
Chapter 27
Prerequisite Genetic Traits for Metastasis

Dana Faingold, Dawn Russell-Hermanns and Silvin Bakalian

The genetic and epigenetic abnormalities in tumors influence the metastatic traits of
disseminated cells by activation of oncogenes and inactivation of tumor-suppressor
genes. Tumor-suppressor genes affect genome stability, cancer-cell survival and
growth while also being involved in the response and repair of DNA. They are a part
of the prerequisites for metastasis and determine initiation and continuous develop-
ment of the oncogenic process resulting in unrestricted proliferation and resistance
to cell death signals. Inactivation of tumor suppressor genes can occur through var-
ious mechanisms such as loss of heterozygosity and chromosomal damage as well
as by genetic mutations and epigenetic mechanisms such as promoter hypermethy-
lation (Nguyen and Massague 2007; Eccles 2005). The amplification and mutation
of oncogenes in primary tumors, together with the selective pressures of the tu-
mor microenvironment play a key role in the formation of metastasis (Bernards and
Weinberg 2002).

27.1 Tumor Suppressor Genes

27.1.1 Retinoblastoma Pathway

The p16Ink4a–CyclinD1-CDK4-RB pathway regulates the cell cycle at the G1/S
transition. Absent or mutated components of the RB pathway lead to the subse-
quent loss of the G1/S checkpoint in multiple cancers, thus promoting aberrant
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proliferation (Sherr and McCormick 2002). The unphosphorylated state of RB is
maintained by p16INK4a which competes with the activity of cyclin D- dependent
kinases (CDK), thus blocking the entry into S phase and the E2F (E2 transcription
factor) transcriptional program (Knudsen and Wang 2010). Mutations in this path-
way occur frequently in many cancers and the RB protein is functionally inhibited in
25 % of primary tumors. Once RB is hyperphosphorylated by the CyclinD1/CDK4
complex, it results in E2F-regulated gene expression, stimulating G1 to S transi-
tion. Persistent mitogenic stimulation could lead to overexpression of either CDK4
or Cyclin D1 resulting in inhibition of the RB pathway function by blocking the
growth-suppressing activity of p16INK4a (Ortega et al. 2002). Transcription of the
cyclin D1 gene, its synthesis and assembly with CDK4, is regulated by ras (reticular
activating system) and phosphatidylinositol 3-kinase (PI3-K) signaling (Kim and
Diehl 2009).

Therapeutic Options Several therapeutic strategies are employed against defects
in the RB-pathway and encouraging results are emerging in preclinical studies in-
ducing the expression of p16Ink4a by means of adenoviral vectors containing human
p16 cDNA (Craig et al. 1998). Additionally, positive results for reactivation of the
RB-pathway are reported in studies using inhibitors of DNA methylation or his-
tone deacetylases, which lead to the activation of epigenetically silenced p16Ink4a.
The authors reported that DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine
(5–7aza-CdR) and the histone deacetylase inhibitor 4-phenylbutyric acid (PBA)
caused cell cycle arrest, apoptosis and induced p16 (CDKN2A/INK4) and p21
(CIP1/SDI1/WAF1) in bladder carcinoma cells (Egger et al. 2007). Together, these
studies suggest that RB-pathway activation could be used therapeutically.

Inhibition of Cdk4/6 kinase activity is another therapeutic option which was
evaluated with second-generation CDK4/6 inhibitors in pre-clinical studies. Oral
administration of these compounds induced tumour regression in xenograft animal
models of human colon carcinoma causing elimination of phospho-RB. This thera-
peutic strategy of activating RB is currently under investigation in phase I-II trials
(Knudsen and Wang 2010; Fry et al. 2004).

Flavopiridol is a semisynthetic flavone CDK inhibitor that interferes with CDK9-
cyclin complex binding resulting in apoptosis. Phase I studies have revealed favorable
responses in metastatic breast cancer carcinoma in combination with doxetacel
(Freyer et al. 2003). Flavopiridol was also shown to have a synergistic effect with Her-
ceptin, a drug active against Her2/neu (human epidermal growth factor receptor 2)
in breast cancer cell lines (Nahta et al. 2002).

The cross talk between p53 status and levels of E2F activity influences the overall
response to therapy. Therapeutic approaches that target p53 include stimulation of
E2F-activity and restoration of the pro-apoptotic activity of p53 (Polager and Gins-
berg 2009). It has been previously shown that RB-deficient tumor lines or those
exhibiting deregulated E2F activity can be good targets for compounds that have the
capacity to activate p53 (Kitagawa et al. 2008). Gene therapy using virus-activated
E2F-regulated gene expression (pESM6), was shown to induce tumor reduction in
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preclinical studies. These studies affirm the potential of pESM6 as a viable agent for
gene therapy of DNA tumor virus-associated cancers (Lim et al. 2006). Also, gene
transfer of a truncated variant of the retinoblastoma gene, (RB94), has been proven
to inhibit proliferation of several human tumor cell types including pancreatic cancer
(Roig et al. 2004).

Key Points Therapeutic strategies for reactivation of the retinoblastoma pathway

• Retinoblastoma gene transfer therapy
• Induction of the expression and activation of epigenetically silenced p16Ink4a
• Inhibition of Cdk4/6 kinase activity
• Stimulation of E2F-dependent apoptosis

27.1.2 The p53 Tumor Suppressor Gene

The p53 tumor suppressor gene maintains genomic integrity. Its transcription factor
is induced in response to DNA damage, hypoxia, and oncogene activation. P53
regulates a number of downstream genes including p21, MDM2 (Mouse Double
Minute 2), GADD45 (Growth Arrest and DNA Damage), BAX (Bcl2- associated
X protein), as well as cell cycle (G1/S) and G2/M DNA check-points. This allows
for cellular repair mechanisms or initiation of apoptosis through both extrinsic and
intrinsic pathways (Sherr and McCormick 2002). The p53 tumor suppressor gene is
the most frequently mutated gene in human tumors resulting in loss of its biological
responses and inhibition of apoptotic mechanisms.

Therapeutic options Several strategies for restoration of wild-type p53 function and
induction of apoptosis in tumors have been explored. These have included p53 gene–
replacement therapy in which the E1 adenoviral region is replaced with the cDNA of
the p53 gene, driven by a cytomegalovirus promoter (Ad-p53, ADVEXIN [Introgen
Therapeutics, Inc.]) (Invitrogen 2007). Preclinical studies have shown encouraging
results for this treatment modality with regard to antitumor activity and feasibility of
gene therapy (Bianco et al. 2007). Evidence of clinical activity was also observed in
clinical trials, where re-expression of wild type p53 by viral-mediated gene transfer
induced tumor regression and stabilization in patients with NSCLC (non-small-cell
lung cancer) and squamous cell carcinoma of the head and neck (HNCC) (Vecil
and Lang 2003; Wiman 2007; Roth 1996; Nemunaitis et al. 2000; Clayman et al.
1999). However, no significant benefit was observed in patients with primary stage
III ovarian cancer when treated with intraperitoneal delivery of a replication-deficient
adenoviral vector expressing wild-type p53 (Zeimet and Marth 2003).

A different strategy employs a genetically modified adenovirus, (Onyx-015) which
eliminates p53 by producing the early region protein E1B 55K. This protein binds
p53 and targets it for destruction by inducing apoptosis in the cells expressing mutant
p53. Evidence of clinical activity was reported after intra-tumor injection in clinical
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trials in combination with chemotherapeutic agents in head and neck cancer as well
as in pancreatic adenocarcinoma (Khuri et al. 2000; Hecht et al. 2003). Adenoviral
vascular delivery for systemic metastases is also currently under investigation. Posi-
tive results have also emerged from additional therapeutic modalities involving small
molecule therapy that functions through reactivation of mutant p53. In preclinical
studies, p53 C-terminus derived semisynthetic peptides were shown to induce p53-
dependent apoptosis in tumor cells (Haupt and Haupt 2004). Other methods exploit
the p53- MDM2-mediated inhibition with drugs that interrupt the p53–MDM 2 inter-
action. For example, a synthetic class of cis-imidazoline analogs (Nutlins) interferes
with the p53-MDM2 complex inhibiting tumor cell cycle and triggering apoptosis
(Vassilev et al. 2004). Anti-sense mRNA therapy directed towards MDM2 was shown
to induce down regulation of the MDM2 and p53-mediated anti proliferative effects
in human cancers cells, in vitro and in vivo (Wang et al. 2003). Other strategies
include Hsp90 (heat shock protein-90) inhibitors where drug exposure was shown
to induce destabilization of the mutant p53 protein in breast and prostate tumor cell
lines (Blagosklonny et al. 1995).

Key Points Therapeutic strategies involving tumor suppressor p53

• Adenovirus-mediated p53 gene therapy
• Introduction of wild-type p53 gene into tumor cells using viral vectors
• Interference with p53–MDM2 and down-regulation of MDM2 expression
• Targeting mutant p53 (Hsp90 inhibitors)
• Adenovirus-mediated inactivation of mutant p53
• Restoration of inactive or suppressed wild type p53
• Reactivation of mutant p53 with small molecule therapy

27.1.3 BRCA1 and BRCA2 Tumor Suppressor Genes

The tumor suppressor genes BRCA1 (Breast Cancer 1) and BRCA2 (Breast Cancer 2)
are involved in DNA repair and have been identified in breast cancer and ovarian
cancer. In 80 % of the cases mutations in the BRCA1 and BRCA2 genes involve
abnormal truncation of the BRCA protein (Sobol et al. 1996; Welcsh and King
2001). Individuals with mutations in these genes have a 15–20 fold increase in risk
of breast cancer compared with the general population (Wooster et al. 1995). BRCA2
mutation carriers are at an increased risk of developing breast cancer (in both males
and females), as well as melanoma, ovarian, prostatic, pancreatic, and carcinoma of
the gall bladder. BRCA1 gene replacement therapies have shown anti-tumor responses
in preclinical studies. Additionally, responses were seen in Phase I trials of patients
with extensive metastatic breast cancer when treated with retroviral LXSN-BRCA1sv
gene therapy. However, a phase II trial in ovarian patients showed no response, and
no vector stability in response to BRCA1gene therapy (Tait et al. 1999)
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27.1.4 PTEN Tumor Suppressor Gene

PTEN (phosphatase and tensin homolog) functions as a tumor suppressor through
its lipid phosphatase activity negatively influencing Akt through the dephosphoryla-
tion of phosphatidylinositol-3,4,5-trisphosphate (PIP3). Loss of PTEN is a common
event in cancer and occurs through mutation, deletion, or epigenetic silencing induc-
ing PI3K/Akt pathway hyperactivation. PTEN is mutated or deleted in about 30–40 %
of tumors including brain, bladder, breast, prostate, and endometrial cancers. It cor-
relates with poor prognosis and metastatic disease. Gene therapy with wild-type
PTEN has been attempted in preclinical studies, however, clinical-translational ther-
apeutic strategies focus in targeting PI3K-Akt-mTOR pathway in tumors with PTEN
functional loss (Zhang and Yu 2010).

