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The student begins with the patient, continues
with the patient, and ends his studies with the
patient, using books and lectures as tools, as
means to an end.

Sir William Osler



Preface

In the great majority of cases, cancer death is, in fact, “Death by Metastasis”. Primary
cancers, in and of themselves, are seldom fatal, and it is only the distal colonization
of vital organs by metastatic cells that results in the demise of the patient.

Metastatic disease is a late event in the evolution of a cancer, and requires the
development of a subset of cells in the tumour that can survive the successful cellular
odyssey required for metastatic disease to occur. Amongst the biological properties
that such cells must acquire include those of self-sufficiency, the capacity to withstand
anti-growth signals, resistance to factors inducing apoptosis, and the limitless capac-
ity for reproductive potential. In addition, the metastatic cellular invaders must be
able to establish sustained angiogenesis for metastatic lesions to become entrenched
and grow. The events resulting in secondary tumours is a remarkably orchestrated
change in both the genetic and proteomic expression of the malignant cells. This is
a magnificent biological process, but unfortunately it almost invariably results in a
terrible outcome for the patient.

The individual steps that allow the relatively fragile metastatic cells to detach from
the mother lode of the primary cancer and then interact with what must be considered
the hostile microenvironment of the host continue to be unravelled. Indeed, the
tumour microenvironment plays a critical role in both primary and metastatic tumour
development. This interstitium consists of both a blood and lymphatic vasculature
with endothelial linings, as well as a variety of cells (fibroblasts, adipocytes, and
host inflammatory cells) secreting extracellular matrix proteins, with all of which
the primary and metastatic cells must interact successfully, to survive and grow.

After accomplishing the journey through either the blood or lymphatic vasculature,
the metastatic cells must find an appropriate tissue in which to establish secondary
tumour sites. Here, the ‘seed and soil’ hypothesis requires that the micrometastases
find what has been referred to as “fertile soil” in which to come to rest, often referred
to as site-specific metastasis, or ‘homing’. Just exactly what “fertile soil” implies,
has not really been clearly defined. The possibility that breast cancer metastases,
having developed in a calcium rich environment, seek bone with a comparable mi-
croenvironment, is an interesting concept. However, breast cancer cells will also
make their way to the liver and the lung. Regardless of the secondary target organ
selected, there can be little doubt that the establishment of a secondary tumour site
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again requires successful interaction with the unique microenvironment of the target
organ.

It is well established that the vast majority of metastatic cells never go on to develop
secondary lesions. Whether this is due to apoptotic cancer cell death, through host-
generated immune reactions, by inhibition of angiogenesis, or by factors yet to be
determined, is under intense investigation. Metastatic dormancy certainly occurs in
many tumours, the prototype of which may well be uveal melanoma. Micrometastatic
uveal melanoma cells are clearly demonstrable in the circulation both before and after
tumour excision or radiation, yet it is not at all uncommon for the initial clinically
manifestations of liver metastases from a uveal melanoma to occur only a decade
later. Have the metastatic cells taken up initial residence in the liver and simply
‘waited’ for the appropriate opportunity in order to multiply, or have they been
resident elsewhere, and only latterly moved into the liver, with immediate growth?

With the foregoing factors in mind, the co-editors of this splendid volume, Miguel
and Julia Burnier, father and daughter, have compiled a remarkable text with contri-
butions from outstanding experts in every aspect of the metastatic process. Many of
the cellular and molecular factors in metastatic disease that have been noted above,
and many others, are addressed in the various comprehensive chapters of the book,
each written by an expert in the field. The problems of metastatic cell survival, the
route around metastatic suppressor factors, the role of growth factor systems and
angiogenesis are clearly defined, and the problems yet to be solved are discussed.
Our knowledge about the ever- increasing importance of the role of the microenvi-
ronment in tumour progression is expertly defined, and such parameters as metastatic
cell dormancy as it occurs in such tumours as uvular melanoma, is considered.

Taken together, this is a volume that should find its way to the bookshelves of
virtually all Oncologists and, indeed, all physicians and surgeons involved in the
care and treatment of cancer patients.

Phil Gold CC, OQ, MD, PhD, FRSC, FRCP©

Douglas G. Cameron Professor of Medicine,
Professor of Physiology and Oncology,

McGill University
Executive Director Clinical Research Centre

McGill University Health Centre
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Part I
Introduction to Metastatic Diseases

Editors:
Julia V. Burnier and Miguel N. Burnier, Jr.



Chapter 1
Introduction

Julia V. Burnier and Miguel N. Burnier, Jr.

Metastatic disease is the most lethal aspect of human malignancies, making the un-
derstanding and continued research into the process of metastasis a crucial step in
treating cancer. The lethality of malignant neoplasms is attributable directly to the de-
velopment of secondary growths in organs often at a distance from the primary tumor
mass (Fidler et al. 1978). While most primary tumors are treatable and manageable
by local resection or irradiation, disseminated cancer cells are often immune to our
methods of treatment. Few therapeutic options for patients have demonstrated poten-
tial in curing metastatic disease. The molecular mechanisms underlying site-specific
metastasis and the factors mediating tumor cell homing remain largely unknown. In
this introductory chapter, the metastatic cascade will be reviewed, with emphasis on
the individual steps of the metastatic process and the routes of cell dissemination. In
addition, the molecular mechanisms driving site-specific metastasis and tumor cell
homing to specific sites will be discussed.

1.1 Metastatic Cascade

Tumor metastasis is a complex multi-step process that involves many cell and organ-
mediated steps culminating in the establishment of metastatic tumors in distant organ
sites (Steeg 2006). As metastatic cells detach from the primary tumor, migrate and in-
vade through tissue barriers, enter the circulation, arrest and interact with endothelial
cells of the vascular network, extravasate and grow in the target organ, they must
communicate with their rapidly changing microenvironments through cell-cell and
cell-ECM contacts and the release of soluble mediators (reviewed in Steeg 2006;

J. V. Burnier (�)
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4 J. V. Burnier and M. N. Burnier, Jr.

Chambers et al. 2002; Langley and Fidler 2007). These cells must acquire the genetic
and epigenetic changes necessary to survive all of these steps. The expression of a
distinct set of genes involved in cell-cell and cell-ECM interactions as well as migra-
tion, growth, angiogenic and inflammatory factors plays a major role in permitting
or restricting metastasis (Nguyen and Massague 2007; Hanahan and Weinberg 2000;
Baylin and Ohm 2006). For metastasis to successfully develop, all steps of the cas-
cade need to be completed; i.e. all steps are rate-limiting. Mouse models using
transformed cells show us that oncogenic transformation is not always sufficient to
cause tumors and that a stimuli can lead to tumors in a specific organ. Moreover, not
all patients with circulating malignant cells, i.e. cells with metastatic potential, will
go on to suffer from metastatic disease. Indeed it is evident that metastasis is a series
of steps that culminate to metastatic tumors in a highly specific manner. Although a
great deal of research has focused on all of the metastatic steps, and the biology of
the cascade has been extensively studied, there has been little progress in effectively
preventing or treating metastatic disease.

1.1.1 Change in Phenotype

The metastatic process is a highly inefficient process with a higher tendency of cells
to die than to metastasize (Luzzi et al. 1998). First, cell populations of the primary
tumor acquire mutations resulting in a change of phenotype. In fact, metastatic cells
are characterized by genetic changes causing them to be more invasive and motile.
Tumor cells are more prone to mutation that their normal counterparts (Cifone and
Fidler 1981; Eccles and Welch 2007) and this genetic instability results in the accu-
mulation of genetic changes enabling a more aggressive phenotype. Experimentally
transformed cells are also characterized by genetic and phenotypic flux (Cifone and
Fidler 1981). In addition, the proliferation and progression of certain cell populations
are mediated through a selection pressure based on the tumor environment, immune
system, and host factors. Cell subpopulations, even in large metastatic tumors, can
have a wide variety of gene expression profiles and display distinct behavior in vitro
(Eccles and Welch 2007; Welch and Goldberg 1997). A variety of transient and
permanent genetic changes are required for cells to survive the metastatic cascade,
including changes in the expression of integrins, chemokines, proteases, angiogenic
factors, and adhesion molecules. To date, most of the gene profiling performed on
metastatic cells compare end point lesions to benign or primary tumors. These studies
do not account or provide data on the many transitory cell population characteristics
not seen in the primary tumor or in established metastasis. To compliment these end-
point assays, new studies have emerged which involve real-time analyses of gene
changes in tumor cells over the course of the metastatic cascade (Luzzi et al. 1998;
Cameron et al. 2000).

One major occurrence that initiates metastasis is the change in cell adhesion
markers on the tumor cell surface, enabling the cell to detach from the primary tumor.
It has been well documented that integrins, the cell surface receptors for the extra-
cellular matrix, are altered in metastatic cell populations (Hood and Cheresh 2002;
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Felding-Habermann 2003). In addition, secretion of ECM and proteolytic enzymes
leads to the degradation of the basement membrane, allowing the cells to invade.
Evidence suggests that many of these changes are stimulated by growth factors in
the tumor milieu. Proteolytic degradation of the ECM can also release sequestered
growth factors that further promote the invasive phenotype (Saad et al. 2002).

Many of these changes can occur by a process of dedifferentiation, referred to as
the epithelial to mesenchymal transition (EMT) (Thompson et al. 2005). Neoplastic
cells can dedifferentiate to a more motile mesenchymal phenotype during the process
of metastasis, which is often also accompanied by a resistance to apoptosis (Robson
et al. 2006). This can be induced by TGF signaling as well as other oncogenic
signaling pathways (Siegel et al. 2003). Once in the metastatic site, there can be a
reversion back to the differentiated epithelial phenotype as the cells no longer require
motility or invasiveness.

1.1.2 Survival in the Bloodstream

Tumors are unable to grow beyond 0.4 mm in diameter without a vascular system to
support the proliferating tumor cells (Bergers and Benjamin 2003; Gimbrone et al.
1972). A leaky network of neovessels not only provides oxygen and nutrients for the
primary tumor, but can also act as a route through which malignant cells can enter
the bloodstream (Wyckoff et al. 2000). It has been documented that tumors with
high metastatic potential are more angiogenic than non-metastatic tumors (Folkman
1996). As millions of cells are shed from the primary tumor and enter the blood-
stream, they encounter a harsh environment where less than 0.01 % of circulating
malignant cells go on to successfully form metastasis (Luzzi et al. 1998). The shear
stress and velocity-associated pressure of the bloodstream, as well as the presence of
immune cells, can result in tumor cell death of the greater proportion of circulating
cancer cells. In addition, whereas in the primary tumor, cells are attached to the sub-
stratum of the host organ and to the network of cancer cells within the tumor; once
they detach and migrate they must survive in an anchorage-independent manner.
Anoikis is a term used to describe apoptosis in the absence of cellular attachment. In
experimental models, anchorage requirement is lost upon oncogenic transformation.
Metastatic cells often have mechanisms to evade anoikis, such as over expression of
RTKs, which may contribute this may contribute to tumor cell survival in the circu-
lation. Indeed, malignant cells possess signaling mechanisms that protect them from
anoikis (Grossmann 2002). Furthermore, as more is known about the mechanisms
contributing to anoikis, it has become evident that anchorage-independent growth as
an anti-anoikis process is a major characteristic contributing to malignancy.

1.1.3 Attachment and Extravasation

During circulation, malignant cells that survive the bloodstream, must arrest and
extravasate into the target organ. In order to enter the target organ, malignant cells



6 J. V. Burnier and M. N. Burnier, Jr.

must adhere to capillary beds and interact with endothelial cells. Two different types
of cell arrest have been demonstrated. Nonspecific arrest due to coagulation factors
and capillary diameter results in cells lodging (Weiss et al. 1986). This means that
tumor cells enter capillaries and are unable to pass through due to their size. Once
lodged, they can extravasate between endothelial cells of the organ lining. Specific
interactions can also occur and are mediated through tumor cell expression of vascular
adhesion factors specific to the organ (such as selectins and tumor necrosis factor-
alpha) and by secretion of factors by the vascular microenvironment (Steeg 2006). In
fact, endothelial cells from different organs capillary beds possess different vascular
markers and this can add to the site-specificity of tumor cell infiltration (Trepel et al.
2002). The changes, or re-expression of adhesion molecules likely occur through
post-translational modification of cell surface receptors. Due to the short time frame
for this process to occur, it is unlikely that cancer cells alter their gene expression
during circulation (Eccles and Welch 2007; Christofori 2003). It is possible that, both
specific and non-specific arrest occurs during metastasis, and successful colonization
depends on the affinity of tumor cells to their new environment.

1.1.4 Colonization and Proliferation

Once cells have extravasated into the parenchyma of the target site, they must form
metastatic foci. The time gap between infiltration of metastatic cells and the oc-
currence of colonization represents the latency of the disease (Nguyen et al. 2009).
Colonization of the organ is the most extensively in vivo studied step of the metastatic
cascade because of the use of experimental metastasis animal models. Successful
metastatic colonization involves reciprocal interactions between infiltrating tumor
cells and a foreign microenvironment. Organ microenvironments vary from site to
site and the requirements for tumor cell growth in the microenvironment of the sec-
ondary site is therefore distinct from that at the primary tumor site. The extracellular
matrix as well as cells such as fibroblasts, endothelial cells and inflammatory cells
secrete growth factors, chemokines, cytokines, and proteases that can act as signals
for the promotion or deterrent of metastatic growth. For example, the insulin growth
factor 1- receptor has been found to be a regulator of liver metastasis and this is at least
in part due to the abundance of the receptor’s ligand, IGF-I secreted by hepatocytes
(Long et al. 1994). Infiltrating tumor cells, which express IGF-IR, will therefore
receive a strong mitogenic signal from the liver, inducing metastatic growth. More-
over, the recent notion by Kaplan and colleagues that progenitor cells can migrate
from the bone marrow to potential sites of metastasis, which they then condition as
a ‘pre-metastatic niche’ by secretion of factors which facilitate or drive tumor cell
homing to specific sites has further confounded our understanding of site-specific
metastasis (Kaplan et al. 2006).
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1.2 Routes of Cell Dissemination and Site-Specific Metastasis

The site, timing, and severity of metastasis vary among individuals and type of ma-
lignancy. The reasons for this remain mainly unknown. In 1988, Weiss et al showed
that the primary site of metastasis occurs at the first capillary bed encountered (Weiss
et al. 1988). This idea is centered upon different malignancies having distinct patterns
of cancer spread, determined by the route of cell dissemination. It is increasingly
apparent, however, that this is not the only factor mediating the development of
metastatic disease. Weiss later showed, through a series of autopsy studies that only
66 % of tumors were predicted by blood flow patterns alone; other mechanisms must
account for the remainder of the metastases (Weiss 1992).

Many routes of tumor cell dissemination are associated with metastatic oc-
currence. While many cancers spread via hematogenous dissemination, it is also
common to see secondary tumors arise via the initial entry of cancer cells entry into
lymphatics, ultimately draining to lymph nodes and the blood stream. The absence
or presence of lymph node tumors can be a prognostic predictor (such as in the case
of head and neck cancers) and is critical for prognosis (Wittekind 2000). The TNM
prognostic grading system takes into account the extent of the primary tumor, lymph
node positivity, and metastatic growth. In addition, local or proximity metastatic
disease can occur by spreading across body cavities (such as in the case of ovarian
tumors). In the absence of lymph node or metastatic positivity, patient blood is cur-
rently being assayed for the presence of disseminated tumor cells. Cytokeratins, for
example, are being used as a marker for these cells (Wong and Hynes 2006). The
significance of circulating malignant cells is still in debate, perhaps due to its overes-
timated value or inadequate techniques for detecting disseminated cells (Wong and
Hynes 2006).

However, while we can explain some metastatic sites via anatomical dissemina-
tion, it remains unclear why some breast cancers metastasize to the liver and some
to organs as distant as the bone, brain, and lungs. Uveal melanoma tumors, which
grow in an immune-privileged site void of lymphatic association to the rest of the
body, show site-predilection to the liver. Over 100 years ago, the surgeon Stephen
Paget predicted that there are properties of both the cancer cell “seed”, as well as
factors in the microenvironment of the target organs “soil” that allow for metastatic
growth (Paget 1889). However, the host and tumor-dependent factors that regu-
late the organ-selectivity of disseminating cancer cells and determine their ultimate
destination remained until recently, largely unknown (Fidler 2003). Moreover, the
relationship between these two entities and the pathways that synergize as a metas-
tasis progresses, may be the central regulator of the site-specificity of metastasis. As
previously mentioned, a “pre-metastatic” niche may be forming before tumor cells
arrest in target organs, perhaps by stem-cell mediated organ conditioning for ma-
lignant growth, thereby mediating site-selectivity. Unknown factors influence stem
cell recruitment to tissues, remodeling of the matrix, and modifications of the en-
vironment; these factors can precondition the growth of metastatic cells at that site
(Kaplan et al. 2006).
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1.3 Research in Metastatic Disease

While we appreciate the importance of clinical metastasis, little is known about what
causes metastatic disease, what determines site of metastasis, and the biological
mechanisms behind cancer spread. The difficulty in understanding metastatic disease
lies in the wide variety of timing, distribution, and severity of secondary tumors. In
humans, only the late stages of metastasis are generally clinically detected, such as a
large enough tumor to be imaged. Extensive in vitro and in vivo work has been done
to understand key steps of the metastatic cascade. Experimental metastasis models,
in which tumor cells are injected directly into the blood stream of animals have
facilitated research in this field. However, while this model presents advantages of
ease, reproducibility, and time efficiency, it does not give insight into the metastatic
process as an entity, but merely on the later steps of survival in the blood stream and
colonization of the host organ. On the other hand, spontaneous metastasis models
better mimic the disease occurrence and provide vital information as to early steps in
metastatic occurrence. We have unfortunately learned however, that animal models
of metastatic disease do not always adequately represent the disease progression in
humans and valuable but limited knowledge can be learned from them.

Predicting tumor cell homing to specific sites has become a focus in cancer
research. Recent advances in genomic and proteomic profiling of tumor cell pop-
ulations have provided novel and powerful tools for identifying gene subsets that
are preferentially expressed in tumor subpopulations with predilections for specific
metastatic sites. High throughput micro array analysis technology capable of quickly
and efficiently quantifying changes in the expression of thousands of genes has fa-
cilitated the study of genetic changes in cell and tissue models. These studies have
begun to yield information on gene signatures that are associated with site-specific
metastasis to organs such as the lung, bone, and brain (Fidler and Kripke 2003;
Palmieri et al. 2006; Minn et al. 2005a, b). Since even the activation of a sin-
gle gene can be sufficient to induce metastasis, and given that many gene changes
show site-specificity (Pozzatti et al. 1986; Veer et al. 2002), determining distinct
genetic profiles for metastatic cells is crucial to understanding tumor progression
and spread. Moreover, prognosis and response to treatment have also been predicted
(Sorlie et al. 2001; Vijver et al. 2002) as well as the involvement of angiogenic-
and hypoxia-associated genes via the usage of gene expression profiling (Eynden
et al. 2007). What is of crucial interest is two-fold: understanding why some cells
metastasize and what determines preferential homing of cells to a specific site.
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Chapter 2
Interactions of Normal Tissues and Systems
with Metastatic Cells: Impact on Location,
Survival and Growth

Jennifer M. Kirstein and Ann F. Chambers

2.1 Introduction

Tumor formation is not a cell autonomous phenomenon, but rather an evolution
of disease within and responding to the host environment. In particular, metastatic
spread from a primary tumor results from a complex interplay between tumor cells
and the host. In order to form successful metastases, tumor cells must escape the
primary tumor, enter the host vasculature, travel to and arrest in a distant tissue
and survive and grow in that new organ (Chambers et al. 2002). Cells that progress
through these stages must both escape and exploit host systems.

As tumor cells acquire a metastatic phenotype, they do so through interacting
with and manipulating host responses (Brooks et al. 2010; Borsig 2008; Lorusso
and Ruegg 2008). The tissue microenvironment is significantly altered by the pres-
ence of a primary tumor, with changes in stromal cell composition and activation
and the presence of infiltrating immune cells. The individual components are spe-
cific to tumor type, but the net result is a cycle of mutual stimulation of host and
tumor tissue, leading to increased tumor growth and aggressive behavior. For exam-
ple, in melanoma, direct contact between keratinocytes and melanocytes is essential
to maintain normal melanocyte growth characteristics. This contact is maintained
by E-cadherin, which is often down-regulated as a first step toward melanoma tu-
morogenesis (Li et al. 2003). Interestingly, hepatocyte growth factor/scatter factor
(HGF/SF) production by fibroblasts is capable of stimulating growth and reducing
E-Cadherin expression in normal melanocytes resulting in decreased adhesion to
keratinocytes. These normal melanocytes begin to express basic fibroblast growth
factor (bFGF), platelet-derived growth factor (PDGF), vascular endothelial growth
factor (VEGF) and transforming growth factor-β (TGFβ)—growth factor signals
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then expanded by neighboring fibroblasts which express insulin-like growth factor-1
(IGF-1), HGF/SF, bFGF and TGFβ in response, further stimulating the melanocytes.
Therefore, the initial transformation of melanocytes does not necessarily involve ma-
jor genetic changes, but is a result of losing contact and regulation from keratinocytes,
leading to a cycle of mutual positive feedback between stromal cells and melanocytes
(reviewed in (Li et al. 2003)). In breast cancer, a loss of tissue organization and po-
larity is also seen, with increasing disorganization and decreased cell-cell contact as
tumor invasiveness increases (Weaver et al. 1997) (reviewed in (Takeichi 1993)).

After initial tumorigenesis, host systems and pathways are further co-opted by
tumor cells. Herein we will focus on how particular tumor types are capable of
exploiting host cells, growth factors, pathways and systems during each of the key
steps in metastasis.

2.2 Tumor Cell Invasion and Intravasation

Excessive proliferation of neoplastic cells in a developing cancer leads to hypoxia and
necrosis in the tumor microenvironment. Tumor and stromal cells react by secreting
growth factors and cytokines such as colony stimulating factor (CSF)-1 and TGF-β,
which are chemoattractants for immune cells (Robinson and Coussens 2005). Fur-
ther host reaction to the developing neoplasm leads to recruitment of mesenchymal
stem cells, activated fibroblasts, endothelial precursors, dendritic cells, macrophages,
monocytes, lymphocytes, leukocytes and mast cells (Olumi et al. 1999; Le Bitoux and
Stamenkovic 2008). Initially, it is likely that this recruitment is a host defense mech-
anism, but the tumor is able to capitalize on the pro-growth factors and counteract
the growth-inhibitory capabilities of the recruited cells (Le Bitoux and Stamenkovic
2008). It would be expected that an abundance of immune cells would be beneficial
for the host, yet it often correlates with poor clinical prognosis (Nonomura et al.
2007; Taskinen et al. 2008), a global indicator of a tumor’s ability to subvert the host
response.

A major effect of the inflammatory response to tumor development is an increase in
tumor invasiveness. Breast cancer cells cultured in macrophage-conditioned media,
or co-cultured with macrophages, show a significant increase in invasive behavior in
vitro (Wu et al. 2009; Hagemann et al. 2005). This increase was found to be due to
nuclear factor kappa B (NF-κB)-mediated stabilization of Snail, a major transcription
factor for epithelial—mesenchymal transition (EMT) induction (Nieto 2002). Snail
expression by tumor cells conferred metastatic ability to non-metastatic cell lines
(MCF7 and T47D) and shRNA knockdown of Snail suppressed both innate and
‘inflammation-enhanced’ invasion and metastasis of MDA-MB-231 and MDA-MB-
435 cells (Wu et al. 2009). Additionally, tumor necrosis factor-α (TNFα) produced
by macrophages was found to induce expression of macrophage migration inhibiting
factor (MIF) in tumor cells, which led to increased matrix metalloproteinase (MMP)
production by macrophages, also through stimulation of NF-κB. This increase in
MMP activity was found to aid tumor cell invasion (Hagemann et al. 2005). These
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Fig. 2.1 Interaction between metastatic tumor cells and the host environment in early stages of
metastasis. a A primary tumor is infiltrated with host-derived macrophages and fibroblasts that aid
in tumor cell invasion and intravasation. Upon arrest in a secondary site, tumor cells often stimulate
formation of a thrombus b, which provides adhesion contacts and protection from the host immune
system. These arrested cells may undergo apoptosis due to release of nitric oxide from the vascular
endothelium c or may extravasate, often with assistance from a host macrophage d. Not all metastatic
cells extravasate prior to initiating growth in a secondary organ, and intravascular micrometastases
are found e, especially in the lung. Extravascular micrometastatic growths f are also common, and
often found to be associated with host macrophages. The site of metastatic growth is dependent on
many factors, but formation of a pre-metastatic niche g is thought to direct and aid initial growth
and survival of metastatic cells

results indicate that tumor cells can capitalize on the host immune response leading
to increased invasiveness and subsequent metastasis.

Tumor-associated macrophages (TAMs) are often the most common immune cell
in the tumor microenvironment and play an essential role in tumor metastasis. Using
an in vivo model of mammary carcinoma, it was found that TAMs are most likely to
be found at the margin of a primary tumor, with decreasing numbers upon imaging
deeper into the tumor (Wyckoff et al. 2007). The few TAMs that were found in the
tumor core were associated with blood vessels and were essential for tumor cell
intravasation (Fig. 2.1a). There was a significant correlation between the number
of perivascular TAMs and the number of circulating tumor cells in this rat model
of mammary carcinoma. Additionally, time-lapse imaging was only able to detect
tumor cell intravasation at the site of TAM association with the vasculature, and this
intravasation was found to be dependent on epidermal growth factor (EGF)-CSF-1
signaling (Wyckoff et al. 2007; Wyckoff et al. 2004; Goswami et al. 2005). Further,
deletion of CSF-1 in a murine model of mammary carcinogenesis showed limited
tumor invasion coupled with decreased angiogenesis, resulting in abrogation of lung
metastasis due to deficient macrophage recruitment to the tumor microenvironment
(Lin and Pollard 2004). Analysis of murine and clinical samples found that TAMs
may guide breast cancer cells toward blood vessels through EGF-CSF-1 signaling, as
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cancer cells were often found in contact with perivascular macrophages. The density
of these interactions in clinical samples correlated with the histological grade of
the tumor and positively associated with the risk of distant metastasis formation
(Robinson et al. 2009). It has also been noted that macrophages are often present at
the site of basement membrane breach and tumor cell dissemination (Pollard 2004).

Neutrophils, lymphocytes and TAMs all express and secrete MMPs, which col-
lectively can degrade every extracellular matrix (ECM) protein. The association of
these immune cells with the invasive border of a tumor leads to a degradation of the
physical barrier that prevents tumor cell dissemination. This degradation releases and
activates many growth factors (TGFβ, TNFα, Fas Ligand, heparin bound–epidermal
growth factor and others) that are normally sequestered in the ECM (Ii et al. 2006;
Hynes 2009). Additionally, the degradation products of many ECM proteins have
their own activity. For example, degradation of laminin results in peptides that mimic
epidermal growth factor receptor (EGFR) ligands and can result in increased cell mi-
gration and invasion in EGFR positive cells (Giannelli et al. 1997; Pirila 2003). It is
understood that a tumor is not a uniformly organized mass—each tumor cell will have
differential access to nutrients, oxygen and tumor stromal components depending on
its individual location (Kedrin 2008). Direct imaging of murine mammary tumor
growth using a mammary window was able to visualize individual cells longitudi-
nally and evaluate differences in their behavior depending on their initial location.
It was found that those cells in close proximity to blood vessels showed increased
migration and invasion and were more likely to spread from the primary tumor to the
lung than those cells that did not have immediate access to the vasculature (Kedrin
2008).

Immune cells are a key component of tumor stroma, but the most abundant stro-
mal cell is the carcinoma associated fibroblast (CAF) (Orimo and Weinberg 2006)
(Fig. 2.1a), which is also associated with an increase in tumor cell invasion. These
fibroblasts have been recruited as normal fibroblasts and are activated to become
myofibroblasts, or have been recruited as bone marrow derived cells (BMDCs) and
differentiate into fibroblasts at the tumor site (Direkze et al. 2004). Using a 3D in
vitro model of the epidermal/dermal microenvironment, it was found that invasion
of squamous cell carcinoma (SCC) cells always followed a leading CAF (Gaggioli
et al. 2007). This leading fibroblast was able to create a track in the matrigel ma-
trix through both protease- and force-mediated remodeling that the SCC cells would
follow. The track was found to be necessary and sufficient for SCC cell invasion as
removal of the fibroblasts after track formation still allowed SCC cells to invade.
These SCC cells have not undergone an epithelial—mesenchymal transition (EMT)
and are non-invasive. It had been questioned how tumors that maintained an epithe-
lial phenotype were able to intravasate; this work illustrates that those tumor cells
that are not invasive are able to co-opt host cells in order to metastasize (Gaggioli
et al. 2007).

During melanoma development, melanocytes lose expression of E-cadherin
thereby losing regulatory contact with keratinocytes, and gain expression of N-
cadherin and melanoma cell adhesion molecule (MCAM) which mediate adhesion
between melanoma cells and fibroblasts, vascular endothelial cells and other
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melanoma cells (Hsu et al. 2002; Li et al. 2001). Signaling between melanoma
cells, which produce PDGF, bFGF and TGFβ, and fibroblasts which produce IGF-1,
HGF/SF, bFGF and TGFβ, results in increased melanoma tumor growth and inva-
siveness (Li et al. 2003; Hsu et al. 2002; Lee and Herlyn 2007). It has also been
shown that TGFβ expression decreases E-cadherin expression, up-regulates β1 and
β3 integrin expression and increases MMP-9 activity leading to increased migration
(Janji et al. 1999) and enhanced adhesion of melanoma cells to the endothelium (Teti
1997). Re-expresion of E-cadherin in melanoma cells led to reduced invasion in vitro
and tumorigenicitiy in vivo (Hsu et al. 2000). Additionally, during the transition of
melanomas from the radial growth phase (RGP, flat, non-invasive tumor) to vertical
growth phase (VGP, invasive growth), significant matrix remodeling is required; the
majority of the enzymes and MMPs utilized are contributed by host fibroblasts and
TAMs (Liotta and Kohn 2001).

Components of the host coagulation system are also involved in regulating tumor
cell invasiveness. Tissue Factor (TF) is consistently upregulated in many human
malignancies and is found to contribute to many facets of tumor aggressiveness (Rak
et al. 2009). TF is expressed by tumor cells, often at high levels, but also by many
host cells such as endothelial cells, TAMs and CAFs. The main function of TF is to
activate thrombin which potentiates clot formation, but thrombin is also essential for
activating protease activated receptor (PAR)-1 and -2. Activation of PAR-1 expressed
by tumor cells leads to increased tumor invasion and metastasis through induction
of proteases and cell adhesion molecules (Melnikova and Bar-Eli 2009).

2.3 Survival and Arrest in the Vasculature

The host coagulation system is known to play a significant role in tumor cell arrest
and survival in the vasculature. Tumor cells activate or produce many components
of the coagulation cascade such as thrombin, PAR-1, TF, fibrinogen, von Willebrand
factor, and platelet-activating factor (PAF), leading to a ‘platelet mimicry’phenotype
(Timar et al. 2005). The hypoxic environment increases TF expression by endothelial
cells, TAMs and CAFs leading to thrombin production within the primary tumor.
This ‘pre-treatment’ with thrombin increases tumor cell adhesion to platelets and the
vascular endothelium following tumor cell intravasation (Nierodzik and Karpatkin
2006).

Through expression of TF, tumor cells are able to exploit the host coagulation
system to increase metastatic efficiency. In an elegant series of papers, Palumbo
et al. (Palumbo et al. 2000; Palumbo et al. 2002; Palumbo et al. 2005; Palumbo et al.
2007; Palumbo et al. 2008) evaluated the interplay between metastatic cells and
the individual components of coagulation. They found that loss of host fibrinogen
significantly decreased lung metastasis formation, yet had no impact on the num-
ber of cells that originally arrested in the lung following experimental metastasis
cell injection. However, fibrinogen was essential for sustained adherence of tumor
cells in the lung vasculature (Palumbo et al. 2000). This role for fibrinogen also
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held true in a spontaneous model of metastasis, with reduced lung metastasis de-
spite equivalent primary tumor formation in fibrinogen-null and wild type animals
(Palumbo et al. 2002). Evaluation of metastasis in animals with activation-resistant
platelets (platelets present in normal number, but not able to be activated by thrombin,
adenosine diphosphate (ADP), or other coagulation stimulants) showed a significant
decrease in experimental and spontaneous metastasis, again due to reduced survival
or retention in the lung vasculature (Palumbo et al. 2005). Depletion of circulat-
ing natural killer (NK) immune cells prior to metastatic cell introduction resulted
in equivalent metastasis number in platelet mutant, fibrinogen knock-out and wild
type animals, indicating that platelet- and fibrinogen-mediated thrombus formation
protects tumor cells from NK cell surveillance in the lung vasculature (Palumbo et al.
2005). The role of NK-mediated cell killing was strengthened through work on Factor
XIII, which stabilizes fibrin and other ECM matricies through catalysis of crosslink-
ages. FXIII was found to be essential in preventing NK cell immunosurveillance of
tumor cells (Palumbo et al. 2008).

To specifically evaluate the role of TF and TF signaling in metastasis, tumor cells
were derived from TF knock-out animals and cell lines with and without TF, or TF
lacking the cytoplasmic tail responsible for cell signaling. It was found that while
TF expression was not essential for primary tumor formation, it was critical for
lung metastasis but dependent on functional coagulation in the host. Interestingly,
blockage of TF signaling had no effect on metastasis generation (Palumbo and Degen
2007).

The formation of a thrombus at the surface of an arrested tumor cell has also
been linked to increased metastasis through maintenance of cell adherence in the
pulmonary vasculature (Fig. 2.1b) (Borsig 2008; Kim et al. 1998; Im et al. 2004).
Metastatic cells protected in a fibrin clot were able to change from a rounded morphol-
ogy and spread along the inside of a vessel. Those cells that showed stable adherence
to the lung vasculature were able to form significantly more lung metastases than
those prevented from spreading through treatment with anticoagulant agents (Im
et al. 2004). Treatment of animals with the clot-stabilizing drug aprotinin was found
to increase metastasis of B16F10 melanoma cells through prolonging the interaction
between tumor cells arrested in the pulmonary vasculature and cell surface thrombi
(Kirstein et al. 2009). In accordance with this, prevention of thrombus formation with
heparin (Kirstein et al. 2009) or hiruden (Esumi et al. 1991) is linked with reduced
pulmonary metastasis due to decreased cell retention in the lung.

Stable adherence of tumor cells to the vasculature upon arrest appears to be a major
determinant of metastatic efficiency. Comparison of metastatic and non-metastatic
cells injected into the circulation showed no difference in the original number of cells
that arrested in the lung, however only those cell lines that had a metastatic phenotype
were able to persist and form micrometastases in the lung (Kim et al. 2004). Tumor
cell arrest is also influenced by host expression of P-selectin. Platelets isolated from
P-selectin knock-out mice were unable to bind to tumor cells in vitro, and experi-
mental metastasis assays found that there was a decrease in the initial seeding of the
lung tissue in P-selectin-null animals (Kim et al. 1998). Additionally, P-selectin was
found to facilitate tumor cell tethering and rolling along the pulmonary vasculature,
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but further binding by αIIbβ3 was required to stabilize tumor cell adhesion (McCarty
et al. 2000). Integrin α3β1 is also involved in tumor cell adhesion to the vascular
endothelium through sections of exposed basement membrane. Adhesion and mi-
gration of tumor cells was also stimulated by binding of TF on tumor cells to tissue
factor pathway inhibitor −1 on tumor associated vessels which was a surprising
consequence of receptor-inhibitor binding (Fischer et al. 1999).

Tumor cell-associated thrombus formation may also increase metastatic cell sur-
vival in the vasculature, as activation of PAR-1 by thrombin leads to transmission
of survival signals and prevention of apoptosis (Shi et al. 2004). Additionally, many
growth and survival factors are released from platelets upon activation and are there-
fore present within thrombi. Tumor cells are able to bind to the provisional matrix
provided by a fibrin clot thereby increasing metastasis (Fig. 2.1b) (Palumbo et al.
2002; Reijerkerk et al. 2000; Dvorak et al. 1995). Further, plasmin-mediated clot
dissolution may aid tumor cells with the next step in metastasis—extravasation from
the host vasculature.

2.4 Extravasation and Growth Initiation in Secondary Tissue

Compared with the other steps in metastasis, relatively little is known about tumor
cell extravasation at a secondary site. Using cell accounting techniques Luzzi, et al.
(Luzzi et al. 1998) found that the majority of B16F1 murine melanoma cells had
extravasated from the liver vasculature within 3 days of cell injection (Luzzi et al.
1998). Importantly, very few of these cells went on to form micrometastases (2 %)
and even fewer were able to form macrometastases (0.02 %). Two weeks following
tumor cell injection, over one-third of injected cells remained in the liver as solitary,
extravasated cells and 95 % of those identifiable cells were not apoptotic or pro-
liferating (as determined by histological staining for TUNEL and Ki67), indicating
that in the liver, extravasation may not be an essential part of metastatic inefficiency.
Additionally, using the chick chorioallantoic membrane (CAM) found that nearly all
B16F1 cells were able to survive and extravasate following arrest. Tissue inhibitor of
metalloproteinases-1 (TIMP-1) overexpressing B16F1 cells were poorly metastatic,
and yet they were still able to successfully extravasate in the chick CAM model
(Koop et al. 1995). Using ras-transformed and control fibroblasts, it was also found
that extravasation was independent of metastatic ability (Koop et al. 1996). Nearly
all ras-transformed fibroblasts and control fibroblasts (89 and 96 %, respectively)
had extravasated from the chick CAM within 24 h of initial injection. Additionally,
migration of both cell types within the mesenchymal layer was equivalent, despite
having differential invasion capabilities in vitro (Koop et al. 1996).

Direct visualization of tumor cell extravasation was performed recently in a murine
model of brain metastasis (Kienast et al. 2010). Using a cranial window, single
cancer cells were visualized throughout arrest and extravasation. MDA-MD-435
cells were found to arrest in microvessel branch points and extravasate as single
cells. These cells began to proliferate only after successful extravasation and only
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when extravasated cells maintained contact with an abluminal endothelial cell of a
brain capillary (Kienast et al. 2010).

Study of metastasis to the lung vasculature shows a distinct difference from that
seen in the liver and chick CAM, however. Using the 4T1 murine mammary carci-
noma cell line it was found that these cells arrest in the lung as individuals attached
to the vascular endothelium. The cells were able to form small colonies within three
weeks, some entirely maintained within the vasculature. Following growth initia-
tion, the colonies were able to extravasate as micro or macrometastases (Wong et al.
2002). Further to this, fewer than 2 % of HT1080 cells had extravasated from the
lung vasculature within 24 h of tumor cell injection, and were found to form colonies
within the lung vasculature within three days. These colonies showed tumor cells
that projected outwards from the central focus as ‘strings’ following within the cap-
illaries (Fig. 2.1e) (Al-Mehdi et al. 2000). Analysis of experimental metastasis of
B16F10 melanoma cells in the mouse lung found that the majority of injected cells
had extravasated, with no identifiable clusters or single cells within the pulmonary
vasculature within 4 days of injection (Cameron et al. 2000). Using an orthotopic
prostate cancer model, however, the majority of metastatic tumor cells and tumor cell
clusters were found within the vasculature of both the liver and the lung (Zhang et al.
2010). Taken together, these data indicate that the role of extravasation in successful
metastasis formation may be specific to the model, cell type and secondary organ
of study.

Recent work has found a subset of macrophages (CD11b+ Gr−) recruited to tumor
cells arrested in the lung aids in tumor cell extravasation (Qian 2009). The timing of
tumor cell extravasation was directly linked to macrophage recruitment, as depletion
of macrophages at various times following tumor cell injection resulted in either
reduced metastasis number and size, if macrophages were depleted prior to tumor cell
injection, or equivalent number of metastases with reduced size, if macrophages were
depleted after successful seeding of the lung with PyMT induced or MDA-MB-231
tumor cells. Ex vivo imaging of intact lung tissue at various times following tumor cell
injection found that macrophages associated with tumor cells in the vasculature and
increased extravasation (Fig. 2.1d). Five minutes after cell injection all tumor cells
were retained in the lung vasculature. Within 24 h, there was a significant increase in
macrophage association with arrested tumor cells, and ∼75 % of tumor cells were
outside of a vessel, and within 3 days no cells were found completely within a vessel.
Some of the extravasated cells had begun to proliferate as several colonies were
visualized, and these colonies showed extensive macrophage association (Fig. 2.1f).
Macrophage depletion reduced tumor cell extravasation from 75–25 % within 24 h
and within 48 h many fewer cells had survived in the lung. These studies found that
macrophage recruitment to the lung promoted tumor cell extravasation and survival
(Qian et al. 2009).

It is known that arrest of tumor cells is associated with the formation of a fibrin
clot at the arrested cell site. These clots do not persist indefinitely—clot dissolution
is mediated by the powerful protease plasmin (Reijerkerk et al. 2000). This clot
breakdown may aid tumor cell extravasation through activation of MMPs and other
proteinases. Tumor cells that express high amounts of urokinase type plasminogen
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activator (uPA) tend to be more aggressive and metastatic (reviewed in (Kramer et al.
1994)). Clinically, high levels of uPA, uPA receptor (uPAR), plasminogen activator
inhibitor (PAI)-1 and PAI-2 is linked to poor prognosis and increased metastasis
development (Duffy et al. 2008; Harbeck et al. 2004).

The site of metastatic cell arrest and growth has been debated for some time—from
Stephen Paget’s theory of ‘seed and soil’whereby the tumor cell (seed) must arrest in
a permissible secondary tissue (soil) in order to develop into a tumor (Chambers et al.
2002; Ribatti et al. 2006). This century-old theory still has merit as metastatic cells
grow in different tissues depending on the tumor type they originated from. A type
of hospitable ‘soil’ has been identified as a pre-metastatic niche. These regions of
secondary tissue show recruitment of clusters of BMDCs prior to the arrival of tumor
cells. It is thought that primary tumor and tumor stromal secretion of chemokines
direct the migration of these cells, as in vivo injection of media conditioned by
melanoma cells led to similar recruitment and pattern of metastasis as the presence
of a melanoma primary tumor (Kaplan et al. 2005). The primary tumor stimulates pre-
metastatic niche formation through secretion of VEGF and placental growth factor
(PlGF), which recruit VEGF receptor 1 (VEGFR1)-positive cells. PlGF in particular
increases the proliferation of fibroblast-like cells and stimulates their production of
fibronectin (Ruzinova 2003).

BMDCs expressing VEGFR1 and α4β1 arrest in regions of increased fibronectin
synthesis by fibroblasts and fibroblast-like cells. These arrested BMDCs secrete
MMP-9 which may degrade the basement membrane to allow extravasation of more
BMDCs and/or metastatic cells. They are also found to express Id3, which is involved
in proliferation and mobilization of hematopoietic progenitor cells (HPCs) from the
bone marrow and maintains an activated state within the BMDC clusters. These
clusters alter the local microenvironment and activate integrins and chemokines such
as stromal derived factor –1 (SDF-1). This activation leads to further recruitment of
BMDCs and increased attachment, survival, and growth of tumor cells (Fig. 2.1g)
(Kaplan et al. 2005).

Pre-metastatic niche formation can also be directed by platelet aggregation (Mass-
berg et al. 2006). At a site of endothelium disruption, platelet activation was essential
for recruitment of BMDCs, which adhere to P-selectin and αIIbβ3 on the platelet sur-
face, rather than to exposed ECM. Additionally, SDF-1 released from platelets leads
to ongoing retention of BMDC and tumor cell arrest.

2.5 Angiogenesis and Sustained Growth

Sustained primary tumor and metastatic growth beyond ∼1mm3 requires the recruit-
ment of a blood supply (Folkman 1995). Vascularization of tumors promotes growth
by providing oxygen and nutrients and increases metastasis by providing an entry
point into the circulation. Normal tissues undergo angiogenesis during development,
wound healing and tissue regeneration, through a tightly regulated system leading
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to structured, hierarchical branching of vessels (Carmeliet 2005). Tumor vascular-
ization is characterized by highly tortuous dysfunctional vessels due to improper
regulation of angiogenesis (McDonald and Choyke 2003).

High levels of VEGF-A in the tumor microenvironment expressed by tumor cells,
macrophages (Barbera-Guillem et al. 2002; Harmey et al. 1998; Evans 1992), neu-
trophils (McCourt et al. 1999), platelets (McCabe et al. 2006), fibroblasts (Hlatky
et al. 1994) and endothelial cells (Nilsson et al. 2004) tips the balance of pro- and
anti-angiogenic factors and leads to activation of angiogenesis. VEGF-A is elevated
in response to hypoxia and inflammation, which are common in during tumor forma-
tion. Solid tumors tend to have a hypoxic core due to poorly functioning vasculature
leading to constant stimulation of pro-angiogenic factors such as VEGF-A (Byrne
et al. 2005).

The initial reaction to high levels of VEGF-A is destabilization of existing blood
vessels. The number of endothelial cell interactions with stabilizing mural cells
decreases, leading to leaky, dialated vessels (Carmeliet und Jain 2000; Bach et al.
2007). This destabilization is mediated by angiopoietin-2 (Ang-2) (Tait and Jones
2004; Maisonpierre et al. 1997), partly through up-regulation of MMP-1 and -9 (Etoh
et al. 2001) and is found to increase tumor cell entry into the vasculature (Chung
et al. 2006; Nakayama et al. 2005).

Following vessel destabilization, endothelial tip cells begin sprouting through
tightly regulated signaling between Delta-like 4 (Dll4) and Notch (Suchting et al.
2007) which may be de-regulated in the tumor microenvironment resulting in in-
complete vascular remodeling (Noguera-Troise 2006). Tip cells lead the migration
of endothelial cells following chemotactic signals, especially VEGF-A. HPCs and
endothelial progenitor cells (EPCs) are also recruited byVEGF-A signaling to further
increase vessel growth (Hattori et al. 2001). In order for proper vascular function,
vessel growth is followed by vasculature stabilization by pericytes due to PDGF
and Ang-1 signaling (Abramsson et al. 2003; Milner et al. 2009). Ang-1 and PDGF
can be overexpressed in the tumor microenvironment (Tait and Jones 2004; Naka-
mura 2008) yet tumor vessels are poorly stabilized, showing leakiness and poor
pericyte coverage. This indicates that the balance of pro-angiogenic, destabilizing
factors such as VEGF-A are present in higher functional concentration than Ang-1
and PDGF (Hall and Ran 2010). Recent work has also linked MMP-14 and TGFβ

to vascular stability, as MMP inhibition was found to increase vascular leakiness
due to reduced activation of TGFβ present in the ECM. TGFβ was found to sig-
nal through ALK5 to control leakage of small (10 kDa dextran) and large (70 kDa
dextran) molecules in tumor and normal tissue though control of vasodilation and
venular openings (Sounni et al. 2010). These data indicates that TGFβ in the ECM
can modulate host response depending on its bioavailability, and its release by MMP
activity in the tumor stroma may increase tumor cell extravasation through increased
vascular leakiness.

Deregulated angiogenesis in a tumor is due to an imbalance between pro- and
anti-angiogenic factors in the tumor microenvironment. The over-expression of pro-
angiogenic factorsVEGF-A,Ang-2, bFGF and TGFβ leads to constant stimulation of
angiogenesis and a reduction in stabilized vessels. This leads to poor tissue perfusion,
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high vasculature permeability and chronic inflammation and an increase in metastasis
due to ease of metastatic cell entry into the vasculature (Hall and Ran 2010).

The process of angiogenesis in the metastatic setting is thought to proceed through
a similar path as seen in the primary tumor. Initial growth of a micrometastasis is
halted without the recruitment of a blood supply, leading to a functionally dormant
metastasis with balanced levels of proliferation and apoptosis (Naumov et al. 2008).
Tumor cells and macrophages present at the metastatic site stimulate expression of
VEGF-A leading to the same cascade of angiogenic events as seen in the primary
tumor setting.

Blood clot formation at the metastatic site provides further angiogenic and growth
signals as platelet activation results in the release of many growth and pro-angiogenic
factors such asVEGF, PDGF,Ang-1, TGFβ, IGF-1, EGF, and platelet-derived epider-
mal growth factor (PD-EGF). Additionally, thrombin activity is linked to increased
angiogenesis through up-regulation of cathepsin-D which increases endothelial cell
growth, migration and tube formation in vitro (Hu et al. 2008). Thrombin may also
play an important role in angiogenesis through induction of VEGF-A in tumor cells
(Huang et al. 2002) and platelets (Mohle et al. 1997), as well as Ang-1 and -2 from
platelets (Li et al. 2001) and endothelial cells (Huang et al. 2002) respectively.

2.6 Host-Mediated Inhibition of Metastasis

Successful metastasis formation results when tumor cells are able to exploit and
avoid natural host defenses. Yet metastasis is an exceptionally inefficient process,
(Chambers et al. 2002) indicating that the host is capable of preventing progression of
the majority of metastatic cells. The mechanisms behind this prevention are largely
unknown, yet several interesting examples of host triumph over tumor have been
established.

Following tumor cell arrest in the liver vasculature, nitric oxide (NO) is released
and induces apoptosis in B16F1 cells (Wang et al. 2000). B16F1 cell arrest in the
pulmonary vasculature was also found to lead to an eNOS-dependent release of
NO. NO may represent a natural host defense mechanism as it triggers apoptosis
in melanoma cells and reduced the growth of metastatic tumors (Fig. 2.1c) (Qiu
et al. 2003). Accordingly, comparison of metastatic (isolated from VGP tumor) and
non-metastatic (isolated from RGP tumor) melanoma cells following arrest in the
murine lung showed that non-metastatic cells were unable to survive in the pulmonary
vasculature. Within 8 h of tumor cell injection, non-metastatic cells had apoptosed
and were cleared from the lung, whereas metastatic cells persisted and were able to
form metastatic colonies within 7 days (Kim et al. 2004).

Given the extensive interaction between tumors and the host, there is the potential
to alter the microenvironment to create an anti-tumor rather than pro-tumor interface.
It has been proposed that the large number of TAMs present in tumor stroma could be
‘re-educated’ to target tumor cells (Hagemann et al. 2008). Using NF-κB signaling,
tumor cells are able to keep TAMs in an immunosuppressive state. By introducing
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a dominant negative inhibitor of nuclear factor kappa B kinase β (IKKβ) into bone
marrow derived macrophages, TAMs became tumoricidal through release of NO
and through promotion of NK cell-mediated killing (Hagemann et al. 2008). The
extensive interaction between TAMs and metastatic cells throughout invasion and
extravasation as discussed earlier illustrates the great potential for manipulation of
TAM activity to reduce tumor progression.

Normal tissue structure and function is maintained through proper ECM adhe-
sion and tissue polarity. In breast and melanoma tumor development, dysregulation
of cell adhesion represents an initiating step in tumor formation (Li et al. 2003;
Takeichi 1993). Therefore the effect of re-establishing proper tissue architecture and
adhesion in tumor tissues has been investigated (Bissell et al. 2002). It was found
that restoration of proper integrin signaling within a 3D culture setting led to phe-
notypic reversion of breast cancer cells. Without alterations to tumor cell genotype,
tumor cells were induced to form normal breast structures. Metastatic breast cancer
cells could also be reverted to a non-malignant phenotype in 3D culture following
treatment with anti-integrin antibodies (Wang et al. 2002). The global switch in cel-
lular behavior as a direct result of modulation of environmental interaction indicates
the powerful role that the tumor stroma and microenvironment has on tumor de-
velopment and progression and illustrates that many treatment options are available
beyond direct targeting of tumor tissue.

2.7 Summary

The study of tumor biology and metastasis has long been investigated from the
perspective of the individual tumor cell. However, the importance of tumor cell
interaction with host cells and systems has also been recognized. Tumor cells are
unable to form metastases without interaction with many microenvironments—from
the primary tumor stroma, through the host vasculature and host coagulation systems,
to an entirely new environment in a secondary organ. The metastatic cell’s ability to
survive and proliferate in each of these new environments depends on the ability to
influence and often exploit the host. Fundamental to this is the interaction of tumor
cells with the host coagulation pathway and avoidance of the host immune system.
These two major systems exist to maintain tissue homeostasis and health though
elimination of non-normal cells, yet tumor cells are able to circumvent these host
responses and turn them from anti-tumor to pro-metastatic. Full understanding of the
interplay between tumor progression and host responses is essential for understanding
metastatic disease and successful patient treatment.
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Chapter 3
Introduction to Metastasis Suppressor Genes

Jean-Claude Marshall, Silvin Bakalian and Claudia Maria de Oliveira Martins

In the past forty to fifty years, clever scientific insight and innovation has rapidly
advanced our understanding of the molecular mechanisms of cancer biology. The
discoveries of oncogenes and tumor suppressors and the elucidation of their functions
has greatly aided our understanding of the molecular etiology of primary tumors. In
the last decade, there has been an explosion in the technology available to scientists
to study the genetics of cancer cells at several different levels. It is now possible
to study a particular cancer at the whole genome, transcriptome, and proteome lev-
els. This vast increase in available information has led to significant advancements
in our understanding of the genetic variations and mutations, which can drive the
development of a primary tumor in patients.

Despite these advancements, cancer biologists still have relatively little under-
standing of the molecular aspects of metastasis. Considering that metastasis is the
primary cause of mortality in patients who are diagnosed with most types of cancer,
it is obvious that this field requires substantially more investigation. Our understand-
ing of the biological role that genes play in metastasis is still in its infancy, with
considerable breakthroughs to come based on our current knowledge. In this chapter
we will describe areas in which our understanding of metastasis has evolved during
the past several decades and where significant advances have already been made.

One of the first landmark findings to be described in understanding the pathways
involved in the formation of primary tumors and subsequent formation of metastasis
were the tumor suppressor genes. These genes were characterized when it was dis-
covered that their loss of function was a critical step in tumorigenesis. The first
of these genes to be described was retinoblastoma (Rb). Prior to its discovery, the
prevailing theories of the day was that the oncogenic phenotype was always dominant
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in cells, meaning that a mutation was required in a single allele of a gene in order for
a normal cell to be transformed into a tumor cell. However, not all disease incidence
data appeared to fit neatly into this hypothesis. Research into retinoblastoma case
history yielded a new hypothesis, that predicted in at least some cancers the need
for two mutations to occur, one on each allele, in order to successfully transform
a normal cell into a tumor cell (Knudson 1971). The Rb gene would subsequently
become known as the first described tumor suppressor. Since this discovery, it has
become widely accepted that “two hits” are required, and that these may result from
any combination of germ line, and or somatic mutations, mitotic recombinations,
gene conversions, and functional inactivation of genes. To date there is an extensive
list of tumor suppressors that have been described in the literature, which includes:
Rb, p53, APC, PTEN, TSC1, and NF1 among many others. The discovery of Rb
opened and entire new field of research for tumor suppressor genes which could
regulate the formation of primary tumors.

Translating that discovery into the understanding of metastasis was a more prob-
lematic challenge, one that would take several more years to arrive. The prevailing
view at the time was that the formation of metastasis was too complex to be dissected
mechanistically. Furthermore, it was believed that once cancer cells had escaped
from the primary tumor location and entered either the lymphatics or blood stream it
became only a matter of time before the patient would succumb to metastatic disease.

This was the scientific thinking before a novel hypothesis was proposed by Steeg
et al. in 1988 (Steeg et al. 1988a). They proposed that there existed a set of genes
that were analogous to tumor suppressor genes, but which would function in the
metastatic process and whose functional loss would contribute to the tumor cells
gaining metastatic ability. To test this hypothesis they used a comparative hybridiza-
tion screen with 32P-labeled mRNA probes generated from cell lines possessing low
and high metastatic potential (Steeg et al. b). From this screen they identified a cDNA
clone, labeled non-metastatic clone #23 (Nm23), that exhibited higher expression
in the low metastatic cell lines versus the highly metastatic ones. Subsequent in
vivo functional studies showed that both highly metastatic mouse and human cells
transfected to express Nm23 physiological expression levels and injected into mice
significantly reduced the formation of metastasis at secondary sites, independent of
the formation of primary tumors. In particular, pulmonary metastases were reduced
by as much as 96 %. This confirmed that Nm23 was the first of what is now an entire
field of study of metastasis suppressor genes (Leone et al. 1991, 1993). Perhaps
just as importantly, this work provided direct evidence that the formation of a pri-
mary tumor and subsequent metastasis were separate events and that the formation
of metastasis could therefore be specifically targeted and studied.

Since the discovery of Nm23 the field of metastasis suppressor genes (MSGs)
has expanded to include more than 20 (Horak et al. 2008). The current working
definition of an MSG is the ability of that gene to suppress spontaneous metastases
formation without affecting the growth of the primary tumor in vivo. Although it has
become possible to study the formation of metastasis and to try to dissect each step
a cell must complete in order to metastasize (migration, invasion, extravasation, ad-
hesion, and proliferation at a secondary site) the overall pathways and mechanisms
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involved in metastasis remain highly complex. To date, a variety of researchers
have shown that MSGs are involved in several pathways that regulate multiple steps
in metastasis, indicating that MSGs can inhibit metastatic ability at several points
throughout the metastatic process. For example three well studied MSGs, MKK4,
MKK7 and MKK6 are involved in the stress-activated MAPK pathway that can regu-
late cell cycle progression and/or apoptosis (Chekmareva et al. 1997). While another
MSG, RhoGDI2 regulates cytoskeletal reorganization and motility by inhibiting Rho
(Gildea et al. 2002).

3.1 MSG Identification and Validation Strategies

Since the characterization of Nm23, the search for additional candidate MSGs has
involved using a wide variety of techniques including subtractive hybridization, dif-
ferential display, microcell-mediated chromosome transfer (MMCT), and microarray
analysis. The latter two in particular have proven to be valuable, giving rise to a large
number of putative MSGs in the last decade.

Early on during the search for MSGs, MMCT was widely used to discover candi-
date genes. In this process, growing cells are blocked in mitosis and then their mitotic
spindle is chemically disrupted, allowing the condensed chromosomes to drift freely
(McNeill and Brown 1980). The cells were then allowed to re-enter the cell cycle
and the free chromosomes would become membrane bound, forming micronuclei
that contained single or multiple chromosomes. From these single chromosomes,
microcells could be further isolated using chemical treatments, differential centrifu-
gation and filtrations. The microcells containing the chromosome of interest could
then be fused to recipient cells, such as metastatic cancer cells. The newly formed
hybrid cells were then screened and if they were found to have suppressed metastatic
capabilities compared to the parental cell, positional cloning techniques would be
used to pinpoint genes of interest on the transferred chromosome. This was quite
labor intensive and required significant amounts of time to pinpoint individual genes
from the chromosomes that were responsible for the decreased metastatic phenotype.

More recently, the development of microarray technology, especially its refine-
ment over the past decade, has greatly facilitated the search for MSGs. The concept of
microarray analysis is simple, although in practice it can become quite complicated
by the need for bio-informatic analysis. Oligonucleotide probes corresponding to
thousands of gene products are adhered to a substrate, usually either glass or silicon
in an ordered array. RNA that has been isolated from the tissue or cells of interest is
then labeled and hybridized with the arrayed probe and the fluorescent intensities of
the hybridized samples are measured. The intensity is compared to a standardized
sample or control, which allows for the determination of if the gene products are
either up or down regulated in comparison. This technique allows for the analysis of
relative gene product expression from tens of thousands of genes using only pico-
moles of nucleic acid products. Candidate MSGs may then be identified on the arrays
either by their reduced expression in metastatic versus non-metastatic cell lines, or in
clinically resected tumors associated with metastatic versus non-metastatic disease.
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The presence of thousands of probes poses an informatic problem which includes
sorting through the data and separating it from background noise.

Validation of these candidate MSGs are usually done via a variety of in vitro and
in vivo tests. To accomplish this, metastatic cell lines expressing low levels of the
candidate MSG are generally used. Stable s of the MSG to force expression of the
candidate gene product at physiological levels are then established and these cells
are used and compared to the parental cells in the assays. The MSG candidates may
display in vitro characteristics of metastasis suppression, including decreased motil-
ity, invasion, anchorage independent growth and angiogenesis. While the presence
of a decreased in vitro metastatic phenotype is suggestive of an MSG it is not the gold
standard for establishing a new metastasis suppressor gene. These must be carried
out with in vivo testing, either by a spontaneous or experimental metastasis assay. In
the spontaneous assay, cancer cells are implanted into the orthotopic site allowing
primary tumors and subsequent metastatic formation and growth. The experimen-
tal metastasis assay by-passes the formation of the primary tumor, with tumor cells
injected directly into the blood, either intravenously or intracardiacly, from where
they will form metastasis. The use of a spontaneous assay is preferable as this allows
for measurement of the primary tumor formation as well as characterization of the
proposed MSGs affect on metastasis. Experimental assays generally take less time
to develop metastases and occasionally orthotopic injection of primary tumor cells
is difficult to accomplish. Therefore in order to conform to the definition of an MSG,
transfected cells must also be injected to form a measurable primary tumor.

The development of optical and molecular imaging techniques for the assess-
ment of in vivo metastasis formation has recently been the source of considerable
interest. These techniques, such as fluorescent protein labeled cells (GFP, RFP), bio-
luminescence such as luciferase tagged cells, and magnetic resonance imaging allow
for in vivo imaging without the need to sacrifice the animal. While this obviously has
its benefits, it is important to recognize the limitations that are inherent to each tech-
nique: the imaging data may add to the overall understanding of metastasis formation
in these models but they must always be confirmed by pathological examination of
the tissue to confirm metastases.

Only after this in vitro and in vivo confirmation does a MSG gene loose its status
as candidate and become accepted as a true metastasis suppressor gene by causing a
decrease in the number of quantifiable metastases without affecting primary tumor
growth.

3.2 MSG and Metastatic Colonization

Collectively, the steps required for a tumor cell to leave the primary tumor and become
an established metastasis have been termed the metastatic cascade. The complex
process of the metastatic cascade begins when tumor cells acquire the ability to break
away and grow independently from a primary tumor as well as migrating through the
complex network of proteins, proteoglycans and collagens of the extracellular matrix.
These cells then intravasate into the blood or lymphatic vessels where they survive the
shear stress involved in transportation, resist anoikis, and evade immune surveillance.
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Following vessel transport, metastatic cells may become lodged in capillary beds
due to their size or the size of emboli (both homotypic or heterotypic), or adhere
to integrins and other receptors on organ-specific endothelial cells. In response to
chemoattractants, extravasation from vessels at a secondary location follows, but is
not absolutely essential, to proceed to subsequent steps. Following extravasation,
metastatic cells must then complete the most crucial, and perhaps most selective,
step of the metastatic cascade, proliferation at the secondary site. This last step or
metastatic colonization is defined as the process by which disseminated tumor cells,
present as single or small clusters of cells in a second parenchyma (micrometastasis),
grow to form a clinically detectable metastatic nodule (macrometastasis).

The fate of cells in this last step of the metastatic cascade is complex and to date
poorly studied. They may either extravasate into the surrounding tissue or remain
within the vasculature. In either location they can undergo proliferation, apoptosis
or remain essentially quiescent for extended periods of time. Work from metastasis
suppressor studies supports previous findings that growth in the primary tumor and
metastatic site are not identical processes. A number of preclinical drug studies show
disparate effects on primary tumor and metastatic growth leading to the conclusion
that applying the well-worn principles of primary tumor growth is unlikely to produce
a complete understanding of metastatic colonization. Studies are only beginning to
tease out the cancer cell-microenvironmental interactions that contribute to cell fate
and ultimately metastasis formation. Metastasis suppressors are proving to be an
important tool in these in vivo mechanistic studies.

Clinically, metastatic colonization may represent an optimal and untapped thera-
peutic target. In breast cancer, once a patient is diagnosed with a lymph node positive
tumor, invasion has already occurred and it is probable that cells have already dissem-
inated into the vasculature. It is also likely that these cells have lodged at secondary
sites implying that cells need only to survival and ultimately grow in order to com-
plete the colonization process. The finding that some metastasis suppressors seem to
specifically affect metastatic colonization, as described later in this chapter, provides
a unanticipated application for their use in developing molecular therapeutics that
target their functions/pathways. This may change disease management by extend-
ing the dormancy of the disseminated tumor cells making the disease a clinically
treatable chronic condition, or perhaps even killing disseminated cell in the adjuvant
setting thereby preventing metastasis formation altogether. While these are important
clinical goals, current cancer research is only beginning to look at targeting these
cells in a mechanistic manner.
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Chapter 4
Metastasis Suppressor Genes

Jean-Claude Marshall, Silvin Bakalian and Claudia Maria de Oliveira Martins

Below is a list of the most extensively studied MSGs, describing their initial
characterization as well as what possible mechanism has been characterized for each.

4.1 NM23

Steeg and coworkers discovered and validated the first MSG in 1988, which they
named NM23. The results of the study showed that the RNA levels of NM23 were
highest in cell lines and tumors with relatively low metastatic potential in two differ-
ent experimental systems; the first was in murine K-1735 melanoma cell lines and
the second was in rat mammary carcinomas. Since this date, eight isotypes of human
NM23 have been described (Nm23-H1 through Nm23-H8) (Lacombe et al. 2000).
Among these isotypes, it has been shown that only Nm23-H1 and Nm23-H2 possess
anti metastatic abilities. These isotypes have been studied extensively in different
types of tumors including melanomas (Hartsough and Steeg 2000). The metastasis-
suppressive function of NM23 was previously correlated with its histidine protein-
kinase activity in site-directed mutagenesis experiments (Freije et al. 1997; Wagner
et al. 1997). Recently, Steeg et al. reported that NM23 co-immunoprecipitated with
the kinase suppressor of RAS (KSR) protein, which is thought to be a scaffold protein
for the extracellular signal regulated kinase–mitogen activated protein kinase (ERK–
MAPK) pathway (Hartsough et al. 2002; Morrison 2001). NM23 was shown to
phosphorylate KSR serine (Ser) 392 (a 14-3-3 binding site) and Ser 434, which was
phosphorylated in vivo (Cacace et al. 1999; Volle et al. 1999). Therefore, it was
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hypothesized that the phosphorylation of KSR by NM23 altered its scaffold function,
possibly by altering the docking of proteins or KSR intracellular localization, which
lead to reduced ERK activation in response to signaling (Steeg 2003). In agreement
with these findings, Steeg et al. showed that MDA-MB-435 breast carcinoma cells
that over expressed NM23 showed reduced ERK activation levels compared with
vector-alone control transfectants. In addition, a histidine-kinase-deficient mutant of
NM23 (Nm23-H1P96S) showed high levels of activated ERK, comparable to those
of the control transfectants. Combining all this research, the authors concluded that
altered levels of NM23 in metastatic versus non-metastatic tumor cells might impact
ERK activation through a complex interaction with the KSR scaffold protein (Steeg
2003).

NM23 represents the most extensively studied and confirmed MSG. The afore-
mentioned data was recently extended by the characterization of Nm23-M1 knockout
mouse, where they induced hepatocellular carcinoma in mice that contained Nm23-
M1 or lacked Nm23-M1. The results of the study showed that the size of the primary
tumor of the knockout mice did not change significantly, but the incidence rate of
metastases increased significantly in the knockout mice (Boissan 2005).

Different expression levels of NM23 gene products have been widely reported
in different human tumor cohorts. Reduced NM23 gene products expression are
correlated with aspects of high metastatic potential including reduced overall sur-
vival time, the presence of lymph node metastases, and poor tumor differentiation
grade in a subset of breast, gastric, ovarian, cervical, hepatocellular carcinomas and
melanoma cohorts.

A study performed by Heiman et al. showed that the fifteen-year disease-free
survival rate was found to be significantly better in breast cancer patients with high
Nm23 immunostaining compared to low Nm23 immunostaining. Moreover, Nm23
was associated with excellent survival, even when there were other unfavorable
prognostic markers such as angiogenesis or nuclear grade (Heimann et al. 1998).

Differential colony hybridization between low and high metastatatic murine
melanoma cell lines identified different levels of Nm23. The mRNA levels of the
Nm23 were ten-fold higher in low metastatic clones compared to high metastatic
clones.

Similarly, significantly lower levels of Nm23 mRNA were detected in cell lines
that were derived from aggressive primary melanomas. These melanomas showed
higher Clark’s level and greater Breslow thickness, which are considered to be poor
prognostic markers for cutaneous melanoma patients (Caligo et al. 1994). Nm23
protein expression in primary cutaneous melanomas was found to be significantly
and inversely correlated with the dermatopathological predictors of poor prognosis
in patients with localized melanoma, including thickness, ulceration, level of inva-
sion, and mitotic figures (Ferrari et al. 2007). Using tissue microarray analysis in
one hundred and twenty patients with primary cutaneous melanoma an important
role for Nm23 assessment in these patients was suggested. The results of the study
showed that Nm23 expression was strongly correlated with Clark’s level (P < 0.001),
Breslow depth (P = 0.002) and patient age (P = 0.014). In addition, Nm23 expression
was significantly associated with poor patient outcome (chi2 = 7.2219, P = 0.0072).
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Further analysis revealed that the intensity of Nm23 expression was also correlated
with patient outcome (chi2 = 11.3281, P = 0.0035) (Pacifico et al. 2005).

A study performed by Bakalian et al. showed that the invasive abilities of different
human uveal melanoma cell lines with different metastatic potentials increased after
silencing the expression of Nm23-H1 in these cell lines with small interference
RNA. Furthermore, uveal melanoma patients with high immunostaining intensity for
Nm23-H1 survived longer as opposed to patients with low immunostaining intensity
(Kaplan-Meier test P = 00097). They concluded that Nm23-H1 could be a prognostic
marker to predict the survival rate of uveal melanoma patients and could be a potential
marker to identify high-risk patients (Bakalian et al. 2007).

4.2 RHOGDI2

Theodorescu and coworkers recently has identified the Rho family GDP dissociation
inhibitor 2 (RhoGDI2) protein as a functional metastasis suppressor gene in bladder
cancer. RhoGDI2 was originally identified during differential studies of invasive and
metastatic properties of isogenic human bladder carcinoma cell lines, where T24
(non-metastatic), and T24T (highly invasive and metastatic) cell lines, using ex-
perimental metastasis models and comparative genomic studies (Seraj et al. 2000a;
Titus et al. 2005). The results of the studies demonstrated that reduced expression
of RhoGDI2 correlated with increasing invasive and metastatic activities in T24T
highly invasive and metastatic cells. In human bladder tumors, the RhoGDI2 level
inversely correlated with the development of metastatic disease, and multivariate
analysis identified RhoGDI2 as an independent prognostic marker of tumor recur-
rence following radical cystectomy (Theodorescu et al. 2004). Therefore, RhoGDI2
is considered a prognostic marker in bladder cancer patients after cystectomy, where
diminished expression is associated with decreased patient survival (Theodorescu
et al. 2004). Using DNA microarrays to monitor the changes in gene expression fol-
lowing restoration of RhoGDI2 expression, Titus and coworkers identified several
potentially targetable proteins, including the endothelin-1 ligand (ET-1), that were
suppressed in the presence of RhoGDI2 protein. The results of the study revealed that
loss of RhoGDI2 during the clinical progression of bladder carcinoma might lead
to up-regulation of the endothelin axis. The later was confirmed by examining the
relationship between RhoGDI2 expression levels and those of ET-1 in human tumor
samples and cell lines. These findings suggested that adjuvant trials with endothelin
antagonists might be contemplated for patients with advanced bladder carcinoma
following the initial therapy (Titus et al. 2005). Lately, RhoGDI2 has been found to
suppress the expression of neuromidinU, a molecule that mediates both increased
growth of metastases and increased tumor cachexia in animal models (Wu et al.
2007). All these experiments showed a novel approach of identifying downstream
therapeutic targets of metastasis suppressor genes. This new therapeutic approach
warrants further clinical evaluation.
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4.3 Ndrg1

N-myc downstream regulated gene 1(NDRG1) was originally identified by differen-
tial displays as being significantly up regulated by induction of in vitro differentiation
of colon carcinoma cells (van Belzen et al. 1997). NDRG1 has been shown to act
as a tumor suppressor as well as a metastasis suppressor depending on cell con-
text (Kovacevic and Richardson 2006). The level of the NDRG1 expression was
inversely related with the status of metastasis in breast and prostate carcinoma pa-
tients, supporting the notion that NDRG1 is a tumor metastasis suppressor gene
(Bandyopadhyay et al. 2003, 2004). Ectopic expression of the NDRG1 gene in a
highly metastastic prostate cancer cell line significantly reduced the incidence of
lung metastases, suggesting that NDRG1 was able to block the metastatic process
without affecting the primary tumor growth (Bandyopadhyay et al. 2003, 2004).
NDRG1 significantly suppressed the invasive potential of prostate and breast can-
cer cells as tested by in vitro invasion chamber assay (Bandyopadhyay et al. 2003,
2004). Similar metastasis suppressor effect of NDRG1 was also observed in colon
carcinoma cells (Guan et al. 2000).

Studies in which mice injected with SW620 colon cancer cells over expressing
Ndrg-1 resulted in only 23 % of these developing liver metastases,compared to 75
% in the control group (Guan et al. 2000). To date, there has been little assessment
of the molecular targets of Ndrg-1 that mediate its anti-metastatic activity. The ad-
hesion molecule and metastasis suppressor, E-cadherin was found to be up regulated
by Ndrg-1 (Guan et al. 2000). Increased expression of E-cadherin has been shown
to reduce the motility of metastatic breast cancer cells in vitro (Liu et al. 2005).
However, it is widely believed that E-cadherin is not the only molecular target of
Ndrg-1 that contributes to metastasis suppression. Recently, it has been shown that
Ndrg-1 expression was regulated by cellular iron levels and induced by iron chela-
tors (Kovacevic and Richardson 2006). These latter compounds were identified as
potential anticancer agents as they selectively prevent cancer cell proliferation and
lead to apoptosis. The discovery that iron chelators increase Ndrg-1 expression fur-
ther augments their antitumor and anti metastatic activity and offers a potential new
strategy for the treatment of cancer and metastases.

4.4 RKIP

It has been shown that RKIP negatively regulates the Raf/MEK/ERK pathway by
interfering with the activity of Raf-1. In its phosphorylated state, RKIP dissociates
from Raf-1 and inhibits GRK-2, a negative regulator of G-protein coupled receptors
(GPCRs). In addition, it has been demonstrated that RKIP is a negative regulator of
the NF-kappaB pathway. Recent studies have also shown that phosphorylated RKIP
binds to the centrosomal and kinetochore regions of metaphase chromosomes, where
it may be involved in regulating the partitioning of chromosomes and the progression
through mitosis. Therefore, evidence based research indicates that RKIP regulates
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the activity and mediates the cross talk between several important cellular signaling
pathways of metastasis, angiogenesis, resistance to apoptosis, and genome integrity
(Klysik et al. 2008).

The first evidence about RKIP came from cell lines derived from metastatic
prostate cancers, which displayed decreased levels of RKIP mRNA and protein
as compared with primary tumor cell lines (Fu et al. 2003). Furthermore, studies
showed that over-expression of RKIP in metastatic cancer cells decreased their in-
vasive capabilities. Consistent with the notion that RKIP is a potent suppressor of
metastases, experiments from several laboratories have demonstrated that malignant
melanomas, breast cancer lymph node metastases, colorectal cancer, and hepatocar-
cinoma cells frequently display a marked decrease in RKIP expression (Klysik et al.
2008).

Recently, measuring the levels of RKIP in the blood has been proposed as a
prognostic marker for prostate cancer patients, where RKIP plays a major role (Fu
et al. 2006). A study performed by Zhu et al. showed that a small molecule, called
locostatin, has the ability to abrogate RKIP’s ability to inhibit Raf (Zhu et al. 2005).
Interventions capable of enhancing RKIP-1 activity would be particularly useful for
the control of metastatic cells that display attenuated steady-state levels of RKIP-1.
Therefore, future studies evaluating the drug-induced modulation of RKIP expression
may provide a potent means of controlling metastases.

4.5 KISS1

KISS1 is one of the metastasis suppressor genes that appears to function in the
dormancy phase of the metastatic cascade. In addition, the gene encodes a protein
that is further cleaved (called metastin) that likely exerts its function through the
binding of metastin to a G-coupled-receptor. This event makes KISS1 a possible
candidate for therapy.

KISS1 was identified as a metastasis suppressor gene in melanoma cells in 1996
by Lee et al., when transfection of a full-length KISS1 cDNA into C8161 melanoma
cells suppressed metastasis in an expression-dependent way (Lee et al. 1996).

Nash et al. were the first to show that the introduction of KISS1 into highly
metastatic human melanoma cell lines C8161 and MelJuSo suppressed in vivo metas-
tases to the lung by more than 95 % (Miele et al. 1996). Interestingly, introduction of
KISS1 into a metastatic breast cancer cell line MDA-MB-435 also showed a > 95 %
suppression of metastases to the lung (Lee and Welch 1997).

It was also demonstrated that loss of KISS1 mRNA expression correlated with the
conversion from benign to malignant phenotype in human melanoma (Shirasaki et al.
2001). This data strongly suggested KISS1 metastasis suppression being pertinent in
tumors of broadly different origins, a conclusion that was confirmed by later studies
(Ikeguchi et al. 2004). Furthermore, reduced KISS1 expression has been shown to be
a strong prognostic marker in patients with urinary bladder cancer (Sanchez-Carbayo
et al. 2003) and gastric carcinoma (Dhar et al. 2004).
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In general, loss or reduction of KISS1 expression in different tumor types nega-
tively affected tumor progression, metastatic potential, and survival (Nash and Welch
2006).

Goldberg et al. showed that when chromosome 6 hybrid cells were injected in-
travenously into athymic mice, grossly detectable metastases did not form. Despite
arriving in the lungs at frequencies comparable to the controls, the Mkk4 and KISS1
metastasis suppressor transfectants failed grow (Chekmareva et al. 1998; Goldberg
et al. 1999). The results of these studies are responsible for identifying the role of
these genes in the dormancy phase of the metastatic disease.

KISS1 encodes a 145-amino acid residue peptide that is further processed post-
translationaly. One of the products, a 54-amino acid peptide is called Metastin or
Kisspeptin-54 and is a natural ligand to a G-coupled receptor known as HOT7T175/
AXOR12/GPR54 (Ohtaki et al. 2001).

Evidence suggests that KISS1/metastin promotes dormancy of solitary cells (Nash
et al. 2007) and acts in the final stage of tumor cell colonization at the metastatic
site (Steeg 2004). A potential therapeutic approach involves administering exogenous
KISS1 which has been shown to suppress cutaneous melanoma metastasis to multiple
organs and enhanced median survival almost three-fold (Steeg and Theodorescu
2008). This has become a possibility due to the advent of small molecule mimetics.

Orsini et al in 2007 reported a molecule in which structure-activity approach
may yield pharmacologically useful compounds relevant in defining and modulating
metastin receptor function (Orsini et al. 2007).

4.6 KAI1

KAI1 is also known as CD82, R2, C33, IA4, and 4F9. It structurally belongs to
tetraspanin family while categorized as metastasis suppressor gene (Malik et al.
2009). Tetraspanins are large group of cell surface transmembrane proteins with four
transmembrane structures, which can form complexes with integrins.

KAI1/CD82 was initially identified as a metastasis suppressor of prostate cancer.
However, evidence supports KAI1/CD82 as a invasion- and metastasis-suppressor
during the progression of a variety of solid tumors (Malik et al. 2009).

The role of KAI1/CD82 in cancer progression was discovered by a genetic screen
attempting to identify metastasis suppressor genes. Using microcell-mediated chro-
mosome transfer, human gene(s) responsible for suppressing metastasis of the highly
metastatic ratAT6.1 prostate cancer cells was mapped to the short arm of human chro-
mosome 11. Later on, an important progress was made, by cloning the metastasis
suppressor gene located on human chromosome 11 p11.2–13, which was named
KAI1 (Ichikawa 1992).

KAI1/CD82 expression leads to a marked suppression of lung metastases ofAT6.1
prostate cancer cells, with no effect on the growth rate of the primary tumor (Dong
et al. 1995).

KAI1 appears to prompt dormancy in solitary tumor cells by binding DARC on
the surface of vascular endothelial cells and inducing tumor cell growth arrest.



4 Metastasis Suppressor Genes 43

An inverse correlation between KAI1/CD82 expression and the invasive and
metastatic potentials of cancer has been frequently observed in a wide range of
malignancies such as prostate, gastric, colon, cervix, breast, skin, bladder, lung,
pancreas, liver, and thyroid cancers (Liu and Zhang 2006).

4.7 MKK4 and MKK7

Mitogen-activated protein (MAP) kinase kinase 4 (MKK4) is a component of stress
activated MAP kinase signaling modules. It directly phosphorylates and activates
the c-Jun N-terminal kinase (JNK) and p38 families of MAP kinases in response to
environmental stress, pro-inflammatory cytokines, and developmental cues (Whit-
marsh and Davis 2007). The human MKK4 gene is located on chromosome 17 and
encodes a protein of 399 amino acids (Yoshida et al. 1999).

MKK7 (also known as JNKK2) and MKK6 are also mitogen-activated protein
kinase kinase that specifically phosphorylate JNK and p38, respectively (Vander
Griend 2005)

Yoshida et al. first characterized MKK4 as an MSG in 1999 when they reported
a reduction of the metastatic potential of prostate cancer cells by 80 % in a spon-
taneous metastasis assay (Yoshida et al. 1999). These experiments using the highly
metastatic rat prostate cancer cell line AT6.1 (which lacks MKK4 expression) as
a model system have demonstrated that the overexpression of MKK4 significantly
reduces their metastatic ability (Whitmarsh and Davis 2007).

There is strong evidence that MKK4 play a role in dormancy of metastatic cells. In
a model of spontaneous metastasis, MKK4 was shown to be required for suppression
of overt metastases by inhibiting the ability of disseminated cells to colonize the lung
(secondary site) (Vander Griend 2005). Ectopic expression of MKK4 also prolonged
survival after surgical resection of the primary tumor from 7–20 days. Metastatic
lung cells from mice were then cultured again in plaques and showed viability,
stressing the dormant behavior of tumor cells expressing the gene (Vander Griend
2005). MKK-7 also plays an important role in dormancy, since it showed the same
results as MKK-4 in these experiments. It was shown that ectopic expression MKK-7
suppresses the formation of overt metastases, whereas MKK6 had no effect (Vander
Griend 2005).

A tissue-specific role for MKK7 was indicated when a difference between MKK4
and MKK7’s regulation in dormancy was traced to the JNK arm of the MAPK
pathway. In prostate cancer, MKK4 functions through the JNK pathway, which is
also regulated by MKK7. NK activation leads to inhibition of the pro-survival gene
Bcl2 and activation of the apoptotic genes BAX, Cytochrome C, Bim/Bmf, and c-Jun.
The kinase activities of MKK4 and MKK7 were functional only in the metastatic
site and not the primary tumor as identified using immunoprecipitation from primary
and lung metastases.

The impaired expression of MKK4 in prostate and ovarian tumors appears to
promote their metastasis (Yoshida et al. 1999; Yoshida et al. 2001), while reduced
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MKK4 mRNA levels have been reported in breast cancer to brain metastases (Stark
et al. 2005)

In normal prostate tissue there are high levels of MKK4 protein expression in the
epithelial compartment but not in the stromal compartment, whereas in neoplastic
prostate tissues the levels of MKK4 were reduced and there was in inverse relationship
between the reduction of MKK4 expression and metastatic potential (Kim et al.
2001). Also, MKK4 protein expression is also reduced in ovarian metastatic tissues
compared to normal ovarian epithelial cells (Yamada et al. 2002).

All these studies suggest that MKK4 functions as a metastasis suppressor that
works in the dormancy phase of the metastatic cascade. It is probable that differ-
ent tissues and organs dictate which MAP kinase pathway is targeted by MKK4
depending on specific stimuli.

