x is called the consensus opinion between wA

x and wB
x , representing an

imaginary agent [A, B]’s opinion about x , as if that agent represented both A and B.
By using the symbol ⊕ to designate this operator, we define wA,B

x = wA
x ⊕ wB

x .

Figure 8.6 shows a graphical representation of the rules in a tree form.

8.5.4 Experimental Result

Using the rules described in Sect. 8.5.3, we calculated subjective opinions between
a person marked as suspect and other human instances over time. Figure 8.7 shows
a snapshot of the visualization in the prototype comprising a video player and an
opinion visualizer. While the video is being played the corresponding metadata is
transformed into the corresponding opinion representation. The translated opinions
are fed into the rule-engine which automatically evaluates the rules. The right part of
Fig. 8.7 shows the opinion about the proposition ‘human 5 is a witness for the sus-
pects marked red’ and its corresponding mapping to beta distribution. For verification
of these results, a questionnaire was prepared to collect scores about the witness-
ing chances for each of the ‘pairs’ in the scene (e.g. human1 and suspect, human2
and suspect , etc). Seven people from our lab took part in the questionnaire. Then
changing the uncertainty functions on uncertain rules, we tested the behavior of the
proposed approach to check whether it well models human intuition. Although there
can be 9 possible combinations of uncertainty functions (i.e. 3 distance functions
and 3 direction functions), to better contrast the impact of changing such uncertainty
functions, we have fixed the direction function to the type of μ3 defined in Fig. 8.4b
and tested with 3 different direction functions shown in Fig. 8.4a. Then the mean
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Fig. 8.7 Visualization of the experiment

Fig. 8.8 Experimental result

and standard deviation, min and max of the ‘human opinions’ were calculated and
compared to the computed results. According to [7], the following criteria should be
applied to the computed results.

(1) The opinion with the greatest probability expectation is the greatest opinion.
(2) The opinion with the least uncertainty is the greatest opinion.
(3) The opinion with the least relative atomicity is the greatest opinion.

In the described experiment, due to the small size of possible pairs, only the first
criterion was applied and the final expectation values of each opinion for candidate
pairs were plotted jointly with the questionnaire based result as shown in Fig. 8.8.
The final result turns out to be following the tendency of questionnaire based human
‘opinions’. The change of uncertainty function seems not introducing that critical
differences. However, there were more differences between the expected values,
when the final expectation values were low, for instance, though it was a slight
differences, μ3 tend to yield larger expectation value then μ2 and μ1. The differences
ware smaller when the final expectation values were getting higher. However, in any
cases, the order on the ranking of witnesses show the same results. Therefore, in
the sense of human like reasoning, it seems that the proposed approach well models
human intuition.
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Fig. 8.9 Scenario setting for case study 2

8.6 Case Study II

In this section, we further explorer the proposed case study scenario for more complex
contextual forensic reasoning. Especially, we will consider the situation that is needed
to be modeled in the sense of so-called default reasoning [2].

8.6.1 Scenario Setting for Case Study II

Consider a conceptual scenario that a security personnel wants to get suggestions of
most probable witnesses of a selected suspect in a scene. Given an assumption that
automatic vision analytics are running and extracting basic semantics, we will also
assume two virtual situations as shown in Fig. 8.9, where, witnesses are reasoned
according to the uncertain spatio-temporal rules as demonstrated in Sect. 8.5. In
all situation we will assume that ‘witness2’ has higher opinion then ‘witness1’. In
addition to this, we will assume optional cases that additional evidential cues are
detected. In Fig. 8.9a, ‘witness2’ is talking on the phone. In Fig. 8.9b, the optional
case is the detection of a license plate of the car seems to belong to the ‘witness1’
and ‘witness2’ comes with face detection.

8.6.2 Reasoning Examples

Given the scenario with optional cases, we will also assume that (1) people usually
do not recognize well when they are talking on the phone, (2) identifiable witness
is a good witness. (3) License plate is better identifiable source than face detection
because we can even fetch personal information of the owner easily. Therefore, under
optional assumption, for example, in Fig. 8.9a, ‘witness1’ should be better witness,
and in Fig. 8.9b, ‘witness1’ should be suggested as a better witness. This kind of non
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monotonic reasoning under inconsistent information is called default reasoning and
defined as follows:

Definition 8.7 (Default theory) [2] Let Δ = (D, W ) be a default theory, where W
is a set of logical formulae (rules and facts) also known as the definite rules and D
is a set of default rules of the form α:β

γ
, where α is known as the precondition, β is

known as the justification and γ is known as the conclusion.