27.1.5 Other Tumor Suppressor Genes

The FHIT (fragile histidine triad) gene located on 3p14.2 is homozygously deleted
and targeted by genomic alterations leading to a decrease or loss of gene and pro-
tein expression in many cancers (Joannes et al. 2009). Lack of FHIT expression
correlates with tumor progression to metastasis as FHIT controls the invasive phe-
notype of lung tumor cells by regulating the expression of genes associated with
epithelial–mesenchymal transition (Joannes et al. 2009). FHIT gene, re-expression
by a recombinant adenoviral vector, resulted in apoptosis and reduced tumorigenicity
in lung cancer (Ji et al. 1999). Additionally, gene therapy involving administration
of the FUS1 (cell fusion 1) tumor suppressor gene might have applicability in lung
cancer (Ji and Roth 2008). Intravenous administration of nanoparticle encapsulated
FUS1 expression plasmid had antitumor effects in human lung cancer xenograft
models (Deng et al. 2008).This treatment was well tolerated in a Phase I clinical
trial of FUS1-nanoparticles in patients with chemotherapy refractory stage IV lung
cancer (Ji and Roth 2008; Lu et al. 2009).

27.1.6 Metastatic Suppressor Genes

Metastatic suppressor genes are differentially expressed between metastatic and non-
metastatic cells and interfere with several signaling pathways involved in metastatic
colonization. Examples include nm23 (non-metastatic gene 23) modulation of
the ERK (extracellular signal-regulated kinase) pathway, BRMS1 (Breast can-
cer metastasis suppressor 1) alteration of phosphoinositide signaling, and MKK4
(mitogen-activated protein kinase kinase 4) activation of JNK (c-Jun NH(2)-terminal
protein kinase) and p38 stress pathways (Rinker-Schaeffer et al. 2006). Silence inac-
tivation or loss of heterozygozity of metastatic suppressor genes and low expression
in tumors were associated with a higher risk of metastatic disease (Martins et al. 2008;
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Bakalian et al. 2007). Therefore, re-expression of metastatic suppressor genes may
have therapeutic effects on micrometastatic tumor cells (Steeg 2004). Several com-
pounds that can elevate nm23 have been identified including indomethacin, gamma
Linolenic Acid, trichostatin A, 5-aza-deoxycytidine, and medroxyprogesterone ac-
etate. Results from in vivo models of lung metastasis demonstrated a reduction of
the metastatic potential with administration of high doses of medroxyprogesterone
acetate (Marshall et al. 2009). This therapeutic strategy is currently evaluated in a
phase II clinical study investigating the effect of nm23 re-expression in breast cancer
cells and subsequent metastatic colonization (Steeg et al. 2008).

27.2 Prerequisites for Metastasis: Oncogenes

Genetic instability in primary tumors increases the chance of further oncogenic mu-
tational events and results in the induction of unrestricted proliferative capabilities
and resistance to apoptotic signals. The amplification and mutation of oncogenes in
primary tumors, together with the selective pressures of the tumor microenvironment
play a key role in the formation of metastasis. This suggests that metastatic potential
might be pre-programmed in tumors, whereas a selective population of cells might
require additional alterations in tumor suppressor genes and oncogenes to initiate the
metastatic cascade (Bernards and Weinberg 2002).

27.2.1 Myc

Oncogene amplifications affect distinct genetic programs leading to cell cycle pro-
gression, invasiveness and metastasis, for example downstream EGFR (epithelial
growth factor receptor), C-ERbB2, Myc (myelocytomatosis viral oncogene) and ras
signaling (Nguyen and Massague 2007). The Myc proto-oncogene family encodes
nuclear products which are deregulated as a result of point mutations, gene amplifi-
cation and translocation. Myc family genes are activated in a wide variety of human
hematological malignancies and solid tumors as a consequence of activation of one or
more signalling pathways. These include RAS-RAF-MAPK, PI3K, WNT- β catenin
pathways and STAT (signal transducer and activator of transcription) pathways (Pe-
lengaris et al. 2002). Myc is a key regulator for many biological activities including
cell-cycle progression, apoptosis, tumor growth, angiogenesis, cell adhesion and
motility. It is associated with poor prognosis and metastasis (Nesbit et al. 1999).

Strategies currently employed for targeting Myc include antisense oligonu-
cleotides resulting in tumor cell growth arrest and induction of apoptosis in a variety
of tumor cell lines. Experiments in xenograft models of breast carcinoma, melanoma
and neuroblastoma resulted in prevention of tumor formation (Vita and Henriksson
2006).



27 Prerequisite Genetic Traits for Metastasis 409

Phosphorodiamidate morpholino oligomers (PMOs) are DNA antisense oligonu-
cleotides that inhibit Myc gene expression by preventing its mRNA translation. This
agents inhibited tumor growth and induced apoptosis in prostate cancer xenografts.
Further clinical studies evaluated them in adenocarcinoma of prostate and breast
tumor tissues (Devi et al. 2005) and assessed its safety in human trials (Iversen et al.
2003).

Other agents which interfere with Myc promoter and transcription are DNA
analogs. These compounds specifically hybridize to DNA and/or RNA in a com-
plementary manner thus inhibiting transcription and translation of the Myc target
gene (Pession et al. 2004).

Cationic porphyrin (TMPyP4), which inhibits Myc transcription by blocking G
quadruplexes, inhibited the in vitro transcription of Myc and decreased tumor growth
rates in xenograft models (Grand et al. 2002)

The regulatory effect on gene transcription of Myc is dependent on dimerization
and complex formation with a b-HLH-LZ protein Max. Targeting Myc–Max complex
with small molecules is another therapeutic option (Berg et al. 2002). Small inter-
fering RNA (siRNA) against Myc resulted in apoptotic effects and tumor growth
reduction in xenograft models (Shen et al. 2005). Therefore targeting expression or
function of Myc shows interesting promise and development of agents with improved
delivery and efficacy is further anticipated in clinical settings (Ponzielli et al. 2005).

27.2.2 HER-2

The human epidermal growth factor receptor (HER, ERB) family consists of EGFR
(HER1 or ERBB1), HER2 (EGFR2 or ERBB2/NEU), HER3 (EGFR3 or ERBB3),
and HER4 (EGFR4 or ERBB4) (Rowinsky 2004). The HER-2 (human epithelial
receptor 2, also known as HER-2/neu or ERB-2) gene is located on chromosome 17q
and encodes a 185-kDa trans-membrane receptor tyrosine kinase with a key role in
normal cell growth and differentiation. The amplification and over-expression of the
HER-2 gene results in malignant transformation of cells and affects up to 30 % of
patients with metastatic breast cancer correlating with increased metastatic potential
in ovarian, breast cancer and in NSCLC (Yarden and Sliwkowski 2001; Slamon et al.
1989).

Trastuzumab (Herceptin�; Genentech, Inc.; South San Francisco, CA), is the
first approved humanized monoclonal antibody designed to block the receptor ex-
tracellular domain of human epidermal growth factor receptor-2 (HER2) that is over
expressed in metastatic breast cancer and affects intracellular signaling and tumor cell
growth. Trastuzumab therapy alone or in combination with taxanes chemotherapy
provided the proof of principle that targeting HER-2 receptors results in cytotoxic
and cytostatic effects. This combination demonstrated clinical benefit in terms of
response rate and survival for patients with HER-2-positive disease and represents
the first-line therapy for these patients (Cobleigh et al. 1999; Slamon et al. 2001;
Vogel et al. 2002). Other combinations of trastuzumab with chemotherapy are also
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Table 27.1 Monoclonal antibody therapies targeting EGFR (ERB-1 and ERB-2)

Trastuzumab (Herceptin, Genentech Inc) Breast cancer
Cetuximab (Erbitux, ImClone Systems) Colorectal, NSCLC, pancreatic, breast cancer and

HNSCC
Panitumumab (Vectibix, Amgen) Colorectal cancer
ABX-EGF (Amgen) NSCLC, colorectal, prostate, renal, HNSCC
Matuzumab (EMD 72000, Pharma) NSCLC, colorectal, ovarian cancer, HNSCC, pancreas
Pertuzumab (Omnitarg;) Prostate, ovarian, breast and NSCLC
Nimotuzumab (hR3) Squamous cell carcinoma of head and neck

currently under investigation. Clinical data indicate that the therapy with trastuzumab
may induce a decrease in ejection fraction, cardiac dysfunction in about 1–4 % of pa-
tients treated with trastuzumab and this side effect may be augmented in combination
with chemotherapy (Perez and Rodeheffer 2004).

Clinical trials evaluating the response to trastuzumab and other cytotoxic agents
such as vinorelbine (Burstein et al. 2003), gemcitabine (Loesch et al. 2008), and
capecitabine (Tevaarwerk and Kolesar 2009) have shown positive response rates
and increased overall survival times in patients with metastatic breast cancer. Tane-
spimycin a new 17-AAG analog has demonstrated promising antitumor activity
and tolerability in a Phase II clinical trial in patients with HER 2-neu positive
metastatic breast cancer. These results were reported for a combination of 17-AAG
with trastuzumab in patients previously nonresponsive to Herceptin alone (Modi
et al. 2007).

Other humanized anti-EGFR (ERB-1 and ERB-2) monoclonal antibodies cetux-
imab and panitumumab bind to the extracellular domain of EGFR, thus leading to
inhibition of its downstream signaling. These agents are currently being investigated
in phase II and III clinical trials in NSCLC (Jatoi et al. 2010). Cetuximab and panitu-
mumab have shown evidence of activity in combination with cytotoxic chemotherapy
and radiotherapy in the treatment of metastatic colorectal cancer or as monotherapy
for the treatment of metastatic head and neck squamous cell carcinoma (HNSCC). It is
indicated for the treatment of KRAS wild-type metastatic colorectal cancer in combi-
nation with chemotherapy or as a single agent in patients refractory to chemotherapy
(Cutsem et al. 2009; Bokemeyer et al. 2009). The presence of activating K-ras
mutations has been identified as a potent predictor of resistance to cetuximab or
panitumumab therapy (Tol and Punt 2010; Keating 2010). Cetuximab monotherapy
is currently the only approved molecular target therapy in patients with recurrent or
metastatic HNSCC, and has been shown as a radiation-sensitizing agent in primary ra-
diation therapy of this disease (Jackisch 2006; Cripps et al. 2010). Other monoclonal
antibodies targeting HER-2 include humanized antibodies matuzumab (EMD72000),
nimotuzumab (hR3), and pertuzumab (Genentech),which are currently in preclin-
ical or phase I and II clinical studies in low HER-2-expressing breast cancers,
NSCLC, colorectal, ovarian cancer, pancreas, prostate and ovarian cancer (Bianco
et al. 2007). Examples of monoclonal antibody agents are shown in Table 27.1.