4.8 BRMS1

BRMS1 (Breast Cancer Metastasis Suppressor) was identified using a combina-
tion of clinical observation and molecular biology. Seraj et al. identified BRMS1
by differential display comparing metastasis-suppressed chromosome 11 hybrids
with metastatic, parental MDA-MB-435 human breast carcinoma cells. BRMS1 has
subsequently been shown to suppress metastasis, but not tumorigenicity of human
melanoma cells (Seraj et al. 2000b). A spontaneous metastasis assay was performed
and originally showed to functionally suppress the metastatic capacity of breast
cancer cells following injection into immunocompromised, athymic mice (Seraj
et al. 2000b). BRMS1-transfected MDA-MB-435 cells demonstrated a decreased
incidence and number of metastases to lung and regional lymph nodes when cells
were injected orthotopically. These results demonstrated that BRMS1 suppressed
metastasis without significantly affecting tumorigenicity, indicating that BRMS1 is
a metastasis suppressor gene (Meehan and Welch 2003).

Further studies have proven that BRMS1 is not only a metastasis suppressor gene
in breast cancer models but also in various other cancers such as melanoma and
ovarian cancer (Meehan and Welch 2003). Recent studies have also demonstrated
that low levels of BRMS1 protein correlated with poor prognosis in cancer patients
with advanced metastatic disease. In addition, reduced BRMS1 mRNA levels have
been shown to correlate with reduced disease-free survival in breast cancer patients.

BRMS1 is thought to possibly regulate metastasis through multiple mechanisms;
such as the restoration of gap junctions, influencing phosphoinositide signaling,
regulating genes through histone deacetylase (HDAC) interaction, and complex for-
mation and inhibiting NFκB signaling in breast cancer. In particular, BRMS1 has
been shown to downregulate osteopontin (OPN) expression by modulating the ac-
tivity of NFκB signaling in breast cancer. Hedley et al. reported that decreased OPN
associated with BRMS1 expression contributes to its metastasis suppression activity
(Metge et al. 2010).



4 Metastasis Suppressor Genes 45

BRMS1 suppresses metastasis by inhibiting multiple steps in the metastatic
cascade through different regulation mechanisms of many protein-encoding and
metastasis-associated genes.
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Chapter 5
Metastatic Dormancy and Metastasis
Suppressor Genes

Jean-Claude Marshall, Silvin Bakalian and Claudia Maria de Oliveira Martins

To date it is evident that MSGs can suppress metastasis by inhibiting several different
steps in the metastatic cascade. Several of the MSGs can inhibit tumor cell motil-
ity and invasion, while others can impinge upon tumor cell arrest and extravasation
at the secondary site. In addition, a growing list of MSGs that function by induc-
ing dormancy and regulating the final stage of the metastatic cascade, metastatic
colonization has been discovered. The idea of metastatic dormancy has become of
significant interest to cancer researchers, encouraged by clinical findings similar to
those of breasts cancer studies in which up to 45 % of patients with invasive breast
cancer will relapse years or even decades after successful treatment for the primary
tumor (Aguirre-Ghiso 2007).

Two different types of metastatic dormancy have been studied using experimental
model systems. The first involves solitary tumor cells that have survived to arrive at
a distant organ and are neither proliferating nor undergoing apoptosis. The second
type of tumor dormancy has been characterized as small clusters of tumor cells,
known as micrometatstases, which have implanted at a secondary site and either no
longer proliferate, or have a balanced rate of proliferation and cell death, resulting
in no increase in size of the micrometastases. These dormant, micrometastases may,
in part, be explained by their failure to induce angiogenesis and recruit additional
nutrients to their location (Naumov et al. 2006a, b). While the phenomenon of
metastatic dormancy has become generally accepted, the actual mechanisms of how
a metastatic cell becomes dormant are only now beginning to be studied. Recently
a possible marker of metastatic dormancy has been described (Aguirre-Ghiso et al.
2003, 2004). In a series of experiments, Aguirro-Ghiso et al. showed that a balance
between phosphorylated activated Erk, a component of the MAPK pathway and
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phosphorylated p38, a stress activated protein kinase, was important for tumor cell
dormancy. Increased levels of phosphorylated p38 induced a dormant state in tumor
cells that was reversible. This may prove to be of therapeutic benefit as, by using
targets regulated by MSGs, such as LPA1 by Nm23 (Horak et al. 2007a, b), it may
be possible to induce metastatic dormancy in patients.

To date, four metastasis suppressor genes have been well characterized as having a
potential role in dormancy, while evidence for other MSGs continues to be reviewed.
KISS1, as previously described in this chapter, was first characterized as an MSG
in 1996. It is unique among MSGs as it encodes for secreted polypeptides that are
known as kisspeptins. Evidence suggests that secretion of these kisspeptins and
binding to the G protein coupled receptor GPR54 can promote dormancy of solitary
cells. Fluorescently labeled cutaneous melanoma cells were injected into athymic
nude mice via the tail vein and shown to disseminate throughout the body of the
mouse. Cells that had been transfected to express an empty vector or a secretion
signal deletion variant of kisspeptin formed detectable metastases. In comparison
those cells that were transfected to express wild type kisspeptin remained dormant in
multiple organs without detectible growth. Interestingly, the authors noted that the
role of kisspeptin did not appear to dependent on GPR54, suggesting that another
receptor may be implicated in this process.

Another MSG that can induce dormancy is Kai1 (also known as CD82). Although
it was first described as inhibiting cancer cell migration and invasion (Ichikawa
et al. 1991), recent studies have suggested it can also inhibit tumor cell coloniza-
tion (Bandyopadhyay et al. 2006). Kai1 interacts with Duffy antigen receptor for
chemokines (DARC), a transmembrane protein which is expressed on endothelial
cells. Aggressive prostate cancer cells transfected to express Kai1 had a much higher
binding affinity for DARC than the non-expressing Kai1 control cells. The binding
of these cells to DARC induced growth arrest in the tumor cells and decreased in
vitro colony formation without detectible apoptosis. Using DARC knockout mice,
the authors showed that Kai1 positive cells were able to develop significant lung
metastasis in the knockout mice, while they formed only a few large metastases in
the wild type DARC expressing mice. The results indicated that Kai1 required DARC
for the induction of dormancy at a secondary site.

MKK4 and MKK7 have also been shown to induce dormancy in micrometastatic
colonies (Lefter et al. 2003) that was found to be tissue specific. In ovarian cancer,
MKK4 activated p38 leading to cell cycle arrest. In addition it was found that MKK4
can also induce an up-regulation of p21, which is a selective cell cycle inhibitor
that suppresses CDK and activates RB. No increase in cell death was seen in cells
transfected to express MKK4. The cell cycle arrest was shown to be reversible ex
vivo, as the tumor cells, once removed from secondary sites, were able to overcome
the growth inhibition in culture.

As previously described, Nm23-H1 has been shown to cause growth arrest of
micrometastatic lesions and has been shown to suppress metastasis in a several dif-
ferent cancer models. To date, two different models have suggested a role for Nm23
in metastatic dormancy. In the first, expression of Nm23-H1 was induced by treat-
ment of cells with medroxyprogesterone acetate (MPA) (Palmieri et al. 2005; Ouatas
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et al. 2003). The induction of Nm23-H1 was correlated with decreased anchorage-
independent growth in vitro and also inhibited metastatic colonization in vivo. Using
an experimental model of metastasis, human breast cancer cells were injected into
the tail vein of nude mice. Those mice treated with MPA had significantly smaller
pulmonary metastases then those treated with vehicle control. Pervious studies have
shown a link between Nm23-H1 and Ksr, an ERK scaffold protein, that may shift the
ERK, p38 activation balance. A second model has shown that Nm23-H1 expression
is inversely related to LPA1 expression, a cell surface receptor for Lysophosphatidic
acid (Horak et al. 2007a, b). Over expression of Nm23-H1 by transfection reduced
the expression of LPA1 in breast cancer cell lines, and this reduced expression was
found to be crucial for Nm23 mediated suppression of motility, invasion and metas-
tasis. When LPA1 was over expressed in the Nm23-H1 expressing cells they were
capable of overcoming Nm23-H1 suppression of tumor cell arrest, adhesion and sur-
vival in a secondary site. When these cells were used in an experimental metastasis
model, fluorescently labeled cells expressing Nm23-H1 were retained in the lungs
of mice ten times less than controls. The expression of LPA1 in the Nm23-H1 ex-
pressing cells restored the tumor cell retention in the lungs of mice. Taken together
these data indicate that Nm23 can control multiple steps in the metastatic cascade,
including motility, invasion, and metastatic colonization at a secondary site.

5.1 Key Points

• Metastasis suppressor genes encode proteins that have the ability to prevent or
reduce the development of metastases in vivo, without affecting the growth rate
of the primary tumor. This is different from tumor suppressor genes that affect
the growth rate of the primary tumors.

• Metastasis suppressor genes are lost during cancer progression.
• Metastasis suppressor genes suppress the metastatic colonization
• The function of metastasis suppressor genes can be stored by exogenous gene

therapy or by potential therapeutic targets.
• Dormancy can be induced by metastasis suppressor genes and may be a potential

therapeutic target.
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Chapter 6
Clinical Implications

Jean-Claude Marshall, Silvin Bakalian and Claudia Maria de Oliveira Martins

The ability to control primary tumor growth with surgery and either radiotherapy,
chemotherapy or some combination of the above provides adequate control at the
initial site for most patients. For most solid cancers, mortality usually arises due to
metastatic disease or as a complication of treatment. Although the metastatic process
is complex, the inhibition of even one step of the metastatic cascade will halt the entire
process. Therefore, the ability to restore the function of an MSG into cancer cells
prior to the completion of the entire metastatic process has great clinical potential.
Metastatic colonization may represent the portion of the metastatic process most
amenable to therapeutic intervention.

It is an unfortunate reality that most cancer therapeutic trials to date focus on
the ability of a therapeutic agent to shrink a large metastatic lesion in a patient.
Therapeutic agents which target MSGs would be expected to halt, rather than reverse
metastatic progression in patients. These compounds would be unlikely to meet
current clinical response standards for early clinical testing. This would necessitate
the use of tailored clinical trials to investigate MSG therapeutic compounds in an
adjuvant setting. However, the future of study in this field is promising as new
techniques allow us to dissect areas of the metastatic cascade that were previously
clandestine. The push to introduce these into clinic and targeting them as potential
therapeutic targets, currently in the case of NM23 and RHOGDI1, has opened the
entire field of study for potential breakthrough into clinical use.
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Chapter 7
Cell Cycle Control and Growth Factor
Systems in Metastasis

Jonathan Cools-Lartigue and Jonathan Spicer

7.1 Introduction

Cancer remains a leading cause of death in industrialized countries despite advances
in the detection and treatment of this disease (Heron et al. 2009). Traditional models
of cancer posit that neoplastic cells arise through the sequential accumulation of
genetic mutations leading to independent and uninhibited replication, the evasion
of apoptosis, sustained angiogenesis, and ultimately, invasion and metastasis. The
latter is of particular clinical significance as metastasis is the leading cause of cancer
related death (Pantel and Brakenhoff 2004; Colotta et al. 2009; Wu and Zhou 2009;
Sica et al. 2008).

In recent years, emerging evidence has challenged the previously held notion
that metastasis is a late phenomenon in the natural history of malignant disease.
The current understanding of the metastatic cascade represents a paradigm shift in
which invasion and metastasis represent early occurrences in patients with cancer.
Prior to the advent of the molecular characterization of neoplasia, aggressive phe-
notypes of primary tumors were observed histopathologically. For example, high
grade, mitotically active cutaneous melanoma was shown to carry a worse prognosis
than a less mitotically active tumor. Similar observations have been made across
numerous malignancies including breast, thyroid and gastrointestinal tumors. The
modern corollary to these observations is evident in the observation of a molec-
ular metastatic phenotype evident in primary tumors whereby genetic expression
profiles of metastatic lesions are mirrored in their primary counterparts (Pantel and
Brakenhoff 2004; Colotta et al. 2009; Fidler 2003; Weigelt and Veer 2004).

Further analysis of the genes expressed in these metastatic signatures reveals
that many are the same genes and proteins that have been the subject of laborious
experimental analysis over the past decade and are not distinct. These genes and
their translation products are the same ones implicated in the so called hallmarks of
cancer, namely, evasion of apoptosis, self-sufficiency in growth signals, insensitivity
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to anti-growth signals, sustained angiogenesis, limitless replicative potential and
tissue invasion and metastasis. In this chapter the basic pathways and some of the
molecules involved in dysregulation of cell cycle control and self-sufficiency in
growth signals will be reviewed (Weigelt and Veer 2004; Woelfle et al. 2003; Weigelt
et al. 2003; Vijver et al. 2002; Ramaswamy et al. 2003).

7.1.1 Evidence for Metastasis as an Early Phenomenon

Emerging evidence supports the notion that metastasis is an inherent property of
primary tumors and may arise early in the course of disease. Animal models have
demonstrated distinct clonal populations within the primary tumor that display the
propensity for metastasis to different sites (Weigelt et al. 2003). Similarly, the in
vivo demonstration of circulating malignant cells (CMC’s), whose poor prognostic
significance has been demonstrated prospectively in a number of malignancies, have
been observed in patients decades before the emergence of metastatic disease further
supporting the notion of dissemination and metastasis as early events in neoplasia
(Cools-Lartigue et al. 2008; Criscitiello et al. 2010; Fleitas et al. 2010). Addition-
ally, the presence of small numbers of malignant cells within distant organs has
been demonstrated in animal models prior to the development of clinically evident
metastatic disease in several malignancies, including melanoma, breast, lung, and
esophageal cancer (Cools-Lartigue et al. 2008; Minn et al. 2005; Lurje et al. 2010).

These observations support the hypothesis that malignancy is a systemic disease
early in its evolution. This suggests that the ultimate emergence of clinically overt
metastatic disease is the result of a complex interplay between the tumor and the
host, which ultimately supports distant metastatic growth.

7.2 The Metastatic Phenotype

Recent evidence has challenged the traditional model of the metastatic cascade.
The traditional model posits that within a primary tumor, individual cells undergo
successive mutations, which confer a survival advantage, increasing their replicative
success (Pantel and Brakenhoff 2004; Bernards and Weinberg 2002). This process
continues in successive generations with the eventual emergence of rare cells capable
of dissemination and metastasis. This theory implies therefore that the emergence of
cells capable of metastasis is infrequent and a relatively late phenomenon in the tumor
progression model (Pantel and Brakenhoff 2004; Bernards and Weinberg 2002).

Conceptually, this model has many flaws. Bernards and Weinberg suggest that a
different conceptualization of tumor genesis is necessary, given that the emergence
of cells capable of metastasizing confers no survival advantage to the primary tumor.
The frequency of emergence of cells with metastatic potential in this construct is
estimated at one in ten million. Accordingly, the impetus favoring metastasis is
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difficult to conceptualize in this model. The authors therefore posit that the metastatic
potential is inherent to the primary tumor, that the development of metastasis may be
an early phenomenon in tumor progression, and the genes responsible for metastasis
are not distinct (Bernards and Weinberg 2002).

Experimental evidence supports this hypothesis. Ramsawamy et al. analyzed the
gene expression profile of metastatic adenocarcinoma from several tumors, including
lung, breast, prostate, colorectal and ovarian, and compared them to primary tumors
of the same subtypes (Ramaswamy et al. 2003). The authors demonstrated distinct
gene expression patterns in the two groups as would be expected according to the
traditional model of metastasis. However, in a subset of tumors, an overlap in the
expression profile of primary and metastatic lesions was observed, initially leading
the authors to misclassify the primary tumors as metastases. Furthermore, the authors
demonstrated that patients exhibiting this metastatic genetic profile in their primary
tumors had significantly shorter overall survival compared to patients that did not.
Of particular significance, the authors were able to refine this metastatic profile to
a group of 17 genes of which 8 were up regulated and 9 were downregulated. This
metastatic profile was able to predict outcome across the different malignancies
examined in this study. Thus, the authors concluded that this signature is not specific
to a particular neoplasm but representative of the processes governing metastasis as
a whole.

Weigelt et al. performed a similar study in which the genetic profile of primary
breast tumors was compared to samples from metastatic tumors. The authors demon-
strated that in 6 of the 8-primary/metastatic pairs analyzed, the gene expression profile
of the primary was closer to its metastatic counterpart than to the other primary tumors
(Weigelt and veer 2004; Weigelt et al. 2003).

Van de Vijveer et al. demonstrated the presence of a poor outcome expression
profile derived from estrogen receptor (ER) positive primary breast tumors in patients
with advanced age. These patients demonstrated a different genetic profile than
younger patients with ER positivity and a significantly increased propensity to die
of metastatic disease than younger patients. This suggests that ER positivity in older
patients is a distinct clinical entity, replete with a genetic predisposition for metastasis
that is not mirrored in younger individuals with ER positive disease (Vijver et al.
2002).

Bhattacharjee et al. developed a molecular classification of carcinoma of the
lung and were able to delineate genetic subtypes, which correlated with overall
prognosis and metastatic potential. Collectively, these results support the hypothesis
that metastatic potential may be inherent to the primary tumor (Bhattacharjee et al.
2001).

Data also supports the notion that features inherent to the primary tumor gov-
ern the site of metastasis. Woelfle et al. examined the gene expression profiles of
primary breast tumors. In addition, patient lymph nodes and bone marrow (BM)
were analyzed for the presence of metastases (micro- or macroscopic). The authors
then compared the gene expression profiles of patients with BM+ and BM− disease,
and patients with LN+ and LN− disease. The authors demonstrated that the gene
expression profiles in patients with BM+ disease were distinct from those with BM−
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disease and did not overlap with the gene expression profiles in patients with LN+
disease (Woelfle et al. 2003).

Minn et al. demonstrated differential tissue tropism among metastases in a mouse
model of metastatic breast carcinoma. The authors used cells derived from a primary
tumor with a known poor prognosis profile as described by Woelfle et al. Tumor
cells were injected systemically into immune deficient mice and single cell proge-
nies were derived after harvesting metastases from different sites, including bone,
lung and adrenals. The authors subsequently demonstrated homogeneous expression
of the poor prognosis genotype amongst the various metastases. However, the au-
thors also identified a subset of genes unique to progeny cells isolated from different
metastatic sites, with cells with a metastatic tropism for bone displaying a distinct
metastatic profile, which was not expressed in cells displaying other tissue tropisms.
Furthermore, this metastatic genetic profile was distinct from the initial poor prog-
nosis profile. Subsequent genomic analysis of tissue-specific metastatic phenotypes
demonstrated that they were preserved in the metastasis of primary tumors that had
demonstrated spread to their corresponding tissues. As a whole, this data further sup-
ports the postulate that the mechanisms required for dissemination and ultimately
metastasis are present in the primary tumor (Woelfle et al. 2003; Minn et al. 2005).

7.2.1 The Genes Involved in Metastasis are Not Novel

Further analysis of the metastatic phenotype identified by Ramsawamy et al. demon-
strated a cluster of 17 genes that could reliably predict survival in their cohort of
patients. None of the identified genes were individually involved in metastasis and
the authors concluded that the signature as a whole was predictive of metastasis. Of
these 17 genes, 8 were up regulated and 9 were down regulated. Four of the 8 up
regulated genes were members of the protein translational apparatus; one, securin,
is involved in sister chromatid separation during the metaphase-anaphase transi-
tion, and the remaining three were cytoskeletal and extracellular matrix proteins. Of
the 9 down-regulated genes, again, a large number of extracellular matrix proteins
and cytoskeletal proteins were identified. These findings suggest that the mediators
of metastasis are not novel, but play an already established role in tumor genesis
(Ramaswamy et al. 2003).

Along these lines, Hong et al. demonstrated a metastatic signature in patients
with left sided colon cancer, which was found to be predictive of metastasis-related
mortality. The authors observed that the genes involved in predicting metastasis are
indicative of “cell-wide” perturbations in basic cellular functions (Hong et al. 2010).

7.3 Growth Factor Systems in Metastasis

Taken together the above data suggests that the genes mediating metastasis play a
role in basic cellular processes. Along these lines, a variety of growth factors have
been identified and are known to play key roles in promoting progression of cancer



7 Cell Cycle Control and Growth Factor Systems in Metastasis 61

cells through the cell cycle, thus promoting accelerated growth and progression. One
of the hallmarks of cancer is the notion of self-sufficiency in growth factor signals
(Colotta et al. 2009). Cancer cells must survive within foreign host tissues sometimes
under harsh conditions. The metastatic microenvironment must be groomed to offer
a fertile soil for cancer cells to thrive. Recent investigations have revealed that growth
factor signals arise from numerous sources in the metastatic microenvironment. Con-
tributions arise from numerous mechanisms and cell types in this highly orchestrated
and complex process. Additionally, each metastatic signature mentioned implicates
conserved pathways with multiple downstream effectors involved in cellular growth,
replication and cell cycle regulation. Furthermore, these pathways have been the
subject of cancer related study for decades and do not represent exclusively novel
metastatic mediators.

7.3.1 Transforming Growth Factor Beta (TGF-β)

Original reports on the effects of TGF-β signaling on cancer cells suggested that it in-
hibited cell cycle progression and induced apoptosis. However, the tumor suppressive
aspects of TGF-β signaling were countered by studies where complete abrogation
of TGF-β in cancer cells could also promote metastasis in vivo (Bierie and Moses
2006). TGF-β ligands reside in the extracellular matrix and require activation via a
number of mechanisms to carry out their signal. Integrins, a number of proteases such
as elastase or matrix metalloproteinase 9 and glycoproteins such as thrombospondin
can all interact with TGF-β ligands, resulting in activation and eventual intracellular
signaling. Indeed many of these ‘activators’ of TGF-β signaling are known to be
involved in the metastatic process and have frequently been described as essential
components of the metastatic tumor microenvironment (Bierie and Moses 2009).

TGF-β signaling is a complex affair. Ligation of its receptors TβRI and TβRII
leads to transactivation, resulting in signaling through the SMAD pathway. SMAD
signaling leads to transcriptional control. In addition, TGF-β can signal through nu-
merous SMAD independent networks (Shi and Massague 2003). The net effect of
the TGF-β pathway is highly dependent on the co-activation of parallel pathways.
As mentioned, these effects can include such dichotomous anti-tumorigenic and pro
metastatic phenotypes as induction of apoptosis and increased motility and invasion.
These diametrically opposed effects have been reconciled by recent studies that delin-
eate how inflammatory cells of the tumor microenvironment can modulate the effects
of TGF-β signaling (Bierie and Moses 2009). Although TGF-β may suppress entry
into the cell cycle, it also has been shown to suppress chemokine production that is
largely responsible for the attraction of myeloid-derived suppressor cells (MDSC) to
the tumor microenvironment. This host-tumor interaction is increasingly recognized
as an essential component of tumor progression. The immune suppression that is
effected locally by MDSC has been reported to promote metastatic growth. These
findings highlight the importance of studying signaling events within the context of
a heterogeneous and complex tumor microenvironment.
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7.3.2 Epidermal Growth Factor Receptor

Epidermal growth factor receptor is over-expressed in most epithelial malignancies
(Kalyankrishna and Grandis 2006). The downstream effects of EGFR signaling have
been extensively studied and its role in cancer progression has been described at many
levels (Hynes and Lane 2005). Indeed, EGFR is involved in the pathogenesis of some
cancers and is also responsible for some aspects of progression to metastasis. Elevated
expression of EGFR correlates with poor prognosis. EGFR can signal through the
ERK pathway to promote proliferation in response to TGF-alpha binding (Albanell
et al. 2001). Furthermore, signaling through the STAT3 pathway has been shown
to promote tumor growth (Grandis et al. 1998; Thomas et al. 2003). Finally, by
activating PLC-γ, EGFR activation can promote tumor cell survival (Thomas et al.
2003). Together, these characteristics of the EGFR pathway contribute to a pro-
metastatic phenotype in cancer cells that over express this receptor and that are
exposed to its ligand.

While EGFR signaling can be triggered by a number of ligands, it can also be
triggered by transactivation via receptors like Insulin Growth Factor 1 Receptor (IGF-
1R) (Adams et al. 2004). Such a pathway is of particular clinical significance. Trials
that have incorporated EGFR inhibitors have yielded inconsistent results. Although
such inhibitors may have potent action on the ligand mediated effects of EGFR
signaling, transactivation of the pathway via a receptor like IGF-1R may detract
from the efficacy of such an inhibitor. The complexity of these systems is at the root
of the inefficacy of certain growth factor inhibitors like the EGFR blockers. Similarly
to the impact of the tumor microenvironment on cancer cell proliferation, the cross
talk between various growth factor pathways is key to robust oncogenic progression.
Thus, therapies must be targeted broadly to the cancer cell, the microenvironment
and the multiple facets via which growth factors affect the cancer cell cycle.

7.3.3 Inflammatory Cytokines and the Cell Cycle

Perhaps one of the most striking discoveries in recent years for the field of cancer
metastasis is the pivotal role played by supporting inflammatory cells (Coussens and
Werb 2002). Over a century and half ago, Virchow first drew the parallel between
cancer progression and the inflammation present in healing wounds by noting the
presence of abundant leukocytes within tumors (Wu and Zhou 2009). Later, cancer
was likened to a non-healing wound. Wounds require trophic factors to bridge an ep-
ithelial gap. Multiple growth factors are required to induce proliferation of epithelial
cells and to promote their migration across the wound. The wound microenvironment
is rich with inflammatory cells that orchestrate and drive the process. Many seminal
studies over the past 10 years have shown that cells like macrophages, neutrophils
and MDSC are very active players in the metastatic process (Sica et al. 2008; Bunt
et al. 2006; McDonald et al. 2009). One key aspect of their function is to promote
cancer cell proliferation via the production of inflammatory cytokines.
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One of the gateways to the production of inflammatory cytokines is NFκB activa-
tion. Activation of NFκB in cancer cells has been shown to suppress apoptosis, thus
promoting survival and progression (Karin 2006). The result of NFκB activation is
the production of inflammatory cytokines like TNF-α, IL-1 and IL-6 to name a few.
Production of cytokines like IL-6 in the tumor microenvironment has been shown
to cause STAT3 phosphorylation, which is a key signaling step related to metastatic
progression (Groner et al. 2008). Indeed, STAT3 activation leads to protection from
apoptosis and progression through the cell cycle. Sources of IL-6 can arise from the
cancer cell or from the microenvironment. Multiple reports have shown that cancer
cells are capable of producing inflammatory cytokines and thus may support their
own growth via this mechanism. However, the overwhelming source of inflammatory
mediators within the tumor microenvironment appears to be derived from inflamma-
tory cells like tumor-associated macrophages. As alluded to earlier, these cells are
key to metastatic progression and act as cytokine factories (Spicer et al. 2010). The
effects of cytokines go well beyond cell cycle control as they promote angiogenesis
and support stromal cells to create a milieu that is welcoming to cancer progression.
Nevertheless, these inflammatory mediators have the net effect of stabilizing cancer
cells and favoring their survival in an otherwise harsh metastatic environment.

7.3.4 The PI3-Akt Pathway

This family of lipid kinases has been intensely studied since its discovery in the 1980s
and its regulation in diverse cellular processes such as survival, proliferation, and
differentiation has been demonstrated. Not surprisingly, dysregulated functioning of
this pathway has been linked to many of the processes at play in malignancy, which
have been collectively referred to as the hallmarks of cancer (Colotta et al. 2009).

The PI3-Akt pathway is a conserved pathway, which transduces signals from
various cytokines and growth factors via the association of the PI3 lipid kinase and
activated receptor tyrosine kinases (RTK), G-protein coupled receptors (GPCR) and
oncogenes such as RAS (Fig. 7.1) (Vivanco and Sawyers 2002). The PI3 lipid kinase
is a heterodimer composed of a regulatory p85 subunit and a catalytic p110 subunit.
The p85/p110 complex is capable of participating in multiple protein-protein interac-
tions via its association with phosphorylated tyrosine residues. In the context of RTK
initiated signaling, binding of a ligand to its receptor initiates recruitment of PI3k to
the plasma membrane via the association of the p85 regulatory subunit with phos-
phorylated tyrosine residues. The now active p110 subunit subsequently catalyzes
the phosphorylation of phosphatidyl inositol 4,5, bisphosphate (PtdIns(4,5)P2) to
PtdIns(3,4,5)P3 which, among other processes, recruits the serine threonine kinase
Akt to the cell membrane via the association of its pleckstrin homology (PH) do-
main to PtdIns (3,4,5)P3. This association induces a conformational change in Akt
permitting its phosphorylation, and concomitant activation by 3-phosphoinositide
dependent kinases (PDK). The major regulatory protein, phosphatase and tensin ho-
mologue (PTEN), acts to limit the availability of PtdIns(3,4,5)P3 and active PDK
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Fig. 7.1 The PI3-Akt Pathway. The PI3 lipid kinase is a heterodimer composed of a regulatory p85
subunit and a catalytic p110 subunit. The p85/p110 complex is capable of participating in multiple
protein-protein interactions via its association with phosphorylated tyrosine residues. Binding of a
ligand to its receptor initiates recruitment of PI3k to the plasma membrane via the association of
p85 with phosphorylated tyrosine residues. Active p110 subsequently catalyzes the phosphorylation
PtdIns(4,5)P2 to PtdIns(3,4,5)P3 which recruits the serine threonine kinaseAkt to the cell membrane
via the association of its PH domain to PtdIns (3,4,5)P3. This association induces a conformational
change in Akt permitting its phosphorylation, and concomitant activation by 3-phosphoinositide
dependent kinases (PDK). The major regulatory protein, PTEN, acts to limit the availability of
PtdIns(3,4,5)P3 and active PDK through the removal of phosphate groups. ActivatedAkt participates
in a broad range of downstream signaling events including regulation of the cell cycle. Figure adapted
from Vivanco et al. 2002

through the removal of phosphate groups. Activated Akt participates in a broad range
of downstream signaling events (Adams et al. 2004; Kelly-Spratt et al. 2009). In the
context of this chapter, its role in cell cycle regulation will be discussed (Fig. 7.2,
7.3).

7.3.4.1 The PI3-Akt Pathway and Proliferation

The insulin growth factor 1 receptor (IGF-1R) can control transition through the
cell cycle via multiple signaling pathways. However, the summative evidence would
suggest that it causes progression at the G1-S interface via ERK and PI-3K/AKT
signaling (Samani et al. 2007). Increased expression of IGF-1R and its ligands IGF-
1 and IGF-2 are elevated in a number of malignancies. The coincidental presence of
high levels of ligand and receptor in the tumor microenvironment suggest that the
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Fig. 7.2 The cell cycle. The
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IGF axis can function both in an autocrine and paracrine fashion. Indeed, studies
that genetically engineered liver metastasizing H-59 Lewis lung carcinoma cells to
express the soluble form of IGF-1R had significantly fewer metastases, suggesting
that the paracrine effect of IGF-1 liver expression is tumor promoting (Brodt et al.
2001). Confirming this hypothesis was a series of experiments where the size of pri-
mary tumor and liver metastases were increased by the addition of exogenous IGF-1
to liver-specific IGF-1 deficient mice in an orthotopic model of colon carcinoma
metastasis (Wu et al. 2002). The role of IGF-1 was further delineated in a model of
bone metastasis where prostate cancer cells expressed urokinase plasminogen acti-
vator (uPA) to degrade IGF-1 binding protein. As a result the bioavailability of IGF-1
in the metastatic microenvironment was bolstered (Koutsilieris and Polychronakos
1992).

These studies highlight the contribution of the host metastatic organ in terms of
trophic factors that can promote cancer cell proliferation. Such environmental partic-
ularities contribute to the site specificity of certain malignancies. In addition, cancer
cells benefit from being equipped with an armament of growth factor receptors and
proteolytic enzymes to match the growth factor production line of the metastatic site
where they attempt to implant. Metastatic inefficiency is in part attributed to this fre-
quent mismatch. Cells capable of expressing high levels of growth factor in addition
to high levels of the corresponding receptor may be more aggressive and metastasize
more widely. Cancer cells with a poor match for the eventual metastatic microenvi-
ronment may not survive or may require the arrival of supporting inflammatory cells
to engage further growth.
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Fig. 7.3 Postranslational regulation of Cyclin D1. Cyclin D1 normally shuttles between the nucleus
and the cytoplasm. Within the nucleus, it is able to complex with CDK4/6 and drive cell cycle
progression. Its phosphorylation at Threonine 286 by GSK beta renders it amenable to nuclear
export in a CRM-1 dependent manner. Within the cytoplasm, it is vulnerable to ubiquitination by
the SCF ubiquitin ligase and proteosomal degradation. Figure adapted from Witzle et al. (2010)

Activated Akt appears to promote progression through the cell cycle and thus
cellular replication. This is achieved in two general ways. First, activatedAkt inhibits
the function of the forkhead family of transcription factors, whose production is
associated with cell cycle arrest in G1 and at the G2-M transition (Medema et al.
2000). Similarly, Akt mediates the inhibition of glyceraldehyde synthase kinase 3
beta (GSK3b), which is similarly implicated in cell cycle arrest at the G1-S interface
via its inhibitory role on cyclin dependent signaling (Burgering and Kops 2002).
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7.4 Cell Cycle Control

Dysregulation of the Cell Cycle in Malignancy The cell cycle is a tightly controlled
process and its dysregulation is implicated in tumor genesis. Transition from G1-
S, progression through the S-phase, G2-M transition and completion of mitosis
are processes that are regulated through differential expression of cyclin dependent
kinases (CDK) and their binding partners, cyclins. While the expression of the CDK is
relatively stable throughout the cell cycle, the cyclins are a diverse group of proteins,
which exhibit periodic expression at key phases. These proteins function as allosteric
modulators of the CDK (Slingerland and Pagano 2000).

The transition from G1 to S has demonstrated aberrant function in nearly all
human malignancies. Under normal conditions, the progression from G1 to S and
through the S phase, induced, for example, by exposure to mitogens, is a multi-step
process mediated by the association of D, E and A type cyclins with CDK4 or 6,
and CDK2, respectively. The expression of the D-type cyclins occurs early in G1;
as such, the D type cyclins are commonly regarded as nuclear relays of extracellular
signaling (Slingerland and Pagano 2000).

Progression Through the Cell Cycle and Its Regulation In response to mitogen
stimulated increased transcription, translation and inhibited proteolysis of Cyclin D
takes place via both MAPK and PI3-Akt dependent pathways respectively. Conse-
quently, intra-nuclear accumulation of cyclin D, with its resultant association with
CDK4 or 6, results in the phosphorylation of the retinoblastoma (RB) tumor suppres-
sor gene which in turn results in increased E2F mediated transcription. This leads to
enhanced transcription and translation of E type cyclins, which, in association with
CDK2 promote ongoing E2F mediated transcription and are responsible for progres-
sion through the G to S restriction point. Finally, A type cyclins, in conjunction with
CDK1 or 2 are responsible for progression through the S phase (Slingerland and
Pagano 2000; Witzel et al. 2010).

Regulation of cyclin:CDK complexes is under the control of 2 families of CDK
inhibitors; the INK4 and Cip/Kip families. INK4 proteins (p16ink41, p15ink4b,
p18ink4c, p19ink4d) bind and inhibit CDK4 and 6 while the Cip/Kip proteins
(p21cip1/waf1/sdil, p27kip1, p57kip2) inhibit CDK2/cyclin E and CDK1/2:cylin A.
As levels of CDK4/6/Cyclin D rise throughout early G1, these complexes sequester
Cip/Kip family CDK inhibitors facilitating CDK2/Cyclin E complex formation and
progression from G1-S. Finally, the cyclins are under posttranslational control at the
level of sub-cellular localization and proteolysis, all of which have been implicated
in malignancy (Witzel et al. 2010; Alt et al. 2000).

7.4.1 D type Cyclins in Malignancy

D-type Cyclins in Human Cancers Demonstrate Translocations, Amplifications,
and Subtle Polymorphisms Not surprisingly, increased expression of D type cy-
clins has been demonstrated in human cancers including, breast, bladder, head and
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neck, lung and esophageal cancer. A variety of mechanisms for the aberrant expres-
sion of Cyclin D have been observed including chromosomal translocations, and
amplifications as well as single nucleotide polymorphisms that alter the sensitivity
of cyclin D to proteolysis.

In mantle cell lymphoma, the demonstration of the t(11;14)(q13;q32) transloca-
tion, which places the cyclin D1 gene CCND1 under the control of the immunoglob-
ulin heavy chain (IgH) promoter has been observed in over 90 % of cases. The
postulate here is that cyclin D1 expression is constitutive, thereby driving cellular
proliferation (Schmitz et al. 2005).

Cyclin D1 overexpression has also been demonstrated through amplification of the
CCND1 locus at 11q13 in multiple human cancers including esophageal squamous
cell carcinoma. The study by Shinozaki et al demonstrated over 3-fold amplification
of 11q13 in 23 % of 122 primary esophageal squamous cell carcinomas examined.
The authors also demonstrated a statistically significant decrease in overall survival
as well as an increase in the presence of distant metastasis in patients harboring this
genetic abnormality. Thus, the over expression of cyclin D1 in these patients is of
clinical significance (Shinozaki et al. 1996).

Finally, cyclin D1 over expression has been linked to more subtle genetic alter-
ations. More than 100 polymorphisms have been identified at the CCND1 locus. One
such polymorphism, the G/A substitution at position 870, has been extensively stud-
ied. This polymorphism generates a truncated protein known as cyclin D1b, which
retains the capacity to associate with CDK4/6 but lacks the GSK b phosphorylation
site and PEST sequence necessary for nuclear export and ubiquitin mediated degra-
dation, respectively. This polymorphism has been demonstrated in approximately
5 % of Mantle cell lymphomas and approximately 60 % of human bladder cancers
(Krieger et al. 2006; Kim et al. 2009).

Mechanisms of Cyclin D oncogenesis

Cyclin D overexpression alone is insufficient to drive neoplastic transformation The
mechanism by which Cyclin D influences tumor progression remains incompletely
understood. Its observed over expression among multiple malignancies has led to the
postulate that it is a proto-oncogene. However, the ability of cyclin D to transform
cells alone has not been supported by experimental data. Over expression of cyclin
D1 in 3T3 fibroblasts by itself is unable to induce transformation. Over expression
of cyclin D1 alone in murine lymphocytes is similarly unable to elicit transformation
unless it is co-transfected with c-myc. A similar observation was made by Rodriguez
et al wherein over expression of cyclin D1 and ras results in the formation of skin
tumors in mice (Rodriguez-Puebla et al. 1999).

Along these lines, Opitz et al demonstrated that over expression of Cyclin D1
alone is insufficient to generate oral squamous cell carcinoma (OSCC) in mice. The
authors, knowing that cyclin D was over expressed and p53 was under expressed
in human OSCC, generated mice with differential expression of these proteins. The
authors bred mice which over expressed cyclin D1 (L2D1+) and either demonstrated
wild type p53 expression (p53+/+), were heterozygous for p53 expression (p53+/−)
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or lacked p53 expression altogether (p53−/−). The authors demonstrated tumor for-
mation in only L2D1+, p53+/− or p53−/−. No L2D1 p53+/+ mice exhibited tumor
formation (Opitz et al. 2002).

Thus, experimental data suggests that isolated over expression of cyclin D1 is
generally insufficient to drive neoplastic transformation. Instead data suggests that
it can potentiate ras and myc oncogenesis in vitro and can induce tumors efficiently
in vivo in the absence of additional regulatory mechanisms as evidenced by the
generation of OSCC in only those mice lacking appropriate p53 expression. Given
the extent to which cyclin D over expression is observed in human cancers, additional
mechanisms explaining its oncogenic activity were sought.

Post-Translational Regulation of Cyclin D and Enhanced Oncogenic Potential Ex-
perimental evidence supports the hypothesis that the subcellular localization of
cyclins influences their role in tumor formation. Cyclin D1 normally shuttles be-
tween the nucleus and the cytoplasm. Within the nucleus, it is able to complex with
CDK4/6 and drive cell cycle progression. Its phosphorylation at Threonine 286 by
GSK beta renders it amenable to nuclear export in a CRM-1 dependent manner.
Within the cytoplasm, it is vulnerable to ubiquitination by the SCF ubiquitin ligase
and proteosomal degradation. Data supports the hypothesis that excessive intranu-
clear CDK/cyclinD1 is involved in tumor genesis (Kelly-Spratt et al. 2009; Gladden
et al. 2006).

Chul Jang Kim et al. demonstrated increased invasiveness and anchorage inde-
pendent growth of bladder cancer cell lines transfected with cyclin D1b, a variant
not amenable to nuclear export, in vitro. Furthermore, this effect was abrogated by
siRNA specific for cyclin D1b. The results of their study suggest that the malignant
phenotype of urothelial carcinoma is enhanced by the expression of cyclin D1b and
may be related to its nuclear localization (Kim et al. 2009).

Experimental data supports this hypothesis. Alt et al. demonstrated that 3T3
fibroblasts transfected with cyclin D T286A, a mutant not amenable to GSK phospho-
rylation and CRM-1 mediated nuclear export, exhibited contact independent growth
and were immortalized. By contrast, 3T3 fibroblasts transfected with wild type Cyclin
D constructs exhibited only a shortened G1 phase, consistent with previous reports
that over expresion of cyclin D1 alone is not sufficient to effect transformation (Alt
et al. 2000).

This phenomenon was demonstrated in vivo by Gladden et al. who generated trans-
genic mice with constitutive expression of cyclin D T286A. These mice exhibited a
significantly shorter lifespan compared to controls attributable to disseminated B-cell
lymphoma. Of particular interest, however, was the observation that a large propor-
tion of B-cells that were driven to proliferate by the mutant cyclin D1 demonstrated
apoptosis, suggesting that S-phase entry in these cells is countered by increased
apoptosis (Gladden et al. 2006). Thus, lymphomatous cells that escape apoptosis
must acquire a second hit rendering them resistant to apoptosis. Indeed aberrations
in the p19ARF-MDM2-p53 pathway were observed in these malignant cells and cor-
roborate the experimental observation that cyclin D over expression in conjunction
with p53 under expression is sufficient to drive tumor development.
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The above data suggests that cell cycle control is aberrant across a heterogeneous
group of malignancies. This deregulation is mediated in part through proliferation
driven by increased cyclin D1 activity, which is mediated by multiple mechanisms
including amplifications, translocations, and mutations rendering nuclear export and
proteolysis less efficient.

7.4.2 Forkhead Transcription Factors in Cell Cycle Control and
Malignancy

Cell Cycle Arrest via Forkhead Transcription Factors Forkhead transcription
factors, also known as Foxo proteins, are collectively implicated in cell cycle arrest
and apoptosis. They belong to a family of transcription factors related through ho-
mology in their DNA binding domain. They are important downstream targets of
PI3-Akt signaling. Phosphorylation of Foxo proteins by Akt increases their cyto-
plasmic localization as a result of inhibited interaction with nuclear DNA binding
proteins such as 14-3-3. Within the cytoplasm, they are vulnerable to degradation. In
the absence of mitogenic stimulation, Foxo proteins are retained within the nucleus
and drive transcription of their targets (Medema et al. 2000; Burgering and Kops
2002).

Foxo Proteins Inhibit Cell Cycle Progression via Upregulation of Cip/Kip Cdk
Inhibitors Foxo proteins are implicated in increased production of the Cip/Kip fam-
ily cyclin dependent kinase inhibitors including p27kip1. In the study by Medena et al.
the authors demonstrated that over expression of AFX, a forkhead transcription fac-
tor, induces G1 arrest in 3T3 fibroblasts. This effect was dependent on the inhibition
of cyclin dependent signaling via increased levels of p27kip1, and was independent
of downstream effectors of cyclin dependent signaling such as the retinoblastoma
(Rb) tumor suppressor (McDonald et al. 2009).

7.4.3 Foxo Proteins As Tumor Suppressors

Abundant evidence suggests that Foxo proteins are bona fide tumor suppressors in
mammals. Zou et al. demonstrated that FOXO 1 and 3 inhibit estrogen receptor
(ER) mediated signaling in the estrogen-dependent human breast cancer cell line
MCF 7, and this effect is associated with reduced proliferation in vitro. The authors
generated MCF-7 breast cancer cell lines transfected with a FOXO expression vector.
The decreased ER signaling observed was mediated through direct contact of FOXO
proteins and ER and was associated with increased expression of cyclin dependent
kinase (CDK) inhibitors including p27kip1 and reduced expression of cyclin D1.
These findings were associated with a significant reduction in proliferation in the
transfected MCF-7 cell lines compared to wild-type (Zou et al. 2008).
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Furthermore, the authors demonstrated that inhibition of FOXO3 in MCF-7 cells
promotes tumor genesis in vivo. The authors constructed an MCF-7 FOXO3 knock-
down derivative and demonstrated the development of tumors in the mammary fat
pad of nude mice in the absence of estrogen stimulation. This effect was not observed
with wild-type MCF-7 cells in the absence of exogenous 17-b estradiol.

Further evidence supporting the role of the forkhead transcription factors as tu-
mor suppressors stems from the study by Paik et al. Here, the authors demonstrated
the development of a widespread cancer phenotype in mice with FOXO gene dele-
tions. The authors also demonstrated that the tumors were cell lineage specific, with
thymic FOXO deletions producing aggressive lymphomas while endothelial cell tar-
geted mutations resulted in a widespread hamartomatous phenotype associated with
premature death. With respect to lymphangiogenesis, the authors demonstrated that
tumor genesis in this model was mediated in part by increased cell cycle progression,
inferred from strong down regulation of p27kip1 in the context of the FOXO null
mice (Paik et al. 2007).

Tothova et al. demonstrated similar results. The authors again generated condi-
tional FOXO null mice. This was associated with the development of a non-fatal
myeloproliferative phenotype as well as quantitative and qualitative abnormalities
of lymphoid cells. These abnormalities were mediated in part by abnormal cell cy-
cle regulation as demonstrated by a two-fold increase of hematopoetic stem cells in
S/G2/M in FOXO null mice compared to wild type. This finding was associated with
aberrant expression of FOXO target genes including down regulation of p27 and up
regulation of cyclin D2 (Tothova et al. 2007).

Dysregulated FOXO Function is Mediated by Akt Dependent and Indepen-
dent Mechanisms in Humans Aberrant function of Foxo proteins, either through
dysregulated PI3-Akt signaling or mutation, has an experimentally established role
in tumor genesis. In fact, such a role has been demonstrated in humans as well.
Chronic myelogenous leukemia (CML) is characterized by the BCR-ABL translo-
cation, which results in strong Akt activation. This activity is inhibited by the RTK
inhibitor imatinib mesylate and is associated with a significant survival benefit. In
this model, Akt activity drives the nuclear export and degradation of FOXO proteins,
supporting ongoing proliferation. In the presence of RTK inhibitors, nuclear local-
ization of Foxo proteins is restored, driving cell cycle arrest and apoptosis (Naka
et al. 2010).

Alveolar rhabdomyosarcoma demonstrates characteristic translocations
t(2;13)(q35;q14) and t(1;13)(p36;q14) which generate fusion proteins between
PAX and forkhead member transcription factors. These proteins are resistant to Akt
mediated cytoplasmic redistribution and are collectively localized to the nucleus
where the fusion proteins drive the transcription of genes involved in proliferation,
apoptosis and motility (Sumegi et al. 2010).

Kornblau et al. demonstrated that high levels of phosphorylated FOXO3A are an
independent marker of poor prognosis in AML. Similarly, Song et al. demonstrated
that loss of FOXA1 and FOXA2 are critical steps in the epithelial to mesenchymal
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transition in pancreatic ductal carcinoma, an important step in tumor genesis and pre-
dicted precursory step to metastasis. Along these lines, forkhead family transcription
factors have been implicated in invasion and metastasis in multiple other human ma-
lignancies including leukemia, breast, thyroid and esophageal cancer (Song et al.
2010; Kornblau et al. 2010).

7.5 CDK Inhibitors are Implicated in Tumor Genesis

7.5.1 P27 and Cell Cycle Progression

P27 is one of the downstream effectors of forkhead family transcription factors im-
plicated in cell cycle control, tumor genesis and metastasis. As alluded to previously,
this molecule is extensively involved in the regulation of cell cycle progression par-
ticularly in the G1-S transition through its association with cyclin E-CDK2, and its
subsequent inhibition of ongoing RB phosphorylation and E2F mediated transcrip-
tion of genes necessary to complete the G1-S transition. However, further studies
implicate p27 in processes including aberrant cell cycle control and metastasis.

The regulation of p27 itself is complex and a full discussion is beyond the scope
of this chapter. Briefly, however, early in G1, p27 plays a role in stabilizing cyclin D-
cdk4/6 complexes within the cytoplasm, assisting in their localization to the nucleus
and hence the phosphorylation of Rb. However, p27 also acts to inhibit cyclin E-CDK
2, thereby keeping levels of cyclinA low and preventing progression through S phase.
It is only when levels of p27 drop in late G1, which is believed to be mediated at
least in part by phosphorylation, nuclear export and ubiquitin mediated degradation
of p27, that the activity of cyclin E-cdk2 increases and progression through the cell
cycle occurs (Kelly-Spratt et al. 2009; Alt et al. 2000).

7.5.2 Post-Translational Mechanisms Mediate Aberrant P27
Function in Malignant Disease

This tightly regulated process has been shown to be dysfunctional in a variety of
human cancers. Considering the importance of p27 in the regulation of the cell cy-
cle, one would expect mutations of this allele to be common in human cancers.
While loss of a single allele has been demonstrated among various malignancies,
loss of both alleles has only been rarely observed. Instead, dysregulation appears
to occur at the level of p27 protein, not gene transcription. Low levels of p27
protein are independent predictors of poor outcome in multiple malignancies in-
cluding lung, colon, ovarian, breast, prostate and gastric carcinoma. In fact, it
has been estimated that up to 50 % of human cancers lack normal p27 expres-
sion. Furthermore, in a variety of these cancers, the low protein levels observed



7 Cell Cycle Control and Growth Factor Systems in Metastasis 73

appear to be related to increased ubiquitin mediated proteolytic degradation (Zhou
et al. 2003).

Calvisi et al., in a model of hepatocellular carcinoma (HCC), demonstrated that
increased ubiquitination of p27 among other cell cycle regulators was associated
with increased cellular proliferation. In a separate study, these authors demonstrated
that susceptibility to the development of HCC in a rat model was dependent on
ubiquitin-mediated degradation of cell cycle regulatory proteins, including p27. The
authors examined two rat strains of known divergent susceptibility to the develop-
ment of HCC induced by exogenous dietary nitrosamine. Only 35 % of Norway
Brown (BN) rats exposed to exogenous nitrosamines developed overt HCC in
the study, compared to all F344 rats. The authors demonstrated that although no
difference in p27 mRNA was observed between the two groups over the course
of the study, levels of p27 protein were significantly higher in BN compared to
F344 rats. In order to elucidate the posttranslational mechanism responsible for
the observed disparity in p27, the authors demonstrated significantly lower lev-
els of SCF ubiquitin ligase components (Skp-2, Cks-1) in the resistant compared
to the susceptible rats. Furthermore an inverse correlation between increased lev-
els of cell cycle regulatory proteins, including p27, and proliferation based on
Ki67 protein levels was observed. Taken together, this data supports the role of
ubiquitin-mediated degradation of p27 in disease progression of HCC (Calvisi et al.
2010).

In keeping with this theme, Liu et al. demonstrated that the anti-neoplastic ef-
fects of hinokitiol, which induces G1 cell cycle arrest in human FEM melanoma
cell lines is associated with inhibition of ubiquitin driven degradation of p27. This
effect was mediated both through decreased phosphorylation of p27 at threonine
187, which targets p27 for proteosomal degradation, and down regulation of skp2, a
subunit of the SCF ubiquitin protein ligase. This finding further implicates increased
proteolysis as one mechanism whereby p27 activity is reduced (Liu and Yamauchi
2009).

7.5.3 Cytoplasmic Sequestration of P27 is Involved in Tumor
Progression and Metastasis

A subset of human cancers has failed to demonstrate markedly reduced levels of
p27 protein, prompting the search for alternate modalities of p27 inactivation in
these neoplasms. Additional mechanisms for aberrant p27 function and cell cycle
regulation have accordingly been observed (Besson et al. 2008).

Akt Independent Mechanisms Active p27 has been shown to be sequestered in
cyclinD:CDK complexes in association with Myc mediated proliferation in vitro (Ya-
mamoto et al. 2009; Wu et al. 2009). Consequently, p27 is unable to bind and inhibit
cyclinE:CDK complexes leading to cell cycle progression (Zhou et al. 2003). In vivo
cytoplasmic sequestration of p27 in cyclin-D1:CDK4 complexes has been observed
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in some human lymphomas (Qi et al. 2006). Furthermore, Her-2 over expression
in breast cancer is associated with c-myc over expression, upregulation of D-type
cyclins and p27 sequestration in cyclinD:Cdk4 complexes (Acosta et al. 2008).

Akt Dependent Mechanisms Akt mediated cytoplasmic accumulation of p27 has
been documented in a variety of human cancers including melanoma, breast, colon,
thyroid and esophageal cancer. Liang et al. demonstrated impaired nuclear import and
cytoplasmic accumulation of p27 in both human mammary epithelial cells (HMECS)
and WM35 cell lines transfected with constitutively active Akt in vitro. Furthermore,
the authors demonstrated an abrogated G1 arrest in response to exogenous TGF-beta
in Akt over expressing cell lines. Finally, the authors demonstrated that impaired
nuclear import of p27 was the result of Akt phosphorylation at threonine 157 on p27.
Furthermore, this shift in p27 compartmentalization is associated with increased
cdk2 activity and cell cycle progression. Accordingly, cytoplasmic sequestration of
p27 was impaired in cells expressing a mutant p27T157A, not amenable to phospho-
rylation by Akt at this site. Thus the authors concluded that abnormal progression
through G1 may be mediated by aberrant Akt signaling and consequent cytoplasmic
sequestration of p27 (Liang et al. 2002). Additional in vitro support of this hypoth-
esis is evident in the observation that the pharmacologic PI3K inhibitor LY294002
abrogates this effect, restoring nuclear localization (Motti et al. 2005).

In vivo evidence supporting cytoplasmic accumulation of p27 in tumor genesis
has also been demonstrated. Viglietto et al. demonstrated that Akt dependent phos-
phorylation and cytoplasmic mislocalization functionally inactivates p27 in human
breast cancer. They examined the cellular localization of T157 phosphorylated p21
in 54 human primary breast cancers. Furthermore, they classified the primary tumors
into three groups based on the ratio of p-Akt:Akt. Group 1 tumors, of which there
were 15, had a pAkt:Akt ratio < 0.1; group 2 tumors, of which 10 were identified,
demonstrated an p-Akt:Akt between 0.1–0.8; group 3 tumors, of which there were
15, demonstrated a p-Akt:Akt > 0.8. P27 was absent in 14 tumors. The authors sub-
sequently noted that there was a statistically significant rise of T157 phosphorylated
p27 from group 1 to group 3 tumors with 6 % expression in group 1,40 % expression
in group 2 and 65 % expression in group 3. Furthermore, T157 phosphorylated Akt
was almost exclusively localized to the cytoplasm. Thus, functional inactivation of
p27 may occur via Akt mediated cytoplasmic sequestration in human breast cancer
(Viglietto et al. 2002).

7.6 Summary

Progression through the cell cycle is a defining characteristic of a cancer cell that
wishes to metastasize. Despite metastatic inefficiency, growth factor signals are nu-
merous and redundant. These signals can arise from the cancer cell itself as well
as the inflammatory tumor microenvironment and from the host organ tissue. Cross
talk between various growth factor pathways like EGFR/IGF-1R transactivation may
bypass the need for autocrine or paracrine growth factor stimulation. Mutations in
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the signaling pathway may lead to constitutive activation. Inflammatory cells of the
microenvironment provide a nurturing source of growth signals. These myriad path-
ways lead to a similar outcome of proliferation. This obvious complexity highlights
the importance of improved understanding of these processes. Only tailored thera-
pies that address organ tropism during metastasis and the numerous portals via which
cancer cells gain access to the cell cycle and proliferate out of control will yield a
healthy therapeutic response.
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Chapter 8
Regulation of Angiogenesis by Tumour
Suppressor Pathways

Karen J. Lefebvre, Sarah Assadian, Wissal El-Assaad and Jose G. Teodoro

8.1 Introduction to Angiogenesis

During the process of tumour formation, mutations and epigenetic effects allow can-
cer cells to acquire capabilities that promote uncontrolled growth. Such capabilities
include insensitivity to negative growth signals, resistance to apoptosis, uncontrolled
cell cycle progression, and enhanced angiogenic potential. Cancer cells are no dif-
ferent from normal tissues in that they require a vascular system to provide oxygen
and nutrients that are critical for survival and growth. As a general rule most cell
types in the human body exist within 100–200 μm of a capillary blood vessel—the
diffusion limit of oxygen (Carmeliet and Jain 2000). During embryogenesis, blood
vessels are formed from endothelial precursor cells through the process of vasculo-
genesis. Subsequently, angiogenesis, the process of formation of new blood vessels
from the existing vasculature, expands this network (Carmeliet and Jain 2000). In
adults, new blood vessels are produced exclusively through angiogenesis (Hanahan
and Folkman 1996). Physiological angiogenesis occurs in adults only in very spe-
cific situations such as during the female reproductive cycle and wound healing.
However, several human diseases have been associated with inappropriate induction
of angiogenesis including psoriasis, macular degeneration and cancer (Hanahan and
Folkman 1996). The concept that tumour formation involves the pathological stim-
ulation of angiogenesis has now become an accepted tenet in cancer biology, after
first being proposed by the late Judah Folkman in 1971 (Folkman et al. 1971).

Angiogenesis involves a complex set of steps and cellular interactions. In the first
step, pericytes surrounding existing blood vessels detach resulting in vessel dilation.
Next, the basement membrane surrounding the existing blood vessels is degraded to
allow endothelial cells to invade into the perivascular space. The endothelial cells
then proliferate and form a migrating column that moves through the perivascular
space toward the angiogenic stimuli produced by the tumour cells or stromal cells.
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Behind the migrating column, endothelial cells change shape and adhere to each other
to form a new capillary tube. This is accompanied by basement membrane formation
and pericyte attachment. Lastly, the newly formed sprouts fuse with other vessels,
thereby beginning to circulate blood to the newly vascularized region (Hanahan and
Folkman 1996; Bergers and Benjamin 2003).

Pathological tumour angiogenesis is similar to that in normal tissues except that
the resulting blood vessels are abnormal in terms of their structure and function.
In contrast to the highly ordered network of venules, arterioles and capillaries of
the normal vasculature, the tumour vasculature is very disorganized (Bergers and
Benjamin 2003). Tumour vessels are dilated and tortuous, have uneven diameters,
and exhibit excessive branching (Carmeliet and Jain 2000). Furthermore, tumour
blood vessels have high vascular permeability due to abnormalities in the vessel
walls. Together, these abnormalities cause irregular blood flow through the tumour,
which leads to hypoxic and acidic regions (Carmeliet and Jain 2000).

Since angiogenesis does not actively occur in adults, tumours must acquire the
capacity to induce blood vessel formation through mutation and/or epigenetic effects.
Once tumour cells develop the capacity to stimulate angiogenesis, they are able to
enter a rapid stage of growth. The transition from small, avascular lesions less than
2 mm in diameter to large, vascularized tumours is known as the “angiogenic switch”
and is now viewed as a necessary transition in tumour progression (Bergers and Ben-
jamin 2003). In the avascular phase, tumour cells proliferate but this proliferation is
counteracted by apoptosis; thus, the tumour remains dormant (Ribatti et al. 2007).
The molecular events that underlie the angiogenic switch are not well understood and
remain a topic of intense research but some of the key players have emerged. Overall,
the angiogenic switch is thought to be triggered by a change in the balance of pro-
and anti-angiogenic factors found in the extracellular space (Hanahan and Folkman
1996). Endogenous pro- and anti-angiogenic factors signal to endothelial cells to
either promote or inhibit proliferation and migration. An emerging theme in angio-
genesis research has been that many of the pathways that promote cell autonomous
growth also promote the non-cell autonomous pathways that control angiogenesis
(Fig. 8.1). During normal growth conditions, such as embryonic development, the
production of pro-angiogenic factors is potently induced by physiological stimuli
such as hypoxia and growth factor signaling pathways. During oncogenesis, activat-
ing mutations in proto-oncogenes such as Ras, Myc and PI3K induce expression of
pro-angiogenic factors, while repressing anti-angiogenic ones (reviewed in, Rak and
Yu 2004; Folkman 2006). Conversely, just as oncogenes can promote angiogenesis,
tumour suppressor genes (TSGs) are able to negatively regulate the process by shut-
ting down production of pro-angiogenic factors and stimulating anti-angiogenic ones
(Fig. 8.1, Tables 8.1 and 8.2). Therefore, as cancerous cells accumulate mutations,
amplifications, or epigenetic modifications activating oncogenic pathways and inac-
tivating tumour suppressor pathways, these effects concomitantly lead to increasing
angiogenic output. The rest of this chapter will focus on the mechanisms by which
TSGs have been shown to negatively regulate angiogenesis. Inactivating mutations
of TSGs including VHL, p53, RB, and PTEN have all been shown to increase angio-
genic potential (Bergers and Benjamin 2003; Ribatti et al. 2007). In each case these
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Fig. 8.1 Cancer and Angiogenesis. Cancer cells acquire several cell autonomous capabilities in
the process of becoming tumours. These include enhanced cell division, apoptosis evasion, and
immortalization. In addition, oncogenes can also promote the non-cell autonomous process of
angiogenesis. Conversely, tumour suppressor pathways function to antagonize oncogene driven
processes including angiogenesis. There are two basic mechanisms by which oncogenes and tumour
suppressor proteins modulate angiogenesis. Oncogenes can stimulate production of pro-angiogenic
factors and inhibit anti-angiogenic ones. The opposite holds true for tumour suppressor pathways

Table 8.1 Anti-angiogenic factors upregulated by tumour suppressor genes

Factor name p53 PTEN VHL Rb

Arresten Wei et al. (2006)
BAI1 Nishimori et al. (1997)
Endostatin Miled et al. (2005)
Ephrin A1 Dohn et al. (2001)
Ephrin Receptor A2 Dohn et al. (2001)
Maspin Eitel et al. (2009); Chenau et al. (2009) Eitel et al. (2009)
TSP-1 Dameron et al. (1994) Wen et al. (2001)
Tumstatin Teodoro et al. (2006)

BAI1 brain-specific angiogenesis inhibitor 1; TSP-1 thrombospondin-1

tumour suppressors use a variety of molecular mechanisms, both transcriptional and
post-transcriptional, to shift the production of angiogenic factors towards a state that
limits angiogenesis.

8.2 Tumour Suppressor Pathways and Angiogenesis

8.2.1 Von Hippel-Lindau (VHL)

Von Hippel-Lindau (VHL) syndrome is an inherited autosomal dominant disorder
characterized by susceptibility to a variety of tumours, both benign and malignant
(Latif et al. 1993). The most frequent tumours observed in VHL are hemangioblas-
tomas, pheochromocytomas and renal-cell carcinomas of the clear cell type. The ge-
netics of VHL follow the classical “two-hit hypothesis” pattern in which individuals
with VHL disease carry a germline mutation in one VHL allele and then acquire a
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Table 8.2 Pro-angiogenic factors downregulated by tumour suppressor genes

Factor name p53 PTEN VHL Rb

Adrenomedullin Betchen et al. (2006);
Matsushima-Nishiu
et al. (2001)

bFGF Ueba et al. (1994)
bFGF-BP Sherif et al. (2001)
COX-2 Subbaramaiah

et al. (1999)
Osteopontin Wang et al. (2003);

Shao et al. (2007);
Packer et al. (2006)

Pleiotrophin Li et al. (2006)
VEGF Pal et al. (2001) Zundel et al. (2000);

Jiang et al. (2001);
Zhong et al. (2000)

Ohh et al. (2000) Chellappan et al.
(1991); Claudio
et al. (2001)

bFGF basic fibroblast growth factor; bFGF-BP basic fibroblast growth factor binding protein;
COX-2 cyclooxygenase-2; VEGF vascular endothelial growth factor

second somatic inactivation of the second allele. The critical nature of angiogenesis in
tumour formation is underscored by the function of theVHL tumour suppressor gene,
which encodes a component of a ubiquitin ligase complex that negatively regulates
hypoxia inducible factor 1 (HIF-1) (Ohh et al. 2000). HIF-1 is a heterodimeric tran-
scription factor consisting of α and β subunits. Under conditions of normal oxygen
levels, a family of enzymes called prolylhydroxylases (PHDs) hydroxylates HIF-1α

on a conserved proline residue. The hydroxylated proline moiety of HIF-1α creates
a binding site for the VHL protein (pVHL), which then targets HIF-1α for polyubiq-
uitination and proteosomal degradation (Fig. 8.2). Under hypoxic conditions, PHD
activity is low because the enzyme uses molecular oxygen as a substrate; therefore,
the HIF-1α protein is stabilized since it is not hydroxylated and cannot bind VHL.
Upon stabilization, HIF-1α heterodimerizes with its partner HIF-1β and regulates the
expression of several genes involved in angiogenesis, cell proliferation, and metas-
tasis. Cells lacking functional pVHL are unable to downregulate the HIF-1 system
and therefore have constitutively activated HIF-1 transcription. Transcriptional ac-
tivation by HIF-1 drives the expression of several genes that create a favourable
environment for angiogenesis and tumour growth (reviewed in, Semenza 2003). A
major target gene of HIF-1 is the pro-angiogenic factor vascular endothelial growth
factor (VEGF).

VEGF is secreted from tumour or stromal cells and binds to VEGF receptor-1 or
VEGF receptor-2 on endothelial cells. These VEGF receptors are receptor tyrosine
kinases, which undergo dimerization and autophosphorylation upon VEGF binding,
thus triggering a downstream signaling cascade that promotes endothelial cell pro-
liferation (Carmeliet 2005). VEGF promotes angiogenesis in several different ways.
VEGF increases vascular permeability and promotes migration of endothelial cells
(Carmeliet 2005). Furthermore, VEGF protects endothelial cells from apoptosis by
inducing expression of the anti-apoptotic proteins Bcl-2 and survivin (Carmeliet
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Fig. 8.2 Interactions of tumour suppressor pathways with the HIF-1 pathway. The HIF-1 pathway is
the central regulator of angiogenesis that is activated in response to hypoxia. HIF-1 is a heterodimeric
transcription factor composed of the subunits HIF-1α and HIF-1β. Under conditions of normoxia,
HIF-1α is degraded by a process requiring the VHL tumour suppressor (see text for details). Under
hypoxic conditions, HIF-1α is stabilized and activates transcription of numerous genes required
for angiogenesis including VEGF. Each of the major tumour suppressor pathways discussed in this
chapter are able to prevent HIF-1 activity and hence production of VEGF. In the case of p53, two
redundant mechanisms have been shown to inhibit HIF-1. P53 can target HIF-1α for degradation
and also stimulates production of a microRNA that prevents HIF-1β production. PTEN can prevent
the translation of HIF-1α. The Rb tumour suppressor family also inhibits VEGF production by
inhibiting the E2F transcription factor or, in the case of p130, through an unknown E2F independent
mechanism

2005). VEGF is currently the only pro-angiogenic factor that is targeted directly in
cancer therapy. The drug Bevacizumab (Avastin) is now approved for the treatment
of several types of cancers, including colorectal, lung and breast, and trials are un-
derway for other cancers as well. As will be discussed in the following sections,
VEGF is negatively regulated by several of the major tumour suppressor pathways,
highlighting the necessity of keeping this factor under tight control in order to prevent
tumour formation.
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8.2.2 PTEN

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is the second
most frequently mutated gene in human cancer after TP53. PTEN, also known as
MMAC1 or TEP1, was first identified on human chromosome 10q23 as a region that
is homozygously mutated in many clinical cancer samples and tumour cell lines (Li
et al. 1997; Steck et al. 1997). Functionally, the PTEN protein acts as both a lipid
and protein phosphatase. The major lipid substrate for PTEN is phosphatidylinositol
(3,4,5) triphosphate (PIP3) (Maehama and Dixon 1998). This lipid phosphatase ac-
tivity, which directly antagonizes phosphatidylinositol 3-kinase (PI3K), is the main
tumour suppressive function of PTEN (Myers et al. 1998; Stambolic et al. 1998). The
PI3K pathway is a major driver of cell growth and survival. PI3K is a lipid kinase that
is activated by various receptor tyrosine kinases upon binding of their extracellular
growth factor ligands (Carracedo and Pandolfi 2008). PI3K converts the lipid sec-
ond messenger phosphatidylinositol (4,5) bisphosphate (PIP2) into PIP3. PIP3 then
recruits phosphatidylinositol-dependent kinase 1 (PDK1) and Akt to the membrane,
where Akt is phosphorylated. Akt is a serine/threonine kinase that phosphorylates
many downstream targets and thus acts as a central node in the PI3K pathway. Akt
phosphorylates mammalian target of rapamycin (mTOR), which in turn phosphory-
lates and activates the ribosomal protein S6K and inactivates the eIF4E inhibitory
factor 4E-BP (Hay and Sonenberg 2004). Thus phosphorylation of mTOR by Akt
activates protein synthesis and thereby promotes cell growth. Moreover, active Akt
inhibits apoptosis by phosphorylating and inactivating the forkhead transcription
factors, thereby inhibiting the transcription of pro-apoptotic genes including Bim
(Manning and Cantley 2007).

Over the last ten years, it has become clear that PI3K and PTEN signaling reg-
ulate tumour angiogenesis. Loss of function of PTEN in clinical prostate cancer
samples was found to be associated with increased microvessel number and density
(Giri and Ittmann 1999). Jiang and colleagues were the first to directly link PI3K
signaling to angiogenesis. Their 2000 study showed that overexpression of PI3K in
the chorioallantoic membrane (CAM) of the chicken embryo led to sprouting of new
blood vessels and enlargement of existing vessels (Jiang et al. 2000). Furthermore,
overexpression of PTEN or dominant negative mutants of PI3K inhibited angiogen-
esis (Jiang et al. 2000). More recently, PTEN has been shown to regulate several
pro- and anti-angiogenic factors.

PTEN and PI3K regulate VEGF production by controlling protein levels of HIF-
1α. Reintroduction of PTEN into PTEN-null U373 glioblastoma cells inhibited the
stabilization of HIF-1α and thereby blocked the transcription of VEGF and other
HIF-1α-regulated genes (Zundel et al. 2000). PTEN and PI3K were shown to affect
protein levels of HIF-1α but not mRNA levels (Jiang et al. 2001). HIF-1α-dependent
transcriptional activity was inhibited by expression of wild-type PTEN or dominant
negative mutants of PI3K in prostate cancer cells (Jiang et al. 2001). Moreover,
treatment of prostate cancer cells with the PI3K inhibitor LY294002 or the mTOR
inhibitor rapamycin inhibited transcription of VEGF (Jiang et al. 2001; Zhong et al.
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2000). Overexpression of PTEN inhibited VEGF transcription, whereas overexpres-
sion of a lipid phosphatase mutant of PTEN increased VEGF transcription (Zhong
et al. 2000).

More recently, two studies have demonstrated that PTEN’s ability to inhibitVEGF
transcription mediates its anti-angiogenic activity. Knockdown of the PI3K catalytic
subunit (p110α) using siRNAs decreased HIF-1α levels and VEGF expression, and
also resulted in decreased tumour growth and angiogenesis, as measured in the CAM
model (Xia et al. 2006). Moreover, introduction of PTEN into PTEN-null prostate
cancer cells blocked angiogenesis by decreasing expression levels of HIF-1α and
VEGF (Fang et al. 2007). Altogether these studies suggest that PI3K promotes an-
giogenesis by regulatingVEGF levels through HIF-1α, and that the lipid phosphatase
activity of PTEN reverses this effect.

In addition to VEGF, PTEN has been demonstrated to affect other regulators of
angiogenesis such as maspin (Table 8.1). Maspin is a secreted protein previously
shown to have anti-angiogenic and anti-metastatic activity. PTEN reconstitution
in PTEN-null glioblastoma cells resulted in increased protein levels of maspin in
response to hypoxia (Eitel et al. 2009). PTEN controls maspin expression through
a complex network with p53 (Eitel et al. 2009). Cytoplasmic PTEN activity blocks
Akt-induced phosphorylation of Mdm2, thereby preventing its translocation to the
nucleus (Mayo and Donner 2002). Mdm2 is a ubiquitin ligase which degrades p53
only in the nucleus; by preventing its translocation to the nucleus, PTEN stabilizes
p53 (Mayo and Donner 2002). In turn, p53 transcriptionally regulates PTEN, thus
forming a feedback loop. Interestingly, both PTEN and p53 activity were necessary
to activate maspin expression in glioblastoma cells (Eitel et al. 2009).

Pleiotrophin is a secreted growth factor with oncogenic and pro-angiogenic activ-
ity (Mikelis and Papadimitriou 2008). Pleiotrophin mRNA and protein levels were
increased in PTEN-null mouse embryonic fibroblasts (Li et al. 2006). Expression of
constitutively active mutants of Akt increased pleiotrophin levels, while treatment
with the PI3K inhibitor LY294002 or expression of PTEN decreased pleiotrophin
levels (Li et al. 2006). Together these results suggest that PTEN inhibits pleiotrophin
expression through its ability to antagonize PI3K signaling.

Osteopontin (OPN) is a secreted glycophosphoprotein that is commonly over-
expressed in human cancers (Rangaswami et al. 2006). OPN is known to promote
tumour angiogenesis and metastasis (Rangaswami et al. 2006). OPN mRNA levels
were elevated in PTEN-null prostate cancer and colon cancer cells (Wang et al.
2003; Shao et al. 2007). Additionally, PTEN has been shown to decrease mRNA and
protein levels of OPN in melanoma cells (Packer et al. 2006). Treatment with the
PI3K inhibitor LY294002 produced a similar effect, suggesting that PTEN’s lipid
phosphatase activity mediates its inhibitory effects on OPN (Packer et al. 2006).

Adrenomedullin is a secreted peptide that promotes tumour angiogenesis
(Nikitenko et al. 2006). PTEN decreases adrenomedullin mRNA levels in glioma
cells and endometrial cancer cells (Betchen et al. 2006; Matsushima-Nishiu et al.
2001). Adrenomedullin expression is induced by hypoxia, and its promoter has sev-
eral putative hypoxia response elements (Nikitenko et al. 2006); thus, PTEN may
control adrenomedullin expression through its effects on HIF-1α.
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In addition to its important function in tumour cells, PI3K signaling also plays
a role in endothelial cells to regulate angiogenesis. PI3K is activated in endothelial
cells by binding of growth factors such as VEGF and angiopoietins, and subse-
quently promotes endothelial cell proliferation and migration (Jiang and Liu 2009).
Conversely, overexpression of PTEN in cultured endothelial cells inhibited vessel
sprouting and tube formation induced by VEGF (Huang and Kontos 2002).

In an endothelial cell-specific PTEN knockout mouse model, mice with a homozy-
gous deletion of PTEN died by embryonic day 11.5 due to excessive bleeding and
cardiac failure (Hamada et al. 2005). In heterozygotes, partial loss of PTEN made
the endothelial cells hypersensitive to growth factors including VEGF, and led to en-
hanced angiogenesis and more rapid tumour growth (Hamada et al. 2005). Similarly,
mice with endothelial cell-specific knockout of the p85 regulatory subunit of PI3K
also died during embryonic development due to excessive bleeding (Yuan et al. 2008).
However, mice with a heterozygous deletion of PI3K-p85 in endothelial cells had
smaller vessel size and decelerated tumour growth compared to control mice (Yuan
et al. 2008). Together these two mouse models indicate that expression of both PI3K
and PTEN in endothelial cells is essential for vessel formation during embryogenesis,
but that the two proteins play opposite roles during tumour progression.

8.2.3 The Retinoblastoma Tumour Suppressor Gene Family

The retinoblastoma tumour suppressor gene (Rb) was first identified in pediatric
cancers arising from retinal cells. Several types of human tumours show mutations
or deletions of the Rb gene. Like the other tumour suppressors described above,
inherited allelic loss of Rb increases susceptibility to cancer formation (Dunn et al.
1988). The Rb protein (pRb) is a component of the G1 checkpoint, which blocks S-
phase entry and cell proliferation. pRb and its closely related proteins, p107 and p130,
regulate cell cycle by inhibiting the activity of E2F transcription factors (Weinberg
1995; Chellappan 2009). E2Fs bind to the promoter regions of many genes required
for S-phase entry, allowing the progression of the cell cycle from G1 to S phase. The
Rb family of proteins is regulated by the cyclin-dependent kinases (CDKs)-cyclins,
which phosphorylate Rb proteins in a cell cycle dependent manner (Grana et al.
1998; Mittnacht 1998). Rb is hyperphosphorylated during most of the cell cycle
while the hypophosphorylated form is present only during G1 phase. Sequential
phosphorylation of Rb leads to dissociation of Rb-E2F complexes, which allows E2F
to bind promoters of genes required for S-phase entry (Harbour and Dean 2000).

Several lines of experimental evidence have demonstrated that at least part of
the tumour suppressive effects of the Rb family function through inhibition of an-
giogenesis. Significantly, in addition to S-phase promoting genes, E2F was shown
to activate several genes involved in processes such as angiogenesis, invasion and
metastasis, including fibroblast growth factor 2 (FGF2), fibroblast growth factor re-
ceptor 3 (FGFR3), matrix metalloproteinase 16 (MMP16) and VEGF-B (Stanelle
et al. 2002). Thus, by globally suppressing E2F-dependent transcription, the Rb
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family can inhibit production of such angiogenesis promoting factors. p130 has been
shown to downregulate VEGF expression both at the RNA and protein levels in dif-
ferent cell types and also to downregulate the activity of the VEGF promoter through
an unknown mechanism that does not involve E2F (Claudio et al. 2001).

The hypophosphorylated form of Rb is targeted by several viral transforming pro-
teins such as E1A of adenovirus, large T antigen of simian virus 40 (SV40) (reviewed
in, DeCaprio 2009) and E7 of human papilloma virus (HPV) (Munger and Howley
2002). It has been shown that HPV E6 and E7 oncoproteins enhance angiogenesis by
increasing the expression of many pro-angiogenic factors and decreasing the levels of
anti-angiogenic factors. In this study, VEGF and interleukin 8 (IL-8) were shown to
increase whereas thrombospondin-1 (TSP-1) was decreased (Toussaint-Smith et al.
2004). Therefore, viral oncogene mediated deregulation of Rb may contribute to
promoting angiogenesis of tumours such as HPV-induced cervical carcinoma.

8.2.4 The p53 Tumour Suppressor Gene (TP53)

The p53 tumour suppressor protein is arguably the most important factor limiting
tumour development in metazoans. One of the many tumour suppressive functions
of p53 is the inhibition of angiogenesis. The gene encoding p53 (TP53) is mutated
in half of all human tumours, which makes it the most frequently altered gene in all
cancers (Hollstein et al. 1991; Vogelstein et al. 2000). The importance of the tumour
inhibiting functions of p53 is best demonstrated in mouse models, where deletion
of p53 results in spontaneous tumours at a very early age (Attardi and Donehower
2005). Under normal conditions, the steady-state level of p53 is maintained low
due to a negative feedback loop involving the E3 ubiquitin ligase MDM2 (Momand
et al. 2000). Only following genotoxic stress, DNA damage or aberrant growth
signals resulting from the activation of oncogenes do p53 protein levels become
stabilized. This then allows p53 to mediate several cellular stress responses to allow
for repair of damaged DNA, eliminate defective cells from the replicative pool,
and create an environment unsuitable for the growth of tumours (Vousden and Lu
2002). The structure of p53 is that of a prototypical transcription factor and cancer
associated alterations in p53 primarily arise from point mutations within its DNA-
binding domain (Vogelstein and Kinzler 1992). For these reasons, much attention has
been focused on the identification of p53 transcriptional targets in order to understand
the mechanism through which p53 exerts its effects. Most of the well-characterized
p53 functions, including cell cycle arrest, DNA damage repair and apoptosis, have
been primarily attributed to its ability to directly upregulate expression of such genes
as the CDK inhibitor, p21WAF1/CIP1 to inhibit cell cycle progression, and a plethora
of pro-apoptotic genes including Bax and NOXA (Vousden and Lu 2002). However,
p53 can also execute some of its biological functions, including its inhibitory role
on angiogenesis, independent of its transcription factor activity (reviewed inYee and
Vousden 2005).
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Initial clues suggesting a role for p53 in angiogenesis came from clinical studies
correlating the status of p53 in tumours with their microvessel density (MVD). In
prostate (Yu et al. 1997), colon (Kang et al. 1997; Takahashi et al. 1998; Faviana
et al. 2002), head and neck (Gasparini et al. 1993), and breast cancers (Gasparini
et al. 1994), significantly higher MVDs were observed in tumours with mutated
p53 than in those carrying the wild-type gene. The anti-angiogenic role of p53 was
further highlighted in studies where reconstitution of p53 in vivo resulted in avascu-
lar dormant tumours, independent of its anti-proliferative and pro-apoptotic effects
(Holmgren et al. 1998; Gautam et al. 2002).

Three basic mechanisms have been found to mediate the inhibitory effect of
p53 on angiogenesis. These mechanisms include: transcriptional repression of
pro-angiogenic genes, inhibition of HIF-1, and transcriptional activation of anti-
angiogenic genes. Thus far, four genes encoding pro-angiogenic factors have been
found to be negatively regulated by p53 through several different mechanisms (Ta-
ble 8.2). Perhaps most intriguing is the ability of p53 to impede the transcription of
VEGF under hypoxic conditions. This effect is partly mediated by the ability of p53
to bind to the Sp1 transcription factor and to thus prevent it from activating the VEGF
promoter (Pal et al. 2001). P53 also represses the expression of cyclooxygenase-2
(COX-2), a key enzyme involved in prostanoid-mediated angiogenesis, by competing
with the TATA-box binding protein for binding to its promoter (Subbaramaiah et al.
1999). Basic fibroblast growth factor (bFGF) and its activator, the bFGF-binding
protein (bFGF-BP), are also downregulated in response to p53. Although the mech-
anism of bFGF-BP inhibition has not been defined, p53 was shown to repress the
expression of bFGF itself by directly binding to core promoter elements (Sherif et al.
2001; Ueba et al. 1994).

The second mechanism through which p53 inhibits angiogenesis is by impeding
the activity of HIF-1. As previously described, HIF-1 is a major regulator of an-
giogenesis in response to hypoxia. The inhibitory effect of p53 on HIF-1 is partly
mediated by its ability to bind to the HIF-1α subunit and to target it for proteoso-
mal degradation under hypoxic conditions (Ravi et al. 2000). Recently, p53 was
also found to inhibit the expression of HIF-1β by directly upregulating miR-107,
a microRNA encoded in an intron of the pantothenate kinase enzyme 1 (PANK1)
(Yamakuchi et al. 2010). miR-107 targets the 3′ untranslated region of HIF-1β and
reduces its expression under both normoxic and hypoxic conditions (Yamakuchi
et al. 2010). The result of these inhibitory effects on both HIF-1α and HIF-1β is that
HIF-1 is unable to stabilize and upregulate VEGF; consequently, the pro-angiogenic
output of the tumour is markedly reduced. Interestingly, p53 does not inhibit the
activity of HIF-1α under normal physiological conditions (Rempe et al. 2007) and
expression of miR-107 under normoxic conditions does not affect the levels ofVEGF
produced by the cell (Yamakuchi et al. 2010). Also, the inhibitory effect of p53 on
HIF-1 necessitates p53 itself to stabilize in the cell either in response to DNA damage
(Kaluzova et al. 2004) or acidosis and nutrient deprivation secondary to hypoxia (Pan
et al. 2004). As such, this mechanism only operates in an environment commonly
found in small tumours where extreme hypoxic conditions and genotoxic stress both
exist.
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The third way by which p53 inhibits angiogenesis is by transcriptional upregula-
tion of endogenous anti-angiogenic factors (Table 8.1). TSP-1 was the first of such
p53 targets to be identified (Dameron et al. 1994) and was also the first characterized
example of an endogenous anti-angiogenic factor (Good et al. 1990). TSP-1 and the
related factor, TSP-2, are large glycoproteins that localize to the extracellular matrix
(ECM). Overexpression of TSP-1 inhibits angiogenesis and tumour growth, while
loss of TSP-1 leads to increased angiogenesis (Nyberg et al. 2005). Furthermore,
TSP-1 and TSP-2-null mice both display enhanced tumour angiogenesis (Nyberg
et al. 2005). The upregulation of TSP-1 by p53, along with its downregulation in
response to the activation of src (Slack and Bornstein 1994), myc (Tikhonenko et al.
1996; Janz et al. 2000) and ras (Watnick et al. 2003; Rak et al. 2000), demonstrate
the opposing effects of oncogenes and tumour suppressors on angiogenic factors
(Fig. 8.1).