Han et al. [6] showed that this aspect can be modeled using subjective logic as
well under the opinion assignment defined in Definition 8.3 in Sect. 8.4.2. Here,
it is important to note that unlike the case of uncertain rule modeling, the type
of opinion assignment to prioritize belong to Definition 8.3—2. and the default
inference scheme belongs to Definition 8.3—4. As shown in [6], we set T � (1, 0, 0)

(full truth), DT1 � (0.5, 0, 0.5) (weak default true), DT2 � (0.8, 0, 0.2) (strong
default true), F � (0, 1, 0) (full false), DF1 � (0, 0.5, 0.5) (weak default false),
DF2 � (0, 0.8.0.2) (strong default false), ∗ � (0.33, 0.33, 0, 34) (contradiction),
U � (0, 0, 1) (full uncertainty) and ⊥ � (0.5, 0.5, 0) (full contradiction). For the
rest of truth values we will use opinion triple representation (b,d,i). The default
inference scheme using subjective logic is as follows:

Definition 8.8 (Def ault in f erencesl ) [6] Given a query sentence q and given S
and S′ that are sets of sentences such that S |= q and S′ |= ¬q, then the default
inference is the truth value assignment closure clsldi (φ)(q) given by:

clsldi (φ)(q) =
⊕
S|=q

u �
⎡
⎣∏

p∈S

clsl(φ)(p)

⎤
⎦⊕¬

⊕
S′|=¬q

u �
⎡
⎣ ∏

p∈S′
clsl(φ)(p)

⎤
⎦ . (8.8)

Example 1 (Witness talking on the phone) Assume the following set of rules about
determining good witness including the uncertain spatio-temporal relation based wit-
ness reasoning rule described in Sect. 8.5.3. Then also assume the following opinion
assignment that witness2 (denoted as wit_2) has higher opinion being the witness
than witness1 (denoted as wit_1).

φRule

[
wRule4

witness(H1)
←⊕n

i=1wRule3
witness(H1,H2,Ti )

]
= DT1.

φRule
[¬wwitness(H1)← wtalking_on_phone(H1)

] = DT2.

φRuleEval

[
wRule4

witness(wit_1)

]
= (0.6, 0.15, 0.25).

φRuleEval

[
wRule4

witness(wit_2)

]
= (0.7, 0.10, 0.20).

Given two default true and default false rules and facts that can be seen as definite
true, the inference for reasoning better witness using default logic with subjective
logic is as follows.
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clsldi (φ)(wwitness(wit_1)) = [U � ((0.6, 0.15, 0.25) · DT1)].
= [U � (0.44, 0.15, 0.41)] = (0.44, 0.15, 0.41) ∼ (Expectation = 0.54).

clsldi (φ)(wwitness(wit_2)) = [U � ((0.7, 0.10, 0.20) · DT1)].
= [U � (0.50, 0.10, 0.40)] = (0.50, 0.10, 0.40) ∼ (Expectation = 0.60).

Above result shows that given the weak rules, ‘witness2’ is more probable witness
candidate than ‘witness1’. Then, let us consider the weak opinion assignment to the
additional contextual cue that witness2 is using the phone. This semantics can be
interpreted as ‘the witness seems to using a phone but not quite sure’.

φ f act [wtalking_on_phone(wit_2)] = (0.6, 0.15, 0.25).

Given the additional information, the inference on witness2 is being witness is as
follows.

clsldi (φ)(wwitness(wit_2))

= [U � ((0.7, 0.10, 0.20) · DT1)] ⊕ ¬[U � ((0.6, 0.15, 0.25) · DT2)]
= [U � (0.50, 0.10, 0.40)] ⊕ ¬[U � (0.59, 0.15, 0.26)]
= (0.50, 0.10, 0.40)⊕¬(0.59, 0.15, 0.26)

= (0.50, 0.10, 0.40)⊕ (0.15, 0.59, 0.26)

= (0.34, 0.47, 0.19) ∼ (Expectation = 0.39).