The HER, ERB family of trans-membrane receptors forms dimers upon ligand
binding, resulting in activation of the intracellular tyrosine kinase domain, and
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Table 27.2 EGFR tyrosine kinase inhibitors that are currently under investigation for various
malignancies

Inhibitor Specificity Selected tumor types

Gefitinib (Iressa®;
AstraZeneca)

ErbB-1 tyrosine kinase
inhibitor

Metastatic NSCLC, head and neck squamous
cell carcinoma, breast, ovarian, prostate,
glioma, pancreatic, colorectal cancer

Erlotinib (TarcevaTM;
Genentech)

ErbB-1 tyrosine kinase
inhibitor

NSCLC, metastatic pancreatic cancer,
HNSCC, breast, ovarian, prostate,
colorectal, glioma

Lapatinib
(GlaxoSmithKline)

Dual effect ErbB-1 and
ErbB-2

Colorectal cancer and HNSCC

triggering of the downstream effector pathways involved in cellular proliferation,
angiogenesis, and metastasis. Mutations in the EGFR tyrosine kinase receptor fam-
ily of receptors have been associated with poor prognosis in breast cancer, ovarian
and NSCLC (Paez et al. 2004; Lassus et al. 2006; Generali et al. 2007). Tyrosine ki-
nase inhibitors bind to the intracellular ATP-binding site on the receptor and inhibit
cell proliferation by blocking intracellular signals that stimulate gene expression.
The mechanisms of action include inhibition of cancer cell proliferation via G0/G1

cell cycle arrest, anti-angiogenic effects and inhibition of invasion and metastasis
(Olayioye et al. 2000). These agents are reported to be able to cross into the CNS
and have excellent oral bioavailability (Roy and Perez 2009; Gril et al. 2008).

Novel treatment regimens under investigation for patients with advanced breast
cancer and NSCLC include HER tyrosine kinase inhibitors, gefitinib (Iressa®; As-
traZeneca Pharmaceuticals) and erlotinib, (TarcevaTM; Genentech) which are specific
for EGFR and lapatinib (Tykerb, GlaxoSmithKline) a dual EGFR and HER-2 in-
hibitor (Table 27.2). In a phase III clinical trial that led to FDA approval for erlotinib,
731 patients with NSCLC previously treated with one or two chemotherapy regimens
were randomized to receive erlotinib or placebo. Erlotinib treatment was shown to
be superior to placebo in survival, quality of life, and related symptoms in advanced
and metastatic NSCLC patients (Shepherd et al. 2005). However, the combination of
erlotinb with first-line chemotherapy such as carboplatin and paclitaxel has failed to
show additional benefit when compared with chemotherapy alone (Herbst et al. 2005;
Gridelli et al. 2007). Also, the results of a phase III clinical study with combination
therapy between erlotinib and gemcitabine in pancreatic cancer patients showed a
modest improvement in the median overall survival (Moore et al. 2007).

Small molecule therapy with lapatinib, a dual oral inhibitor for EGFR and HER2
showed antitumor activity in preclinical studies (Rusnak et al. 2007). Lapatinib com-
bined with capecitabine (Xeloda; Roche) demonstrated significant improvements in
the time to progression and response rate when compared with capecitabine alone
in breast cancer patients and this combination is currently approved for treatment
of HER-2-overexpressing chemorefractory breast cancer patients (Tevaarwerk and
Kolesar 2009; Jackisch 2006; Higa and Abraham 2007). Lapatinib was proven to
have manageable side effects including diarrhea and skin rash.

A phase III, randomized, open-label study comparing the efficacy of gefitinib for
first line therapy with carboplatin–paclitaxel demonstrated an increase in objective
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response rates, significantly longer progression-free survival times and improved
quality of life among EGFR mutation–positive patients who received gefitinib alone
(Jiang 2009). Positive results are also emerging from other phase III clinical trials that
investigated the clinical efficacy of gefitinib as monotherapy and in combination with
chemotherapy for the treatment of NSCLC. These trials have revealed the comparable
efficacy of gefitinib compared with docetaxel, (Douillard et al. 2010; Kim et al. 2008).

HER-2 inhibitors have been proven in clinical trials as beneficial therapeutic
strategies for metastatic disease. Insights into future development of drugs that target
this biochemical pathway will determine optimal sequence of administration as well
as markers for the group of patients most likely to respond.

27.3 Growth Factor Receptors and Their Effector Pathways

Identification of oncogenic kinases has paved the way for further development of
anticancer agents. Specifically, inhibitors of receptor tyrosine kinases (RTKs), such
as BCR-ABL, c-KIT, PDGFR, EGFR, IGF1R, Met and Src, may have a role in the
treatment of cancer.

27.3.1 KIT

KIT (c-KIT receptor) gene encodes a trans-membrane receptor tyrosine kinase which
activates downstream signaling pathways involved in cellular proliferation and sur-
vival. Mutation and activation of KIT oncogene have been described in a variety
of malignancies, such as gastrointestinal stromal tumors (GIST), acute myeloge-
nous leukemia (AML) and result in aberrant signaling, increased proliferation and
antiapoptotic effects. Imatinib (imatinib mesylate, Gleevec) targets the c-KIT tyro-
sine kinase, the Bcr–Abl tyrosine kinase and PDGFR (platelet-derived growth factor
receptor) (Druker 2008). Clinical studies in patients with advanced GIST, where mu-
tations in KIT have been reported in 75–80 % of tumors, demonstrated the efficacy
and safety of imatinib mesylate treatment, leading to its approval for targeted ther-
apy (Demetri et al. 2002). However, phase II clinical studies of imatinib mesylate in
patients with metastatic melanoma and an activating KIT mutation, showed insuffi-
cient therapeutic effect. (Wyman et al. 2006). Also, although the drug was generally
well tolerated, it had minimal activity in recurrent or persistent uterine carcinoma
(Huh et al. 2010), recurrent ovarian cancer (Alberts et al. 2007) or primary peritoneal
carcinoma (Schilder et al. 2008).

Other small molecule tyrosine kinase inhibitors that affect c-KIT are in various
stages of clinical development. Examples include sorafenib, and sunitinib which have
potent KIT inhibitory effect while also inhibiting other tyrosine kinases involved
in oncogenic growth and progression, such as vascular endothelial growth factor
receptors (VEGFR 1, 2, and 3), and PDGFR. Sunitinib was FDA approved for
second-line therapy in GIST and RCC (renal cell carcinoma) (Faivre et al. 2007)
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whereas Sorafenib demonstrated potent effects in RCC and hepatocellular carcinoma
(HCC) (Hahn and Stadler 2006).

Recently, a small-molecule multikinase inhibitor Dasatinib, (BMS 354825), an
orally available therapeutic agent was shown to inhibit Bcr-Abl and Src-family
kinases, but also c-KITand PDGFR. This drug demonstrated potent effects and
was approved for the treatment of patients with Bcr-Abl-positive chronic myeloid
leukemia (CML) as well as acute lymphoblastic leukemia (ALL) resistant or in-
tolerant to imatinib. Given its activity against c-KIT, PDGFR and Src kinases, this
drug was evaluated and demonstrated favorable effects on several human solid tumor
lines (González et al. 2006; Buettner et al. 2008; Coluccia et al. 2006). It is currently
being investigated in clinical trials in patients with metastatic breast cancer to the
bone (Rose and Siegel 2010) and in patients with metastatic prostate cancer (Yu et al.
2009).

27.3.2 Insulin-Like Growth Factor

The insulin-like growth factor (IGF) signaling axis is a prerequisite for oncogenic
transformation and mediates tumor growth in a variety of human malignancies
through its effects on proliferation and anti-apoptosis. The biological actions of the
insulin-like growth factors, IGFI and IGFII, are mediated by activation of the IGFI
receptor (IGFIR), a tyrosine kinase trans-membrane linked to the RAS-RAF-MAPK
and PI3K-PKB/AKT signal transduction cascades. The IGF1R is over-expressed
by tumors such as melanomas, colon cancer, pancreatic, prostate and renal cancer
(Chitnis et al. 2008). This occurs as a result of loss-of-function and mutation of tumor
suppressors such as wild-type p53, BRCA1 and VHL (von Hippel Lindau) resulting
in transcriptional deregulation of the IGFIR gene (Werner and Roberts 2003). Stimu-
lation of IGF1R-pathway results in activation of the RAS/RAF/MAPK pathway and
induces differentiation and survival signals leading to tumor proliferation (Riede-
mann and Macaulay 2006). Anti-apoptotic effects are mediated through interaction
of the IGF-1R with one of its major substrates, insulin receptor substrate 1 (IRS-1)
which activates the PI3K-AKT pathway (Kulik et al. 1997).