Other anti-angiogenic factors upregulated by p53 include the brain-specific
angiogenesis inhibitor (BAI1) (Nishimori et al. 1997) and maspin (Eitel et al. 2009;
Chenau et al. 2009; Yu et al. 2006), as well as the ephrin receptor A2 (EPHA2) and
its ligand ephrin A1 (Brantley et al. 2002; Dohn et al. 2001). The coupled regulation
of EPHA2 and its ligand ephrin A1 by p53 also demonstrates that p53 can trigger
an entire transcriptional program in order to inhibit angiogenesis. This phenomenon
is also highlighted in the mechanism through which p53 induces the release of
collagen-derived anti-angiogenic factors (CDAFs) in the ECM (Teodoro et al. 2006,
2007; Assadian and Teodoro 2008).

8.2.4.1 Collagen-Derived Anti-Angiogenic Factors
(CDAFs) and p53

Whereas pro-angiogenic factors are mostly growth factors secreted by the tumour
or the stroma, many of the endogenous anti-angiogenic factors are components or
proteolytic fragments derived from the ECM. The basement membrane of blood
vessels is a specialized, collagen-rich ECM that provides structural support to the
endothelium (Kalluri 2003). Several collagen isoforms in the basement membrane
contain C-terminal peptides that, when proteolytically cleaved, have anti-angiogenic
activity. These CDAFs include arresten, derived from the α1 collagen IV chain,
tumstatin, derived from the α3 collagen IV chain, and endostatin, derived from
the α1 collagen XVIII chain. CDAFs have been shown to inhibit endothelial cell
proliferation, migration, and tube formation as well as inducing apoptosis (Assadian
and Teodoro 2008). Through these complex inhibitory mechanisms, CDAFs have
potent anti-angiogenic effects.

To activate CDAFs, p53 directly upregulates the transcription of: 1) collagen
genes containing CDAFs in their C-terminal noncollagenous-1 domain (NC1), 2)
the enzyme necessary to stabilize and assemble collagens for secretion, and 3) the
proteolytic enzymes necessary to cleave CDAFs from the full-length protein. Out of
seven collagen chains identified to contain CDAFs in their NC1 domains, two have
been identified as p53 targets: α1-collagen XVIII (COL18A1) and α1-collagen IV
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(COL4A1) (Miled et al. 2005; Wei et al. 2006). However, p53 has also been shown
to stabilize the expression of other CDAF parent proteins, such as α3-collagen IV, by
directly upregulating α(II)-prolyl-4-hydroxylase (PH4A2), a rate limiting enzyme
crucial to collagen stability and assembly (Teodoro et al. 2006). The same study
also demonstrated that p53 was able to induce the cleavage of CDAFs from the NC1
domains of α1-collagen XVIII and α3-collagen IV. Although the exact mechanism
through which p53 executes the proteolytic cleavage of the CDAFs from their parent
collagens remains unknown, MMP-2, a p53 target with collagenase activity, may
potentially mediate this effect (Bian and Sun 1997).

Overall these effects seem to strongly support a model where p53 acts to alter
the angiogenic output of the tumour. By upregulating the endogenous inhibitors of
angiogenesis and limiting the production of pro-angiogenic factors, p53 creates an
environment non-permissive to the growth and migration of endothelial cells and
prevents the angiogenic switch. Much effort is now being devoted to understanding
these changes on a larger scale and identifying novel secreted targets of p53 and
other tumour suppressors. The therapeutic use of such factors may allow tumours to
be maintained in a dormant, non-aggressive state.

8.3 Clinical Perspectives

From the survey of the literature presented above it is apparent that a significant
function of the major tumour suppressor pathways is inhibition of pathological angio-
genesis. Functional loss of one or more of these tumour suppressor pathways occurs
in essentially all cancers. Therefore, the ultimate objective of anti-angiogenic therapy
is the pharmacological replacement of tumour suppressor function to maintain tu-
mours in the dormant, avascular state that exists before the angiogenic switch occurs.
Each of the tumour suppressor proteins discussed above has the capacity to inhibit the
production of VEGF (Fig. 8.2) and, not surprisingly, this factor has also been the ma-
jor pharmaceutical target in anti-angiogenic cancer therapy in recent years. Currently
there are more than 10 angiogenesis inhibitors approved for clinical use against a
variety of cancers that each target some aspect ofVEGF biology (Folkman 2007). Be-
vacizumab (Avastin), a humanized monoclonal antibody against VEGF, was the first
anti-angiogenic molecule approved by the FDA in 2004. Bevacizumab has become
the major anti-angiogenic treatment and is now used in combination with conven-
tional chemotherapy for late stages of colon cancer, non-small cell lung cancer,
breast cancer, glioblastoma, and metastatic renal cell carcinoma. Small molecule in-
hibitors of the VEGF receptor are also now in use. Sorafenib (Nexavar) and Sunitinib
(Sutent) are tyrosine kinase inhibitors that target VEGF as well as other angiogenic
receptors including platelet derived growth factor (PDGF). Sorafenib and Sunitinib
are approved by the FDA to treat metastatic renal cell carcinoma as single agents.
Sorefenib is also approved for treatment of hepatocellular carcinoma, and Sunitinib
for gastrointestinal tumours.
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Despite the ability of drugs such as Bevacizumab to completely inhibit VEGF
activity, patient treatment generally results in only modest extension of overall sur-
vival by a matter of months (Hurwitz et al. 2004; Miller et al. 2007). Because of the
inherent genetic instability and heterogeneity of tumour cells, inhibition of a single
angiogenic factor such as VEGF likely results in resistance through expression of
other angiogenic factors (Relf et al. 1997). Experimental evidence supporting this
notion has shown that some tumours may evade the inhibition of VEGF signaling
by upregulation of additional pro-angiogenic factors such as bFGF (Relf et al. 1997;
Dorrell et al. 2007). In these studies, it was shown that blocking compensatory an-
giogenic signals via treatment with combination therapy could significantly reduce
tumour angiogenesis (Dorrell et al. 2007; Casanovas et al. 2005). Interestingly, as
was discussed above, p53 is able to inhibit both the bFGF and VEGF pathways,
suggesting that blocking both of these factors is required for effective angiogen-
esis blockade. Further identification of mechanisms by which tumour suppressor
pathways inhibit angiogenesis may therefore provide insights towards the design of
combination therapies in order to limit acquired resistance.

8.3.1 The Relationship Between Angiogenesis and Metastasis

The final, and perhaps most devastating, capability that tumour cells acquire is
metastatic potential. The angiogenic and metastatic processes are often discussed
as two completely different processes; however, recent results emerging from both
basic research and the clinic have suggested that these processes are inextricably
linked. Under some conditions, pharmacologically inhibiting either angiogenesis or
metastasis alone can result in acceleration of the other process and thereby complicate
treatment strategies.

An example of the complex relationship between metastasis and angiogenesis has
come from the efforts to target MMPs as a therapeutic strategy to prevent tumour
metastasis. MMPs are essential regulators of the cell’s microenvironment through
their control of extracellular proteolysis (Egeblad and Werb 2002). The importance
of MMPs during cancer progression was initially highlighted during tumour pro-
gression owing to their ability to degrade the ECM, break natural barriers and allow
tumour cells to spread in surrounding tissues and metastasize (Egeblad and Werb
2002; Freije et al. 2003). This represented a key therapeutic target during tumorige-
nesis, which led to the development of small-molecule inhibitors for the treatment
of metastatic cancer, in particular of molecules targeting MMPs and plasminogen
activators (Turk 2006). Unfortunately, results from the clinical trials showed that
MMP inhibitors had either no effect or, in some cases, even accelerated tumour
growth. This forced a re-evaluation of the prevailing concepts and suggested the
possibility that some proteases might have anti-tumour roles (Coussens et al. 2002;
Overall and Kleifeld 2006). Recent studies have provided evidence for the exis-
tence of extracellular proteases with anti-tumour properties based on the generation
of loss-of-function animal models (Overall and Kleifeld 2006; Balbin et al. 2003;
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McCawley et al. 2004). These results support an emerging and paradoxical role for
proteases in tumour progression.

The likely cause of the failure of MMP inhibitors in the clinic is that several mem-
bers of the MMP family have tumour suppressor activities. Collagenase 2 (MMP8),
for example, was the first protease to be described in vivo as having anti-tumour ac-
tivity (Balbin et al. 2003). It is mainly produced by neutrophils and is associated with
inflammation. Its expression has been linked to a decrease in metastasis of breast can-
cer cells (Montel et al. 2004). Macrophage metalloelastase, also known as MMP12,
is produced by macrophages. Its role in human cancer is still unclear because of its
anti- and pro-tumour activities. It has been reported to have a protective role against
tumour growth in lungs by inhibiting angiogenesis (Gorrin-Rivas et al. 2000). It has
also been shown to have anti-metastatic activities in experimental metastasis models
(Houghton et al. 2006). The anti-tumour effects of MMP12 could be derived from
cleaving plasminogen to release angiostatin, an anti-angiogenic peptide (Dong et al.
1997). Gelatinase B (MMP9) is another example of a protease with opposite effects
in cancer. It has been associated with tumour growth (Egeblad and Werb 2002) but
studies have also reported it as having a protective role, which is derived, similar to
MMP12, from its ability to cleave and release endogenous anti-angiogenic inhibitors
such as angiostatin, tumstatin and endostatin (Hamano et al. 2003; Pozzi et al. 2002).
Stromelysin 3 (MMP11) (Andarawewa et al. 2003) and MMP19 (Pendas et al. 2004;
Jost et al. 2006) were originally recognized as pro-tumorigenic proteases, however,
a protective role has also been reported.

Of particular significance has been the demonstration that various MMPs are
necessary for releasing ECM-sequestered endogenous anti-angiogenic factors. The
CDAF molecules, which were introduced above, are proteolytic fragments of the
NC1 domain of several collagens that possess potent anti-angiogenic activity (Kalluri
2003). These include endostatin, released from the α1 collagen XVIII chain by the
action of several MMPs, including MMP-3, 9, 12, 13 and 20 (Ferreras et al. 2000).
Endostatin binds to cell surface proteoglycans, to VEGFR-2 and to integrin α5β1, to
inhibit VEGF and bFGF-induced endothelial cell migration and to induce apoptosis
(Kalluri 2003; Sudhakar et al. 2003). Tumstatin, a CDAF generated from α3 colla-
gen IV, can be released by MMP9. Tumstatin inhibits endothelial cell proliferation
and promotes apoptosis via signaling through integrin αvβ3 (Hamano et al. 2003;
Sudhakar et al. 2003). Decreased levels of tumstatin in MMP9 knockout mice were
shown to be responsible for increased growth of Lewis lung carcinoma compared to
wild-type mice (Hamano et al. 2003). Arresten, released from α1 collagen IV, binds
to α1β1 integrin. Canstatin, released from α2 collagen IV, binds both αvβ3 and α3β1
integrins. Binding of arresten and canstatin to integrins presumably mediates their
anti-angiogenic activities (Kalluri 2003). MMP-2, 7, 9, and 12 all have the capacity
to hydrolyze plasminogen and release the anti-angiogenic peptide angiostatin (Dong
et al. 1997; O’Reilly et al. 1999; Patterson and Sang 1997). Thus we find that the
MMPs are very much like double-edged swords with the capacity to promote cell
motility and metastasis, but at the same time liberate anti-angiogenic peptides that
can keep tumour growth in check. Since anti-angiogenic molecules such as CDAFs
have been shown to be effectors in tumour suppressor pathways such as p53 (see
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above), inhibiting the MMPs that liberate these peptides would have the effect of
crippling anti-tumour responses.

Just as inhibition of metastasis by targeting MMPs may result in enhanced an-
giogenesis and tumour growth, there is also experimental evidence showing that
inhibition of angiogenesis alone can accelerate metastasis. Two recent high-profile
studies investigated the effects of anti-VEGF therapy on tumour growth and metasta-
sis (Ebos et al. 2009; Paez-Ribes et al. 2009). These studies used two different animal
models to show that, under some circumstances, anti-VEGF treatment could result
in enhanced metastasis. The first study showed that short-term treatment of healthy
mice with the VEGFR/PDGFR kinase inhibitor, Sunitinib, even prior to injection
of tumour cells, resulted in accelerated metastasis and shorter survival as compared
to control mice that did not receive anti-angiogenic therapy (Ebos et al. 2009). The
second study came to similar conclusions using either DC101, a VEGFR-2-blocking
monoclonal antibody, or by using continuous Sunitinib treatment or tumour-specific
deletion of VEGF-A in a β-VEGF knockout background (Paez-Ribes et al. 2009).
Taken together, these results suggest that metastasis and angiogenesis are intimately
linked and treatment for one of these processes cannot be undertaken without taking
into account what may be happening to the other.

8.3.2 Mimicking Tumour Suppressor Function
as a Treatment Paradigm

Loss of tumour suppressor functions is one of the main driving forces of tumour
development. Rational design of therapies to target tumour growth through angio-
genesis inhibition can benefit greatly from understanding the basic mechanisms used
by tumour suppressor pathways. With respect to angiogenesis, several mechanistic
trends emerge by which tumour suppressor genes (TSGs) inhibit this pathway effec-
tively. The first mechanism is to effectively control VEGF. All of the major tumour
suppressor proteins discussed above have evolved capabilities to control VEGF on a
transcriptional or post-transcriptional level. However, the resistance seen in the clinic
to VEGF inhibitors conclusively shows that inhibition of VEGF is not sufficient. The
emergence of resistance to cancer therapy poses the same problems that are observed
in the treatment of infectious disease. For example, developing a drug regimen that
could maintain HIV as a stable infection required administration of a drug cocktail
that targets multiple aspects of viral biology. The same approach is likely required for
effective clinical inhibition of angiogenesis and is an approach that tumour suppres-
sor proteins have evolved to exploit. The second trend is therefore to utilize multiple
pathways to target tumour angiogenesis to limit possibility of resistance. This could
be through inhibiting secondary pro-angiogenic molecules such as bFGF or by ac-
tively producing endogenous anti-angiogenic factors such as TSP-1 or CDAFs. This
approach has not yet been translated to the clinical setting for a variety of reasons.
Perhaps the major reason why anti-angiogenic factors, including CDAFs and TSP-1,
have not been successfully translated to the clinic is because a single mechanism
of action has not emerged for these agents. Although these proteins display potent
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anti-angiogenic activity both in vitro and in vivo, the mechanism of action is complex
and poorly understood, which makes clinical application problematic. Nonetheless,
an extensive clinical trial using the CDAF endostatin was carried out in China for
treatment of lung cancer. The results of the trial were excellent and resulted in ap-
proval of the drug in combination with conventional chemotherapy (Sun et al. 2005).
The search for new approaches to prevent angiogenesis that do not rely on VEGF
blockade is imperative if sustained angiogenesis inhibition is to be achieved in the
clinic.

A final trend that is observed in tumour suppressors is that angiogenesis and
metastasis are inhibited simultaneously. Tumour suppressor pathways often increase
expression of factors that are able to inhibit metastasis as well as angiogenesis. An
excellent example of such a mechanism is the protein maspin, which is upregulated
by both the PTEN and p53 pathways. The maspin protein is a potent inhibitor of
both angiogenesis and metastasis. This may be a critical aspect to inhibit tumour
growth since inhibiting only angiogenesis can result in metastasis acceleration and
vice versa. In addition, the trend between MMP expression and tumorigenesis is
not as straightforward as was initially thought. The fact that several proteases have
opposing effects in cancer, depending on tissue type and tumour microenvironment,
introduces an additional level of difficulty and represents a challenge in designing
specific inhibitors. It is possible that the use of anti-angiogenic agents may prove to
be effective in combination with the metastasis-targeting MMP inhibitors that were
ineffective as a monotherapy.

In most individuals, the action of tumour suppressor pathways can maintain the
body free of life-threatening cancers for an entire lifetime. Part of the effectiveness
of tumour suppressor pathways seems to be derived from preventing small cancer-
ous lesions from becoming vascularized. Thus, further study of how these proteins
function to prevent tumour angiogenesis in vivo will continue to provide insights
towards achieving sustained angiogenesis inhibition in the clinic.
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Chapter 9
Inflammatory Mediators in Tumorigenesis
and Metastasis

Jeremy Dupaul-Chicoine and Maya Saleh

9.1 Introduction

The intimate link between chronic inflammation and tumorigenesis was first recog-
nized by the 19th century scientist Rudolf Virchow (Balkwill and Mantovani 2001).
More than a century later, his initial hypothesis is being explored in greater detail. It
is now clear that inflammation is a double-edged sword in cancer: it mediates tumor
promotion and progression while activating immunity against the tumor. Collec-
tively, this chapter provides a comprehensive view of the crosstalk between tumors
and their microenvironment, specifically the dual role of the immune system in cancer
development. We describe the chemokine network and discuss its role in recruiting
immune cells to the tumor site and in the homing of tumors to metastatic niches.
We follow by presenting the cellular players of the immune system, their pathways
and cytokines and their contributions to tumor promotion and dissemination versus
tumor immune surveillance. Throughout, we review current immunotherapies and
discuss future therapeutic strategies aimed at fighting cancer.
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9.2 Inflammation

Inflammation is a physiological response to the presence of “danger” that is required
for host defense. The sensing of “non-self” or “altered self” by the immune system
induces the production of cascades of pro-inflammatory cytokines, chemokines and
lipid mediators that act synergistically to restore homeostasis. Indeed, physiological
levels of inflammation are salutary, however, excessive or chronic inflammation is
associated with pathogenesis. It is widely recognized that diseases that exert consider-
able burden on human health, including cancer, infectious diseases and inflammatory
disorders, have both an intrinsic genetic susceptibility component and an extrinsic
environmental component (chemical factors, physical factors, infectious agents etc.).
The complex interaction between these two interfaces determines the time of disease
onset, progression and pathogenic outcome. Inflammation can arise in response to
environmental triggers, such as cigarette smoke or infection, or because of a genetic
defect, and its contribution to tumorigenesis is paramount (Grivennikov et al. 2010;
Mantovani et al. 2008). Chronic infection with Hepatitis B or C virus increases the
risk of hepatocellular carcinoma (Sherman 2010); and ulcerative colitis, a form of in-
flammatory bowel disease, augments the odds of developing gastrointestinal cancer
(Clevers 2004). Oncoproteins such as K-RAS and MYC activate pro-inflammatory
transcription factors such as NF-κB, STAT3 and AP-1 and contribute to tumorigen-
esis by promoting a smoldering form of inflammation that presents without clinical
manifestations (Grivennikov et al. 2010; Mantovani et al. 2008). The first evidence
that an oncogene directly affects inflammation in clinical settings was demonstrated
in papillary thyroid carcinoma (PTC). This cancer occurs following rearrangement of
the RET gene with that of a receptor tyrosine kinase creating the RET/PTC oncogene
that encodes a constitutively activate tyrosine kinase receptor. This chromosomal
rearrangement results in reprogramming of thyrocytes and the expression of pro-
inflammatory cytokines, chemokines and factors involved in promoting metastasis
(Borrello et al. 2005).

Tumor biopsies are frequently infiltrated with several populations of immune cells
including neutrophils, mast cells, natural killer (NK) cells, macrophages, dendritic
cells (DCs), myeloid-derived suppressor cells (MDSCs), as well as T and B cells.
Although initially recruited to attack the tumor, experimental evidence indicates that
these cells are later subverted by the tumor to favor its growth and aggressiveness
(Qian and Pollard 2010; DeNardo et al. 2010; Porta et al. 2009). In particular, a
subset of macrophages, designated as Tumor-Associated Macrophages (TAMs), are
pro-tumorigenic and their level of infiltration in tumor biopsies correlates with poor
prognosis. In a mouse model of aggressive breast cancer, mice lacking macrophages
have delayed primary tumor growth and are devoid of lung metastasis (Lin et al.
2001). High serum concentrations of pro-inflammatory cytokines and chemokines
are associated with poor prognosis. In colorectal cancer, high levels of Interleukin
(IL)-6 and soluble gp130 (a chain of the IL-6 receptor) correlate directly with bad
prognosis (Sharma et al. 2008) and elevated expression of CXCL8 (IL-8) is linked to
the progression of several cancers including hepatocellular carcinoma, prostate and
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colorectal cancer (Aggarwal and Gehlot 2009). Consistently, single nucleotide poly-
morphisms (SNP) in several pro-inflammatory cytokine genes are associated with
increased probability of developing cancer. Polymorphisms in the gene encoding
IL-1β, which lead to increased production of this cytokine, are linked to increased
chances of developing Helicobacter pylori-induced gastric cancer (Sugimoto et al.
2010). These findings are corroborated by results from transgenic mice showing that
over-expression of human IL-1β in the stomach results in spontaneous development
of gastric cancer (Tu et al. 2008). Other cytokines involved in gastric cancer include
Tumor necrosis factor (TNF)α and the IL-1 receptor antagonist (IL1RN) (Sugimoto
et al. 2010). In particular, TNFα is also associated with bad prognosis in melanoma,
prostate, breast and pancreatic cancers and both Tnfr1−/− (TNF Receptor1) and
Tnfα−/− mice are resistant to tumorigenesis in experimental cancer models (Balk-
will 2006). Recently, TNFα antagonists have been used in cancer clinical trials.
Infliximab, a monoclonal antibody against TNFα, and etanercept, a soluble TNF
receptor, have yielded promising results (Balkwill 2009). Moreover, epidemiologic
studies have supported experimental findings and revealed that patients treated pro-
phylactically for 10–15 years with non-steroidal anti-inflammatory drugs (NSAIDs)
that target the cyclooxygenase enzymes, COX1 and COX2, have reduced risk of
cancer development (Rostom et al. 2007; Harris 2009). Below, we dwell on the dual
role of the immune system in promoting versus restricting cancer growth and provide
seminal examples from the recent literature that impacted on our understanding of
the key role of immunity in this elusive disease.

9.3 Chemokines and Tumorigenesis

9.3.1 The Chemokine Network

To create a suitable microenvironment that supports cell survival, proliferation and
growth, tumors recruit inflammatory tumor-promoting cells into their stroma. This
is achieved through the use of small chemotactic peptides named chemokines. In-
deed, the chemokine network is the major system used to control hematopoietic and
non-hematopoietic cell migration and trafficking. It is also critical for cell activation
and differentiation, and plays a critical role during organogenesis, embryogenesis
and angiogenesis. Chemokines and their receptors are subdivided into 4 different
families depending on the cysteine motifs present in the mature chemokine. The
four subgroups consist of CC, CXC, XC and CX3C chemokines. CC and CXC
chemokines are the most common, consisting of 28 and 17 members, respectively.
The CXC subfamily is further subdivided into the Glu-Leu-Arg -positive (ELR+)
and ELR- chemokines. The ELR motif precedes the CXC motif and this subdivision
will be important later on in the discussion as the ELR+ chemokines are angiogenic
whereas the ELR- are angiostatic. The chemokine receptors are G-protein coupled
receptors that signal through a wide range of transduction pathways involved in
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chemotaxis, cell survival and proliferation (Lazennec and Richmond 2010; Manto-
vani et al. 2010). The chemokine system is very redundant and most chemokines of
the CC and CXC subfamilies can interact with several different chemokine receptors.
Similarly, one chemokine receptor interacts with more than one ligand. Furthermore,
chemokines can be sub-divided into inflammatory and homeostatic factors. The in-
flammatory chemokines are inducible and are mainly involved in the recruitment
of hematopoietic cells. These are critical to induce tissue repair and are therefore
important in the context of tumor promotion. The homeostatic chemokines, on the
other hand, are constitutively produced and are important for organ development
and hematopoiesis. Recently, decoy receptors of the chemokine network have been
identified, namely D6, DuffyAntigen Receptor for Chemokines (DARC) and Chemo
Centryx ChemoKine Receptor (CCX-CKR). The common link between these 3 de-
coy receptors is their inability to signal following ligand binding. Thus, their primary
function is to neutralize the chemokine response and maintain homeostasis. D6 and
DARC are required for the clearance of inflammatory CC chemokines. DARC can
also sequester ELR + CXC chemokines. On the other hand, CCX-CKR scavenges
homeostatic chemokines (Lazennec and Richmond 2010; Mantovani et al. 2010).

9.3.2 Decoy Chemokine Receptors and Cancer

Because of the significant redundancy in the chemokine network, decoy receptors
constitute important regulatory nodes and their role in cancer and metastasis is now
emerging. The role of D6 has been investigated in experimental mouse models of
colitis-associated colorectal cancer and inflammation-induced skin carcinogenesis.
In both cases, D6−/− mice are more susceptible to cancer development, mainly due
to increased inflammatory chemokines in the tumor microenvironment that lead to
greater infiltration of leukocytes (Nibbs et al. 2007; Vetrano et al. 2010). In breast
cancer, D6 is negatively correlated with lymph node metastasis; and in a nude mouse
xenograft model, transplantation of a breast cancer cell line over-expressing D6
decreases metastatic potential (Wu et al. 2008). DARC also plays a critical role in reg-
ulating both primary tumor growth and metastasis. Transgenic mice over-expressing
DARC in their endothelial cells are resistant to melanoma formation due to decreased
angiogenesis (Horton et al. 2007). Similarly, DARC−/− mice present with enhanced
prostate cancer because of greater concentrations of angiogenic chemokines (Shen
et al. 2006). Interestingly, African-American individuals have a 60 % greater chance
of developing prostate cancer, possibly because the majority of theAfrican-American
population does not express DARC. Loss of DARC is a result of a genetic selection
against infection with Plasmodium vivax, one of the agents of malaria (Lentsch 2002).
In addition to its function in primary tumors, DARC expression negatively correlates
with lymph node metastasis in breast cancer patients (Wang et al. 2006b). DARC con-
trols metastasis partly through its interaction with the membrane-associated protein
KAI1. Tumor cells expressing KAI1 interact with DARC on blood vessel endothelial
cells leading to senescence of the circulating tumor cell (Bandyopadhyay et al. 2006).
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As for DARC, expression of CCX-CKR decreases the odds of lymph node metastasis
in breast cancer (Feng et al. 2009). Furthermore, in a multivariate analysis, all three
decoy receptors were shown to be associated with relapse-free survival suggesting
that loss of these receptors in the tumor microenvironment could be critical for the
development of invasive cancer (Zeng et al. 2010).

9.3.3 Chemokines and Homing

Chemokines were initially investigated in the context of metastasis due to their role
in mediating cellular homing. Several different chemokines and chemokine receptors
have been shown to play a critical role in mediating metastasis. Each tumor has a dif-
ferent migration pattern, which seems to be highly dependent on the set of chemokine
receptors that it expresses. One of the best-studied chemokine/chemokine receptor
pairs in metastasis is the CXCL12 (Stromal Derived Factor-1 (SDF-1))/CXCR4 pair
because of its role in mediating stem cell migration (Teicher and Fricker 2010).
Both CXCL12- and CXCR4-deficient mice are embryonic lethal and share a very
similar phenotype (Ma et al. 1998). CXCL12 is expressed in the liver, bone, lungs,
adrenal glands and lymph nodes and its expression gradient determines attraction
of metastatic cells. This is observed in several cancers ranging from hepatocellular
carcinoma (Schimanski et al. 2006), prostate (Du et al. 2008), breast (Muller et al.
2001), ovarian (Hall and Korach 2003), thyroid (Hwang et al. 2003) and small cell
lung cancers (Burger et al. 2003) to hematological cancers (Javelaud et al. 2007). In-
terestingly, CXCL12 was recently found to bind to another receptor, CXCR7 (Burns
et al. 2006). The exact role of CXCR7 is still controversial, and it seems to play
a role both independently and in combination with CXCR4. In some cell-lines it
promotes tumor growth and metastasis, while in others it has no effect (Lazennec
and Richmond 2010). In both breast and lung cancer cell lines that do not express
CXCR4, knockdown of CXCR7 leads to decreased tumor growth (Miao et al. 2007).
Consistently, injection of Severe Combined ImmunoDeficiency (SCID) mice with a
prostate cancer cell line over-expressing CXCR7 leads to increased tumor growth,
presumably through increased angiogenesis (Wang et al. 2008). Conversely, expres-
sion of CXCR7 has no effect on the growth of colon carcinoma (CT26) or lung
cancer (KEPI) in vivo (Meijer et al. 2008). There is strong evidence suggesting that
CXCR7 serves as a decoy receptor, which neutralizes both CXCL12 and CXCL11
(Boldajipour et al. 2008; Luker et al. 2010; Naumann et al. 2010). How then does
CXCR7 enhance tumorigenesis in some settings? Currently, one hypothesis is that
CXCR4 and CXCR7 heterodimerize leading to increased signaling through CXCR4
(Lazennec and Richmond 2010). CXCR7 could also mediate cellular adhesion with
endothelial cells (Burns et al. 2006). However, additional experimental evidence is
needed to support these hypotheses.

Because of their high metastatic potential, melanomas have been extensively in-
vestigated to determine which chemokine/chemokine receptor pairs mediate homing
of metastatic cells. Three receptors seem to be major determining factors, namely
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CXCR4, CCR7 and CCR9. CXCR4-expressing melanomas tend to home to the
liver, the bone marrow (Javelaud et al. 2007) and the lungs (Murakami et al. 2002),
whereas CCR7 expression directs to the lymph nodes (Fang et al. 2008) and that
of CCR9 to the small intestine (Amersi et al. 2008). In all cases, homing is due to
high levels of chemokine expression in secondary sites. In breast cancer, CXCL1
is critical in primary tumor growth and in mediating metastasis to the lungs (Minn
et al. 2005), which is in agreement with the phenotype of Cxcr2−/− mice that are
resistant to lung metastasis (Singh et al. 2009). Another receptor involved in metas-
tasis is CX3CR1. Pancreatic ductal adenocarcinomas have a very unique metastatic
pattern, in that they home to intra- and extra-pancreatic nerves, which express the
CX3CR1 ligand, CX3CL1 (Marchesi et al. 2008). Surprisingly, in colorectal cancer
CX3CL1 has anti-tumorigenic effects (Vitale et al. 2007). CCR6 and CCL20, on the
other hand, promote colorectal cancer metastasis to the liver (Rubie et al. 2006), as
does CXCR4 (Zeelenberg et al. 2003).

9.3.4 Chemokines and Angiogenesis

Chemokines do more than increase tumor growth and determine metastatic sites.
Indeed, several ELR + CXC chemokines, through interaction with their cognate re-
ceptors CXCR1 and 2, also play a critical role in angiogenesis. CXCL1, for instance,
triggers angiogenesis in colorectal cancer (Wang et al. 2006a) and anti-CXCR2 treat-
ment decreases angiogenesis and tumor growth (Matsuo et al. 2009). In non-small
cell lung cancer, up-regulation of CXCL8 and CXCL5 is important for angiogenesis
(Yanagawa et al. 2009). Other chemokines, which are not themselves angiogenic,
can mediate the recruitment of different cell types to induce angiogenesis. For exam-
ple, CXCL12 induces angiogenesis through MDSCs in a breast cancer model (Liu
et al. 2010), and CCL2 stimulates the recruitment of TAMs to induce angiogenesis
in prostate cancer (Loberg et al. 2007).

9.3.5 Immunosuppression Through Chemokines

A new aspect of chemokine tumor biology is the role of chemokines in converting the
tumor microenvironment into a tolerogenic state. Recently, CCL21-over-expressing
melanomas were shown to induce the formation of a lymphoid-like structure around
the tumor. Specifically, CCL21 leads to the recruitment of MDSCs and regulatory
T cells (Tregs), which suppress immune-surveillance (Shields et al. 2010). The
recruitment of Tregs is also observed in response to high levels of CCL22 (Qin
et al. 2009). Similarly, in gastric cancer, CCL17 and CCL22 recruit Tregs leading to
immunosuppression (Mizukami et al. 2008).
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9.4 The Role of Immune Cells and Immunity in Tumorigenesis

The tumor microenvironment is composed of a dynamic cellular network that shapes
tumorigenecity and determines its outcome. In general, transformed epithelial cells
form the core of solid tumors and are surrounded by stromal cells including fibrob-
lasts, endothelial cells, pericytes, and immune cells (Pietras and Ostman 2010). Here
we focus our discussion on immune cells and examine their complex role in cancer
development (Fig. 9.1).

The immune system is divided into innate and adaptive immune systems. In-
nate immunity provides first line defenses against invading microbial pathogens
and endogenous “danger” signals by activating pathways that mediate inflammation
and pathogen clearance. It also serves as a sentinel that alerts and primes adaptive
immunity, which eliminates any remaining pathogens and builds memory against
re-challenge. Specific activation of innate immune responses is orchestrated by evolu-
tionarily conserved germline-encoded “Pattern Recognition Receptors” (PRRs) that
discriminate between self and non-self or altered self. PRRs recognize conserved mo-
tifs expressed by microbes or exposed by host cells under stress, termed Microbe-
and Danger-Associated Molecular Patterns (MAMPs and DAMPs) (Iwasaki and
Medzhitov 2010). Various classes of innate immunity recognition systems have been
discovered and their function in cancer is discussed below. The innate immune system
is composed of several cell types, including granulocytes (neutrophils, eosinophils,
basophils), NK cells, macrophages, MDSCs and dendritic cells (DCs) (Murdoch
et al. 2008). On the other hand, T and B cells direct specific adaptive immunity. T
cells differentiate into CD4+ T cells (or T helper (Th) cells) or CD8+ T cells (or
cytotoxic T cells (CTLs)), and the CD4+ lineage is further sub-divided into Th1,
Th2, Th17 and Treg sub-lineages. Interestingly, it has been recently demonstrated
that lineage fate determination is under epigenetic control and is more plastic than
previously estimated (Zhu and Paul 2010; Wei et al. 2009).

The concept of immunosurveillance, or elimination of cancers by immune attack,
was, for a long time, under appreciated due to lack of experimental data. The first
evidence came from mice deficient in key molecules, such as InterFeroN (IFN)γ or
perforin, required for mounting a proper adaptive immune response. These knockout
animals were more susceptible to the induction of tumorigenesis (Street et al. 2001).
It is now clear that both the innate and adaptive immune systems are involved in
immunosurveillance (Dunn et al. 2004). In addition, they exert a pressure on tumor
antigenicity, a process termed immune editing, with one of three consequences: elim-
ination (the net outcome of immunosurveillance), equilibrium or escape (Dunn et al.
2004) (Fig. 9.2). Consistently, tumors grown in Rag2−/− (Recombinase Activator
Gene) mice, which lack all T and B cells, are more immunogenic when transplanted
into WT mice (Shankaran et al. 2001), which suggests that the immunogenicity of
a tumor is constantly being sculpted by the immune system. This persistent editing
process is conducive to tumor equilibrium or dormancy that precedes malignancy
and results in the rise of a tumor’s most fit clone. Tumor equilibrium is not necessarily
followed by tumor escape; it could lead to elimination or persist indefinitely (Dunn
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The Immune System

Editing PromotionSurveillance

Tumor
Elimination

Tumor
Equilibrium Tumor

Escape

Fig. 9.2 The cancer immunoediting hypothesis. This hypothesis proposes that cancer growth is
under constant antigenic pressure, whereby the immune system senses “altered self” or de novo
tumor antigens and responds to them by stunting tumor growth and maintaining it in equilibrium.
This process can last for years and is often referred to as tumor dormancy. However, this phase
is dynamic and the cell growth balance is often tipped towards tumor elimination or escape. The
elimination phase is the net result of active immune surveillance, whereas tumor escape results
when the microenvironment is successfully modulated by the tumor to accommodate its unrestricted
growth. In this case, immune cells promote, rather than curb, tumorigenesis

et al. 2004). For instance, in a model of sarcoma, treatment of mice harboring stable
tumors with monoclonal antibodies against CD4 and CD8 or IFNγ led to relapse
in tumor growth, indicating that tumor equilibrium is maintained by the immune
system (Koebel et al. 2007) Tumor escape is the tumor’s most favorable outcome, as
it permits its growth without immunological restrictions (Dunn et al. 2004).

9.4.1 Innate Immunity and Promotion of Tumorigenesis

The role of innate immune cells in cancer and metastasis appears to be tissue spe-
cific, with both pro-tumorigenic and anti-tumorigenic functions reported in different
contexts. NK cells are the exception as they play a universal anti-tumorigenic role.
Macrophages are phagocytic cells and have a wide variety of functions from scav-
enging cellular debris, microbes and apoptotic cells to presenting antigens to T cells.
The macrophage lineage is highly plastic but two distinct macrophage types have
been described, M1 and M2-type cells. M1 macrophages are involved in clearing
pathogens and help mount a Th1 response. They are potent phagocytes and are effi-
cient at producing anti-microbial substances including pro-inflammatory cytokines,
anti-microbial peptides and reactive oxygen and nitrogen species. M1 macrophages
are often referred to as the classically-activated macrophage type. On the other hand,
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M2 or alternatively-activated macrophages prime Th2 responses and are generally
immunosuppressive. They are needed for wound healing and are closely related to
TAMs (Qian and Pollard 2010; Murdoch et al. 2008). The role of TAMs in tumorige-
nesis was first demonstrated in a mouse model of breast cancer, where macrophage
deficiency reduced breast cancer aggressiveness and metastasis to the lung (Lin et al.
2001). Consistently, depletion of macrophages, either genetically or using clodronate
liposomes, decreases tumor growth in several cancer models (Qian and Pollard 2010).
TAMs are involved in the angiogenic switch (Lin et al. 2006) and facilitate tumor
dissemination by secreting various proteases. More specifically, depletion of cathep-
sin S and B from macrophages leads to reduced invasiveness (Gocheva et al. 2010).
Another subtype of hematopoietic cells related to TAMs is that of Tie2-Expressing
Monocytes (TEMs). TEMs specialize in promoting angiogenesis and seem to be
recruited to hypoxic areas (De Palma et al. 2005). Stat6−/− mice, which are only
capable of producing M1-polarized macrophages, are resistant to tumorigenesis and
metastasis (Ostrand-Rosenberg et al. 2000), suggesting that in contexts where only
M1 macrophages are found, the innate immune system is anti-tumorigenic. On the
other hand, SHIP-deficient mice in which macrophage differentiation is skewed
towards M2 have increased tumor growth (Rauh et al. 2005). This suggests that
macrophages recruited to the tumor site are initially anti-tumorigenic but are re-
programmed into M2 cells by the tumor microenvironment. This has significant
therapeutic implications as it suggests that manipulation of macrophage differen-
tiation could induce tumor regression. A famous example to illustrate this is that
of Coley’s mixed toxin. William Coley had noticed that some patients recovered
from sarcomas following infections. Therefore, by developing a cocktail containing
bacterial extracts and injecting it into sarcomas, he was able to cure some patients
(Coley 1893). A more recent example is the treatment of bladder cancer with Bacillus
Calmette-Guérin (BCG), an attenuated form of Mycobacterium bovis. This treatment
leads to localized inflammation and a Th1 response (Rosevear et al. 2009). Although
the exact mechanism is not completely understood, it seems to be largely Toll-Like
Receptor (TLR)-dependent (Rakoff-Nahoum and Medzhitov 2009). This approach
has been further refined with the use of vaccine adjuvants such as CpG or IL-12
that have been shown to reprogram TAMs reducing their tumor-supporting activi-
ties and metastasis (Stout et al. 2009; Vollmer and Krieg 2009). Altogether, these
examples provide compelling evidence, which indicate that rewiring of the innate
inflammatory response in cancer could lead to immunotherapy. The M1 to M2 switch
is believed to be a function of MDSCs. MDSCs are a heterogeneous population of
immature myeloid cells and myeloid progenitor cells. Under homeostatic conditions,
MDSCs would differentiate into DCs, macrophages and mature granulocytes but un-
der pathological conditions such as in cancer they remain undifferentiated and exert
immunosuppressive effects (Gabrilovich and Nagaraj 2009). MDSCs are recruited
to the tumor site in response to pro-inflammatory cytokines and lipid mediators in-
cluding IL-1β14, IL-6 (Bunt et al. 2007) and ProstaGlandin E2 (PGE2) (Sinha et al.
2007). Once at the tumor site, MDSCs mediate immune suppression through the
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production of Reactive Oxygen Species (ROS) and peroxynitrite and the modula-
tion of the levels of arginine, an essential amino acid needed for T cell activation
(Ostrand-Rosenberg and Sinha 2009).

Similarly to macrophages, neutrophils can be functionally polarized into N1 or
N2-types or Tumor-Associated Neutrophils (TANs). Tumor Growth Factor (TGF)β
is one of the factors important for the generation of N2 neutrophils (Fridlender et al.
2009). Neutrophils can also contribute to angiogenesis, as demonstrated in a mouse
model of pancreatic cancer, through the production of specific proteases such as
Matrix MetalloProteinase (MMP) 9 (Nozawa et al. 2006). Interestingly, in a model
of ovarian cancer, Ccr2−/− mice that fail to attract TAMs to the tumor site have
equivalent tumor growth as compared to wild-type animals due to recruitment of
TANs (Pahler et al. 2008). These results have important therapeutic implications
since they suggest that depletion of TAMs could potentially lead to a compensatory
mechanism involving TANs.

NK cells are cytolytic, non-phagocytic cells that discriminate between self and
non-self, or altered-self, through a series of stimulatory and inhibitory receptors
(Sutlu and Alici 2009). NK cells play an important role in immunosurveillance and
are generally associated with good cancer prognosis (Smyth et al. 2005). However,
they are infrequently found in tumors and their receptors are often down-regulated
in cancer, inhibiting immunoediting. Transgenic expression of the NKG2D ligand
ubiquitously results in decreased immunosurveillance via a mechanism that involves
down-regulation of the NKG2D receptor (Oppenheim et al. 2005). Thus, overex-
pression of an NK activating ligand could lead to inhibition of NK cell cytotoxicity,
and tumors often secrete a soluble form of the NK cell receptor ligand to inhibit NK
cell function (Nausch and Cerwenka 2008).

DCs are professional Antigen Presenting Cells (APCs) that link innate responses
to adaptive immunity (Murdoch et al. 2008). They are critical for priming immunity
as well as inducing tolerance to self. One of the tumor’s immune escape strategies
is to maintain DCs in an immature state (iDCs) through signals such as Vascular
Endothelial Growth Factor (VEGF) and IL-10 (Lin et al. 2010). Similar to MD-
SCs, iDCs are immunosuppressive and favor angiogenesis. They recruit Tregs by
producing TGFβ (Ghiringhelli et al. 2005) and promote angiogenesis by undergo-
ing endothelialization (Conejo-Garcia et al. 2004). In a breast cancer model, iDCs
were shown to induce a Th2 polarized response and accelerate tumor development
(Aspord et al. 2007).

Altogether, these studies illustrate the subversive mechanisms employed by tu-
mors to achieve immunosuppression and ensure survival. As discussed above,
immune cells are generally plastic and most can play both pro- and anti-tumorigenic
roles. What dictates the outcome of tumor growth is the integration of the cytokine
milieu. This knowledge provides a therapeutic strategy to rewire the immune system
to mount a response against cancer.
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9.4.2 The Adaptive Immune System and Immunosurveillance

Much like innate immunity, the adaptive immune system plays an important role
in immunoediting as well as cancer progression. For example, in a mouse model
of sarcomas, T and B cell deficiency, such as in Rag1−/− or Rag2−/− mice,
leads to enhanced tumor growth. Moreover, and as mentioned earlier, anti-CD4,
-CD8, -IFNγ or -IL-12 antibodies have been shown to break tumor dormancy and
induce relapse in tumor growth (Koebel et al. 2007). Indeed, a Th1 (but not Th2) re-
sponse and CD8+ T cells are associated with good cancer prognosis (DeNardo et al.
2010; Daniel et al. 2005; Sato et al. 2005). The role of Th17 cells in tumorigenesis
is more controversial. In a mouse model of melanoma, transfer of Th17 cells was
reported to confer protection, presumably through recruitment of DCs and activation
of CD8+ T cells (Martin-Orozco et al. 2009). Conversely, others have shown, both
in models of melanoma and bladder carcinoma, that Il-17−/− mice have decreased
tumorigenesis compared to wild-type animals (Wang et al. 2009). Clearly, further
experiments are needed to clarify the role of Th17 cells in cancer. In contrast, there
is more of an accord as to the role of Tregs in tumorigenesis. In a variety of cancer
models including breast cancer, renal cell carcinoma and non-small cell lung cancer,
Tregs were shown to be tumor promoting (DeNardo et al. 2010). They modulate the
tumor microenvironment by producing immunosuppressive cytokines such as IL-10
and TGFβ (Strauss et al. 2007) and are thought to be directly cytotoxic to CD8+ T
cells and NK cells through a mechanism involving granzyme B and perforin (Cao
et al. 2007).

The crosstalk between innate and adaptive immunity in cancer is bidirectional.
Indeed, it has been recently demonstrated that adaptive immune cells modulate can-
cer progression through a feedback mechanism that involves further stimulation of
innate immune responses and the consequent instatement of chronic inflammation.
In a mouse model of breast cancer, CD4+ T cells were shown to be critical for M2
cell polarization and metastasis to the lung through the production of IL-4 (DeNardo
et al. 2009). IL-4 is also needed for the up-regulation of cathepsin B and S in TAMs,
factors essential for angiogenesis and tumor dissemination (Gocheva et al. 2010). B
cells and humoral immunity also regulate innate immunity through the secretion of
immunoglobulins. In a transgenic model of squamous cell carcinoma, Rag1−/− mice
but not CD4−/− or CD8−/− mice were resistant to tumorigenesis. Transfer of B cells
or serum from wild-type mice into Rag1−/− mice restored skin cancer susceptibility
(Visser et al. 2005). In this context, B cells regulated innate immunity through acti-
vating Fcgamma Receptors (FcγRs) on resident and recruited myeloid cells (Andreu
et al. 2010). These studies caution on the use of antibodies to treat cancer as it would
potentially induce chronic inflammation that promotes de novo carcinogenesis.
B cells were also implicated in a model of castration-resistant metastatic carcinoma,
through the production of lymphotoxin beta, a TNF related cytokine (Ammirante
et al. 2010). Therefore, the intricate crosstalk within the immune system increases
the complexity of the understanding of the immune control of tumorigenesis, and
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dissection of these interactions is hoped to provide an advance to tailor personalized
cancer and metastasis treatments.

9.5 Master Molecular Orchestrators
of Inflammation in Cancer

9.5.1 Toll-Like Receptors and Nod-Like Receptors

The innate immune system is equipped with several PRRs, which could be grouped
into three classes: secreted, transmembrane and cytosolic receptors. Ficolins, col-
lectins and pentrataxins are secreted receptors useful for opsonization and activation
of phagocytosis. Transmembrane PRRs include TLRs and lectins that are expressed
on the cell surface or on endosomes (Fig. 9.3). The cytosolic class of PRRs encom-
passes Nod-like receptors (NLRs) and Retinoic acid-Inducible Gene-I (RIG-I)-like
receptors (Iwasaki and Medzhitov 2010). Of these, TLRs and NLRs have been
the most studied in the context of cancer. A spectrum of MAMPs is recognized
by TLRs; TLR4 recognizes lipopolysaccharide, TLR2 heterodimerizes with both
TLR1 or TLR6 and senses lipoteichoic acid and peptidoglycan (PGN), TLR5 rec-
ognizes flagellin and TLR11 profilin. These TLRs are expressed on the plasma
membrane, whereas TLR3, 7 and 9 are found on endolysosomes and recognize
double stranded RNA, single stranded RNA and CpG DNA, respectively (Rakoff-
Nahoum and Medzhitov 2009). TLRs also sense DAMPs released from necrotic cells
such as the High-Mobility Group Box 1 protein (Branco-Madeira and Lambrecht
2010), or from carcinomas such as the extracellular matrix proteoglycan versican
(Kim et al. 2009). Following ligand sensing by TLRs, the activating signal is gener-
ally transduced via the common adaptor molecule Myeloid Differentiation primary
response gene 88 (MyD88), except for TLR3 that signals through TRIF. Eventually,
the TLR signal converges on master transcription factors, predominantly NF-κB,
IFN-Response Factors and AP-1 that induce pro-inflammatory and pro-survival tran-
scription programs. TLRs play a central role in the maintenance of tissue homeostasis,
recruitment of inflammatory cells to the site of injury and priming of adaptive im-
munity (Rakoff-Nahoum and Medzhitov 2009). Their crucial role in tumorigenesis
was investigated mainly using MyD88−/− mice. In a model of spontaneous intesti-
nal cancer, MyD88−/− mice were significantly more resistant to the development
of polyps compared to wild-type animals. Several factors involved in tumor growth
were down-regulated in the absence of MyD88 including COX2 and MMP7 (Rakoff-
Nahoum and Medzhitov 2007). In carcinogen-induced cancer models such as DiEthyl
Nitrosamine (DEN)-induced hepatocellular carcinoma or 7,12-DiMethylBenz (a)
Anthracene (DMBA)-induced skin cancer, MyD88-deficiency also resulted in re-
sistance to tumor formation (Naugler et al. 2007; Swann et al. 2008). Similarly,
MyD88−/− mice were less susceptible to the formation of sarcomas (Swann et al.
2008). It is noteworthy that MyD88 functions not only downstream of TLRs, but
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Fig. 9.3 Master regulators of inflammation, cell survival and cell death. Innate immune cells sense
the presence of danger (MAMPs and DAMPs) through evolutionarily conserved receptors termed
PRRs (TLRs and NLRs are shown) that trigger inflammation by converging on central proteases
and transcription factors (red rectangles). TLRs and some NLRs activate the NF-κB and MAPK
pathways leading to the production of cytokine, chemokine and lipid mediator cascades. Other NLRs
assemble “inflammasomes” that recruit and activate caspase-1, which cleaves IL-1β and IL-18 into
their mature active cytokine forms. Inflammation and cell death are often intertwined. Excessive
caspase-1 activation leads to an inflammatory form of cell death termed pyroptosis, and TNFα can
induce both inflammation and survival or apoptosis. The MAPK pathways that converge on the AP-
1 family of transcription factors are also involved in determining cell fate in inflammatory contexts.
IL-6 and IL-11 bind to their cognate receptors on the cell surface and activate the JAK-STAT3
pathway that controls cell survival and proliferation

is additionally the adaptor of the IL-1 and IL-18 receptors (Rakoff-Nahoum and
Medzhitov 2009). Therefore, the phenotype of MyD88−/− mice in some instances
is independent of TLR function.

NLRs, cytosolic PRRs, are further grouped into 5 different sub-families: NLRA
(CIITA), NLRB (NAIP), NLRC (including NOD1/2 and IPAF), NLRP (NALP) and
NLRX (NOD9) (Ting et al. 2008). These proteins are characterized by an N-terminal
CAspase-Recruitment Domain (CARD) or PYrin Domain (PYD), involved in homo-
typic protein-protein interactions, a central Nucleotide-binding and Oligomerization
Domain (NOD) and a C-terminal Leucine Rich Repeat (LRR) domain that rec-
ognizes the ligand. The LRR domain is believed to auto-repress NLR proteins in
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the absence of their cognate ligands. NOD1 and NOD2 recognize PGN deriva-
tives, namely meso-DiAminoPimelic acid (DAP) and Muramyl DiPeptide (MDP),
respectively, and elicit inflammation by oligomerizing, through CARD-CARD inter-
actions, with the Receptor-Interacting Protein 2 (RIP2), which engages the MAPK
and NF-κB pathways (Geddes et al. 2009) (Fig. 9.3). NLRPs are sensors of danger
and are thus activated by a wide variety of stress signals. For example, NLRP3 is
activated by various microbial molecules as well as by particulate matter including
monosodium urate crystals found in joints of gout patients, irritants like asbestos and
silica and protein aggregates such as amyloid beta. Once activated, NLRPs associate
with the adaptor molecule Apoptosis -associated Speck-like protein containing a
CARD (ASC) and recruit and activate the inflammatory caspase, caspase-1, to form
a macromolecular complex dubbed the “inflammasome” (Schroder and Tschopp
2010) (Fig. 9.3). Inflammatory caspases include caspase-1, -4 -5 and -12 in humans
and caspases-1, -11 and -12 in mice. Caspase-1 is the prototypical inflammatory
caspase that cleaves pro-IL-1β and pro-IL-18 into their mature biologically active
cytokine forms. Caspases-5 and -11 are recruited to select inflammasomes and act
as co-activators of caspase-1 (Mc Intire et al. 2009). On the other hand, caspase-12
is an inhibitor of the inflammasome, as well as the NF-κB pathway, and its expres-
sion has been linked to severe sepsis in the clinic (Saleh et al. 2006; Saleh et al.
2004). The role of the inflammasome in tissue repair and tumorigenesis has been
recently investigated. In colitis and colitis-associated colorectal cancer, the NLRP3
inflammasome has been shown to be protective. A recent report has identified SNPs
in a regulatory region downstream of the human NLRP3 gene, which were found
to be associated with Crohn’s disease susceptibility in individuals of European de-
scent. SNPs in this region result in decreased NLRP3 expression and dampened
IL-1 family cytokine production (Villani et al. 2009). Of these cytokines, IL-18 is
the most relevant as it contributes to intestinal epithelial cell regeneration as well
as to chronic inflammation in inflammatory bowel disease. In response to Dextran
Sulfate Sodium (DSS)-induced injury, deficiency in IL-18, IL-18 Receptor (IL-18R)
or the IL-18R adaptor MyD88 results in severe colitis (Pizarro et al. 1999; Reuter
and Pizarro 2004; Salcedo et al. 2010; Sivakumar et al. 2002; Takagi et al. 2003).
On the other hand, Autophagy-related protein 16-L1 (ATG16L1), which is impli-
cated in Crohn’s disease, negatively regulates the inflammasome, and mice that lack
ATG16L1 in hematopoietic cells hyper-produce IL-1β and IL-18 and are susceptible
to DSS colitis (Saitoh et al. 2008). Thus, it appears that IL-18 exerts a dual role in
intestinal homeostasis and colitis. Early in the mucosal immune response, its expres-
sion by intestinal epithelial cells and lamina propria mononuclear cells mediates a
cytoprotective role but under chronic inflammation its excessive production results
in deleterious effects (Pizarro et al. 1999; Siegmund 2010). Consistently, others
and we have recently demonstrated that the inflammasome is required for intesti-
nal epithelial cell regeneration and tissue repair following injury (Dupaul-Chicoine
et al. 2010; Zaki et al. 2010). Caspase-1 deficient mice are extremely susceptible
to DSS-induced injury of the intestinal mucosa, succumbing very early on com-
pared to wild-type animals. This phenotype is primarily ascribed to lack of IL-18
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production by the intestinal epithelium in Casp1−/− mice, as it is completely re-
versed by exogenous administration of this cytokine (Dupaul-Chicoine et al. 2010;
Zaki et al. 2010). In conjunction with the pro-carcinogen AzOxyMethane (AOM),
chronic administration of DSS promotes tumorigenesis in the colon, and deficiency
in the inflammasome pathway has been shown to result in enhanced tumorigene-
sis, presumably promoted by exaggerated tissue damage and colitis (Salcedo et al.
2010; Allen et al. 2010). Interestingly, we have recently demonstrated that modula-
tion of caspase-1 function by caspase-12 is necessary for immune tolerance in the
gut. Casp12−/− mice, in which the inflammasome is derepressed, are resistant to
acute colitis but are highly susceptible to AOM-DSS-induced colorectal cancer due
to excessive tissue repair and enhanced inflammatory response (Dupaul-Chicoine
et al. 2010). Excessive inflammasome activation is also associated with metastatic
melanomas, in vitro chemotaxis of macrophages and angiogenesis (Okamoto et al.
2010). Moreover, the NLRP3 inflammasome bridges innate to adaptive immunity
through DCs production and is essential for priming CD8+ T cells and mounting
immunity against dying tumor cells in response to chemotherapy (Ghiringhelli et al.
2009).

9.5.2 Nuclear Factor-Kappa-Light-Chain-Enhancer
of Activated B Cells (Nf-κB)

NF-κB is a central regulator of inflammation. TLRs, NLRs and some cytokine re-
ceptors, including the TNFR1 and IL1R1/IL-18R, converge on NF-κB to trigger
inflammation (Fig. 9.3). NF-κB is sequestered in the cytosol by IκB inhibitory
proteins and translocates to the nucleus in response to phosphorylation, conse-
quent ubiquitination and proteosomal degradation of IκB. IκB phosphorylation is
executed by the central IκB Kinase (IKK) complex, which consists of two kinase
subunits, IKKα and IKKβ, and a regulatory subunit NEMO (IKKγ). NF-κB plays
a central role in tumorigenesis, primarily because of its functions in inflammation
(transcriptional control of COX-2, IL-6, and TNF) and cell survival pathways (Bcl-
Xl, cIAP2, cFLIP) (Bollrath and Greten 2009; Grivennikov and Karin 2010). Using
tissue specific Ikkb−/− mice, Greten et al. investigated colitis-associated colorectal
cancer and demonstrated a requirement for NF-κB activation, in both the myeloid
and epithelial compartments, in tumor promotion; NF-κB induced inflammation in
myeloid cells and inhibited apoptosis of intestinal epithelial cells (Greten et al. 2004).
Similarly, deletion of Ikkb from the myeloid compartment led to diminished tumor
growth in a cigarette-induced lung cancer model (Takahashi et al. 2010). In the DEN
model of hepatocellular carcinoma, compensatory proliferation in response to DEN-
induced hepatocyte cell death is NF-κB-dependent. Accordingly, deletion of Ikkb
in both hepatocytes and Kupffer cells resulted in decreased tumorigenesis (Maeda
et al. 2005), and blockade of the NF-κB pathway through inducible expression of
an IκBα super-repressor transgene inhibited hepatocellular carcinoma in Mdr2−/−
(Multi-Drug Resistance) mice (Pikarsky et al. 2004).
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Tumor necrosis factor or TNF is an NF-κB target, and as its name implies, was
initially thought to induce tumor cell death. This was subsequently refuted when
Tnfα−/− mice were generated and found to be resistant to skin cancer (Moore
et al. 1999). This paradigm-shifting paper demonstrated that expression of pro-
inflammatory cytokines promotes tumor growth. TNFα signals through TNFR1 or
TNFR2 to induce one of two opposite cell fates: survival and inflammation versus
cell death. The extent of NF-κB activation downstream of TNF determines the out-
come (Balkwill 2009). The pro-tumorigenic activity of TNFα is mediated by TNFR1,
but not TNFR2, as Tnfr1−/−mice phenocopy Tnfα−/− mice (Arnott et al. 2004). In
addition, reconstitution of wild-type mice with bone marrow from Tnfr1−/− mice
markedly reduced the number and size of tumors in the AOM-DSS model of col-
orectal cancer (Popivanova et al. 2008). TNF-α is also required for the development
of lung and liver metastasis (Kitakata et al. 2002; Tomita et al. 2004).

COX2 is another NF-κB target that is key in tumor promotion. As mentioned
previously, the impact of COX2 in colorectal cancer is undeniable, as prophylac-
tic treatment with NSAIDs decreases colorectal cancer risk (Rostom et al. 2007).
COX1 and COX2 convert arachidonic acid into the pro-inflammatory lipid media-
tors, prostaglandins, prostacyclins and thrombaxane. One of the major metabolites
produced by COX2 is PGE2, which plays an important role in tumor survival, growth
and invasion (Lee et al. 2008). COX2-deficiency or inhibition with pharmacolog-
ical agents decreases tumor growth in models of skin (Tiano et al. 2002), breast
(Howe et al. 2005) and lung cancer (Stolina et al. 2000). Interestingly, a recent meta-
analysis has suggested that NSAIDs have a wider breadth on cancers in addition to
colon cancer, reducing the relative risk of breast, lung and prostate cancers (Harris
2009).

In addition to its role in inflammation and survival, the NF-κB pathway regu-
lates macrophage polarization, response to hypoxia, angiogenesis and metastasis.
Co-culture of macrophages with an ovarian cancer cell-line known to induce M2 po-
larization failed to switch NF-κB-deficient macrophages from M1 to M2. This was
also reproduced in vivo and the decreased tumor growth was dependent on IL-12 and
the recruitment of NK cells (Hagemann et al. 2008). The role of NF-κB in metastasis
is partly mediated by TNFα and involves the stabilization of SNAIL, a transcription
factor required for epithelial-mesenchymal transition (EMT) and invasiveness (Wu
et al. 2009). Interestingly, the role of the NF-κB pathway in cancer is not confined to
NF-κB’s transcriptional function. Indeed, it has been recently demonstrated that nu-
clear IKKα controls metastasis, independently of NF-κB, through epigenetic control
of Maspin expression (Luo et al. 2007).

9.5.3 Janus Kinase-Signal Transducer and Activator
of Transcription (JAK-STAT)

A number of cytokines employ the JAK-STAT pathway to elicit inflammation. Bind-
ing of a cytokine to its cognate receptor leads to the recruitment of JAK, which
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phosphorylates the cytoplasmic tail of the receptor. This initial phosphorylation step
allows for the recruitment of STAT and its subsequent phosphorylation by JAK.
Phosphorylated STATs dimerize and translocate to the nucleus to activate transcrip-
tion (Li 2008) (Fig. 9.3). In cancer research, a particular attention has been paid to
the role of IL-6, an NF-κB target, and STAT3. The IL-6 receptor is heterodimeric
and consists of two chains, gp80 and gp130. IL-6 binds to gp80 and signals through
gp130. Activating somatic mutations are often found in GP130 in hepatocellular
adenomas, delineating the critical function of this pathway in cancer development
(Rebouissou et al. 2009). This is supported by resistance of STAT3−/− mice to ex-
perimental induction of cancer and metastasis (He et al. 2010; Maeda et al. 2009). In
AOM-induced colorectal cancer, enterocyte-specific deletion of Stat3 or full deletion
of Il-6 diminishes tumorigenesis (Grivennikov et al. 2009). STAT3 was also shown
to be required in a model of spontaneous intestinal tumorigenesis (Musteanu et al.
2010). Altogether, these results portray the tight link between NF-κB and STAT3 in
cancer, whereby IL-6, produced by NF-κB in myeloid cells, induces the proliferation
of tumor epithelial cells in a STAT3-dependent manner. Similar to IL-6, IL-11 also
signals through gp130, while binding to IL-11Rα determines the specificity. Con-
stitutive activation of gp130 induces spontaneous development of gastric carcinoma
(Jenkins et al. 2005; Tebbutt et al. 2002). Interestingly, in this model, IL-11 is the
key cytokine promoting cancer (Ernst et al. 2008).

9.5.4 Activating Protein-1 (AP-1)

AP-1 is a dimeric transcription factor composed predominantly of members of the Fos
(FOS, FOSB, FRA1 and FRA2) and Jun (JUN, JUNB and JUND) families, but also
ATF2 or MAF, and is activated downstream of the MAPK cascades (Lopez-Bergami
et al. 2010; Shaulian 2010) (Fig. 9.3). AP-1 is highly up-regulated in response to
stress such as UVB and was initially investigated in the context of skin cancer. C-Jun
mediates tumorigenesis in the skin (Zenz et al. 2003) and intestine (Nateri et al.
2005), but appears not to be involved in colitis-associated colorectal cancer (Has-
selblatt et al. 2008). Another important protein in the AP-1 complex is JunB. This
factor is needed for myeloid cell homeostasis, as its myeloid-specific deletion re-
sulted in a myeloproliferative disease similar to myeloid leukemia (Passegue et al.
2001). Consistently, epigenetic silencing of JunB is observed in patients with chronic
myeloid leukemia (Yang et al. 2003) and JunB is transcriptionally repressed in acute
myeloid leukemia (Steidl et al. 2006). Similar to Jun, c-Fos controls tumorigenesis
in the skin, and c-Fos-deficient mice are resistant to the induction of papillomas
(Saez et al. 1995). Conversely, overexpression of c-Fos induces apoptosis, which
is linked to reduced tumorigenesis, in a model of hepatocellular carcinoma (Mikula
et al. 2003). Taken together, these studies demonstrate that tissue-specificity of each
of these factors determines their effects on tumor growth. In humans, Jun and Fos
overexpression is often observed in cancer and generally correlates with poor prog-
nosis (Lopez-Bergami et al. 2010). The complexity of the role of AP-1 in cancer is



9 Inflammatory Mediators in Tumorigenesis and Metastasis 119

probably due to the diversity of its dimerization possibilities as well as the breadth
of cellular processes it governs.

9.6 Summary

The link between inflammation and cancer has been firmly established in the last
decade and what has recently emerged is that inflammatory mediators play an im-
portant part throughout the process of tumorigenesis. Chemokines are tightly linked
to homing of tumors to secondary sites but they also have a role in promoting angio-
genesis and immunosuppression. Furthermore, the plasticity of the immune response
in the tumor microenvironment has been demonstrated. Both axes of the immune
system have the ability to protect the host and to promote tumor growth. Under-
standing the impact of the inflammatory milieu and how it induces the polarization
of different cell lineages will have important therapeutic consequences. Finally, sev-
eral transcription factors have an impact on regulating inflammation and by the
same token tumor growth. The role of each pathway is tissue-specific, which un-
derlines the complexity involved in tumorigenesis. Overall, each cancer is unique
and understanding the regulatory intricacies of each pathway could lead to important
pharmacological discoveries.
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Chapter 10
Role of Stroma in Disease Progression

Nicholas R. Bertos and Morag Park

10.1 Introduction

10.1.1 Role of the Microenvironment in Cancer

In the past, most research into cancer initiation and development, as well as into
the progression from local to systemic disease, has focused on the tumor tissue per
se. However, it is becoming increasingly evident that the configuration of the local
microenvironment, and the nature of dynamic interactions occurring between cellular
and structural elements of the stroma (generally defined as those tissue components
distal to the basement membrane in normal tissue) and the tumor, can play significant
roles. An understanding of these interactions will thus facilitate the development of
strategies to manipulate the microenvironment, which are likely to represent the next
important set of additions to the therapeutic armamentarium. Here, we describe the
processes occurring in tumor stroma, using breast cancer as a model system.

10.1.2 Breast Cancer

Most breast cancers arise from the epithelial cells that line the ducts and lobules of the
breast under physiological conditions. Classically, three classes of such tumors have
been defined by differential expression of marker proteins as assessed by immuno-
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histochemistry techniques. These markers comprise receptors, which, upon ligand
binding, activate signaling pathways to promote cellular survival and proliferation,
namely the estrogen receptor (ER), the progesterone receptor (PR) and the human
epidermal growth factor-2 receptor (HER2). The classes include the ER-positive
group (members of which often exhibit co-expression of the PR), the HER2-positive
group, in which the HER2 gene is generally amplified at the genomic level, and the
“triple-negative” (ER-/PR-/HER2-) group, which appears to use alternate pathways
to drive survival and proliferation. Standardized treatments are directed towards these
receptors; ER-positive patients generally receive estrogen antagonists or aromatase
inhibitors, which reduce estrogen biosynthesis (Patel et al. 2007; Jordan and Brodie
2007; Eneman et al. 2004). HER2-positive patients are treated with regimens includ-
ing therapies targeting HER2 activity, such as the monoclonal anti-HER2 antibody
trastuzumab (Lewis et al. 1993), while there is currently no standard targeted therapy
for the triple-negative patient cohort (Rakha and Ellis 2009).

Not only do the three breast cancer subtypes differ at the level of their biologies,
but subtype membership also impacts overall survival. ER-positive disease is asso-
ciated with the best prognosis; HER2-positive disease bears an intermediate overall
prognosis, while triple-negative cases have the poorest overall outcome among the
three variants (Nishimura and Arima 2008). How much of this is due to intrinsic
differences in the aggressivity of the tumors within each subtype, and how much is
due to the effects of targeted therapies, is not completely clear; however, it is interest-
ing to note that prior to the introduction of HER2-targeted therapies, HER2-positive
disease exhibited the worst overall outcome.

Breast cancer is one of the most intensively studied members of the solid tumor
family. It has a relatively high prevalence, and while a significant proportion of those
affected go on to die of this disease, the majority do not; both of these characteristics
render it easier to identify prognostic factors. Most patients undergo surgery for
primary tumor removal, and therefore tissue samples can be obtained for study
without necessitating additional procedures. This focus on breast cancer research
has led to several gene expression profiling studies being conducted in an attempt to
elucidate the molecular underpinnings of this disease, using microarray technology.
Earlier studies using this approach have generally used whole-tumor samples as the
source of genetic material (primarily RNA). Since the tumor itself represents the vast
majority of the cells in such samples, and especially since many of these studies have
utilized a minimum tumor content threshold of greater than 50 % for sample selection
(Sorlie et al. 2001; Vijver 2002), the strongest signals obtained in these investigations
chiefly reflect the expression profiles of the tumor cells per se. Interestingly, the
results have tended to confirm the classical classification scheme of breast cancer
(Sorlie et al. 2001; Veer 2002; Perou et al. 2000). The basal molecular subtype mostly
contains triple-negative cases, although some samples exhibit expression of ER or
HER2 at the immunohistochemical level. The luminal A and luminal B molecular
subtypes contains ER positive patients, while the HER2-positive cohort also forms
a separate group upon clustering of gene expression data.

The characterization of tumor subtypes, both at the protein and gene expression
levels, has led to the development of specific treatments that target processes im-
portant for the survival and proliferation of tumor cells within each group, as well



10 Role of Stroma in Disease Progression 131

as the generation of schemes for appropriate patient stratification, emphasizing the
importance of identifying classification schemes and key subtype-defining elements.
Interaction with the microenvironment are known to play important roles in the nor-
mal development of breast tissue (Xu et al. 2009), and the importance of the tumor
microenvironment and of tumor-stromal interactions in breast cancer initiation and
progression are now being recognized. Therefore, the development of a comprehen-
sive catalog of stromal processes associated with breast cancer, and of methods that
permit the assignment of a specific patient to a point within this landscape, holds the
promise of informing the development of novel therapeutic approaches to target key
elements of these interactions in a highly individualized manner.

In order to understand the influence of the microenvironment on the progression
of breast cancer, we must first understand the individual elements comprising the
stroma, and the role that each of these plays vis-à-vis the tumor per se.

10.2 The Stroma

In the normal breast, non-stromal tissues, consisting of cuboidal epithelial cells (re-
sponsible for postpartum secretion of milk) surrounded by contractile myoepithelial
cells, are embedded in an extracellular matrix (ECM) that contains organized cellu-
lar structures (e.g., lymphatic and blood vessels), individual cells (e.g., fibroblasts
and immune cells, including macrophages, T cells and mast cells) and collections of
adipocytes, as well as the components of the ECM itself.

Upon tumor development, the stromal landscape is altered in several ways. Firstly,
the definition of invasive disease requires that epithelial tumor cells be present on
the distal side of the basement membrane, which, under physiological conditions,
represents the boundary between epithelial and stromal compartments. This process
brings tumor cells into close proximity to the cells previously present in the stroma.
Secondly, the phenotype of stromal cells already present in the local microenviron-
ment can be altered by interactions with the tumor cells. Thirdly, the presence of
the tumor and tumor-associated signaling leads to the recruitment of additional cells
from other sites of the body to tumor-adjacent locations, including additional im-
mune cells as well as bone marrow-derived mesenchymal stem cells which can then
differentiate into a variety of other cell types, including fibroblasts (Mishra et al.
2008). Such specific recruitment can then enhance the metastatic potential of the
original tumor via tumor-stromal cell signaling (Karnoub et al. 2007). Additionally,
changes in the non-cellular elements of the ECM itself can affect tumor progression.

10.3 The Extracellular Matrix

The part of the ECM in closest apposition to the tumor prior to the invasive phase is
the basement membrane, primarily composed of laminins secreted by myoepithelial
cells, which is disrupted as the tumor progresses from a benign to a malignant phase.
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There is evidence that perturbations in this component can impact tumor behavior—
myoepithelial cells isolated from breast tumors do not express laminin-1, which,
when elaborated by myoepithelial cells isolated from normal mammary glands, is
necessary for the formation of double-layered breast acini with correct epithelial
cell polarity under tissue culture conditions (Gudjonsson et al. 2002). On the other
hand, coinjection of myoepithelial cells from normal mammary glands blocked the
transition from DCIS (ductal carcinoma in situ) towards invasive disease in a model
system of progressive disease (Hu et al. 2008).

The non-basement membrane components of the ECM consist primarily of
macromolecules (e.g., collagens) and polysaccharides (e.g., hyaluronan), which are
elaborated by local fibroblasts. The levels of some of these elements can change in
cancer; for example, collagen α (XI) is present at lower levels in tumor-associated
vs. normal stroma, and levels further decrease upon tumor progression (Halsted et al.
2008). Chemotherapy can also affect ECM composition, as seen in a study reporting
increased basement membrane protein collagen IV levels and decreased syndecan-
1 levels following neoadjuvant treatment (Tokes et al. 2009). Interestingly, the same
study identified differences in ECM composition between the responder and non-
responder patient subsets; tenascin-C was present at lower levels in patients who
responded to treatment. In agreement with these results, a study comparing the ECM
matrices deposited by tumor-associated vs. normal fibroblasts reported that tumor
cell lines reacted differently to the two matrices (Castello-Cros et al. 2009).

An attempt has been made to derive information regarding ECM component status
from gene expression profiles of whole tumors (Bergamaschi et al. 2008). Using a
list of genes known to be associated with ECM from previous studies, the authors
detected four ECM subtypes in multi-sample datasets and established that subtype
membership is correlated with differences in overall disease outcome. As has pre-
viously been suggested, key differences between good- and poor-outcome classes
included changes in the balance between proteases and their inhibitors; the expression
of serpin family members (i.e., protease inhibitors) was elevated in good-outcome
subtypes, while poor-outcome subtypes demonstrated increased expression of inte-
grins and matrix metallopeptidases (MMPs). This supports the hypothesis that the
ability to break down ECM components via the action of MMPs is an essential ele-
ment in the ability of tumor cells to invade and spread. Interestingly, laminin chain
expression was decreased in poor-outcome cases, in agreement with previous reports.

Mechanical properties of the ECM also play a role in tumor development. High
breast density is considered to be a risk factor for development of breast cancer in
humans (Boyd et al. 2002), while the increased stiffness observed in breast tumor
tissue (Huang and Ingber 2005; Paszek et al. 2005) induces β1-integrin clustering
with concomitant activation of Rho GTPase and ERK pathways, leading to a DCIS-
like phenotype in normal epithelial cells (Paszek et al. 2005; Kass et al. 2007). On
the other hand, deletion of β1-integrin in a mouse model can reduce tumor formation
(White et al. 2004), while increased levels of collagen in mammary stroma leads to
enhanced tumorigenesis and progression in another mouse model (Provenzano et al.
2008).
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Beyond the effects of ECM composition and mechanical properties on breast
tumor behavior, the overall organization of the ECM can influence and be influenced
by the tumor. Existing fibers in the ECM are used as “tracks” along which invading
tumor cells can migrate in response to chemotactic gradients (Condeelis and Segall
2003; Provenzano et al. 2006; Wang et al. 2002), while transplanted tumors organize
the surrounding collagen matrix into a radial pattern that facilitates further tumor
cell dispersion along the fibers (Provenzano et al. 2006).

Thus, the ECM plays multiple roles in the progression of breast tumors. Both
individual components thereof and its overall mechanical properties influence tumor
cell behavior, while the intimate contact between tumor cells and ECM elements
allows tumor cells to both exploit and shape the ECM structure as a determinant of
invasion. In this context, it is important to note that experiments conducted using
cultured breast cancer cells reveal that responses to targeted therapeutic agents can
vary significantly depending on whether cells are grown as two-dimensional mono-
layers or as three-dimensional colonies (Weigelt et al. 2010), further accentuating
the importance of taking the microenvironment into consideration.

10.4 Stroma-Resident Cells

The breast tumor-associated stroma harbors a multiplicity of cell types, including
those previously present in this compartment, which may experience functional al-
terations as a consequence of tumor presence, as well as those recruited to the tumor
microenvironment.

10.4.1 Fibroblasts

In the normal breast, fibroblasts are primarily responsible for ECM deposition and
remodeling, both in development and in acute situations such as wound healing. As
a tumor develops and progresses, however, cancer-associated fibroblasts, or CAFs,
take on a myofibroblast phenotype and play multiple additional roles. Their abun-
dance and activity increases (Sappino et al. 1988), as can be visualized by increased
expression of the proliferation marker Ki-67 (Hawsawi et al. 2008), leading to the
generation of fibrotic ECM with attendant loss of the original tissue organization and
enhanced tumor proliferation (Kalluri and Zeisberg 2006).

Changes in CAF phenotype result in increased expression of tumor-associated
cytokines and matrix-associated proteins (Singer et al. 2008), as well as MMPs and
other factors important for tumor progression. These include stromal-derived factor
1, or SDF (also known as CXCL12); aside from promoting endothelial progenitor
cell recruitment and therefore angiogenesis (Orimo and Weinberg 2006), binding
of this cytokine to its cognate receptor, CXCR4, which is expressed on tumor cells
(Orimo et al. 2005), promotes tumor metastasis to distant sites, especially bone and
lung (Muller et al. 2001).
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Altered expression and activation of MMPs and other ECM-degrading enzymes
by CAFs is another mechanism through which tumor progression is promoted. The
broad-spectrum protease plasmin exists as an inactive precursor, known as plas-
minogen, which requires the action of urokinase plasminogen activator, or uPA (also
known as PLAU), to assume its active form. Activation of uPA requires binding to
its cognate receptor, uPAR (also known as PLAUR), which appears to be expressed
by both tumor and stroma cells, although this has been a subject of debate (Nielsen
et al. 2007; Hurd et al. 2007; Meng et al. 2006; Giannopoulou et al. 2007). Plasmin
subsequently can activate MMPs and degrade the ECM, resulting in the release of
latent bioactive peptides, including TGFß (transforming growth factor ß).

The uPA-uPAR axis also serves as an illustration of the complexity of tumor-
stroma interactions. Tumor cells express the glycoprotein EMMPRIN (extracellular
MMP inducer) (Quemener et al. 2007), which stimulates uPA production by cells in
the stroma. On the other hand, signaling downstream of uPAR in tumor cells enhances
their response to epidermal growth factor (EGF). Elevated expression of both uPA
and uPAR, leading to increased generation of plasmin, can be driven by signaling
downstream of activation of the hepatocyte growth factor (HGF) receptor, Met; Met
is overexpressed in poor-outcome breast cancers, especially those belonging to the
basal molecular subtype (Garcia et al. 2007a, b), and its actions have been linked
to enhanced tumorigenicity and invasiveness of overexpressing cells (Jeffers et al.
1996a, b; Rong et al. 1993, 1994).

Interestingly, fibroblasts possess inducible aromatase activity (Santen et al. 1997,
1998; Santner et al. 1997). This activity is significant as aromatase is a key en-
zyme in the biosynthesis of estrogen. Therefore, estrogen-dependent breast tumors
may form part of a paracrine loop with fibroblasts. Also, phosphoinositide-3-kinase
(PI3K) pathway alterations are involved in the generation of activated stroma in
proximity to tumors – disruption of Pten, a key negative regulator of this pathway, in
stromal fibroblasts leads to increased stroma remodeling, immune cell recruitment
and enhanced malignancy, which can be abrogated by concomitant inactivation of
the transcription factor Ets2 (Trimboli et al. 2009). Interestingly, it has also been
demonstrated that in a model system for the progression of DCIS to invasive disease,
coinjection of fibroblasts promoted invasion, presumably via paracrine factors (Hu
et al. 2008).

The question of whether CAFs, or stromal cells in general, undergo genomic
changes during tumor progression has long been a subject of debate (Orimo and
Weinberg 2006; Fukino et al. 2004; Kurose et al. 2002; Moinfar et al. 2000; Hill
et al. 2005; Allinen et al. 2004; Hu et al. 2005; Lafkas et al. 2008; Fukino et al. 2007).
The current consensus is that CAFs likely do not differ from normal fibroblasts at
the genomic level; however, it is clear that gene and protein expression in CAFs
is altered with respect to normal fibroblasts (Hawsawi et al. 2008; Singer et al.
2008; Sadlonova et al. 2009). The specificity of these alterations is illustrated by
the results of a gene expression profiling study from our group, in which tumor-
associated stroma was compared to morphologically normal regions of stroma more
distal (> 2 mm) from the tumor site (Finak et al. 2006). The normal-appearing stroma
from breast cancer cases was indistinguishable at the gene expression level from
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stroma samples isolated from non-cancer (breast reduction mammoplasty) cases,
suggesting that tumor-specific alterations in stroma configuration are restricted to
those regions in intimate contact with the tumor mass.

The phenotype observed for CAFs has been reported to be similar to that seen
for fibroblasts in areas of inflammation. Interestingly, a gene expression signature
derived from fibroblasts exposed to serum (Chang et al. 2004), termed the “wound-
response signature”, was found to have prognostic value when applied to whole-
tumor gene expression profiles from breast cancer cases (Chang et al. 2005). This
further supports the link between inflammation, as reflected in altered fibroblast
status, and cancer progression, and highlights the importance of immune responses
in modulating tumor progression, as discussed in the following section.

10.4.2 Immune Cells

Multiple types of immune cells populate the breast tumor stroma – however, the most
numerous are the tumor-associated macrophages, or TAMs (Balkwill and Mantovani
2001; Coussens and Werb 2002; Balkwill et al. 2005). While, under physiological
conditions, macrophages generally act as positive effectors of immune function,
elevated numbers of macrophages are often associated with poor outcome in breast
and other solid tumors (Bingle et al. 2002; Leek and Harris 2002). This is likely due to
the multiple roles that macrophages can play; their activities under these conditions
are directed towards their role in promoting wound healing, which can be co-opted
by the tumor to enhance its growth and spread.

Macrophages are recruited to the tumor site by the secretion of chemoattractants,
which can originate from either the tumor itself or from associated stromal cells.
These include chemokines, such as CCL2, CCL5 and CXCL1, among others (Bot-
tazzi et al. 1983; Matsushima et al. 1989; Arenberg et al. 2000; Balkwill 2004;
Mantovani et al. 2004a, 2004b), as well as other factors released at tumor sites, such
as TGFß, platelet-derived growth factor (PDGF), vascular endothelial growth factor
(VEGF), and macrophage colony-stimulating factor (M-CSF), and other bioactive
peptides released from the ECM via protease action (Coussens and Werb 2002).

At the tumor site, TAMs have been shown to be polarized towards the M2 phe-
notype (Sica et al. 2008; Mantovani et al. 2002) by local factors, including IL-10
and hypoxia (Mantovani et al. 2004b; Sica et al. 2008); this promotes their actions
in immunosuppression (via polarization of T-cell responses towards a Th2 pheno-
type), wound healing and tissue remodeling. This process, which has been termed
“immunoediting” (Lewis and Pollard 2006), can be reinforced via secretion of IL-10
by M2-activated macrophages (Anderson Mosser 2002). The link between inflam-
mation and cancer is further highlighted by studies demonstrating that persistent
activation of STAT3 (Yu et al. 2009) and NF-κB (Karin 2009), as observed in tumor
cells, can both promote and be promoted by an inflammatory microenvironment.