The resulting opinion (0.34, 0.47, 0.19) on witness2’s being a good witness now
weaker than (0.44, 0.15, 0.41) which is for the case of witness1’s being a good witness.
The expectation values also captures this aspect. Thus, this result shows that the
inference scheme well models human intuition.

Example 2 (Witness with face detection vs. license plate detection) Consider the
following set of rules about determining good witness and the following opinion
assignment to capture the scenario described in Sect. 8.6.1 and depicted in Fig. 8.9b.

φRule

[
wRule4

witness(H1)
←⊕n

i=1wRule3
witness(H1,H2,Ti )

]
= DT1.

φRule

[
wwitness(H1)← wRule4

witness(H1)
· whas FaceDetect I n f o(H1)

]
= DT1.

φRule

[
wwitness(H1)← wRule4

witness(H1)
· whasLicenseDetect I n f o(H1)

]
= DT2.

φRuleEval

[
wRule4

witness(wit_1)

]
= (0.6, 0.15, 0.25).

φRuleEval

[
wRule4

witness(wit_2)

]
= (0.7, 0.10, 0.20).

φ f act
[
whasLicenseDetect I n f o(wit_1)

] = (0.6, 0.15, 0.25).

φ f act
[
whas FaceDetect I n f o(wit_2)

] = (0.6, 0.15, 0.25).
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Given two default true and default false rules and facts that can be seen as definite
true, the inference for reasoning better witness using default logic with subjective
logic is as follows.

clsldi (φ)(wwitness(wit_1))

= [U � ((0.6, 0.15, 0.25) · DT1 · (0.6, 0.15, 0.25) · DT2)]
= [U � ((0.44, 0.15, 0.41) · (0.59, 0.15, 0.26))]
= (0.33, 0.28, 0.39) ∼ (Expectation = 0.36).

clsldi (φ)(wwitness(wit_2))

= [U � ((0.7, 0.10, 0.20) · DT1 · (0.6, 0.15, 0.25) · DT1)]
= [U � ((0.5, 0.1, 0.4) · (0.44, 0.15, 0.41))]
= (0.3, 0.24, 0.47) ∼ (Expectation = 0.33).

Above result shows that given the evidences, ‘witness2’ is slightly more probable
witness candidate than ‘witness1’ because license plate info is more informative
thereby strongly considered than face related information by the opinion assignment.
However, due to the opinion on the fact level is not certain, the values were not
strongly forced the belief but rather increased the uncertainty in the final opinion.
The expectation values also captures this aspect. Thus, this result shows that the
inference scheme well models human intuition.

8.7 Discussions and Conclusion

Intelligent forensic reasoning upon metadata acquired from automated vision ana-
lytic modules is an important aspect of surveillance systems with high usage poten-
tial. The knowledge expressive power of the reasoning framework and the ability of
uncertainty handling are critical issues in such systems. In this chapter, based on our
previous work on the use of logic programming with subjective logic, we extended
the framework so that it can also handle uncertain propositional rules. The approach
is mainly based on the fuzzy-like membership function and the reputational operation
on it. Although we still need to extend this concept to large scale data, we advocate
that this work showed the potential of the proposed approach. The main advantage
of the proposed approach is that it offers more choices to model complex contex-
tual human knowledge by enriching the expressive power of the framework. The
other advantage of the proposed approach is that the modeled uncertain rules can be
used with another principled reasoning scheme. In this chapter, especially, we have
demonstrated how the reasoning results from uncertain spatio-temporal rules could
be used with default reasoning. Another interesting property of the system is that,
unlike traditional probability based conditional reasoning, this approach allows for
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representing lack of information about a proposition. We could also roughly assign
our subjective priors with lack of information, and observations can also be repre-
sented with any degree of ignorance, therefore we believe this better reflects human
intuition and real world situations. Another beneficial property is the flexibility of
assigning opinions to formulae. Especially, rule can embed its own opinion calcu-
lation scheme thereby, allows for sophisticated propagation of opinions through the
inference pipeline. There are, however, still several open issues such as how to better
model the reputational function, how to automatically assign proper prior opinions
to rules, etc. Our future research will cover further extending and applying the shown
approach to more complicated scenarios using automatically generated large scale
data.
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