IGF1R activation is linked to cancer progression and metastasis through multiple
signaling intermediates. IGF1R-mediated signaling enhances ß-catenin transcrip-
tional activity and interferes with E-cadherin expression, actin polymerization and
focal adhesion complex formation, thus inducing loss of cellular adhesion (Morali
et al. 2001; Playford et al. 2000). Another possible way in which IGF1 pathway
induces the metastatic phenotype is interaction with integrin-mediated signaling
pathways. These include αvβ3 (Shen et al. 2006) and IGF-induced secretion of ma-
trix metalloproteinases (MMPs) as well as regulation of the urokinase plasminogen
activator/plasmin (uPA) system of proteolysis resulting in degradation of the extracel-
lular matrix (ECM) (Bahr and Groner 2005). These mechanisms were confirmed by
several models which demonstrated that IGF1R over-expression confers anchorage-
independent growth and promotes an invasive, metastatic phenotype (All-Ericsson
et al. 2002; Economou et al. 2008; Lopez and Hanahan 2002; Chernicky et al. 2000).
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Table 27.3 Examples of IGF1R tyrosine kinase inhibitors that are currently under investigation

Small molecule inhibitor Specificity Selected tumor types

OSI-906 (OSI Pharmaceuticals) IGF1R Phase I advanced solid tumors
IR Phase III Adrenocortical, Phase I

ovarian
Insm-18 (NDGA) Insmed IGF1R Phase I advanced solid tumors

HER2-Neu
NVP-AEW54 1(Novartis) IGF1R Preclinical
NVP-ADW742 IGF1R Preclinical
BMS-536924 (Bristol-Myers-Squibb) IGF1R Phase I

IR
AG1024 (Calbiochem-EMD

Biosciences)
IGF1R Preclinical

IR
Picropodophyllin PPP (Karolinska

Institute/Biovitrum)
Uveal melanoma

PQIP (OSI Pharmaceuticals) IGF1R
XL 228 IGF1R Phase I study of patients with solid

malignancies
SRC

Altering IGF1R function might inhibit tumor cell growth and also has effects
on anchorage-independent growth, survival, migration, invasion and colonization of
tumor cells. Different strategies in blocking the IGF-1R signaling pathway include
small molecule inhibitors, blocking antibodies, antisense oligonucleotides and plas-
mids, antisense and siRNA. In preclinical models as well as in early phase clinical
trials down-regulation of IGF-1R revealed favorable results (Chitnis et al. 2008; Bahr
and Groner 2005; Li et al. 2009).

A. IGF1R tyrosine kinase inhibitors The development of tyrosine kinase inhibitors
downstream of the IGFI receptor has led to the development of compounds with
a high degree of selectivity for IGF1R (Table 27.3). However, as there is a high
degree of sequence homology between the insulin receptor (IR) and IGF1R, this
type of inhibition could potentially result in metabolic changes (Pollak et al. 2004).
Examples of small molecules that compete for the ATP binding pocket of IGF1R are
NVP-ADW742 and NVP-AEW54 1(Novartis). Preclinical data for these compounds
reported anti-proliferative activity in cancer cells by interfering with cell cycle pro-
gression (Martins et al. 2006) and anti-tumor effects in multiple myeloma xenografts
(Mitsiades et al. 2004) and fibrosarcoma xenografts (Garcia-Echeverria et al. 2004).

OSI-906 (OSI pharmaceutical) is a new small molecule, dual kinase inhibitor of
both IGF-1R and IR. Data from a phase I clinical trial in patients with advanced solid
tumors indicated that OSI-906 was well-tolerated and showed that at a low dosing
schedule retained strong anti-tumor activity, with reduced incidence of IR-mediated
side effects (Macaulay et al. 2010). This drug is currently evaluated in a Phase III
clinical trial in adrenocortical carcinoma and in a Phase I/II clinical trial in ovarian
cancer 1.

1 NIH’s ClinicalTrials.gov. Available from (http://www.clinicaltrials.gov/) and ClinicalTrialsFeeds.
org (http://www.clinicaltrialsfeeds.org/) web sites.
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Insm-18 (NDGA) (Nordihydroguaiaretic Acid) (Insmed), is an orally available
small molecule IGF-1 tyrosine kinase inhibitor that has demonstrated anti-tumor
activity in preclinical studies of breast, lung, pancreatic and prostate tumors (Chitnis
et al. 2008; Hewish et al. 2009). This agent is currently evaluated in phase I clinical
studies with non-metastatic recurrent prostate cancer (Harzstark et al. 2007).

Another small-molecule inhibitor, BMS-536924, (Bristol-Myers-Squibb) had an
effect on insulin receptor kinase activity and reduced tumor cell proliferation of
breast cancer cell lines in vitro (Litzenburger et al. 2009) and was also effective in
reducing tumor xenograft size in vivo (Haluska et al. 2006)

Tyrphostin (AG1024), a substrate competitive, specific inhibitor of IGF-1R was
proven to inhibit tumor cell growth in prostate, breast cancer and melanoma cell lines
(Hewish et al. 2009).

Cyclolignans are selective inhibitors of tyrosine phosphorylation of the IGF-1R.
Xenograft data has shown efficacy for one of these compounds, picropodophyllin
(PPP), in Ewing’s sarcoma cells, melanoma cells, and prostate carcinoma cells
(Girnita et al. 2004).

PQIP (OSI pharmaceutical) is a 1,3-disubstituted-8-amino-imidazopyrazine deri-
vative inhibitor of IGF-1R kinase. It has recently been reported to be particularly
effective in breast cancer (Zeng et al. 2009), pancreatic cancer, and ovarian cell lines
as well as in HNSCC and NSCLC. In xenograft models, this agent inhibited IGF-1R
dependent tumor growth in colorectal cancer which correlated with the degree and
duration of inhibition of IGF-IR phosphorylation (Hewish et al. 2009; Ji et al. 2007).

B. Monoclonal Antibodies IGF1R neutralizing monoclonal antibodies block the
receptor–ligand interactions subsequently resulting in receptor internalization and
degradation blocking intracellular signaling. The antibody-induced IGF1R down-
regulation is selective against the IGF1R without interfering with IR and possibly
induces less metabolic toxicity than that seen with the IGF1R small molecule
inhibitors (Gualberto and Pollak 2009).

IMC-A12 (cixutumumab), Imclone, has the ability to induce IGF1R down-
regulation and has shown promising activity in human tumor xenograft models of
breast, lung, colon, and pancreatic cancers (Rowinsky et al. 2007). This agent was
well tolerated evidence of stable disease were reported in a phase I clinical trial in
patients with advanced solid tumors (Higano et al. 2007; Rothenberg et al. 2007). A
similar study combining an IMC-A12 and a mTOR inhibitor (temsirolimus) in pa-
tients with solid tumors or lymphoma reported that the combination is well tolerated
and demonstrated prolonged stable disease in two patients with metastatic prostate
cancer and breast cancer (Naing et al. 2009). IMC-A12 is currently evaluated in
patients with prostate cancer, metastatic colorectal cancer, Ewing’s sarcoma and in
a pediatric population with refractory solid tumors (Atzori et al. 2009).

CP-751871 (figitumumab, Pfizer) a fully human IgG2 monoclonal antibody, that
blocks IGFI binding, and prevents activation of IGF1 causing down-regulation of
IGF1R in vitro and in tumor xenografts of breast cancer, colon cancer, and multiple
myeloma (Cohen et al. 2005). Phase I studies have suggested a favorable toxicity pro-
file and signs of disease stabilization in patients with advanced solid tumors (Molife
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et al. 2010). Clinical trials are ongoing and include prostate, breast, colorectal and
melanoma patients. Preliminary data from a Phase II clinical trial in NSCLC evalu-
ating CP-751871 in combination with paclitaxel and carboplatin (Karp et al. 2008)
suggested promising results showing a 46 % response after addition of CP-751871
in comparison with a response rate of 32 % for patients treated with chemotherapy
alone (Karp et al. 2009). However, results from a phase III study conducted to test the
efficacy of the combination of paclitaxel, carboplatin, and CP-751871 reported that
the addition of CP-751871 did not increase overall survival and resulted in adverse
side effects resulting in discontinuation of this trial (Jassem et al. 2010). Further eval-
uation of CP-751871 in combination with chemotherapy or erlotinib is currently in
progress for patients with advanced NSCLC. Other clinical trials in progress include
phase I- II studies of CP-751871 as monotherapy or in conjunction with chemother-
apy in patients with metastatic colorectal cancer, Ewing’s sarcoma and in breast
cancer (Atzori et al. 2009; Rodon et al. 2008).

R1507 (robatumumab, Roche), is a fully human IgG1 type monoclonal antibody
also selective against IGFIR. Xenograft data has shown efficacy in osteosarcoma
cancer models (Kolb et al. 2010). The results of a phase I study evaluating R1507
administered weekly in patients with advanced solid neoplasms in particular Ewing’s
sarcoma revealed partial responses and evidence of stable disease (Kurzrock et al.
2010).

AMG 479 (Amgen) is a fully IgG1 human monoclonal antibody selective to
IGF1R that exhibited broad antitumor activity in xenograft models (Beltran et al.
2009). Furthermore, AMG 479 administration was proven safe in phase I clinical
trials in patients with advanced solid tumors and demonstrated preliminary efficacy
with one durable complete response and a partial response in two patients with
Ewing-primitive neuroectodermal tumors (Tolcher et al. 2009a). Assessments of a
combination of AMG 479 with panitumumab or gemcitabine in patients with ad-
vanced solid tumors, reported that the combination was well tolerated with very few
side effects. There was a partial response and signs of stable disease were observed
(Sarantopoulos et al. 2008; Puzanov et al. 2010). Further trials include evaluation of
this agent in a Phase II double blind randomised study in hormone receptor positive
metastatic breast, colorectal and lung cancer patients2. Results from a phase II clini-
cal trial assessing safety, tolerability and maximum tolerated dose of a combination
of AMG 479 with gemcitabine in patients with pancreatic cancer were promising
with regard to tolerability. The second stage of this trial randomised the treatment
between gemcitabine and AMG 479, versus gemcitabine and placebo, resulting in
improved overall survival rate at six months (57 % in AMG 479 arm versus 50 % in
gemcitabine plus placebo arm) (Kindler et al. 2010).

Sch717454 (Robatumumab), (19D12, Schering-Plough), a human IgG1 anti-
IGFIR antibody demonstrated antitumor activity in solid tumor xenografts, including
Ewing sarcoma, rhabdomyosarcoma, glioblastoma, neuroblastoma, and osteosar-
coma panels (Kolb et al. 2008; Wang et al. 2010). This drug is currently under

2 NIH’s ClinicalTrials.gov. Available from (http://www.clinicaltrials.gov/) and ClinicalTrials-
Feeds.org (http://www.clinicaltrialsfeeds.org/) web sites.
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Table 27.4 Examples of novel IGF1R monoclonal antibodies

Monoclonal antibodies Specificity Selected tumor types

GSK 621659A (GSK) Preclinical
CP 751–871 (Pfizer) IgG2 Phase I–II in prostate, breast, colorectal and melanoma

Phase III in NSLC with paclitaxel and carboplatin
IMC-A12 (ImClone) Fully human

IgG1
Phase I–II in prostate cancer, Ewing’s sarcoma,

colorectal cancer
AVE1642

(Sanofi-Aventis)
Phase I in patients with advanced solid tumors

MK 0646 (Merck) Phase I in advanced solid tumors
Phase–II in pancreatic cancer and colorectal cancer

AMG 479 (Amgen) Phase I advanced solid tumors
Sarcoma, breast cancer patients, colorectal cancer and

lung cancer
Phase II–II pancreatic cancer in combination with

gemcitabine
R 1507 (Roche) IgG1 Phase I in patients with advanced solid tumors and I–II

in Ewing’s sarcoma
SCH-717454 (19D12,

Schering-Plough)
Phase I–II metastatic osteosarcoma

evaluation in phase II clinical trials in patients with metastatic relapsed osteosar-
coma.3

MK-0646, dalotuzumab (Merck) is an anti-IGFIR antibody that was investigated
in a phase I clinical trial which suggested favorable toxicity in patients with advanced
solid tumors (Hidalgo et al. 2008). Further results and signs of antitumor activity
were reported from a Phase I study of MK-0646, in combination with gemcitabine
for advanced previously untreated pancreatic cancer (Javle et al. 2010). This agent
is currently being evaluated in combination with cetuximab and irinotecan in an
ongoing randomised phase II/III study in patients with refractory metastatic col-
orectal cancer. Preliminary data showed that the combination was tolerable with no
overlapping toxicities (Watkins et al. 2009).