Tumor promotion by macrophages occurs via multiple mechanisms. One of their
chief roles is to promote invasion, both through the basement membrane in early-stage
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disease and into the circulatory system in the later stages, as has been demonstrated
using mouse models in which macrophages are absent (Lin et al. 2001, 2002). Fur-
thermore, TAMs act to stimulate angiogenesis, remodel the ECM, secrete growth
factors and also engage in a paracrine loop with tumor cells, leading to their migration
towards and invasion of elements of the circulatory system (Condeelis and Pollard
2006). Tumor cells bear EGF receptors and secrete CSF-1 (colony-stimulating fac-
tor 1), while macrophages bear receptors for CSF-1 and secrete EGF. Since each
secreted protein is a chemoattractant for the other cell type (Wyckoff et al. 2004),
this results in a scenario where macrophages migrate from blood vessels towards the
tumor mass, while tumor cells engage in a reciprocal migration towards the vascula-
ture (Goswami et al. 2005). Blockade of either EGF or CSF-1 leads to a reduction in
the number of tumor cells released into the circulation, while tumor cell migration
and entry into the vasculature is increased in regions where TAMs are present in the
vicinity of blood vessels (Wyckoff et al. 2007).

T-cells also play an important role in breast cancer progression. As has been
described for TAMs, these cells can play different roles under normal conditions;
however, in their case, it is the balance between their potential activities that has
important implications for tumor progression. T-cells are generally polarized along
either the Th1 or the Th2 axis, where Th1-type cells are involved in the activation
of cytotoxic responses (Knutson and Disis 2005). The presence of these cells is
associated with good outcome in multiple solid tumor types (Pages et al. 2005;
Hiraoka et al. 2006; Finak et al. 2008), and decreased prosurvival signaling for T
lymphocytes is seen in stroma from a poor-outcome patient subset (Finak et al. 2008).

However, tumors can also recruit another population of T-cells to evade the cyto-
toxic response. Under physiological conditions, the function of regulatory T cells, or
Tregs, is to mediate immune self-tolerance. These cells reduce the activity of other
immune effectors (Lan et al. 2005), and it has been shown that their presence in
the tumor mass is correlated with factors prognostic for poor outcome (Bohling and
Allison 2008) and with shorter relapse-free and overall survival times (Bates et al.
2006), as well as with a decreased response to neoadjuvant chemotherapy (Ladoire
et al. 2008).

Recently, the role of Th17-polarized T cells in the tumor microenvironment has
also been investigated. This T cell subset, originally identified as being implicated
in autoimmune disease, is involved in mediating inflammation and tissue injury
(Steinman 2007; Tesmer et al. 2008). While factors released by tumor cells and
cancer-associated fibroblasts can mediate Th17 cell recruitment in solid tumors (Su
et al. 2010), their role in influencing tumor progression and disease outcome is
currently unclear. Th17 cells have been reported to promote tumorigenesis (Wu et al.
2009), as well as to enhance activation of effector T-cells with anti-tumor activity
(Martin-Orozco et al. 2009; Muranski et al. 2008).

Gene expression profiling studies of breast tumors have revealed that an immune
response signature can be associated with high grade (generally associated with poor
outcome) (Ma et al. 2009) or with good outcome (Teschendorff et al. 2006, 2007).
It is likely that an explanation for this discrepancy lies in differential activation of
the immune system, which can act as a friend or foe to tumors of multiple types
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(Grivennikov et al. 2010); this emphasizes the necessity of characterizing these
responses more precisely.

10.4.3 Adipocytes

A significant proportion of the normal human breast consists of fatty tissue, or
adipocytes. However, the role of these cells in breast tumor progression has frequently
been overlooked. Adipose tissue is an important source of estrogen, especially in the
postmenopausal context; however, the relative contributions of local estrogen pro-
duction vs. synthesis at other body sites to the promotion of estrogen-dependent
tumor growth is not clear, and both stromal and tumor cells can produce estrogen
in the tumor setting (Miki et al. 2007; Suzuki et al. 2008). The fact that growth
of estrogen-dependent tumor cell lines requires the presence of adipocytes in three-
dimensional culture (Manabe et al. 2003) and in mouse models (Elliott et al. 1992),
however, suggests that the local presence of adipocytes is sufficient for promotion
of tumor growth.

Adipocytes also secrete other factors that can act on tumor cells, including
adiponectin (Landskroner-Eiger et al. 2009; Dos Santos et al. 2008; Dieudonne
et al. 2006), collagen VI (Iyengar et al. 2003, 2005) and lectin (Catalano et al. 2009;
Catalano et al. 2003, 2004; Mauro et al. 2007, Cirillo 2008). Tumor cells can also
exert reciprocal effects on adipocytes, including induction of MMP11 expression
(Andarawewa et al. 2005). Thus, the tumor cell-adipocyte relationship recapitulates
many of the themes seen in tumor cell-stromal cell interactions; multiple signals
are exchanged between the components, leading to the dynamic modification of the
configuration of each.

10.5 Angiogenesis

Pathways related to this topic are the subject of a separate chapter of this work
(Chap. 8), and therefore it will not be examined in detail here. However it is important
to note that many of the cell types and features described in this chapter interact
intimately with elements of the angiogenic process.

10.6 Stroma at the Metastatic Site

Primary breast cancer in itself is generally not a fatal disease. Most disease-associated
mortality is due to the effects of distant metastases in more vital organs, including
bone, brain, lung and liver. In order for metastases to become established and to
proliferate, many of the adaptations described above for the primary tumor must
presumably be re-established within a novel microenvironment, although it is also
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possible that some cellular elements of the stroma may travel with tumor cells in the
circulation and be co-embedded at distant sites. One of the factors governing tumor
dormancy may be the time required to modify the metastatic stroma so that it can
support tumor cell proliferation. This suggests that manipulation of the microenvi-
ronment at the metastatic site may be a potential approach to inhibiting the growth of
distant metastases—one example of this has been seen in the case of bisphosphonates,
classically used to reduce bone remodeling activity. In breast cancer, bisphosphonate
treatment results in a reduction in active metastases (Lipton 2008; Coleman 2009),
suggesting that the induction of a non-proliferative microenvironment may render
tumor cells quiescent even after implantation.

Interactions between tumor cells and the stroma at the metastatic site may be
important in determining the location of metastases. For example, homing to bone is
enhanced via the chemokine receptor CXCR4 (Lu and Kang 2007), while metastases
to lung may be at least partially mediated through metadherin (Brown and Ruoslahti
2004). The relationship between potential metastatic sites and primary tumors can
also be reciprocal, as evidenced by a report that osteopontin secretion from actively
growing tumors can mobilize bone marrow cells and induce their migration to the sites
of non-proliferating tumors, which leads to their renewed proliferation (McAllister
et al. 2008).

10.7 The “Macroenvironment”

As well as interacting with each other, both tumor cells and stromal elements are
exposed to common environmental conditions. While both compartments react to
these stimuli, the specific mechanism of these reactions may differ between them.
For example, hypoxia or changes in local estrogen levels would be experienced by
both components, while systemic therapeutic interventions also affect both com-
partments. Administration of Tamoxifen, used as endocrine therapy for ER-positive
breast cancer and thought to act through inhibition of estrogen-dependent signaling
in tumor cells, led to decreased ECM turnover and changes in ECM protein compo-
sition in a mouse model system. ECM isolated from these mice inhibited the motility
of both macrophages and cultured tumor cells (Hattar et al. 2009), suggesting that
stromal fibroblasts may also be targets for Tamoxifen. Moreover, it has been reported
that the HER2-targeted agent trastuzumab can affect the ability of stroma cells to
support tumor growth and secrete VEGF (Corsini et al. 2003), as well as potentially
target HER2-expressing tumor cells for destruction via antibody-dependent cellular
cytotoxicity (Cooley et al. 1999; Clynes et al. 2000; Gennari et al. 2004). Thus, the
potential effects of systemic agents on components of the stroma should be taken into
account as possible modifiers of their anti-tumor activity or as sources of resistance
to treatment (Pontiggia et al. 2009). In addition, the common responses of the tumor
and stromal compartments to externally regulated factors may act as confounders in
analyses of specific interactions between the two, since the coordinate responses of
each to external stimuli would be difficult to distinguish from mutual regulation.
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10.8 Tumor-Stroma Interactions in Very Early-Stage Disease

It has been suggested that metastasis is not necessarily associated with a late-stage
event in breast cancer, but that it can occur at prior points during progression
and that systemic dissemination may occur even before the basement membrane
is substantially disrupted (Husemann et al. 2008). Therefore, investigations into
stromal-epithelial interactions in early disease may uncover processes that program
tumor cells for successful dissemination. Gene expression profiling studies have
demonstrated that most gene expression changes in breast tumors occur prior to the
transition from DCIS to invasive disease. Interestingly, a similar pattern has been
shown to occur in the associated stroma, although more changes accompany the tran-
sition to a situation where tumor cells are in direct contact with stromal elements (Ma
et al. 2009; Schedin and Borges 2009). While more than 90 % of stromal gene expres-
sion changes (with respect to normal tissue) occur prior to the DCIS-IDC (invasive
ductal carcinoma) transition, MMPs and ECM components are over-represented in
the set of genes differentially expressed between DCIS and IDC stromal samples.
An analysis of existing breast cancer signature gene set members across a panel
of matched DCIS and IDC samples suggests that signatures are conserved during
the DCIS-IDC transition (Sharma et al. 2009). These findings indicate that tumor-
stromal interactions likely occur early in breast cancer, and that these may set the
stage for the future course of the disease by “locking in” specific conformations of
the two compartments. This also suggests that manipulation of the stroma may be a
potential approach in breast cancer prevention.

10.9 Global Characterization of the Stromal
Microenvironment

Gene expression profiling has been used to specifically examine the role played
by stromal components in cancer and such studies have confirmed that information
encoded within the tumor stroma is correlated with multiple aspects of breast cancer,
including type, outcome, and resistance to treatment (Allinen et al. 2004; Finak et al.
2008; Ma et al. 2009; Casey et al. 2009; Boersma et al. 2008; Farmer et al. 2009).

In one study, breast cancer cell lines were co-cultured with fibroblasts, and the
gene expression profiles of each component were analyzed (Buess et al. 2007). It was
found that there was a set of genes differentially induced in fibroblasts by ER-positive
vs. ER-negative cell lines, and that this signature correlated with outcome in external
datasets. However, since the signature obtained here is closely associated with ER
positivity, which in itself is highly predictive of outcome, a chief conclusion to be
drawn is that tumor subtype can influence stroma configuration. The wound response
signature (Chang et al. 2004, 2005) has been described in a previous section. Inter-
estingly, this signature was correlated with a basal (i.e., intrinsically poor-outcome)
phenotype in the associated tumors, although the wound response signature displayed
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additive prognostic value when combined with predictors derived from tumor tissue
alone.

Our group utilized laser capture microdissection (LCM) to purify stroma from
a set of 53 primary breast tumors, and generated a 26-gene predictor of outcome
from the resulting gene expression profiles (Finak et al. 2008). The genes compris-
ing this stroma-derived prognostic predictor, or SDPP, reflect many of the processes
previously described here. Th1-type T cell markers (e.g., CD8A, CD247, CD3D and
GZMA) were a hallmark of the good-outcome patient class, while chemokines pro-
moting NK and T cell recruitment and survival were reduced in the poor-outcome
class, which also exhibited increased expression of genes associated with angio-
genesis, hypoxia, matrix remodeling and the presence of TAMs. This signature
demonstrates that the integration of multiple stromal processes is essential for en-
hancing prognostic accuracy, and the finding that it possesses additive value when
combined with tumor-derived predictors further argues that breast cancer outcome
is driven by the integrated output of processes occurring within both the tumor and
in adjacent compartments.

Bioinformatics-based analyses also suggest that resistance to therapy can be in-
fluenced by stromal configuration. A gene set characteristic of reactive stroma,
which is chiefly encoded by fibroblasts, was overexpressed in tumors resistant to
neoadjuvant chemotherapy (Farmer et al. 2009), emphasizing the functional signifi-
cance of stromal features in governing tumor cell behavior and responses to specific
conditions.

One caveat when assessing data from gene expression profiling studies is that not
all changes at the mRNA level correlate with alterations at the protein level; also,
there exist multiple levels of regulation beyond those that can be identified from
mRNA levels alone (e.g., post-translational modification, intracellular localization,
etc.). As an example, a study comparing fibroblasts isolated from different regions
(interlobular vs. intralobular) of normal mammary stroma identified no differences
at the gene expression level; however, immunohistochemical approaches identified
several differentially expressed proteins (Fleming et al. 2008). This emphasizes that
data obtained at the mRNA level, while useful for identification of overall pathways
and processes, may not always be a reliable indicator of the level or activity of
individual proteins.

10.10 Summary

As previously mentioned, cells in the tumor stroma are thought to not possess sig-
nificant alterations at the genomic level, and specific components and processes of
stromal origin appear to play crucial roles in tumor progression (Fig. 10.1). Therefore,
the stroma has been thought to represent a stable target for therapeutic intervention
(Orimo and Weinberg 2006; Micke and Ostman 2004: Joyce 2005; Jain 2005; How-
ell et al. 2009). Given the range of cell types and interactions possible, however, it
is becoming clear that there will be no “one-size-fits-all” approach to targeting the
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Fig. 10.1 a The normal
breast microenvironment,
depicting cell types present
(normal font) as well as
compartments (italic font).
b The microenvironment in
breast cancer, depicting
tumor-associated cell types;
processes are indicated in
bold italic font (note that not
all cell types and processes
necessarily co-occur in the
same patient or at the same
time). MSC, mesenchymal
stem cell.

tumor stroma, and that individualized treatment regiments will have to be designed
as carefully as, if not more carefully than, those currently utilized to address the
tumor per se.

Although some stromal processes appear to be associated with specific tumor sub-
types, many appear to be independent of this variable. Therefore, a precise definition
of a given tumor may require assignment to points along multiple axes, representing
tumor, stromal and “macroenvironmental” parameters. Investigations into whether
and how stromal configurations impact upon resistance to specific therapies is also
an area that warrants further investigation, holding the promise of enhancing the
patient-specific selection of treatment options. Given the interdependence of the two
compartments, we also suggest that carefully targeted combinations of therapies
directed against features of both the tumor and the supporting microenvironment
may lead to increased success in breast cancer treatment, and that such a holistic ap-
proach may circumvent the development of resistance to approaches directed against
the tumor alone.
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Chapter 11
Local Invasion

Patricia Rusa Pereira

11.1 Introduction

Tumor invasion is the hallmark of malignancy. The concept of invasion consists on
translocation of tumoral cells from the primary focus into neighboring host tissues,
further penetration of vessel endothelium and access to the circulation to form distant
metastasis (Guarino et al. 2007). Therefore, invasion and metastases are connected
comprising the major causes of morbidity and mortality related to cancer. They
consist of multiple steps and complex processes, including cellular detachment and
motility within the local microenvironment, degradation of the surrounding extra-
cellular matrix, and cellular movement, all of which must be successfully completed
to permit the growth of metastatic tumors in a new location (Ruan et al. 2009; Liotta
et al. 1991).

Within a tumor, it is known that multiple signal-transduction pathways changes
the adhesive and migratory capabilities of tumor cells, and tumor microenvironment
have critical roles in forming an invasive front that is responsible for malignant tumor
progression. At this stage of tumor development, tumor cells migrate into and invade
the surrounding tissue either as single cells or in collective clusters (Christofori 2006).

The importance of changes in cell phenotype between epithelial and mesenchy-
mal states, defined as epithelial–mesenchymal (EMT) and mesenchymal–epithelial
(MET) transitions, has been increasingly recognized in the pathogenesis of cancer
(Polyak and Weinberg 2009). The main characteristic of EMT is the disrup-
tion of intercellular contacts and the enhancement of cell motility. The resulting
mesenchymal-like phenotype is suitable for migration. Although the molecular
bases of EMT have not been completely elucidated, several interconnected trans-
duction pathways and a number of potentially involved signaling molecules have
been identified (Guarino et al. 2007).
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Fig. 11.1 Histopathology of tumours from a transgenic mouse model of pancreatic β-cell carcino-
genesis (Rip1Tag)25. Note the differences between the epithelial organization of a benign adenoma
(a) and the cell invasion and nuclear atypia of a malignant carcinoma (b) This transition coin-
cides with partial epithelial–mesenchymal transition (EMT)—that is, loss of E-cadherin but not
cytokeratin expression, and gain of N-cadherin but not vimentin expression (not shown). (c, d) Cul-
tured normal murine mammary gland (NMuMG) epithelial cells express E-cadherin and grow in
epithelial-like sheets. On stimulation with TGF-β, the cells undergo full EMT—that is, they change
to a mesenchymal, migratory phenotype through the loss of epithelial and the gain of mesenchymal
gene expression, including the cadherin switch. (Christofori, G. New signals from the invasive
front. Nature 441, 444–450, doi:nature04872 [pii]10.1038/nature04872 (2006))

Also, in the hypoxic environment, tumor cells undertake a series of changes not
only to survive and grow in hypoxic microenvironments but also to subsequently
expand and promote invasion and metastasis (Ruan et al. 2009).

11.2 Epithelial–Mesenchymal Transition (EMT) and Invasion

It is well known that epithelial cells are tight and closely related to each other,
compounding an unmovable structure. On the other hand, mesenchymal cells
are loosely-associated cells with a high capability of movement. The concept of
epithelial-mesenchymal transition is related to the change of the phenotype of a ma-
lignant cell (in carcinomas) and acquisition of an ability of movement. For example,
at the histological level, the invasive front of a solid carcinoma differs from the more
central parts by showing a less differentiated and less cohesive architecture, where
invading elements appear as individual cells or groups of very few cells in intimate
connection with the peritumoural stroma (Gatenby et al. 2007) (Fig. 11.1).
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Fig. 11.2 Overview of molecular markers and cellular changes during the epithelial-mesenchymal
transition (EMT ). EMT is a well-coordinated event during embryonic development and a pathologi-
cal feature in tumorigenesis. During the EMT process, epithelial cells undergo dramatic phenotypic
changes, lose expression of E-cadherin and other components of epithelial cell junctions, adopt a
mesenchymal cell phenotype, and acquire motility and invasive properties that allow them to mi-
grate through the extracellular matrix. (Ouyang, G., Wang, Z., Fang, X., Liu, J. &Yang, C. J. Mole-
cular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer
stem cells. Cell Mol Life Sci, doi:10.1007/s00018-010-0338-2 (2010)

EMT is a process, among other things, related to the invasiveness potential of the
cell, which includes: disruption of intercellular adhesion mediated by cadherins at
adherens junction, the loss of apicobasal polarity, cytoskeletal architecture reorgani-
zation, and the degradation of the basement membrane.At the end, the well-polarized,
adhesive epithelial cells are converted to non-polarized mesenchymal cells (Ruan
et al. 2009).

In fact, EMT is a physiological process seen in tissue morphogenesis during
embryonic development and in some tissue fibrosis in response to injury (Guarino
et al. 1999, 2007). Interestingly, many tumors have embryonic characteristics and
it is hypothesized that EMT can be considered an embryonic feature acquired by
tumor cells that enables them to metastasize. Carcinoma cells become more motile
and able to invade by acquiring characteristics similar to embryonic mesenchymal
cells, thereby allowing penetration of the stroma adjacent to the initial neoplastic
focus (Gatenby et al. 2007).

The molecular mechanisms by which the cells acquire a mesenchymal phenotype
are complex and involve multiple steps related to degradation and formation of
some crucial proteins. The main type of adhesion system in epithelia is E-cadherin
mediated cell-cell interaction. In turn, the mesenchymal cells are surrounded by
an extracellular matrix and the adhesion system comprises an integrin-mediated
cell-matrix interaction that allows the motility of single elements (Gatenby et al.
2007).

The pathways related to EMT-inducing includes TGF-b, Wnt, Notch, Hh, and
other tumor microenvironmental signals via the activation of multiple EMT tran-
scription factors such as Twist 1, Twist 2, Snai1, Slug, ZEB1 and ZEB2 (Ouyang
et al. 2010).

The most important molecular mechanisms involved in the tumoral invasion are
summarized above (Fig. 11.2).
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11.3 Invasion and Signaling Pathways

Several cellular proteins implicated in invasion and metastastic activities belong to
larger families, members of which serve different activities and which may switch
from one isotype to another during tumor progression (Mareel et al. 2009). On this
section we will summarize only the most significant ones for invasion (Fig. 11.3).

11.3.1 TGF-β

Transforming growth factor β (TGF-β) is a multifunctional polypeptide signaling,
which regulates multiple cellular processes including proliferation, apoptosis, and
differentiation. It plays an important but incompletely understood role in normal and
cancerous tissues (Chung et al. 2009). Actually, it has a dual role during tumour
progression: as a suppressor of tumour growth during the early phases of tumori-
genesis by inducing cell-cycle arrest and apoptosis; But during the late phases of
carcinogenesis, it promotes EMT, tumour invasion and metastatic dissemination of
tumour cells (Christofori 2006).

TGF-β signals through serine/threonine kinase receptor complexes. When acti-
vated, it regulates the transcriptional activation of various TGF-β responsive genes.
In addition, TGF-β activates cellular mitogen-activated protein kinase signaling path-
ways, which regulate growth, survival and motility of cells. During tumorigenesis,
malignantly transformed cells often lose the response to the tumor suppressive ef-
fects of TGF-β, which, in turn, starts to act as an autocrine tumor promoting factor by
enhancing cancer invasion and metastasis (Nagaraj and Datta 2010). Moreover, it in-
duces angiogenesis by upregulating the expression of angiogenic factors, such as vas-
cular endothelial growth factor-A (VEGF-A) and angiopoietin-1 (Christofori 2006).

In breast cancer cells, a protein that belongs to the TGF-β family called bone
morphogenetic protein seems to be implicated in cell growth, cell migration and
invasion, and possesses both tumor suppressive and oncogenic properties in breast
cancer cells (Ketolainen et al. 2010). Another in vitro studied showed that TGF-β
signaling is transiently and locally activated in motile single cells. TGF-β1 switches
cells from cohesive to single cell motility through a transcriptional program involving
Smad4, EGFR, Nedd9, M-RIP, FARP and RhoC. Blockade of TGF-β signaling
prevented cells moving singly in vivo but did not inhibit cells moving collectively.
Cells restricted to collective invasion were capable of lymphatic invasion but not
blood-borne metastasis (Giampieri et al. 2009).

In lung carcinoma, dysregulation of TGF-β signaling was identified as an im-
portant mediator of tumor invasion seen by microarray gene expression profiling of
human tumors (Toonkel et al. 2010). Also, in prostate cancer, increased production
of TGF-β causes immunosuppression, extracellular matrix degradation, EMT and
angiogenesis that promotes tumor cell invasion and metastasis (Jones et al. 2009).



11 Local Invasion 155

Fig. 11.3 Selected signalling pathways and some of their downstream effects and interactions are
depicted. Receptor tyrosine kinases (RTKs), transforming growth factor-β (TGFβ), Notch, en-
dothelin A receptor (ETAR), integrins, Wnt, hypoxia and matrix metalloproteinases (MMPs) can
induce EMTs through multiple different signalling pathways, and the relative importance of each
of these may depend on the particular cellular context. EMTs and mesenchymal–epithelial tran-
sitions (METs) are associated with dramatic changes in the cytoskeleton and extracellular matrix
(ECM) composition and attachment that act together to alter cell morphology. EMT-inducing sig-
nals can lead to the disruption of tight junctions and desmosomes through protein phosphorylation
(for example PAR6A phosphorylation by TGFβ signalling (Ketolainen et al. 2010)) or by repress-
ing protein levels (for example ZEB1 represses plakophilin 3 (Ref. 83)). EMT also results in the
dramatic reorganization of the ECM as many EMT-inducing factors upregulate the expression of
ECM proteins (such as fibronectin and collagens), proteases (such as MMPs) and other remod-
elling enzymes (such as lysyl oxidase). Hypoxia, RAC1B activation and activation of certain kinase
pathways (such as Akt) may lead to increased mitochondrial production of reactive oxygen species
(ROS) that elicit pleiotropic effects, including activation of hypoxia-inducible factor 1α (HIF1α)
and nuclear factor-κB (NF-κB) (orange circles), signalling and inactivation of glycogen synthase
kinase-3β (GSK3β). Besides the interaction among the various signalling pathways, there is also
extensive crosstalk among the EMT-inducing transcription factors (purple circles) and the microR-
NAs (miRNAs) regulating them. E-cadherin, epithelial cadherin; H/E(Spl), hairy and enhancer of
split; WNTR, Wnt receptor. (Polyak, K. & Weinberg, R. A. Transitions between epithelial and
mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9, 265–273,
doi:nrc2620 [pii]10.1038/nrc2620 (2009)
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11.3.2 E-cadherin

E-cadherin, a single-span transmembrane glycoprotein of five repeats and cytoplas-
mic domain, is expressed primarily in epithelial cells. Its extracellular region has
a Ca2+-dependent homophilic adhesion function and the cytoplasmic domain inter-
acts with catenins. It is a tumor suppressor protein of many tumors, including breast
cancer (Baranwal and Alahari 2009).

As said, epithelial cells are attached to each other by e-cadherin mediated cell-
cell interaction, sustaining an immovable structure (Gatenby et al. 2007). It has been
proposed that in malignant tumors, hypermethylation can down-regulate e-cadh-
erin allowing dissociation of cells from the primary tumor enhancing the inva-
sive capability of cells. Subsequently, a decrease in methylation with re-expression
of e-cadherin in the metastatic site would restore cell-cell adhesion allowing es-
tablishment of secondary colonization (Graff et al. 2000). Moreover, experimental
studies have shown that expression of e-cadherin reduces the progressiveness and
invasion of tumoral cells, as well as formation of metastasis (Kowalski et al. 2003).

In several cancers, loss of e-cadherin is accompanied by a gain in the expression of
n-cadherin, in a process known as ‘cadherin switch’. N-cadherin, a cadherin typically
expressed in mesenchymal cells, enhances tumour cell motility and migration and
exerts a dominant effect over E-cadherin function (Guarino et al. 2007). It is not
a surprise that this mechanism seems to be related to the EMT of tumoral cells, in
breast (Baranwal and Alahari 2009; Lester et al. 2007), prostate (Gravdal et al. 2007)
and other cancers. By various mechanisms, expression of n-cadherin promotes the
aggressive behavior of tumor cells, ranging from interacting with receptor tyrosine
kinases at the cell surface to influencing the activation levels of Rho-GTPases in the
cytosol (Baranwal and Alahari 2009).

In sporadic breast cancer, inactivation of e-cadherins is important for the can-
cer progression and it is completely lost in infiltrative lobular breast cancer, which
suggests its function as a tumor suppressor (Baranwal and Alahari 2009). Morpho-
logically, breast lobular carcinoma cells are more loosely infiltrative compared to
others breast carcinomas. Also, abnormal expression of e-cadherins has been cor-
related to poor prognostic survival in patients with non-small cell lung carcinoma
(Miao et al. 2009; Tseng et al. 2010; Liu et al. 2009).

In prostate cancer, loss of e-cadherin has been shown to be correlated to worse
prognosis and bone metastasis (Pontes et al. 2010; Oort et al. 2007), the most common
site of prostate metastatic growth. Moreover, it was demonstrated an association of
the concurrent expression of unmethylated E-cadherin gene and E-cadherin protein
with metastatic prostate cancer cells in bone, showing that its expression may have a
role in the intercellular adhesion in the formation of metastatic lesions in bone (Saha
et al. 2008).

11.3.3 Tyrosine-kinase receptors

Activation of tyrosine-kinase receptors is a molecular feature that leads to the mi-
gratory phenotype implicated in EMT/invasion. These receptors, located on the cell
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surface, are activated by growth factors (Eg.: EGF, FGF, HGF and IGF) that are
related to cell proliferation differentiation and invasion (Guarino et al. 2007).

11.3.4 Src

Src is the prototypic member of a family of non-receptor membrane-associated ty-
rosine kinases including Fyn, Yes, Blk, Yrk, Fgr, Hck, Lck, and Lyn (Guarino 2010),
present in several normal tissues including neurons, platelets and osteoclasts (Yeat-
man 2004). It translate signals from the extracellular environment into intracellular
biochemical pathways that either activate nuclear factors ensuing in transcriptional
responses, or target cytoplasmic components resulting in a reorganization of the
cytoskeleton. Important physiological functions related to Src include cell prolifer-
ation and survival, regulation of the cytoskeleton, cell shape control, maintenance
of normal intercellular contacts, cell–matrix adhesion dynamics, motility, and mi-
gration (Guarino 2010; Thomas and Brugge 1997). Src can affect cell adhesion and
migration via interaction with integrins, actins, GTPase-activating proteins, scaf-
fold proteins, such as p130(CAS) and paxillin, and kinases such as focal adhesion
kinases (Kim et al. 2009). Also, Src is known to promote the expression of matrix-
degrading proteases, such as metalloproteinases (MMPs), by diverse mechanisms
(Guarino 2010).

It was demonstrated that in several tumors, the Src family kinases are over ex-
pressed or highly activated, and they are central mediators in multiple signaling
pathways that are important in oncogenesis. Moreover, Src have a critical role in cell
adhesion, invasion, proliferation, survival, and angiogenesis during tumor develop-
ment. Moreover, it is involved in tumor cell proliferation and angiogenesis (Kim
et al. 2009).

In prostate cancer cells, in vitro studies have shown that the chemopreventive
bioflavonoid apigenin inhibits cell motility through decreasing the activation of Fo-
cal Adhesion Kinase/Src signaling (Franzen et al. 2009). Src has been shown to
have a role in breast cancer, as a key co-regulator of Estrogen receptor-α, but fur-
ther studies are necessary to define the potential diagnostic and prognostic value
of this protein and as a possible therapeutic target (Gojis et al. 2010). It was also
demonstrated that activation of Src in breast carcinoma is related to bone metastasis
(Zhang et al. 2009).

Innumerous other signaling pathways exist regarding invasion and many of
them are interlinked. For example, Tumor necrosis factor-α (TNF-α) also induces
tumor cell invasion through NF-κB- and JNK-mediated upregulation of migration-
inhibitor factor (MIF) in macrophages, through enhanced matrix metaloproteinases
(see below) production or α2β1 integrin in tumour cells. Furthermore, TNF-α en-
hances the invasive property of cancer cells by inducing EMT through Snail- or
ZEB1/ZEB2-dependent mechanisms (Wu and Zhou 2010).



158 P. R. Pereira

11.4 The Relation of Hypoxia in Metastatic Signalling Pathways

As one of the most pervasive microenvironmental stresses and common features of
solid tumors, hypoxia plays an important but complex role in mediating or regulating
some hallmarks in the progression of human tumors from microinvasive to metastatic
cancers in vivo (Ruan et al. 2009). Hypoxia induces cancer cells to adopt mechanisms
that promote proliferation, induce or evade apoptosis, obtain unlimited replication
potential and genomic instability, evade immune attack, induce angiogenesis, and
invade and metastasize (Ruan et al. 2009).

Clinical studies have shown that tumor hypoxia is one of the important microen-
vironmental determinants for tumor cell dissemination (Ruan et al. 2009). In breast
cancer, Gatenby et al. showed that adaptation to hypoxia may represent one of the
key events during the transition from in situ to invasive breast cancer (Gatenby et al.
2007).

Hypoxia is known to activate a protein called HIF (Hypoxia Inducible Factor
Protein) by regulating two major switches that converge on α subunits (Kaluz et al.
2008). In human colon carcinoma cells, hypoxia or HIF-1α over expression promotes
matrigel invasion, whereas this process is inhibited by HIF-1α siRNA (Krishna-
machary et al. 2003). In human pancreatic cancer cells, HIF-1α inhibition can
enhance apoptosis, and restrain the invasion and metastasis (Chang et al. 2006).

It was shown that hypoxia and over expression of HIF-1 can promote EMT (see
above) and metastatic phenotypes (Ruan et al. 2009; Krishnamachary et al. 2006)
by upregulation of several proteins including Snail 1, Twist 1, Zeb 1 and 2 (Yang
et al. 2008; Pouyssegur et al. 2006). It has been hypothesized that hypoxia within
tumors, resulting in tumor necrosis, causes down regulation of E-cadherin, and
ultimately sets the metastatic cascade in motion. This dysfunction of the E-cadherin–
catenin complex would carry out an accumulation of β-catenin in the nucleus which is
accompanied by a more invasive phenotype of tumor cells at the tumour front (Demir
et al. 2009). Hypoxia may attenuate the expression of E-cadherin via activation of the
lysyl oxidase (LOX)-Snail pathway, indicating that hypoxia-induced LOX and HIFs
may be important factors that regulate tumor microenvironments to favor metastasis
(Ruan et al. 2009).

All these data indicate that tumor hypoxia and/or HIF signaling are strongly as-
sociated with malignant progression. However, the mechanisms that result in the
increased metastatic potential of tumor cells exposed to hypoxia and the exact role
of HIF-1α in the metastasis still have not been well defined (Ruan et al. 2009).

Tumor hypoxia also induces tumor angiogenesis, and modulates the expression
of several genes that have been implicated in tumor metastasis. For example is the
hypoxic induction of c-met gene expression, which amplifies HGF signaling by
sensitizing cells to HGF signaling. Thus, hypoxia seems to affect tumor cells in two
ways: it induces angiogenesis (for instance, through hypoxia-inducible factor (HIF)-
1α- and HIF-2α-driven expression of the angiogenic factor VEGF-A) and locally
adapts the tumor environment for optimal tumor growth (Demir et al. 2009).

Tumor hypoxia can be now widely recognized as a cause of treatment failure
and poor outcome for a wide variety of adult malignancies and, thus, needs to be
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taken into account when evaluating prognostic and therapeutic options for cancer
patients. HIF-1 inhibition may represent a global strategy for targeting the hypoxic
tumor microenvironment and there is an extensive effort involved in identifying more
potent and specific HIF-1 inhibitors (Ruan et al. 2009).

11.5 Matrix Metalloproteinase (MMP) and Tumor Invasion

Degradation of the basement membrane and invasion of the underlying connective
tissue by neoplastic cells are recognized as fundamental steps in the development of
many epithelial cancers. Degradation of extracellular matrix (ECM) components is
primarily controlled by a balance among the proteolytic enzymes called matrix met-
alloproteinases (MMPs) and the corresponding tissue inhibitors of MMPs (TIMPs)
(Chuang et al. 2008), which are also commonly expressed in tumor sites.

Several studies suggest that MMP, a family of zinc-dependent endopeptidases,
play a significant role in extracellular matrix invasion. The 23 MMPs expressed in
humans are categorized by their architectural features (Kessenbrock et al. 2010). Two
members of the MMP family, MMP-2 (gelatinase A, 72-kDa type IV collagenase)
and MMP-9 (gelatinase B, 92-kDa type IV collagenase), are primarily responsible for
invasion of the ECM and basement membrane. The expression of these gelatinases
is relatively low in normal tissues and is induced when ECM remodeling is required.
While gelatinase expression is primarily controlled at the transcriptional level, its
activity is also regulated by post-translational factors, including proenzyme activation
by membrane-type MMPs and inhibition of enzyme activity by naturally occurring
TIMP (O-charoenrat et al. 2008). Because MMPs including MMP-2 are secreted
as an inactive zymogen, activation is another key regulatory step for MMP function
in vivo. The molecular environment in tumors appears conducive to MMP activation.
Activated MMP-2 was specifically observed in a variety of tumor tissues, suggesting
the presence of pro-MMP-2 activator(s) in tumor tissues (Sato and Takino 2010).
Indeed, aberrant expression or activation of MMP-2 and MMP-9 has been reported
in many different human tumors and has been linked to enhanced tumor invasion or
metastasis in in vitro and in vivo model systems (O-charoenrat et al. 2008). Also,
there are macrophage-derived MMP-2 and -9 that could act as tumor-associated
macrophages that might contribute to intravasation of cancer cells into the blood
stream (Kessenbrock et al. 2010).

Studies using high-resolution multimodal microscopy have showed the impor-
tance of ECM remodeling by another MMP member, the MMP-14-driven pericellular
proteolysis, which potently modeled the tissue to facilitate single-cell and collective-
cell migration and invasion (Kessenbrock et al. 2010; Wolf et al. 2007). A number of
ECM degrading proteolytic enzymes, such as MMP-1, -2, -13, and -14 and cathep-
sins B, K, and L have been also implicated in this process; however MMP-14 may
be critical and rate limiting in collagen turnover (Kessenbrock et al. 2010; Friedl and
Wolf 2008).
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In summary, MMPs have been implicated in cancer for more than 40 years, and
the notion that MMP-mediated ECM degradation leads to cancer cell invasion and
metastasis has been a guiding principle in MMP research (Kessenbrock et al. 2010).
MMP has been asssociated to tumor invasion in breast (Hancox et al. 2009; Sun
et al. 2009; Mizuma et al. 2008), lung (Lin et al. 2009), colorrectal (Kitamura
et al. 2009), pancreatic (Han and Zhu 2010) and endometrial carcinoma (Wang
et al. 2010), astroglial tumors (Lettau et al. 2010) and several other types of cancer,
and diverse anti-MMP compounds are experimentally being tested as therapeutic
drugs. Besides tissue invasion and intravasation, MMPs also affects growth signals,
regulate apoptosis, tumor vasculature, and initiation of the neoplastic progression
(Kessenbrock et al. 2010).

11.6 Contribution of the Tumor Stroma Microenvironment

In addition to the genetic, epigenetic, or somatic changes that occur in cancer, the
tumor microenvironment is now considered to be a critical factor in malignant pro-
gression and metastasis, and it influences the response to conventional anti-tumor
therapies (Ruan et al. 2009).

The background of the tumor microenvironment is similar to the inflammatory
response in a healing wound, which promotes angiogenesis, turnover of the ECM,
and tumor cell motility. Understanding the molecular mechanisms of this complex
interplay between malignant cancer cells and the surrounding nonmalignant stroma
represents one of the major challenges in cancer research (Kessenbrock et al. 2010).

Maintenance of epithelial tissues needs the stroma and when there is an epithelial
change, the stroma also changes (Wever and Mareel 2003). The main stromal cells on
this process are fibroblasts, also termed myofibroblasts or cancer-associated fibrob-
lasts (CAFs) (Micke and Ostman 2004). In fact, the term fibroblast encompasses a
number of stromal cells with a broadly similar phenotype. These cells have received
increased attention because of their participation in tumor development, including in-
vasion and metastasis (Franco et al. 2010). CAFs directly stimulate cell proliferation
as they produce growth factors, hormones and cytokines such as hepatocyte growth
factor, members of the epidermal growth factor, fibroblast growth factor, stromal-
derived factor-1α and IL-6 (Pietras and Ostman 2010a; Kalluri and Zeisberg 2006).
Moreover, CAFs are known to produce insulin-like growth factor-1 and 2, which
appear to impart tumor growth by transmitting survival signals. Additionally, CAFs
produces high quantities of pro-angiogenic factors, apart from VEGF-A (Pietras and
Ostman 2010b).

Interestingly, in colon cancer myofibroblasts were preferentially located at the
tumour–stroma border, and in invasive breast cancer, myofibroblasts were found in a
much higher proportion than in in situ carcinomas, and predominantly at the invasive
front (Micke and Ostman 2004). Moreover, it has been proposed that CAFs could
be a new target of the cancer therapy, as shown in the Fig. 11.4.
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Fig. 11.4 Strategies for
targeting tumour–stroma
interaction. a Signals from
CAFs that initiate or promote
tumour growth, invasion and
metastases can be inhibited. b
Signals from the cancer cells
that are responsible for the
recruitment of CAFs can be
blocked and inhibit
myofibroblastic
differentiation or
angiogenesis. c CAF
eradication leads to
elimination of signals in both
directions and additionally
abolishes CAF effects on
other stromal cells. (Micke
and Ostman 2004)

11.7 Summary

Cancer invasion into adjacent tissue as well as vessels is a complex process mediated
by diverse signaling pathways, which are usually interlinked. EMT of the cancer
cells as well as degradation of the stromal proteins by MMPs are important features
related to cancer invasion. The microenvironment characteristics such as hypoxia
and presence of CAFs also contribute to the more invasive phenotype of cancer
cells. Innumerous compounds to block these pathways are currently being studied
as promising future therapies.
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Chapter 12
Lymphatic Dissemination

Alexandre Nakao Odashiro

12.1 Introduction

Lymphatics compose the second vascular system found in higher vertebrates in addi-
tion to the blood vasculature. It has several vital functions including the regulation of
tissue pressure, immune surveillance and the absorption of dietary fat in the intestine
(Cueni and Detmar 2008).

The lymphatic vasculature is considered an important route of tumoral spread, as
metastatic spread to lymph nodes is an early and common event in human cancer,
especially carcinomas (Achen and Stacker 2008), and has gained the attention of
the research community. Metastases can be detected in draining lymph nodes before
they are detected in distant organs, and for most tumors, the clinical record suggests
that lymph node metastases progress to distant metastases (Leong et al. 2006).

In fact, lymph node metastasis is of major prognostic significance for many types
of cancer, although lymph node metastases are themselves rarely life-threatening
(Sleeman and Thiele 2009). This importance led to the development of techniques
to discern the sentinel lymph node (SLN). Currently, these techniques are used in
the clinical practice in several tumors including breast carcinoma (Harris et al. 1992)
and melanoma (Balch et al. 2001).

For a long time, it has been demonstrated no survival difference between patients
who undergo regional node dissection and those who undergo more conservative
dissections or no dissection at all, for melanoma, head and neck cancers, gastric,
colorectal cancers, and particularly breast cancers. Thus, the purpose of a sentinel
node biopsy or regional node dissection was not to improve survival, but to collect
diagnostic and prognostic information to help select systemic therapy to improve
prognosis (Leong et al. 2006).

Lymphatic metastasis was previously thought to be a passive process by which
detached tumor cells enter lymph nodes via pre-existing lymphatic vessels in the
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vicinity of a primary tumor (Achen and Stacker 2008; Pepper 2001). This process
would be facilitated by the thin walls and incomplete basement membrane of lym-
phatics (Achen and Stacker 2008; Swartz and Skobe 2001). Moreover, the main
function of the lymphatic system is to collect interstitial fluid from peripheral tis-
sues and to return it to the blood circulation. Therefore, tumor-associated lymphatic
vessels can drain interstitial fluid containing tumor cells and tumor-derived proteins
away from the tumor into the lymphatics and then to the lymph node that drains the
tissue (Sleeman et al. 2009). In head and neck carcinoma, for example, some studies
have showed a significant correlation between intratumoral lymphatic density and
increased metastatic potential towards regional lymph nodes (Maula et al. 2003). But
others did not find such correlation and also no differences in survival rates (Maula
et al. 2003; Franchi et al. 2004; Munoz-Guerra et al. 2004).

Clinical and experimental data suggest that migration of tumor cells into the
lymph nodes is greatly facilitated by lymphangiogenesis, a process that generates new
lymphatic vessels from pre-existing lymphatics (Ran et al. 2009), both locally and
in regional lymph nodes (Sleeman and Thiele 2009). Nevertheless, the importance
of lymphangiogenesis in metastasis may vary, depending on parameters such as the
tumor type, and the position of the primary tumor relative to the lymphatic network
(Achen and Stacker 2008). Pathways involved in lymphangiogenesis and molecular
control of lymphatic metastasis have been studied and described, and some receptors
of the Vascular Endothelial Growth Factors (VEGFs) family seem to be the most
relevant to this process (Achen and Stacker 2008; Ran et al. 2009).

12.2 Brief Histology and Anatomy of the Lymphatics and
Sentinel Lymph node

Lymphatic capillaries start blind-ended in the tissue, where they take up lymph.
They are lined by a single layer of overlapping endothelial cells and lack a continu-
ous basement membrane as well as pericyte or smooth muscle cell coverage (Cueni
and Detmar 2008). This architecture is related to their function in absorbing inter-
stitial fluid and allowing immune cells to traffic, which makes them intrinsically
more amenable to the entry of invasive tumor cells in comparison to blood vessels
(Sleeman and Thiele 2009). Via larger collecting lymphatic vessels and ultimately
the thoracic duct, the lymph returns to the blood vasculature through the lymphatic-
venous connections at the junction of the jugular and subclavian veins. Lymphatic
capillaries are present in almost all tissues, except for avascular structures such as
epidermis, hair, nails, cartilage and cornea, and some vascularized organs including
the brain and the intraocular tissue. Together with lymphatic capillaries, other struc-
tures comprise the lymphatic system, such as lymph nodes, thymus, tonsils, spleen
and Peyer’s patches. They are essential for the immune function of the lymphatic
system (Cueni and Detmar 2008). Not only the lymphatic vessels, but also the lymph
nodes are remarkably related to tumors and their dissemination.
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Metastasis is known to be responsible directly or indirectly for more than 90 %
of all cancer deaths, and lymph node are often the first organs in which metastasis
occur (Sleeman and Thiele 2009). For the majority types of carcinoma, the presence
of lymph node metastasis is the most important predictor of poor prognosis and form
the basis for staging schemes in many tumors (Balch et al. 2001; Compton et al.
2000; Yarbro et al. 1999).

Compared with blood vessels, a lymphatic vessel offers many advantages for
invasion and transport of malignant cells, such as: (1) discontinuous basement mem-
brane and loose cell–cell junctions; (2) a much lower flow rate that increases survival
by minimizing shear stress; and (3) a 1000-fold higher lymph concentration of
hyaluronic acid, a molecule with potent cell-protecting and pro-survival properties
(Ran et al. 2009; Laurent et al. 1992).

Azzali et al. (2006) called attention to the term tumor-associated absorbing lym-
phatic (TAAL) vessel, that is the lymphatic vessel associated with a tumor. It has
the same ultrastructural characteristics as the absorbing lymphatic vessel in normal
organs. However, they demonstrated the transendothelial passage of tumor cells into
the TAAL vessel lumen, which takes place by means of the intraendothelial channel
(∼ 1.8–2.1 μm in diameter and 6.8–7.2 μm in length). This channel is to be con-
sidered a transient morphological entity organized by TAAL vessel endothelium by
means of still unidentified molecular mechanisms.

Usually, the lymphatic fluid from peripheral tissues is channeled into lymphatic
vessels that drain into one (or occasionally more) lymph node (Sleeman et al. 2009).
The SLN is defined as the first node in the lymphatic basin that drains the location in
which the primary tumor is. Therefore, the status (compromised or not by tumoral
cells) of the SLN(s) accurately reflects the status of the entire basin. In other words,
if the SLN is not involved with metastatic disease, the remainder of the lymph nodes
should also be negative (Moroi et al. 2009).

Analysis of the SLN for the presence of metastases is highly prognostically sig-
nificant. Nowadays, intra-operative analysis of the SLN as a means of determining
appropriate clinical treatments is widely used clinically as a means of determining
future therapy regimes for a variety of cancers (Sleeman et al. 2009) including breast
(de Boer et al. 2010; Salem 2009; Iwase et al. 2009) and melanoma (Pasquali et al.
2010; Uhara et al. 2009; van Akkooi et al. 2009). The use of SLN biopsy in breast
carcinoma increased dramatically from 1998 and decreased the proportion of women
(particularly older women) who received no axillary surgery (Rescigno et al. 2009).
However, some studies of cutaneous melanoma demonstrated that there are some
patients with histologically negative SNL that develops recurrence during follow-up
(De Giorgi et al. 2007).

Histologic parameters of SLN metastases have been assessed to predict which
SLN-positive patients are likely to have tumor in regional non-SLNs. They include
the size of metastases, tumor penetrative depth, also known as maximal subcap-
sular depth and centripetal thickness), the location of SLN tumor deposits in the
SLN, the percentage cross-sectional area of the SLN involved, and the presence of
extracapsular spread (Murali et al. 2009).
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In fact, within the lymph node, malignant metastatic cells initially arrive in the
subcapsular sinuses through an afferent capsular lymph vessel. Later, there is sub-
capsular spread of malignant cells in the marginal sinuses and into the immediately
adjacent cortical parenchyma. Finally, these cells infiltrate the deeper zones of the
lymph node parenchyma, frequently following the medullary sinuses and eventually
reaching the efferent lymphatics (Starz et al. 2001; Govindarajan et al. 2007).

12.3 Intratumoral Versus Peritumoral Lymphatic Vessels and
Lymphatic Vessel Density

Several tumors show proliferation of intratumoral lymphatic vessels which has
been implicated in worse prognosis and increased metastatic potential in melanoma
(Dadras et al. 2003), colon (Wang et al. 2005), prostate carcinoma (Zeng et al. 2005),
and head and neck carcinomas (Maula et al. 2003). However, it has been proposed
that intratumoral lymphatics are not able to transport tumor cells because the elevated
hydrostatic pressure within a tumor that may compress these vessels (Padera et al.
2002; Shayan et al. 2006).

On the other hand, peritumoral lymphatics are the vessels located adjacent to
the tumor and may represent pre-existing vessels compressed by the tumoral mass
(Shayan et al. 2006). Some studies suggests that these vessels can also arise due to
lymphangiogenesis and were correlated to poor prognosis in malignant melanoma
(Shayan et al. 2006; Valencak et al. 2004), non-small lung cancer (Renyi-Vamos
et al. 2005), breast carcinoma (Schoppmann et al. 2004), gastric carcinoma (Kitadai
et al. 2005) and others.

Although the relative importance of intratumoral versus peritumoral lymphatics
for metastatic spread remains a subject of debate, it is a consensus that the lymphatic
vessels associated with a tumor can be important for metastasis and patient outcome
(Shayan et al. 2006). Several studies of different cancer types have found correla-
tions between lymphatic vessel density (LVD) and lymphatic metastases and overall
survival, suggesting that LVD contains important information about the degree of
tumor lymphatic vasculature. In breast carcinoma, for example, studies showed a
significant correlation among higher LVD, lymph node metastasis, and high TNM
clinical stage (Gu et al. 2008). Also, it was shown that LVD correlates with bad
outcome in patients with head and neck squamous carcinoma (Kyzas et al. 2005),
lung cancer (Renyi-Vamos et al. 2005), colorectal cancer (Matsumoto et al. 2007),
skin squamous carcinoma (Sedivy et al. 2003), prostate cancer (Zeng et al. 2005)
and urothelial carcinoma (Bolenz et al. 2009). Nevertheless, the role of LVD in the
prognosis in prostate cancer is still a matter of debate (Bolenz et al. 2009).

It has been proposed that the target vessels for invasion by lymph-metastasizing
tumor cells include preexisting tissue lymphatics abutting the tumor mass either
through coincidence or mutual chemoattraction, as well as new lymphatic vessels
that proliferate either within or around the tumor as a result of lymphangiogenesis
(Clasper et al. 2008).
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Fig. 12.1 In the first mode (left panel) the tumor induces proliferation of pre-existing peritumoral
vessels (stippled shading), leading to invasion by tumor cells (filled black circles) detaching from
the main tumor mass. In the second mode (right panel), tumor or host-derived factors induce lymph
vessel proliferation within the tumor body (intratumoral lymphangiogenesis), leading to invasion
by tumor cells (filled black circles) deeper within the tumor. However, both modes may operate as
shown, and are not mutually exclusive. Arrows indicate the direction of lymph flow (Witte et al.
2006)

Witte et al demonstrated by scheme the two alternative models to explain tumor
metastasis via the lymphatics (Witte et al. 2006) (Fig. 12.1).

12.4 Lymphangiogenesis

To date, there is great debate about whether cancer cells can metastasize by expan-
sion and invasion of pre-existing peritumoral lymphatics, or by the formation and
invasion of new lymphatics within tumours. Lymphangiogenesis is a mechanism in
which lymphatic vessels arise from a pre-existing lymphatic vessel (Mandriota et al.
2001). Evidence of lymphangiogenesis was reported by some studies in melanoma
(Rinderknecht and Detmar 2008), head and neck squamous cell (Kyzas et al. 2005),
breast carcinoma (Gu et al. 2008) and others cancers (Amioka et al. 2002). Surpris-
ingly, even uveal melanoma, a tumor known to have no relationship to lymphatics
as the intraocular environment is devoid of those vessels, has been demonstrated to
have lymphangiogenesis when there is extraocular extension. Moreover, this lym-
phangiogenesis seems to be correlated to poor prognosis (Amioka et al. 2002; Heindl
et al. 2010; Heindl et al. 2009).

But the mechanisms of lymphatic invasion and metastasis to regional lymph nodes
are not completely known (Massi et al. 2009) for many tumors. Lymphangiogenesis
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Table 12.1 Molecules that have been used as markers for lymphatic endothelium. (Witte et al.
2006)

VEGFR-3 Tyrosine kinase receptor for VEGF-C/VEGF-D
Podoplanin (T1á/E11) Integral membrane sialomucoprotein
Prox-1 Homeobox domain transcription factor
D-6 Endocytic 7 TM receptor for CC chemokines
LYVE-1 Sialoglycoprotein receptor for hyaluronan
Neuropilin-2 Co-receptor for VEGFs and ligand for semaphorins involved in

axonal guidance
CCL-21 (Secondary Lymphoid Chemoattractant for migration of dendritic cells in lymphatic

Chemokine) channels

is not exclusively associated with malignancies or metastatic dissemination, but also
with several pathological conditions, such as chronic inflammation in Crohn’s disease
(Pedica et al. 2008), psoriasis (Henno et al. 2009), renal (Kerjaschki et al. 2004) and
corneal graft rejection (Dietrich et al. 2010).

In contrast to Angiogenesis, the growth of blood vessels, lymphangiogenesis has
received trivial attention over the past few decades. However, our knowledge of the
molecular mechanisms controlling lymphangiogenesis has improved considerably
over the past few years, mainly thanks to progress in the identification of regulatory
molecules and markers specific to the lymphatic endothelium. The genetic programs
that determine lymphatic endothelial cell (LEC) differentiation and growth, and
make them distinct from blood vessels, involve a number of newly described signal
transduction pathways (Tammela et al. 2010).

Several markers have been used to identify the lymphatic endothelium. Since
the late 1990s, lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), a
CD44 homologue protein involved in hyaluronan and immune cell transport, has
been used to identify lymphatics vessels subtypes (Prevo et al. 2001). Podoplanin is
a mucin-type transmembrane glycoprotein (Shayan et al. 2006) that was originally
identified as a podocyte membrane protein in the renal corpuscle and was found
to be specific for the lymphatic endothelium. Its expression is found specifically in
the lymphatic endothelium in many organs, including the skin, kidney, and lung of
normal individuals (Gu et al. 2008, Britto et al. 2009). D2-40 is a relative new marker
to detect lymphatic vessels (Britto et al. 2009). It is a monoclonal antibody to a Mr
40,000 O-linked sialoglycoprotein expressed in normal lymphatic endothelium, and
is reported to be highly sensitive for lymphatic endothelium, compared with other
lymphatic endothelial specific antibodies, such as LYVE-1, podoplanin, and the
homeobox transcription factor Prox1 (Lee et al. 2010; Hong et al. 2002). All these
markers can be tested by immunohistochemistry. VEGFR-3 is another marker that
was used to characterize lymphatic vessels, however, it was shown to be expressed
also on blood vessels in tumors and wound granulation tissue (Shayan et al. 2006).
There are other several proteins studied to identify lymphatic channels summarized
in Tab. 12.1, but it is beyond the scope to this chapter to describe all of them.

The molecular mechanisms related to lymphangiogenesis are complex and the
VEGF family seems to be the most important mediator to lymphangiogenesis. The
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Fig. 12.2 Tumoral cells produce VEGF that induce lymphangiogenesis at the primary tumor. Once
the tumoral cells have spread to sentinel lymph node, VEGF continues to be produced at the new
site therefore maintaining the lymphangiogenic activity, facilitating the cells to spread to distant
lymph nodes as well as to distant organs. (Cueni and Detmar 2008 #1)

best studied lymphangiogenic signaling system in cancer is the VEGF-C/VEGF-
D/VEGFR-3 signaling axis in which the secreted lymphangiogenic growth factors
VEGF-C or VEGF-D activate VEGFR-3, a cell surface receptor tyrosine kinase
expressed on lymphatic endothelium, leading to proliferation of LECs, growth of
lymphatic vessels and, potentially effects expression of molecules by LECs (Achen
and Stacker 2006). In fact, the VEGF-C/VEGFR-3 signaling has been suggested
to play a role in maintenance of the lymphatic endothelium or lymphangiogenesis
(Scavelli et al. 2004). Therefore, this group of enzymes is very important to the
tumorigenicity of cancers which secrete these growth factors (Shayan et al. 2006).
In These lymphangiogenic factors are commonly expressed in malignant, tumor-
infiltrating and stromal cells, creating a favorable environment for generation of new
lymphatic vessels (Ran et al. 2009) (Fig. 12.2).

In gastric carcinoma, for example, VEGF-C expression was significantly higher in
patients with positive lymph nodes (Amioka et al. 2002; Aurello et al. 2009; Kitadai
et al. 2010). Also, VEGFR-3 expression has been associated with poor prognosis in
colorectal carcinoma (Witte et al. 2002), non-small cell lung carcinoma (Donnem
et al. 2009b, 2010), breast carcinoma (Gu et al. 2008) as well as with different stages
of cervical carcinoma (Van Trappen et al. 2003). However, a meta-analysis showed
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no correlation of expression of VEGFC and VEGFR-3 with survival in patients with
non-small cell lung carcinoma (Zhan et al. 2009).

Although VEGF-A is more related to angiogenesis, VEGF-A expression has also
been correlated with lymph node metastasis in non-small cell lung carcinoma (Don-
nem et al. 2009a). VEGF-A induces active proliferation of VEGFR-2-expressing
tumor-associated lymphatic vessels as well as metastastic dissemination to lymph
nodes in transgenic mice (Hirakawa et al. 2005). Furthermore, primary tumors that
overexpress VEGF-A induce lymphangiogenesis in the SLN prior to the actual nodal
metastasis (Donnem et al. 2009a).

Nitric oxide (NO) is a diatomic free radical molecule synthesized from L-arginine
by NO synthases that plays a critical role in various physiological and pathological
processes, including tumor growth (Massi et al. 2009). It upregulates VEGF and
Basic Fibroblastic Growth Factor being an important mediator of tumor angiogenesis
(Ohhashi et al. 2005) NO is also produced and released by LECs and physiologically
regulates lymphatic permeability and flow by modulating active lymph pump activity
(Ohhashi et al. 2005). It has been demonstrated that NO mediates VEGF-C induced
lymphangiogenesis and, consequently, plays a critical role in lymphatic metastasis
(Lahdenranta et al. 2009). In squamous cell carcinoma of the head and neck, VEGF-
C has been correlated to lymphangiogenesis and lymph node metastasis (Franchi
et al. 2006). Also, it may play a hole in lymphangiogenesis in melanoma (Massi
et al. 2009).

Recent studies have provided evidence that stromal cells are also important for
lymphangiogenesis, as they are capable of secreting many potential lymphangiogenic
factors, like hyaluronan, that possibly lead to de novo formation of lymphatic vessels.
Therefore, lymphangiogenesis would be governed by interactions between tumor
cells and stromal components (Koyama et al. 2008). Albeit interesting and promising,
more studies are necessary to precisely determine this interaction.

Garmy-Susini et al. (2010) showed that integrin α4β1 and the signals it trans-
duces regulate the adhesion, migration, invasion, and survival of proliferating LEC.
Moreover, suppression of α4β1expression, signal transduction, or function in tu-
mor lymphatic endothelium inhibits tumor lymphangiogenesis and further prevents
metastatic disease. These results show that integrin α4β1-mediated tumor lymphan-
giogenesis promotes metastasis and is a useful target for the suppression of metastatic
disease.

Also recently, the identification of genes selectively expressed in tumor lym-
phatics represents a major step toward identifying biomarkers for metastasis and
for elucidating the mechanisms by which tumors invade the microvasculature and
spread to lymph nodes (Clasper et al. 2008). Interesting, in tumoral LEC, there are
approximately 800 genes are up or downregulated by a factor of twofold or greater
in tumor as compared with normal LEC, and several of these have functions related
to extracellular matrix and cell adhesion. Considerable changes in tumor LEC gene
expression may therefore be induced either by the tumor environment or by growth-
factor-induced proliferation, and the potential consequences of these changes for
tumor invasion are truly fascinating (Witte et al. 2006).
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It has been proposed that lymphangiogenesis in the lymph node may play a role in
augmenting the metastatic spread of tumors in cancer patients. Metastatic tumors that
overexpress VEGF-A or VEGF-C also induced new lymphatic vessel growth within
the regional lymph nodes, probably contributing to enhanced distant lymph node
metastasis. Moreover, primary tumors in the skin induced lymph node lymphangio-
genesis even before they metastasized, thereby preparing the “lymphvascular niche”,
a tumor-conditioned microenvironment that serves as a future metastatic site within
the regional lymph node (Hirakawa et al. 2009).

12.5 Summary

Lymphatic metastasis is an early and common event in most types of cancer, espe-
cially in carcinomas. Lymphatic vessels were seldom studied till the establishment
of markers specific to lymphatic vessels some years ago. Lymphangiogenesis seems
to be an important mechanism involving several signaling pathways that enable or
enhances lymphatic metastases.
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Chapter 13
Hematogenous Dissemination

Bruno F. Fernandes

The changes in the ECM composition induced by the invading tumor cells have been
discussed in previous chapters. We now focus on the following step of the metastatic
cascade, the access of malignant cells to the host’s bloodstream. The importance of
understanding this early step of disease progression is crucial because most cancer
patients die from metastases rather than from their primary tumors.

Even though cancers can be defined as lesions having the ability to cause distant
metastases, the potential to spread varies greatly. For example, non-melanoma skin
cancers are capable of invading deep tissues and adjacent structures, albeit rarely get
access to the circulation. (American Cancer Society 2009) Fortunately, despite an
annual incidence of 1 million cases in the United States, less than 1000 deaths are
reported, and even fewer of those are due to distant metastases (American Cancer
Society 2009).

We are now going to detail each aspect of the hematogenous dissemination of
tumor cells.

13.1 Angiogenesis

Angiogenesis is defined by the development of new vessels from preexistent ones,
which should be distinguished from vasculogenesis that derives from primordial
endothelial cells during embryogenesis (Paku 1998). Understanding the importance
of vascular biology to tumor development have led to important insights on the
pathophysiology and treatment of malignancies. Tumors have high metabolic rates
and a consequent higher need of nutrients and oxygen. It is believed that a tumor mass
can not be greater than 2 mm in diameter without inducing angiogenesis. Beyond that,
passive diffusion can no longer provide adequate nutrients in or allow waste products
out of the tumoral tissue (Sutherland 1988). The inability of a tumor to promote
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neovascularization has even been linked to the dormant state of micrometastases
(Folkman 1985; Blood and Zetter 1990). Thus, any tumor mass needs to induce the
formation of new blood vessels that will supply an appropriate blood flow to sustain
growth.

Judah Folkman is considered by some the father of angiogenesis (Cohen and Judah
Folkman 2009). According to Folkman et al. (Folkman and Kalluri 2004), there are
two critical phases in cancer development, the first being a somatic mutation resulting
in a malignant cell. The second phase is the conversion into an angiogenic phenotype,
in which the tumor recruits its own blood supply. A set of genes responsible for the
activities of cell motility, epithelial-mesenchymal transition, extracellular matrix
degradation and angiogenesis have been recently called metastases initiating genes
(Nguyen et al. 2009).

As with other steps of the metastatic cascade, angiogenesis also depends on the in-
teraction between the neoplasm and the host. Therefore, tumor progression depends
on the balance between the release of antiogenic factors by the tumor and the individ-
ual’s endogenous angiogenic inhibitors. Angiogenic output includes FGF2, VEGF,
IL8, and PDGF while endogenous angiogenic inhibitors include thromboplastin,
tumstatin, canstatin, endostatin, angiostatin, and interferon [alpha]/[beta]. Tumor
cells and blood vessels constitutes a highly integrated system, where endothelial
cells can be switched from a resting state to one of rapid growth by diffusible signals
from tumor or associated inflammatory cells (Folkman 1971).

The process of angiogenesis related to tumor (or otherwise) can be summarized
in the following steps (Paku 1998):

1. Dilatation of postcapillary venules situated around the tumor;
2. Local degradation of the basement membrane;
3. Weakened intercellular contacts between endothelial and emigration into the

connective tissue towards the angiogenic stimulus
4. Formation of a solid cord of endothelial cells
5. Organization of a lumen, either by fusing of intracellular vacuoles or curving of

single endothelial cells;
6. Loop formation by fusion of the sprouts;
7. Appearance of pericytes and synthesis of a basement membrane.

Tumor-induced angiogenesis not only provide the means for tumor growth, but it
also grants an easier access to the blood stream. During angiogenesis, endothelial
cell at the tip of invading capillaries release important paracrine growth factors for
tumor cells such as basic fibroblast growth factor (bFGF), insulin growth factor-2,
platelet-derived growth factor, and colony-stimulating factor (Hamada et al. 1992;
Nicosia et al. 1986; Rak et al. 1994). Additionally, collagenases and other degradative
enzymes secreted by endothelial cells facilitate the spread of tumor cells through the
surrounding extracellular matrix (Fox et al. 1993; Gross et al. 1982). Not surprisingly,
several reports have associated the tumoral microvessel density with aggressiveness
and poor prognosis (Weidner et al. 1991; Weidner 1995; Bono et al. 2002; Thelen
et al. 2008; Yildiz et al. 2008).
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13.2 Intravasation

As stated previously, the original malignant clone needs to convert into a phenotype
capable of initiating the metastatic processes. The genes responsible for the activities
of cell motility, epithelial-mesenchymal transition, extracellular matrix degradation
and angiogenesis.

Intravasation is the term used for the entry of any kind of foreign material into a
blood or lymph vessels. As part of the process of metastasis, intravasation refers to
the invasion of the systemic circulation by the malignant cells. Newly formed vessels
lack the normal architectural support of a basement membrane and pericytes, which
allows leakage of fluids into the extravascular space. Tumor-related angiogenesis
however, has some particularities that make the angiogenic vasculature even more
susceptible to the penetration of malignant cells.

Ultrastructural reports have shown that, under normal circumstances, angiogenic
vessels are not permeable for molecules larger than 20kD (Rizzo and DeFouw 1996).
On the other hand, tumor vasculature allows the passage of molecules larger than
70–150kD (Dvorak et al. 1988). Pericytes are usually absent and the basement mem-
brane of tumor vessels is frequently fragmented or even completely absent (Paku
et al. 1990). The lumen of the vessel itself is covered by thin endothelial cells with
open intercellular junctions. Some areas even show vascular spaces delineated by
malignant cells in direct contact with the tumor mass (Paku 1998). Those changes
are explained by the invasive activities of tumor cells and the consequent changes
in the composition of the extracellular matrix caused by malignant tumors, but not
their benign counterparts (Skinner et al. 1995).

The actual process of intravasation has not completely elucidated. It might well
be a passive process in which cells are sloughed off from the tumor into the lumen
of a vessel. The other possibility is an active migration of cells through the capil-
lary wall (Condeelis and Segall 2003). Cell motility is a principal requirement for
the spreading of cancer cells (Stracke et al. 1991). The invasive cells often follow
a gradient of extracellular compounds (often growth factors) that are detected by
intracellular signal processing pathways, which in turn coordinate cell movement
(Maghazachi 2000). At last, cell motility relies on the actin-based cytoskeleton for
both generating protrusions and retracting the rear of the cell that results in the char-
acteristic ameboid form of movement (Condeelis and Segall 2003). Studies using in
vivo intravital microscopy showed that metastatic cells polarize towards blood ves-
sels while nonmetastatic cells do not (Wyckoff et al. 2000). Moreover, nonmetastatic
cells fragment upon crossing endothelial junctions.

Intravital imaging also demonstrated that macrophages are crucial in the processes
of intravasation (Fig. 13.1). Cancer cells and macrophages are linked together in
a paracrine loop using EGF and colony-stimulated factor 1 (CSF-1). Expression
analysis showed that macrophages express CSF-1 receptor and secrete EGF, whereas
carcinoma cells express EGF receptor and secrete CSF-1. Thus, these two cell types
reciprocally induce each other to migrate (Wyckoff et al. 2004). Macrophages that
are located in the vicinity of blood vessels help to direct cancer cells to the vessels.
The outcome of this communication is the accumulation of cancer cells near blood
vessels, which eventually leads to intravasation. Indeed, the presence of tumor-
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Fig. 13.1 An illustration that summarizes the interactions of carcinoma cells with blood vessels
as seen by multiphoton-based intravital imaging. Carcinoma cells (green) of metastatic tumours
collect near blood vessels as a polarized cell layer, which is a result of chemotaxis to the blood
vessel in response to chemoattractants such as epidermal growth factor (EGF). Cancer cells express
the EGF receptor (EGFR). Macrophages (purple) collect near the vessel in response to colony-
stimulating factor-1 (CSF1), which is produced by tumour cells. Macrophages express the CSF1
receptor (CSF1R) and might be the source of EGF. The polarity of carcinoma cells is correlated
with increased intravasation and metastasis. (Hernandez et al. 1992)

infiltrating macrophages in the primary tumor has been correlated with metastasis in
several malignancies (Siveen and Kuttan 2009).

13.3 Tumor Cell Shedding and Survival in the Circulation

The well-know inefficiency of the metastatic process is compensated by the large
numbers of cells that are constantly released by the primary tumor. An attempt to
quantify tumor cell shedding estimated that the efferent blood from a tumor mass
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contains approximately 16,000 cells/ml. In a day, each gram of tumor sheds more
than 3 million cells into the systemic circulation (Butler and Gullino 1975). Luckily,
the blood is not an ideal place for malignant cells and most of them do not remain
viable for long. After 24 h in circulation, only 1 % of the initial load survives (Fidler
1970). Cells die as a consequence of the process of anoikis (programmed cell death
associated with loss of cellular contact), immune recognition and the sheer physical
stress of the circulatory system (Mendoza and Khanna 2009). Some of the currently
available data indicates that only 0.1 % of those injected tumor cells could form gross
metastatic foci (Tsubura et al. 1983).

Metastatic cells can leave the primary site individually or in clumps, also called
tumor emboli. Those tumor clumps represent approximately 10 % of circulating tu-
mor cells and contains between 2 and 30 cells. It is believed that clumps actually
liberated as such into the circulation during the natural course of the pathological
process, instead of aggregating after dissemination (Liotta et al. 1974). Even though
secondary growths can originate from the clonal expansion of a single cell, circulat-
ing multicell tumor emboli are more likely to successfully form metastases (Fidler
and Talmadge 1986). It appears that aggregates of cells tend to survive longer in
circulation compared to individual cells. Under light microscopy, isolated circulat-
ing cells from clumps are larger and better preserved than single ones. One possible
explanation is that cells at the center of the clump would not be in direct contact with
the blood itself and would also be protected from immune surveillance (Liotta et al.
1974). Then, centrally located cells would remain viable until the clumps arrest at
the capillary network of the target organ.

It is recognized that platelets and coagulation factors are involved in hematoge-
nous metastasis, more specifically in regards to cell survival in the bloodstream and
adhesion to the vasculature of distant sites (Erpenbeck and Schon 2010). Trombo-
cytosis, as a paraneoplastic unspecific phenomenon in the metabolism of the host
triggered by the cancer, facilitates metastatic spread (Estrov et al. 1995). Elevated
platelet counts have been associated with advanced stages of cancer and poor prog-
nosis for a variety of malignancies, including endometrial carcinoma (Scholz et al.
2000), cervical (Hernandez et al. 1992), ovarian (Zeimet et al. 1994), gastric (Ikeda
et al. 2002) or esophageal cancer (Shimada et al. 2004). Those clinical observations
are supported by experimental data demonstrating that the ability of tumor cells to
aggregate platelets in vitro is correlated with the metastatic potential of cancer cells
in vivo. The process of tumor-cell induced platelet aggregation (TCIPA) appears
to involve most known platelet receptors engaged in adhesion and aggregation of
platelets, which in turn are attractive target of cancer therapies. Glycoprotein Ib-IX-
V complex, GpIV, intergrins, ADP receptors, P-selectin and thrombin receptors are
some of the targets being used for the development of potential treatments because
of their implication in the metastatic process (Erpenbeck and Schon 2010). One of
the explanations why TCIPA increase cell survival in circulation is that a protective
thrombus may shield tumor cells from recognition by the immune system. Platelets
also limit the ability of natural killer (NK) cells to lyse tumor cells in vitro and in
vivo (Fig. 13.2, Palumbo et al. 2005).
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Fig. 13.2 Heparan-sulphate glycosaminoglycans (HSGAGs; green lines) function at the tumour-
cell surface to mediate metastasis. (a) Cancer-cell-surface HSGAGs can act as ligands for P-selectin
(P), which mediates adhesion either to platelets or to the endothelial lining of the capillary system.
This allows cancer cells both to extravasate and enter the bloodstream, as well as to metastasize to
other organs. Addition of exogenous heparin competes with P-selectin binding, inhibiting tumour-
cell adhesion processes. (b) Heparanase cleaves HSGAGs, releasing growth-promoting factors and
promoting tumour metastasis. Pharmacological doses of heparin are thought to inhibit heparanase
action. (c) Cell-surface HSGAGs also act as coreceptors for integrins (I), mediating cancer-cell ad-
hesion to blood vessels to promote extravasion. Pharmacological doses of heparin are also believed
to interfere with these processes by competing with cancer-cell-surface HSGAG binding to integrins.
(d) Cancer-cell-surface HSGAGs also contain sequences that modulate local coagulation, specifi-
cally by modulating the activity of coagulation serine proteases such as thrombin (Factor IIa). Tu-
mour procoagulants promote the formation of a protective layer of fibrin around the tumour, and are
also inhibited by heparin. This coat prevents attack by natural killer (NK) cells of the immune system.
(e) Finally, HSGAGs at the tumour-cell surface interact with growth factors (circles), such as fibrob-
last growth factor and vascular endothelial growth factor, to regulate the proliferation and migration
of cancer cells through autocrine signalling loops
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Table 13.1 Organ-specific
colonization

Tumour type Principal sites of metastasis

Breast Bone, lungs, liver and brain
Lung adenocarcinoma Brain, bones, adrenal gland and liver
Skin melanoma Lungs, brain, skin and liver
Colorectal Liver and lungs
Pancreatic Liver and lungs
Prostate Bones
Sarcoma Lungs
Uveal melanoma Liver

Host immune defense against CTC can be immunologic specific or non-specific.
Specific immunity against clumps of cells in circulation is attributable to (NK) cell
activity. NK cells are able to destroy tumor emboli, albeit having a limited role in
inhibiting growth after implantation (Tsubura et al. 1983). Experimental evidence
supporting such theory shows that NK deficicient animals have a higher incidence of
metastasis. On the other hand, metastasis is markedly inhibited in mice treated with
interferon inducers (Hanna 1982). In the case of uveal melanoma, it was showed
that intraocular tumors are able to inhibit NK activity and tumor cells are able to
promote growth and maintain the immune privilege (Apte et al. 1997). Human uveal
melanoma cells produce macrophage migration-inhibitory factor to prevent lysis by
NK cells (Repp et al. 2000). The cells of the monocyte-macrophage series are respon-
sible for the non-specific host defense. Activated macrophages can destroy a wide
range of CTCs from different origins, regardless of their phenotypic diversity, anti-
genicity, chemosensitivity or metastatic potential. Tumoricidal macrophages are also
able to control the progression of established micrometastasis in vivo. Furthermore,
the effectiveness of agents such as BCG, levamisole and others are likely linked to
the non-specific activation of monocyte-macrophages (Proctor et al. 1977).

13.4 Cell Arrest

After entering the circulation, individual or clumps of metastatic cells eventually
reach the capillary bed of distant organs. The fact that some organs are more prone to
suffer from metastatic colonization than others (Table 13.1) has puzzled scientists for
decades. An old theory proposed by Virchow was that metastasis could be explained
by the simple lodgment of emboli of disseminated cells in the vasculature of the
affected organ (Virchow 1858). Other scientists supported such idea, like James
Ewing that proposed that colonization of a distant organ would be ruled by mechanical
factors determined by the anatomical structure of its vascular system (Ewing 1928).
However, it was the “seed and soil” theory (Paget 1889) proposed by Stephen Paget in
1889 that survived until the present day. Its key findings after reviewing the autopsy
records of 735 women with breast cancer are summarized below (Fidler and Poste
2008):

• The pattern of metastasis is not random;
• Some organs are more prone to be the seat of secondary neoplastic growth;
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Fig. 13.3 Regulation of tumor cell and endothelial cell procoagulant functions in the pathogenesis
of thrombosis in cancer. TF and CP expression are synthesized and expressed on the surface of
tumor cells. The effect of these tumor cell procoagulants are enhanced by the local production of the
important proangiogenic cytokines IL-8 (from the endothelial cell) and VEGF and the inflammatory
cytokines TNF-α and IL-1β from tumor cells. These cytokines convert the normal anticoagulant
endothelium to a procoagulant endothelium as follows: (1) down-regulation of TM expression and
(2) increased synthesis of TF and PAI-1. Fibrin, produced in response to activation of clotting
by TF and CP, increases both TF and IL-8 production by the endothelium, further enhancing
thrombogenesis and angiogenesis. TF also increases angiogenesis by the tumor cell by increasing
the synthesis of VEGF

• In breast cancer, the incidence of metastasis to the ovaries is higher than to the
spleen and kidney combined;

• Bone metastasis cannot be explained by the theory of embolism alone;
• There is a high incidence of bone metastasis from thyroid cancer, and some bones

have more metastases than others

To a certain degree, nonspecific entrapment and arrest of circulating tumor cells in
the circulation are undoubtedly influenced by mechanical factors such as the size
and deformability of tumor cells, and the diameter and distensibility of capillaries.
Changes in microcirculatory hemodynamics such as slowing, flowback, sludge, and
plasma-skimming phenomena occur after intravasation of tumor cells (Liotta et al.
1974). The interaction of tumor cells with one another in aggregating, and/or with
host cells such as platelets and lymphocytes, may also influence and facilitate tumor
cell arrest (Rickles and Falanga 2001). Interestingly, experimental models demon-
strate that metastatic cell lines arrest in capillary beds at a significantly higher rate
than cells of low metastatic potential of the same origin (Tsubura et al. 1983). Tissue
Factor (TF) and cancer procoagulant (CP) are some of the procoagulant molecules
that have been characterized in the process of tumor cell arrest (Fig. 13.3). More-
over, manipulation of cells can increase their ability to arrest and subsequently form
metastasis (Poste and Nicolson 1980).
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13.5 Extravasation

Even though this last step of hematogenous dissemination is one of the most in-
tensively studied, the exact mechanism of extravasation is still debated. Most
observations are inferred from ultrastructural studies of liver and lung metastasis
and 4 possible mechanisms have been proposed:

1. Penetration of the endothelium and basement membrane by cancer cells in a
leukocyte-like fashion (Kawaguchi and Nakamura 1986);

2. Destruction of the capillary wall caused by extension of the tumor cell to the suben-
dothelial matrix followed by dissolution of the basement membrane (Crissman
et al. 1988);

3. Migration of endothelial cells covering the intravascular tumor emboli before
penetration of the basement membrane (Lapis et al. 1988);

4. Intracapillary proliferation leading to the mechanical destruction of the vessel
(Machado et al. 1982).

Regardless of minor differences in these theories, tumor cells have 2 barriers to cross
in order to get access to the organ parenchyma after the cell/clump arrives at the
capillary and interacts with an intact endothelium. The first step is accomplished by
either the endothelialization of cancer cells or retraction of endothelial cells. 12(S)-
hydroxy-eicosatetraenoic and tumor derived retraction factor were both seen to cause
reversible endothelial retraction in vitro (Honn et al. 1994; Kusama et al. 1995). The
basement membrane is then degraded granting the invading cells a direct contact
with the stroma of the target organ (Paku et al. 2000).

The particularities of the extravasation step of the metastatic cascade can offer
interesting insights on the preferential colonization of specific organs. The endothe-
lium of the capillary of different organ shows differences in ultrastructure and cell
surface molecules (Fig. 13.4, Ruoslahti and Rajotte 2000). Moreover, in the liver, the
penetration of the basement membrane is not necessary since it is not so well-defined
as in other organs. As a consequence of those and possible other factors, tumor cells
reach an extraluminal position more rapidly in organs that are more susceptible to
metastasis (i.e. liver vs. brain) (Fig. 13.5, Paku et al. 2000).

As the disseminated cells progress towards the establishment of an established
metastasis, cells need to readapt their genetic expression and molecular machin-
ery to accomplish subsequent tasks. To date, several mediators of extravasation
have been identified (Nguyen et al. 2009). Taking breast cancer as an example,
pulmonary extravasation is related to the upregulation of mediators in the primary
tumor. Epiregulin, COX2, matrix metalloproteinase 1 and 2 support not only vascu-
lar remodeling in the primary site but also distant extravasation (Gupta et al. 2007).
Cytokine angiopoietin-like 4(ANGPTL4) does not confer any advantage for the pri-
mary tumor but specifically enhances extravasation by inducing the dissociation of
endothelial cell-to-cell junctions (Padua et al. 2008). Last but not least, systemic
secretion of LOX accumulates in the lung, where it could act on extracellular ma-
trix proteins creating a more permissive niche for extravasating cells (Nguyen et al.
2009).
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Fig. 13.4 The potential barriers to metastasis in different sites are exemplified by the case of breast
cancer and the anatomy of capillary walls in different target tissues. Breast cancer cells entering
the circulation can infiltrate a distant organ if they carry the necessary functions for extravasation.
The fenestrated structure of bone marrow sinusoid capillaries is more permissive to cancer cell
infiltration than the contiguous structure of lung capillary walls. Brain capillaries are more difficult
to penetrate, owing to the unique nature of the haematoencephalic barrier. Infiltration through
these barriers selects for tumour cells that express the necessary extravasation functions. These
functions can be provided by genes for which expression in primary tumours independently provides
a selective growth advantage (such as vascular remodelling) or by genes for which expression in
primary tumours provides no benefit but is a consequence of tumour microenvironment signals

13.6 Summary

We detailed in this chapter the distinctiveness of each step of the hematogenous
dissemination of tumor cells (Fig. 13.5). As demonstrated, there is a continuous
interaction of the metastatic cells with the host, in agreement with the so called “seed
and soil” theory originally proposed by Paget. Different cancer cells (seeds) show
different potential to perform each step of the metastatic cascade. At the same time,
certain characteristics of the host facilitate one or more steps of disease progression
allowing the distant growth of disseminated cells in specific organs (host). Knowing
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Fig. 13.5 Tumor cells must resist stress in order to metastasize. Metastasis is thought to be a very
inefficient process, in part, due to the number of stresses tumor cells must overcome in order to
reach secondary sites and develop into gross metastatic lesions. Throughout each stage, tumor cells
are confronted with various stresses, any of which may kill the cell. This results in a fragile balance
between life and death for the cell. Only those tumor cells which can successfully manage the stress
will survive. Depicted are examples of the various stresses tumor cells face during each stage of
the metastatic process and some of the mechanisms the cell may use to deal with those stresses.
Note that each stress and coping mechanism listed above are not exclusive to a particular stage of
metastasis and likely apply to more than one of the stages. Cancer stem cells, those cells which
are thought most able to resist the stresses of the metastatic cascade, are depicted in yellow. GF =
growth factor; MMPs = matrix metalloproteinases; HSPs = heat shock proteins; CLICs = chloride
intracellular ion channels

that metastasis is the most common cause of death in cancer patients, research in
the area will certainly enlightenour understanding of the whole process and translate
into improved therapies and survival rates.
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Chapter 14
Other Methods of Tumor Dissemination

Abelardo A. Rodríguez-Reyes

14.1 Introduction

Methods of cancer dissemination other than lymphatic and hematogenous spread
are direct seeding of body cavities or surfaces and perineural spread (Robbins et al.
1994; Laerum 2005). Seeding of body cavities and surfaces may occur whenever a
malignant tumor penetrates into a natural “open field”. The peritoneum is the most
often involved cavity, but other cavities such as pleura, pericardium, subarachnoid
space and the eye globe may be affected.

14.2 Peritoneal Cavity

Seeding is particularly characteristic of carcinoma arising in organs such as ovaries,
in which all peritoneal surfaces frequently become coated with a heavy layer of
cancerous glaze. The tumor cells may remain confined to the surface of the coated
abdominal viscera without penetrating into the substance (Robbins et al. 1994).

Peritoneal carcinomatosis is a common event that develops in the natural history
of many neoplastic diseases, representing a major problem encountered in cancer
management. Peritoneal tumor dissemination arising from colorectal cancer, appen-
diceal cancer, gastric cancer, gynecologic malignancies or peritoneal mesothelioma
is a common sign of advanced tumor stage or disease recurrence, and mostly as-
sociated with poor prognosis (Glockzin et al. 2009). The peritoneal cavity may be
involved by all types of metastatic tumors. The most common sites of the primary
tumors are the ovary followed by large bowel and pancreas (Chu et al. 1989; Sadeghi
et al. 2000).
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Tumors of the ovary and uterus resulting in peritoneal carcinomatosis are com-
monly of the serous type (Soslow et al. 2000). The gross pattern varies from single,
well-defined nodules to a diffuse peritoneal thickening. The consistency varies de-
pending on cellularity, amount of connective tissue and other elements such as mucin,
calcium, etc.

Metastatic carcinoma may mimic the gross and microscopic appearance of ma-
lignant mesothelioma. This is particularly the case with papillary serous carcinoma
of the lung, in conjunction with pleural spread (Shah et al. 1999). Sometimes the
peritoneal cavity contain large amounts of mucinous or gelatinous material, a dis-
tinctive form of tumor implant referred to as pseudomyxoma peritonei (Kahn and
Demopoulos 1992; Smith et al. 1992). The bowel is relatively spared, but polypoid
mucinous masses can develop on the peritoneal surface of the small bowel (Sugar-
baker et al. 2001). Mucinous cysts can also seen in the substance of the spleen (Du
Plessis et al. 1999). For those cases, it has been stated that the primary lesion may
be a borderline or malignant mucinous neoplasm of the appendix, ovary, or pancreas
(Lee and Scully 2000). The appendix is the primary site of origin of pseudomyxoma
in the vast majority of the cases in both men and women (Young et al. 1991; Prayson
et al. 1994; Ronnett et al. 1995). The associated mucinous ovarian tumors—when
present—are most likely additional implants from appendiceal lesions rather than in-
dependent synchronous tumors (Young et al. 1991; Prayson et al. 1994; Ronnett et al.
1995).Microscopically,large amounts of mucinous material are seen accompanied by
congestive vessels and chronic inflammatory cells. Mucus intermingled with viable
epithelial glandular cells must be identified to diagnose pseudomyxoma peritonei.
These cells have bland appearance both on histologic and cytologic preparations
and show no infiltrative properties (Shin and Sneige 2000; Jackson et al. 2001).
This process has been designated as adenomucinosis in order to distinguish it from
peritoneal mucinous carcinomatosis accompanied by cytologic atypia and resulting
from an invasive mucinous adenocarcinoma usually located in the gastrointestinal
tract (Ronnett et al. 2001). By immunohistochemistry, the cells of pseudomyxoma
characteristically show expression of MUC2, a mucin possessing the physicochem-
ical property of being gel forming (Lee and Scully 2000). Pseudomyxoma peritonei
is characterized by a slow but relentless clinical course, with recurrent ascites that
eventually reaches massive proportions (“jelly-belly syndrome”).

Wide surgical resection is the treatment currently recommended, with most pa-
tients requiring multiple laparotomies, and in some including a total gastrectomy
(Sugarbaker and Chang 1999; Sugarbaker 2002). Mucinous cystadenomas of the
ovary and appendix can rupture and discharge their content into the peritoneal cav-
ity. The resulting condition, which is self-limited and microscopically lacks tumor
cells, should not be designated as pseudomyxoma peritonei (Cariker and Dockerty
1954; Higa et al. 1973). Pseudomyxoma-like changes have also been described in
other sites such as the stroma of prostatic adenocarcinoma following neoadjuvant
androgen ablation therapy (Tran et al. 1998).

Another form of tumor implantation is the gliomatosis peritonei resulting from the
selective growth of glial tissue from ovarian teratoma (Harms et al. 1989), which in
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rare circumstances may undergo malignant transformation (Dadmanesh et al. 1997);
The implants appear grossly as miliary grayish white nodules in the peritoneal surface
or omentum and may be accompanied by fibrosis and chronic inflammation. This is
a benign process, as long as the glial tissue is entirely mature and unaccompanied
by other teratomatous elements (Fortt and Mathie 1969; Truong et al. 1982; Nielsen
et al. 1985).

A pathogenetically related conditions is peritoneal “melanosis”, which can also
follow the rupture of a cystic teratoma (Jaworski et al. 2001). Metastatic carcinoma
or peritoneal seedings in the peritoneal cavity tends to be accompanied by recurrent
ascites resulting in a source of significant discomfort to the patient. This is sometimes
treated by peritoneovenous shunting, by which the effusion is returned to the general
circulation; this technique has not resulted in an increase in the number of extra-
abdominal metastases (Tarin et al. 1984).

The diagnosis of metastatic carcinoma in the peritoneal cavity is possible in about
75 % of cases on the basis of cytologic examination of the ascitic fluid (Cardozo
1966). This also applies to pseudomyxoma peritonei (Jackson et al. 2001). With
malignant lymphoma and leukemia, the overall yield is approximately 60 %, these
figures being slightly better for large cell lymphoma (Melamed 1963).

The most difficult problems in cytology of ascitic fluid are the distinction between
reactive and neoplastic mesothelium and that between malignant mesothelioma
and metastatic carcinoma. False-positive diagnoses have been caused by disorders
associated with mesothelial hyperplasia; confusion occurs because reactive cells
may form pseudoacini resembling the true acini of adenocarcinoma, have multi-
ple nuclei or a “signet ring” appearance, or undergo mitotic division. Evaluation of
the nuclei-cytoplasmic ratio and of nuclear features is essential in this differential
diagnosis.

Considered in the past as a terminal condition, peritoneal carcinomatosis was
approached during the last 2 decades as a curable disease. The introduction of
cytoreductive surgery or peritonectomy in the treatment of peritoneal neoplastic
diseases drastically changed the natural history of peritoneal carcinomatosis. An-
other technique that showed an important impact on disease control is intraperitoneal
hyperthermic perfusion, one of the most successful treatments of peritoneal carcino-
matosis that results in an impressive increase in overall survival and quality of life in
treated patients with low morbidity. A review published by Deraco et al. illustrates
the modality of dissemination of peritoneal carcinomatosis in relation to the primary
tumor site and grade of malignancy. Peritoneal carcinomatosis is a term used to define
an advanced stage of many abdominal neoplastic diseases that differ in biologic ag-
gressiveness and prognosis. The different presentation of peritoneal carcinomatosis
in relation to a different primary tumor and different grade of malignancy strongly
influences the potentially radical therapeutic approaches using new and advanced
modalities, like cytoreductive surgery and intraperitoneal hyperthermic perfusion
(Deraco et al. 1999).
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14.3 Pleural Cavity

A malignant pleural effusion may be the first evidence of cancer. About 75 % of
metastatic tumors in the pleura are of carcinomatous nature, metastatic carcinoma
being the most common malignant tumor in the pleura. Dyspnea, cough, and chest
pain are the most common presenting symptoms. Usually malignant pleural effusions
are greater than 500 ml, most serous to sanguineous. The most common sites for the
primary tumors are lung (33 %), breast (21 %), and stomach (73 %) (Chernow
and Sahn 1977). The lung, breast, and ovarian malignant effusion are ipsilateral
to the primary tumors in approximately 90 % of the cases. If pleural effusion is
present, cytologic examination of the fluid has been found to be more effective in
detecting malignancy than pleural biopsy (Nance et al. 1991). When the possibility of
malignancy is considered in the presence of pleural effusion, a cytologic examination
of the pleural fluid is mandatory, regardless of the gross appearance of the fluid.

14.4 Pericardium

Metastatic carcinoma to the pericardium usually arises in the lung in the form of
direct extension or lymphatic permeation. The constrictive “pericarditis” is the re-
sult of the associated intense desmoplastic reaction. Other tumors that commonly
give rise to pericardial metastases are breast carcinoma, malignant melanoma, and
malignant lymphoma (Adenle and Edwards 1982; Mambo 1981). Cytology is the
most important technique for the evaluation of malignant pericardial effusions.

14.5 Cerebrospinal Fluid

The high incidence of vertebral and paravertebral metastases in cancer developing
patients developing diffuse leptomeningeal carcinomatosis, usually derived from
the lung and breast adenocarcinomas (Kokkoris 1983). This diagnosis is commonly
established by the demonstration of malignant cells on cytologic inspection of the
CSF.

Metastasis of intraventricular meningiomas through CSF pathways is a rarity and
only four cases have been reported in world literature describing meningiomas which
were intraventricular and malignant (Ramakrishnamurthy et al. 2002).

14.6 Intraocular Dissemination

In some intraocular tumors of neuroepithelial origin such as medulloepithelioma, the
proliferating medullary epithelium is characteristically arranged in cords and sheets
separated by cystic spaces that contain hyaluronic acid. In some instances, spheric
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cysts containing hyaluronic acid and lined by a single layer of epithelium are present
on the surface of the tumor and may break of and become free floating in the vitreous
and the posterior and anterior chambers (Broughton and Zimmerman 1978; Gifford
1966; Zimmerman 1971).

Endophytic retinoblastoma is composed of friable tumor masses that grow and
seed the vitreous body. Vitreous seeds grow into separate, small, spheroidal masses,
which on clinical examination appear as cotton balls. Such tumors seedings may
grow along the inner surface of the retina and invade the retina away from the site
of the main mass. Even though the seedings are often difficult to distinguish from
a retinoblastoma with multicentric origin (McLean et al. 1994), they are mostly
seen on the inner surface of the retina rather than within it. They are also usually
seen in association with tumor cell cluster within the vitreous body (McLean et al.
1994). The neoplastic seeds in the vitreous body may spread into the posterior and
the anterior chamber and deposit on the lens, zonular fibers, ciliary epithelium, iris,
corneal endothelium, and trabecular meshwork. Through the meshwork, the tumor
cells gain access to the aqueous outflow pathways to reach an extraocular site.

Diffuse infiltrating retinoblastomas are the least common and often are the most
difficult to diagnose clinically (Mansour et al. 1989; Nicholson and Norton 1980;
Shields et al. 1988). These tumors grow diffusely within the retina without greatly
thickening it. Tumors cells are discharged into the vitreous, often with seeding of
the anterior chamber, thereby producing a pseudohypopion. These tumors, which
occur in older children, can be devoid of calcium deposits. Occasionally, diffuse
retinoblastoma arise from the anterior retina, and seed the vitreous body and anterior
chamber (Grossniklaus et al. 1998).

14.7 Perineural Tumor Spread

Perineural tumor spread (PNS) of head and neck malignancies is a well-known form
of metastatic disease in which a tumor can migrate away from the primary site along
the endoneurium or perineurium, its overall incidence ranges from 2.5–5 %. This
pattern of spread is potentially devastating complication of head and neck cancer, has
a high impact on the therapeutical management and may create a poor prognosis. PNS
is more frequently associated with carcinoma arising from minor or major salivary
glands (more often adenoid cystic carcinoma), lacrimal glands, mucosal or cutaneous
squamous cell carcinoma, basal cell carcinoma, melanoma, lymphoma, and sarcoma
(Ojiri 2006; Maroldi et al. 2008; Nemec et al. 2007). Although PNS can be insidious,
often is a delaying diagnosis and in the past was previously associated with worsening
prognosis, increasing evidence shows that cure is possible. Knowledge of anatomy
of the nerves is crucial in the imaging diagnosis of PNS, to detect early curable
disease. The facial nerve and the maxillary and mandibular divisions of the trigeminal
nerve are most commonly affected (Ojiri 2006). Magnetic resonance imaging is the
modality of choice in the assessment of PNS because of its multiplanar capability and
its superior soft-tissue contrast (Maroldi et al. 2008; Nemec et al. 2007). Perineural
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and to a lesser extent, intraneural invasion is a common and frequently conspicuous
feature of adenoid cystic carcinoma and oncocytic carcinoma of the salivary and
lacrimal glands. Tumors can extend along nerves for a considerable distance beyond
the clinically apparent boundaries of the tumor.

14.8 Summary

This chapter presents less common pathways of cancer dissemination such as direct
seeding of body cavities or surfaces and perineural spread.

In presence of any type of fluid in a cavity such as pleura, pericardium, sub-
arachnoid or the globe, a cytologic examination is mandatory, regardless of its gross
appearance to rule out malignancy.

Perineural tumor spread in the course of head and neck tumors is a form of
metastatic disease in which the tumor disseminates centrifugally or centripetally
along the nerve to contiguous regions.
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Chapter 15
Haematogenous Models of Metastases

Patrick T. Logan

15.1 Animal Models of Metastasis

Animal models of cancer and of metastasis in particular, provide a critical link
between in vitro studies and the treatment of human disease. Animal models al-
low scientists to understand and interpret disease pathogenesis in an environment
in which metastatic cells are constantly bombarded by autocrine, paracrine, and
endocrine signals from a multitude of sources. Disease pathogenesis can only be
elucidated through observation of organs, organ systems, and, ultimately, whole
organisms. In addition to contributing to our knowledge of disease pathogenesis, an-
imal models also provide an avenue for testing both the safety and efficacy of various
anti-metastatic drugs and biological compounds. Animal models allow interpreta-
tion of the physiological effects of administrating a drug or biological compound
in a complex organism. In this respect, animal models are critical to the drug de-
velopment process and are a required element of the drug approval process. Within
the umbrella term ‘animal models’, there are various types of models that present
unique advantages and disadvantages to understanding metastasis and the ability to
test anti-metastatic compounds. Ideally, animal models that closely mimic human
cancers, with respect to disease duration, progression, mode of dissemination, and
metastatic location, are desirable. However, due to the often inefficiency that is in-
herent in the metastatic process, animal models in which metastasis takes many years
to develop are impractical. To overcome this innate obstacle, several different types
of animal models have been developed to expedite the metastatic process: there are
ectopic models, in which malignant cells are explanted into foreign locations on
the animal, and there are haematogenous models of metastasis, in which cells are
dispersed into circulation with the intention of simulating a natural course of dissem-
ination. Occasionally, metastatic locations differ between human and their animal
counterparts and thus, metastatic cells can be transplanted directly into a desired
organ. Finally, there are spontaneous models of metastasis chemically induced, and
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transgenic models, in which a primary tumour is borne either in a normal host or
in a host that has been predisposed to developing a desired tumour and subsequent
metastatic development. This chapter will serve to introduce the reader to the various
types of models, including the types of animals that are typically used. It will also
present the advantages and disadvantages of the different models with respect to
furthering our understanding of disease pathogenesis and the treatment of metastatic
disease.

15.2 Haematogenous models

While spontaneous or comparative models of metastasis might be considered the
gold standard for studying the natural history of metastasis they are not without
several inherent disadvantages. The natural history of uveal melanoma in canines,
for instance, may be different in terms of metastasis location, aggressiveness, and
lethality when compared to the human disease (Wilcock and Peiffer 1986). However,
the major detriment to these models is that they are rare and often take many years
in order to develop metastasis. Thus, other ‘high-throughput’ models have been
developed. Some of these models, such as the intravenous (IV) injection of tumor
cells, omit the development and maturation of a primary tumour by injecting cells
directly into an animal’s circulation. In these models, cells are exposed to the stresses
of being in circulation (such as pH, turmoil, anoikis) prior to metastatic organ seeding.
As opposed to spontaneous models of metastases, a variety of different cell types,
from metastatic to primary tumors, can be injected. Cells can also be selected for their
affinity to metastasize to a particular organ and cells can be modified to express or
suppress different genes in order to determine the effects of these on the development
of metastases. Intravenous models of metastasis also allow for the use of human
cells in these models which is not an option in spontaneous models of metastasis.
Although, it must be noted, these models require immunosuppression of the animal
and thus the natural history or metastatic profile may be affected. By injecting cells
into the circulation, there is tremendous flexibility in the types of animals that can
be used. Perhaps the most common animal used in these studies of intravenous
injection of malignant cells leading to metastases, is the nude mouse. The nude
mouse lacks a thymus gland and thus is inherently immunocompromised, lacking
the ability to produce T-cells. Thus, the relatively inexpensive nude mouse that
does not require immunosuppression is a prime candidate for the production and
evaluation of intravenous models of metastasis. In addition to nude mice, other
types of mice that have native malignant cell lines can be used without the risk of
graft-host rejection. B-16 mice in combination with mouse melanoma cell lines are
commonly used in intravenous models of metastasis. Although not as common as
mouse models, intravenous injections of malignant cells in rats is also an approved
method of metatasis development (Shingu et al. 2003). Despite the popularity of the
mouse and rat, several models also use guinea pigs, gerbils, and hamsters to study
the development of metastases (Perk et al. 1974; Shimizu et al. 1999; Uchida et al.
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2008). Not unpredictably, each type of animal offers its own benefits and drawbacks;
however, mice are the most common animals due to the ease of handling them, as
well as their relatively inexpensive nature.

Haematogenous models of metastasis, whether the injection method is intra-
venous, intracardiac, or intraportal, all suffer from the same drawback—they do
not allow for the investigation or observation of the cells’ ability to extravasate into
the blood from the primary tumor. As a result, all cells that are injected have the
opportunity to colonize and metastasize in other organs while, in reality, the cells
that are unable to enter into the blood stream from the primary tumor would never
gain this opportunity. Another drawback of these models is that the majority of cells
injected into circulation are cells that have been through several cell culture passages.
Cultured cells are grown in an artificial environment that likely alters their pheno-
type: cells are not exposed to competitive situations, do not experience hypoxia, and
are typically provided with a supra-physiological source of nourishment.

In order to study human cells in an animal model, the animal must be immuno-
compromised in order to ensure that implantation does not fail due to host-graft
rejection. Thus, there is an inherent trade-off: researchers get the benefit of observ-
ing the behaviour of human cancer cells in an animal system, yet the system is
incomplete as the important role of the immune system in metastasis development
has been eliminated.

However, despite their drawbacks, these models provide excellent insight into
many of the steps in the metastatic process and allow for the testing of therapeutics
that would not otherwise be possible.

15.2.1 Intravenous Models

Typcically, intravenous animal models involve the injection of malignant cells into
the dorsal tail-vein of either a rat or mouse. Although there are many variants on this
procedure, the most common method involves either restraining or anesthetizing the
rodent and warming the tail vein with a heat lamp or immersing in warm water. The
visible tail-vein can now be injected with volumes of solution of around 100 μL.

Intravenous (IV) animal models, in particular mouse models, have been used to
study a wide variety of cancers ranging from breast, colon, prostate, and melanoma.
One particular advantage of intravenous models is that they must be injected as either
single cells or in clumps of only a few cells. Thus, the development of subsequent
metastases can be attributed to the clonal expansion of either one or a few cells.
This is more comparable to human cancer, as cells that leave the primary site via
hematogenous dissemination would do so in the same linear fashion. Other types of
animal models, such as models which involve injection a large bolus of cells directly
into the organ of interest, may induce large changes to the microenvironment that are
superficial in nature. However, IV models of metastasis also pose their own unique
set of disadvantages; cells are not required to invade locally or extravasate into the
bloodstream. If human cells are used, the animal must be immunosuppressed and this
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eliminates the influence of the innate immune system on metastasis development. By
utilizing cultured cell lines, further unwanted variables can be introduced including
genetic drift due to prolonged culturing, mycoplasma infections, and artificial cell
selection could lessen the impact of any discoveries or advances acquired during the
metastatic animal model.

Often the location of metastasis formation following intravenous injection varies
between the murine and human counterpart. This is further compounded by the
formation of several metastatic colonies in the same animal at various locations (Ji
et al. 2009). While these locations do not always correspond to the natural history of
metastasis in humans, some locations are common, and by harvesting the metastatic
cells from these locations, serial injections in subsequent animals can lend to an
organ specific cell line. This has proven to be an invaluable tool to study the genetic
characteristic of cells that metastasize to one particular organ. The aforementioned
artificial selection technique has also been used to select for a more metastatic cell
type from the heterogeneous cell culture population. Fidler et al., increased the ability
of B16 mouse melanoma cells to metastasize roughly five fold through a series of
selections in which intravenously injected cells that developed into lung metastases
were recultured and reinjected into a host mouse (Fidler and Nicolson 1977). This
process has since been successfully replicated for murine mammary, osteosarcoma,
rhabdomyosarcoma, lung, and colon tumors (Aslakson and Miller 1992; Rusciano
et al. 1994; Khanna et al. 2000;Yu et al. 2004; Sacchi et al. 1981). Minn et al. (2005),
used this serial selection process in order to isolate a lung metasatasis specific cohort
of the human, MDA-MB-231 breast cell line. Development of this lung-specific
metastatic cohort facilitated the identification of genes that may be implicated in
lung metastasis development. This information may prove valuable in identifying
those patients who’s primary tumors express the lung metastasis signature which
include specific genes such as MMP1, VCAM1, CXCR4, and CXCL1 amongst
others (Minn et al. 2005).

The validity and usefulness of an animal model of metastasis and cancer in gen-
eral is often evaluated based on the similarities with the human disease; including,
but not limited to, metastasis location and development. Thus, when considering
hematogenous models of metastsis, the three most common introduction routes in-
clude intravenous (IV), intrasplenic or portal vein injection, or intracardiac injection.
Typically, IV injections result in lung metastases, portal vein injections result in liver
metastases, and intracardiac injections result in bone metastasis (Khanna and Hunter
2005). Although not a steadfast rule, it is generally accepted that the consistent de-
velopment of metastasis in organs depending on injection route is attributed to the
fact that these organs typically correspond with a high degree of vascularity that
is first encountered. However, the ability to image single cells in vivo immediately
post-injection suggests broad organ seeding of cells in various organs and that sur-
vival in these organs may be the limiting factor (Logan et al. 2008; Holleran et al.
2002). This is apparent when the frequency of bone metastasis developing post-
intracardiac injection of malignant cells. Holleran et al., used a lacZ tagged prostate
cancer cell line and injected a single cell suspension in the tail-vein of nude mice and
determined that micrometastasis were present immediately following injection in the
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lung, bone, kidney, brain and liver of the animals. Logan et al., using GFP labelled
uveal melanoma cells, found similar broad-organ seeding following tail-vein injec-
tion in nude mice, and observations revealed that the presence of micrometastasis in
non-native metastatic or hostile organs are quickly destroyed or eliminated (Logan
et al. 2008; Holleran et al. 2002). This should not be suprising though, as the seed
and soil theory that metastatic development is contingent upon interactions between
tumor cells and the organ microenvironment was proposed more than a century ago
(Fidler and Poste 2008).

15.2.2 Intracardiac Injections

Intracardiac injections of malignant cells is another popular method for developing
metastases. This technique involves inserting a needle in the second intercostal space
aimed in the direction of the anatomical location of the heart of an anesthetized
mouse. Advancing the needle should be accompanied by frequent aspirations and
the presence of fresh blood indicates that the correct injection location has been
achieved. The malignant cells should be injected slowly over a period of roughly
thirty seconds.

As previously mentioned, this method is preferable if the development of bone
metastases is desired. In humans, breast, prostate, and lung primary malignancies
often metastasize to the bone (Yoneda 1998). In fact, breast cancer and prostate cancer
metastasize preferentially to bone in 70 % of cases of metastasis (Lelekakis et al.
1999; Chiarodo 1991). Unlike portal vein and intravenous method of inoculation, the
rationality regarding the development of metastases in the first capillary rich bed that
is encountered, intracardiac animal models and subsequent bone metatases do not
follow this pattern. It has been suggested that the development of bone metastases
in these animal models may be a result of complex host-tumor interactions that
are not completely understood (Khanna and Hunter 2005). One suggestion is that
the bones of young animals are growing and remodelling which requires a high
degree of blood flow. The blood flow in these growing bones are highly convoluted
which could be conducive to the lodging of injection malignant cells and subsequent
metastasis development (Rosol et al. 2003; Yoneda 1997). Whatever the reason,
intracardiac injections of metastatic cells have proven invaluable in increasing our
understanding of bone. In rat model of metastasis, the intracardiac injection of Mat-
LyLu rat Dunning carcinoma cells resulted in 100 % bone metastasis that caused
paralysis and death within five days (Haq et al. 1992). However, injecting the same
Mat-LyLu cells either intravenously or subcutaneously resulted in lung or lymph
metastases but failed to develop any bone metastases (Haq et al. 1992). Human
bone metastases are typically either osteolytic (breast) or osteoblastic (prostate) and
occasionally tumors express both osteolytic and osteoblastic properties (Rose and
Siegel 2006). Although there are other methods of developing bone metastases,
mainly, injecting malignant cells directly into the bone, cardiac injections avoid the
additional complication of bone remodelling that can occur as a direct result of the
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Fig. 15.1 Example of the selection process for a highly bone metastatic phenotype derived from
intracardiac injections of a human breast cancer cell line. (From Kang et al. 2003)

Table 15.1 A list of select mouse models of breast cancer metastasis established by either tail vein
or intracardiac injection. (Adapted from Kim and Baek 2010)

Injection site Cell number Metastasis location Latency (weeks) Reference

Tail vein 2 × 105 Lung 8–15 Minn et al. (2005)
Intracardiac 1 × 104–1 × 105 Brain, bone 4 Bos et al. (2009)
Intracardiac 1 × 105 Bone 4 Charafe-Jauffret

et al. (2009)
Tail vein 2 × 106 Lung 8 Kuperwasser et al.

(2005)
Intracardiac 1 × 106 Bone 4 Lu et al. (2009)

injection (Rose and Siegel 2006). Kang et al. (2003) injected a human breast cancer
cell line intracardially in nude mice which resulted in bone and adrenal metastases
and through selection and reinjection, was able to select a highly bone metastatic
subpopulation of cells (Fig. 15.1, Table 15.1).

Transcriptional profiling of the original breast cancer cell line, the highly bone
metastatic selected group, and the adrenal metastasis group revealed a unique ex-
pression profile (Kang et al. 2003). When compared to the original cell line, using
a cut-off of a four fold increase in gene expression in the highly bone metasta-
sis subpopulation, a variety of cell membrane or secretory proteins were identified
(Fig. 15.2).

Perhaps not surprisingly, several of these have been implicated, including, most
prominently, CXCR4 in the ‘homing’ of malignant cells to a particular organ for
the purpose of metastatic formation. In fact, the CXCR4 and its receptor SD-1 has
been implicated in the ability of tumor cells to migrate, adhere, invade (facilitated by
secretion of proteolytic enzymes such as MMPs), proliferation, and tumor angiogen-
esis (Libura et al. 2002; Di Cesare et al. 2007; Ding et al. 2003; Majka et al. 2000;
Wang et al. 2005). Perhaps the most critical role in bone metastasis development
is the gradient of SD-1 produced by the host/receptive tissue. This gradient draws
tumor cells expressing the CXCR4 to that organ for preferential metastasis formation
(Fig. 15.3, Kucia et al. 2005).

Although more factors than the CXCR4/SD-1 axis are likely involved in the speci-
ficity for bone metastases, as many other organs such as the lung and liver produce
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Fig. 15.2 List of genes that are upregulated in a bone metastasis enriched subpopulation derived
from a human breast cancer cell line. (From Kang et al. 2003)

Fig. 15.3 An example of the proposed role of the CXCR4/SD-1 axis in the development of metastatic
disease. (Adapted from Kucia et al. 2005)
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large quantities of SD-1, its role has been well documented in a variety of cancers.
Indeed, the combination of upregulating CXCR4, IL11, and osteopontin resulted in
increased frequency and aggressiveness of bone metastases compared to upregulation
of CXCR4 alone (Kang et al. 2003).

In addition to forming bone metastases, a study of 2050 cases of breast cancer re-
vealed that roughly 20 % of patients develop brain metastases (Jonkers and Derksen
2007).Yoneda et al., developed a preferential brain and bone metastasis strains of the
breast cancer cell line MDA-231 through repeated inoculations as described above
(Fig. 15.1, Yoneda et al. 2001). After seven such passages, the MDA-231BR cell
line was established with properties that resulted in 100 % brain metastases devel-
opment following intracardiac injection with no alternative metastasis sites in these
animals. Similarly, after 11 passages, a bone exclusive strain, MDA-231BO was
generated. By developing these clones using the same methods and derived from
the same original cell line, it was possible to identify several genetic differences
that may play a key role in the site-specific metastasis development. Insulin-like
growth factor 1 (IGF-1) had a significantly greater effect on colony growth in culture
of MDA-231BO compared to MDA-231BR (Yoneda et al. 2001). Another protein
implicated in the development of bone metastases is parathryroid hormone-related
protein (PTHrP). PTHrP is produced by tumor cells and is responsible for bone os-
teoclastic resorption and umors that produce PTHrP are more likely to metastasize to
bone in patients (Abou-Samra et al. 1992; Juppner et al. 1991; Bundred et al. 1991,
1996). Mice that were inoculated with PTHrP anti-bodies prior to ventricle injection
of breast cancer cells had a significantly lower tumor bone metastasis burden than
those without the PTHrP antibodies (Guise et al. 1996). Considering that TGF-B is
the most common growth factor in the bone matrix, it comes as no surprise that it
is capable of inducing the production of PTHrP by metastatic tumor cells (Yin et al.
1999). When comparing the MDA-231BO (bone) and MDA-231BR (brain) selected
cell lines, the bone metastasis population expresses greater basal levels of PTHrP
than the brain population (Yoneda et al. 2001). Additionally, stimulating of these
cultured cell lines with TGF-B causes a greater increase in the bone metastasis cells
compared to the brain metastasis cells (Yoneda et al. 2001). Thus, utilizing estab-
lished intracardiac injection murine metastasis models discovered the importance of
PTHrP in the development of breast cancer bone metastases. This information may
be critical in determining primary lesions of patients that are capable of metasta-
sizing preferentially to a particular site and could be used to tailor patient-specific
therapies.

15.2.3 Intraportal Injections

Considering that liver metastases are common and frequently inoperable in many
human cancers, including melanoma, breast cancer, colorectal cancer, lung cancer,
esophageal cancer, pancreatice cancer, and stomach cancer, it is critical that ani-
mal models of liver metastasis are developed in order to study this disease. While
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intravenous injections tend to give rise to lung metastases and intracardiac injections
give rise to bone metastases, intraportal injections almost excusively give rise to liver
metastases. Intraportal animal model injection surgeries typically involve making
an incision in the abdomen of the mouse from the zyphoid process to above the blad-
der and inserting a cannula in the portal vein just after the bifurcation (Stapfer et al.
2003). By slowly injecting a single celled suspension of tumor cells (ranging from
10,000–1,000,000 cells depending on the aggressiveness of the cells) the most likely
location for the development of metastases is the liver (Stapfer et al. 2003; Hamada
et al. 2008). Stapfer et al. (2003), repeated this process with pancreatic, breast, and
colon cancer cell lines and successfully developed a liver metastasis nude mouse
model of each of the aforementioned cancers. Hamada et al. (2008), injected eleven
different human colon cancer cell lines into the portal vein of immunosuppressed
mice and determined that six were capable of forming liver metastases and the other
cell lines did not form any metastases. Intraportal injection models of liver metas-
tases have also revealed information about the host inflammatory response to tumor
cell invasion that would have otherwise likely remained unknown. E-selectin is a
vascular endothelial cell receptor which is induced by the production of the cytokine
TNF-α (Dejana et al. 1992; Tozeren et al. 1995; Brodt et al. 1997). The use of in-
trasplenic animal models have revealed that colon cancer cells express the ligand for
E-selectin and that malignant cells exploit this ligand to bind to vascular endothelial
cells. Abolishment of this expression through the use of antibody therapy inhibited
the formation of liver metastases (Brodt et al. 1997). Furthermore, additional animal
studies confirmed that the tumor cells themselves were capable and perhaps culpable
for the upregulation of TNF-α and other cytokines that have been shown to upreg-
ulate E-selectin (Khatib et al. 1999). Thus, the ability of tumor cells to manipulate
the microenvironment of organs in animal models likely contributes to the organ
specificity of metastasis.

15.2.4 Animals of Haematogenous Models

There are several different species and strains of animals that are used to study
metastases. Traditionally, if the malignant cells to be used are of mouse origin, then
selection is usually predetermined; malignant mouse cells are almost exclusively
injected in the mouse species of origin. Multiple inbreeding sessions result in no host-
graft rejection and thus immunosuppression is not required. The most popular mouse
used in animal models of metastasis that does not require immunosuppression is the
Black 6 mouse (C57BL/6) a heavily inbred strain that demonstrates robust breeding
characteristics. Black 6 mice are typically paired with B16 mouse melanoma cell
lines in order to study metastatic development. For instance, Yang et al. (1999) used
intravenous injections of B16 mouse melanoma cells in the Black 6 mouse to generate
skeletal and visceral metastases.

In order to study metastases from human derived cell lines, mice must be immuno-
suppressed. There are several strains of immunodeficient mice, the most popular of
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Fig. 15.4 Images of some of
the typical rodents used in
animal models. Clockwise
from top right—BALB/c
nude mouse (image from
Charles River), SCID mouse
(Charles River), NOG mouse
(CIEA), Black 6 mouse
(Jackson Labs Archive),
RNU nude rat (Charles River)

which is likely the nude mouse (BALB/c) which lacks a thymus gland and thus is
incapable of producing T-cells but produces both B-cells and NK cells. The nude
mouse derives its name from the fact that a side-effect of the lack of thymus results in
a hairless appearance. Logan et al. (2008), used nude mice to study the broad organ
seeding of metastatic uveal melanoma cells following tail-vein injections. A simi-
lar mouse is the SCID mouse (severe combined immonudeficiency) that lacks both
B-cell and T-cell production but produces a normal NK cell count. The latest itera-
tion of immunodeficient mice is the NOD/Shi-scid/IL-2Rγ null (NOG) mouse. This
mouse lacks T-cell, B-cell, and NK cell function in addition to having dysfunctional
macrophages and dendritic cells. NOG mice were created by the Central Institute for
Experimental Animals in Japan and is considered one of the most immunologically
inept mouse for consideration in animal models of disease (Nomura et al. 2008).
An athymic rat (RNU rat) was also created by Charles River Labs and has the same
general properties as the nude mouse; mainly, the lack of thymus generated lym-
phocytes (Fig. 15.4). Successful brain metastases have been developed as a result of
intracardiac injections of breast cancer lines in these animals and the larger animal
size can be desirable for some studies (Song et al. 2009).

15.2.5 Drug Development and Discovery

While the importance of basic scientific studies and cell cultures should not be over-
looked, animal models play a paramount role in the discovery and evaluation of new
drugs or treatment compounds. In fact, prior to entering into the clinical trial phases
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of drug approval, scientists must first provide sufficient evidence of a compounds’
biological activity. This step includes a variety of in vitro tests in order to determine
the potential benefits and risks of a compound or drug. The compound is then tested
in a variety of animal models (in vivo) to provide further evidence of desired bio-
logical activity (Health, U.S.N.I.o. 2006). Thus, almost every drug, including those
that are approved for the treatment of metastastases, that has been FDA or Health
Canada approved for human use has also been tested in at least one animal model.

In 2004, the most prescribed treatment for breast cancer, in particular estrogen
receptor positive (ER+) tumors was tamoxifen. Tomixifen is a Selective Estrogen
Receptor Modulator (SERM): tamoxifen binds to the estrogen receptor preventing
the binding of estrogen and subsequent growth signal induction (Nowak-Markwitz
et al. 2010). Tamoxifen is used for treatment of both early and late, metastastic,
stages of breast cancer.

Tamoxifen has also been shown to inhibit the growth of experimental colorectal
liver metastases. Karuppu et al. (1998), injected mice intrasplenicly with a colon
cancer cell line that generates liver metastases within 10 days. Daily sub-coetaneous
injections of 1 mg/kg dose of tamosifen citrate caused a significant delay in the growth
of liver metastasis nodules. Tumor burden was significantly less between days 16–
22 in the tamoxifen treated and control, untreated groups. Interestingly, the colon
cancer cell line used in this study does not express the estrogen receptor, suggesting
additional roles to tamoxifen treatment aside from estrogen receptor modulation
(Kuruppu et al. 1998). It has been proposed that tamoxifen’s benefit in ER− tumors
arises from its anti-angiogenic properties (Blackwell et al. 2000). Current studies
are evaluating the benefits of combining tamoxifen and other drugs, such as the anti-
angiogenic bevacizumab, in order to treat cancer metastases in both ER+ and ER−
tumors (Mittal et al. 2005).

Melanoma metastases have a poor prognosis with a mean survival time of roughly
6 months (Klimek et al. 2000). The current treatment for melanoma metastases typ-
ically includes the alkalating agent dacarbazine (DCIT) the mechanism of action of
which has not been fully elucidated (Eggermont and Kirkwood 2004). However, the
response rate to DCIT is estimated at around only 15 % with rapidly induced resis-
tance (Chapman et al. 1999). Thus, alternative methods of treatment for metastatic
melanoma are under investigation. In 2010, Valera et al., investigated the use of a new
compound Dimethylfumarate (DMF) alone and in combination with DCIT. SCID
mice received intradermal injections of the human M24met melanoma cell lines.
Both DMF and DCIT treatment alone caused a marked reduction in the number of
lymph node metastases. However, treatment with both DMF and DCIT resulted in
further, statistically significant reduction in the total volume of lymph node metas-
tases compared to the control group (Valero et al. 2010, Fig. 15.5). Additional studies
are evaluating the effectiveness of DMF and DCIT in combination to treat metastatic
melanoma.

Ocular melanoma has a metastasis rate of roughly 40 % almost all of which
are incurable and result in death in six months (Diener-West et al. 2004). As
a similar, yet more rare counterpart to coetaneous melanoma, ocular melanoma
treatments often arise secondary to their discovery for the treatment of coetaneous
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Fig. 15.5 Reduction in
metastases post treatment
with Dimethylfumarate
(DMT), dacarbazine (DCIT),
or a combination of both in a
SCID mouse model of
melanoma lymph node
metastases. (From Valero
et al. 2010)

melanoma. Never-the-less, animal studies evaluating the effectiveness in treating
metastatic ocular melanoma are often conducted. For instance, intraocular inocu-
lation of B16 melanoma cells into the eye of Black 6 mice results in the formation
of numerous lung metastases (Sanborn et al. 1992). High doses of DCIT bolus in-
jections caused a dramatic decrease in the incidence of metastases in these animals
(Sanborn et al. 1992).

Bevacizumab is a monoclonal antibody raised against the powerful angiogenic
factor Vascular Endothelial Growth Factor (VEGF). The antiangiogenic effects of
bevacizumab have been tested in many animal models for many different types of can-
cer metastases. The FDA approved bevacizumab in 2004 for treatment of metastatic
colon cancer. Since approval, bevacizumb’s effectiveness in treating metastasis has
been tested in breast, lung, ocular melanoma, and gastric cancer animal models
(Bauerle et al. 2008; Yang et al. 2010; Otsuka et al. 2009; Ninomiya et al. 2009).
Countless studies have also been performed in a variety of animal models of metas-
tasis using bevacizumab in conjunction with other therapies in order to increase
efficacy (Gerber and Ferrara 2005).

Bauerle et al. (2008), injected the MDA-MB-231 human breast cancer cell line
into the superficial epigastric artery of nude rats. Thirty-five days post inoculation,
rats were injected with a10 mg/kg weekly, intravenous dose of bevacizumab. Treated
rats saw a 63 % reduction in bone metastases compared to the control group (Bauerle
et al. 2008). In a similar model using lung cancer cell lines, bevacizumab showed
efficacy in reducing the overall number of metastases in an immunodeficient mouse
model of bone metastases (Otsuka et al. 2009).

In 2010, Yang et al. assessed the efficacy of bevacizumab in preventing metastasis
formation following an intraocular injection of the human uveal melanoma cell line
Mel290 into nude mice or B16LS9 mouse melanoma cell line in immunocompetent
Black 6 mice. In both cases, the formation of micrometastases were reduced in a
dose dependant manner following intraperitoneal doses of 50 or 250 μg/100 μL
(Yang et al. 2010). Intraperitoneal injection of bevacizumab following inoculation
of human gastric cancer cell lines into nude mice resulted in a reduction of the
number of metastatic tumors in addition to a reduction in the overall mass of the
tumors (Ninomiya et al. 2009). Additional animal models studying the effects of
bevacizumab treatment on metastasis formation can be seen in Table 15.2.

All of these animal studies provide the footwork and background necessary to
establish clinical trials for the use of bevacizumab in a wide variety of human cancers,
as well as providing support for the off-label use of this compound.
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15.3 Key Terms

Intravenous Animal Models These models typically involve the injection of a
malignant cell suspension into the tail-vein of rodents. This type of model allows for
the study of circulating malignant cells, extravasation out of the blood, and organ
seeding and proliferation. It does not permit the observation of the initial escape of
malignant cells from the primary tumor. The most common site of metastases in
these models is the lung.

Intracardiac Animal Models Malignant cells are injected into the left ventricle
of anaesthetized rodents in these models. Similar to intravenous models, intracar-
diac animal models allow the observation of the stages of metastases development
post-intravasation from the primary tumor. Metastases typically develop in the bone
and thus these animal models are a useful tool to study breast and prostate cancer
metastases.

Intraportal Animal Models This type of model is ideal for studying liver seeding
of metastatic cells and overt metastatic development in the liver. Classically, an
intraportal model is developed by injecting malignant cells into the portal vein of
rodents following an abdominal incision. Subsequent metastatic development occurs
almost exclusively in the liver of these animals.

Black 6 (C57BL/6) Mouse This heavily inbred animal is used in animal models
of metastases that involve the injection of malignant mouse cells. As an immuno-
competent animal, studies using this model allow for the observation of the effects
of the immune system on metastatic development yet preclude the ability to study
human malignant cells due to host-graft rejection. The most common cancer studied
in models that use the Black 6 mouse are those involving the B16 mouse melanoma
cell line.

Nude Mouse (BALB/c) The nude mouse does not have a thymus and thus does not
produce T-cells. This mutation generates a hairless phenotype and hence the name
nude mouse. This naturally immunosuppressed rodent permits the study of human
malignant cells. The nude mouse produces normal B-cells and NK cells.

SCID (severe combined immunodeficient) Mouse The SCID mouse developed
as a result of a mutation in a DNA repair enzyme. This mutation inhibits proper
somatic recombination of immunoglobulin heavy chains which renders SCID mice
incapable of producing T-cells or B-cells. SCID mice produce normal NK cells.

NOG Mouse Generated through multiple backcrosses of SCID and Black 6 mouse
variants, this mouse is almost completely immunodefficient; the NOG mouse is in-
capable of producing T-cells, B-cells, or NK cells. This mouse also has diminished
macrophage and dendritic cell production. As a result of such extensive immuno-
suppression, these animals are ideal for addressing specific questions regarding
metastases in which the immune system is not a consideration.
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Chapter 16
Spontaneous, Induced, and Transgenic
Models of Metastasis

Patrick T. Logan

Spontaneous, chemically induced, and transgenic models of metastases provide a
unique framework for studying disease progression; in most cases, they allow the
observation of the full spectrum of metastasic development including intravasation,
survival in the blood, extravasation, organ seeding, and proliferation, in one immuno-
competent animal. This is an advantage over haematogenous and ectopic counterparts
that only offer the ability to observe specific fragments of the metastatic cascade.
However, observing the intricate processes of metastasis, in particular those such
as extravasation and intravasation, which involve single cells, in a spontaneous or
induced model is challenging. With respect to chemically and radiation induced mod-
els, the methods needed to initiate tumor formation poses potential health risks to the
practitioner. Spontaneous and induced models also do not permit the study of human
malignant cells; due to the nature of these models, observations made regarding the
behaviour and development of metastasis must be prefaced by mentioning that these
cells are of animal origin.

However, spontaneous, induced, and transgenic models offer a unique background
for the testing of pharmaceutical compounds in an immunocompetent animal that
represents all stages of malignant development.

16.1 Spontaneous Models

Spontaneous models of metastases in animals, that is, naturally occurring malig-
nancies, are rare. Also, by definition, they randomly appear in the animal population
and this makes them difficult to study. That being said, canines, felines, rodents,
and primates are susceptible to developing several types of cancer including prostate
and mammary tumors. Unlike breast cancer in humans in which 30 % of patients
develop metastases, 50 % of the mammary tumors that develop in canines result in
lymph node metastases (O’Shaughnessy 2005). However, it must be noted that the
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Fig. 16.1 Example of bone
metastasis in a spontaneous
occurrence of prostate cancer
in a dog. The arrows indicate
osteolytic, osteoblastic, and
new bone trabeculae; features
that are consistent with the
human disease. (From Rosol
et al. 2003)

treatment methods for breast cancer in humans are more elaborate and established
than those for canines or other animals, which likely contributes to the differential
rate of metastasis.

Feline mammary tumors share a striking resemblance to its human counterpart
with respect to incidence and metastasis (MacEwen 1990). There is also evidence
that hormones may be involved in the development of mammary tumors in cats
owing to the attenuated reduction in incidence from ovariohysterectomized animals
(Overley et al. 2005). It has been estimated that as many as 90 % of feline mammary
tumors are malignant and these tumors typically metastasize to the lung (Burrai
et al. 2010). Recent studies by Burrai et al. 2010, identified that intra-epithelial
lesions from felines closely resemble those from humans, including the frequency
of loss of hormonal receptors, and thus should be investigated further to increase our
understanding of breast cancer.

Canines and rats are also susceptible to developing prostate cancer. It is estimated
that 90 % of Lobund Wistar rats will develop prostate cancer by one year and these
tumors occasionally metastasize to the lungs (Pollard et al. 1989). Prostate cancer
in dogs can metastasize to a wide variety of organs including bone which, similar
to human bone metastases, can possess both osteolytic and osteoblastic qualities
(Fig. 16.1).

Although the benefit of these models is limited due to their rare and unpredictable
nature, these models provide a unique advantage; these tumors must undergo all
of the steps of the metastatic process that occur in humans and offer unparalleled
insight into the natural history of these metastases. Additionally, these models serve
to produce a reservoir of naturally occurring malignant cells that can be used in more
controlled situations; for instance, several cell lines have been isolated from Wistar
rats and canine prostate cancers that can be used in xenograft studies (Koutsilieris
1992; Anidjar et al. 2001).
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16.2 Chemically and Radiation Induced Models

Chemically induced animal models of metastases are similar to spontaneous mod-
els in the sense that they allow for the study of the entire development of cancer from
transformation to metastases. However, unlike spontaneous models, a carcinogenic
agent must be used to induce these tumors. Considering that roughly 80 % of all
human cancers are a result of carcinogens or are preventable, it seems appropriate to
study these reasonable facsimiles (Higginson 1997). In addition, there is no require-
ment for the animal to be immunosuppressed and thus the effects of the immune
system on the development of metastases can be assessed and extrapolated to human
cancers. For instance, 1, 2-dimethylhydrazine (DMH) induced colorectal carcino-
mas express very similar immunological antigens to the human disease (Sjogren and
Steele 1975). Future studies using the same DMH induced model revealed that if
the tumors would metastasize if they were left to grow large enough (Belnap et al.
1979).

In other models, repeated applications of either benzo[a]pyrene or N-methyl-
N’-nitro-N-nitrosogaunidine to the skin of mice will result in a high percentage of
metastases to the lymph nodes, adrenal glands, and kidneys (Patskan et al. 1987).

Similar to chemically induced animal models, there are, albeit more rare, radi-
ation induced models of metastases. Cobb (1970) discovered that implanting discs
containing the radioactive isotope of phosphorous (32P) in the femoral metaphysis
of rats could induce the formation of osteaosarcomas. The rate of metastasis in these
models, primarily to the lung, was almost 85 % and the disease was pathologically
similar to osteosarcomas in humans.

Chemical and radiation induced animal models of metastases are desirable be-
cause they emulate all of the stages development that occurs in humans. However,
the potential dangers to research by using these modalities, the relative difficulty
in obtaining consistent results, and the advent of more reliable transgenic models
renders these models all but obsolete.

16.3 Transgenic Models

One of the first, and likely the most infamous, transgenic mouse was created by
Leder and Stewart in 1980 and involved the generation of a cancer prone mouse by
genetically implanting the Myc oncogene (Hanahan et al. 2007). This mouse, aptly
named the Harvard Oncomouse, a reflection of the university in which it was created,
showed a high propensity to develop a variety of tumors throughout its body. Many
other mice have been created that follow in the Harvard Mouse’s footsteps, including
genetic knockouts of popular tumor suppression genes such as Rb and p53. Recently,
new types of knockout models specific for a particular malignancy and metastatic
location have been developed and are discussed below.

The predictability of the development of both tumors and metastases in genetically
modified mice (GMM) provide the framework for understanding disease progres-
sion. For instance, by cloning the mammary oncogene PyMT under the control of
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Table 16.1 An overview of popular GMM models of breast cancer and metastasis progression,
attenuation, and suppression. (Adapted from Kim and Baek 2010)

Primary tumor Metastasis
Incidence (%) Incidence Organ Reference

Tumor progression
MMTV-PyMT 100 85–100 Lung, lymph

nodes
Maglione et al. 2001

MMTV-Neu 100 75 Lung Bouchard et al. 1989
MMTV-NeuNDL 60 75 Lung Siegel et al. 1994
WAP-Ras 100 14 Lung Jonkers and Derksen

2007

Tumor attenuating
MMTV-Neu; PTP1B-/- 40 0 Julien et al. 2007
MMTV-PyMT; AKT-/- 100 37 Maroulakou et al. 2007
MMTV-PyMT; CD44-/- 100 66 Lopez et al. 2005

Tumor suppressor
MMTV-cre;

MMTV-p53flox/flox
100 50 Lin et al. 2004

the mouse mammary tumor virus (MMTV) into a susceptible mouse host, 100 %
of mice will development primary tumors confined to the mammary glad within 8
weeks and predictable lung metastases will occur by week 14 (Yang et al. 2004).
Substituting PyMT for other oncogenes, such as Erb2 or Ras will also result in the
development of predictable metastatic models (Table 16.1).

Due to the predictability of metastatic development, GMM can be crossed with
other GMM that have specific genes of interest knocked out. The offspring of these
mice will thus have the same mutation that results in the development of the tumor
as the parent GMM, however, will also provide a model to explore the effects of the
gene of interest on primary and metastatic tumor development. Julien et al., back-
crossed an Erbb2 negative mouse strain (see Table 16.1) with a Ptpn1-/ - mouse. The
Ptpn1 gene encodes the PTB1 tyrosine phosphatase protein that is upregulated in the
vast majority of human breast carcinomas, however, the exact role in cancer devel-
opment had not been completely elucidated (Wiener et al. 1994). The Erbb2/Ptpn-/ -
resultant mouse strain had a marked delay in the development of primary tumors and
subsequent lung metastases. Further exploration revealed that PTB1 overexpression
in these animals caused spontaneous breast cancer development and that PTB1 in-
duced carcinogenesis was fuelled by the upregulation of the MAPK/Ras pathway
(Wiener et al. 1994). As a result of this and other supporting studies, the importance
of PTB1 expression in breast cancer has been identified and is currently the target of
the development of several inhibiting, pharmaceutical compounds.

In a similar study using a cross of two GMM, Lopez investigated the role of
CD44, a transmembrane protein that binds to the secreted hyaluronin, on metastatic
development. Crossing a spontaneously metastasizing MMTV-PyV mouse with a
CD44−/− mouse generated a spontaneous tumor model lacking CD44 expression.
This new GMM resulted in a reduction in the overall incidence of metastasis and a
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Fig. 16.2 Pictorial of the influence of pro-inflammatory cytokines induced by CD4+ as determined
by several iterations of CD4+ knockouts in transgenic mice. (From DeNardo et al. 2009)

lower tumor burden in the experimental mice that did develop metastases compared
to the control, MMTV-PyV mice (Lopez et al. 2005). It has been postulated that the
binding of CD44 to hyaluronin may prevent invasion of metastatic cells and thus
high levels of hyaluronin as an indicator of poor prognosis may be a result of lack
of CD44 expression and subsequent CD44-hyaluronin binding (Lopez et al. 2005;
Auvinen et al. 2000).

Like spontaneous models of metastases, transgenic models also permit the study
of the effects of the immune system on metastatic development. Knockout of CD4+
T-cell production through genetic modifications and crosses with MMTV-PyMT
mice resulted in a reduction of lung cancer metastases in these animals (DeNardo
et al. 2009). Subsequent crosses and experiments involving blocking IL-4 production
and EGF signalling determined that the pro-inflammatory environment produced
by the CD4+ T-cells is conducive to the development of metastases (Fig. 16.2)
(DeNardo et al. 2009). It was only through the use of these knockout mice that the
rationale behind how the presence of CD4+ T-cells potentiates the development of
lung metastases.

Transgenic models of metastasis have also served to clarify some of the more puz-
zling aspects of tumor spread and invasion; traditional logic suggests that metastasis
is a late stage process. Thus, it reasons that circulating malignant cells or dissem-
inated tumor cells found in the bone marrow would increase over time and only
after subsequent mutations and acquisitions of metastatic phenotypes would they be
capable of populating distant organs. However, recent studies indicate that circu-
lating or disseminated cell numbers are irrespective of primary disease progression
(Husemann et al. 2008; Callejo et al. 2007). Husseman et al., discovered that in both
MMTV-Her2 and MMTV-PyMT transgenic models, malignant cells were capable
of leaving the primary site during the premalignant stage of development and were
detected in metastatic locations prior to clinical manifestation of the primary tumors
(Husemann and Klein 2009).
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In general, tumors of host origin in immunocompetent animals can contribute
to our body of knowledge regarding malignancies and compliment the observations
from haematogenous and ectopic models of metastases. Transgenic models in par-
ticular allow for investigations regarding the effects of paradoxical role of immune
cells in metastases development. Like all animal models of metastasis, they also
offer a mechanism to test pharmaceutical agents and can be useful in identifying and
evaluating promising treatment modalities.

16.4 Key Terms

Spontaneous Models Cancer and subsequent metastases occur in canines, felines,
and rodents. The most common location of malignancy in these animals is the breast
or prostate and theese tumors are capable of metastasizing both locally and to distant
organs. Due to their rarity and unpredictability their usefulness is limited. How-
ever, these models’ utility is derived from their ability to generate cell lines that can
subsequently be used in more controlled models of metastases.

Chemically Induced Animal Models Chemical induction of primary tumors in-
volves the application of carcinogens to a susceptible host animal. Considering the
prevalence of carcinogen-induced malignancies in the human population, these mod-
els have the potential to emulate human disease progression. Radiation models follow
the same principals. However, developing these models poses potential risk to the
individuals applying the carcinogen.

Genetically Modified Mice Genetic models of metastasis are created by means of
knocking-out specific genes (tumor suppressor genes) or by knocking-in tumor in-
ducing genes (oncogenes) which results in the development of primary tumors. Both
primary and metastatic tumor development occurs in a predictable and reproducible
manner in these models. Additional genes can be knocked out of these animals and
the effects on the predictable tumor development can be observed. This is a major
advantage of these models as it allows the characterization of particular genes in the
development and progression of metastases.
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Chapter 17
Orthotopic and Ectopic Models of Metastasis

William J. Muller and Ian Swanson

The implantation of syngeneic or xenogeneic tissue into living models allows can-
cer researchers to follow primary tumor growth and the development of secondary
metastases in an in vivo host microenvironment. Host animals are constantly releasing
stimuli (autocrine, endocrine, and paracrine factors), which influences the progres-
sion and pathogenesis of the primary tumor and secondary metastatases. Animal
models allow researchers to observe the complex interactions of these physiological
factors with the metastatic cascade in vivo, a process that is not possible to replicate
in vitro. Successful models allow for the observation and elucidation of the pathways
implicated in the development of metastatic disease. These models are used to delin-
eate the critical factors influencing the success and failure at each step in metastatic
disease progression. Furthermore, these models allow for the opportunity to examine
the effects of pharmacological and anti-cancer therapies on both the primary tumor
and the secondary metastases in order to develop better therapies for treating human
disease.

17.1 Limitations of Intravenous (Experimental)
Models of Metastasis

Experimental metastases models of metastases offer several advantages over other
techniques used to study cancer; mainly, they exhibit consistent and reproducible
metastasis biologies, mature rapidly, and give the user control over the number and
type of cell used. Injection site specificity allows the user to generally target a specific
organ in which they would like the metastases to grow, as most common injection
locations result in the development of metastases at the first capillary bed encoun-
tered. As previously described, a popular model is the injection in the lateral tail
vein of mice, which primarily results in the development of pulmonary metastases.
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Although the ability to generate metastases in a particular organ of interest is desir-
able, injecting cells directly into circulation eliminates several crucial steps of the
metastatic cascade; growth and survival in the primary tumor site, migration and
degradation of the basement membrane, and intravasation into the circulatory sys-
tem. All of the aforementioned steps are critical selection barriers that human cancer
cells must overcome in order to develop into overt metastases. Finally, experimental
metastases generated by these models use cells that have been pre-selected for their
metastatic potential and rapid tumor development and thus these models have the
tendency to ignore important attributes of metastatic biology such as metastatic dor-
mancy. While experimental metastases models offer several advantages, including
the ease in which they can provide answers to specific questions regarding metastases,
their limitations preclude them from use in many studies.

17.2 Ectopic and Orthotopic Models of Metastasis

Orthotopic models of metastasis involve the injection of malignant cells or the trans-
plantation of tumors into the same anatomical location in which they were derived.
Conversely, ectopic models involve injections into incorrect anatomical locations.
The most popular ectopic model involves a subcutaneous injection and was origi-
nally developed as a simple and rapid method to grow primary tumors. Subcutaneous
injections represent a simple and reproducible model that is used in the pre-clinical
setting to examine the effectiveness of anticancer agents to limit primary tumor
growth. Another advantage of subcutaneous models is that they allow for the ability
of the primary tumor to be resected in order to lengthen the time for metastases
formation and to examine the effect of primary tumor removal on metastatic devel-
opment. While primary tumor resection is possible in some orthotopic models, the
vast majority of animals used in these studies do not survive primary tumor resection.
Subcutaneous injections have the advantage over intravenous metastasis models as
they recreate the host-tumor interaction leading to a more realistic tumor and metas-
tasis model. However, the growth of subcutaneous tumors has been criticized as an
unrealistic growth location for the majority of human tumors. Furthermore, sub-
cutaneous models rarely metastasize, a characteristic that can be attributed to the
lack of normal (organ specific) host-tumor interactions, the famous “seed and soil”
hypothesis.

In order to overcome the limitations of subcutaneous models, orthotopic animal
models were developed. Implantation into their normal environment allows for the
complete recapitulation of the metastatic cascade and for the cancer to develop in
its natural milieu. Jessani et al. showed that breast cancer cells which had been im-
planted in the mammary fat pad displayed different proteomic profiles than cultured
cells. Upon reinjection, the orthotopically-derived cells developed more metastases
and primary tumors grew more quickly. Taken together, these results suggest that the
tumor microenvironment selects for cell variants with metastatic and tumorigenic
properties (Jessani et al. 2004). In another study by Lee et al., human breast cancer
cells were implanted in the mammary fat pad and the resulting lymph and thoracic
cavity metastases were isolated for gene expression profiling. When compared to the
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parental cells, the metastases derived cells showed overexpression of the transmem-
brane protein CD73. Thus, in addition to being a regulator of normal lymphocyte
homing, CD73, was also revealed to be an important factor in metastasizing to the
lymph node (Lee et al. 2003). These studies demonstrate the ability of orthotopic
models to recapitulate metastatic pathogenesis and identify key regulators of that
process which may in turn become important clinical targets for intervention and
screening.

The strength of orthotopic models lies in their ability to recapitulate the metastatic
cascade from a primary tumor grown in its normal environment. When compared
to experimental metastases systems, orthotopic models represent a more realistic
physiological system to select relevant metastatic phenotypes due to their inclusion
of primary tumor growth and basement membrane degradation and intravasation
into the circulatory system. There are two main types of orthotopic models; ortho-
topic injection of cellular suspensions, and surgical orthotopic implantation of intact
tumor tissue. Orthotopic injection using suspensions of xenograph or syngeneic tis-
sues represents the next logical step in model development from subcutaneous and
intravenous injections. Cells from tissue culture or tumor tissue are disaggregated
and injected as a cell suspension into the relevant organ from which primary tumors
develop and seed secondary metastases. One of the limitations in regards to ortho-
topic injection is that injection directly into the organ of choice requires a skilled
technician and the need to anesthetize the mouse prior to injection. While injections
into sites such as the mammary fat pad are relatively simple procedures, internal
organs pose a more difficult and time consuming task, which increases the risk of
animal mortality. Instead of suspensions of disaggregated cells, surgical orthotopic
implantation uses small pieces of intact tumors for implantation into the organ of
choice. Using this method circumvents the cell disaggregation step and instead re-
tains the intact three dimensional tumor architecture for direct implantation. The
obvious limitation of surgical implantation is that it requires even greater surgical
skill for implantation of the tumor tissue into the host animal. While this is a valid
concern, surgical implantation of tissue into immunocompromised or humanized
host animals allows for the implantation of human tumor fragments from patients
in the clinic. Both orthotopic injection of cell suspensions and surgical implantation
of tumor fragments offer advantages over intravenous and subcutaneous injections;
however, they require increasing technical skill and the implantation process itself
may influence physiological changes in the host animal. Nevertheless, orthotopic
injections represent relatively rapid, and reproducible models useful for dissection
of the metastatic cascade and as models for pre-clinical therapeutic screening.

17.3 Differences Between Intravenous, Ectopic, Orthotopic
and Surgical Orthotopic Implantation Models

The importance and advantageous of orthotopic models has been validated through
experimental differences observed between experimental metastases and sponta-
neous metastases models. Yamamoto et al. developed a system of two identical
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human fibrosarcoma HT-1080 cell lines individually tagged with either GFP or RFP.
A mixture of the two differentially labeled cell lines were injected either orthotopi-
cally or intravenously, and resultant metastases were scored as monoclonal for green
or red metastases, while yellow metastases were considered polyclonal. Orthotopic
injections led to a predominance of monoclonal metastases, while intravenous injec-
tion developed almost purely as polyclonal metastases (Yamamoto et al. 2003). Hall
and Thompson observed similar results when they compared orthotopic injection
with experimental metastases using prostate tumor and lung metastasis explants cell
lines. Their results indicated that while only the metastasis derived cell lines were
able to create new lung metastases in the orthotopic model all cell lines were able
to develop lung metastases in the experimental assay (Hall and Thompson 1997).
These results demonstrate that spontaneous models have a more stringent selection
criterion in order for metastases to form when compared with experimental metas-
tases models. A study by Xue et al. demonstrates the limited utility of intravenous
models due to their inability to recapitulate the complete metastatic cascade. They
established that epidermal growth factor receptor (EGFR) overexpression in human
breast cancer cells did not affect the growth of the primary tumor, or the ability to
form lung metastases through intravenous injections. However, they determined that
overexpression increased intravasation and subsequent lung metastases from ortho-
topic injections in the mammary fat pad (Xue et al. 2006). This study highlights the
limited ability of intravenous models to act as models for preclinical therapy due to
their inability to fully emulate human metastatic progression. However the rapid-
ity, ease of use, and reproducibility of experimental metastasis models represent an
important initial tool useful in the study of metastasis.

Due to their ease of use, subcutaneous injection became the prevalent method
for which to model primary tumor growth, and later to model spontaneous metas-
tases. Studies have demonstrated that, when compared to orthotopic models, the
differences in the injection site location lead to differences in chemosensitivity and
metastatic propensity. Kubota showed that even when using identical cell lines there
are differences in chemosensitivity of small-lung carcinoma cells injected either
subcutaneously or othotopically (Kubota 1994). Similarly, Troiani et al. showed that
ectopic and orthotopic injections responded differently to chemotherapeutics for epi-
dermal growth factor driven cancer cells (Troiani et al. 2008). Another study by Bao
et al. looked at whether the addition of extracellular matrix components (matrigel)
co-injected into either ectopic or orthotopic sites would influence the metastatic
phenotype of MDA-MB-435 breast cancer cells. Their results showed that the sub-
cutaneously injected cells with matrigel did slightly increase metastasis, but that
the cells injected orthotopically with matrigel resulted in a much higher metastatic
phenotype. The authors concluded that while matrigel could recapitulate part of
the orthotopic microenvironment they showed that the diversity of the orthotopic
site microenvironment could not be completely recapitulated (Bao et al. 1994). The
technical ease and simplicity of subcutaneous injection models will enable their con-
tinued use as early stage preclinical models, but more complex orthotopic models
are able to more closely emulate human metastatic pathogenesis and may therefore
be more appropriate models for preclinical screening.
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Injection of cellular suspensions into orthotopic sites increases the metastatic
efficiency of cell lines when compared to subcutaneous injection. The metastatic
efficiency is further increased when surgical orthotopic implantation was used in-
stead of orthotopic injection of cell suspensions. Surgical orthotopic implantation
improves on cell suspension injection due to the ability to retain tumor architecture.
While all methods of metastatic modeling allow for the use of cultured and human
tumor cells, surgical implantation offers the unique ability to implant primary tumor
fragments directly from biopsied human tumor samples into immunocompromised
mice. By combining injections of cell suspensions into subcutaneous sites to allow
for the growth of primary tumors, followed by the surgical orthotopic implantation
of intact tumor fragments there is an increase the metastatic efficiency compared
to cell suspensions. Furthermore, surgically implanted tumor fragments lead to pri-
mary tumors that more closely resemble the histological and phenotypic properties
of the tumors from which they were derived compared to cell suspensions. Morioka
et al. demonstrated that a pancreatic cancer cell line grown subcutaneously before
surgical implantation of intact tumor in increased invasiveness and metastases better
mimicked the human disease when compared to an injection of a simple cell sus-
pension (Morioka et al. 2000). Similarly, models of breast cancer metastases which
used cell suspensions of MDA-MB-435 cells injected orthotopically did not display
liver metastatses (Schmidt 1999). However, Li et al. found that MDA-MB-435 cells
injected via surgical implantation were able to metastasize to the liver whereas cell
suspensions were not (Li et al. 2002). Surgical orthotopic implantation represents
the continuous development of improved metastatic models from years of cancer re-
search. However this method has not reached a broad audience due to the limitations
imposed by the necessary technical skill associated with the surgeries necessary for
implantation. As more people become increasingly these techniques and become
more skilled at carrying them out, the popularity of orthotopic implantation mod-
els are likely to continue to grow in popularity owing to their accurate modeling of
human malignancies.

17.4 Continued Development of Orthotopic Models

Orthotopic models continue to increase in sophistication in order to better mimic
metastatic disease progression and serve as more accurate preclinical models. These
models have greatly benefited from the advances in in vivo imaging through the
use of fluorescent and bioluminescently labeled syngeneic and xenographic human
tumor lines. Coupled with advanced imaging devices such as CT, PET, and MRI the
metastatic progression of orthotopic models can be followed through living animals,
saving unnecessary sacrifices thereby lowering the number of animals needed to
complete a study. Gros et al. combined fluorescent imaging for rapid imaging of
the primary tumor and secondary metastases coupled with MRI to provide highly
sensitive anatomical data on the metastasis location. Together these technologies
were able to characterize the spread of metastases in a model of aggressive esophageal
cancer in order to develop an effective model for preclinical drug screening (Gros
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et al. 2010). Temporal control of gene activation and gene silencing through inducible
promoter systems allows for key proteins to be activated and deactivated at different
stages in the metastatic progression. Le Dévédec et al. combined inducible oncogene
expression with dual fluorescently labeled cells with intravital imaging in order to
better dissect the metastatic behavior of breast cancer cells in vivo (Le Dévédec et al.
2011). Combining these tools with further refinement and development of new more
sophisticated models will allow researchers to create animal models which better
recapitulate the human metastatic pathogenesis and create more effective treatments
in order to combat it.

17.5 The Role of Orthotopic Models in Breast Cancer
Metastasis

Breast cancer will affect 1 in 9 women in the western world and will ultimately
affect the lives of thousands of Canadians each year (Society et al. 2010). Improve-
ments in breast cancer screening and new therapies have resulted in a 30 % drop
in breast cancer mortality since 1986 and this downward trend is estimated to con-
tinue. Orthotopic animal models have helped breast cancer researchers understand
disease progression, identify new therapeutic targets and biomarkers while serving
as preclinical models for new anticancer agents. Orthotopic animal models allowed
Hendrix et al. to relate in vitro data suggesting that Rab27 proteins promoted prolifer-
ation and invasive growth in tissue culture with increased invasiveness and metastatic
burden using in vivo orthotopic models. Their research exemplifies the scientific pro-
gression from in vitro cell culture through to in vivo models to confirm the role of a
previously unknown agent in breast cancer. Finally, their in vivo information regard-
ing the role of Rab27s role in human breast cancer combined with clinical samples
showed a correlation with poor patient prognosis (Hendrix et al. 2010). Orthotopic
models have allowed breast cancer researchers to derive cell lines with increased
tumorigenic and metastatic properties through in vivo selection through orthotopic
injection. Jessani et al. compared the proteomic profile of parental MDA-MB-231
cells with that of MDA-MB-231 explants to identify key differences in tissue plas-
minogen activator (tPA) and urokinase plasminogen activator (uPA) (Jessani et al.
2004). Jessani’s work revealed key differences in the production of proteins of cells
while in culture compared to those in vivo and thus emphasizes that animal models
should emulate the human disease as accurately as possible in order to ensure the
validity of findings and discoveries.

While 5 year survival rates have been increasing for breast cancer patients, once
the disease spreads to distant organs, there are no effective treatments available.
Human breast cancers are known to develop secondary bone metastases, however,
in order to model bone metastases, previous models have required the injection of
malignant breast cancer cells into an animals heart. Lelekakis et al. developed an
orthotopic model of breast cancer using explanted bone metastasis cells to select
for preferential bone metastasis formation from the primary tumor. This model ac-
curately recapitulates the metastatic spread seen in human breast cancers. Studies
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Fig. 17.1 Differential location of metastasis depending on injection location. Metastasis to the
lymphnodes a following orthotpic injection into the abdominal fat pad, metastasis to rib cage and
lung b following intracardiac injection of the same cell line. (Adapted from Jenkins et al. 2005)

using this model of breast cancer bone metastases revealed the important role of the
parathyroid hormone-related protein in this process (Lelekakis et al. 1999). In an
effort to improve bone metastasis models and overcome the interspecies limitations,
Kuperwasser et al. used a novel model where normal human bone was implanted
into NOD/SCID mice, followed by human breast cancer SUM1315 cell line in-
jected into the mammary fat pad. Interestingly, metastases from the breast cancer
cell line formed exclusively within the implanted human bone, which is highly sug-
gestive of specific osteotroprism selection (Kuperwasser 2005). Further study of this
model will help to elucidate osteotropism associated genes and provide a model to
study therapeutic intervention of bone metastases. Finally, to demonstrate the util-
ity of orthotopic animal models as tools for preclinical screening of therapeutics,
Bandyopadhyay et al. showed that a common chemotherapeutic agent, doxorubicin,
activated epithelial-mesenchymal transition through TGFβ signaling, leading to re-
sistant cell populations. It was discovered that by combining doxorubicin with a
TGFβ inhibitor, they could achieve synergistic inhibition of the resistant cell popu-
lation, while decreasing the required effective dose of doxorubicin (Bandyopadhyay
et al. 2010). This model helps to identify the cause of therapeutic resistance while
helping to develop a treatment regime to overcome it.

The ultimate goal of cancer research remains to delineate the mechanisms through
which cancer develops, metastasizes, and resists anticancer agents in order to develop
more effective therapeutic treatments. Continuing improvements and innovation of
orthotopic animal models will increase the similarities with their human counterparts
and will thereby maintain its important role in the fight against cancer (Fig. 17.1,
Table 17.1).
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Table 17.1 Primary tumors
and their resultant location of
metastases in orthotpic
animal models

Primary tumor Metastatic sites References
injection site

Bladder Lymph nodes
Liver
Lung
Pancreas
Spleen
Diaphragm

Chan et al.
(2009a, b)

Breast Lymph nodes
Liver
Lung
Bone

Li et al. (2002),
Fu et al. (1993)

Colon Lymph nodes
Liver
Lung
Brain

Rashidi et al.
(2000a, b)

Kidney Lymph nodes
Liver
Lung

Chang et al. (1999)

Liver Lymph nodes
Liver
Lung
Peritoneum

Sun et al. (1996)

Melanoma Lymph nodes
Lung
Bone
Brain
Adrenal Glands

Yang et al. (1999)

Ovarian Colon
Lymph nodes
Liver
Stomach
Diaphragm

Fu and Hoffman
(1993)

Pancreas Lymph nodes
Liver
Lung
Kidney
Spleen

Lee et al. (2000)

Prostate Lymph nodes
Liver
Lung
Bone

Yang et al. (1999)

Stomach Lymph nodes
Liver
Lung
Pancreas
Kidney

Furukawa et al.
(1993)
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17.6 Key Terms

Orthotopic Models These models are developed by injecting malignant cells or by
grafting intact tumor sections into the correct anatomical location of an animal. The
major advantage of these types of models lies in their ability to provide information
regarding the entire gamut of malignant development from primary tumor prolifer-
ation to distant metastases. However, metastatic development in these animals does
not always occur in the same locations as the human disease that they are intended
to model.

Ectopic Models These models are similar to orthotopic models of metastases, how-
ever, cells or graft material is delivered to a location that differs from the origin of
the original tumor. Sub-cutaneous injections are the most common location for these
models and they are used extensively in breast cancer research.
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Chapter 18
Animal Model Imaging Techniques

Patrick T. Logan

In recent years, the advent of new imaging technologies has enabled researchers to
portray the development of metastases in animal models in a new light. Previously,
observing the behaviour of metastatic cells required the sacrifice of the animal and
thus the progress of development or treatment is often incomplete and necessarily
elucidated from sequential sacrifices of inbred animals. Considering the technical
difficulties in visualizing individual metastatic cells by traditional immunohisto-
chemical or staining methods, understanding the critical first steps of micrometastatic
development was difficult and often impractical. New technologies, in particular the
ability to force cells of interest to fluoresce amongst a dull background, have en-
abled researchers to visualize the behaviour of individual metastatic cells in host
organisms. These methods, in conjunction with new, non-lethal intravital imaging
methods, have contributed greatly to the body of knowledge regarding malignant
cells and the development of metastases. This chapter will discuss several of the
more popular imaging methods such as luciferase, green fluorescent protein, MRI,
CT, PET, and will analyze the advantages and limitations of each method.

18.1 Luciferase Imaging

Several organisms possess the ability to bioluminesce as a means of either com-
municating, or as an offensive or defensive reaction (Haddock and Moline 2010).
Organisms possible of such light-emmitting reactions include bacteria, fireflies,
vargulin, oplophorus, renilla, and aequorin and is typically achieved through the
enzyme-substrate reaction Luciferase-luciferin (Greer and Szalay 2002). In the pres-
ence of oxygen and the substrate luciferin, the luciferase enzyme will produce light.
The luciferase enzyme has since been isolated and sequenced from these organisms,
the firefly in particular, as early as 1975 (Gates and Luca 1975). Since this time,
more than 14 different luciferase genes have been identified and sequenced (Greer
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Fig. 18.1 Whole body imaging of luciferase labeled human prostate cancer cells in a nude mouse
(a) and subsequent metastases in the lung (b) and thoracic lymphnodes (c) following intramuscular
injection in the thigh. (Adapted from El Hilali et al. 2002)

and Szalay 2002). In 1985, the firefly luciferase gene was cloned and inserted into
E. coli for visualization (Wet et al. 1985). Expression of the luciferase enzyme in
mammalian cells is obtained by cloning the gene into either a constitutive or inducible
expression vector. Subsequent exposure to luciferin will generate a bioluminescent
signal which can then be detected using a charge-coupled device (CCD) specific for
the visualization of bioluminescent cells (Hooper et al. 1990). For a comprehensive
list of luciferase-reporter gene constructs please see Greer and Szalay (2002).

The luciferase reporter gene constructs have gained tremendous popularity in
metastatic imaging studies in animal models; transfection of malignant cells with the
reporter gene prior to implantation allows for a non-invasive method of visualizing
malignant cells in an entire animal. This method clearly allows for the visualization of
tumors that would not otherwise be visible. For instance, Nadia et al. used transfected
human prostate cancer cells injected into the thigh of nude mice in order to visualize
metastases (El Hilali et al. 2002). Two-weeks post-injection, luciferase emissions
were visible from the primary tumors in the thigh in addition to multiple pelvic and
lymph node metastases (Fig. 18.1).

Luciferase imaging permits the identification of metastastic lesions in early
stages of development when they are smaller than the size required for angiogenesis
(Wetterwald et al. 2002). Luciferase labelled breast cancer cell line injected intrac-
ardiacly can be clearly identified ten minutes post-injection via whole body imaging
(Fig. 18.2). Twenty-four hours post injection, the total bioluminescence produced
by the same animal drastically declined indicating destruction of the majority of
breast cancer cells that were injected. Forty-eight hours post injection, clear, defined
signals, later confirmed via traditional methods, representing bone and brain metas-
tases were identified. Such studies have been used to confirm the inefficiency of the
metastatic process (Wetterwald et al. 2002). In fact, Heyn et al. (2006) estimate the
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Fig. 18.2 Formation of micrometastatic bone metastases following intracardiac injection of human
breast cancer cell line labeled with the luciferase reporter gene at (a) 10 min, (b) 24 h, and (c) 48 h
post injection. (Adapted from Wetterwalt et al. 2002)

metastatic efficiency at less than 5 %; thus it can be extrapolated that, as a result of the
high proportion of metastatic development in human cancers, that shedding of ma-
lignant cells from the primary tumor must be an almost constant process (Heyn et al.
2006) Furthermore, Shakman et al, report that there is a high degree of correlation
between the intensity of the bioluminesce produced by colorectal liver metastases in
vivo when compared to traditional measures of tumor burden (Smakman et al. 2004).

The benefits of the luciferase reporter gene system include the ability to observe
metastatic development in a non-invasive manner. The high degree of correlation be-
tween emitted light and tumor burden has permitted the testing of pharmacological
compounds in treating prostatic bone metastases in a non-invasive manner that would
otherwise have not been possible (24th Congress of the International Association for
Breast Cancer Research 2003). However, despite its advantages, luciferase imaging
in animal models is not without its drawbacks; requirements for visualizing cells
includes a minimum of 1000 cells which prevents the imaging of single-celled or
small cluster of cells that comprise micrometastases (Contag et al. 2000). Further
limitations of the luciferase system is the requirement of injecting the exogenous
luciferin substrate; differential tissue absorption and distribution can confound cal-
culating accurate tumor burden in certain organs (El Hilali et al. 2002). Assessing
tumor burden can be further complicated as a result of the requirement of oxygen to
complete the luciferase reaction in addition to technical complications owing to the
differing optical densities of body tissues (El Hilali et al. 2002).

18.2 Green Fluorescent Protein (GFP)

Green Fluorescent Protein is, as the name suggests, a protein that emits green light
when excited by a particular wavelength. Originally isolated from the A. victoria
jellyfish, the GFP fluorophore is excited by blue light with a wavelength of roughly
488 nm and a peak emission wavelength of roughly 507 nm (Tsien 1998). For imaging
purposes, the GFP protein gene is cloned with a constitutive promoter gene into a
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Fig. 18.3 External images of pancreas (P), spleen (S), omental (O), and bowel (B) metastases using
GFP-labeled pancreatic cancer cells. (From Bouvet et al. 2002)

plasmid. This plasmid is then transfected into mammalian cells using a variety of
techniques including electroporation, lipofection, or sonication. Since its inaugural
use to detect gene expression in C. elegans, GFP has since gained rapid popularity in
the field of in vivo imaging in cancer and metastases (Chalfie et al. 1994). Imaging
of cancer cells in vivo using animal models is typically done in one of two ways:
external observation of internal metastases or through intravital videomicroscopy
(IVVM) (Hoffman 2002a). Pioneered by Robert Hoffman, successful GFP whole
body-imaging a multitude of tumors ranging from brain to lymphnodes has been
achieved (Hoffman 2002b). In one of the first animal models using GFP whole-body
imaging, Hoffman et al, injected GFP-labeled human pancreatic cell line into the
portal vein of nude mice (Bouvet et al. 2002). Consecutive whole-body imaging of
the mice revealed pancreas, spleen, omental, and bowel metastases (Fig. 18.3).

While whole-body imaging offers the ability to visualize metastatic nodules in
vivo, the brilliance and specificity of GFP expression by transfected cancer cells
offers additional benefits. By utilizing skin-flap imaging methods, it is possible to
visualize individual GFP-labeled malignant cells circulate in a live animal. In essence,
IVVM involves creating a small skin-flap in the abdomen of a live, anesthetized
animal, (typically a mouse) which is placed on a cover slip and illuminated and
recorded with a conventional camera. Ann Chambers et al, used this technique and
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Fig. 18.4 IVVM of individual metastatic cells in the capillaries of the liver 1 h post injection (a) and
a single cell that has extravasated into the liver parenchyma 24 h post injection (b). (From Naumov
et al. 1999)

illuminated organs with blue light in order to visualize individual cells in circulation
(Chambers et al. 1995). Building on these studies, Naumov used IVVM and GFP
Chinese hamster ovary cells to visualize individual malignant cells pre and post-
extravasation from blood vessels into the liver parenchyma (Fig. 18.4, Naumov et al.
1999). In fact, the GFP imaging was sensitive enough to discern and visualize the
formation of new blood vessels (Naumov et al. 1999).

IVVM and GFP imaging has provided invaluable information regarding the steps
of intravasation; the exit of malignant cells from the bloodstream and into organ
parenchyma. Studies observing uveal melanoma cell lines in circulation indicate
that perhaps the initial cause of arrest in the blood vessel is related to mechanical
constraints involving large cells and small capillaries.

The single celled sensitivity of GFP imaging allows the testing of pharmacological
agents on single cells and dormant micrometastases which, as a result of their lack
of divisions, are typically difficult to target via traditional therapies (Naumov et al.
2003).

Recently, genetic mutations and engineering have produced a wide gamut of
fluorescent proteins ranging from blue to yellow, all of which maintain the same basic
properties of GFP. These new fluorophores have encouraged dual imaging techniques
in which subtly different cell lines can be distinguished in the same animal in vivo.
Yamamoto et al. (2003), used a co-injection of RFP and GFP human fibrosarcoma
cells in order to determine that the majority of resultant metastases in a SCID mouse
were the result of clonal expansion of individual cells.

Despite not needing the addition of an exogenous substrate like luciferase systems,
GFP models are confounded by the fact that native tissue has a tendency to autoflu-
oresce, which can occasionally render identification of GFP labelled cells difficult.
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Nevertheless, GFP whole body and IVVM imaging offers researchers a valuable tool
of identifying malignant cells in vivo and thus increasing our knowledge of dormancy
and micrometastases in animal models.

18.3 Magnetic Resonance Imaging (MRI)

A recent technology, the first MRI image was produced in 1973, and its advent use for
imaging metastases in animal models occurred in the twenty-first century (Lauter-
bur 1989). A traditional MRI uses a magnetic field to align hydrogen molecules in
the water present in tissues, which are then rotated using a radiofrequency, and a
composite image based on the differing hydration of tissues in the body is devel-
oped (Novelline 2004). MRI offers a non-invasive method of imaging metastases
with resolutions capable of discerning individual cells. Simoes et al. (2008), injected
the 439-Br1 breast cancer cell line intracardiacly in nude mice and then imaged the
brain metastases produced by these cells with an MRI 20 days post injection. The
resolution of malignant cells via MRI imaging contrast can be further improved by
introducing micron-sized iron oxide particles (MPIO) into the cell lines (Bulte and
Kraitchman 2004). Heyn et al. (2006), pre-incubated a human breast cancer, brain
metastatic specific cell line, MDA-231BR, with MPIOs and subsequently injected
these labeled cells into the left ventricle of nude mice. Subsequent MRI images of
the mouse brain allowed tracking the fate of individual cells. Such studies revealed
that, although the vast majority of malignant cells lodged in the brain do not survive
and only a small number of the remaining cells developed into overt metastases,
cells that enter and lodge in the brain may constitute a reservoir of dormant cells
(Fig. 18.5, Heyn et al. 2006). These dormant cells remained present and viable even
in the presence and proximity of growing, overt metastatic lesions.