AVE1642, (Axelar), a humanized monoclonal antibody, specific for human IGF1R
was reported to be well tolerated as a single agent in a phase I clinical trial in patients
with advanced solid tumors (Tolcher et al. 2008).

A summary of novel IGF1R monoclonal antibodies therapies is given in
Table 27.4.

27.4 Limitless Replicative Potential: Telomerase

Telomerase is an enzyme that maintains the ability of cancer cells to achieve limitless
proliferation thus allowing them to divide an indefinite number of times.

This process is the result of the addition of TTAGGG nucleotide repeats onto
the telomers of chromosomal DNAs maintaining their length. Telomerase activation

3 (http://www.clinicaltrials.gov/)
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is not found in somatic cells, however, is an early event during oncogenesis and
has been detected in 85–90 % of tumors correlating with poor prognosis (Kim et al.
1994). Telomerase has important roles in angiogenesis, metastasis and cancer stem
cells in addition to its classical function in telomere length maintenance (Dikmen
et al. 2009). Therefore a growing number of anti-telomerase strategies have emerged
against the RNA component hTERC (human telomerase RNA component) and the
protein component of hTERT (human telomerase reverse transcriptase) (Blackburn
et al. 2006). The main strategies are targeting the RNA component hTERC and
hTERT by antisense oligonucleotides.

Other methods target the telomerase associated proteins TP1(telomerase as-
sociated protein 1) and TRF1 (human tekomeric-repeat binding factor) (Burger
2007).

Imetelstat (GRN163L, Geron) is a 13-mer oligonucleotide that targets the active
site of the enzyme TERC- RNA template. It has exhibited promising anti-tumor ef-
fects including antiangiogenic and anti-metastatic effects. Imetelstat was effective in
preclinical studies in breast and lung cancer tumor cell lines and xenograft models
(Dikmen et al. 2005; Hashizume and Gupta 2010). It entered phase I and II clin-
ical trials in patients with chronic lymphocytic leukemia, multiple myeloma, and
advanced solid tumors (NSCL and breast cancer).

Several small molecules, BRACO19 and RHPS4 that target single stranded telom-
eric repeat sequences (G-quadruplex), have shown very promising anticancer activity
in tumour xenograft models (Neidle 2010).

27.5 Resistance to Apoptosis

Evasion of apoptosis is yet another crucial step in the overall process of tumor
development. Anti-apoptotic mechanisms are up-regulated in tumors due to over-
expression of anti-apoptotic proteins. Additionally, resistance to apoptosis and
anoikis are important characteristics of metastatic cells. Apoptosis is the result of
several key events that include inactivation of p53, activation of survival pathways
(PI3k), and the upregulation of MMPs (which down-regulate death receptors, release
growth factors, and prepare the extracellular matrix for invasion). Overexpression
of anti-apoptotic proteins such as BCL-2, BCL-XL or focal adhesion kinase (FAK)
also play a role (Vaux et al. 1988; Cory and Adams 2002).

The BCL-2 family is an important regulator of the mitochondria-dependent apop-
totic pathways. It consists of pro-apoptotic proteins such as the BH3 family, two
multi-domain pro-apoptotic proteins BAX and BAK as well as several multi-domain
anti-apoptotic proteins (BCL-2, BCL-XL, BCL-W, MCL-1 and A1) (Cotter 2009).
The anti-apoptotic BCL-2 promotes cell survival by impeding the activation of pro-
apoptotic caspase proteins thereby contributing to the pathogenesis and progression
of human cancers. Increased expression of BCL-2 is common in a number of tumors
such as melanoma, lung, renal, colo-rectal, head and neck and brain cancer. Increased
expression has also been seen in B cell lymphomas, NHL and chronic myelogenous
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leukemia (CML) (Cotter 2009; Maurer et al. 1998; Ravandi et al. 2001; Sharma
et al. 2004; Shabnam et al. 2004; Sharma et al. 2005; Gradilone et al. 2003). Over-
expression of BCl-2 in tumors has a negative impact on anticancer therapy as a result
of increased resistance to drugs and radiotherapy (Sartorius and Krammer 2002).

Alterations in the expression and function of BCL-2 occur for various reasons.
These include chromosomal abnormalities, gene hypomethylation, altered epigenetic
regulation of the BCL-2 gene (Hanada et al. 1993) and down-regulation of inhibitory
mechanisms of the microRNAs miR-15 and miR-16 (Cimmino et al. 2005). Other
factors, such as p53 mutation contribute to anti-apoptotic mechanisms in tumors
through regulation of pro-apoptotic targets in the BCL-2 family including BAX and
the BH3 proteins PUMA (p53 up-regulated modulator of apoptosis) and NOXA
(Cotter 2009; Yu et al. 2001; Nakano and Vousden 2001; Miyashita and Reed 1995).
Additionally, deregulations in many signal-transduction pathways in cancers affect
the expression of the BCL-2 family members (e.g. RAS pathway, PI3-K and nuclear
factor-κB (NF-κB) transcription factors) (Mayo and Baldwin 2000; Cox and Der
2003). Each of the biological steps of the apoptotic process has been therapeutically
targeted resulting in the development of specialized apoptosis-modulatory therapy.
These agents are currently under investigation in various clinical trials.

Therapeutic opportunities Inactivation of BCL-2 has been shown to induce apop-
tosis in malignant cells and to increase their sensitivity to chemotherapy (Guo et al.
2003). BCL-2 antisense oligonucleotide therapy showed anti-tumor responses and
increased apoptosis in melanoma biopsies (Jansen et al. 1988).

Oblimersen sodium (G3139, Genasense) is an antisense phosphorothioate
oligodeoxynucleotide (ODN) that is designed to be complementary to the first six
codons of the human BCL-2 mRNA sequence. It is currently being extensively eval-
uated in clinical trials in CLL, AML, advanced melanoma (Patel et al. 2009). This
therapy induces pro-apoptotic effects through an increase in BAX and PARP as
well as through the release of cytochrome c with subsequent activation of the cas-
pase cascade (Nicholson 2000). Furthermore, several studies have indicated that
this compound has modulatory effects on the immune system. Results from phase I
and III clinical trials using this agent in combination with classic chemotherapeutic
agents demonstrated modest anti-tumor responses (Jansen et al. 1988; Nicholson
2000; Kang and Reynolds 2009).

Addition of BCL-2 anti-sense therapy to dacarbazine was evaluated in a ran-
domized phase III clinical trial in patients with cutaneous melanoma, and revealed
an improvement in clinical outcomes (Bedikian et al. 2006). BCl-2 antisense drug
therapy has shown chemosensitizing effects in CLL patients when combined with
cyclophosphamide (O’Brien et al. 2007, 2009). In metastatic prostate cancer it has
been used in combination with mitoxantrone (Tolcher et al. 2005). In breast cancer
it has been used as an adjuvant to docetaxel (Moulder et al. 2008) and in colorec-
tal cancer in combination with irinotecan (Mita et al. 2006). However, addition of
oblimersen to etoposide did not improve overall clinical outcome in patients with
SCLC (Rudin et al. 2008).
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Table 27.5 Examples of BCL-2 inhibitors that are currently in clinical development

Drug Target Clinical Trial

Oblimersen Anti-sense BCL-2 CLL, AML, multiple myeloma, SCLC,
non-Hodgkin’s lymphoma and
melanoma

Gossypol (AT-101) BCL-2 small molecule inhibitor Phase I/II CLL, prostate cancer
BH3 mimetic

ABT-737 BCL-2, BCL-XL, BCL-W
(ABT-263) BH3 mimetic Phase I in chronic myelogenous

leukemia and (SCLC)
GX15–070 Pan apoptotic inhibitor BCL-2,

BCL-XL, BCL-W, MCL-1
Phase I in SCLC and NSCLC

An alternative strategy inclusive of the BCL-XL antisense oligonucleotide tar-
geting a specific BCL-XL sequence has been shown to induce even further
chemosensitization of the tumor cells (Zangemeister-Wittke et al. 2000).

Other therapeutic modalities affecting gene or protein expression are small
molecules that act as BH3 mimetics and bind to BCL2 neutralizing its activity
and inducing pro-apoptotic effects. Several agents targeting the BCL-2 family and
demonstrating inhibition of BCL-2, BCL-XL, and MCL-1 are currently being eval-
uated in clinical trials. An example is Gossypol which is a drug that entered Phase
II clinical trials in CLL and in prostate cancer (Kang and Reynolds 2009; MacVicar
et al. 2008) and was also tested in patients with advanced cancers (Saleh et al. 2009).
Other pan-apoptotic inhibitors have been developed, for example the ABT-737 (A-
779024, Abbott Laboratories), a small-molecule inhibitor of BCL-2, BCL-XL and
BCL-W (Oltersdorf et al. 2005). Yet another example is ABT-263 which is an oral
compound of ABT-737 that was shown to induce tumor regression in xenograft
models of SCLC and acute lymphoblastic leukemia (ALL) (Tse et al. 2008). Lastly,
GX15-070 (Obatoclax, Gemin X), also an inhibitor of BCL-2 family is currently in
preliminary trials in patients with small cell lung cancer (SCLC) (Chiappori et al.
2009). A summary of BCL-2 inhibitors that are currently in preclinical and clinical
development is shown in Table 27.5 (Nicholson 2000; Kang and Reynolds 2009).

27.6 Abnormalities in Growth-Stimulatory Signaling Pathways

27.6.1 RAS/RAF/MEK/ERK

Advancements in the field of molecular and genomic technology have led to the
identification of various pathways that are deregulated in human cancers. This has
paved the way for further investigation of additional targets for anticancer therapy.