MRI in animal models of metastases is perhaps the gold standard for non-lethal
imaging with respect to sensitivity. However, the cost of imaging many animals is
prohibitive and the imaging itself can be toxic to the animals that are being observed
(Simoes et al. 2008).

18.4 Computerized Tomography (CT) and Positron Emission
Tomography (PET)

Like MRI, CT imaging allows for non-invasive imaging of metastatic cells in vivo.
Three-dimensional (3D) CT images are reconstructed from composites of X-ray
images obtained from one axis (Harman 1980). These 3D reconstructions provide
a backdrop for the visualization of GFP or luciferase labelled malignant cells. CT
scans increase the sensitivity of these more traditional imaging modalities in addition
to offering a non-invasive method of determining the depth of tumor growth. Strube
et al. (2010), implemented CT scan as part of a mutli-modal animal model of renal
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Fig. 18.5 MRI of mouse
brain post injection of MPIO
labeled breast cancer cells.
The arrows indicate areas of
signal void which is
indicative of MPIO labeled
cells. Subsequent images
reveal that the majority of the
cells visible in the first pane
are no longer viable. The
hyperintensive areas in panes
3 and 4 represent an overt
metastases. (From Heyn et al.
2006)

Fig. 18.6 PET, CT and
combined PET/CT scan of
lung metastasis (denoted by
the arrow) in a SCID mouse.
Physiological tracer uptake
kidney (k) and bladder (b) is
noted. (From Deroose et al.
2007)

cell carcinoma bone metastases in nude mice CT scans of the osteolytic damage from
hind leg metastases correlated well with traditional luciferase images (Strube et al.
2010).

PET scans are developed with the aid of a radionucleotide; a radiolabeled tag
(typically a glucose molecule) is transfected into a cell line and the PET scanner
detects its degradation in the live animal. A three dimensional image is then recon-
structed using CT technology. In a SCID mouse model of malignant melanoma,
cells were tagged with both a radiolabelled glucose molecule and a luciferase re-
porter gene (Deroose et al. 2007). Metastases were then imaged by PET and CT
(Deroose et al. 2007). Although the PET scan provided excellent resolution, the
images obtained by this method were limited to visualization of the malignant cells
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Table 18.1 Overview of various methods of visualizing metastases in animal models
Imaging method Substrate Invasive Single-Cell resolution Toxic Cost

required

Luciferase Yes No No No Low
GFP No No (except IVVM) No (except IVVM) No Low
MRI No No Yes Yes High
CT No No No No High
PET Yes No Yes No High

in the absence of anatomical landmarks. However, by combining the PET and CT
scans, metastatic cells were identified and located within the anatomy of the SCID
mouse (Fig. 18.6). Together, PET/CT scans were capable of providing non-invasive,
quantitative measurements of metastases.

In vivo imaging of metastases, whether it be of individual cells or full-blown
metastases, is critical to our understanding of the metastatic disease. The ability to
visualize the growth or recession of metastatic cells in an animal is also paramount
in evaluating the promise of pharmaceutical agents. Each of the imaging modalities
discussed in this chapter has their advantages and disadvantages, some of which
are described in Table 18.1. For instance, CT and MRI scans provide anatomical
relevance to observations but lack the specificity of PET or GFP models. Selecting
the correct imaging technique, or combination of techniques, is critical for visualizing
the developing metastases as required for the model.

18.5 Summary

Animal models, in all of their iterations, are critical contributors to our ambition to
understand, treat, and ultimately eliminate metastasis as a clinical burden. The knowl-
edge gained from observing the behaviour of malignant cells amidst the plethora of
factors experienced in vivo would not be possible without animal models. They have
allowed the visualization of all the steps of the metastatic cascade ranging from es-
caping the primary tumor to proliferation within a metastatic lesion. The advent of
new, transgenic models has allowed us to isolate and characterize the implications
of individual genes on the development of metastases. The exploitation of natural
phenomena, such as green fluorescent protein and luciferase enzyme, has facilitated
the visualization and characterisation of micrometastases and dormant cells. Tech-
nological advances, such as MRI and CT/PET imaging, now permits the non-lethal
visualization of these cells in vivo.

Animal models of metastases continue to initiate the development of new ther-
apies, including combination therapies, to destroy existing metastases and prevent
metastatic development. They are critical in providing the in vivo evidence nec-
essary for clinical trial approval by both Health Canada and the Food and Drug
Administration in the United States.
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Considering the deadly encumbrance of metastases, it is imperative that the re-
search community continues to improve current animal models and develop new
models that recapitulate human disease progression. Considering all of the recent
advancements in animal models, it is foreseeable that a new model that combines
all of the advantages without any of the disadvantages of the animal models de-
scribed in this chapter will emerge as the gold standard for understanding and treating
metastases.

18.6 Key Terms

Luciferase Imaging This technique involves forcing malignant cells to express the
luciferase enzyme. Following injection of these cells into and metastases develop-
ment, luciferin is injected in to the animal where it is catalyzed by luciferase and light
is emitted. This emission can be detected non-invasively through the animal’s skin
and thus semi-quantitative analysis of tumor growth can be conducted. The minimum
number of cells required to emit a visible signal is 1000 and thus this method is not
ideal for observing micrometastases or dormant cells.

Green Fluorescent Protein (GFP) Malignant cells can be forced to express GFP,
a protein that can be excited by a specific wavelength of light, which results in the
emission of a vibrant green light. This technique can be used to identify individual ma-
lignant cells in animals through invasive, non-lethal surgery. Tissue auto-fluorescence
is one of the complications of this imaging method as it can render identification of
cells difficult.

Intravital Videomicroscopy (IVVM) Typically coupled with GFP labelled malig-
nant cell imaging, IVVM involves making either a temporary or permanent window
in the animal via abdominal incision. Malignant cells can then be videotaped over
time as they circulate in the animal’s blood or develop into metastatic lesions.

Magnetic Resonance Imaging (MRI) MRI uses a magnetic field to align water
molecules in a tissue of interest. Metastatic lesions produce aberrations in these
images and thus can be identified. Further resolution, including the ability to identify
individual cells, can be acquired by using malignant cells that contain micron-sized
iron oxide particles. One of the disadvantages to MRI is that the imaging process
itself can be toxic to the animals.

Computerized Tomography (CT) and Positron Emission Tomography (PET)
Scans CT scans are 3-D images produced through the computerized reconstruc-
tion of multiple X-rays. PET scans involve the injection of radiolabelled glucose
molecules into the animal. The high metabolic activity of the metatatic lesions result
in a large uptake of the labelled glucose molecules, which can then be detected as
radiation is emitted from the cells. CT and PET scans are often used together as
while the CT scan provides anatomical orientation, the sensitive PET image is used
to identify metastatic lesions.
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Chapter 19
Diagnosis of Metastasis

Dawn Russell-Hermanns

19.1 Introduction

The process of metastasis is characterized by the propagation of a primary tumour
to other organ sites. This is an unfortunate and often terrifying progression in the
already arduous course of a patient with cancer. In some cases, patients may in
actuality have metastasis at diagnosis and the primary site may either be known or
the patient may be given a diagnosis of “unknown primary cancer” (Khoor 2010). It
cannot be sufficiently emphasized that a careful and detailed approach to the overall
management of metastatic disease is essential.

Metastasis results from a stepwise process (Chambers et al. 2002). The stages
resulting in the formation of metastatic lesions initially include intravasation and
survival of the tumour cells in circulation. Arrest in the secondary site then occurs,
with subsequent extravasation, survival of the tumour cells, growth and formation of
pre-angiogenic micro metastasis (Winnard et al. 2008). The tumour cells can either
enter a stage of dormancy or apoptosis. In order to have the end result of metastasis,
each of these stages must occur to completion (Fig. 19.1).

Overall, the metastatic process has been found to be largely inefficient (Fig. 19.2).
Efficiency with regard to metastasis is generally defined as the ability of cells from
the primary tumour to successfully form lesions at a distant or secondary site. In
most cases, few cells are able to achieve this and are deemed inefficient (Luzzi et al.
1998). Inefficiency has been observed clinically where patients have a seemingly
large quantity of cancer cells detected in the peripheral circulation, while only a
small number of resulting metastatic lesions. This hypothesis of inefficiency of the
metastatic process was later confirmed using video microscopy on an in vivo murine
model (Chambers et al. 2000). Animal studies such as these have revealed that
some stages in the process of metastasis are actually efficient while others are not
(Chambers et al. 2002). It was found that the overall survival of tumour cells in
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Fig. 19.1 Summary of the metastatic process. Cancer cells break from primary tumour and dis-
seminate either hematogenously or via the lymphatic system. (Courtesy of J. Isenberg, McGill
University school of medicine)

circulation, their arrest and subsequent extravasation were the more efficient stages
in metastasis whereas tumour cell intravasation, post-extravasation cell survival and
distal secondary tumour growth were actually found to be inefficient (Chambers
et al. 2000). These early investigations were successful in revealing the fact that the
presence of tumour cells or tissue at distant sites is not predictive of progression to
clinically relevant metastatic disease. Furthermore, both mechanical and seed-soil
(cancer cell-secondary organ) compatibility factors are involved in the propensity
for certain cancers to metastasize to specific organs (Chambers et al. 2002).

An important aspect of the management of patients diagnosed with cancer is
the early identification of metastases. It has been shown that early detection of the
primary tumour itself will lead to more successful treatment outcomes (Chambers
et al. 2002).

This chapter will address the various aspects involved in the diagnosis of metastatic
disease and will also provide a comprehensive review of traditional and novel
modalities of therapy for metastatic disease.
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Fig. 19.2 Summary of observations regarding diagnosis of major metastatic processes and effi-
ciencies of the major steps in metastasis with regards to their propensity for metastatic disease.
(CMC = circulating malignant cells). (Courtesy of J. Isenberg, McGill University school of
medicine)

19.2 Screening Tests

A screening test is a tool used to identify healthy members of the population who
possibly have a disease from those that possibly do not have the disease. It has a role
not only in determining of the presence of a primary cancer but there is also a role
in metastatic disease. Specifically there are patients who present with a constellation
of signs and symptoms with an unclear diagnosis of primary cancer and in whom
screening tests are advantageous. There are three main types of screening tests based
on the targeted stage of malignancy:

1. Tests to screen for pre-invasive lesions e.g. Papanicolaou test (PAP).
2. Tests to screen for “organ-confined” invasive cancer e.g. serum Prostatic specific

antigen (PSA); mammography in breast cancer.
3. Screening tests for genetic predispositions to certain cancer types e.g. BRCA1

for breast cancer (Sharon 2007).

The goal of a screening test is naturally achievement of 100 % specificity and 100 %
sensitivity. Sensitivity is defined as the number of individuals that actually have
the disease that the screening test correctly identifies as positive. Specificity is the
number of individuals that do not have disease that are correctly identified by the
screening test as negative. In most cases, the sensitivity and specificity may have an
inverse relationship. That is, a screening test may be highly sensitive in identifying
truly positive individuals but may also have a large number of falsely positive results,
which decreases the sensitivity of the test (Sharon 2007) (Table 19.1).



254 D. Russell-Hermanns

Table 19.1 A list of basic terms, definitions and calculations relevant for diagnostic assays. (Adapted
from Sharon 2007)
Terms Disease No disease

Screening test positive True positive (TP) False positive (FP)
Screening test negative False negative (FN) True negative (TN)

Definition Calculation
Sensitivity Percentage of diseased individuals who are TP/(TP + FN) × 100

correctly identified by the test
Specificity Percentage of disease-free individuals who are TN/(TN + FP) × 100

correctly identified by the test

It is unfortunate that there are really only a small number of cancers for which
screening tests have proven their efficacy with regard to decreasing cancer-associated
mortality.

Key Points

• Metastasis is the spread of a primary tumour to a secondary site
• It is the end result of a sequence of events
• Stages of metastasis include:

– Intravasation
– Arrest in the secondary site
– Extravasation
– Growth
– Angiogenesis

• Efficiency is the ability to successfully achieve metastasis
• Early detection of cancer is essential to improve treatment outcomes
• There may be circulating tumour cells in patients who do not develop metastatic

disease

19.3 Clinical Diagnosis of Metastasis

Seventy percent of patients with cancer may have occult metastasis at the time of
diagnosis (Liotta and Kohn 1990). It is crucial to approach the care of these patients
systematically in order to arrive at a specific diagnoses with appropriate testing
and investigations (Marchevsky et al. 2010). A study done evaluating follow up of
breast cancer patients emphasizes the importance of history taking and applicable
investigations (Kindler and Steinhoff 1989). Therefore a thorough work up starting
with a detailed medical history and physical examination play a key role in the
diagnosis of metastatic disease.

The clinical signs and symptoms exhibited by the patient can elude to the spe-
cific organ system affected by metastasis. In metastasis affecting the central nervous
system, symptoms can include headaches, seizures, impairment of speech, visual
disturbances, weakness, dizziness and vertigo. Pulmonary metastatic disease can
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Table 19.2 Summary of
organ specific clinical signs
and symptoms of metastases

Tumour site Symptoms

Central nervous system
(CNS)

Headaches, seizures, speech
impairment, visual disturbance,
weakness, dizziness, vertigo

Pulmonary system Cough, haemoptysis, chest pain,
pneumonia, dyspnoea

Hepatic system Jaundice, hepatomegaly
Hematopoietic system Anaemia, leucopenia,

thrombocytopenia
Skeletal system Bone pain, pathological fractures,

hypercalcemia, spinal cord
compression

Generalized
signs/symptoms

Weight loss, anorexia, aphagia,
nausea, lymphadenopathy

present with multiple symptoms including cough, haemoptysis, chest pain or dis-
comfort, as well as difficulty breathing and pneumonia. Hepatic involvement may
be manifested by jaundice or yellow discolouration of the skin, anorexia, and hep-
atomegaly. If there is involvement of the hematopoietic system, this can result in
leucopenia, anaemia and thrombocytopenia. Other nonspecific clinical signs of
metastasis include ascites (fluid collection in the abdomen), lymphedema, weight
loss, and lymphadenopathy. In metastasis to the bone, patients may present with
bone pain, pathological fractures, spinal cord compression, and decreased mobility
which can result in poor quality of life (Vassiliou et al. 2007). There are a wide
variety as well as a paucity of symptoms that can occur in metastatic disease as
there can be involvement of almost any organ system, be it the renal system, geni-
tourinary and/or skeletal systems. There was one case reported in the literature of a
patient who presented with monoarthritis of the hip who was subsequently found to
have metastatic adenocarcinoma (Ruparelia et al. 2006). There are many other rare
manifestations of metastatic disease that have been reported. These cases emphasize
the importance of a complete and thorough physical examination in patients with
confirmed or suspected malignancy (Table 19.2).

There are some primary malignancies however where the clinician can almost
predict the most likely site of metastasis and this can guide the history, physical
examination and investigations toward a particular target. This propensity for cer-
tain primary tumours to metastasize to specific organs is explained by the seed and
soil theory. A recent study of the metastatic potential of cancers revealed quanti-
tative reports of how different cancers had different metastatic targets and varying
frequencies (Disibio and French 2008) (Table 19.3).

19.4 Diagnosis of Metastasis: Blood Testing

The management of a patient with metastatic disease or any malignancy goes beyond
the history and physical to involve blood investigations, inclusive of tumour markers
as well as routine lab tests. Routine lab tests will include a complete blood count
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Table 19.3 Table showing frequent metastatic sites of various primary tumors
Primary tumour Frequent sites of metastasis

Breast cancer Lymph nodes, lungs, bones, brain
Lung cancer Brain, bones
Prostate cancer Regional lymph nodes, bone, distant lymph nodes, lung, liver
Colon cancer Liver
Testicular cancer Distant lymph nodes, liver, lung, kidney, bone

to rule out anaemia, neutropenia, and thrombocytopenia. A serum chemistry panel
is also included in the work-up to evaluate renal function and assess calcium levels,
urinalysis, and faeces for occult blood.

Tumour markers are substances that can be isolated from bodily fluids such as
blood, urine, pleural and ascitic fluid as well as tissue and can be indicative of a par-
ticular type of cancer. They can be produced either by the tumour itself or by normal
surrounding tissue as a result of the tumour (Schrohl et al. 2003). Tumour markers
can be proteins, surface antigens, foetal antigens, oncogenic products, enzymes or
hormones (Schrohl et al. 2003). It must be understood however that although they
may be elevated in the presence of cancer, there are other non-cancerous conditions
where they may be elevated as well.

There are a number of instances where the measurement of tumour markers is
indicated. Screening for the presence of cancer in high risk and healthy populations
as well as confirmation of the diagnosis of a particular type of cancer are two main
indications for the use of tumour markers. They are also used in monitoring the
efficacy of therapeutic interventions such as chemotherapy, radiation therapy or
surgery, while also playing a role in the prognosis of a patient with cancer, and
hence important in the management of metastatic disease. The varying role of tumour
markers can thus be separated into diagnostic, predictive, prognostic, and monitoring
markers. All of the available cancer markers fail at having both significant sensitivity
and specificity and hence no solitary marker has met all the criteria of the ideal
screening tool for a population. The two main protein specific markers that have
been approved as screening tools as they met most of the criteria are prostatic specific
antigen (PSA) and hem-occult blood testing (Schrohl et al. 2003).

Tumour markers can be cancer specific markers or tissue specific markers. Tissue
specific markers are not directly related to malignancy and can be at high levels in the
absence of cancer, as previously mentioned. Examples of tissue specific markers in-
clude alpha-fetoprotein (AFP), human chorionic gonadotropin (beta-HCG), prostatic
specific antigen (PSA), thyroglobulin and a lectin-reactive AFP (AFP-L3). Cancer
specific markers are elevated predominantly in the presence of malignancy, and ex-
amples include carcinoembryonic antigen (CEA), CA 19-9, and CA 125 (Schrohl
et al. 2003).

19.4.1 Alpha Fetoprotein

This marker is a glycoprotein that is a significant constituent of foetal plasma, reach-
ing a peak at twelve weeks gestation with a rapid decline after birth. In the foetus, it
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is made by the yolk sac, the gastrointestinal tract and the liver. Elevated levels have
been associated with hepatocellular and germ cell carcinoma, typically greater than
500 ng/ml. The normal level in a healthy adult is less than 10 μg/ml. AFP is a tissue
specific marker and hence can also be elevated in cirrhosis, hepatitis, and normal
pregnancy (Schrohl et al. 2003). It is however still thought to be a suitable marker in
detecting hepatocellular carcinoma in liver cirrhosis (Leandro et al. 1989).

19.4.2 Tissue Polypeptide Antigen (TPA)

Tissue polypeptide antigen is a protein antigen that was originally developed by
Bjorklund and Bjorklund in 1957 (Weber et al. 1984). Initial studies revealed this
antigen to be strongly associated with epithelial tissues as opposed to nonepithelial
tissues (Nathrath et al. 1985). TPA may in certain settings be useful in determining
the presence of hepatocellular carcimoma (Leandro et al. 1989). It was also found
to be of use in patients with bladder cancer as a means of evaluating recurrence as
well as in being a prognostic indicator (Maulard-Durdux et al. 1997).

19.4.3 Prostatic Specific Antigen (PSA)

This tissue specific antigen is also a glycoprotein that has very low levels in normal
adult males, with a range from 0 to 4 ng/ml. It is used as a screening tool for prostate
cancer, however its level can be affected by prostatitis as well as benign prostatic
hypertrophy. Additionally, the PSA levels can vary according to age and race. Asians
have been found to have lower PSA levels whereas African Americans have been
found to have higher levels. Generally, there is an associated increase in the normal
range of PSA with age. For these reasons, measurement of PSA levels may not be a
very ideal screening tool however with regard to prognosis it has been found to be of
great benefit. Patients with very high PSA levels prior to surgical intervention have
a greater likelihood of recurrent prostate cancer than those with lower pre-operative
levels (Schrohl et al. 2003).

19.4.4 Human Chorionic Gonadotropin

This is a hormone that is normally made by the syncytiotrophoblastic cells of the
placenta and its elevation is a normal and expected feature of pregnancy. HCG is
however also grossly elevated in gestational trophoblastic tumours, in most cases
correlating well with tumour mass. There have been reported cases of breast, gas-
trointestinal, and lung cancer where the level of HCG has been elevated, however
its use as a tumour marker has been restricted to trophoblastic tumours. It has been
beneficial in monitoring for recurrence (Schrohl et al. 2003).
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19.4.5 Carcinoembryonic Antigen (CEA)

This is a tumour marker produced in colon cancer, however can also be produced
by a number of other cell types as well as the developing foetus. Its normal range in
blood is less than 2.5 ng/ml. The normal level in smokers is doubled to 5 ng/ml. CEA
has been used as a tool to monitor for recurrence of colon cancer with specific criteria
for surgical intervention based on level of rise from baseline (Schrohl et al. 2003). It
has been shown to be elevated in other conditions such as pancreatitis, inflammatory
bowel disease and cirrhosis.

19.4.6 CA 125

This marker is mainly elevated in ovarian cancer although it can also be elevated
in colon cancer, breast cancer, lung cancer and endometrial cancer. Other condi-
tions such as endometriosis, menstruation and pregnancy can also have elevated CA
125 levels. CA 125 is a monoclonal antibody (OC 125) and has been reported to be
present in 80 % of nonmucinous ovarian carcinomas. This marker can also be used
to monitor for disease recurrence (Schrohl et al. 2003).

19.4.7 CA 19-9

This marker is also a monoclonal antibody and its clinical use has been predominantly
in gastrointestinal adenocarcinoma. It has also been shown to be elevated in cases of
gastric cancer and can be used to monitor for early disease recurrence after therapy
(Schrohl et al. 2003). CA 19–9 is also elevated in pancreatic cancer. In a study of
patients with metastatic pancreatic cancer, decline in the level of serum CA 19–9
was found to be comparable to radiographic response as a good predictor of overall
outcome and time to progression. These findings reveal a promising role for CA 19–9
in metastatic pancreatic cancer (Wong et al. 2008).

19.4.8 CA 15-3

This is a monoclonal antibody that is derived from mucin (MUCI). It has been shown
to be of some prognostic value in breast cancer and when compared with CEA, it is
more sensitive and specific (Bartsch et al. 2006). It is a more useful tumour marker
for breast cancer follow up than TPA or CEA given its higher sensitivity (Given et al.
2000). One study in particular however, revealed no significant prognostic benefit
of this marker in monitoring disease progression in patients on fulvestrant therapy
(Bartsch et al. 2006).
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Table 19.4 Summary of
common tumour specific
markers

Malignancy Tumour marker

Colorectal cancer CEA
Germ cell tumours AFP, β-HCG
Hepatoma AFP, TPA
Ovarian cancer CA 125
Choriocarcinoma β-HCG
Prostate cancer PSA
Breast cancer CA 15-3, HER2/neu

19.4.9 Human Epidermal Growth Factor
Receptor 2 (HER2/neu)

Testing for human epidermal growth factor receptor 2 gene is indicated at the time of
diagnosis of primary breast cancer and also for monitoring patients with metastatic
breast cancer (Hanna et al. 2007). This gene is not inherited and has been associated
with aging and some have postulated a possible link with environmental factors. The
HER2/neu gene is responsible for signalling cells during division, growth and repair.
Healthy breast cells possess two copies of the gene however in some forms of breast
cancer, approximately 18–20 %, the gene is over amplified (Hanna et al. 2007).

Decreasing levels of serum HER2/neu can be interpreted as favourable response
to therapy and increasing levels are indicative of progression of disease (Table 19.4).

19.5 Diagnosis of Metastasis: Imaging Studies

The purpose of imaging in the management of the patient with metastatic disease goes
far beyond merely screening for the presence of metastatic disease but also involves
staging, monitoring progress of disease before and after therapy, as well as in gaining
volumetric data in instances where surgical resection may be a therapeutic option
(Choi 2006). Additionally, the age and sex of the patient along with the location
of the metastasis confirmed by imaging can be predictive of the likely origin of the
primary tumour (Khoor 2010).

There are various imaging modalities available and their specific role will ob-
viously be dictated by the type of metastatic disease involved. In general, imaging
modalities used in this arena must be of course be highly sensitive and specific, re-
producible, consistent and provide all of these features while being tolerable to the
patient (Choi 2006).

The response evaluation criteria in solid tumours (RECIST) was originally pub-
lished in 2000 and has since been revised (RECIST 1.1) and provides criteria to be
used in assessing tumour response to therapy in clinical trials (Choi 2006). With
respect to imaging, RECIST has provided guidelines for the use and interpretation
of specific imaging techniques allowing for a more accurate evaluation of tumour
response in clinical trials (Eisenhauer et al. 2009). The purpose of RECIST however,
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is specifically for clinical trials and not to provide general imaging recommendations
for oncologists in their daily practice (Eisenhauer et al. 2009).

The following sections will review the various imaging modalities available with
specific examples of the various conditions where they are most commonly indicated.

19.5.1 Radiographic Modalities

There are some areas in medicine where plain radiography is no longer of significant
benefit, however in the evaluation of certain forms of metastatic disease it still plays
a role. Plain X-rays are of particular benefit in the evaluation of bone metastasis.
After the liver and the lung, the bone follows as the third most frequent site of distant
metastasis (Vassiliou et al. 2007).

Thirty to seventy percent of patients with cancer have bone metastasis (Salvo et al.
2009; Byun et al. 2002), usually occurring late in the disease process (King 2006).
The way in which a metastatic lesion appears on plain radiography is dependent
on the amount of bone that is resorbed or deposited (Lipton et al. 2004), with the
radiographic appearance being either osteolytic or sclerotic. Osteolytic lesions are
usually more frequently observed. Plain X-rays allow for the detailed assessment
and classification of these lesions.

The use of plain films in bone metastasis is as an adjunct to bone scintigraphy
scanning, which will be discussed in detail in the upcoming sections. In clinical
practice, bone scanning is often followed by further evaluation with plain X-rays of
the particular lesions found on scintiscan (Salvo et al. 2009). This is due to the fact
that the appearance of the mestastatic bone lesions on plain film can be indicative
of the primary cancer. Carcinomas of the thyroid, renal system (Lipton et al. 2004),
and lung are typically associated with osteolytic bone lesions whereas carcinomas of
the prostate, colon or bladder may be sclerotic. Some cancers such as that of breast
may have a mixed appearance having both osteolytic and osteoblastic features on
radiography (Vassiliou et al. 2007).

Plain radiography also plays a role in evaluating the response to therapy along
with clinical, laboratory and bone scan findings (Coleman et al. 1988). Healing of
an osteolytic lesion is manifested radiographically by the presence of a sclerotic rim
of bone that progressively migrates from the edges toward the center of the lesion
throughout the healing process with subsequent decrease in size and resolution.
Radiographic evidence of decreased size and disappearance of a sclerotic metastatic
bone lesion indicates therapeutic response and is often difficult to assess. Mixed
lesions either show generalized sclerotic changes as response to therapy or increased
osteolytic changes indicating disease progression. These findings may not be evident
on plain radiographs at less than 6 months into therapy and so additional modalities
for assessing response to therapy must be employed as well (Coleman et al. 1988).

Plain films are limited overall as a single imaging modality as they can only detect
lesions that are 1–2 cm in size and where there has been greater than 50 % loss of
the bone mineral content (Salvo et al. 2009).
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Plain chest X-rays may also be of some benefit in the evaluation for metastatic
lung disease, and in various instances may in fact be the first test performed to
detect pulmonary metastasis. In some cases metastatic lesions may be an incidental
finding on routine chest X-ray. Its overall role however is becoming less significant,
as computed tomography (CT) scanning has better resolution and is a more accurate
modality for detecting small metastatic lung lesions.

One of the many example of the declining significance of plain X-rays in the
work up of metastatic disease is its use in the preoperative evaluation of patients with
primary melanoma. One particular study found no additional benefit in the use of
chest X-ray in this setting (Vermeeren et al. 2009b). Another example is in a subset
of patients with disseminated non-seminomatous testicular cancer (marker positive
patients in complete remission), one study found no benefit in doing routine chest
X-rays for surveillance for relapse post chemotherapy (Gietema 2002). These are
just a few of numerous examples where plain chest films no longer have a significant
role in the work up of metastasis.

19.5.2 Ultrasonography

By evaluating and recording the sound waves that are reflected by tissues, an ul-
trasound scan (US) can detect abnormalities in various organs of the body. Its still
remains relevant as a part of the evaluation of metastatic disease in certain settings.

Ultrasound scanning becomes important particularly in investigating for liver
metastasis. Liver metastasis is unfortunately a common pathway for a number of
malignancies, for example colorectal cancer and uveal melanoma. In colorectal can-
cer, it has been reported that approximately 70 % patients eventually advance to
hepatic metastasis (Bipat et al. 2005). Discovery of liver metastasis in a patient with
known malignancy can have a grave impact on the overall prognosis and hence early
and accurate detection is essential (Liu and Francis 2010).

As an imaging modality for hepatic metastasis, US was thought by some to be a
great tool for screening purposes (Bipat et al. 2005). This is because US is widely
available, cost effective and non-invasive, hence tolerable to the patient. US can
detect those patients with large numbers of metastatic liver lesions and who are
therefore not appropriate for surgical resection versus other patients who may have
few or no lesions at all (Bipat et al. 2005).

Others however, have found less utility of US as a screening tool given its low
sensitivity and specificity and operator dependent efficacy (Choi 2006). Another
limitation of the use of US in hepatic metastasis is that in some cases portions of the
liver may not be accessible by US (Bipat et al. 2005). US is believed to be of greater
benefit in the setting of indeterminate lesions found on other imaging modalities that
require additional investigation (Choi 2006).

The appearance of the metastatic lesions of the liver on an US can be hypoechoic or
hyperechoic. Features highly suggestive of hepatic metastasis on US are the presence
of many solid lesions or one lesion surrounded by a hypoechoic halo (Choi 2006).
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Recent advancements in US, namely Power Doppler and Contrast Harmonic
Imaging (CHI) have been successful in providing a more accurate evaluation of
solid hepatic lesions (Choi 2006; Robinson 2000).

Contrast Harmonic Imaging (CHI) uses contrast agents that improve the quality
of US in various ways. When the contrast agent is introduced intravenously into the
patient, it functions by increasing the back-shadowed echoes from regions that need
to be visualized and the oral agent works by decreasing unwanted reflectivity from
certain tissues. The various enhancement patterns produced allows for improved
characterization of different hepatic tumours (Choi 2006).

Power Doppler is a newer form of assessing blood flow that is reported to be about
5 times more sensitive than color Doppler. It makes use of a color map and is able to
demonstrate the Doppler signal power while eliminating information regarding flow
or velocity, hence providing an improved report of the flow characteristics (Choi
2006).

Endoscopic US is another method of evaluating liver metastasis. It has also been
shown in some studies to be superior to computed tomography (CT) scanning with
regard to the accuracy of the number of lesions (Singh et al. 2009). With endoscopic
US, fine needle aspiration biopsy can also be carried out which has been beneficial
in the characterization of lesions that were not visualized on CT scan.

US can also be used to investigate the lymphatic system and lymph nodes for
diagnosis of metastasis. In most cases, lymph node metastasis may actually occur
before metastasis occurs hematogenously. Features of malignancy of the lymph nodes
on gray scale US includes deformity of the normal echogenic hilus and the overall
shape of the lymph node as opposed to features of benign reactive nodes where the
shape and echogenic hilar structure may appear normal (Sohn et al. 2010).

19.5.3 Computed Tomography (CT)

A CT scan is a diagnostic modality created in 1972 by Godfrey Hounsfield (Choi
2006) that uses X-rays to generate detailed three dimensional (3D) images of struc-
tures within the body. The X-rays are taken at different angles and processed through
a computer giving rise to the final 3D image called a tomogram. Advances in this
technology have lead to the multi-detector helical CT which has improved the ac-
curacy, resolution and detail of the images created in comparison to the original
CT scans. CT scan has been a key imaging modality in evaluating various forms of
metastatic disease.

Multi-detector helical CT is the standard imaging modality in suspected liver
metastasis. Its role in hepatic metastatic disease involves being part of the initial work
up, monitoring and surveillance pre- and post-treatment as well as in preoperative
planning (Choi 2006). With helical CT, the vascularity of the liver can be evaluated by
dual phase studies during the hepatic arterial and portal venous phases with the use of
intravenous contrast. Dual phase helical CT has been reported to have a specificity of
86–91 % and sensitivity of 69–71 % in hepatic lesions that were confirmed surgically
(Choi 2006).
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In hepatic metastasis, evaluating the vascularity of the lesion in comparison to
the normal surrounding tissue is important as it may dictate how the lesion appears
on CT scan. Primary tumours that can produce very vascular metastatic lesions in
the liver include melanoma, sarcoma, neuro-endocrine tumours and renal cell car-
cinoma. On CT scan, these highly vascular lesions will appear more enhanced than
the normal surrounding liver especially during the arterial phase of liver enhance-
ment. Colorectal adenocarcinoma typically produces metastatic lesions in the liver
that have minimal vascularity and so can be seen better during venous phase in dual
phase helical CT studies (Choi 2006).

In certain instances where liver resection may be an option, the use of CT scan
during arterial portography has proven to be of some benefit. Unfortunately, given
that this procedure is more invasive as well as expensive, it has not gained much
popularity when compared to helical CT or MRI (Choi 2006).

In skeletal or bone metastasis, CT scan has several roles. It been useful in providing
more detailed evaluation of lesions seen on bone scintiscan that were not confirmed on
plain radiography.Additionally, CT scan is used as a confirmatory test in symptomatic
patients whose initial plain films are negative for any obvious metastatic lesions.

In the detection of bone metastasis, CT scan has been shown to be more sensitive
than plain films. It is better at identifying small sclerotic areas than plain radiographs
and has no anatomical limitations with respect to the bones being studied as is the
case with plain films (Lipton et al. 2004).

CT scan is also used to determine the presence of metastasis to the brain. It has
been shown that in brain metastasis, several factors are key to obtaining accuracy
on CT scan. These include not only the dose of contrast agent used but also the
timing with which the image is obtained after administration of the contrast agent.
The result can be an altered image of the metastatic lesions. As such, the choice of
imaging technique for evaluation of brain metastasis or metastatic disease in general
is essential to overall management of the patient, in particular surgical planning
(Sidhu et al. 2004).

CT scan is also useful in the evaluation of metastatic lesions of the lungs, lymph
nodes and other systems in the body and has been shown to be an integral part of the
work up in the metastatic patient (Fig. 19.3, 19.4 and 19.5).

19.5.4 Magnetic Resonance Imaging (MRI)

MRI is an imaging modality that uses a magnetic field and the principle of magnetic
resonance. The hydrogen ions in the human body are magnetized in the MRI machine
and they emit signals that are processed through a computer to produce an image.
Like CT scan, MRI plays an integral role in the evaluation of patients with metastatic
disease and is more sensitive in detection of soft tissue abnormalities than CT scan.
Advances in MRI technology have included T1-weighted spoiled gradient echo and
T2-weighted fast spin echo which has resulted in faster acquisition of images (Choi
2006). This has been particularly useful in the evaluation of hepatic metastasis.
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Fig. 19.3 CT scan chest in
the coronal plane
demonstrating multiple
metastatic lesions in the lungs
bilaterally in a patient with
metastatic osteosarcoma.
(Courtesy of Dr. R. Faingold)

Whole body MRI is a concept that has been extensively explored for both screening
and staging in the management of the patient with known malignancy. It was found
by some to be an excellent screening method for detecting bone metastasis, especially
of the vertebral bodies (Nakanishi et al. 2005). Whole body MRI initially failed due
to limitations in data acquisition time and accuracy. VIBE (volumetric interpolated
breath-hold examination) was introduced to overcome the limitations initially faced
with whole body MRI (Lauenstein et al. 2004). VIBE imaging involves T1-weighted,
3D gradient echo sequence used with integrated fat saturation and near isotropic
spatial resolution. The data acquisition time is reported to be around 20 s and occurs
during breath holding. With the use of gadolinium contrast, detection of metastasis
in parenchymal organs has been markedly improved (Lauenstein et al. 2004). Other
studies of this technique have reported promising results as well with regard to staging
(Thomson et al. 2008; Barkhausen et al. 2001).

There has been recent work with regard to liver specific contrast agents for MRI
in hepatic metastasis. MRI for liver metastasis is done routinely with contrast en-
hancement and newer agents specific to the liver have been introduced to increase
accuracy of detection of metastatic lesions. Contrast enhanced MRI for investiga-
tion of hepatic metastasis is said to be the most accurate imaging technique for this
purpose (Kim et al. 2008). An example of a hepatic specific agent is Mangafodipir
trisodium (MnDPDP, Telescan) (Choi 2006). There have been studies comparing
the efficacy of other new contrast agents such as gadoacetic acid (Zech 2007) and
ferucarbotran-enhanced MRI (Kim et al. 2010). Another study comparing MnDPDP
and ferucarbotran-enhanced MRI in hepatic metastasis revealed comparable efficacy
between these two agents (Choi et al. 2006).
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Fig. 19.4 CT scan pelvis in the axial plane demonstrating a metastatic lesion (arrow) involving the
right iliopsoas muscle in a patient with metastatic rhabdomyosarcoma. (Courtesy of Dr. R. Faingold)

Fig. 19.5 CT Scan abdomen,
axial plane demonstrating
multiple hypodense
metastatic liver lesions.
(Courtesy of Dr. R. Faingold)
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Fig. 19.6 Coronal view of MRI (STIR (short T1 inversion recovery) weighted sequence) showing
bilateral bone marrow metastases involving femur and tibia bilaterally in a patient with metastatic
neuroblastoma. (Courtesy of Dr. R. Faingold)

Fig. 19.7 T1 weighted MRI
with gadolinium and fat
suppression (coronal view)
showing metastatic
osteosarcoma involving distal
left femur and contralateral
proximal right femur.
(Courtesy of Dr. R. Faingold)
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In the evaluation of lymph node metastases, gadolinium enhanced MRI has been
shown to be of some benefit. The results of a systematic review and meta analysis of
the gadolinium enhanced MRI in lymph node staging revealed moderate accuracy
with regard to detection of lymph node metastases (Klerkx et al. 2010) (Fig. 19.6
and Fig. 19.7).

19.5.5 Nuclear Imaging

This is a diagnostic modality whereby images are produced by detection of radiation
from various parts of the body following administration of a radioactive tracer agent
either intravenously in most cases or in some instances orally. Technetium-99m
bone scintigraphy, positron emission tomography (PET) and single photon emission
computed tomography (SPECT) are examples of nuclear imaging that can be used
in the evaluation of metastatic disease.

Bone scintigraphy, also known as radionuclide bone scanning, is an imaging
modality that can be used for whole body screening in the evaluation of bone metas-
tasis. It has the advantage of being more widely available and cost effective than
other imaging studies for bone metastasis. It is usually the first imaging study for
investigating bone metastasis in asymptomatic breast cancer patients (Costelloe et al.
2009). On a bone scan, metastasis can be seen as multiple, irregular, randomly dis-
tributed areas of increased tracer uptake. Tracer uptake is increased because when
bone metastasis form there is an associated increase in blood flow and reactive new
bone formation (Jackson et al. 1975). Advances in the accuracy and sensitivity of
other nuclear imaging techniques such as PET scans may eventually lead to a de-
creased role for bone scan in evaluation of osseous metastasis in some cases (Cheran
et al. 2004) (Fig. 19.8).

PET scans have many indications in the evaluation of metastatic disease. With the
use of 2-deoxy-2-[18 F] fluoro-D-glucose (FDG-PET), glucose metabolism can be
imaged. This has allowed for the detection of metabolic changes prior to anatomical
changes leading to earlier identification of tumours and discovery of lesions in previ-
ously unknown locations. This information is also useful for staging of malignancies,
monitoring for recurrence and response to therapy (Choi 2006). FDG-PET is indi-
cated in the evaluation of hepatic, colorectal and skeletal metastases as well as many
others. In lung metastasis, although spiral CT is still the superior imaging modality,
given its high specificity, a positive FDG-PET can be used as a confirmatory test for
suspected metastatic lesions found on thoracic CT (Franzius et al. 2001).

There are limitations with the use of conventional PET scans and a major one is the
inability to accurately identify the corresponding anatomical site with the abnormal
area that is detected on the scan. This has lead to the integration of CT scan with
PET for more accurate anatomical localization (Choi 2006). A comparative study by
Dandrup-Link et al. of imaging modalities revealed sensitivities of 90 % for FDG-
PET, 82 % for whole body MRI, and 71 % for Technetium bone scan (Daldrup-Link
et al. 2001) (Fig. 19.9).
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Fig. 19.8 Bone scan of a patient with primary osteosarcoma, involving the distal left femur and ex-
tending into proximal tibia. Metastatic lesions of the lumbar vertebrae, ribs and multiple mediastinal
and lung lymph nodes. (Courtesy of Dr. R. Faingold)

SPECT is another imaging modality whereby molecules labelled with a radionu-
clide emit gamma ray photons. It differs from PET in that during this process, only
a single photon is detected and emitted directly from the radioactive atom. SPECT
has multiple roles in evaluating metastatic disease. Bone SPECT has been found to
be better at detecting osseous abnormalities than planar bone scan. In breast cancer,
bone SPECT was found to be superior to FDG-PET (Uematsu et al. 2005).

The integration of SPECT with CT was found to have additional benefit in local-
ization of more sentinel lymph nodes when compared with planar imaging in prostate
cancer (Vermeeren et al. 2009a).

It can thus be seen that the application of these nuclear imaging modalities has
made quite an impact on the management of metastatic disease.



19 Diagnosis of Metastasis 269

Fig. 19.9 PET/CT fused,
coronal plane demonstrating
osteosarcoma involving the
left distal femur with
metastatic lung disease.
(Courtesy of Dr. R. Faingold)

Table 19.5 Table showing the site of metastases and the indicated imaging modality
Sites of metastasis Common imaging modalities

Liver Ultrasound scan, power doppler, contrast harmonic imaging (CHI), endo-
scopic ultrasound, CT scan, CT scan with arterial portography, FDG-PET,
MRI (with liver specific contrast)

Lung Plain chest X-ray, CT scan, FDG-PET
Bone Plain X-ray, planar bone scintigraphy, CT scan, bone-SPECT
Brain CT scan, MRI
Lymph nodes USS, CT scan, MRI, SPECT

19.5.6 Molecular Imaging

Molecular imaging is a new technology that incorporates molecular biology with
in vivo imaging. Molecular events within living organisms can be studied in detail
with the use of tracers (Gambhir 2002). One of its many uses in medicine is to capture
the metastatic potential and status of a tumour through imaging. This should allow
for earlier detection and an improvement in the overall management of metastatic
patients (Apolo et al. 2008).

In this field, MRI has been used as a tool to study metastatic potential by var-
ious methods. Firstly, there are in vivo studies of animals with metastatic tumour
xenografts and secondly, it has been studied with chamber type assays in evaluating
cancer cellular invasive characteristics. Another method has been investigations de-
lineating the targets of labelled metastatic cancer cells (Winnard et al. 2008). Most of
these techniques have been used in animal models of metastases, however there are
some examples of other MRI techniques that are currently used in clinical practice.
We previously mentioned the technique of screening using whole body MRI.Another
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technique is applied in detection of axillary lymph nodes in breast cancer patients.
Yet another current clinically relevant technique that makes use of this technology
is the detection of occult lymph nodes metastasis in prostate cancer. This is done
noninvasively with extremely lymphotrophic super-magnetic iron oxide nanoparti-
cles (Winnard et al. 2008). A recent study evaluated the large number of tracers
now available for study in prostate cancer, inclusive of metabolic, angiogenic, and
apoptotic pathways as well as others (Apolo et al. 2008).

PET technology has also been used along with radiopharmaceuticals in imag-
ing tumour glucose metabolism and hypoxia with the goal of studying metastatic
potential. Currently, major work is being done with angiogenesis-specific radiophar-
maceuticals for imaging metastatic potential (Winnard et al. 2008).

19.5.7 Angiography

In the current era where there are so many new imaging modalities for metastatic
disease, angiography plays a limited role. In liver metastasis, catheter angiography
has been useful for preoperative planning as well as detection of metastatic hepatic
lesions (Choi 2006). In skeletal metastasis, it may be useful in the assessment of pain
palliation in cases where there are multiple, non-resectable lesions. Additionally, in
surgical cases, it can be useful preoperatively in displaying devascularisation of
vascular metastasis (Jonsson and Johnell 1982) (Table 19.5).

Key Points

• At initial diagnosis, 70 % of patients with cancer may have undetectable
metastasis.

• A detailed history, physical examination, blood work (complete blood count,
chemistry panel, tumor markers) are initial steps in the work up of metastatic
disease.

• Imaging plays multiple roles in metastatic disease that include:

– Screening
– Staging
– Monitoring response to therapy
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Chapter 20
Cancer Staging

Alexandre Nakao Odashiro

Cancer staging (CS) describes the extent and/or severity of a malignant neoplasia
by the time of diagnosis (Edge and Compton 2010). It helps to stratify patients
into groups that are prognostically and therapeutically similar (Greene and Sobin
2009). CS is based on knowledge of how cancer develops and spreads, as well as on
prognostic factors. It is one of the most important tools used for planning treatment,
determining prognosis, evaluating treatment outcomes and exchanging information
between clinicians and centres around the world (Allen and MyiLibrary 2006).

There are currently a few staging systems used around world. TNM (tumor-node-
metastasis) system (Edge and American Joint Committee on Cancer 2010; Fleming
1997; Greene et al. 2002) is one of the main CS systems used worldwide. It is
maintained by the American Joint Committee on Cancer (AJCC) and the Internat-
ional Union for Cancer Control (UICC). The AJCC published the 1st edition of the
Cancer Staging Manual in 1977 and began using the TNM as an organized staging
scheme to express the extent of disease. This provides physicians and others with a
useful tool to plan treatment, project prognosis, and measure outcomes (Yarbro et al.
1999).

TNM is updated periodically based on advances in the understanding of cancer
prognosis in order to remain current and relevant to clinical practice. The latest
revision of TNM, presented in the 7th edition of the AJCC Cancer Staging Manual,
takes effect for cases diagnosed on or after January 1, 2010 (Edge and Compton
2010; Greene et al. 2002).

The TNM system is used for CS of most cancer types, with exceptions including
brain and spinal cord, and blood/ bone marrow cancers. These exceptions are staged
according to the cell type and grade, and the Ann Arbour classification system,
respectively (Allen and MyiLibrary 2006).

TNM codes the extent of the primary tumor (T), regional lymph nodes (N), and
distant metastases (M) and provides a “stage grouping” based on these T, N, and M
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Table 20.1 TNM staging categories for cutaneous melanoma. (Balch et al. 2009)

Classification Thickness (mm) Ulceration Status/Mitoses

Tis NA NA
T1 ≤ 1.00 Without ulceration

and mitosis < 1/mm2

With ulceration or
mitoses ≥ 1/mm2

T2 1.01–2.00 Without ulceration
With ulceration

T3 2.01–4.00 Without ulceration
With ulceration

T4 > 4.00 Without ulceration
With ulceration

N No. of Metastatic Nodes Nodal Metastatic Burden
N0 0 NA
N1 1 Micrometastasisa

Macrometastasisb

N2 2–3 Micrometastasisa

Macrometastasisb

In transit metastases/satellites
without metastatic nodes

N3 4+ metastatic nodes, or matted nodes, or in
transit metastases/satellites with metastatic
nodes

M Site Serum LDH
M0 No distant metastases NA
M1a Distant skin, subcutaneous, or nodal metastases Normal
M1b Lung metastases Normal
M1c All other visceral metastases Normal

Any distant metastasis Elevated

NA not applicable, LDH lactate dehydrogenase
aMicrometastases are diagnosed after sentinel lymph node biopsy
bMacrometastases are defined as clinically detectable nodal metastases confirmed pathologically

factors (Edge and Compton 2010), using a combination of clinical and pathological
data. This classification system is based on the anatomy and biological progression
of tumor growth. Generally speaking, a solid tumor first grows locally in overall size
and extent (T classification); metastases to regional lymph nodes may then occur (N
classification); and finally metastases occur past these nodal basins either into non-
regional lymph nodes or into a variety of solid organs (M classification) (Greene and
Sobin 2009). Each primary tumor site has a different classification according to the
anatomy of the site (Edge and American Joint Committee on Cancer 2010; Fleming
1997; Greene et al. 2002), and oncologists, radiologists and pathologists play an
important role in determining the TNM of each patient.

To assess the TNM, there is a two-step process: first, the clinician estimates the
tumor’s extent as a basis for determining the therapeutic strategy; secondly, the
pathologist describes the tumor’s extent based on gross and microscopic features
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of a resected specimen (Greene and Sobin 2009). The post-surgical pathological
classification of TNM is designated as pTNM and is based on pre-treatment, surgical
and pathological information (Allen and MyiLibrary 2006) and is designated as
follows:

• pT: requires resection of the primary tumor or a biopsy to evaluate the highest pT
category or the extent of local tumor spread.

• pN: requires removal of lymph nodes. It is sufficient to evaluate the presence or
absence of regional node metastasis and also the highest pN category.

• pM: requires microscopic examination of distant metastases which is often not
available to the pathologist and therefore designated on clinical and/or radiological
grounds.

In some tumors, TNM classification uses parameters other than pure anatomy. For
example, in cutaneous melanoma staging, since 2002, the serum levels of LDH is
incorporated in the classification as shown in the above table (Table 20.1).

After determining the stage of the tumor, treatment options are discussed with the
patients according to the stage. For example, the European-consensus based inter-
disciplinary guideline recommends that sentinel lymph node dissection be routinely
offered as a staging procedure in patients with tumours more than 1 mm in thickness,
although there is no resultant survival benefit. Interferon-α treatment can be offered
to patients with more than 1.5 mm in thickness and stage II to III melanoma as an adju-
vant therapy, as this treatment increases the relapse-free survival (Garbe et al. 2010).
Anatomy continues to be a key prognostic factor for cancer, and anatomic-based
staging will remain critically important. However, the rapidly increasing specific
knowledge of cancer biology provides prognostic information that complements and
in some cases is more relevant than anatomic extent (Edge and Compton 2010).
Recently, new technology has lead to the development of new molecular biomarkers
(eg. HER2, c-Kit, EGF-Kras, etc.) that either predict the therapeutic benefit of target-
specific drug treatment or improve the forecasting of disease natural history over that
based on anatomic criteria alone (Epstein 2009). Because the main importance of
CS is for treatment and prognosis, it is expected that the staging system may become
less anatomical and more biological in the future, or more likely, a combination and
integration of both.
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Chapter 21
Diagnostic Immunohistochemistry in Tumor
Metastasis

Mohib Wadie Morcos

Immunohistochemistry (IHC) refers to the process of localizing antigens (e.g. pro-
teins) in cells of a tissue section using antibodies that bind specifically to these
antigens in bisological tissues (Ramos-Vara 2005). Immunohistochemical staining
is widely used in the diagnosis of abnormal cells such as those found in cancerous
tumors and in metastasis (Webster et al. 2009).

Specific molecular markers are often characteristic of particular cellular events
such as proliferation or cell death (apoptosis). Immunohistochemistry is a tool that
recognizes an antigen antibody reaction. This process comprises the antigen which
is present in the tumor tissues and the antibody represented by a glycoprotein.

Visualization of an antibody-antigen interaction can be, accomplished in a num-
ber of ways. Most commonly, an antibody is conjugated to an enzyme, such as a
peroxydase, that can catalyze a color producing reaction (Sternberger et al. 1970;
Sternberger and Sternberger 1986).

Antibodies may be of either monoclonal or polyclonal types (Colcher et al. 1981).
A monoclonal antibody is an antibody that is produced artificially from a single cell
clone and therefore consists of a single type of immunoglobulin exhibiting more
specificity. (Buchwalow and Böcker 2010; Colcher et al. 1981). Polyclonal antibod-
ies are multiple antibodies produced by different types of immune cells and are useful
in detecting proteins which have lower expression levels (Buchwalow and Böcker
2010).

There are two strategies used for the immunohistochemical detection of antigens
in tissues: the direct and indirect methods. In direct method, a labeled antibody
reacts directly with an antigen in tissue. In indirect method, an unlabelled primary
antibody reacts with an antigen in tissue, and a labeled secondary antibody reacts
with the primary antibody (Fig. 21.1). The direct method is quick, but the indirect
method is more sensitive (Buchwalow and Böcker 2010).
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Fig. 21.1 Schematic diagram
of an antigen-antibody
reaction. The antigen is
depicted in green, primary
antibody in black and
secondary antibody in orange

21.1 Diagnostic IHC markers

IHC is an excellent detection technique and has the advantage of being able to show
exactly where a given protein is located within the tissue examined. The technique
is widely used in diagnostic surgical pathology for typing tumors, and hence their
metastases (Schlom 1986).

Many antibodies can be used in cancer diagnosis, for example the E-Cadherin an-
tibody is used in breast surgical pathology. This antibody stains positive in ductal car-
cinomas whether invasive or in-situ, whereas it stains negative in lobular carcinomas,
whether invasive or in-situ (lobular neoplasia). Table 21.1 shows various antibodies
used for the diagnosis of tumors, and/or their metastases, in surgical pathology.

Tumor cell histology, morphology, and biological behavior are similar in the
original tumor site as well as in the metastatic site (Scartozzi et al. 2004). Moreover,
the same antigen-antibody reactions would take place in both primary tumor, or after
spreading at a distance. It is here where IHC plays an essential and efficient role in
the diagnosis of metastatic disease. The immune profile (antigens expressed) in a
metastatic tumor can direct a surgical pathologist to identify a primary site.

For example, if a lung nodule is found in a heavy-smoking male patient, and the
same patient has had a past history of colon cancer, this nodule could clinically be
either a primary lung lesion, or a metastasis of his already known colon cancer. Be-
sides histological morphology, IHC can help the surgical pathologist in identifying
and underlining whether this nodule is a primary or secondary (metastatic) lesion.
If the tumor cells express cytokeratin-7 and antigen TTF-1, then the lesion is a pri-
mary lung tumor as cytokeratin-7 is expressed in lung cancers together with antigen
TTF-1 (Rossi et al. 2004). However, if these markers were negative, whereas the
Cytokeratin-20 was positive, then a pathologist could concluded that the nodule is
a metastasis of the already known colon cancer, since Cytokeratin-20 is expressed
in the colorectal cancers (Ikeda et al. 2006). The same principle can be used with
various antibodies, in various types of lesions, to identify if a specific lesion is a
primitive or secondary (metastatic) lesion.
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Table 21.1 Antibodies directed against antigens in specific tumor tissue cells

Antibody Antigens targeted in specific tumor tissue cells

Carcinoembryonic antigen
(CEA)

Adenocarcinoma (Hansen et al. 1974)

Cytokeratins (Fig. 21.3) Carcinomas, and some sarcomas (Leader et al. 1986)
CD15 and CD 30 Hodgkin’s Lymphoma (Siebert et al. 1995)
Alpha Feto-protein (AFP) Yolk sac tumors (Dällenbach et al. 2006) & hepatocellular

carcinoma (Guzman et al. 2005)
CD117 (C-KIT) (Fig. 21.3) Gastrointestinal stromal tumors (GIST) (Miettinen and Lasota

2006)
CD10 Renal cell carcinoma (Martignoni et al. 2004) & acute

lymphoblastic leukemia (Gleissner et al. 2005)
Prostate specific antigen (PSA) Prostate adnenocarcinoma (Israeli et al. 1994)
CD20 B-Cell Lymphoma (Hans et al. 2004)
CD3 T-Cell Lymphoma, or reaction lymphocytes (Sigel and Hsi 2000)
Estrogen (Fig. 21.2a) &

Progesterone receptors
(ER & PR)

Breast (Molino et al.1995), and gynaecological (ovary, uterus)
tumors (van Doorn et al. 2000)

Her2/neu (Fig. 21.2b) Breast cancer (Ridolfi et al. 2000)
HMB45 & MART-1 Malignant Melanoma (Zubovits et al. 2004)
Protein S100 Nerve origin Tumors & Malignant Melanoma (Fernando et al.

1994)
Antigen TTF-1 Thyroid adenocarcinoma and adenocarcinoma of lung origin

(Ordóez 2000)
CD31 & CD34 Tumors of vascular origin (Yilmazer et al. 2007)
Smooth actin muscle & desmin Tumors of muscle origin (Riddle et al. 2010)

Fig. 21.2 (a) Positive estrogen receptors in invasive ductal carcinoma of breast. (b) Her2/neu
expression in same invasive ductal carcinoma of breast

21.2 IHC & Directing (Targeted) Therapy

A variety of molecular pathways are altered in cancers and some of these alterations
can be targeted in cancer therapy. Immunohistochemistry can be used to assess which
tumors are likely to respond to therapy, by detecting the presence or elevated levels
of specific molecular targets.
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Fig. 21.3 Various IHC antibodies being expressed in an ovarian tumor called dysgerminoma

21.3 Chemical Inhibitors

Tumors contain a number of potential intracellular targets. Many tumors are hormone
dependant. The presence of hormone receptors can be used to determine if a tumor
is potentially responsive to anti-hormonal therapy. One of the first such therapies
was the anti-estrogen receptor, Tamoxifen, used to treat breast cancer. Such hor-
mone receptors can be detected by immunohistochemistry (Jorgensen et al. 2007).
Imatinib, an intracellular tyrosine kinase inhibitor, was developed to treat chronic
myelogenous leukemia, a disease characterized by the formation of a specific abnor-
mal tyrosine kinase. Imatinib also has proven effective in tumors that express other
tyrosine kinases, most notably KIT. Most gastrointestinal stromal tumors (GIST)
express KIT (CD117), which can be detected by immunohistochemistry (Gold and
Dematteo 2006).

21.4 Monoclonal Antibodies

Many proteins known to be highly up-regulated in pathological states and detectable
by IHC can be potential targets for therapies utilizing monoclonal antibodies. For
example, the epidermal growth factor receptor (EGFR) family, of transmembrane
proteins. Of these, HER2/neu (also known as Erb-B2) was the first to be developed.
The molecule is highly expressed in a variety of cancer cell types, most notably
breast cancer. As such, antibodies against HER2/neu have been approved for clin-
ical treatment of breast cancer under the name Herceptin (Harari 2004). Similarly,
EGFR (HER-1) is over-expressed in a variety of cancers including head & neck
(Rastushny et al. 2009) and colorectal cancer (Bibeau et al. 2006). In this respect
the detection of EGFR expression performed in primary tumors for treatment with
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EGFR-targeted monoclonal antibodies is used to determine patients who may benefit
from therapeutic antibodies such as Erbitux (cetuximab) (Scartozzi et al. 2004).

In conclusion, IHC is an important and efficient technique that can be used by
clinicians and surgical pathologists to diagnose the type of tumor, and assess whether
it is a primary or a metastatic tumor. Additionaly it can be utilized in targeted therapy
leading to a better prognosis in cancer therapy.
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Chapter 22
Genomics and Proteomics

Dominique Fausto de Souza

22.1 Introduction

Understanding the specific changes that occur in the DNA, RNA, and proteins of
cancerous cells may allow for the identification of markers for early cancer detection,
prevention and in the development of molecular-targeted treatments. Gene expression
profiling is a powerful tool that allows for the evaluation of thousands of genes
simultaneously and can provide insight into the complex interactions between genes
in biologic specimen (Fingleton 2007). Proteomic tools have enabled the analysis of
thousands of proteins and the identification of disease-specific proteins (Hudler et al.
2010). These tools have the potential to lead to clinical applications such as improved
diagnosis, an understanding of the specific tumor behavior, prognosis indicators and
prediction of response to different treatment modalities.

Traditional diagnosis of disease relied on histopathologic characteristics and im-
munohistochemistry (IHC) analysis. These methods provide data that is broad and
imprecise for the individual tumor or patient. Gene expression profiling and pro-
teomics profiling hold great potential as new approaches to cancer diagnosis and
prognosis. The combination of genomics and proteomics has provided clinicians
with a unique opportunity to more precisely diagnose, classify, and detect malignant
disease; to understand and define the behavior of specific tumors; and to develop
direct and targeted therapy (Caprioli 2005).

Key Points Applications of Genomics and Proteomics

• Determination of the tissue-of-origin in metastatic tumors
• Knowledge of somatic mutations involved in the development and progression of

cancer
• New ways of classifying tumors
• Development of targeted therapy
• Prediction of tumor response and choice of therapy
• Prediction of recurrence
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22.2 Genomics

Since the mid 1990s, DNA microarray technology has been successfully applied to
the molecular profiling of tumors (Schena et al. 1995; DeRisi et al. 1996). This has
resulted in a much more detailed classification scheme, as well as in the identification
of the major genetic alterations and signaling pathways involved in cancer. Through
the use of powerful genomic technologies, it is now possible to identify the genetic
determinants that drive cancer formation and progression (Parikh et al. 2008; Jeffrey
et al. 2005).

22.2.1 Gene Expression Microarray

Microarray technology evolved from Northern (RNA-DNA hybridization) and
Southern (DNA-DNA hybridization) blotting, in which a small number of comple-
mentary DNA probes are used to detect RNA or DNA target sequences. Microarrays
consist of a small solid support surface with a glass slide, silicon chip, or nylon mem-
brane that has thousands of DNA probes imprinted directly to the support. RNA is
extracted from a tissue of interest, the RNA is reverse transcribed and converted into
complementary DNA (cDNA), labeled with a detectable fluorescent substance and
allowed to bind to the chip where any specific sequences will hybridize to comple-
mentary DNA sequences (Fig. 22.1). Detection of a fluorescent signal in a specific
location of the microarray indicates the presence of the transcript complementary to
that probe, and the relative fluorescent intensity is indicative of the level of expres-
sion for that particular gene. After the data are analyzed by bioinformatics software
that performs background correction and normalization, a gene expression profile
is obtained. In general, the greater the degree of hybridization and the more intense
the signal, a higher level of expression is implied (Chung et al 2007; Quackenbush
2006; Harris and McCromick 2010; Ramaswamy and Golub 2002).

Expression arrays have been applied to primary human samples to detect differ-
ences between normal tissues and cancers. The gene-expression profiling of breast
cancer has dramatically altered its classification and has identified at least four major
breast cancer phenotypes: luminal A, luminal B, HER 2 -like, and basal-like. The
expression-based classification of a tumor has prognostic and therapeutic implica-
tions, and can provide information that enhances the prediction of clinical outcome.
As an example, the luminal B subtype of breast cancer has an increase in expression
of genes associated with cell proliferation and has a poorer overall outcome than the
luminal A subtype (Ramaswamy and Perou 2003; Sorlie et al. 2003; Perou et al.
2000; Hu et al. 2006).

Obtaining adequate human RNA, typically from tissue, remains a limiting step
in many studies. Fresh frozen biospecimens are usually of a limited number and
size and once samples are fixed in formalin, the RNA is degraded and traditional
methods for gene expression profiling are not suitable. The cDNA mediated anneal-
ing, selection, extension, and ligation (DASL) assay have been developed for gene
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Fig. 22.1 Illustrates a gene expression microarray assay

expression profiling of this degraded RNA from formalin-fixed, paraffin-embedded
blocks (FFPE) (Waddell et al. 2010; Conway et al. 2009).

22.2.2 Fluorescence In Situ Hybridization

As a combined molecular and cytological approach, Fluorescence in situ hybridiza-
tion (FISH) detects nucleic acids sequences by a fluorescent probe that hybridizes
specifically to its complementary target sequence within the intact cell. Hydrogen
bonds are broken by heating, making the DNA single-stranded to allow the probes
to bind (hybridize) to the sequences to which they are homologous. This technique
allows specific genome regions to be visualized using a light microscope. It was often
used in methaphase spreads (M phase) and it is now used in interphase chromos-
somes (I phase) as well. The fact that FISH can evaluate nondividing (interphase)
nuclei, makes it unnecessary to evaluate the neoplastic cells in culture and allows
retrospective analysis of formalin-fixed, paraffin embedded tissue (Sugimura et al.
2010; Volpi and Bridger 2008; Van Prooijen-Knegt et al. 1982; Bayani and Squire
2004). One of the applications of FISH in cancer is to distinguish between entities
with similar histologic appearances such as soft tissue neoplasms, which harbor con-
sistent molecular alterations (Tanas and Goldblum 2009). One of the limitations in
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the use of FISH is that to detect a specific DNA sequence and structural aberrations,
the underlying genetic abnormalities need to be identified as a possibility by the
pathologist.

22.2.3 Quantitative Real-Time PCR

Polymerase chain reaction (PCR) methods are particularly valuable when amounts of
RNA are low, since the amplification step results in a more sensitive method. Quan-
titative Real-Time PCR (qRT-PCR) technology represents an important genomic
platform that has great sensitivity and specificity and that requires small amounts
of cells or tissue from which to isolate RNA (Chung et al. 2007; Weksberg et al.
2005). This technique is used to amplify and simultaneously quantify a targeted
DNA molecule. Relative quantification measures the fold difference in expression
when normalized to a control gene. Absolute quantification requires the construction
of a standard curve for each target; this standard curve is based on a serial dilution of
a sample with a known copy number. qRT-PCR is useful when validating the results
of microarrays or when measuring the expression of a particular set or family of
genes (Quackenbush 2002; Goswami et al. 2010).

22.2.4 MicroRNAs

MicroRNAs (miRNAs) are short RNA molecules of between 19 and 24 nucleotides
in length that have been linked with some types of cancer. miRNAs can regulate
the translation of hundreds of genes through sequence specific binding to messenger
RNA (mRNA) and can result in the inhibition of translation and/or degradation of
target mRNA. Since Calin et al described abnormalities in the expression levels
of miRNAs in B-cell chronic lymphocytic leukaemia (CLL) (Calin et al. 2002),
abnormal miRNA expression has been identified in many different types of human
cancers. MiRNAs can also be hybridized to microarrays, slides or chips to allow
the assessment of cancer-specific expression levels of hundreds of miRNAs in a
large number of samples; these assays are the most commonly used high-throughput
technique for miRNAs profiling in cancer (Lu et al. 2005; Couzin 2008).

22.2.5 Validation

Once a gene expression pattern is discovered, the next step is to validate the re-
sults. Microarray data is difficult to exchange due to the lack of standardization in
platform fabrication, assay protocols, and analysis methods. This presents an inter-
operability problem in bioinformatics. To facilitate comparisons between different
studies, various methods for standardizing data have been developed (Papadopoulos
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et al. 2006). The Minimum Information About a Microarray Experiment (MIAME)
(Quackenbush 2009; Brazma et al. 2001) is one such example. Other examples in-
clude the MicroArray Quality Control (MAQC) project (Shi et al. 2006) that is being
conducted by the US Food and Drug Administration (FDA) and the MicroArray and
Gene Expression group (Spellman et al. 2002).

22.2.6 Unknown Primary Cancer

Unknown primary cancer (UPC) accounts for 3–5 % of new cancer cases. Studies
have suggested that metastatic tumors often retain gene expression patterns of their
primary tumor (Ramaswamy et al. 2001; Tothill et al. 2005). Gene expression profil-
ing may therefore enable an accurate identification of the cancer of origin in patients
who have metastatic disease of an unknown primary tumor. Patient management
has the potential to be improved through the use of molecular tests for the identifi-
cation of the tissue-of-origin in metastatic tumors. Commercially available clinical
tests for this purpose are offered clinically (Monzon and koen 2010). For example,
the Pathwork Tissue of Origin Test (Monzon and koen 2010; Dumur et al. 2008)
can be used to test frozen and formalin-fixed, paraffin-embedded (FFPE) tissues
(http://www.accessdata.fda.gov/cdrh_docs/pdf9/K092967.pdf).

22.3 Technologies Driving Molecular Diagnosis

DNA sequencing is one of the technologies currently driving molecular diagnostics
to identify changes in genes and their expression in tumors. The following methods
use next-generation sequencing (Mardis 2008a; Mardis 2008b):

• Genome AnalyzerTM by Illumina (San Diego, CA, USA),
• 454 Genome SequencerTM FLX system from Roche (Branford, CT, USA),
• Life Technologies SOLiDTM (sequencing by oligonucleotide ligation and detec-

tion) platforms (Foster City, CA, USA).

Third-generation systems (Pushkarev et al. 2009) are being developed with clinical
utility in mind, such as:

• HeliScopeTM Platform (Helicos, Cambridge, MA, USA),
• SMRTTM DNA sequencing (Pacific Biosciences, Menlo Park, CA, USA),
• Sequencing from Complete Genomics (Mountain View, CA, USA) and
• Nanopore sequencing (Oxford Nanopore Technologies, Oxford, UK).

Selection systems for isolating different types of DNA for analysis, including exons,
regions of genetic association, and different types of RNA, such as microRNAs
(miRNAs), are available (Stratton 2008), including Agilent (Santa Clara, CA, USA)
and Roche NimbleGen (Madison, WI, USA).

The Cancer Genome Atlas (TCGA) is a project established by The National Insti-
tutes of Health (NIH), to generate comprehensive multi-dimensional maps of the key
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genomic changes in major types and subtypes of cancer (Stratton et al. 2009). This
catalog serves as a powerful resource for a new generation of research aimed at de-
veloping better strategies for diagnosing, treating and preventing each type of cancer.
Following the success of a pilot phase initiated in 2006, the National Cancer Insti-
tute (NCI) and National Human Genome Research Institute (NHGRI) announced in
September 2009 that TCGA will produce comprehensive genomic maps of at least
20 types of cancer over the next 5 years (http://cancergenome.nih.gov).

A central aim of cancer research has been to identify the mutated genes involved in
cell proliferation, differentiation and death. So far, some 300 cancer genes have been
reported, more than 1 % of all the genes in the human genome. Mutations that have
been discovered so far are summarized in the Catalogue of Somatic Mutations In
Cancer (COSMIC) (http://www.sanger.ac.uk/genetics/CGP/cosmic) (Pleasance et al.
2010). The Cancer Gene Census (Futreal et al. 2004) is an ongoing effort to catalogue
those genes for which mutations have been causally implicated in cancer and this
census is updated regularly (http://www.sanger.ac.uk/genetics/CGP/Census). The
importance of this work can be exemplified with recent studies that were done with
the protein kinase gene family. The protein kinase gene family is the most common
domain that is encoded by cancer genes. Imatinib is a drug that inhibits several
protein kinases, and has proved remarkably effective in treating certain types of
cancers in which these genes are mutated and activated (Harris and McCromick
2010; Greenman et al. 2007).

Genome-Wide Association Studies (GWAS) is another technology driver that has
led to novel insights into the biology of cancer and other diseases. This project com-
pares most of the genes of different individuals to see how much the genes vary from
individual to individual (Hirschhorn 2009). To conduct GWAS researchers analyze
the DNA of two groups of participants: people with the disease being studied and
similar people without the disease. Each person’s complete set of DNA, or genome, is
placed on tiny chips and scanned on automated laboratory machines, which quickly
survey each participant’s genome for strategically selected markers of genetic vari-
ation, which are called single nucleotide polymorphisms (SNPs) (Hirschhorn 2009;
Manolio et al. 2008). The common alleles conferring low risk that have been iden-
tified by GWAS have not yet been linked to outcome (only susceptibility), and they
do not account for all of the genetic risk of the cancers in question (Altshuler et al.
2008). The utility of screening at-risk individuals for mutations in genes known to
confer a much higher increase in relative risk of cancer predisposition can be exem-
plified by measuring mutations in BRCA1 and BRCA2, which confer a considerable
increase in the risk of breast and ovarian cancer in women. The potential to look for
rare mutant alleles is alluring and will probably lead to the identification of genes
that can be of diagnostic utility (Foulkes 2008; Turnbull et al. 2010).

22.4 Proteomics

Proteomics is defined as the simultaneous analysis of all the proteins expressed by
the human genome, referred to as the human proteome. As proteins represent the
vast majority of biologically active molecules responsible for cellular function, the
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Fig. 22.2 Illustrates two different proteomics approaches

field of proteomics promises to expand our understanding of the molecular basis of
diseases such as cancer (Alaiya et al. 2005). Proteomics platforms are often used
for protein profiling, protein identification and protein quantification (Parikh et al.
2008). An important goal when studying the protein expression between samples is to
establish specific proteomic signatures that discriminate between disease states, and
that can perhaps differentiate metastatic from non-metastatic patients in a subclinical
stage of the disease.

Proteomics usually begins with the separation of proteins from complex mixtures.
The most commonly used proteomics approaches are: “top down” and “bottom up”
(“shotgun”) (Fig. 22.2). In top down proteomics intact protein molecules expressed
by cells are detected by two-dimensional gel electrophoresis (2DE) and identified
(Henzel et al. 1993). The isolated protein is then submitted to enzymatic (e.g. trypsin)
digestion to generate peptides. Then matrix-assisted laser desorption/ionization-
time-of-flight mass spectrometry (MALDI-TOF MS) may be used to produce peptide
mass maps (Mann et al. 1993; Mann et al. 2001; Yates et al. 1993).

Shotgun proteomics refers to the use of bottom-up proteomics techniques in which
the protein in a biological sample mixture is first digested to small peptides prior
to separation by multidimensional liquid chromatography (LC) and mass spectrom-
etry (MS) analysis with an electrospray ionization mass spectrometer (ESI-MS)
(Motoyama and Yates 2008; Kubota et al. 2009).

22.4.1 Gel Electrophoresis

Gel electrophoresis has been used for many years as a protein-separation technique
based on molecular weight (Fig. 22.3). Prior to the advent of serum proteomics,
two-dimensional gel electrophoresis (2DE) coupled with mass spectrometric (MS)
based protein identification was the classic tool of proteomic analysis. Although
two-dimensional gel electrophoresis (2DE) has been used in protein research for
decades, problems with quantification of protein expression differences as well as the
need for protein characterization and identification have kept it from the forefront of
biomarker discovery research even when combined with mass spectrometry (Iwadate
2008; Wong et al. 2009; Hanash 2003).

Difference in gel electrophoresis (DIGE) is a quantitative extension of 2DE
and allows multiple variables to be quantitatively compared simultaneously. This
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Fig. 22.3 Illustrates a proteomic platform composed of two-dimensional gel electrophoresis (2DE)
coupled with matrix-assisted laser desorption/ionization (MALDI)

technology allows for separation of thousands of proteins first by charge using iso-
electric focusing in one dimension and then by molecular mass in the other. To
compare two cell types directly, protein extracts from two samples (e.g. cancer and
healthy cells) can be labeled with fluorescent dyes. Differentially expressed proteins
of interest can be identified by alterations in the ratios of signals. Proteins of interest
then are excised from the gels and analyzed using mass spectrometry (MS) and pro-
tein databases to identify statistically significant candidate protein matches (Lilley
and Friedman 2004; Minden et al. 2009).

22.4.2 Mass Spectrometry

MS has rapidly emerged as the technique of choice for the analysis of proteins and
peptides. Mass spectrometers accurately measure the mass-to-charge (m/z) ratios of
ionizable compounds. The ionization methods most commonly used for analysis of
peptides and proteins are electrospray ionization (ESI), matrix-assisted laser desorp-
tion/ionization (MALDI) and surface-enhanced laser desorption/ionization (SELDI).
These ionization sources are often coupled to time-of-flight (TOF) or quadrupole an-
alyzers (Rossenbalt et al. 2004). The standardization of mass spectrometers across
laboratories is essential for the reproducibility of diagnostic tests.
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MALDI and SELDI are similar in that both involve the spotting of biological
samples onto a solid surface, sometimes referred to as a probe, or for SELDI a chip
(Roboz 2005). After the sample is applied to the probe or chip array, the surface
is washed to remove unbound proteins and impurities. A matrix is then applied to
the chip surface and subsequently irradiated, which results in the ionization and
desorption of the proteins after a laser pulse (Fig. 22.3). This technique has been
modified so that laser desorption can be carried out without the addition of a chemical
matrix (Mann et al. 2001). The difference between SELDI and MALDI is that the
SELDI probes employ selective surfaces to capture only a fraction of proteins from
a complex mixture in biological samples (Merchant and Weinberger 2000). Surfaces
with diverse affinities for different proteins of interest can be generated to carry out
on-probe chromatography, including hydrophobicity, anionic or cationic charge, and
metal affinity (Simpkins et al. 2005).

ESI-MS is used to analyze peptides directly from liquid samples. In this technique,
a peptide solution is forced through a small channel and positively charged to create
an ion gas cloud (spray). Varying the flow rate through the channel changes the size
of the droplets that are created and, thus, the size of ions produced. The mass-to-
charge ratio information then is obtained and the sample can be analyzed. The fact
that ESI produces gas clouds from a liquid solution makes it highly compatible with
LC (Fenn et al. 1989).

The ionized gaseous molecules then are accelerated through a voltage tunnel,
the time-of-flight mass spectrometer (TOF-MS) region of the instrument, which
measures the mass-to-charge (m/z) of each protein, based on the time requirement
for the ions to travel down the vacuum tube towards an oppositely charged electrode
called the detector (Cornish and Cotter 1993). Ions reach the detector at different
times depending on their weight; heavier ones take longer (Fig. 22.4). Each ion that
strikes the electrode is registered as a component of the data spectrum that emerges
from the analysis. The output generated from the TOF-MS analysis is a series of peaks
showing the relative abundance versus the molecular weights (MW) of the detected
proteins. Advantages of this approach include simplicity of sample preparation and
the small amount of sample needed for analysis of complex mixtures, such as serum
and whole tissues (Jr et al. 1999).

Proteins secreted by cancer cells are attractive candidates for biomarkers. As an
approach to serum biomarker discovery, detecting proteomic expression in cancer
has been developed as a means to identify novel markers when comparing samples
from patients with disease with those from healthy subjects (Simpkins et al. 2005;
Chaerkady and Pandey 2008). It has emerged as a high-throughput tool for detection
and differentiation of several cancer types (Abramovitz and Leyland-Jones 2006).
Theoretically, such a method is well suited for biomarker discovery because of rapid
analysis, and minimal sample requirement. Together with a suite of bioinformat-
ics software, proteomics platforms are capable to identifying differences in protein
expression profiles of two or more distinct samples (Rosenblatt et al. 2004).

However, the application of 2DE-MS and protein microarrays, as well as DNA
microarray technology to clinical samples requires the direct acquisition of patient
tissue for the extraction of proteins or nucleic acids. Proteomic pattern analysis
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Fig. 22.4 Mass spectrometry technique coupled to time-of-flight (TOF) analyzer

requires only relatively small amounts of easily accessible serum and body fluids for
protein detection. Because the procedures are simple, inexpensive, and minimally
invasive, proteomic profiling is an emerging technology that is increasingly employed
and its ease promises to translate into routine clinical practice. It can be applied to
screen clinical samples for early detection of disease, for prognosis, measurement
of therapeutic toxicity and therapeutic monitoring of cancers, and for the discovery
of new drug targets for therapy (Petricoin et al. 2002a). For example, recent studies
on prostate cancer using SELDI-MS and other techniques were able to detect the
presence of cancer with excellent sensitivity (82–100 %) and specificity (67–88 %),
potentially avoiding the need for prostate biopsies in a significant number of patients
who have mildly elevated prostate-specific antigen (Ornstein et al. 2004; Wang et al.
2005; Adam et al. 2002; Petricoin et al. 2002b). Although these results are promising,
additional studies are needed to confirm these results.

Finally, genomics and proteomics are advancing the goal of personalized medicine
where each and every patient will receive individualized therapy based upon the key
signaling pathways of their cancer cells (Harris and McCormick 2010; Gonzalez-
Angulo et al. 2010).
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Chapter 23
The Role of Chemotherapy for Metastatic
Disease

Catalin Mihalcioiu

23.1 Introduction

Advances in understanding the molecular and biochemical changes underlying the
metastatic disease resulted in development of promising chemotherapeutic agents.
Treatment of metastatic disease has improved significantly with the addition of drugs
that affect specific processes like nucleotide bases, DNA (synthesis, degradation and
repair) as well as microtubules.

A. Alkylating agents These agents have antitumor and mutagenic properties by in-
terfering with DNA synthesis and ultimately with cell division. They act through
formation of DNA adducts that lead to somatic point mutations or cell death. Several
types of alkylating agents used in chemotherapy treatments are nitrogen mustards
derivatives, ethyleneimine, alkyl sulfonates, nitrosoureas and the triazenes. Other
agents in this category include platinum complexes such as cisplatin and carbo-
platin. Platinating agents act by a similar mechanism as the alkylating agents forming
covalent adducts with DNA (Huitema et al. 2000) (Table 23.1).

B. Antimetabolites These agents are similar in structure with DNA base pairs. These
compounds compete with the metabolites in RNA and DNA synthesis resulting in
decreased cancer cell proliferation (Kaye 1998). Several agents in this class are
currently in use for the treatment of colorectal, breast, head and neck and other
cancers (Table 23.2).

C. Microtubule-targeting agents These agents function by disrupting microtubule
polymerization or hyper-stabilizing of the microtubule polymers. They interfere with
microtubular network and induce mitotic arrest in cancer cells (Jordan and Kamath
2007) (Table 23.3).

D. Topoisomerase inhibitors Topoisomerase inhibitors disrupt key enzymes, such
as topoisomerases I and II which are involved in the control of replicative DNA
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Table 23.1 Alkylating agents

Alkylating agents Names of the drugs

Mustard gas derivatives (Goodman et al. 1946) Mechlorethamine, Cyclophosphamide,
Chlorambucil, Melphalan, and Ifosfamide

Ethylenimines (Maanen et al. 2000) Thiotepa and Hexamethylmelamine
Hydrazines and Triazines (Marchesi et al. 2007) Altretamine, Procarbazine, Dacarbazine

and Temozolomide
Nitrosureas (Hurley 2002) Carmustine, Lomustine and Streptozocin
Platinum salts (Jakupec et al. 2003; Olszewski Carboplatin, Cisplatin, and Oxaliplatin,

and Hamilton 2010) Satraplatin, Picoplatin and Triplatin

Table 23.2 Antimetabolites

Antimetabolites Name of the drugs

Folate antagonists (Matherly et al. 2007) Methotrexate, Pemetrexed (Alimta®)
Purine antagonists (Szyf et al. 2005) 6-Mercaptopurine, Dacarbazine, Fludarabine
Pyrimidine antagonists (Maring et al. 2005) 5-fluorouracil or 5-FU, Arabinosylcytosine,

Capecitabine (Xeloda), Gemcitabine

synthesis. These agents induce breaks in single and double strand DNA, disrupting
DNA ligation and result in apoptosis and cell death (Denny 2004) (Table 23.4).

The following section aims to identify and disscuss the evidence of chemother-
apeutic options in the biological context of metastatic melanoma and breast cancer
metastatic disease.

23.2 Treatment of Metastatic Melanoma

At present the survival in metastatic melanoma is influenced by several tumor char-
acteristics such as the extent and progression pace of the disease. Favourable tumor
predictors include: good performance status (ECOG 0 or 1), normal LDH (marker
of tumor burden) and absence of visceral disease (liver, bone and brain metastases)
(Blach and Peters 1993) (Table 23.5).

The median survival of metastatic melanoma is ranging from 4–6 months for pa-
tients belonging to unfavourable prognostic group and from 10–12 months in patients
with favourable tumor characteristics. Overall, the median survival is expected to be
6–9 months with a 5 year survival of 1–2 %, mainly from patients who achieved a
complete response (CR) with treatment (Anderson et al. 1995).

In the last 40 years most of the chemotherapeutic agents that have been discovered
have been tested for efficacy against melanoma in vitro and in vivo with few encour-
aging results. The relative lack of active treatment is explained by natural resistance
mechanisms of this tumor. As a result there is no widely accepted standard of care
for the treatment of metastatic melanoma. Chemotherapeutic options include: single
agent cytotoxic chemotherapy, combination chemotherapy or biochemotherapy.
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Table 23.3 Microtubule-
targeting agents. (Carlson
2008; Harrison et al. 2009)

Microtubule-targeting agents Name of the drugs

Vinca alkaloids Vinblastine, Vincristine,
Vinorelbine and Vindesine

Taxanes Paclitaxel (Taxol),
Docetaxel (Taxotere)

Epothilones Ixabepilone (Ixempra)

23.2.1 Single Agent Chemotherapy

Accepted single chemotherapeutic agents that proved to have antitumor effect
in melanoma include: dacarbazine (DTIC), temozolomide, nitrosourea, platinum
analogs and tubular toxins (Table 23.6).

Dacarbazine remains the most widely tested single agent since its discovery in
1970. This is due in part to the perception that DTIC is considered one of the most ac-
tive cytotoxic agent in metastatic melanoma. Dacarbazine (DTIC) is the only single-
agent approved by FDA for treating metastatic melanoma. This drug yields 20 %
objective response rate with median response duration of 5–6 months and complete
response rates of 5 % with one forth of CR experiencing long term survival (Serrone
et al. 2000). The patients who are proned to respond to DTIC are more likely to have
the disease limited to soft tissue and lung. DTIC is administered intravenously, every
3–4 weeks, dose and schedule varies depending on personal preference, logistics and
patient characteristics. The typical dose and schedule include 850–1000 mg/m2 day
1 every 3 weeks, 200–250 mg/m2 day 1–5 every 3 weeks, or 4.5 mg/kg/day on day
1–10 every 4 weeks. The main toxicity is nausea and vomiting. Bone marrow sup-
pression is modest; fatigue is minimal allowing patients to enjoy relatively normal
function during treatment.

Temozolomide is a novel oral alkylating agent of the imidazotetrazine series
(Crosby et al. 2000). It is structurally related to DTIC; both agents require conversion
to (monomethyl triazeno imidazole carboxamide) MTIC, for their clinical activity.
Whereas DTIC is metabolically activated in the liver, temozolomide undergoes de-
carboxylation and ring opening to form MTIC which is additionally fragmented to the
highly reactive methyldiazonium ion that alkylates DNA. It remains stable under acid
conditions providing an important basis of targeted therapy directed towards tumors
such as gliomas and melanoma. It has the advantage of good oral bioavailability and
blood brain barrier penetration. The most utilized dose schedule for temozolomide
is 200 mg/m2/day × 5 days every 4 weeks or 150 mg/m2/day × 5 days for elderly
patients with poor bone marrow reserve or those who received prior radiotherapy or

Table 23.4 Topoisomerase inhibitors

Topoisomerase inhibitors Name of the drugs

Topoisomerase I inhibitors (Ewesuedo and Ratain 1997) Irinotecan, Topotecan, Camptothecine
Topoisomerase II inhibitors (Larsen et al. 2003) Etoposide, Suramine
Anthracyclines (Sessa et al. 2007) Doxorubicin, Nemorubicin
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Table 23.5 Average survival
in months with metastatic
melanoma

Site alone Other sites

Skin, soft tissue, 7.2 5.0
lymph nodes

Lung 11.4 4.0
Brain 5.0 1.4
Liver 2.4 2.0
Bone 6.0 4.0
Other 2.2 2.0
Widespread 2.4 2.4

chemotherapy. Other schedules include 75 mg/m2 daily for 6–7 consecutive weeks
or alternating weeks in an attempt to overcome resistance (circumvent the DNA re-
pair process) (Hwu et al. 2002; Danson and Middleton 2001; Brock et al. 1998).
The most significant side effects are headache, constipation, fatigue and decrease
appetite during the 5 days of administration. Myelotoxicity is mild and mainly in the
elderly or post radiotherapy.

A phase II clinical study, showed objective response in 21 % of patients with
metastatic melanoma (brain metastases allowed), treated with temozolamide includ-
ing 5 % CR (Bleehen et al. 1995). Clinical trial data showed no significant differences
between the efficacy of the agent temozolomide and DTIC in patients with advanced
metastatic melanoma(Middleton et al. 2000; Atkins 1997). A phase III study compar-
ing temozolomide to DTIC, showed a progression free survival (PFS) of 1.9 months
versus 1.5 months in favour of temozolomide, but no significant change in response
rates (13.5 vs 12.1 %) or overall surviva (OS)l (7.7 vs 6.4 months). However, there
was less incidence of brain metastases in temozolamide treated patients (Middleton
et al. 2000). Because of lack of significant superiority to DTIC, temozolomide has
not been approved by FDA in the treatment of metastatic melanoma.

Nitrosoureas agents are represented by carmustine (BCNU), lomustine (CCNU)
and fotemustine. Both BCNU and CCNU showed response rates of 13–18 % in ad-
vanced cutaneous melanoma (Anderson et al. 1995; Ahmann et al. 1974). Toxicities
are more severe specially fatigue, alopecia and thrombocytopenia. The proposed pro-
posed mechanism of resistance is endogenous production of glutathione (Gajewski
2004).

Table 23.6 Single drug activity in metastatic melanoma

Drug No. patients Overall response %

Fotemustine (Jacquillat et al. 1990b) 153 24
Dacarbazine (Anderson et al. 1995; Hill et al. 1984) 1,936 20
Carmustine (Anderson et al. 1995; Wolchok et al. 2003) 122 18
Temozolomide (Su et al. 2004; Middleton et al. 2000) 200 17
Cisplatin (Al-Sarraf et al. 1982; Schilcher et al. 1984) 114 15
Paclitaxel (Wood et al. 1995) 34 15
Docetaxel (Aamdal et al. 1994; Bedikian et al. 1995) 43 14
Lomustine (Anderson et al. 1995; Ahmann et al. 1974) 270 13
Vinblastine (Atkins 1997) 62 13
Carboplatinum (Atkins 1997) 30 16
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Fotemustine (FTMU) a novel chloroethyl nitrosourea, has shown consistent re-
sponse rates of 20–24 %. Dose of administration as single agent is 100 mg/m2 on day
1, 8 and 15. Mechanism of action is rapid alkylation of thioenzimes involved in DNA
synthesis (Avril et al. 2004) and because of the ability to cross the blood brain barrier
has activity on cerebral metastases (Jacquillat et al. 1990a). Fotemustine is well tol-
erated with myelosuppression as the main side-effect and modest extra-hematologic
toxicity. When compared with DTIC fotemustine yielded RR in first-line treatment
of disseminated melanoma (Avril et al. 2004)

Platinum analogs represented by cisplatin and carboplatin are used for the treat-
ment of metastatic melanoma. Response rates range from 17–29 % for cisplatin when
used as a single agent and the results for carboplatin appear to be similar. Carboplatin
compared with cisplatin has shown tolerable renal, neural and ototoxic effects, and
reversible myelosuppression (Balch and Peters 1993; Evans et al. 1987; Lens and
Eisen 2003).

Microtubule toxins such as taxanes (paclitaxel and docetaxel) and vinca alkaloids
(vinblastin) interfere with microtubule disassembly and have shown modest activ-
ity in metastatic melanoma. A phase II study using paclitaxel produced an overall
response rate of 13 % (Einzig et al. 1991; Legha et al. 1990). Doses of 150 mg/m2

weekly for 6 weeks out of 8 weeks were well tolerated. Similar results were demon-
strated in phase II studies using docetaxel (Bedikian et al. 1995; Einzig et al. 1996).
Vinca alkaloids have limited activity on their own and have been used in combination
regimens (Bedikian et al. 2010).

New agents like epothilones, a nontaxane tubuline polymerization agent showed
no clinical activity in newly diagnosed and pretreated metastatic melanoma (Ott et al.
2010).

23.2.2 Combination Chemotherapy

Retrospective analysis comparing chemotherapy to historical controls suggested a
small benefit with 30–50 % response rates (RR). Subsequent prospective phase III
studies were undertaken comparing combination chemotherapy to DTIC as a control
arm. These studies showed a RR of 18–24 % for combination therapy and 10–11 %
for DTIC alone with no significant difference in median survival (Lens and Eisen
2003; Chapman et al. 1999).

Some of the chemotherapeutic combinations frequently used are: Dartmouth regi-
men, CVD, FDV and BHD (Atallah and Flaherty 2005; Rixe et al. 1995) (Table 23.7).

Tamoxifen was used as part of combination therapy since 1985, based on sugges-
tion from small phase II studies showing a 50 % RR (McClay et al. 1992). However,
the lack of benefit from the addition of Tamoxifen to chemotherapy was proved by
Rusthoven and Folkson in phase III studies. A recent meta-analysis including nine
randomized controlled trials showed that chemotherapies with tamoxifen improved
overall and partial response, but do not improve mortality in 1 year in advanced
melanoma (Beguerie et al. 2010; Rusthoven 1998; Falkson et al. 1998).
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Table 23.7 Chemotherapy combination regimens in metastatic malignant melanoma

Dartmouth regimen Cisplatin 25 mg/m2 day 1–3, Q3–4 week, DTIC 220 mg/m2 day 1–3,
Q3–4 week, BCNU 150 mg/m2 day 1, Q6–8 week

CVD Cisplatin 20 mg/m2 day 1–4, Q3 week,
Vinblastine 2 mg/m2 day 1–4, Q3 week,
DTIC 800 mg/m2 day 1, Q3 week

FDV Fotemustine, DTIC, Vindesine
BHD BCNU 150 mg/m2 day 1, Q8 weeks, Q4 weeks,

Hydroxyurea 1500 mg/m2 day 1–5, Q4 weeks
DTIC 150 mg/m2 day 1–5

Although combination chemotherapy showed higher RR than single agent
chemotherapy no benefit in median survival rates was observed when compared
to single agent DTIC (Chapman et al. 1999).

23.2.3 Biochemotherapy

Biochemotherapy is based on synergistic interaction between immunotherapy and
combination chemotherapy (McDermott et al. 2000; Atkins et al. 2002; González
Astorga et al. 2009).

Immunotherapeutic approaches that are currently evaluated in metastatic
melanoma include interferon-alpha (IFN) and interleukin-2 (IL-2). The immune-
modulating agent IFN-α is approved by the FDA for the adjuvant treatment of
high-risk melanoma patients. Due to the lack of impact on overall survival OS and
toxicity profile this type of treatment is not considered as a standard therapeutic
option as a single agent (Seetharamu et al. 2009). With the exception of a small
study (Pyrhonen et al. 1992), the combination of chemotherapy with INF-α resulted
in similar RR and survival rates when compared to chemotherapy alone (Schultz
et al. 1997; Feun et al. 1995). On the other hand, several phase III studies com-
paring DTIC single agent to the combination DTIC-IFN-α showed superiority for
clinical response to DTIC alone (Falkson et al. 1998; González Astorga et al. 2009;
Kirkwood et al. 1990; Young et al. 2001).

Interleukin-2 (IL-2) is a cytokine produced by CD4-positive T lymphocytes. Im-
munotherapy with high- dose IL-2 is associated with an objective response rate of
5–27 % with complete responses in 0–4 % of patients (Rosenberg et al. 1993; Sparano
et al. 1993).

In an attempt to further improve response and survival, several investigators
used combination chemotherapy concomitantly with combination immunotherapy
(IFN-α and IL-2) (Garbe et al. 2011). Most of phase III clinical trials compared the
efficacy of the combination chemotherapy with IFN-α and IL-2 as the experimental
arm and a control arm varying from IFN-α/IL-2 to CVD alone or cisplatin-IL-2.
Those studies showed significantly higher RR but no significant OS. However, these
type of combinations were associated with hemodynamic and myelosuppressive
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toxic effects (Seetharamu et al. 2009; Rosenberg et al. 1999; Eton et al. 2002; Atkins
et al. 2008). Moreover, several European studies showed similar results (Keilholz
et al. 1997; Keilholz et al. 2005; Dorval et al. 1999). A meta-analysis comparing
single-agent DTIC versus combination chemotherapy with or without immunother-
apy revealed that biochemotherapy was not associated with a statistically significant
survival benefit (Hofmann et al. 2007; Hamm et al. 2008). Due to the lack of durable
response in terms of OS and a high toxicity profile, biochemotherapy cannot be
considered as standard treatment for advanced metastatic melanoma.

Other approaches used for immunotherapy in cutaneous melanoma include can-
cer vaccines that stimulate the response of the immune system against tumor cells
(Jain 2010). Tumor-derived vaccines are based on antigens expressed on a spe-
cific to the tumor. (MAGE)-A3 is tumor-antigen-based vaccine for melanoma. This
vaccine was evaluated in phase II clinical trial and was shown to induce specific
T-cell responses and clinical objective responses in metastatic melanoma (Kruit et al.
2008). In a randomized phase III clinical trial a peptide vaccine, gp100:209–217
(200M), in combination with high dose IL-2 was reported to improve response rates
and progression-free survival for patients with advanced melanoma (Schwartzen-
truber et al. 2009). Intratumoral injection of a virus vector encoding granulocyte
monocyte colony-stimulating factor (GM-CSF) induced 26 % response rate in a
phase II trial in patients with metastatic melanoma (Senzer et al. 2009). A different
vaccine, Oncophage (Vitespen, Antigenics) is based on autologous peptides isolated
from patient tumor in combination with the heat shock protein 96 (gp96) (Wood and
Mulders 2009). An open-labeled trial of Vitespen versus chemotherapy was tested
in patients with stage III or stage IV metastatic melanoma. The administration of the
vaccine was well tolerated but no statistical differences in OS were observed (Testori
et al. 2008). Melacine vaccine (Corixa) is based on tumor lysates combined with
monophosphoryl lipid A and mycobacterial cell wall skeleton. A randomized Phase
III trial of Melacine combined with high-dose IFN-α2b in malignant melanoma had
similar OS when compared with IFN-α2b alone (Mitchell et al. 2007).

The immune response initiated by a vaccine may have potential side effects and
multiple vaccinations may induce immunotolerance (Faries et al. 2009; Eggermont
2010). Future trials are warranted to assess the efficacy of cancer vaccine therapy.

A different strategy involves antibodies against cytotoxic T lymphocytes (anti-
CTLA-4). Two human IgG monoclonal antibodies that block the interaction between
B7 and CTLA-4, ipilimumab (MDX-010, Bristol-Myers Squibb) and tremelimumab
(CP-675,206), have been tested in phase II/III trials (Eggermont 2010).

Data from Phase II clinical trials suggest that Ipilimumab at a dose of 10 mg/kg
was well tolerated and suggest long term survival effects (Wolchok et al. 2010).
Another phase III trial of ipilimumab alone or in combination with a gp100 peptide
vaccine was evaluated in 676 patients with unresectable stage III or IV melanoma. An
increase in OS (10.0 months in the ipilimumab arm as compared with 6.4 months
among patients receiving gp100 was reported. Treatment with ipilimumab was re-
ported to have grade 3 or 4 immune-related adverse events including death (Hodi
et al. 2010). Ongoing clinical trials will assess the effect of this therapy in comparison
with dacarbazine.
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Tremelimumab (CP-675, 206, Pfizer) showed promising clinical activity and
was generally well tolerated as single-agent in patients with metastatic melanoma
(Camacho et al. 2009). In a phase II clinical study the OS was of 21 % (16 par-
tial responses and 35 stable disease), and median overall survival was 10.0 months
(Kirkwood et al. 2010). Trials comparing tremelimumab with dacarbazine and other
immunotherapeutic strategies are in progress (Ribas et al. 2009).

CTLA4-blocking therapy resulted in objective clinical responses and represents
a promising approach to the immunotherapy of cancer. These results demand further
validation to identify of treatment clinical responders.

Key Points

• Single agent chemotherapy remains the back bone treatment in metastatic
melanoma.

• Single agent Dacarbazine, the only FDA approved drug, has produced response
rates of 10–20 % with complete responses occurring in about 5 % of patients.

• Temozolomide has the advantage of oral administration, acceptable toxicity and
good CNS penetration. It is the preferred choice for elderly patients with brain
metastases.

• Taxanes are rarely used as first line therapy and have been incorporated as a control
arm in some of the recent clinical trials.

• Fotemustine seems to be an active agent, but did not gain in popularity in part due
to increased toxicity.

• Cisplatin has a modest clinical activity as a single agent and has been used as part
of combination regimens.

• Biochemotherapy for metastatic melanoma is associated with significant toxicity.
• Combination chemotherapy and biochemotherapy has not shown any advantage

in response rate or overall survival when compared to DTIC.
• Immunotherapy with high dose IL-2 is associated with durable responses in a

small percentage of patients.
• New immunotherapy strategies such as vaccines and CTLA4-blocking therapy

resulted in objective clinical responses and represent a promising therapeutic
approach.

23.2.4 Summary

The survival of patients with metastatic melanoma is influenced by the extent and
the pace of the disease rather than the type of therapeutic interventions. Therefore,
an adequate patient selection is important in making treatment decisions. Patients
to be considered for treatment with chemotherapy should have a good performance
status (ECOG PS 0-1), normal LDH, no evidence of liver, bone or brain metastases
and no underline medical conditions that will increase toxicity of chemotherapy.
Chemotherapy in metastatic melanoma is associated with low response rate and only
a subgroup of patients will achieve a complete response with chemotherapy. Due
to the lack of phase III clinical trials showing a survival benefit from any type of
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chemotherapy over best supportive care, there is no standard chemotherapy regimen
accepted for the treatment of metastatic melanoma.

23.3 Treatment of metastatic breast cancer

Despite significant improvement in treatment, metastatic breast cancer remains an
incurable disease and is typically associated with a median survival of 18–24 month
(Miller and Sledge 1999). The goal of systemic therapy include: prolongation of
survival, palliation of symptoms and improvement in quality of life. A single institu-
tion (MD Anderson) retrospective study reported the results of 1581 patients treated
with doxorubicin. The data showed a complete response (CR) of 17 % and a partial
response (PR) of 48 %, with an OS of 41.8 month for the CR group and 24.6 months
for the PR group (Sparano 2002).

Tumor heterogeneity is a constant challenge in selecting more appropriate ther-
apeutic interventions that will further improve the clinical outcome in patients with
breast cancer. The use of molecular pathology based on gene signature allowed a
more precise classification and a better predictive and prognostic outcome to dif-
ferent therapeutic interventions in breast cancer (Eichhorn and Baselga 2010). The
choice of first line therapy is becoming increasingly complex and depends to a great
extent on tumor molecular signature, patient characteristics and physician prefer-
ence. Principles of using chemotherapy for patients with metastatic breast cancer are
influenced by:

1. Clinical information

– Type of presentation: Progression following adjuvant treatment versus
metastatic disease at the initial presentation

– Age and menopausal status
– Medical comorbidities and general performance status

2. Pathological information

– Type of tumor: invasive ductal (IDC) versus invasive lobular carcinoma (ILC)
– Proliferative index suggested by tumor grade and K67 index
– Receptor status for: ER, PR, Her2neu

3. Molecular signature

– Triple negative (ER-, PR-, Her2-)
– Basal-like, BRCA1 and Claudin-low (stem cell)
– Her2 positive
– Luminal A (ER + and low grade) and luminal B (ER + and high grade)

Patients progressing post adjuvant antracycline-taxane regimens, usually receive sin-
gle agent chemotherapy for metastatic disease. Those who presented with metastatic
disease at the initial diagnosis of breast cancer are more likely to receive 2nd and/or
3rd generation combination chemotherapy (anthracycline and taxane based). Patients
younger than 35 years old tend to be triple negative, high grade and benefit more
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from chemotherapy. Advanced age, 70 years old and more, tend to be strongly ER
positive, low or intermediate proliferative index and benefit more from antiestrogen
therapy. General performance status and medical comorbidities will influence the
choice or the decision to give chemotherapy.

In adjuvant setting, for stage I and II ER positive breast cancer, the clinical benefit
of chemotherapy can be predicted by gene signatures (Perou et al. 2000), diagnostic
tests such as like Oncotype Dx or MammaPrint (O’Toole et al. 2011). In metastatic
setting, the presence of Her2 gene amplification will predict clinical benefit from
concomitant use of chemotherapy and targeted therapy. For Her2 positive tumors, the
choice of chemotherapy combination will be influenced by the cardiac status. Patients
with low or borderline ejection fraction (EF%) are more likely to receive antracycline
free combination like taxotere, carboplatin, herceptin (TCH) or taxol and herceptin
(TH) combination. Young patients are more likely to be treated with adriamycin,
cyclophosphamide followed by taxol and herceptin, (AC → TH) regimen. Elderly
patients are less suitable to benefit from this regimen and can be offered herceptin
and an aromatase inhibitor (Guarneri et al. 2010).

The type of tumor can also influence the therapeutic choice. Invasive ductal
type and ER negative breast cancer in younger patients is more likely to respond
to chemotherapy. Invasive low grade lobular carcinoma is usually ER positive and
develops in atypical metastatic sites (serosa, gall bladder, ovaries, and uterus) (Yeh
and Mies 2008; Armes et al. 1998). This type of cancer has a shorter disease free
(DFS) but a longer survival rate and responds better to antiestrogen manipulation.

23.3.1 First Line Chemotherapy

A. Previously Untreated Patients First generation combination chemotherapy
initially used for the treatment of breast cancer, was cyclophosphamide, methotrex-
ate and 5-florouracil (CMF). The classical CMF regimen (oral cyclophosphamide)
showed a superior response rate (48 vs 29 %) and survival (17 vs 12 months) when
compared with intravenous CMF in advanced breast cancer, (Engelsman et al. 1991).

Second generation combination chemotherapy are doxorubicin-based. They in-
clude cyclophosphamide, adriamycin or epirubicine and 5-florouracil (CAF or CEF)
and 5-florouracil, adriomycin or epirubicin and cyclophosphamide (FAC or FEC)
combinations. Phase III clinical trials showed an improvement in survival from
14.0 months with CMF to 24.7 months with CAF (Aisner et al. 1987). This therapeu-
tic regimen is associated with cardiac induced toxicity, limiting the cumulative total
dose to 340 mg/m2 for doxorubicine and between 900–1,000 mg/m2 for epirubicine.

Third generation chemotherapeutic options involve taxanes and anthracyclines
for the treatment of advanced breast cancer. Single agent anthracycline as a first
line therapy in metastatic breast cancer, showed a response rate between 30–50 %
(Beslija et al. 2007). The taxanes have been found equally efficacious in first line
(Figgitt and Wiseman 2000; Pacilio et al. 2006; Razis and Fountzilas 2001). More-
over, paclitaxel has shown 35–53 % response rate lasting from 6.8–7.5 months in
second and third line settings (Verma et al. 2011; Seidman et al. 1995). Taxanes
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showed significant activity in phase III trials in patients previously exposed or hav-
ing failed anthracycline chemotherapy (Nabholtz et al. 1999). In a randomized phase
III trial patients receiving doxorubicin and docetaxel experienced a higher response
rate as well as a significantly longer time to progression compared to doxorubicin and
cyclophosphamide. This results highlight the potential therapeutic effect of this com-
bination in metastatic breast cancer (Nabholtz et al. 2000). Adjuvant trials comparing
paclitaxel-anthracycline combinations revealed clinically relevant pharmacokinetic
interactions which are sequence and schedule dependent (Conte et al. 2004; Jones
et al. 2005).

B. Previously Treated Patients in Adjuvant Setting The optimal treatment of
this group is not well established. This group of patients can be divided into three
subgroups: patients who priorly received antracycline, priorly received taxane or a
combination of anthracycline and taxane therapy.

Theoretical options for the patients previously treated with adjuvant anthracycline
include:

• Re-challenge with anthracycline alone or in combination with vinorelbine,
• cyclophosphsmide, gemcitabine
• Taxane therapy alone or in combination with capecitabine, gemcitabine, vinorel-

bine
• First line anthracyclines (doxorubicin, epirubicin, pegylated liposomal doxoru-

bicine or non-pegylated liposomal doxorubicin) (Ardavanis et al. 2006).

The evidence supporting this approach is limited. The only prospective phase III
randomized study designed to evaluate the role of first line anthracycline in previously
anthracycline treated breast cancer patients, was prematurely closed due to poor
enrolment. Of a total 26 patients, there was a 72 % RR and a median overall survival
(MOS) of 15 months (Trudeau et al. 2009).

Another option of first line anthracycline chemotherapy is pegylated liposomal
doxorubicine (PLD) which offers the advantage of much lower cardiac toxicity and
appear to be active in this setting. In a phase II clinical trial single agent PLD showed
a RR of 24 % with a MOS of 12.3 months in a population of patients who received an-
thracyline chemotherapy in adjuvant or as first line setting. Combination of PLD with
vinorelbine, cyclophosphamide or gemcitabine showed a RR ranging from 23–58 %
with MOS reported only for vinorelbine of 14.5 months (Jones et al. 2005; Rivera
et al. 2003; Batist et al. 2006). Presently, PLD is approved in second line metastatic
breast cancer in previously anthracycline treated patients. Non-pegylated liposomal
doxorubicine (nPLD) achieved non-conclusive results showing significantly better
RR (31 vs 11 % doxorubicin), but no survival benefit (O’Shaughnessy et al. 2002).

Patients who are considered refractory to anthracyclines or achieved the maximum
cumulative dose of anthracyclin, are candidates for taxane chemotherapy (docetaxel,
paclitaxel, nanoparticle albumin-bound paclitaxel) alone or in combination with other
agents (capecitabine, gemcitabine). Head to head comparison of docetaxel vs. pacli-
taxel showed a significantly longer RR (32 vs. 25 %) and OS (15.4 vs. 12.7 months)
in favour of docetaxel (Miles 2008; Soto 2006).
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Combination of docetaxel (75 mg/m2) with capecitabine 1250 mg/m2 twice per
day 14 out of 21 days, showed significant increase in RR (42 vs. 30 %) TTP (6.1
vs. 4.2 months) and OS (14.5 vs. 11.5) when compared with docetaxel alone (Khoo
2004). This combination proved to have significant toxicity, therefore a phase II clin-
ical study analyzed a sequential mode of administration suggesting a better toxicity
profile for the sequential docetaxel capecitabine arm (Bayo et al. 2008).

Addition of gemcitabine to different doses of taxanes in a three arms phase III
study showed no significant difference among the three dose combinations (Khoo
2004; Levy and Fumoleau 2005). Another phase III trial comparing paclitaxel to
the combination gemcitabine and paclitaxel in patients with advanced breast cancer
demonstrated superior time to progression and tumor response for the gemcitabine
and paclitaxel arm (Albain et al. 2008).

Comparison between the combination capecitabine/docetaxel vs. gemc-
itabine/docetaxel in a phase III study of metastatic breast cancer patients, showed no
survival difference between the two arms, however, gemcitabine-docetaxel appeared
to have a more favourable risk-benefit profile than capecitabine-docetaxel, and is
an important new treatment option for women with anthracycline-pretreated MBC
(Chan et al. 2009).

An improved way of delivering higher doses of paclitaxel could be the binding of
the drug to 130-nM nanoparticle albumin (Abraxane). The results of a clinical trial
using this compound in patients with previous anthracycline-based adjuvant therapy
were reported. This study demonstrated significantly higher response rates and a
longer time to tumor progression (23 weeks vs. 16.6 weeks) for patients treated with
Abraxane when compared with standard paclitaxel (Gradishar et al. 2005).

The optimal treatment for patients previously treated with anthracycline and tax-
ane in adjuvant setting is not well established. Different treatment options for these
patients include re-challenge treatment with taxanes in first line metastatic setting
capecitabine or vinorelbine (Zielinski et al. 2010; Verma and Clemons 2007). In a
retrospective chart review, single agent capecitabine showed a survival benefit when
compared to vinorelbine (median overall survival of 102 days for the vinorelbine
group and 188 days for the capecitabine group) (Verma et al. 2007).

Data analysis from phase III clinical trials using combination capecitabine/
bevacizumab (Miller et al. 2005) or vinorelbine/gemcitabine vs. capecitabine alone,
demonstrated that although combination regimens showed better response rates, they
rendered no significant survival benefit (Zielinski et al. 2010).

Other first line treatment options in patients treated with anthracyclines and/or
taxanes include paclitaxel (Sawaki et al. 2004; Valero et al. 1998), (nab-paclitaxel,
AbraxaneTM) (Gradishar et al. 2005) or Docetaxel (Jones et al. 2005). Results re-
ported from a phase III clinical study showed that docetaxel produced a significantly
longer TTP and OS time when compared with paclitaxel (Jones et al. 2005). Another
study in anthracycline/taxane pretreated patients compared Abraxane at standard
dose 260 mg/m2 every 3 weeks or weekly 150 mg/m2 and 100 mg/m2, to Docetaxel
100 mg/m2 every 3 weeks. This study showed encouraging resulting in a prolonga-
tion of more than 6 months for the patients treated in the nab-paclitaxel arm when
compared with docetaxel arm (Gradishar et al. 2009).
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A group that set itself apart is Her2 positive breast cancer. Although the incidence
of this molecular signature is relatively low (12–25 %) the targeted therapy with
herceptin or lapatinib reversed the poor outcome of this group into a better one (RR 50
vs. 32 %, MOS 25.1 vs. 20.3 months) (Slamon et al. 2001; Higa and Abraham 2007).
Recent data in patients progressing post adjuvant herceptin have shown continued
response by maintaining herceptin and changing the chemotherapy (Metro et al.
2008; Jackisch 2006). Equally effective is the switch to lapatinib and capecitabine
for women with HER2-positive, advanced breast cancer progressing after treatment
with anthracycline, taxane and trastuzumab based therapy (Cameron et al. 2008).

Novel therapeutic approaches include the development of small-molecule kinase
inhibitors of HER2. For example, Trastuzumab-DM1 (T-DM1) is a combination
of trastuzumab covalently bound to DM1, a derivative of the antimicrotubule
chemotherapy maytansanine. This immunoconjugate is directed to HER2-positive
tumor cells (Isakoff and Baselga 2011). Results from a phase I clinical study showed
that T-DM1 in combination with pertuzumab can establish a complete HER2 re-
ceptor blockade. This trial achieved partial responses for women with advanced
HER2-positive breast cancers previously treated with trastuzumab (Miller 2010).
A subsequent phase II clinical trial with T-DM1 was pursued in patients with
HER2-positive metastatic breast cancer who received prior trastuzumab. This study
confirmed the safety profile of with T-DM1 and achieved an overall response rate of
25.9 % after more than 12 months of follow-up (Burris et al. 2011). A meta analysis
evaluating the benefit of adding concomitant trastuzumab to neoadjuvant (anthra-
cycline and taxane-based) chemotherapy concluded that Trastuzumab significantly
reduces the risk of relapse and does not increase the risk of cardiotoxicity (Petrelli
et al. 2011).

23.3.2 Summary

The treatment of metastatic breast cancer becomes more and more individualized
based on the type of prior adjuvant therapy, time of presentation, location of the
metastases, tumor burden, patient’s age, co-morbidities, and performance status.
Combination chemotherapy, single agent or sequential chemotherapy has become a
reality in metastatic melanoma. In the future the decision making process will shift
more on molecular tumor signature. HER2 status is being already used in clinical
practice to decide the use of herceptin or lapatinib. At present, intense research is
being done for triple negative breast cancer tumors subgroups which will serve as an
example how tumor molecular signatures can be used to design specific therapeutic
interventions.



312 C. Mihalcioiu

References

Aamdal S et al (1994) Docetaxel (Taxotere) in advanced malignant melanoma: a phase II study of
the EORTC early clinical trials group. Eur J Cancer 30:1061–1064

Ahmann DL, Hahn RG, Bisel HF (1974) Evaluation of 1-(2-chloroethyl-3–4-methylcyclohexyl)-1-
nitrosourea (methyl-CCNU, NSC 95441) versus combined imidazole carboxamide (NSC 45338)
and vincristine (NSC 67574) in palliation of disseminated malignant melanoma. Cancer 33:
615–618

Aisner J et al (1987) Chemotherapy versus chemoimmunotherapy (CAF v CAFVP v CMF each + /-
MER) for metastatic carcinoma of the breast: a CALGB study. Cancer and leukemia Group B.
J Clin Oncol 5:1523–1533

Albain KS et al (2008) gemcitabine plus paclitaxel versus paclitaxel monotherapy in patients with
metastatic breast cancer and prior anthracycline treatment. J Clin Oncol 26:3950–3957

Al-Sarraf M et al (1982) Cisplatin hydration with and without mannitol diuresis in refractory
disseminated malignant melanoma: a southwest oncology group study. Cancer Treat Rep
66:31–35

Anderson CM, Buzaid AC, Legha SS (1995) Systemic treatments for advanced cutaneous mela-
noma. Oncology (Williston Park) 9:1149–1158, discussion 1163–1144, 1167–1148

Ardavanis A et al (2006) Pegylated liposomal doxorubicin in combination with vinorelbine as
salvage treatment in pretreated patients with advanced breast cancer: a multicentre phase II
study. Cancer Chemother Pharmacol 58:742–748

Armes JE et al (1998) The histologic phenotypes of breast carcinoma occurring before age 40 years
in women with and without BRCA1 or BRCA2 germline mutations. Cancer 83:2335–2345

Atallah E, Flaherty L (2005) Treatment of metastatic malignant melanoma. Curr Treat Options
Oncol 6:185–193

Atkins M (ed) (1997) The role of cytotoxic chemotherapeutic agents either alone or in combination
with biological response modifiers. (Marcel Dekker, New York)

Atkins MB et al (2002) A phase II pilot trial of concurrent biochemotherapy with cisplatin, vin-
blastine, temozolomide, interleukin 2, and IFN-α2B in patients with metastatic melanoma. Clin
Cancer Res 8:3075–3081

Atkins MB et al (2008) Phase III trial comparing concurrent biochemotherapy with cisplatin,
vinblastine, dacarbazine, interleukin-2, and interferon alfa-2b with cisplatin, vinblastine, and
dacarbazine alone in patients with metastatic malignant melanoma (e3695): a trial coordinated
by the eastern cooperative oncology group. J Clin Oncol 26:5748–5754

Avril MF et al (2004) Fotemustine compared with dacarbazine in patients with disseminated
malignant melanoma: a phase III study. J Clin Oncol 22:1118–1125

Balch CM, Houghton AN, Peters LJ (1993) Cutaneous melanoma. In: DeVita VT Jr, Hellman
S, Rosenberg SA (eds) Cancer: principles and practice of oncology, 4th edn. Lippincott,
Philadelphia, pp 1612–1661

Batist G, Harris L, Azarnia N, Lee LW, Daza-Ramirez P (2006) Improved anti-tumor response rate
with decreased cardiotoxicity of non-pegylated liposomal doxorubicin compared with conven-
tional doxorubicin in first-line treatment of metastatic breast cancer in patients who had received
prior adjuvant doxorubicin: results of a retrospective analysis. Anticancer Drugs 17:587–595

Bayo J et al (2008) A multicentre phase II study to evaluate sequential docetaxel followed by
capecitabine treatment in anthracycline-pretreated HER-2-negative patients with metastatic
breast cancer. Clin Transl Oncol 10:817–825

Bedikian AY et al (1995) Phase II trial of docetaxel in patients with advanced cutaneous malignant
melanoma previously untreated with chemotherapy. J Clin Oncol 13:2895–2899

Bedikian AY et al (2010) Does complete response to systemic therapy in patients with stage IV
melanoma translate into long-term survival? Melanoma Res 21(1):84–90

Beguerie JR, Xingzhong J, Valdez RP (2010) Tamoxifen vs. non-tamoxifen treatment for advanced
melanoma: a meta-analysis. Int J Dermatol 49:1194–1202

Beslija S et al (2007) Second consensus on medical treatment of metastatic breast cancer. Ann
Oncol 18:215–225



23 The Role of Chemotherapy for Metastatic Disease 313

Blach CMHA, Peters LJ (ed) (1993) Cutaneous melanoma 1612–1661 (JB Lippincott, Philadelphia)
Bleehen N et al (1995) Cancer research campaign phase II trial of temozolomide in metastatic

melanoma. J Clin Oncol 13:910–913
Brock CS et al (1998) Phase I trial of temozolomide using an extended continuous oral schedule.

Cancer Res 58:4363–4367
Burris HA et al (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the

treatment of human epidermal growth factor receptor 2 (HER2)–positive breast cancer after
prior HER2-directed therapy. J Clin Oncol 29:398–405

Camacho LH et al (2009) Phase I/II trial of tremelimumab in patients with metastatic melanoma.
J Clin Oncol 27:1075–1081

Cameron D et al (2008) A phase III randomized comparison of lapatinib plus capecitabine versus
capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab:
updated efficacy and biomarker analyses. Breast Cancer Res Treat 112:533–543

Carlson RO (2008) New tubulin targeting agents currently in clinical development. Expert Opin
Investig Drugs 17:707–722

Chan S et al (2009) Phase III study of gemcitabine plus docetaxel compared with capecitabine
plus docetaxel for anthracycline-pretreated patients with metastatic breast cancer. J Clin Oncol
27:1753–1760

Chapman PB et al (1999) Phase III multicenter randomized trial of the dartmouth regimen versus
dacarbazine in patients with metastatic melanoma. J Clin Oncol 17:2745

Conte PF et al (2004) Concomitant versus sequential administration of epirubicin and paclitaxel as
first-line therapy in metastatic breast carcinoma. Cancer 101:704–712

Crosby T, Fish R, Coles B, Mason MD (2000) Systemic treatments for metastatic cutaneous
melanoma. Cochrane Database Syst Rev CD001215

Danson SJ, Middleton MR (2001) Temozolomide: a novel oral alkylating agent. Expert Rev
Anticancer Ther 1:13–19

Denny WA (2004) Emerging DNA topoisomerase inhibitors as anticancer drugs. Expert Opin
Emerg Drugs 9:105–133

Dorval T et al (1999) Randomized trial of treatment with cisplatin and interleukin-2 either alone or in
combination with interferon-α-2a in patients with metastatic melanoma. Cancer 85:1060–1066

Eggermont AMM (2010) Advances in systemic treatment of melanoma. Ann Oncol 21:vii339–
vii344

Eichhorn PJ, Baselga J (2010) HER2 signatures in breast cancer: ready to go to print? J Clin Oncol
28:1809–1810

Einzig AI et al (1991) A phase II study of taxol in patients with malignant melanoma. Invest New
Drugs 9:59–64

Einzig AI et al (1996) Phase II trial of docetaxel (Taxotere) in patients with metastatic melanoma
previously untreated with cytotoxic chemotherapy. Med Oncol 13:111–117

Engelsman E et al (1991) “Classical” CMF versus a 3-weekly intravenous CMF schedule in post-
menopausal patients with advanced breast cancer. An EORTC Breast Cancer Co-operative Group
Phase III Trial (10808). Eur J Cancer 27:966–970

Eton O et al (2002) Sequential biochemotherapy versus chemotherapy for metastatic melanoma:
results from a phase III randomized trial. J Clin Oncol 20:2045–2052

Evans LM, Casper ES, Rosenbluth R (1987) Phase II trial of carboplatin in advanced malignant
melanoma. Cancer Treat Rep 71:171–172

Ewesuedo RB, Ratain MJ (1997) Topoisomerase I Inhibitors. Oncologist 2:359–364
Falkson CI et al (1998) Phase III trial of dacarbazine versus dacarbazine with interferon alpha-2b

versus dacarbazine with tamoxifen versus dacarbazine with interferon alpha-2b and tamoxifen
in patients with metastatic malignant melanoma: an eastern cooperative oncology group study.
J Clin Oncol 16:1743–1751

Faries MB, Hsueh EC, Ye X, Hoban M, Morton DL (2009) Effect of granulocyte/macrophage
colony-stimulating factor on vaccination with an allogeneic whole-cell melanoma vaccine. Clin
Cancer Res 15:7029–7035



314 C. Mihalcioiu

Feun LG et al (1995) Phase II trial of recombinant interferon-alpha with BCNU, cisplatin, DTIC
and tamoxifen in advanced malignant melanoma. Melanoma Res 5:273–276

Figgitt DP, Wiseman LR (2000) Docetaxel: an update of its use in advanced breast cancer. Drugs
59:621–651

Gajewski TF (2004) Temozolomide for melanoma: new toxicities and new opportunities. J Clin
Oncol 22:580–581

Garbe C, Eigentler TK, Keilholz U, HauschildA, Kirkwood JM (2011) Systematic review of medical
treatment in melanoma: current status and future prospects. Oncologist 16:5–24

González Astorga B et al (2009) Biochemotherapy in the treatment of metastatic melanoma in
selected patients. Clin Transl Oncol 11:382–386

Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A (1946) Nitrogen
mustard therapy—use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-
chloroethyl)amine hydrochloride for hodgkins disease, lymphosarcoma, leukemia and certain
allied and miscellaneous disorders. JAMA 132:126–132

Gradishar WJ et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with
polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol 23:7794–
7803

Gradishar WJ et al (2009) Significantly longer progression-free survival with nab-paclitaxel
compared with docetaxel as first-line therapy for metastatic breast cancer. J Clin Oncol
27:3611–3619

GuarneriV, Barbieri E, Dieci MV, Piacentini F, Conte P (2010)Anti-HER2 neoadjuvant and adjuvant
therapies in HER2 positive breast cancer. Cancer Treat Rev 36:S62–S66

Hamm C, Verma S, Petrella T, Bak K, Charette M (2008) Biochemotherapy for the treatment of
metastatic malignant melanoma: a systematic review. Cancer Treat Rev 34:145–156

Harrison MR, Holen KD, Liu G (2009) Beyond taxanes: a review of novel agents that target mitotic
tubulin and microtubules, kinases, and kinesins. Clin Adv Hematol Oncol 7:54–64

Higa GM, Abraham J (2007) Lapatinib in the treatment of breast cancer. Expert Rev Anticancer
Ther 7:1183–1192

Hill GJ 2nd, Krementz ET, Hill HZ (1984) Dimethyl triazeno imidazole carboxamide and combi-
nation therapy for melanoma. IV. Late results after complete response to chemotherapy (Central
Oncology Group protocols 7130, 7131, and 7131A). Cancer 53:1299–1305

Hodi FS et al (2010) Improved Survival with Ipilimumab in Patients with Metastatic Melanoma.
N Engl J Med 363, 711–723

Hofmann MA, Sterry W, Trefzer U (2007) Complex combination biochemotherapy regimen in
advanced metastatic melanoma in a non-intensive care unit: toxicity or benefit? Jpn J Clin
Oncol 37:224–229

HuitemaAD et al (2000) The clinical pharmacology of alkylating agents in high-dose chemotherapy.
Anticancer Drug 11:515–533

Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer
2:188–200

Hwu W-J et al (2002) Temozolomide plus thalidomide in patients with advanced melanoma: results
of a dose-finding trial. J Clin Oncol 20:2610–2615

Isakoff SJ, Baselga J (2011) Trastuzumab-DM1: building a chemotherapy-free road in the treatment
of human epidermal growth factor receptor 2–positive breast cancer. J Clin Oncol 29:351–354

Jackisch C (2006) HER-2-positive metastatic breast cancer: optimizing trastuzumab-based therapy.
Oncologist 11:34–41

Jacquillat C et al (1990a) Chemotherapy by fotemustine in cerebral metastases of disseminated
malignant melanoma. Cancer Chemother Pharmacol 25:263–266

Jacquillat C et al (1990b) Final report of the French multicenter phase II study of the nitrosourea
fotemustine in 153 evaluable patients with disseminated malignant melanoma including patients
with cerebral metastases. Cancer 66:1873–1878

Jain KK (2010) Personalized cancer vaccines. Expert Opin Biol Ther 10:1637–1647



23 The Role of Chemotherapy for Metastatic Disease 315

Jakupec M Galanski M Keppler B (2003) Tumour-inhibiting platinum complexes—state of the
art and future perspectives. in Rev Physiol Biochem Pharmacol 146:1–53 (Springer, Berlin
Heidelberg)

Jones SE et al (2005) Randomized phase III study of docetaxel compared with paclitaxel in
metastatic breast cancer. J Clin Oncol 23:5542–5551

Jordan MA, Kamath K (2007) How do microtubule-targeted drugs work? An overview. Curr Cancer
Drug Targets 7:730–742

Kaye SB (1998) New antimetabolites in cancer chemotherapy and their clinical impact. Br J Cancer
78:(Suppl 3):1–7

Keilholz U et al (1997) Interferon alfa-2a and interleukin-2 with or without cisplatin in metastatic
melanoma: a randomized trial of the european organization for research and treatment of cancer
melanoma cooperative group. J Clin Oncol 15:2579–2588

Keilholz U et al (2005) Dacarbazine, cisplatin, and interferon-Alfa-2b with or without Interleukin-2
in metastatic melanoma: a randomized phase III trial (18951) of the european organisation for
research and treatment of cancer melanoma group. J Clin Oncol 23:6747–6755

Khoo K (2004) Randomized phase II trial of three gemcitabine (GEM)-taxane combination in
metastatic breast cancer (MBC). J Clin Oncol 22:710

Kirkwood JM et al (1990) Interferon alpha-2a and dacarbazine in melanoma. J Natl Cancer Inst
82:1062–1063

Kirkwood JM et al (2010) Phase II Trial of tremelimumab (CP-675,206) in patients with advanced
refractory or relapsed melanoma. Clin Cancer Res 16(3):1042–1048

Kruit WH, Suciu S, Dreno B, Chiarion-Sileni V, Mortier L, Robert C, Maio M, Brichard VG,
Lehmann F, Keilholz U (2008) Immunization with recombinant MAGE-A3 protein combined
with adjuvant systems AS15 or AS02B in patients with unresectable and progressive metastatic
cutaneous melanoma: a randomized open-label phase II study of the EORTC melanoma group.
J Clin Oncol 26:16032–18031

Larsen AK, Escargueil AE, Skladanowski A (2003) Catalytic topoisomerase II inhibitors in cancer
therapy. Pharmacol Ther 99:167–181

Legha SS, Ring S, Papadopoulos N, Raber M, Benjamin RS (1990) A phase II trial of taxol in
metastatic melanoma. Cancer 65:2478–2481

Lens MB, Eisen TG (2003) Systemic chemotherapy in the treatment of malignant melanoma. Expert
Opin Pharmacother 4:2205–2211

Levy C, Fumoleau P (2005) Gemcitabine plus docetaxel: a new treatment option for anthracycline
pretreated metastatic breast cancer patients? Cancer Treat Rev 31:S17–S22

Maanen MJv, Smeets CJM, Beijnen JH (2000) Chemistry, pharmacology and pharmacokinetics of
N, N’, N” -triethylenethiophosphoramide (ThioTEPA). Cancer Treat Rev 26:257–268

Marchesi F et al (2007) Triazene compounds: mechanism of action and related DNA repair systems.
Pharmacol Res 56:275–287

Maring JG, Groen HJM, Wachters FM, Uges DRA, deVries EGE (2005) Genetic factors influencing
pyrimidine-antagonist chemotherapy. Pharmacogenomics J 5:226–243

Matherly L, Hou Z, Deng Y (2007) Human reduced folate carrier: translation of basic biology to
cancer etiology and therapy. Cancer Metastasis Rev 26:111–128

McClay EF, Mastrangelo MJ, Berd D, Bellet RE (1992) Effective combination chemo/hormonal
therapy for malignant melanoma: experience with three consecutive trials. Int J Cancer 50:553–
556

McDermott DF et al (2000) A phase II pilot trial of concurrent biochemotherapy with cisplatin, vin-
blastine, dacarbazine, interleukin 2, and interferon α-2B in patients with metastatic melanoma.
Clin Cancer Res 6:2201–2208

Metro G, Mottolese M, Fabi A (2008) HER-2-positive metastatic breast cancer: trastuzumab and
beyond. Expert Opin Pharmacother 9:2583–2601

Middleton MR et al (2000) Randomized phase III study of temozolomide versus dacarbazine in the
treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol18:158



316 C. Mihalcioiu

Miles D (2008) Capecitabine and docetaxel in the treatment of metastatic breast cancer: combin-
ation, sequence or single agent? Eur J Cancer Suppl 6:5–8

Miller K (2010) A phase Ib/II trial of trastuzumab-DM1 (T-DM1) with pertuzumab (P) for women
with HER2-positive, locally advanced or metastatic breast cancer (BC) who were previously
treated with trastuzumab (T). J Clin Oncol 28:15s

Miller KD, Sledge GW (1999) The role of chemotherapy for metastatic breast cancer. Hematol
Oncol Clin North Am 13:415–434

Miller, KD et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab
plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol
23:792–799

Mitchell, MS et al (2007) Randomized Trial of an allogeneic melanoma lysate vaccine with low-dose
interferon alfa-2b compared with high-dose interferon alfa-2b for resected stage III cutaneous
melanoma. J Clin Oncol 25:2078–2085

Nabholtz J-M et al (1999) Prospective randomized trial of docetaxel versus mitomycin plus
vinblastine in patients with metastatic breast cancer progressing despite previous anthracycline-
containing chemotherapy. J Clin Oncol 17:1413

Nabholtz JM et al (2000) Docetaxel (Taxotere) in combination with anthracyclines in the treatment
of breast cancer. Semin Oncol 27:11–18

O’Shaughnessy J et al (2002) Superior survival with capecitabine plus docetaxel combination
therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results.
J Clin Oncol 20:2812–2823

O’Toole SA., Selinger CI, Millar EK, Lum T, Beith JM (2011) Molecular assays in breast cancer
pathology. Pathology 43:116–127

Olszewski U, Hamilton G (2010) A better platinum-based anticancer drug yet to come? Anticancer
Agents Med Chem 10:293–301

Ott PA et al (2010) A phase II trial of the epothilone B analog ixabepilone (BMS-247550) in patients
with metastatic melanoma. PLoS One 5:e8714

Pacilio C et al (2006) Is epirubicin effective in first-line chemotherapy of metastatic breast cancer
(MBC) after an epirubicin-containing adjuvant treatment? A single centre phase III trial. Br J
Cancer 94:1233–1236

Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752
Petrelli F, Borgonovo K, Cabiddu M, Ghilardi M, Barni S (2011) Neoadjuvant chemotherapy and

concomitant trastuzumab in breast cancer: a pooled analysis of two randomized trials. Anticancer
Drugs 22:128–135

Pyrhonen S, Hahka-Kemppinen M, Muhonen TA (1992) promising interferon plus four-drug
chemotherapy regimen for metastatic melanoma. J Clin Oncol 10:1919–1926

Razis ED, Fountzilas G (2001) Paclitaxel: Epirubicin in metastatic breast cancer—a review. Ann
Oncol 12:593–598

Ribas A et al (2009) Dendritic cell vaccination combined with CTLA4 blockade in patients with
metastatic melanoma. Clin Cancer Res 15:6267–6276

Rivera E et al (2003) Phase II study of pegylated liposomal doxorubicin in combination with
gemcitabine in patients with metastatic breast cancer. J Clin Oncol 21:3249–3254

Rixe O et al (1995) Fotemustine, dacarbazine, vindesine combination chemotherapy in advanced
malignant melanoma: a phase II study of 43 patients. Melanoma Res 5:419–424

Rosenberg SA et al (1993) Prospective randomized trial of high-dose interleukin-2 alone or in
conjunction with lymphokine-activated killer cells for the treatment of patients with advanced
cancer. J Natl Cancer Inst 85:622–632

Rosenberg SA et al (1999) Prospective randomized trial of the treatment of patients with
metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone
or in combination with interleukin-2 and interferon alfa-2b. J Clin Oncol 17:968

Rusthoven JJ (1998) The evidence for tamoxifen and chemotherapy as treatment for metastatic
melanoma. Eur J Cancer 34(Suppl 3):S31–36



23 The Role of Chemotherapy for Metastatic Disease 317

Sawaki M et al (2004) Paclitaxel administered weekly in patients with docetaxel-resistant metastatic
breast cancer: a single-center study. Tumori 90:36–39

Schilcher RB, Wessels M, Niederle N, Seeber S, Schmidt CG (1984) Phase II evaluation of
fractionated low and single high dose cisplatin in various tumors. J Cancer Res Clin Oncol
107:57–60

Schultz MZ, Buzaid AC, Poo WJ (1997) A phase II study of interferon-alpha 2b with dacarbazine,
carmustine, cisplatin and tamoxifen in metastatic melanoma. Melanoma Res 7:147–151

Schwartzentruber DJ, D Lawson, J Richards, RM Conry, D Miller, J Triesman, F Gailani, LB Riley,
D Vena, P Hwu (2009) A phase III multi-institutional randomized study of immunization with
the gp100:209–217(210M) peptide followed by high-dose IL-2 compared with high-dose IL-2
alone in patients with metastatic melanoma. J Clin Oncol 27:18s

Seetharamu N, Ott PA, Pavlick AC (2009) Novel therapeutics for melanoma. Expert Rev Anticancer
Ther 9:839–849

Seidman AD et al (1995) Paclitaxel as second and subsequent therapy for metastatic breast cancer:
activity independent of prior anthracycline response. J Clin Oncol 13:1152–1159

Senzer NN et al. (2009) Phase II clinical trial of a granulocyte-macrophage colony-stimulating
factor–encoding, second-generation oncolytic herpesvirus in patients with unresectable
metastatic melanoma. J Clin Oncol 27:5763–5771

Serrone L, Zeuli M, Sega FM Cognetti F (2000) Dacarbazine-based chemotherapy for metastatic
melanoma: thirty-year experience overview. J Exp Clin Cancer Res 19:21–34

Sessa C, Valota O, Geroni C (2007) Ongoing phase I and II studies of novel anthracyclines.
Cardiovasc Toxicol 7:75–79

Slamon DJ et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for
metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

Soto C (2006) Capecitabine (X) and taxanes in patients (pts) with anthracycline-pretreated metastatic
breast cancer (MBC): sequential vs. combined therapy results from a MOSG randomized phase
III trial. J Clin Oncol 24(18S):570 (June 20 Supplement)

Sparano JA (ed) (2002) Cytotoxic therapy and other nonhormonal approaches for the treatment of
metastatic breast cancer. (Marcel Dekker, New York), pp 417–457

Sparano JA et al (1993) Randomized phase III trial of treatment with high-dose interleukin-2 either
alone or in combination with interferon alfa-2a in patients with advanced melanoma. J Clin
Oncol 11:1969–1977

SuYB et al (2004) Selective CD4 + Lymphopenia in melanoma patients treated with temozolomide:
a toxicity with therapeutic implications. J Clin Oncol 22:610–616

Szyf M, Seley K, Mosley S (2005) Purine analogues and their role in methylation and cancer
chemotherapy. In DNA methylation and cancer therapy. Springer, US, pp 178–186

TestoriA et al (2008) Phase III comparison of vitespen, an autologous tumor-derived heat shock pro-
tein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma:
the C-100–21 Study Group. J Clin Oncol 26:955–962

Trudeau ME, Provencher L, Panasci L, Yelle L, Latreille J, Vandenberg T, Rayson D, Rodgers A,
Pouliot J (2009) Phase II multicenter trial of anthracycline rechallenge with pegylated liposomal
doxorubicin plus cyclophosphamide for first-line therapy of metastatic breast cancer previously
treated with adjuvant anthracyclines. J Clin Oncol 27(35):5906–5910

Valero V et al (1998) A phase II study of docetaxel in patients with paclitaxel-resistant metastatic
breast cancer. J Clin Oncol 16:3362–3368

Verma S, Clemons M (2007) First-line treatment options for patients with HER-2 negative metastatic
breast cancer: the impact of modern adjuvant chemotherapy. Oncologist 12:785–797

Verma S et al (2007) Survival differences observed in metastatic breast cancer patients treated with
capecitabine when compared with vinorelbine after pretreatment with anthracycline and taxane.
Am J Clin Oncol 30:297–302

Verma S et al (2011) In the end what matters most? A review of clinical endpoints in advanced
breast cancer. Oncologist 16:25–35



318 C. Mihalcioiu

Wolchok JD et al (2003) Phase I trial of high dose paracetamol and carmustine in patients with
metastatic melanoma. Melanoma Res 13:189–196

Wolchok JD et al (2010) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a
randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 11:155–164

Wood AJJ, Rowinsky EK, Donehower RC (1995) Paclitaxel (Taxol). N Engl J Med 332:1004–1014
Wood CG, Mulders P (2009) Vitespen: a preclinical and clinical review. Future Oncol 5:763–774
Yeh I-T, Mies C (2008) Application of Immunohistochemistry to Breast Lesions. Arch Pathol Lab

Med 132:349–358
YoungAM, Marsden J, GoodmanA, BurtonA, Dunn JA (2001) Prospective randomized comparison

of dacarbazine (DTIC) versus dtic plus interferon-alpha (IFN-[alpha]) in metastatic melanoma.
Clin Oncol 13:458–465

Zielinski C, Gralow J, Martin M (2010) Optimising the dose of capecitabine in metastatic breast
cancer: confused, clarified or confirmed? Ann Oncol 21(11):2145–2152



Chapter 24
Integrating Chemotherapy to Surgery: Novel
Approaches in Regionally Aggressive Cancer
Metastasis

Ari Nareg Meguerditchian, Sarkis H. Meterissian and Marissa Grace Ponzo

The focus of this chapter is on exciting new treatment approaches that integrate
surgery and directed chemotherapy in the management of patients with metastatic
disease outside of classical visceral organs such as the lungs, liver, brain and bones.
Two specific clinical situations will be addressed: peritoneal surface carcinomatosis,
in-transit extremity recurrence.

24.1 Peritoneal Surface Disease

24.1.1 Introduction

Rather than being an inert virtual space in the abdominal cavity, the peritoneum is
an entity with its own anatomy and physiology (Healy and Reznek 1998). These two
factors explain the multi-focal and diffuse pattern of metastasis unique to this organ
(Sugarbaker 1999).

Peritoneal carcinomatosis represents the secondary extension of a cancer to the
peritoneal lining. It is most often seen in the context of gastro-intestinal malignancies,
such as colorectal and gastric cancers (Shen et al. 2009b). It can also occur with
ovarian carcinoma (Chua et al. 2009a). This type of spread occurs when the tumor
invades through the full thickness of the visceral wall or secondary to neoplastic
emboli and iatrogenic contamination of the surgical field (Koppe et al. 2006). It is

A. N. Meguerditchian (�)
Department of Oncology & Surgery, Faculty of Medicine,
McGill University Health Center, McGill University, Montreal, QC, Canada
e-mail: ari.meguerditchian@muhc.mcgill.ca

S. H. Meterissian
Department of Oncology & Surgery, McGill University Health Center,
McGill University, Montreal, QC, Canada

M. G. Ponzo
McGill University, Montreal, QC, Canada

J. V. Burnier, M. N. Burnier, Jr. (eds.), Experimental and Clinical Metastasis, 319
DOI 10.1007/978-1-4614-3685-0_24, © Springer Science+Business Media New York 2013



320 A. N. Meguerditchian et al.

Table 24.1 Common causes
of carcinomatosis, incidence
and survival

Primary cancer Incidence Median survival
(cases/year) (in months)

Colorectal 130,000 5.2
Gastric 22,000 3.1
Ovarian 27,000 36
Mesothelioma 1,500 12–17
Appendiceal 500 Not available

estimated that up to 10 % of patients with colorectal cancer present with peritoneal
dissemination at the time of initial diagnosis (Glockzin et al. 2009). In addition, about
20 % of patients present with metachronous peritoneal disease during their follow up
(Jayne et al. 2002). A proportion of these patients will have disease confined to the
peritoneal cavity. Peritoneal carcinomatosis has traditionally been associated with a
dismal prognosis (Table 24.1) (Sterward et al. 2005).

In the Evocape 1 prospective study, the mean and median survivals for patients
with carcinomatosis were 6.0 and 3.1 months respectively (Sadeghi et al. 2000). More
recently, Jayne et al. (2002) have reported similar numbers from a retrospective series
of 3,019 patients. In addition, most patients suffer from distressing symptoms such
as pain and obstruction.

The management of metastasis to the peritoneal surface has been a challenge. Sys-
temic chemotherapy is largely ineffective, due to limited penetration (Stewart et al.
2009) and conventional surgery is mainly directed at symptom relief through stomas
and venting/feeding tubes. However, the localized nature of peritoneal metastasis
makes the development of regionally aggressive treatments appealing. Cytoreductive
surgery (CS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC)
has recently emerged as a novel approach to successfully combine aggressive surgical
therapy to directly applied cytotoxic therapy.

24.1.2 Regional Therapy

Spatt et al. first described a system to deliver chemotherapy directly into the peri-
toneum (where the disease is located) in 1980 (Spratt et al. 1980a, b). Since then,
the concept of multimodal regional therapy for the management of peritoneal sur-
face malignancies has evolved significantly. In its current form, it consists of the
following three essential components:

• Maximal surgical cytoreduction
• Administration of intraperitoneal chemotherapy: intra-operative or early post-

operative (EPIC)
• Addition of hyperthermia.

24.1.2.1 Maximal Surgical Cytoreduction

A.1) Intra-operative disease scoring Classically, the surgeon will begin with a thor-
ough examination of the abdomen. The extent of disease spread to the peritoneum
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Fig. 24.1 Peritoneal carcinomatosis index (PCI). The abdomen is divided into 13 regions. Lesions
are scored in size (0–3). Summation is a numerical score between 1 and 39. (Adapted from Harmon
and Sugarbaker 2005)

is assessed and scored. Particular attention is paid to sites and structures that are at
high risk of harboring metastatic disease. These include: the incision site, the left
and right hemidiaphragm, the falciform ligament, the lesser omentum, the greater
omentum, the lesser cavity, the mesentery of the small bowel, the anastomotic site,
the paracolic gutters and the pelvic inlet (at the level of the anterior and posterior
reflection of the peritoneum near the pelvic brim).

Intraoperative staging of the extent of tumor burden is a critical component of
the procedure. There are a few systems to quantitate peritoneal carcinomatosis at
surgery. Gilly’s classification consists of four groups (Gilly et al. 1999; Porcheron
et al. 2000; Glehen et al. 2004):

• Stage I: nodules < 5 mm and localized to one part of the abdomen;
• Stage II: nodules < 5 mm diffuse to the whole abdomen;
• Stage III: nodules 5–2 cm;
• Stage IV: tumor deposits > 2 cm.

The Japanese Society for Gastric Cancer has generated its own classification for
peritoneal disease originating from a gastric primary which has been correlated with
survival in many studies (Fujimoto et al. 1997; Ouchi et al. 1998; Hagiwarw et al.
1999). Sugarbaker’s scoring system, the Peritoneal Cancer Index (PCI) seems to have
a more widespread acceptance in North America (Jacquet and Sugarbaker 1996).
Described in (Fig. 24.1) (Jacquet and Sugarbaker 1996; Gilly et al. 1994; Harmon
and Sugarbaker 2005), the PCI is based on dividing the abdomen and pelvis into 13
regions. In each one, the size of the largest lesion is graded from 0 to 3. These are
then summated to generate a numerical score between 1 and 39. The PCI has been
shown to be both predictive of resectability and survival (Chereau et al. 2010).
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Table 24.2 Organs resected
during cyotreductive surgery Organ Frequency (%)

Small bowel 58
Omentum 55
Colon 31
Ovary 18
Spleen 9
Gallbladder 9
Uterus 7
Rectum 7
Appendix 5
Kidney 5
Liver 5
Diaphragm 4
Pancreas 4
Bladder 2
Lung 2
Stomach 2

A.2) Resection The goal of cytoreduction is to remove all gross disease within the
abdominal cavity, as well as involved organs and peritoneum. Improved surgical
techniques and anesthetic monitoring allow for an aggressive approach with the goal
of complete cytoreduction. This often results in multivisceral resections (Table 24.2)
(Chereau et al. 2010).

In a series of 121 patients with peritoneal carcinomatosis treated with cytore-
ductive surgery and intraperitoneal chemotherapy, the most frequently sacrificed
organs included the small bowel and colon (Shen et al. 2008). Routine omentectomy
is also performed. Any tumor adherent or invasive to vital structures that cannot
be safely resected should be removed using an ultrasonic surgical aspirator (CUSA,
Valleylab, Boulder CO). The completeness of resection is graded using the following
classification (Stewart et al. 2009; Shen et al. 2009a):

• R0: complete removal of all visible tumor and negative cytology or microscopic
margins;

• R1: complete removal of all visible tumor and positive cytology or microscopic
margins;

• R2a: minimal residual tumor, nodule(s) ≤ 0.5 cm;
• R2b: gross residual tumor, nodule > 0.5 cm but ≤ 2 cm;
• R2c: extensive disease remaining, nodules > 2 cm.

Some surgeons prefer using the completion of cytoreduction (CC) score:

• CC-0: no residual disease;
• CC-1: ≤0.25 cm residual disease;
• CC-2: 0.25–2.5 cm residual disease;
• CC-3: ≥ 2.5 cm residual disease.

Aggressive surgical cytoreduction is critical in the management of peritoneal surface
malignancies, as even the most optimal chemotherapy perfusion will penetrate only
a few millimeters. The importance of achieving maximal cytoreduction cannot be
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Fig. 24.2 Coliseum
technique. (Adapted with
permission from Glehen et al.
2008)

underestimated (Yan et al. 2006). Shen et al. (2008), report a 36 % difference in
5-year survival rates between an R0 resection and an R2c resection. Their findings
are echoed by Glenhen’s 506 patients multicenter study (Glehen et al. 2004).

24.1.2.2 Intraperitoneal Chemotherapy Perfusion

The goal of intraperitoneal chemoperfusion is to expose the entire peritoneal surface
to antineoplastic agents. Direct tumor absorption of drugs reaches a maximum of
only 5 mm beneath tissue surface (Los et al. 1991), highlighting the importance
of maximal cytoreduction. Peritoneal chemotherapy is administered intraoperatively
(HIPEC), although some also advocate the use of early post-operative intraperitoneal
chemotherapy (EPIC) as well.

B.1) Hyperthermic intraperitoneal chemotherapy (HIPEC) HIPEC can be per-
formed via an open or closed technique. The open technique, also known as the
“Coliseum technique”, consists of leaving the abdominal cavity open. A Silastic
sheet can be sutured to the skin over a Thompson retractor, suspending the abdom-
inal wall and creating a coliseum-like container for the chemoperfusate (Fig. 24.2)
(Glehen et al. 2008).

There are several advantages and disadvantages of this approach (Table 24.3)
(Shen et al. 2009b).

In the closed technique, once maximal cytoreduction is completed, inflow and out-
flow catheters are placed into the abdominal cavity. The former are positioned near
the diaphragmatic recess whereas the later are secured at the pelvic inlet (Fig. 24.3)
(Shen et al. 2008). Temperature probes are placed in the catheters, and the abdominal
wall is closed temporarily. A perfusion circuit is established with Ringer’s Lactate and
once a flow of 600–900 mL/min is achieved using a roller pump, the chemotherapeu-
tic agent is added. The temperature probes allow constant temperature monitoring.
Chemotherapy is not instilled until a minimum of 40◦C has been reached and a heat
exchanger is used to maintain such a target temperature. The abdomen is gently
massaged during the 90–120 min of perfusion.
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Table 24.3 Coliseum technique: advantages and disadvantages

Advantages Disadvantages

Optimal thermal homogeneity Heat dissipation
Maximal spatial diffusion, as the perfusate is manually Potential exposure of the operating room

spread in the abdominal cavity personnel to toxic chemotherapy

Fig. 24.3 Closed technique: schematic of intraperitoneal hyperthermic chemotherapy setup (closed
technique). (Adapted with permission from Shen et al. 2008)

Advocates of the closed technique note the following advantages (Shen et al.
2009b; Esquis et al. 2006):

• Minimized chemotherapy exposure to operating room personnel
• Deeper penetration of agents into tissue due to increased intra-abdominal pressure;
• More stable temperature during the length of the treatment
• The main disadvantage is the need for additional equipment and personnel to

manage to heat exchanger roller pump. No prospective trial has validated the
superiority of one technique over the other.

The most frequently used chemotherapeutic agent for HIPEC is Mitomycin C, with
a variety of dosages from 10–120 mg/m2 reported (Chua et al. 2009e). Usually, the
total dose of Mitomycin C does not exceed 40 mg. Other agents and combinations
that are gaining increased popularity include cisplatin + mitomycin C, cisplatin +
doxorubicin or cisplatin alone. (Chua et al. 2009e; Yan et al. 2009; Kerscher et al.
2010; Elias et al. 2010; Cohen et al. 2010).

B.2) Early post-operative intraperitoneal chemotherapy (EPIC) In this variation,
the surgical procedure ends with the placement of Tenckhoff catheters after max-
imal cytoreduction. Chemotherapy is then administered into the peritoneal cavity
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during days 1–5 of the post-operative period, classically consisting of Fluorouracil
at 15 mg/kg/day in 1 L of dialysis solution (Glehen et al. 2004). The main argument
against EPIC is the unevenness of drug distribution, due to early postoperative ad-
hesions. As demonstrated by Jacquet et al. (1995), fibrin deposits decrease tumor
cell exposure to chemotherapy. In addition, there are non-negligible complications
related to intra-abdominal catheters (Topuz et al. 1998). This issue of complications
related to postoperative peritoneal access devices has also been noted in the manage-
ment of carcinomatosis of ovarian origin (Robindon and Beyer 2010). Nevertheless,
there has never been a study comparing HIPEC to EPIC. Some surgeons proceed
to EPIC after completing HIPEC and not encountering serious complications. Ulti-
mately, the lack of clear consensus as to the value of EPIC leaves the decision to use
this technique to the surgeon’s preference (Esquivel et al. 2007).

B.3) Pharmacology of intraperitoneal (IP) chemotherapy The anatomic and physi-
ologic particularities of the peritoneum have been used for treatment delivery for a
long time. In fact, the first report of IP drug administration was in 1744. However,
the use of IP chemotherapy for the management of cancer dates back to 1955, fol-
lowing the discovery of the antineoplastic potential of nitrogen mustard (Weisberger
et al. 1955). The successful use of IP chemotherapy in the management of cancer
metastasis must satisfy three basic conditions:

• Providing high local drug concentration for a significant duration
• Ensuring adequate penetration into the tumor
• Targeting specifically tumor cells.

As described initially by Dedrick and collegues (1978), the existence of a peritoneal-
plasma barrier consisting of the mesothelium and underlying submesothelial tissue
defines the pharmacokinetic rationale for IP chemotherapy administration (Jones
et al. 1978). The presence of this barrier results in a peritoneal drug clearance that
is much slower than the plasma clearance, allowing IP drug concentrations higher
than systemic concentrations (Markman 2008). Within this barrier, the main ele-
ment delaying transperitoneal passage is the glycocalyx of the endothelial lining
of the peritoneal microvascular network (Flessner 2008). Since the peritoneum ex-
tensively covers visceral surfaces, the transfer of drugs from peritoneal to vascular
compartments occurs principally through the portal circulation (Ceelen and Flessner
2010).

High concentrations of IP chemotherapy help overcome the specific biological
features of IP cancer cells that make them a challenging therapeutic target. First,
peritoneal carcinomatosis follows the principles of Gompertzian cellular kinetics:
tumor growth is initially exponential, however, as the cancer enlarges, its blood sup-
ply and growth slowdown, and a larger proportion of cells enter a non-proliferative
phase which makes them less responsive to antineoplastic agents (Shen et al. 2009b;
Simpson-Herren 1976). Second, peritoneal cancer deposits are characterized by pro-
nounced hypoxia and a poorly developed vasculature that lacks functional lymphatics
(Li et al. 2007; Jain 2001a; Jain 2001b), making drug penetration into tumor tissue
a major problem. Finally, the high interstitial pressure within tumor deposits further
decreases tumor penetration (Bajaj andYeo 2010; Heldin et al. 2004). Achieving high
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IP drug concentrations is even more critical when using molecules such as alkylating
agents and platinum derivatives, which are cell-cycle independent.

Significant duration to drug exposure is another critical aspect of IP therapy
success. Dedrick demonstrated that the regional pharmacokinetic advantage of IP
chemotherapy is inversely proportional to its peritoneal clearance. This can be sum-
marized by the ratio of the area under the concentration versus time curve (AUC)
in peritoneal perfusate versus plasma (Dedrick 1985). This notion is particularly
important in prolonged IP chemotherapy administration models such as EPIC. Exper-
iments at preventing rapid IP chemotherapy clearance are currently being conducted
using particulate formations of varying sizes, hydrogel-base systems and lipid en-
capsulation (Lu et al. 2008; Tsai et al. 2007; Yeo et al. 2007; Gelderblom et al.
2002).

Key Points

• The main element delaying drug transperitoneal passage is the glycocalyx of the
endothelial lining of the peritoneal microvascular network.

• The transfer of drugs from peritoneal to vascular compartments occurs principally
through the portal circulation.

• Non-proliferative phase of IP cancer cells makes them less responsive to
antineoplastic agents.

• Peritoneal cancer deposits are characterized by pronounced hypoxia and an un-
derdeveloped vasculature that lacks functional lymphatics, resulting in poor drug
penetration.

• High interstitial pressure within tumor deposits decreases tumor drug penetration.
• Regional pharmacokinetic advantage of IP chemotherapy is inversely proportional

to its peritoneal clearance.

24.1.3 Morbidity and Mortality

Deaths and complications HIPEC is a technically involved procedure, requiring
multiple resections and exposure to high doses of cytotoxic therapy in patients oth-
erwise weakened by recurrent disease and multiple other forms of treatment. These
issues are clearly reflected in the non-negligible morbidity and mortality rates as-
sociated to the procedure (Ahmad et al. 2004). In a review of case series reported
from 24 institutions performing HIPEC, Chua et al noted perioperative mortality
rates between 0 and 17 % (Chua et al. 2009e). Most contemporary series report
similar treatment-related death rates (Shen et al. 2009a; Elias et al. 2010). Common
causes of multi-organ system failure leading to death within 30 days of the procedure
include:

• Sepsis (frequently from bowel perforation or anastomotic leakage)
• Marrow failure
• Respiratory failure due to pulmonary embolus or pneumonia
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Table 24.4 Complication
grading scale Grade Definition

I Any minor derivation from normal post-op course
II Requires pharmacologic intervention
III Requires surgical, endoscopic, radiologic intervention
IIIa Without general anesthesia
IIIb Under general anesthesia
IV Life-threatening complication with ICU stay
IVa Single-organ dysfunction
IVb Multi-organ dysfunction
V Death

• Cardiac failure
• Renal failure
• Factors predicting mortality include (Shen et al. 2003)
• Presence of ascites
• Poor performance status
• Bowel obstruction.

Morbidity related to HIPEC can be classified according to the scale proposed in
Table 24.4 (Shen et al. 2008; Dindo et al. 2004). The overall perioperative compli-
cation rate is close to 40 % (Shen et al. 2009a; Smeenk et al. 2006; Verwaal et al.
2004), although grade III/ IV toxicity rates as high as 52 % have been reported (Elias
et al. 2007; Smeenk et al. 2007). Up to 23 % of patients require reoperation (Chua
et al. 2009e; Elias et al. 2007; Schmidt et al. 2005; Helm et al. 2007).

The most frequently occurring complications that are related to surgery and
chemotherapy are presented in (Table 24.5) (Piso et al. 2009; Glockzin et al. 2009).
Several groups have noted that the incidence of post-operative complications is
related to (Stephens et al. 1999):

• Carcinomatosis stage
• Duration of operation (> 7 h)
• Number of anastomoses
• Location of anastomoses (colon)
• Number of peritonectomy procedures.

It is important to note that morbidity and mortality are also related to the learning
curve (Yan et al. 2007a). Not only does the toxicity of the treatment itself decrease
over time, but also the outcome of the complications improve as well (Moran et al.
2006). A recent study reported the feasibility of HIPEC in a community hospital
setting with equivalent morbidity and mortality rates (Kerscher et al. 2010).

Table 24.5 Frequently observed complications of IP therapy

Surgical complications Chemotherapy complications

Gastrointestinal obstruction (dynamic or mechanical) Leucopenia
Anastomotic leakage or intestinal perforation Anemia
Wound infection Thrombopenia
Bleeding or thromboemboli Heart, liver and renal toxicity
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Quality of life McQuellon et al have reported extensively on the quality of life of
patients undergoing HIPEC. Using the FACT-C scale as a measuring instrument,
they have shown a significant initial decrease in overall wellness, with a sustained
subsequent increase at 3, 6 and 12 months follow up. In fact, most patients in their
series returned to baseline or better levels of functioning within 3 months of treat-
ment. At 12 months, 74 % of patients resumed over 50 % of their normal activities.
Interestingly, 38 % of patients had depressive symptoms at baseline and 29 % per-
sisted at 1 year. At 3 years, no limitations on moderate activity were reported by 94 %
of surviving patients. It can be argued that while a significant decrease in the quality
of life occurs early on, an acceptable quality of life can be reached by 6–12 months
(McQuellon et al. 2001, 2003, 2007, 2008). The main challenges impacting quality
of life in patients undergoing this form of invasive treatment include the presence of
ostomies, fatigue, insomnia, and pain (Helm et al. 2007).

Patient Selection The most common entities for HIPEC treatment are colorectal
cancer, gastric cancer; ovarian cancer; peritoneal mesothelioma ; and appendiceal
cancer (Stewart et al. 2005). Proper patient selection is an important component of
treatment success.

The following criteria have been proposed (Shen et al. 2009b; Yan et al. 2007b):

• No significant cardiopulmonary disease. In terms of comorbidities, an ECOG
performance score of 0 or 1 has been associated to better survival than a score of 2
or 3. Additionally, patients with bowel obstruction or malignant ascites represent
poor candidates for HIPEC (Sugarbaker 1995);

• No evidence of extra-abdominal disease and peritoneal disease should be
• Peritoneal disease potentially completely resectable;
• Absence of bulk retroperitoneal disease.

Liver metastases were initially viewed as contraindications to HIPEC. However, there
are more and more reports of a similar overall survival for patients with an isolated
liver metastasis undergoing HIPEC (Varban et al. 2009; Elias et al. 2010). In a recent
consensus statement on HIPEC up to three small, resectable hepatic metastases are
not considered a contraindication.

Modern imaging techniques are practical in preventing unwarranted laparotomies.
Nevertheless, CT scanning has limited sensitivity in assessing non-visceral small
volume peritoneal disease (de Bree et al. 2004). The same has been shown for PET
scan imaging for peritoneal surface disease (Sobhani et al. 2008). Interestingly, a
small prospective study showed a more accurate pre-operative detection rate for
small volume peritoneal disease with the use of MRI with dilute oral barium and IV
gadolinium (Low et al. 1997).

The peritoneal surface disease severity score (PSDS) is a recently developed tool
that may help in minimizing overtreatment with aggressive multimodality therapy
(Pelz et al. 2009). It takes into account clinical symptoms, extent of carcinomatosis
and primary tumor histology. Patients are then staged from I to IV, based on the
summation of their scores. Chua et al have shown that even in the context of maximal
cytoreduction and completed intraperitoneal chemotherapy, patients who were PSDS
stage IV had a median survival of 7 months (Chua et al. 2009c).
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Outcomes The Evocape study defined the average survival of patients with car-
cinomatosis against which all new therapeutic approaches are compared (Sadeghi
et al. 2000). In 2003 Vic Verwaal and colleagues published a trial on the use of
maximal cytoreduction and intraperitoneal chemotherapy. Patients were treated ei-
ther with systemic therapy alone or with systemic therapy plus HIPEC. While often
criticized, this paper has the unique advantage of being the only randomized trial
assessing this novel yet morbid form of treatment. When compared with the standard
IV chemotherapy alone, patients having received HIPEC lived twice as long, with
a median survival of 22.3 months instead of 12.6 months (p = 0.032). The authors
have now published their 8 year follow up data, demonstrating that cytoreduction
followed by HIPEC does significantly add survival time up to (45 %) 5 year survival
rate in a selected group of patients (Verwaal et al. 2008). While not as strong as a
randomized trial, two other publications reporting outcomes are worth mentioning.
In a retrospective multicentric study from France, Elias et al. reported an overall
median survival of 30.1 months in a group of 523 patients, with a five-year overall
and disease free survivals of 27 and 10 % respectively. In a different multicenter
retrospective trial with 506 patients Glehen et al. (2004) reported at a median follow
up of 53 months a median survival of 32.4 months for patients in whom complete
cytoreductive surgery was performed. Factors associated with a favorable outcome
included, complete cytoreduction, limited carcinomatosis, absence of invaded lymph
nodes and use of adjuvant chemotherapy (Elias et al. 2010). Factors independently
associated with a worse outcome were incomplete of cytoreduction, presence of
bowel obstruction, malignant ascites and poor histological differentiation (Glehen
et al. 2004; Shen et al. 2008).

24.1.3.1 Hyperthermia

The addition of hyperthermia to IP chemotherapy to maximize its efficacy was first
proposed by Spratt (1980a). The rationale for this is based on the thermal enhance-
ment of the cytotoxicity of drugs such as alkylating agents and platinum compounds
(Cho et al. 2008; Issels 2008). The following benefits have been attributed to moderate
hyperthermia:

• Increased tumor blood supply and oxygenation (Sun et al. 2008);
• Enhanced drug penetration into tumors and consequent increase in intratumoral

drug concentration (Los et al. 1991; Jacquet et al. 1998; Pestieau et al. 2001)
• Enhanced drug avidity and chemosensitivity through increased cellular accumula-

tion and alteration of DNA damage repair capacity (Teicher et al. 1981; Watanabe
et al. 1992).

Drugs for which thermal enhancement has been documented are detailed in
(Table 24.6) (Ceelen and Flessner 2010). Current consensus is that a constant in-
traperitoneal temperature of 39–40◦C should be achieved (Esquivel et al. 2007).
This explains the use of a recirculating perfusion circuit during intraoperative IP
chemoperfusion.
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Table 24.6 Drug penetration
into peritoneum. (Ceelen and
Flessner 2010)

Drug Drug penetration Thermal
distance (mm) enhancement

Alkylating agents
Mitomycin 2 +

Platinum compounds
Cisplatin 1–3 +
Carboplatin 0.5 +
Oxaliplatin 1–2 +

Taxanes
Paclitaxel > 80 cell layers Not studied
Docetaxel Unknown +

Antimetabolites
5-fluorouracil 0.2 −

24.1.4 Summary

Cancer recurrence in the form of peritoneal carcinomatosis is an aggressive and chal-
lenging disease. In addition to significantly shortening survival, carcinomatosis is
associated with debilitating symptoms such as obstruction and pain. Maximal cy-
toreduction and intraperitoneal chemotherapy is associated with improved survival,
however, this comes at the cost of a high rate of complications and prolonged recov-
ery. As this novel approach in addressing peritoneal metastases evolves, a greater
degree of standardization of eligibility criteria, technical steps and chemotherapy
administration modes will emerge. In addition, we can expect to see an expansion of
its indication to other types of diseases such as advanced small bowel malignancies
(Chua et al. 2009d) and thorax (Chua et al. 2009b).

24.2 In-transit Disease of the Extremities

24.2.1 Introduction

More than half of the newly diagnosed cases of melanoma occur in the extremities.
Close to 40 % of these patients will present with loco-regional recurrence. From
this group, about 10 % will recur between the primary tumor site and the regional
lymph nodes (Koops et al. 1998; Pawlik et al. 2005; Kretschmer et al. 2006). These
so-called “in-transit metastases” are defined by the American Joint Committee on
Cancer (AJCC) as any dermal or sub-dermal metastases that are more than 2 cm from
the primary lesion, but not beyond the regional lymph node basin (Balch et al. 2001).
In a review of 1,000 patients, 5 % were localized to the head and neck, 8 % to the
upper extremities, 9 % to the trunk, and 19 % to the lower extremities (Calabro et al.
1989). Other studies confirm that in-transit melanoma is particularly common to the
lower extremities (Pawlik et al. 2005; Calabro et al. 1989; Wong et al. 1990).
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According to the seventh edition of the AJCC cancer staging system, in-transit
metastases are classified as N2c or N3 (depending on the presence of lymph node
disease) both of which correspond to Stage III and consequently potentially salvage-
able disease. Five-year survival rates for these patients range between 30 and 50 %
(Edge et al. 2010). Additionally, at least half of them are expected to survive 2 years
without evidence of distant metastases, making curative treatment of these lesions a
reasonable objective (Balch et al. 1998). More importantly, these lesions can result in
significant morbidity, such as bleeding, ulceration, infection, pain and psychological
distress.