The RAS family of oncogenes (HRAS, KRAS, and NRAS) encodes 21-kDa plasma
membrane–associated G-proteins that regulate signaling cascades involved in nor-
mal cellular differentiation, proliferation, and survival (Downward 2003). Activating
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Table 27.6 A summary of novel therapies that s target Ras-Raf-MEK-ERK pathway

Inhibitor Specificity Selected tumor types

Tipifarnib (ZarnestraTM; Ortho Biotech
Products, Lonafarnib (SarasarTM;
Schering-Plough), BMS-214662
(Bristol-MyersSquibb, FTI-277
(Calbiochem). L744832 (Biomol
International L.P., Biosciences.)

Inhibitors of the
farnesyl-transferase
enzyme

NSCLC, HNSCC, breast,
ovarian, prostate, glioma,
pancreatic, colorectal
cancer

Sorafenib (BAY 43–9006, Nexavar�) Raf-1, wild-type
B-Raf, and b-raf
V600E RAF kinase,
VEGFR2,
PDGFR-α and
PDGFR-β, FLT3
and c-Kit

Metastatic RCC, HCC,
melanoma, NSCLC,
breast, ovarian, prostate,
pancreatic, colorectal,
glioma

PLX4032, PLX4720 B-Raf Melanoma
Selumetinib (AZD6244; ARRY-142886) MEK inhibitor Melanoma
Tanespimycin (KOS-953, 17-AGG)

Hsp90 inhibitor
B-Raf, AKT/PKB,

ERBB2, CDK4,
HER2, HIF-1α

Melanoma, breast cancer

Vaccination with mutant KRAS peptides Pancreatic adenocarcinoma
RAS antisense treatment, ISIS2503,

ISIS5132
HRAS, c-RAF1 NSCLC

oncogenic mutations in the all three RAS genes are common in several human can-
cers (Lowy and Willumsen 1993; Davies et al. 2002) and approximately 50 % of
metastatic tumors contain RAS mutations (Chambers and Tuck 1993). RAS onco-
genes contribute to tumor growth, invasion, angiogenesis and metastasis through Ras
binding to Raf protein kinases, Raf-MEK-extracellular signal-regulated kinase fam-
ily, and PI3K pathway. Additionally, RAS oncogenes function through Ral-specific
guanine nucleotide exchange factors (RalGEFs), (Chambers and Tuck 1993; Shields
et al. 2000; Ward et al. 2001) RAC, RHO and NFkB pathways (Downward 2003).
A number of drugs that specifically target KRAS function have been developed and
are currently under investigation in clinical trials (Table 27.6) (Downward 2003; Bos
1989).

Maturation of Ras proteins is a process that relies on farnesylation through
covalent attachment of the enzyme coupling a 15-carbon isoprenyl group to Ras
proteins. (Adjei et al. 2000). Inhibitors of the farnesyl-transferase enzyme are cur-
rently being investigated as potential therapeutic agents in the treatment of various
cancers (Johnston 2001). Farnesyl-transferase enzyme inhibitors (FTIs) mimic the
carboxy-terminal motif of RAS and compete for binding to farnesyltransferase. These
compounds for example tipifarnib (ZarnestraTM; Ortho Biotech Products),lonafarnib
(SarasarTM; Schering-Plough Corporation), BMS-214662 (Bristol-Myers Squibb),
FTI-277(Calbiochem),EMD and L744832 (Biomol International L.P., Biosciences)
were demonstrated to have apoptotic and anti-angiogenic effects. They were also ef-
fective in achieving inhibition of tumor cell growth in various cancers such as that of
colon, bladder, lung, prostate, and pancreas (Johnston 2001). FTIs initially showed
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significant promise in preclinical studies (Appels et al. 2005) and were subsequently
tested in combination with cytotoxic drugs in clinical trials for lung cancer (Isobe
et al. 2005). However, the results gathered from other phase II clinical trials revealed
only moderate effects. Further studies are required for a complete understanding of
the biological activities of FTIs (Brunner et al. 2003).

The RAF–MEK–ERK signaling cascade has an important role in tumor patho-
genesis, and aberrant signaling through RAF (a downstream effector of the RAS
pathway) occurs in approximately 30 % of human cancers (Bos 1989). Activating
mutations of BRAF occur in approximately 8 % of human tumors, most frequently
in melanoma (66 %), colorectal, and thyroid cancers. The three RAF somatic mis-
sense mutations code for cytoplasmic serine/threonine kinases which were shown
to be related to proliferation and resistance to apoptosis. Therefore BRAF protein
serine/threonine kinase could be used as an important and specific therapeutic target
(Davies et al. 2002).

A. Kinase inhibitors targeting RAS effector pathway Sorafenib (BAY 43–9006,
Nexavar�), is a multikinase inhibitor which was designed as an inhibitor for Raf-1,
wild-type B-Raf and b-raf V600E. Sorafenib also inhibits several receptor tyrosine
kinases on the intracellular domain of VEGFR1, VEGFR2, VEGFR3, PDGF recep-
tors FMS-like tyrosine kinase 3 (Flt-3), stem cell factor receptor (KIT), and the glial
cell-line derived neurotrophic factor receptor (RET) (Downward 2003). Sorafenib
demonstrated good safety, tolerability and clinical activity in several tumor types
particularly in patients with RCC and HCC (Strumberg et al. 2007; Lombardi et al.
(in press); Escudier et al. 2007; Llovet et al. 2008). Further phase II and III studies
evaluating sorafenib demonstrated an increased median overall survival and delayed
the median time to progression in patients with advanced HCC and metastatic RCC
(Lombardi et al. (in press); Cheng et al. 2009; Keating and Santoro 2009; Reeves and
Liu 2009). However, a phase III clinical trial of sorafenib in combination with car-
boplatin and paclitaxel in patients with metastatic melanoma did not have an impact
on improvement in overall survival (Hauschild et al. 2009).

Other small-molecule inhibitors of Raf kinases including Raf265 (Novartis),
XL281 (Exelixis/Bristol Myers Squibb), AZ628 (AstraZeneca), SB-590885 (Glax-
oSmithkline) and PLX-4032 (Plexxikon/Roche) a highly selective inhibitor for
BRAF(V600E) has demonstrated a greater selectivity and antitumor activity in pre-
clinical trials and phase I studies (Wellbrock and Hurlstone 2010; Pratilas and Solit
2010).

PLX-4032 is currently under clinical investigation as a single agent in metastatic
cutaneous melanoma. The results from a phase I trial, reported good oral bioavailabil-
ity, tumor regression and a median increased survival in metastatic melanoma patients
(Flaherty et al. 2009). This therapeutic agent is currently being investigated in phase
III clinical trials. However, PLX4032 may paradoxically enhance the proliferation
of tumors through ERK activation in tumor cells that co-express BRAF(V600E) and
mutant RAS (Pratilas and Solit 2010; Poulikakos et al. 2010).

Other drugs targeting the RAS/RAF- ERK–MAPK pathway include inhibitors
of Hsp90 and its target proteins. Some of these client proteins such as RAF, AKT,
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ERK, PI3K, VEGF, uPA, and MMPs are involved in promoting cancer invasion and
angiogenesis. Inhibition of Hsp90 results in destabilization of the client proteins with
antitumor effects (Koga et al. 2009). Tanespimycin (KOS-953) an inhibitor of Hsp90,
was evaluated in a phase II clinical trial in cutaneous melanoma (Solit et al. 2008) and
in combination with trastuzumab in breast cancer (Modi et al. 2007). The combination
of sorafenib and tanespimycin resulted in pharmacodynamic activity in kidney cancer
and melanoma meeting the criteria for further evaluation (Vaishampayan et al. 2010).

B. MEK inhibitors Mitogen-activated protein kinase (MAPK) pathway activation
can result from mutations of BRAF and RAS oncogenes or upstream deregulation of
growth factor receptors.

Inhibitors of the RAF–MEK–ERK signaling could modulate tumor cells growth,
differentiation, and proliferation. MEK inhibitor, PD0325901(Pfizer), significantly
suppresses pERK levels in certain tumors in preclinical studies (Barrett et al.
2008) and showed preliminary clinical activity in patients with advanced cancers
(LoRusso et al. 2010). The specific MEK 1/2 inhibitor AZD6244 (ARRY-142886)
(AstraZeneca)) is an ATP noncompetitive, allosteric inhibitor of MEK1/MEK2 and
has shown tumor suppressive activity in pre-clinical models including melanoma,
pancreatic, colon, lung, and breast cancers (Pratilas and Solit 2010; Bennouna et al.
2010). The results reported from a phase II clinical trial in cutaneous melanoma
have shown lasting remissions in patients with BRAF mutations and this agent is
currently being evaluated in Phase II clinical trials (Bennouna et al. 2010; Board
et al. 2009). However, the activity of this agent was comparable to disease-specific
standard chemotherapy. AZD6244 is currently undergoing evaluation in Phase II
trials in combination with other chemotherapeutic agents in selected patients with
active mutations in BRAF and/or RAS.

Another therapeutic approach is the development of antisense synthetic oligonu-
cleotides that are specific for sequences in the mRNAs for HRAS (ISIS2503) or
c-RAF1 (ISIS5132). These agents are now being evaluated for clinical activity in
phase II trials NSCLC (Sato et al. 2007). However, their high level of specificity
for one target is likely to be less effective in a tumor modulated by pleiotropic
mechanisms.

Immunotherapy via vaccination with mutant KRAS peptides induced a transient
Ras-specific T-cell response, a long-term immune response and increased survival in
patients with pancreatic carcinoma following surgical resection (Wedén et al. 2010)

27.6.2 Phosphatidylinositide 3-Kinase (PI3K) Pathway

The PI3K pathway is a major cellular signal transduction pathway involved in cell
growth, survival, angiogenesis and metabolism (Vivanco and Sawyers 2002). Acti-
vation of the PI3K pathway occurs through stimulation of RTKs which results in the
assembly of receptor–PI3K complexes. Based on their structure PI3Ks are classified
as class I (class IA p110α, p110β, p110δ and class IB, p110γ), class II (PI3KC2α,
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PI3KC2β and PI3KC2γ) and class III (lipid kinases VPS34; homologue of the yeast
vacuolar protein sorting-associated protein 34) which mediates signaling through
mammalian target of rapamycin (mTOR) (Cantley 2002; Workman et al. 2010). The
activation of the catalytic subunit of class I- PI3Ks is followed by the phosphoryla-
tion of phosphatidylinositol-4, 5-bisphosphate (PIP2) to phosphatidylinositol-3, 4,
5-trisphosphate (PtdIns(3,4,5)P3).They recruit PDK1 and AKT to the plasma mem-
brane followed by AKT phosphorylation at Thr308 by PDK1 and at Ser473 by
mammalian target of rapamycin (mTOR) complex 2 (TORC2), (Wullschleger et al.
2006; Sarbassov et al. 2005). PTEN is a major limiting factor of this step and antago-
nizes this process by dephosphorylating PIP3 to inhibit activation ofAKT (Zhang and
Yu 2010; Blanco-Aparicio et al. 2007). PTEN tumor suppressor gene is frequently
inactivated in cancers by mutation, resulting in accumulation of PIP3 thus triggering
the activation of its downstream effectors PDK1 and AKT/PKB (Yuan and Cantley
2008). One of the consequences of AKT activation is mTOR activation. The sig-
naling complex downstream mTOR include ribosomal protein S6 kinase 1(p70S6K)
and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) which are
important factors in protein synthesis, cell growth, metabolism and angiogenesis
(Wang et al. 2006; Sabatini 2006). Phosphorylated AKT mediates the activation and
inhibition of several targets, promoting cell cycle progression, proliferation and inhi-
bition of apoptosis through various mechanisms (Yuan and Cantley 2008). Mutations
in both PI3K and mTOR pathway are critical for tumor growth and survival and are
involved in a wide range of tumors including breast, prostate, colon carcinomas and
malignant brain tumors (Blume-Jensen and Hunter 2001).

The signalling of the PI3K pathway triggers tumor progression through multiple
effects on cellular growth, proliferation, survival, motility and modulates tumor drug
resistance (Vivanco and Sawyers 2002).The PI3K–AKT pathway also modulates
angiogenic effects through upregulation of hypoxia-inducible factor (HIF)-1α and
VEGF (Eccles and Welch 2007; Kong and Yamori 2008).

PI3K -AKT activation in cancer can occur at multiple points including activation
of receptors or oncogenes upstream of PI3K or accumulation of PtdIns(3,4,5)P3.
Additionally this pathway can be deregulated through mutation or loss of the tumor
suppressor PTEN, PI3K or of the downstream elements such as AKT and mTOR
(Yuan and Cantley 2008; Abdel-Rahman et al. 2006; Watters and Huang 2009). Sev-
eral studies indicated that targeting the PI3K-AKT pathway caused a reduction of
tumor cell proliferation as well as their migratory and invasive capacity (Vivanco and
Sawyers 2002). Therefore, the PI3K/AKT/mTOR pathway is considered an attrac-
tive target for novel anti-cancer therapeutic strategies. Several pathway components
including AKT, PI3K and mTOR represent potential therapeutic targets. Many of
these inhibitors are currently being evaluated preclinically or in early clinical trials
(Liu et al. 2009).

A. PI3K inhibitors All PI3K isoforms are mutated in several cancers (Samuels et al.
2004) and are proven to induce oncogenic transformation in xenograft animal mod-
els. They are involved in cancer cell proliferation, growth, apoptosis, cytoskeletal
rearrangement and tumor angiogenesis while also being a therapeutic target in tumors
with PI3K mutations (Kang et al. 2006).
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Table 27.7 Examples of several PI3K inhibitors currently being evaluated in preclinical and patient
trials

Inhibitor Specificity Selected tumor types

PX-866 (Oncothyreon,
Bellevue, WA, USA)

PI3 K (p110α, -δ and -γ) Ovarian and lung carcinoma, colon
xenografts

Phase I clinical trial in patients with
advanced metastatic solid cancer

CAL-101 PI3 K δ Non-Hodgkin’s lymphoma, mantle cell
lymphoma, and CLL

PI-103(Novartis, Basel) Class I PI3 K and mTOR Preclinical studies in ovarian, breast,
glioblastoma

XL765 Dual class I PI3K and
mTOR

Patients with advanced tumors

SF1126 (Semafore,
Indianapolis, IN,
USA)

PI3K class I mTORC1/2 Antitumor and antiangiogenic effects in
preclinical studies

Phase I clinical trials
GDC-0941 pan PI3 K inhibitor Breast, ovarian, lung, prostate xenografts

Phase I clinical trials
GSK1059615 PI3K inhibitor Phase I clinical trial
XL114 Pan PI3K inhibitor Preclinical studies in breast, lung, ovarian,

prostate and glioma tumors Phase I
clinical trials

ZSTK474 (Zenyaku
Kogyo, Tokyo, Japan)

Pan PI3 K inhibitor Tumor xenografts of prostate
adenocarcinoma, colorectal carcinoma
and lung adenocarcinoma

XL184 PI3 K (p110α, -δ and –γ)
and (TORC1, TORC2)

Phase I-III clinical trials in patients with
patients with progressive glioblastoma
and medullary thyroid cancer

MET, VEGFR2, and RET
NVP-BEZ235

(Novartis)
Pan-PI3K/mTOR Phase I and II clinical trials in patients

with advanced breast, prostate, and
brain cancers

NVP-BGT226 Dual class I PI3K and
mTOR inhibitor

Phase I

The first PI3K inhibitors to be extensively researched were the fungal metabo-
lite wortmannin (Arcaro and Wymann 1993) and LY294002 (Vlahos et al. 1994)
which block the enzymatic activity of PI3Ks through an ATP-binding competitive
mechanism (Liu et al. 2009).These compounds showed dose-dependent cell growth
inhibition and antitumor and antiangiogenic efficacy in preclinical studies, but high
levels of toxicity (dermal and liver toxicity), combined with poor solubility and low
bioavailability, prevented their evaluation in clinical trials. However, wortmannin
and LY294002 were widely used as tools for further elucidating the biological roles
of PI3Ks in tumorigenesis (Workman et al. 2010). Several PI3K inhibitors have
been developed and are currently being evaluated in preclinical and patient trials
(Table 27.7)

New generation of PI3K inhibitors include PX-866 (Oncothyreon, Bellevue, WA,
USA), a compound similar to wortmanin which demonstrated activity as an oral
irreversible PI3K inhibitor with selectivity for class I PI3K isoforms α, γ and δc in
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lung carcinoma, ovarian and colon carcinoma xenografts (Ihle et al. 2004). This drug
is currently being investigated in a phase I clinical trial in patients with advanced
metastatic cancers and preliminary results indicated signs of disease stabilization
(Jimeno et al. 2009).

Pan-specific PI3K inhibitors (for example PI-103, NVP-BEZ235, GDC-0941 and
ZSTK474), occupy theATP-binding site of the enzyme and have improved properties
to modulate PI3K kinases.

GDC-0941 is a pan PI3K inhibitor that demonstrated signs of antitumor activity in
multiple xenograft models such as breast, ovarian, lung and prostate cancer (Folkes
et al. 2008). In a phase I clinical trial in patients with advanced solid tumors this
agent was well tolerated, with signs of biological activity (Hoff et al. 2010). Recent
studies with GDC-0941 have shown promising results by combining this agent with
trastuzumab (Yao et al. 2009) and MEK inhibitors (Hoeflich et al. 2009).

ZSTK474 (Zenyaku Kogyo, Tokyo, Japan) is a triazine derivative with selective
pan-PI3K inhibitory activity that showed favorable responses in preclinical studies
with tumor xenografts of prostate adenocarcinoma, colorectal carcinoma and lung
adenocarcinoma, (Yaguchi et al. 2006).

PI-103 (Novartis) is a synthesized molecule of the pyridofuropyrimidine that
shares a similar structure with LY294002 and has the ability to target both PI3K-
p110α and mTOR. It demonstrated antiproliferative and antitumor effects in pre-
clinical studies in, breast and ovarian cells xenografts and enhanced chemotherapy-
induced cell death of glioblastoma GBM cells (Raynaud et al. 2007; Westhoff et al.
2009). Further studies are ongoing to determine the efficacy and the pharmacological
properties of PI-103 agent to target both mTOR and PI3Ks in cancer (Raynaud et al.
2007; Fan et al. 2006).

SF1126 (Semafore) is a LY294002 pro-drug that targets all PI3 K class I isoforms
including mTORC1/2 and has proven antitumor and antiangiogenic responses in
preclinical studies of brain, neuroblastoma, NSCLC, prostate, myeloma, RCC. It
is currently being evaluated in phase I and dose escalation clinical studies (Garlich
et al. 2008).

Encouraging results have been described for XL765 compound which is a dual
PI3K and mTOR inhibitor which is currently in phase I studies in patients with solid
tumors. Preliminary results showed that XL765was well tolerated and demonstrated
pharmacodynamic modulation of PI3K and ERK pathway with evidence of stable
disease in patients with advanced cancer (Papadopoulos et al. 2008; Brana et al.
2010). Other multikinase PI3K inhibitors, XL184, XL147, XL765 and XL147 (Ex-
elixis) are currently in development. Clinical data from patients treated with XL184
a MET, VEGFR2, and RET inhibitor, has demonstrated activity in phase I-III clinical
trials in patients with progressive glioblastoma and medullary thyroid cancer (Wen
et al. 2010; Sugawara et al. 2009).

XL-765, a pan-class I- PI3K inhibitor has an inhibitory effect also on DNA-PK
and MTOR and has the ability to induce delays in tumor growth in xenograft models.
This agent has been well tolerated as monotherapy in a phase I clinical trial when
administered orally to patients with advanced solid tumors, (Papadopoulos et al.
2008) or in combination with temozolomide (TMZ), (Nghiemphu et al. 2010).
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Interim analyses of an ongoing phase I clinical trial in patients with advanced
cancer showed that the XL147 compound was well tolerated and induced prolonged
stable disease in several cases (Shapiro et al. 2009). Also, preliminary results of a
trial evaluating the combination of XL147 and erlotinib resulted in clinical activity
and simultaneous inhibition of PI3K and EGFR signaling (Moldovan et al. 2010).

NVP-BEZ235 (Novartis) is an imidazo-quinoline derivative, which exhibits dual
pan-PI3 K/mTOR inhibition. Preclinical data show that NVP- BEZ235 has strong
anti-proliferative activity in cell lines and tumor xenografts with abnormal PI3K
signalling. This therapeutic agent has entered Phase I and II clinical trials in patients
with advanced breast, prostate, and brain cancers (Maira et al. 2008). Other PI3K
inhibitors that have entered phase I clinical trials include: NVP-BGT226 (a dual
class I PI3K and mTOR inhibitor) and NVP-BKM120 (a selective pan-class I PI3K
inhibitor) (Brachmann et al. 2009).

Several other phase I studies investigating PI3K inhibitors are ongoing. Two exam-
ples of the study drugs are GSK1059615 (GlaxoSmithKline) (Brachmann et al. 2009)
and CAL-101 (Calistoga Pharmaceuticals). CAL-101 is a selective agent targeting
p110δ. Interim results from a phase I trial with CAL-101 demonstrated favourable
clinical results in patients with haematological malignancies such as non-Hodgkin’s
lymphoma (NHL), mantle cell lymphoma, and chronic lymphocytic leukemia (CLL)
(Lannutti 2010)

B. PDK inhibitors Phosphorylation of the threonine residue in the activation loop
of the three AKT isoforms and PKC (protein kinase C) is modulated by PDK1.
This process stimulates cell growth, proliferation and survival, as well as promoting
angiogenesis. Several anti-PDK 1 inhibitors such as UCN-01 were tested in phase I
and II clinical trials, however they did not have significant antitumor activity (Welch
et al. 2007). Further development of an indoline-based series of PDK1 inhibitors
such as BX-517, demonstrated a potent inhibitory effect through binding to the ATP
pocket of PDK1 (Islam et al. 2007a, b).

C. AKT inhibitors AKT amplification and activation occurs in a variety of tumors
such as melanoma, breast, ovarian and pancreatic cancers. It is critical for phos-
phorylation of many downstream substrates involved in tumor survival as well
as organization of the actin cytoskeleton and invasion (Liu et al. 2009; Carpten
et al. 2007). Over expression of AKT2 was reported in late-stage colorectal cancer
and metastases suggesting that AKT2 promotes metastatic disease (Rychahou et al.
2008). The involvement of AKT in these processes supports a role for selective tar-
geting of the PI3K/AKT pathway as a strategy for metastasis (Table 27.8) (Vivanco
and Sawyers 2002).

Perifosine (Keryx) is a lipid-based phosphatidylinositol analogue that inhibits
AKT by targeting the pleckstrin homology (PH) domain of AKT thus blocking AKT
membrane translocation. This drug has the end result of reduction of proliferation
while also inhibitingAKT. This effect has been shown in a variety of tumors cells such
as melanoma, lung, prostate, colon, and breast cancer (Crul et al. 2002). Results from
a phase I clinical trial in patients with advanced solid tumors showed that the drug was
well tolerated (Unger et al. 2010) with evidence of stable disease in sarcoma (Bailey
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Table 27.8 AKT inhibitors that are currently under investigation for various malignancies

Inhibitor Specificity Selected tumor types

Perifosine (Keryx) AKT Phase I and II in advanced solid tumors
GSK690693 AKT, GSK3 beta,

PRAS40,
Forkhead

Preclinical studies in ovarian, breast,
prostate carcinoma

API-2 AKT Phase I in advanced solid tumors NSCLC,
leukemia

XL418 (Exelixis) AKT Phase I in advanced solid tumors
MK2206 (Merck) AKT Phase I in advanced solid tumors
Tanespimycin (KOS-953, Hsp90 inhibitor Phase II metastatic breast cancer
Kosan) AKT Multiple myeloma

et al. 2006) and renal cell carcinoma. However, these results were not clinically
validated in phase II clinical studies in breast, pancreas, prostate, head and neck, and
lung cancer (Kondapaka et al. 2003; Ummersen et al. 2004; Gills and Dennis 2009).

Other AKT inhibitors that are phosphatidylinositol ether lipid analogues (PIA)
which interfere with the PH domain of AKT inhibit the translocation of AKT to
the plasma membrane (Hu et al. 2000). Lipid analogues and PH domain-targeting
inhibitors were shown to have AKT inhibitory effects (Gills et al. 2007) in addition
to reducing tumor cell growth in preclinical studies (Powis et al. 1992).

Inositol polyphosphates such as InsP5, a novel inhibitor of the PI3K/AKT path-
way, can compete with PtdIns(3,4,5)P3 by binding to AKT- PH domain. InsP5 has
anti-AKT and antiangiogenic effects resulting in xenograft tumor growth inhibition
(Maffucci et al. 2005). A derivative of InsP5, 2-O-Bn-InsP5, resulted in enhanced pro-
apoptotic and anti-tumor activity through inhibition of PDK1 and mTOR (Falasca
et al. 2010). The recent development of the aminofurazan AKT series of inhibitors
has led to the identification of GSK690693, a compound that causes dephosphory-
lation of targets downstream of AKT, including GSK3 beta, PRAS40, and Forkhead
(Heerding et al. 2008). Xenograft studies resulted in antitumor activity in ovarian,
prostate, and breast carcinoma (Rhodes et al. 2008).

Several AKT antagonists have been identified using high throughput screening.
API-1 inhibits AKT by binding to the PH domain and blocking AKT membrane
translocation (Kim et al. 2010). API-2 (triciribine phosphate), a water-soluble tri-
cyclic nucleotide selectively induces apoptosis and inhibits cell growth in tumors
with PTEN mutations and AKT amplification. This drug is currently being tested in
Phase I clinical trials in patients with both solid and haematological malignancies.
(Yang et al. 2004)

MK2206 (Merck), an orally active allostericAKT inhibitor is under evaluation for
the treatment of patients with locally advanced or metastatic solid tumors (Tolcher
et al. 2009b). Preclinical data showed enhanced anticancer activity for MK-2206 in
combination with several anticancer agents (erlotinib, lapatinib) (Hirai et al. 2010)
as well as in combination with MEK inhibitor, AZD6244.

XL418 (Exelixis), a small molecule that inhibits the activity of AKT and S6
Kinase (S6K). It has shown inhibitory effects on tumor growth in preclinical studies,
including breast and lung adenocarcinomas and has currently entered Phase I clinical
trials.
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Table 27.9 Summary of mTORC1 and mTORC2 inhibitors currently in clinical trials

Inhibitor Specificity Selected tumor types

Rapamycin (Wyeth) mTOR Approved advanced RCC
Phase I and II in advanced solid tumors

Temsirolimus (Torisel;
Wyeth)

mTORC1 Approved advanced RCC and mantle cell
lymphoma

Phase I-III in advanced solid tumors,
ovarian, endometrial carcinoma,
NSCLC, melanoma

Everolimus (Afinitor;
Novartis)

mTORC1 Approved advanced RCC
Phase I-II in advanced breast cancer, lung

cancer, pancreatic carcinoma,
melanoma or glioma

Ridaforolimus
(Merck/Ariad)

mTORC1 Approved soft-tisse and bone sarcomas
Phase I clinical trial in patients with

advanced malignancies
WYE-132 (Wyeth) Dual mTORC1 and

mTORC2
Preclinical studies in breast, glioma, lung,

renal tumors

Hsp90 inhibitors: Both AKT and its activating kinase 3-phosphoinositide-
dependent kinase-1 rely on Hsp90 for stability. Hsp90 and its co-chaperones
modulate tumor cell apoptosis through formation of AKT-Hsp90 complexes, thus
stabilizing the AKT kinase activity and phospho-AKT dephosphorylation (Sato et al.
2000). Several studies indicated that targeting the PI3K-AKT pathway with 17-AAG
caused inhibition of AKT phosphorylation, induction of apoptosis and downregula-
tion of multiple AKT and RAF dependent pathways (Workmann et al. 2007; Basso
et al. 2002; Georgakis et al. 2006; Hostein et al. 2001; Solit et al. 2002).

D. mTOR inhibitors mTOR has a critical effect through regulation of several intra-
cellular functions including cell growth, cell cycle progression, actin cytoskeleton
organization, angiogenesis and apoptotic cell death. Several downstream compounds
targeting mTOR have been designed (Faivre et al. 2006) (Table 27.9).

Rapamycin (sirolimus, Wyeth) is a macrolide antibiotic which binds to mTORC1
via FKBP12-rapamycin binding domain adjacent to the catalytic site of mTORC1.
It suppresses mTOR-mediated phosphorylation. Analogues of rapamycin, such as
temsirolimus (Torisel; Wyeth), everolimus (RAD001/Afinitor) and ridaforolimus
(Ariad Pharamceuticals/Merck) have demonstrated antiproliferative activity against
a diverse range of malignancies in preclinical studies, and have also been evaluated
in multiple clinical trials. Results from phase III clinical trials showed improved
clinical outcomes for everolimus in patients with RCC that had progressed after
sunitinib or sorafenib therapy. Also, temsirolimus improved overall survival when
compared with interferon in patients with metastatic RCC leading to FDA approval
(Motzer et al. 2008; Hudes et al. 2007; Motzer et al. 2010). Temsirolimus is also
approved for the treatment of mantle-cell lymphoma following results from a phase III
clinical trial which reported improved progression free survival (PFS) and objective
responses (Hess et al. 2009). Partial response rates were reported in patients with
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soft-tissue sarcoma, neuroendocrine tumors and endometrial carcinoma and led to
phase III trials evaluating everolimus and ridaforolimus in neuroendocrine and soft-
tissue sarcoma. However, low response rates have been seen in trials of patients
with advanced breast, lung, and pancreatic cancer as well as melanoma and glioma
(Dancey 2010).

In addition to inhibiting tumor growth, mTOR inhibitors also act as anti-
angiogenic agents, interfering with HIF-1α (hypoxia inducible factor), VEGF and
PDGF signalling cascades (Faivre et al. 2006; Thomas et al. 2006). These agents
can therefore be effective when used in combination with anti-angiogenic drugs.
Evidence of this was seen in a phase II clinical trial investigating the efficacy of the
combination of bevacizumab and everolimus which revealed biological activity and
good tolerability in the treatment of advanced clear cell renal cancer. This combina-
tion had moderate activity in patients with metastatic melanoma (Hainsworth et al.
2010a, b).

Ridaforolimus is an analog of rapamycin that has been shown to inhibit mTOR ac-
tivity, as evidenced by reduced phosphorylation of 4E-BP1 and S6. This drug inhibits
the proliferation of multiple tumor cell lines including breast, colon, lung, prostate,
glial, and those of pancreatic origin. This drug was well tolerated with favorable
antitumor activity in a phase I clinical trial in patients with advanced malignan-
cies including NSCLC, RCC, and Ewing sarcoma (Mita et al. 2008). Ridaforolimus
is currently being evaluated in a phase III clinical trial in patients with advanced
sarcoma4.

Dual ATP-competitive inhibitors of both mTORC1 and mTORC2 are emerg-
ing. They have been reported to reduce cancer cell proliferation in vitro and tumor
xenograft formation in vivo. In preclinical studies, oral administration of WYE-132
inhibited mTORC1 and mTORC2 and resulted in antitumor activity against breast,
glioma, lung, and several renal tumor cell lines (Yu et al. 2010).
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