Unfortunately, most non-surgical approaches for treating in-transit disease have
failed, including radiation, chemotherapy, immunotherapy and injections. From a
surgical perspective, the number and distribution of these lesions often preclude
excision and closure, and while amputation provides a definitive solution its impact
on patient functionality makes it a prohibitive choice.

24.2.2 Isolated Limb Perfusion

A) A historical perspective ILP was first described by Creech and Krementz at the
Charity Hospital in New Orleans in 1958 (Creech et al. 1958). Chemotherapy had al-
ready been in use for over 15 years at that time to treat a variety of malignancies, and
its side effects were well known. The principle was to establish circulatory isolation
of a tumor-bearing region, with subsequent exposure to high dose chemotherapy. By
isolating a given tumor-bearing extremity, Creech and Krementz believed they could
expose the tumor tissue to maximal concentrations of chemotherapy, while mini-
mizing the systemic side effects. This idea of isolating the circulation was inspired
by the success of the heart-lung apparatus in the treatment of intracardiac defects
(Gibbon 1954). Creech and Krementz performed experimental studies to determine
the extent of which circulatory isolation could be achieved, the maximal dose of
chemotherapeutic agents (nitrogen mustard and phenylalanine mustard or melpha-
lan) that can be used safely in perfusion, the effects of chemotherapeutic agents
on blood oxygenation, and their duration of action (Creech et al. 1958; Ryan et al.
1958).

Anti-tumor activity of melphalan was demonstrated in animal-based models (Luck
1956, 1957). In the original report, clinical studies were performed on 24 patients
with a variety of neoplasms including malignant melanoma, sarcoma and carcinoma,
involving the transverse colon, thumb, lung, breast, rectum and scapula using either
nitrogen mustard or melphalan (Creech et al. 1958).

The first ILP procedure was performed on a 76 year old male with a small black
mole on the dorsum of his left foot, which had been initially asymptomatic, but sub-
sequently began to become irritated and bleeding. Following a wide local excision
with skin grafting, histological analysis confirmed the suspicion of melanoma. A
left groin dissection was performed 1 week later and revealed no nodal involvement
although tumor cells were noted in the lymphatic vessels. The patient experienced
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extensive satellitosis (approximately 175 metastatic lesions) with many pigmented
lesions appearing on the medial aspect of his left leg and thigh within 1 year. Due
to his age, and the extensiveness of the metastases, he was not a candidate for am-
putation and was offered ILP with melphalan for palliation. The patient experienced
a complete response as determined by regression of the cutaneous metastases both
grossly and histologically, and the patient died 16 years later, of unrelated causes
(Creech et al. 1958; Krementz et al. 1994).

B) Current technical principles The technique for ILP has largely remained un-
changed since its formal introduction by Creech and Krementz (1958) (Ross 2008).
The artery and vein supplying the tumor-bearing area are surgically dissected and
cannulas of appropriate size are inserted (typically 18–20 French in the vein and
12–18 French in the artery) while collaterals are ligated (Ross 2008; Brady et al.
2006). An Esmarch tourniquet is placed as proximal to the cannulated vessels as
possible to isolate the limb from the systemic circulation. Circulatory isolation not
only minimizes systemic toxicity, but also aids in maintaining the desired chemother-
apeutic concentration within the limb. Chemotherapeutic doses of up to ten times
those tolerated by the systemic circulation can be achieved with this method. Circu-
lation time is approximately 1 h, and flow rates are generally 400–600 mL/min for
the leg, and 200–400 mL/min for the arm (Ross 2008). Cannulas are connected to an
extra-corporeal circuit, which generates a high-flow, hyperoxic perfusate, provides
adequate tissue perfusion pressures and allows for relatively long treatment duration.
The bubble oxygenator, which is part of the extra-corporeal circuit, gives rise to a
partial pressure of oxygen of approximately 400 mmHg and is thought to have its
own tumoricidal effect and potentiate the effect of the alkylating agent (Krementz
and Knudson 1961).

A potential side effect of this method is leakage of the chemotherapeutic agent into
the systemic circulation. This is monitored by radiolabeling the patient’s erythrocytes
with Technetium 99m, and giving back the radiolabelled erythrocytes in two aliquots
to the patient: one in the systemic circulation, and one in the isolated circulation. A
gamma probe is used to detect leakage of the erythrocytes from the isolated circuit
into the systemic circulation by holding the probe over the precordium and detecting
a rise in radioactive count over time. This method can also detect a leak of the
systemic circulation into the isolated limb, as this would dilute the concentration of
the chemotherapy in the limb.

C) Hyperthermia The initial ILP procedures were performed under normothermic
conditions. However Cavaliere (Cavaliere et al. 1967) and Stehlin (Stehlin 1969)
showed that mild hyperthermia (38.5–40◦C) can increase the uptake of chemotherapy
agent within cells, while true hyperthermia (> 41◦C) is associated with increased
regional toxicity. Although ILP with mild hyperthermia has become the standard, no
direct comparisons in prospective randomized controlled trials have been conducted
to evaluate the benefit of increasing perfusate temperatures. Mild hyperthermia is
achieved by wrapping the limb with a thermal blanket and using heated perfusate,
while temperature is monitored using thermistor probes placed in the subcutaneous
and intramuscular portions of the limbs.



24 Integrating Chemotherapy to Surgery 333

Table 24.7 Wieberdink toxicity scale. (Wieberdink et al. 1982)

Grade Description

I No reaction
II Slight erythema and/or edema
III Considerable erythema and/or edema with some blistering, slight disturbance of motility
IV Extensive epidermolysis and/or obvious damage to deep tissues, causing definite

functional disturbances threatening or manifest compartmental syndrome
V Reaction which may necessitate amputation

D) Chemotherapy agents used Melphalan is the standard medication used because
of its efficacy and low toxicity profile. Dosing is determined by the volume of the
limb to be perfused, and doses typically range from 10 mg/L for the leg to 13 mg/L
for the arm (Wieberdink et al. 1982). In a modification to the original procedure by
Creech and Krementz, actinomycin-D is administered in combination with melpha-
lan, showing favorable response rates when administered by ILP (Thompson et al.
1997; Sanki et al. 2007). A recently completed trial, the ACOSOG Z0020, evaluated
the efficacy of adding tumor necrosis factor (TNF) to melphalan in ILP (Cornett et al.
2006). One hundred and three patients were randomized to hyperthermic ILP with
melphalan and TNF-alpha versus hyperthermic ILP with melphalan alone. The re-
sults showed that there was no significant advantage with the addition of TNF-alpha
as complete response (CR) rates were similar in both arms; 25 % in patients receiving
melphalan alone, and 26 % in patients receiving melphalan and TNF-alpha. A recent
systematic review of 22 studies including 2,018 ILP procedures evaluated the clinical
response, survival and toxicity data of normo or hyperthermic ILP with melphalan
either with or without TNF, and other drugs (Moreno-Ramirez et al. 2010). Inter-
estingly, this data is inconsistent with the results of ACOSOG Z0020, suggesting a
benefit when combining melphalan and TNF-alpha (CR of 68.50 %) in comparison
to melphalan alone (CR of 46.50 %). Other drugs have been studied in the setting
of hyperthermic ILP such as dimethyltriazenoimidazole carboxamide, cisplatin, car-
boplatin and thiotepa. However none of these have undergone Phase I or II clinical
trials and thus, melphalan remains the standard chemotherapeutic.

E) Toxicity Toxicity was routinely assessed in ILP studies using the Wieberdink
toxicity scale (Table 24.7) (Wieberdink et al. 1982). Patients can expect transient
toxicity lasting a few weeks, which may include erythema, desquamation, alopecia,
onycholysis, skin color changes, peripheral neuropathy and pain (Thompson et al.
1998). Patients undergoing either normo- or hyperthermic ILP may develop lym-
phedema (30–40 %), compartment syndrome (10–15 %), and long-term peripheral
neuropathy (5–8 %) (Coleman et al. 2009). Post-operatively, the risk of developing
compartment syndrome is assessed by serum creatine phosphokinase analysis and
clinical assessment. Values exceeding 1,000 IU/L have been shown to correlate with
severe limb toxicity (Kroon et al. 2009). There is also a small risk (1–2 %) of severe
toxicity requiring amputation (Beasley et al. 2009a).
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F) Clinical Outcomes Complete response, (CR) is defined as the resolution of all
visible disease, and partial response (PR) is defined as a decrease in ≥ 50 % of the
diameter of all lesions, without the appearance of new lesions (Ariyan and Brady
2008). CR rates range from 39–82 %, with an overall survival of 42–55 % at 5 years
(Sanki et al. 2007; Cornett et al. 2006; Minor et al. 1985, Storm and Morton 1985;
Kroon et al. 1987, 1993; Di Filippo et al. 1989; Klaase et al. 1994; Aloia et al. 2005).
There is a trend for single-center studies to have higher CR rates compared with
multicenter randomized trials.

This wide variation in CR rates can be attributed to (Ariyan and Brady 2008):

• The lack of standard staging;
• The absence of objective and reproducible criteria for assessment of clinical

response;
• Variations in procedural details.

Although achieving a CR following ILP treatment has been shown to be associated
with a long-term survival, no randomized controlled trials have demonstrated that
ILP actually prolongs survival (Sanki et al. 2007; Bryant et al. 1995; Noorda et al.
2004). Nevertheless, more than 50 years of evidence have made hyperthermic ILP
with melphalan the standard of treatment.

Key Points

• ILP principle is to establish circulatory isolation of a tumor-bearing region, with
subsequent exposure to high dose chemotherapy.

• Circulation time is approximately 1 h, and flow rates are usually 400–600 mL/min
for the leg, and 200–400 mL/min for the arm.

• High chemotherapeutic doses of up to ten times the dosage tolerated by the
systemic circulation can be administered.

• A potential side effect is leakage of the chemotherapeutic agent into the systemic
circulation, which can be monitored by erythrocyte radiolabeling with Technetium
99m.

• ILP with mild hyperthermia (38.5–40◦C) can increase the uptake of chemotherapy
agent.

• Melphalan is the standard medication used because of its efficacy and low toxicity
profile.

• ILP transient toxicity may include erythema, desquamation, alopecia, onycholy-
sis, peripheral neuropathy and pain.

• Complete response rates to ILP range from 39–82 %, with an overall survival of
42–55 % at 5 years.

24.2.3 Isolated Limb Infusion

Studies from the Sydney Melanoma Unit in the early 1990s, led by John Thompson,
gave rise to the development of isolated limb infusion (ILI) as a minimally invasive,
low-morbidity and less complex alternative to ILP (Thompson et al. 2008). ILI
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Fig. 24.4 Isolated limb infusion. (Adapted with permission from Brady et al. 2006 and Ross 2008)

differs from ILP in that it is a low-flow method, performed without oxygenation of
the perfusate, and involves percutaneous insertion of vascular catheters rather than
surgical placement (Thompson et al. 1994; Brady et al. 2006, 2009).

A) Technical aspects: simplified circuitry, benefits of hyperthermia and hypoxia
(Fig. 24.4) Interventional radiology is utilized for the insertion of multiholed ar-
terial and venous catheters via the contralateral groin using the Seldinger technique,
and in the case of the lower extremities, they are threaded around the aortic and vena
cava bifurcations into the femoral artery and vein of the tumor-bearing extremity
(Seldinger 1953). The location of the catheters is subsequently verified by X-ray.
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A low flow heparin infusion is used to ensure catheter patency. Once the patient is
moved to the operating suite and anesthetized, an Esmarch tourniquet is placed at
the most proximal aspect of the affected limb, similar to ILP, allowing for a high
dose of chemotherapeutic agent to be administered (Thompson et al. 1994). The
cardiopulmonary bypass machine is not used in ILI, making the procedure not only
technically simpler, but also more cost-effective in that the equipment, disposables
and personnel to operate the extracorporeal circulator are not needed. Furthermore,
a blood transfusion is not required to prime the circuit, thus minimizing the risks
incurred by transfusion of blood products. The circuit simply consists of a blood
warmer/bubble excluder that circulates blood from the arterial to the venous catheter.
The temperature of the patient’s extremity is increased to about 40◦C using warming
blankets.

The chemotherapeutic agent is delivered by a pressure bag and intravenous fluid
pump via the arterial catheter at a concentration of 5–10 μg/L for melphalan and
50–100 μg/L for actinomycin-D. The infusate is not oxygenated as in ILP. In fact,
is maintained acidotic and hypoxic, which potentiates the anti-tumor activity of
melphalan (Siemann et al. 1991; van de Merwe et al. 1993). Circulation is manually
maintained using a syringe and a high-flow, three-way stopcock, and has an average
flow rate of 50–100 mL/min. The infusion circulates for about 20–30 min and requires
an operative block time of about 2–3 h, which is significantly less than conventional
ILP which requires up to 6 h (Thompson et al. 1998). Notably, increased length of
infusion is not associated to better clinical outcomes in the literature (Parsons et al.
1981). Most of melphalan’s cellular uptake takes place in the first 20 min of treatment.
At the end of the procedure, the hypoxic blood is evacuated from the extremity prior
to taking down the Esmarch tourniquet.

B) Advantages of ILI over ILP ILI presents multiple advantages over ILP, although
no head-to head prospective comparison has ever been performed in the context of a
clinical trial. These advantages include:

• No vascular dissection involved, minimally invasive percutaneous access only.
• Technical simplicity, resulting in shorter operative times.
• No need for extracorporeal circulation and associated staff/equipment;
• Easily repeatable technique.
• Wider patient eligibility (elderly, patients with peripheral vascular disease).

C) Clinical Outcomes The Sydney Melanoma Unit (SMU) was the first to publish
data on the clinical outcomes of ILI. In a study involving 128 ILI procedures, Lind-
ner et al. reported a CR of 41, PR of 44, and overall response rate (OR) of 85 %
(Lindner et al. 2002). More recently, the same group expanded their study by ad-
dition 57 ILI procedures, and reported a CR of 38 and PR of 46 % (Kroon et al.
2008). However, these clinical outcomes seem to be lower when performed in other
institutions. Two sites in the United States, Duke University Hospital and Memorial
Sloan Kettering Cancer Center (MSKCC) have published their experience with ILI,
with lower clinical outcomes, namely a CR of 23–30 % and a PR of 33 % (Brady
et al. 2006; Beasley et al. 2008). Similarly, a review of 128 ILI procedures done
at eight different institutions reported a CR of 31, a PR in 36, and no response in
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36 % (Beasley et al. 2009a). There are several reasons explaining the discrepancy
between the Australian and American data. Differences in technique (i.e. differences
in tourniquet and infusion time), healthcare team experience, and methods of re-
porting clinical outcomes may have played a significant role in determining clinical
outcome data. Furthermore, the SMU patients overall had a higher disease stage, and
when they were stratified by disease stage and tumor burden, response rates were
comparable to those from the American data (Beasley et al. 2009a).

In patients who experience a CR or PR, the risk of recurrence is significant, and
no study has shown that ILI or ILP improve overall survival in patients with in-transit
extremity melanoma (Kroon et al. 2008). MKSCC and Duke reported a 12 month
median duration of CR (Brady et al. 2006; Beasley et al. 2008), while the SMU
reported a median overall duration of response of 13 months, and a 22 month median
duration of CR (Kroon et al. 2008). Unfortunately, no randomized controlled trials
exist that directly compare the efficacy and side effects of ILI and ILP. However,
using the data available, response rates from ILI (23–41 %) seem to be on the lower
end of the range compared to those for ILP (25–82 %) (Lindner et al. 2002; Kroon
et al. 2008).

Patients may be offered a second ILI procedure if they are nonresponsive to the
initial treatment, experience a progression of disease within the ILI perioperative
period, or after experiencing a CR or PR. Unfortunately, the SMU reported OR rates
(83 %) that were not significantly different after a second ILI procedure with mel-
phalan and actinomycin-D compared the first ILI (Kroon et al. 2009a). Furthermore,
a repeat ILI was associated with greater rates of limb toxicity (increased number of
patients with grade IV toxicities) and a low CR (23 vs 38 %) (Kroon et al. 2009a).

D) Toxicity Limb toxicity rates are similar between ILI and ILP, however wound
complications, post-operative vascular problems, and long-term morbidity are less
likely with ILI. ILI-associated toxicities include transient lymphedema, erythema,
desquamation, alopecia, skin color changes, onycholysis and discomfort (Thompson
et al. 1998). The likelihood of amputation is reduced with ILI (0.3 %, compared with
2 % in ILP) (Beasley et al. 2009a). Overall, ILI is considered to be a low morbidity
procedure and it may also be used as a palliative method to achieve control of in-
transit extremity disease in patients with distant metastases (Kroon et al. 2009b).
Patients with painful, ulcerating, bleeding, foul-smelling melanoma lesions and who
were expected to suffer significantly in their near future, underwent ILI with the
purpose of palliation and local disease control. Investigators observed a limb salvage
rate of 86 % (which included all patients with CR, PR or stable disease response)
and OR of 76 % (Kroon et al. 2009b).

E) Other applications ILI or ILP may be offered to patients with soft tissue sarcoma
(STS) that are confined to an extremity and are not resectable. The results from ILI
in the treatment of STS have been comparable to melanoma (Hegazy et al. 2007;
Moncrieff et al. 2008; Hoekstra and van Ginkel 2003).A study conducted at the SMU
evaluated the effect of ILI on STS in 21 patients. Seven patients underwent ILI to
treat inoperable recurrences or for palliation and fourteen patients underwent ILI as
neoadjuvant therapy prior to surgery. Limb salvage was achieved in 76, and 57 %
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experienced a CR. Patients that achieved CR had a significantly longer duration of
response than patients with a PR, but survival time was not significantly different.
The procedure was well tolerated with fourteen patients experiencing Wieberdink
grade II toxicity. Importantly, response rates were not significantly different among
patients with different stages of disease; however a lower stage was significantly
associated with longer survival (Moncrieff et al. 2008).

Key Points

• ILI is a low-flow method, performed without oxygenation of the perfusate, and
involves percutaneous insertion of vascular catheters.

• The circuit consists of a blood warmer/bubble excluder that circulates blood from
the arterial to the venous catheter.

• The temperature of the patient’s extremity is increased to up to 40◦C.
• The infusate is maintained acidotic and hypoxic, which potentiates the anti-tumor

activity of the chemotherapeutic agent.
• The infusion circulates for about 20–30 min which is significantly less than

conventional ILP.
• The reported CR median duration is between 13–22 months.
• Post-operative vascular problems, and long-term morbidity are less frequent with

ILI compared to ILP.
• ILI is considered to be a low morbidity procedure and is also used as a palliative

method.

24.2.4 Chemotherapeutics in ILP and ILI

Established chemotherapeutic agents: Melphalan Melphalan has been the chemo-
therapeutic agent of choice since its use for the first ILP by Krementz and Creech, and
subsequently by Thompson for ILI. Other agents have been tested in the setting of
ILP and ILI such as cisplatin (Benckhuijsen et al. 1988; Fletcher et al. 2004; Hoekstra
et al. 1993; Thompson and Gianoutsos 1992; Krementz and Ryan 1972), dacarbazine
(Bonenkamp et al. 2004; Lejeune and Ghanem 1987), and nitrogen mustard (Briele
et al. 1985). However, melphalan remains the mainstay of treatment. Optimization
studies have been done to determine an appropriate therapeutic index without in-
curring excessive toxicity. Studies have been done to determine what variables are
associated with excessive toxicities and tumor response. In the initial days of ILP,
melphalan drug dosing was based on body weight, and the drug dose typically fell
in the range of 1.0–2.8 mg/kg (Fraker 1998). However, using this method does not
take into account differences in weight distribution among individuals.

Melphalan dosing was subsequently based on limb volume calculations. Gener-
ally, the optimal therapeutic index of melphalan is achieved when the lower limbs
are perfused with 10 mg per liter of limb volume, and the upper limbs are perfused
with 13 mg per limb volume (Krementz et al. 1994; Wieberdink et al. 1982; Fraker
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1998). Interestingly, a study of 14 hyperthermic ILPs showed that there was a four-
fold difference in plasma concentration of melphalan among patients using a similar
calculation for dosing based on limb volume (Cheng et al. 2003).

Elevated levels of melphalan plasma concentration was correlated with increas-
ing toxicity, where five patients experienced major toxicities of grade III and IV,
although there was no benefit to tumor response (Cheng et al. 2003). This suggested
that overestimation of melphalan dosing based on limb volume calculations may be
associated with increased toxicity. These data are reproducible among other studies
(Vrouenraets et al. 1998, 1999), and also in the setting of ILI (Beasley et al. 2008).
When the dosing was corrected for ideal body weight (IBW), there was less vari-
ation in the mean melphalan concentrations and less toxicity was observed (10 %
with grade III toxicities or greater with doses adjusted for IBW, versus 33 % with
more than grade III toxicities with doses not adjusted for IBW). Furthermore, another
study by McMahon and colleagues supports that correcting for IBW in ILI results in
lower toxicity rates without affecting tumor response (McMahon et al. 2009). In a
multi-institutional review, Beasley et al. demonstrated that adjusting for IBW in 162
ILI cases decreased toxicity and did not alter CR (Beasley et al. 2009a). However,
it remains a matter of debate on whether to recommend correcting for IBW when
using melphalan in either ILP or ILI at the present time.

B) Agents that reduce chemoresistance of melphalan Overcoming chemoresistance
is a challenge for multiple chemotherapeutic agents, and melphalan is no differ-
ent in this respect. Melphalan acts by alkylating DNA bases, resulting in DNA
cross-linkages that render the DNA unable to be replicated or transcribed in a reg-
ular manner required for cell survival. The cell is inefficient at repairing DNA
cross-linkages using cellular mechanisms, and thus the cell undergoes faulty DNA
replication at best, eventually resulting in cell death or apoptosis. Neoplastic cells
have developed resistance mechanisms to overcome chemotherapeutic treatment,
including enhanced repair of DNA cross-links, decreased drug uptake into the cell,
increased drug efflux from the cell, and inactivation of the drug once inside the cell.
The latter mechanism is believed to be most significant and involves the molecule
glutathione (GSH). GSH has been shown to give rise to GSH S-alkylating agent
conjugates which cause melphalan to be rendered inactive and unable to alkylate
DNA (Grubbs et al. 2004a). This process is enhanced by a major group of detoxi-
fication enzymes, the glutathione-S-transferases (GST) (Hayes and Pulford 1995),
which catalyze the conjugation of GSH to various toxic agents, including melphalan.
Using various human and murine cell-based models, elevated GSH levels (Suzukake
et al. 1982; Green et al. 1984) and increased GST activity (Robson et al. 1987) have
been correlated with resistance to chemotherapy.

Butathione sulfixime (BSO) Various chemosensitizing agents have been tested with
the goal of rendering neoplastic cells sensitive to melphalan. Butathione sulfixime
(BSO) is one such agent. BSO is a small molecule inhibitor of a key enzyme,
γ -glutamylcysteine-synthetase, required in the synthesis of GSH, which is involved
in melphalan resistance (Green et al. 1984; Suzukake et al. 1982). Using a xenograft
model of extremity melanoma, the Tyler group showed that treating animals with
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peritoneal BSO along with melphalan via ILI resulted in delayed tumor growth and
decreased levels of GSH, without increased toxicity (Grubbs et al. 2004b). Phase I
clinical trials are underway where patients will be treated with BSO with a 3-day
infusion during the time of melphalan ILI (Coleman et al. 2009).

Bevacizumab (Avastin) Dysfunctional tumor vasculature poses a challenge in effi-
cient delivery of chemotherapeutic agent to the tumor. A key endothelial cell specific
growth factor involved in the formation of new tumor vasculature, also known as an-
giogenesis, is Vascular Endothelial Growth Factor (VEGF) (Kim et al. 1993; Presta
et al. 1997). Bevacizumab is a monoclonal antibody targeted to human VEGF, which
has been shown to transiently “normalize” tumor vasculature, and suppress tumor
growth (Kim et al. 1993; Jain 2001b). Inducing a transient normalization of tumor
vasculature may facilitate the delivery of melphalan within extremity melanoma.
Pretreatment of orthotopic neuroblastoma xenografts with bevacizumab allowed for
efficacious delivery of chemotherapeutic agent topotecan to tumors as evidence by
greater tumor growth inhibition compared to either drug alone or both administered
concurrently (Dickson et al. 2007).

ADH-1 (Exherin) ADH-1 is another agent that has been shown to improve clinical
response to melphalan in preclinical models of extremity melanoma. E-cadherin
is a transmembrane protein involved in maintaining cell-cell interactions within a
monolayer of epithelial cells. During the malignant transformation of a melanoma,
E-cadherin expression is thought to be switched to N-cadherin. This results in a
diversification of not only the cell-cell contacts, but also in downstream intracellular
signaling pathways that regulate cellular proliferation, survival and angiogenesis.
ADH-1 is a cyclic pentapeptide that disrupts cell-cell adhesions mediated by N-
cadherin and thus, is specific to malignant cells that aberrantly express N-cadherin
(Augustine et al. 2008). Recently, a Phase I study was conducted to assess the
safety, toxicity, pharmacokinetics, and efficacy of systemic ADH-1 in combination
with melphalan administered by ILI in patients with in-transit extremity melanoma
(Beasley et al. 2009b). The study reported a CR of 50 %, and a PR of 12.5 % in 16
patients with minimal toxicities. The group reported that as opposed to bevacizumab
treatment, ADH-1 treatment resulted in increased vascular permeability which may
result in better delivery of melphalan to the tissues, however further studies are needed
to investigate this (Coleman et al. 2009; Beasley et al. 2009a). Phase II clinical trials
are currently in progress (Coleman et al. 2009).

Other chemotherapy agents Although melphalan has been the mainstay of treatment
for the last 50 years, some do not respond to treatment, and others experience a
recurrence following ILP and ILI. Thus, there remains room for improvement in
selecting novel chemotherapeutic agents with acceptable efficacies and toxicities.
Below we discuss other chemotherapeutic agents and their clinical efficacies and
toxicities.

Temozolomide Temozolomide (TMZ) is a cytotoxic second generation DNA-
alkylating agent and a prodrug of the active metabolite 3-methyl-(triazen-1-
yl)imidazole-4-carboxamide. It is commonly used in the treatment of anaplastic
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astrocytoma, and glioblastoma multiforme and is approved for the treatment of
advanced melanoma in > 20 countries worldwide (Trinh et al. 2009). When used
systemically as a single agent in the management of metastatic melanoma, TMZ pro-
duces a response rate 12–14 % for both the monthly dosing regimen (200 mg/m2/day
for 5 days once every 4 weeks) (Middleton et al. 2000), and extended-dosing regimen
(75 mg/m2/day for 6 weeks once every 8 weeks) (Rietschel et al. 2008). However,
TMZ has not yet been tested for its efficacy as a regional chemotherapeutic agent
in patients with in-transit disease. The Tyler group performed ILI using a human
melanoma xenograft model where 5 × 106 cultured human melanoma cells (DM6)
were injected in the hindlimbs of irradiated athymic nude rats and allowed to grow
to a size of 10 mm3 before commencement of treatment. These preclinical studies
showed prolonged tumor growth delay when TMZ was infused regionally within the
lower limb using an ILI approach, compared to systemic administration (Ueno et al.
2004). Using the same animal model, the Tyler group later showed that the cytotox-
icity of TMZ was increased when used in hyperthermic conditions (Ko et al. 2006).
These preclinical studies are optimistic, and clinical trials are currently under review
to test the efficacy of TMZ administered regionally for locally advanced in-transit
melanoma (Coleman et al. 2009).

Agents that reduce chemoresistance of TMZ: O6-benzylguanine Similar to the path-
way of resistance to melphalan outlined previously, a mechanism of resistance
downstream of TMZ has also been identified and characterized. TMZ is an alkylat-
ing agent, and melanoma cells counteract the action of TMZ by efficiently repairing
damaged DNA. O6-alkylguanine-DNA alkyltransferase (AGT) is a major DNA re-
pair enzyme involved in nucleotide repair following DNA damage downstream of
TMZ treatment (Ueno et al. 2006). O6-benzylguanine (O6BG) is an inhibitor of
AGT. Using five different rat xenograft human melanoma models, it was shown that
pretreatment of animals with peritoneal O6BG resulted in a significant reduction of
AGT activity (by 93.5 %) and that subsequent treatment with TMZ by ILI resulted in
a marked reduction of tumor growth (Ueno et al. 2006; Yoshimoto et al. 2007). This
data suggest that chemomodulation of TMZ with O6BG leads to increased efficacy
of the anti-tumor treatment.

Sorafenib (Nexavar) The RAS/RAF/MEK/ERK/MAP kinase pathway is known to
mediate cellular proliferation downstream from growth factor signalling. A landmark
study showed that B-Raf mutations are found in 66 % of malignant melanomas,
whereas they occur at lower frequency in other tumor types (Davies et al. 2002).A
single missense mutation (V600E) in the kinase domain accounts for approximately
80 % of all B-raf mutations in melanoma. B-raf is a serine/threonine kinase that
is among one of the targets of the multi-kinase inhibitor, sorafenib. Sorafenib is
FDA-approved for the treatment of advanced renal cell carcinoma, and advanced
heptocellular carcinoma. Various Phase I and II clinical trials have been conducted
either with systemic sorafenib alone or in combination with chemotherapeutic agents
carboplatin, dacarbazine, paclitaxel and TMZ with mixed results (Hauschild et al.
2009; McDermott et al. 2008; Amaravadi et al. 2009; Eisen et al. 2006). Novel
BRAF kinase inhibitors that are selective for the oncogenic V600E mutation are
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under development and are showing promising results (Poulikakos et al. 2010).
Given the predominance of B-raf mutations in melanoma, targeted therapy would
potentially be an ideal agent either alone or in combination with melphalan in the
treatment of in-transit extremity melanoma. Further studies are necessary to test this
hypothesis.

24.2.5 Summary

In transit melanoma is a challenging metastatic recurrence of cancer both for the
oncologist and the patient. ILP and ILI are effective in controlling disease progres-
sion, without proceeding to amputation. Although no randomized clinical trial exists
to compare the two, studies suggest that ILP is marginally more effective than ILI
but that ILI has much lower toxicity. The indications for ILP and ILI are expanding,
including STS and other tumors. Melphalan remains the chemotherapeutic of choice,
although clinical trials are in progress to test the efficacy of novel agents, including
targeted therapeutics.
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Chapter 25
Palliative Radiation Therapy

Fabio Luis Cury and George Shenouda

25.1 Introduction

Radiation therapy is the field of oncology that uses ionizing radiation to kill malig-
nant cells, by disturbing cellular processes, preventing a perfect cell division and,
consequently, inducing cellular death (Barnes et al. 2010). The deleterious effects of
radiation started to be used in cancer treatment soon after Wilhelm Roentgen discov-
ered X-rays in 1896. But only in the 1950’s, treatment machines similar to those used
today started to be produced, wide spreading the use of radiation therapy in cancer
treatment. Further popularization occurred in the 1990’s after the development of
modern CT-scanners and the use of up to date computer software, allowing better
understanding and visualization of radiation distribution within the human body.

Treatment is usually delivered with photons, although superficial lesions, such as
skin cancer and rib metastases, can also be effectively treated with electrons. The
dose of radiation delivered to a tumor is measured in gray (Gy), and varies depending
on the type of cancer being treated, tumor location and treatment intent, i.e., curative
or palliative. The total dose of radiation is usually delivered in a number of fractions.
Fractionation gives time to cells to recover, and since normal cells have a better
DNA repair system than cancer cells, the deleterious effects of radiation will be
more effective on damaging malignant cells. Fractionation also gives time to cells
to move from a radioresistant cell cycle phase (S-phase) to a more radiosensitive
one (G2-M phase). Also, hypoxic tumors can experience reoxygenation and become
more radiosensitive, as a consequence of reduction of acute and/or chronic hypoxia
between fractions Currently, it is estimated that approximately 60–70 % of patients
diagnosed with cancer will undergo radiation therapy during the course of their
treatment, with either curative or palliative intent. Curative radiation therapy, as
the name suggests, has the objective of cure by eradicating both macroscopic and
microscopic disease. Palliative radiation therapy has the main objective to relieve
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symptoms, recover loss of function caused by tumor compression, and improve
quality of life in patients who have metastatic disease. The objective of this chapter
is to examine the use of radiation therapy in the treatment of the most common sites
of metastases, and to present novel techniques that may improve therapy in a patient
population with limited options.

25.2 Brain Metastases

Brain metastases are a common clinical entity that the oncologist encounters in more
than 20–40 % of patients with cancer (Barnes et al. 2010). Brain metastases are the
most common CNS malignant involvement as they outnumber the primary CNS
primary neoplasms by a factor of 10–1. Metastatic spread to the brain has an annual
incidence of 170,000–200,000 cases per year. Approximately 15 % of adults who die
of cancer will have parenchymal brain metastases (Patchell and Posner 1985). The
most common cancers to metastasize to the brain are lungs (40 %), breast (25 %),
melanoma (10 %), unknown primary site (10 %), and other sites (15 %). Autopsy se-
ries demonstrate a 10–30 % incidence rate for all patients with a diagnosis of cancer
(Li and Poon 1988; Wen et al. 2001). Even though it is common for patients with brain
metastases to have active primary and other systemic metastatic disease, progression
of brain metastases is the cause of death in approximately 50 % of this group of
patients (Borgelt et al. 1981; Kurtz et al. 1981; Chatani et al. 1986). The incidence
of brain metastases has increased over time, probably as a result of advances in
neuro-imaging procedures and improvements in the treatment of primary tumor
and systemic disease, which has led to an increase of survival. Treatment for brain
metastases patients includes corticosteroids, anticonvulsants to control seizures,
surgery, radiotherapy, radiosurgery and chemotherapy. The appropriate aim of
treatment is improvement or maintenance of quality of life.

25.2.1 Clinical Presentation

The majority of the patients will present with one or more of the following symptoms:
headaches, nausea and vomiting, blurred vision, mental status and speech distur-
bances. They can also complain of motor or sensory changes as well convulsions. On
examination the following signs can be elicited: hemiparesis, neurocognitive deficits,
papilledema, ataxia, and apraxia. The presence of these symptoms and signs in any
patient with known malignancy should be considered highly suspicious for brain
metastases and urgent investigations initiated at once to determine the possible etiol-
ogy of the patient’s complaints. The differential diagnosis includes infectious process,
cerebro-vascular accidents, metabolic and paraneoplastic manifestations of malig-
nancy. Moreover, any of these differential diagnoses can coexist with brain metastases
at the same time and may lead to difficulties in making the diagnosis. The patient with
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suspected brain metastases should be evaluated by a multidisciplinary team of expert
medical professionals to evaluate the patients and to recommend the best approach
to making the diagnosis and to initiating the appropriate and timely interventions.

The standard of care for imaging the central nervous system (CNS) in cancer
patients is the MRI with Gadolinium contrast infusion. MRI has a higher resolution
and accuracy as compared to CT scans of the brain. MRI will frequently disclose
smaller lesions not detected on CT scans. The detection of multiple lesions by MRI
will have a major impact on the prognosis and on the subsequent management of
patients who otherwise were considered to have a single lesion on CT scan. Care must
be taken to identify leptomeningeal spread if present as well as any other metastatic
process to the spinal cord that may complicate the clinical presentation.

Positron emission tomography (PET) and CT scans are important investigative
tools for the systemic evaluation of the disease status. Furthermore, the use of PET-
CT scans will help to identify the primary site of the malignancy if the patient presents
with brain metastases with no previous history of cancer.

25.2.2 Prognosis

The prognosis is determined by many factors including patient’s age, status of the
primary disease control, and the Karnofsky performance status (KPS). Gaspar et al.
(1997) who analysed the Radiation Therapy Oncology Group (RTOG) experience
have reported these prognostic factors in the treatment of more than a thousand
patients with brain metastases. A recursive partition analysis (RPA) revealed three
different prognostic classes. RPA class 1 included patients who were younger than
65 years, with a KPS of 70 or higher, and a controlled primary disease. RPA class 3
included patients with a KPS less than 70. RPA class 2 included patients who did not
belong to either class 1 or 3. The median survival of patients in the three RPA classes
was as follows: patients with an RPA class 1 had a median survival of 7.1 months;
patients with an RPA class 2 had a median survival of 4.2 months, while patients with
an RPA class 3 had a median survival of 2.3 months.

25.2.3 Medical Treatment

Corticosteroids The initial treatment for patients with brain metastases consists of
corticosteroids in order to reduce the vasogenic edema and to improve the neurologi-
cal deficits. The introduction of corticosteroids in the form of Dexamethasone results
in overall improvement in the neurological function and KPS in two-thirds of the pa-
tients. Patient receiving corticosteroids should also receive concurrent proton pump
inhibitor to reduce the chances of corticosteroids induced peptic ulcer. The usual
dosage of corticosteroids in patients with brain metastases is a 10 mg intravenous or
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oral bolus, followed by a 4–6 mg, q.6.h–q.8.h of Dexamethasone equivalent dose.
The dose of Dexamethasone should be tapered off over a period of 4 weeks.

Anticonvulsants Based on four negative randomized trials for prophylactic use of
anticonvulsants in patients with brain tumors, the American Academy of Neurology
recommends that prophylactic anticonvulsants not be initiated in newly diagnosed
patients who have not experienced seizure (Glantz et al. 2000). It is important to
recognize the fact that anticonvulsants are known to impact negatively on neurocog-
nitive functions. Klein et al. (2002) correlated seizure burden with quality of life
and neurocognitive functions. The study demonstrates the significant correlation be-
tween the increase in the number of anticonvulsants with a decrease in quality of
life and neurocognitive functions. It is safe to taper a patient off of anticonvulsants if
they have been started prophylactically, provided that they had not experienced any
seizure activity.

25.2.4 Whole Brain Radiotherapy

Whole brain radiotherapy (WBRT) is considered to be the standard of care in patients
with newly diagnosed brain metastases. In general, whole brain radiotherapy should
be started shortly after the diagnosis of brain metastases is made. A total dose of 30 Gy
in ten fractions is considered the most appropriate dose fractionation for most patients
with brain metastases (Gaspar et al. 2010). A similarly acceptable radiotherapy
schedule of 37.5 Gy in 17 fractions is another alternative. There is still no agreement
on the dose fractionation despite numerous studies designed to determine the optimal
dose fractionation schedule. In patients with RPA Class III, a shorter course of 20 Gy
in five fractions should be considered as an acceptable scheme. The natural history
of patients with brain metastases as the presenting event in the cancer diagnosis
is frequently unpredictable. These patients may live sufficiently long, enough to
experience late radiation toxicity; therefore a less hypofractionated radiotherapy
schedule is preferable. Whole brain irradiation to a dose of 45–50 Gy in 2 Gy fractions
over 5 weeks should be considered in patients with brain metastases from germ cell
tumors metastatic to the brain, as these patients are potentially curable with long
survival.

The post-operative delivery of WBRT for such patients aims to sterilize residual
disease in the tumor bed as well as other sites of occult disease in the brain. For
patients who have undergone removal of solitary brain metastases, the addition of
WBRT results in a lower incidence of brain recurrence. The University of Kentucky
randomized patients with single brain metastases to surgery (S) alone (46 patients), or
surgery followed by WBRT (49 patients) (Patchell et al. 1998). The overall survival
times were not statistically significant different between the two arms of the trial
with a median survival time of 48 weeks in the S+ WBRT group versus 43 weeks in
patients who had surgery alone. The addition of WBRT to S reduced the rate of death
due to neurological causes (14 %) as compared to surgery alone (44 %). The addition
of post-operative WBRT also delayed death due to neurological disease progression.
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Fig. 25.1 Example of whole
brain radiotherapy for
multiple brain metastases
with appropriate shielding of
the eyes (red)

Figure 25.1 depicts a typical example of whole brain radiotherapy for a patient with
multiple brain metastases from a primary lung cancer.

25.2.5 Surgical Resection

There is extensive literature on the surgical management of brain metastases. Surgi-
cal resection of solitary brain metastases is increasingly performed on patients with
favorable prognostic factors, accessible lesions, and/or metastatic lesions from rel-
atively radio-resistant tumors such as renal cell carcinoma and melanoma. Due to
the fact that metastases are usually well demarcated from surrounding brain, gross
total resection with a minimum of morbidity and mortality is often possible. Re-
lief of symptoms of intracranial hypertension and focal brain dysfunction has been
demonstrated. Patient survival is also dependent on the extent of extra-cranial dis-
ease. Three prospective randomized trials in which surgical excision followed by
WBRT compared to WBRT alone in patients with single metastases have been done.
Patchell and colleagues (1990) randomized patients with single metastases to either
surgical excision followed by WBRT (25 patients) or biopsy followed by WBRT (23
patients). The median survival times of patients who underwent surgical resection
compared to those who had biopsy were 40 and 15 weeks, respectively. Vecht et al.
(1993) randomized 63 patients to the same regimens with similar results. Although a
third randomized trial failed to show the same survival advantage (Mintz et al. 1996),
the preponderance of available evidence suggests that surgical removal of solitary
metastases followed by WBRT is superior to WBRT alone for selected patients. The
results of the three randomized clinical trials are summarized in Table 25.1.

Controversy exists regarding the role of surgery in the management of multiple
metastases. Bindal et al. (1993) analyzed patients with multiple metastases who had
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Table 25.1 Whole brain radiotherapy versus surgery plus whole brain

Radiotherapy for single brain metastasis

Reference Treatment arms N Median survival Length of functional CNS death
independence (week) (%)

Patchell et al. (1990) S + WBRT 25 40 38 29
WBRT 23 15 8 50

Vecht et al. (1993) S + WBRT 32 43 33 35
WBRT 31 26 15 33

Mintz et al. (1996) S + WBRT 41 24 8 46
WBRT 43 27 9 63

S surgery, WBRT whole brain radiotherapy, CNS central nervous system

all the tumors resected and compared these with patients with multiple metastases
who had some but not all of their brain metastases resected. A further comparison was
made in patients with single metastases that were treated with complete resection plus
WBRT. The authors found that the group with completely resected multiple metas-
tases did relatively well (median survival, 14 months) and was similar to the group
with single resected metastases (median survival, 14 months). The patients who did
not have all of their brain tumors removed did less well (median survival, 6 months).
The 1-month mortality rate for the multiple metastases group was only 4 %.

Hazuka et al. (1993) reported a retrospective surgical series with 18 patients with
multiple metastases and 28 patients with single metastases. The group with multiple
metastases had a median survival of 5 months; those with single metastases had a
median survival of 12 months. Overall, only 50 % of patients had complete resections,
and the complete resection rate in the multiple metastases group was not reported.

Occasionally, surgery is necessary in patients with multiple metastases who have
a single life-threatening brain lesion. The intent of surgery in these cases is to remove
the single life-threatening lesion without resecting the other lesions. The standard of
care for most patients with brain metastases is WBRT alone. The best results from
surgery are found in patients with a single surgically accessible lesion and either no
remaining systemic disease (true solitary metastasis) or controlled systemic cancer
limited to the primary site only. A study from Memorial Sloan-Kettering Cancer
Center (Burt 1992) has suggested that in patients undergoing resection of brain
metastases from non-small cell lung carcinoma, survival is increased significantly in
patients with complete resection of the primary lung disease. There was no correlation
of survival with initial cancer stage per se. Also, surgical treatment may be indicated
in patients without known systemic cancer (to obtain a tissue diagnosis) and in
patients with impending herniation resulting from pressure effects.

25.2.6 Radiosurgery

Stereotactic radiosurgery (SRS) is a radiotherapeutic technique that delivers high
dose irradiation to a small target in a single session with a steep dose fall off. There
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are two major delivery techniques, gamma knife SRS or linac-based SRS. The linac-
based SRS systems are of two types: those with a tracking system such as cyberknife
and those without tracking system such as the trilogy system. The attractive prop-
erty of SRS in the treatment of brain metastases is that SRS will focus the dose on
the tumor target, and at the same time spares the surrounding normal tissues from
toxicity. A stereotactic radiosurgery was designed to treat intracranial targets such
as primary and metastatic brain tumors, acoustic neuromas, meningiomas, brain
adenomas and craniopharyngiomas, as well as vascular diseases, such as arteriove-
nous malformation and cavernous angiomas. Stereotactic radiosurgery was also used
to treat functional disorders of the CNS such as, trigeminal neuralgia, involuntary
movements and epilepsy. Stereotactic radiosurgery is minimally invasive and can be
performed as an outpatient procedure with important implication for quality of life
and health care economics when compared with surgery (Mehta et al. 1992; 1997).

Most of the evidence supporting the use of SRS for metastatic brain tumor comes
from prospective non-randomized trials and retrospective studies (Sawaya et al. 1994;
Lippitz et al. 2004; Bhatnagar et al. 2002; Simonova et al. 2000). These reports sug-
gest that SRS is more effective than WBRT and it is comparable to or superior
to surgery. Stereotactic radiosurgery as the sole initial management or as a boost
technique before or after WBRT has emerged as a widely practiced modality for
brain metastases. The goal of SRS with WBRT is to achieve brain control without
the possible long-term neurotoxicity or neurocognitive side effects associated with
WBRT. The rationale for SRS, when used as a boost in combination with WBRT, is
to improve local control. Stereotactic radiosurgery boost seems to improve survival
of selected patients in whom the problem is prominent brain metastases rather than
extracranial disease. Stereotactic radiosurgery has its role as a salvage treatment for
local recurrence and/or new brain lesions after surgery or WBRT or even after previ-
ous SRS. Radiosurgery provides an additional boost to WBRT in patients with brain
metastases that are not surgical candidates or because of deep-seated unresectable
brain lesions.

Three randomized clinical trials have been reported examining the role of SRS.
One study, reported by Kondziolka et al. (1999) randomized patients with two to
four lesions to WBRT (30 Gy in 12 fractions) or to WBRT + SRS boost. The study
was stopped at an interim evaluation at 60 % accrual. Twenty-seven patients were
randomized (14 to WBRT alone and 13 to WBRT plus SRS). The groups were
well matched to age, sex, tumor type, number of tumors, and extent of extracranial
disease. The rate of local failure at 1 year was 100 % after WBRT alone but only 8 %
in patients who had boost SRS. The median time to local failure was 6 months after
WBRT alone (95 % confidence interval [CI], 3.5–8.5) in comparison to 36 months
(95 % CI, 15.6–57) after WBRT plus SRS (p = 0.0005). The median time to any
brain failure was improved in the SRS + WBRT group (p = 0.002). Tumor control
did not depend on histology (p = 0.85), number of initial brain metastases (p = 0.25),
or extent of extracranial disease (p = 0.26). Patients who received WBRT alone lived
a median of 7.5 months, while those who received WBRT plus radiosurgery lived
11 months (p = 0.22). Survival did not depend on histology or number of tumors,
but was related to extent of extracranial disease (p = 0.02). There was no neurologic
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or systemic morbidity related to SRS. The authors concluded that combined WBRT
and SRS for patients with two to four brain metastases significantly improve control
of brain disease. WBRT alone does not provide lasting and effective care for most
patients.

A second study was reported by Andrews et al. (2004) (RTOG 9508), where
randomized patients with brain metastases, with one to three lesions, treated with
WBRT alone were compared with patients treated with WBRT + SRS boost. The
median survival rate of patients who received WBRT alone ranged from 5.5 to
7.5 months and was not statistically different from the WBRT + SRS group who
showed a median survival rate of 5–11 months. However, on multivariate analysis,
WBRT + SRS improved survival in patients with RPA class I and in patients with
non-small cell lung cancer. In patients with unresectable or inoperable lesions, SRS
resulted in a median survival of 6.5 months compared to 4.9 months in the WBRT
group (p = 0.039). There was less steroid dependence in the group of patients who
received SRS + WBRT as compared to those who received WBRT alone. There was
a statistically non-significant increase of late grade 3 and 4 CNS toxicities (6 %) in
patients who received the SRS boost. Another trial randomized patients with one
to three brain metastases to WBRT, WBRT + SRS, or SRS alone. The local control
was higher in the group of patients who received WBRT + SRS or SRS alone, and
was better than the group of patients who were treated with WBRT alone (Chougule
et al. 2000). Similar results were reported from the Japanese Radiotherapy Oncology
Study Group (Aoyama et al. 2006). The study randomized patients to WBRT + SRS
versus SRS alone showing that the addition of SRS to WBRT significantly improved
local control rate for patients up to four brain metastases. The trial also showed that
the tapering of steroid doses and the improvement in KPS were significantly better in
the SRS boost arm at 6 months. This was accomplished without a significant increase
in acute or late radiation-induced side effects. The study also demonstrated that the
omission of WBRT resulted in decreased local control both at the sites of SRS and
also in the remaining untreated brain.

In conclusion, SRS alone or in combination with WBRT has emerged as a widely
practice treatment modality for brain metastases. The ideal treatment approach may
be surgical, resection of the larger or more symptomatic lesions combined with SRS
for the surgically inaccessible lesions. Clinical trials have shown the mandatory need
for WBRT (Patchell et al. 1990, 1998).

25.2.7 Concurrent Radiosensitizers

In order to improve the efficacy of WBRT in patients with brain metastases, many
chemotherapeutic agents and radiosensitizers were used in clinical trials. Radio-
therapy was delivered to the whole brain in doses that varied from 30 Gy in ten
fractions, 37.5 Gy in 17 fractions, or 40 Gy in 20 fractions in addition to one of the
following agents used as a radiosensitizer including: Misonidazole, Nitrosourea, Bro-
modeoxyuridine, Carboplatin, Motexafin Gadolinium, and Temozolomide (TMZ)
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(Patchell et al. 1990; Guerrieri et al. 2004; Komarnicky et al. 1991; Mehta et al.
2003; Suh et al. 2006; Ushio et al. 1991; Verger et al. 2005). No clinical trial has
demonstrated any survival benefit when a radiosensitizer was administered during
WBRT.

The concurrent administration of TMZ with conventional WBRT was investigated
in a phase II study from the Metaxas Cancer Hospital (Antonadou et al. 2002a).
In this trial, 52 patients with brain metastases from a variety of primary tumors
(among whom 31 had non-small cell lung cancer, nine small cell lung cancer and
five had breast cancer) were randomized to WBRT and a total dose of 40 Gy with
a daily fraction of 2 Gy, with or without concurrent administration of TMZ. Temo-
zolomide was administered orally at a dose of 75 mg/m2 during radiation treatment
and 200 mg/m2/day for 5 days every 28 days for a maximum of six additional cy-
cles. Treatment response was assessed on the basis of CT scanning or MRI 2 months
after completion of radiation treatment according to the World Health Organization
(WHO) criteria for response. Forty-five patients were assessable for response. The
objective response rate in the group receiving TMZ (96 %) was significantly superior
(p = 0.017) to that achieved with WBRT alone (67 %). Another measure of treatment
efficacy is the requirement for medication to palliate neurological symptoms. The
proportion of patients who required corticosteroids in the TMZ plus WBRT group
decreased from 100 to 67 % 2 months after the completion of WBRT, compared
with a decrease from 100 to 91 % in the WBRT group. Patients treated with TMZ
plus WBRT had a slight improvement in overall survival (8.6 months) compared
with WBRT alone (7.0 months). The addition of TMZ to WBRT was generally well
tolerated.

In a phase III study concurrent administration of TMZ with WBRT was investi-
gated further. In this trial, 123 patients with brain metastases were randomized to
TMZ and WBRT or WBRT alone. The total radiation dose was 30 Gy, with a daily
fraction of 3 Gy. TMZ was administered with the same schedule as in the previous
trial. Treatment response was assessed with CT scanning or MRI 3 months after
completion of the radiation treatment. A total of 123 patients were assessable for
response, among them 103 lung cancer patients. The objective response rate in the
group receiving TMZ (50 %) was significantly higher (p = 0.028) than that achieved
with WBRT alone (31 %). The evaluation of lung cancer patients gave similar results;
the response rate in the TMZ group (48 %) was significantly superior (p = 0.031) to
that of the WBRT alone group (27 %). The hazard ratio for death from any cause in
the TMZ group compared with the control group was 0.69 (95 % confidence interval
(CI): 0.46–1.02, p = 0.06). The median survival in the TMZ plus WBRT group was
7.87 months, while in the WBRT group it was 4.93 months. In the subgroup analysis
for the lung cancer patients, median time to progression in the brain was 4.8 months
(95 % CI: 1.71–9.18) for the WBRT group, while more than 50 % of the patients
in the TMZ plus WBRT group were disease-free. There was a significant difference
between the two groups (p < 0.001) (Antonadou et al. 2002b).
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25.2.8 Neurocognitive Decline in Patients with Brain Metastases

Unfortunately, WBRT leads to cognitive impairment in long-term survivors, espe-
cially in the elderly. In a recent study using more conventional fractionation, 33 %
of the patients developed late neurocognitive toxicity with a median follow-up of
10 months. Memory impairment was the most common symptom in 50 % of the pa-
tients. The actuarial rate of neurocognitive toxicity at 2 years was 49 % with 20 % of
the patients showing a decline in the KPS of greater than 10 % (Nieder et al. 1999).
The first large prospective study to evaluate neurocognitive functions in patients
with brain metastases was performed using a battery of cognitive tests at baseline,
monthly for 6 months and then every 3 months until death before and after WBRT.
Ninety percent of the patients showed an impaired performance in one or more of
the neurocognitive tests at baseline. The majority of the patients showed a decline of
neurocognitive function after WBRT with 59 % of the patients experiencing greater
than 2 standard deviation decline in their performance at 6 months (Meyers et al.
2004).

Current understanding of the effect of radiotherapy on neurocognitive function
is very limited. It is becoming increasingly clear that the pathophysiology of late
radiotherapy injury is a dynamic, complex and a result of inter and intra cellular
interactions between the vasculature and the parenchymal cells (Monje and Palmer
2003). Histological studies reveal that the death of endothelial cells begins during
radiotherapy and continues over the next few months. Over weeks to months, small
vessels become partially or completely occluded by thrombi from platelet clusters.
This mechanism results in a histopathological picture similar to the small vessel
disease seen with vascular dementia (Belka et al. 2001).

Hippocampal dependant functions of learning memory and special information
processing seem to be preferentially affected by radiotherapy (Armstrong et al. 2000,
2002; Monje et al. 2002). Radiation exposure induces microglial inflammatory
response in the neurogenic region of the hippocampus that appears to inhibit the
neurogenesis of stem cells.

Current clinical research is underway to determine whether the use of Meman-
tine would reduce the neurocognitive deficit encountered in patients who receive
WBRT for brain metastases. Memantine, an N-methyl-D-asparate (NMDA) re-
ceptor antagonist, may be neuroprotective agent against neural injury associated
with radiation-induced ischemia. Memantine has been shown to improve cognitive
functions in patients with mild to moderate vascular dementia and in patients with
moderate to severe Alzheimer’s type dementia. Currently there is a Phase II study
by the RTOG where patients are randomized to Memantine versus placebo started
on the first day of WBRT. The results of the study are awaited and may lead to
an improvement in neurocognitive preservation and quality of life in this group of
patients.

In addition to the impact of WBRT on neurocognitive function in patients with
brain metastases, other factors may co-exist and contribute to the cognitive dys-
function in this group of patients. Such factors include anticonvulsants, opioids,
chemotherapy, surgery, and the presence of the brain metastases itself.
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25.2.9 Recurrent Brain Metastases

Brain metastases often recur. In general, the same therapeutic options used for pa-
tients with newly diagnosed brain metastases are available for those with recurrent
disease. The type of the initial treatment will limit the therapeutic options available
at recurrence. Other factors contributing to the decision on what modality should be
used are functional status, extension of disease, recurrence/progression, and treat-
ment must be individualized accordingly (Ammirati et al. 2010). Most frequently,
patients have already received WBRT at the time of the initial diagnosis of brain
metastases. The amount of WBRT that can be safely delivered in these patients at the
time of recurrence is in the range of 15–20 Gy, and is usually ineffective for adequate
tumor control. Retrospective studies of re-irradiation showed poor impact on overall
survival of this group of patients with recurrent brain metastases (Kurtz et al. 1981;
Hazuka and Kinzie 1988; William et al. 1996).

Conventional surgery for recurrent tumors is an option in patients who have a
single recurrence and a good performance status. A retrospective study (Sundare-
san et al. 1988) examined 48 patients treated with reoperation for recurrent brain
metastases and revealed a median survival of 6.7 months after reoperation. In an-
other report of 109 patients with non-small cell lung cancer and recurrent brain
metastases, 32 had surgery for their recurrences and survived longer compared to
patients with recurrence that did not undergo surgery (Arbit et al. 1995). In all of
these studies, the patients were a select group with relatively little systemic disease
and a single recurrent metastasis.

In conclusion, stereotactic radiosurgery has been used to treat recurrent brain
metastases. Radiosurgery has the theoretical advantage of being able to deliver large
doses of additional radiation to small areas of the brain. It is usually delivered to
a highly select group of patients who had small recurrent tumors and limited sys-
temic disease. Further studies are needed to determine the true value of stereotactic
radiosurgery in the management of recurrent brain metastases.

Key Points

• The most common primary tumors that metastasize to the brain are lungs, breast,
and melanoma.

• Progression towards brain metastases indicates a poor overall survival rate.
• The median survival rate of patients with brain metastases, depending on the

prognostic class according to a recursive partitioning analysis, is between 2.3–
7.1 months.

• Surgical resection is performed in selective cases of solitary brain metastases.
• The addition of whole brain radiotherapy to surgery may increase the survival rate

and reduce the incidence of recurrence of brain metastases.
• Stereotactic radiosurgery alone or in combination with whole brain radiotherapy

is widely accepted treatment options for patients with brain metastases.
• Concurrent administration of chemotherapeutic agents with whole brain radio-

therapy seems to improve the overall survival rate of patients with brain metastases
when compared to whole brain radiotherapy alone.
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25.3 Bone Metastases

25.3.1 Introduction

After lung and liver, bone is the third most common site of metastases from many
types of solid tumors (Clezardin and Teti 2007) with a particularly high incidence
in breast, prostate and lung malignancies. Although breast and lung tumors are
usually responsible for osteolytic bone lesions, prostate cancer originates osteoblastic
lesions. The only tumor that causes only one type of lesion is myeloma that is always
associated with osteolytic lesions. All other types of tumors have a combination of
osteolytic and osteoblastic components (Roodman 2004).

Bone metastases are common and frequently incapacitating cancer patients. Prog-
nosis for patients diagnosed with bone metastases is generally poor, but survival
depends on the primary cancer site, ranging from months for lung cancer (Cole-
man 2006) to years for prostate and breast cancer (Coleman 2006; Coleman and
Ruben 1987; Ibrahim et al. 2010). Although not an imminent life-threatening situ-
ation by itself, skeletal involvement causes a detrimental impact on quality of life.
A wide range of symptoms and complications are associated with bone metastases,
including pain, pathologic fractures, spinal cord compression and, in extreme situa-
tions, hypercalcemia (Coleman 2001). As a consequence of the diversity of problems
caused by bone metastases, its treatment becomes a challenge and convenes for a
multidisciplinary team for adequate management.

25.3.2 Evaluation

Pain is not a patognomonic sign of bone metastasis and by itself should not be inter-
preted as disease progression. Differential diagnosis has to be made from new and
progressive nonmalignant conditions, such as arthritis, osteoporosis, musculoskeletal
conditions, as well as treatment-related complications. Therefore, a comprehensive
medical history is required, and a thorough physical examination must be performed,
including a neurological examination to rule out the possibility of spinal cord, cauda
equina or nerve root compression. Biopsies are not performed in all patients, but
when necessary, image-guided percutaneous bone biopsies were shown to be safe
and cost-effective (Coleman 2001; Jelinek et al. 2002).

Correlation between findings on physical exam with imaging studies is essential
to determine the possible cause and extent of disease. When patients present with
localized tenderness on physical exam the first imaging study is plain radiography,
given its high specificity in comparison to other modalities, such as bone scan.
Plain radiographs, are also useful to diagnose impending or established pathologic
fractures, or as a confirmatory study after questionable bone scan results. The main
weakness of plain radiographs in the assessment of bone metastases is that small
lesions are not always seen.
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Fig. 25.2 Pelvic CT-scan of a
76 year-old men with
metastatic prostate cancer,
showing osteoblastic and
osteolytic lesions

Computed tomography (CT) scans (Fig. 25.2) are more sensitive than plain ra-
diographs in depicting small lesions, defining extension of cortical destruction and
evaluating the risk of pathologic fracture. Moreover, the visualization of soft tissue
extension of disease is possible with the use of CT-scan, helping to better under-
stand symptoms, otherwise not explained by plain radiographs alone. Its use in the
screening of bone metastases is not cost-effective, given the time needed to perform
a whole-body CT-scan.

Similarly to CT-scan, magnetic resonance imaging (MRI) (Fig. 25.3) is very useful
as a confirmatory study in the evaluation of suspicious lesions, which are unclear on
plain radiographs and unspecific on bone scan. It also provides excellent soft tissue

Fig. 25.3 MRI of (a) cervical, thoracic, and (b) lumbar spine on a patient with prostate cancer,
presenting with diffuse metastastic disease to vertebral bodies and multilevel pathologic fractures.
No spinal cord or cauda equina compression is present
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Fig. 25.4 Bone scan of a 76 year-old men with diffuse bone metastases

contrast, allowing for better visualization of soft tissue extension and compression of
nervous structures. Along with myelography, it is the study of choice to investigate
spinal cord compression.

Bone scintigraphy (radionuclide bone scan using Technetium-99) is very sen-
sitive in the detection of bone metastases (Fig. 25.4), but its sensitivity is limited
to the detection of osteoblastic lesions–cancerous or not. Although not specific for
bone metastases, with false-positive results frequently associated with degenerative
processes, trauma, or Paget’s disease, bone scan is the most useful modality to in-
vestigate the existence and distribution of bone metastases, and, therefore, part of
the screening process of metastatic bone disease.

Positron emission tomography (PET) scan usually uses 18-Fluorodeoxyglucose
(FDG) isotope to identify areas of increased metabolic activity in the body (Fig. 25.5).
Increased metabolism is usually detected on osteolytic bone lesions (Cook et al.
1998) in which cases PET scan can be more sensitive than bone scan in detecting
bone metastases (Even-Sapir et al. 2006). Its use is not widespread given its lack of
ability to detect osteoblastic lesions and cost.

25.3.3 External Beam Radiation Therapy

The pain mechanism that is not associated with fracture in patients with bone metas-
tases is poorly understood, as well as the mechanism by which the use of radiation
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Fig. 25.5 Axial image from a PET/CT scan with arrows showing the correlation between findings
on (a) PET-scan and (b) CT-scan of metastatic lesions to the sternum (green), rib, with soft tissue
extension (red), thoracic vertebrae (blue) and enlarged axillary’s lymph node metastasis (yellow)

therapy will provide a pain relief (Saarto et al. 2002). Radiation therapy effectively
alleviates pain induced by metastatic bone disease, improving quality of life, and
reducing the need of analgesics. Moreover, radiation therapy has potential to prevent
pathologic fractures, and treat/prevent spinal cord compression. Localized external
beam radiation therapy (EBRT) is the most commonly used form of radiation ther-
apy for bone metastases. An example of EBRT planning for painful thoracic spine
metastases is given in Fig. 25.6.

Painful Bone Metastases Radiation therapy improves pain control in 80–90 % of
patients with painful bone metastases, with complete pain response in 50–60 % of
cases (Berk 1995; Sze et al. 2003, 2004; Ratanatharathorn et al. 1999; Steenland
et al. 1999).

Several EBRT fractionation schedules were investigated in clinical trials. The
most important subject investigated is how many fractions of radiation therapy are
needed to provide adequate pain control, without disrupting patient’s quality of life
with new side effects associated with treatment and dislocation to the hospital to
receive prolonged daily treatments. The largest trials are summarized on Table 25.2.
Generally, comparisons were made between single fraction and multiple fraction
treatment schedules, and the results are quite similar among all trials indicating that
single fraction is equivalent to multi fraction EBRT in terms of pain control, nar-
cotic relief, time to pain improvement and pain recurrence, incidence of pathologic
fractures, and quality of life. A common difference between both schedules is the
rate of retreatment, which is usually double for patients undergoing single fraction
treatment. However, it has been shown that after one 8 Gy fraction, retreatment with
a repeat 8 Gy fraction to the same area is safe and efficient (Yarnold 1999). An-
other difference between both schedules is a significant difference in acute toxicity
favoring single fraction radiation therapy, shown by Hartsell et al. (2005). A meta-
analysis (Jackson Sai-Yiu 2003) as well as systematic (Sze 2003; Chow et al. 2007)
and critical (Pradier et al. 2003) reviews, reveal a fairly consistency of results among
randomized controlled trials that investigated the subject fractionation (Table 25.2).



366 F. L. Cury and G. Shenouda

Fig. 25.6 External beam radiation therapy planning for a patient with cutaneous melanoma and
diffuse metastatic disease with painful bone metastases in the thoracic spine. Treatment plan was
performed to deliver 8 Gy in one fraction to the painful area using 2 EBRT fields (anterior and
posterior)

Although the rate of bone recalcification was shown to be lower after single dose
RT (120 %), compared to fractionated RT (173 %) (Koswig and Budach 1999), what
is observed clinically is that the rate of pathologic fractures is somewhat similar after
single or multiple-fraction treatment, ranging from 2 to 5 % (Hartsell et al. 2005;
Nielson et al. 1998; Roos et al. 2005). The exception was the study by Steenland
et al. (1999), showing a higher incidence of pathologic fracture (4 vs. 2 %) in patients
who underwent single fraction treatment.

Immediately after radiation therapy for pain relief, up to 40 % of patients can
present a pain flare in the treatment field (Hird et al. 2009) defined as an augmentation
of pain intensity by two points on the visual analog scale. Pain flare can last up to 7
days, but there are some suggestions that it can be prevented with the prophylactic
use of 8 mg dexamethasone before radiotherapy (Chow et al. 2007). The antialgic
effects of EBRT on painful bone metastasis are usually seen at a median time of 1–4
weeks after treatment (Yarnold 1999; Koswig et al. 1999; Tong et al. 1982) and the
duration of response ranges from 12 to 24 weeks (Pradier et al. 2008).

Pathologic fractures Radiation therapy has a role in preventing pathologic fractures
in patients with bone metastases. However, when a patient presents with impending
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Table 25.2 Randomized trials for painful bone metastases

Trial Patients Fractionation Primary endpoint Other endpoints (results in
schedules (results in percentage)

percentage)

Nielsen et al. 241 8 Gy/1 fr vs. Pain control Quality of life (similar)
(1998) 20 Gy/5 fr (49 vs. 55 at Analgesic consumption (similar)

4 weeks) Side effects (similar)
(60 vs. 60 at Pathologic facture (5 vs. 5)

12 weeks) Retreatment (21 vs. 12)
Steenland et al. 1,171 8 Gy/1 fr vs. Pain control Complete pain control (37 vs. 33)

(1999) 24 Gy/6 fr (72 vs. 69) Use of analgesics (similar)
(Dutch trial) QoL (similar)

Side effects (similar)
Pathologic fractures (4 vs. 2)
Retreatment rate (25 vs. 7)

Yarnold et al. 765 8 Gy/1 fr vs. Pain relief Complete pain control (57 vs. 58)
(1999) 20 Gy/5 fr or (78 vs. 78) Time to first pain improvement

(similar)
BPTWP 30 Gy/10 fr Time to complete pain relief (similar)

(British trial) Time to pain recurrence (similar)
Toxicity (similar)
Pathologic fractures (2 vs. < 1)
Retreatment rate (23 vs. 10)

Hartsell et al. 898 8 Gy/1 fr vs. Pain relief Complete pain relief (15 vs. 18)
(2005) 30 Gy/10 fr (50 vs. 48) Narcotic relief (similar)
(RTOG 9714) Acute toxicity (10 vs. 17, p = 0.002)

Chronic toxicity (4 vs. 4)
Pathologic fractures (5 vs. 4)
Retreatment (18 vs. 9)

fr number of RT fractions, BPTWP bone pain trial working party

or existing pathologic fracture of a weight-bearing bone, little can be done with
radiation therapy alone. Whenever possible, surgical fixation should be performed
to decrease pain and facilitate rehabilitation, restoring limb function in more than
80 % of patients (Harrington 1997) and improving quality of life. Unfortunately,
surgery frequently does not result in complete tumor removal, and EBRT is often
indicated postoperatively, as it reduces the need of further orthopedic procedures
to the same site (Townsend et al. 1995) and improves bone recalcification (Koswig
and Budach 1999) EBRT is usually performed 2–4 weeks following surgery, after
complete healing of surgical incision. As there are no randomized trials on total dose
and fractionation schedule for this situation, most centers use the same schedules
used for painful bone metastasis.

Spinal cord compression Spinal cord compression is a medical emergency that oc-
curs in 5–10 % of patients with bone metastases (Elte et al. 1986; Käkönen and
Mundy 2003; Mercadante 1997; Halfdanarson et al. 2006) with debilitating and
catastrophic complications, if not dealt with within reasonable time. Spinal cord
or cauda equina compressions result from direct tumor extension or direct pressure
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by an unstable fractured vertebral body against these neurological structures. As
a consequence, patients may present in addition to back pain, weakness, sensory
deficits and/or autonomic dysfunction, characterized by urinary retention and fecal
incontinence.

Treatment consists of corticosteroid therapy, followed by surgery and/or radiation
therapy, and its main objectives are pain control and preservation or improve-
ment of neurologic function. Patients, who are surgical candidates, i.e., with good
life expectancy and medically fit, should undergo aggressive treatment with sur-
gical decompression followed by EBRT. As shown by Patchell et al. (2005) on a
randomized clinical trial, combined therapy consisting of surgery plus EBRT signif-
icantly improves pain control and neurological function in patients with spinal cord
compression, compared to radiation therapy alone.

Patients, who are not good surgical candidates, are treated with corticoids and
radiation therapy. In this situation, single fraction and multi-fraction EBRT provide
similar response rates in terms of pain control and neurologic function. Once again,
the main difference between fractionation schedules was the rate of local recur-
rence, higher with single fraction (8 Gy) and with low-total dose (20 Gy) schedules,
in comparison to schedules delivering higher total doses (30–40 Gy) (Rades et al.
2005, 2006). Decision of fractionation schedule is usually based upon patient’s life
expectancy.

25.3.4 Stereotactic Body Radiosurgery

When the total dose delivered by previous course(s) of EBRT reached the tolerance
dose of adjacent normal structures (Emami et al. 1991), more radiotherapy cannot be
safely delivered without serious side effects. In such cases, high-precision techniques
can be used to spare normal healthy tissues and minimize side effects.

Stereotactic body radiosurgery (SBRT) is a technique that emerged as a non-
invasive option for retreatment of bone metastasis, especially lesions close to
important nervous structures, such as the vertebral spine and skull base. One of
the largest series using this technique was published by Gerszten et al. (2007), with
500 cases of spinal metastases in 393 patients using SBRT, most of them previously
treated with EBRT. In his cohort, doses ranged from 12.5 to 25 Gy in a single fraction,
providing of long term pain and tumor control at a median follow-up of 21 months,
with no late neurologic complications.

In conclusion, the potential benefits of SBRT in the treatment of bone metastasis
are short treatment time in an outpatient setting with good quality symptomatic
response, using higher doses of radiation than those delivered by EBRT. Similarly to
all new technologies, one must be careful when using SBRT, since long term follow-
ups and randomized clinical trails are not available. But despite of this, SBRT can be
considered a novel treatment option for the treatment of bone metastasis in previously
irradiated sites.
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Key Points

• Bones are the third most common sites of metastases.
• Survival rate depends on the primary malignant site and other sites of metastases

and ranges from months to years.
• Bone metastases have a detrimental impact on the quality of life.
• Bone metastases are investigated by a combination of different imaging techniques

including plain X-Rays, CT-scans, and MRIs.
• Localized external beam radiation therapy (EBRT) is the most commonly used

form of radiation therapy for bone metastases.
• Single-fraction radiotherapy with 1 × 8 Gy is an effective therapeutic strategy

for pain relief equivalent to multi-fraction radiotherapy for metastases without
pathological fractures or spinal cord compression.

• In patients with pathological fractures EBRT is often indicated postoperatively to
reduce the need of further orthopedic procedures.

• In patients with spinal cord compression therapy consisting of surgery plus EBRT
improves pain control and neurological function.

25.3.5 Stereotactic Body Radiation Therapy for Liver Metastases

Metastatic disease represents a significant burden in the care of patients with malig-
nancy, especially those patients with breast, colorectal and lung cancers. For example,
the combined incidence of breast, and Colorectal Cancer (CRC) is approximately
360,000 cases per year, with 19 % of breast, and 39 % of CRC patients dying from
their disease (Jema et al. 2005). Although chemotherapy is the standard of care for
metastatic disease, the value of chemotherapy is limited and recent studies showed
that those patients who appear to have few sites of involvement may benefit from
the addition of local therapy, such as surgical resection of metastases or stereotactic
body radiotherapy (SBRT) (Greenberg et al. 1996; Falkson et al. 1990).

Hepatic resection, or metastatectomy, is an accepted standard therapy for medi-
cally and technically operable hepatic oligometastases from colorectal cancer (CRC).
Several retrospective trials have demonstrated long-term survival in selected group
of patients with metastatectomy (Fong et al. 1999; Shah et al. 2007; Aloi et al. 2006).
One study (Fong et al. 1999) reported a 10-year survival of 22 % in 1,000 patients
with CRC who underwent hepatic resection for hepatic metastases. In a study re-
ported by Aloia et al. (2006) hepatic resection was compared with radiofrequency
ablation of the hepatic lesions. It showed a several fold increase of local failure in
the radiofrequency ablation versus hepatic resection.

Only a subset of liver metastases is resectable because of factors such as disease
location, proximity to blood vessels and or other critical structures. A significant
group of patients are deemed surgical risks because of poor general medical sta-
tus. Stereotactic radiation therapy is an alternative approach in unresectable lesions,
medically unfit patients, or patients who do not desire surgery.
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Fig. 25.7 SBRT for the treatment of a single metastatic hepatic lesion, showing the sharply treated
lesion with sparing of the rest of the normal liver parenchyma. (Courtesy of Dr. D. Roberge)

Stereotactic body radiation therapy involves a brief, intensified regimen of ra-
diotherapy tightly focused on targets in extracranial neoplastic lesions. The term
stereotactic relates to the correlation of tumor target position to reliable fiducials
with readily known position. The fiducials define a coordinate system that can be
used to target the tumor, orient the treatment planning process, and ultimately guide
the therapy toward the intended target location in the body.

Patients selected for SBRT should have a limited number of demarcated tumors
whose extent can be identified directly on treatment-planning image or reliably fused
by image registration techniques. Patient positioning should be reproducible and
comfortable because of the longer treatment sessions as compared with conventional
external beam radiotherapy. The avoidance of large safety margins around the target
is very important in order to avoid toxicity to normal tissues. This is accomplished
by the use of different target motion control techniques to minimize organ motion
during the delivery of SBRT. The different target motion control techniques include
gating, tracking, and dampening. Gating involves the monitoring of the respiratory
cycle and the delivering of the treatment during one specific phase of the respiratory
cycle, typically at the end of expiration, while the beam is turned off in the other
phase of breathing. Tracking involves physically moving a beam of irradiation to
coincide with tumor motion in the beam’s eye view. Generally, a fiducial marker
is used in tracking techniques to activate the beam delivery. Dampening is another
method to reduce tumor motion, and it is done by abdominal compression or by
breath holding techniques. These dampening techniques will reduce the cephalo-
caudal diaphragmatic excursion and thereby help to reduce the motion of the target,
especially in the lower lungs and the liver. An example of SBRT for a single liver
metastasis from a primary nasopharyngeal cancer is illustrated in Fig. 25.7.
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Rusthoven and colleagues (2009a) reported the results of a multi-institutional
Phase I/II trial of SBRT for patients with one to three liver metastases. The trial
objectives were to evaluate the efficacy and tolerability of high dose SBRT in this
group of patients, with a maximum individual lesion diameter of 6 cm. The SBRT was
delivered in three fractions, and the dose was escalated from 36 to 60 Gy during the
phase I of the study, and established at 60 Gy for the Phase II.A secondary end point of
the study was survival. Forty-seven patients were included in the trial and were treated
for a total of 63 hepatic lesions. Only one patient (2 %) suffered from grade 3 soft
tissue toxicity in the form of tissue breakdown of the anterior abdominal wall in close
proximity to the high dose region of the SBRT plan. The authors of the study reported
no grade 4 or 5 toxicity. The local control was defined by imaging in patients who
lived 6 months or longer following SBRT. Patients who died prior to the 6-month time
point were not considered accessible for local control, but were analyzed for overall
survival. Forty-nine out of the 63 lesions were accessible for local control analysis.
Actuarial local controls at 1 and 2 years were 95 and 92 %, respectively. The observed
local control of lesions treated to 60 Gy was 94 %. The local control for lesions with
a diameter less than 3 cm was 100 % compared to 77 % for those lesions with a
diameter larger than 3 cm. The median and 2-year overall survivals were 20.5 months
and 30 %, respectively. The site of the primary disease was found to be significantly
predictive of survival, both on univariate and multivariate analysis. Primary tumors
of the lung, ovary, and non-colorectal gastrointestinal sites were associated with a
worse outcome with a median of 12 months, as compared to favorable sites, such as
colorectal, breast, renal, and carcinoids who showed a median survival of 32 months.
The authors concluded that SBRT is an effective and safe non-invasive method of
treatment in selected patients with oligometastatic disease to the liver.

The Heidelberg group reported the results of a dose escalation study of single-dose
SBRT for hepatic metastases (Herfarth et al. 2001). The study included 37 patients
with a total of 60 hepatic lesions, four primary hepatic tumors, and 56 metastatic
lesions, with a median tumor volume of 10 cc. The most common primary sites
were breast, and colorectal primaries. The dose was escalated from 14 to 26 Gy in
a single fraction. The reported actuarial freedom from local progression was 67 %
for the whole group at 18 months. The same investigators described transient radio-
graphic changes typically observed after SBRT (Herfarth et al. 2003). These changes
consisted of a sharply demarcated hypodense area surrounding the treated lesion on
non-enhanced CT scans. These changes can potentially obscure the evaluation of
response if it is done within the first few months after SBRT.

Investigators from the University of Colorado and from Indiana University (Tracey
et al. 2005) reported their results for a dose escalation study for patients with one to
three hepatic metastases from any solid tumor, with a cumulative maximum diameter
of 6 cm, and a KPS equal or better than 60. The first cohort of patients was treated to
a dose of 36 Gy to the planning target volume (PTV) in three fractions. No patient
developed any grade 3 dose limiting toxicity (DLT) and the dose was escalated to
60 Gy in three fractions. The PTV included the lesion plus a 5 mm radial margin
and a 10 mm cephalo-caudad margin, allowing a minimum of 700 cc of normal liver
tissue to receive a cumulative dose not exceeding 15 Gy from the entire course of
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treatment. Sixteen out of the 18 accrued patients had received at least one type of
systemic therapy before liver SBRT; 8 patients had received three or more types of
chemotherapeutic agent. Twelve patients remained alive at the time of analysis, a
median of 7.1 months after enrollment in the protocol (range, 3.8–12.3 months). Six
patients died within 3.1–18.9 months after enrollment.

In conclusion, stereotactic body radiotherapy is used more and more as an effective
treatment modality today. The results of prospective well-designed studies will help
to refine SBRT. Further work in radiobiology will help to better our understanding
of the biological effects of large dose per fraction used in SBRT. Strict dose volume
constraints for SBRT will continue to be established and will improve the safety of
such an effective and a noninvasive treatment.

25.3.6 Stereotactic Body Radiotherapy for Lung Metastases

Stereotactic body radiotherapy (SBRT) is an attractive technique to treat lung metas-
tases as it involves a brief, intensified delivery of tightly focused external radiotherapy
targeting one or more discreet lung lesions. This allows a high dose of radiation to
be focally administered without excessive risk of radiation pneumonitis. This prop-
erty opened the door for the initial application of SBRT in the treatment of patients
with early stage non-small cell lung cancer (NSCLC). This principle was tested in
a dose escalation study in patients with medically inoperable Stage I NSCLC. The
maximum tolerated dose was 66 Gy in three fractions (McGarry et al. 2005; Fakiris
et al. 2009) with a dose response relationship and better local control with the higher
dose. Timmerman and colleagues (2006) reported a 2-year actuarial local control of
95 % with SBRT of 60–66 Gy in three fractions. Other investigators (Nagata et al.
2005; Xia et al. 2006) reported similar results in other series using high-dose SBRT
in patients with Stage I NSCLC. An example of SBRT for a single lung metastasis
is shown in Fig. 25.8.

Rusthoven et al. (2009b) reported the results of a multi-institutional Phase I/II
trial of stereotactic body radiotherapy for patients with 1–3 lung metastases. For
this study, patients with a cumulative maximum diameter, smaller than 7 cm were
enrolled and treated in a multi-institutional phase I/II clinical trial. The SBRT was
delivered in three fractions. The phase I study established a total dose of 60 Gy as
safe. The primary endpoint of the phase II study was local control with lesions with
at least 6 months of radiographic follow-up were accessible for local control. The
secondary endpoints included toxicity and overall survival. Sixty-three lesions in 38
patients were treated according to this study. There was no grade IV toxicity. The
incidence of any grade III toxicity was 8 % with symptomatic pneumonitis in 2.6 %.
Local control was accessible in 50 lesions with a median follow-up of 15.4 months.
The actuarial local control at 1 and 2 years after SBRT was 100 and 96 % respectively.
Local disease progression occurred in one patient, 13 months after SBRT. The median
survival of patients on study was 19 months.
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Fig. 25.8 Dose distributions
in coronal, axial, and sagital
views of a SBRT plan of a
patient with a solitary lung
metastasis. The target volume
received a dose of 60 Gy in
three fractions (red), while
the normal lung at the
periphery of the lesion
received < 20 Gy (blue).
(Courtesy of Dr. J. Wan)

Milano and colleagues (2008) reported the result of a phase II clinical trial using
SBRT to a dose of 50 Gy in ten fractions in the treatment of patient with oligo-
metastatic disease. The 2-year local control for all treated lesions was 67 %. Similarly,
investigators from Heidelberg treated 61 patients with 71 lung metastases using single
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fractions SBRT to a dose of 12–30 Gy and reported actuarial local control of 74 %
in 2 years (Hof et al. 2007).

The most frequent grade III toxicity consisted of chest wall pain, rib fracture,
skin toxicities and pneumonitis. A recent combined analysis of patients treated with
thoracic SBRT revealed that the volume of chest wall receiving at least 30 Gy in three
fractions (V30) was the best predictor of chest wall toxicity (Dunlap et al. 2008). The
incidence and severity of chest wall pain increased with increasing V30, and no chest
wall toxicity was observed with V30 less than 10 cc. The skin constraints limiting
the dose to the skin surface to less than 21 Gy in three fractions is an acceptable
constraint. The low rate of radiation pneumonitis observed in SBRT for NSCLC
and lung metastases suggests that the dose constraints of V15 less than 35 % are
unacceptable constraint. A recent report by Dunlap et al. (2010) recommends that a
chest wall (CW) volume receiving 30 Gy in three to five fractions should be limited
to 30 cc in order to reduce the risk of toxicity without compromising tumor coverage.
Other authors also cautioned about the delivery of large doses to the heart, esophagus,
and bronchi (Wulf et al. 2004; Fukumoto et al. 2002; Lee et al. 2003).

25.3.7 Summary

Any therapeutic intervention is associated with side effects, both acute and long
term. The long-term side effects of therapy were of major concern in patients with
curative disease, as these patients are expected to live long enough to express the
side effects of the treatment. This concern is also an important issue for patients
with metastatic disease; however it is not of the same relative importance because
of the expected short survival of these patients. The main objective of the palliative
treatment is to control symptoms, such as bleeding, pain, or increased intracranial
pressure as fast as possible. Most of the time large doses of radiotherapy are utilized
and result in good immediate response. Nowadays, because of the improved survival
in patients with metastatic disease, the long-term treatment-related side effects have
become a real and significant concern. Due to new medical, technical advances of
cancer diagnosis and treatment, patients with metastatic cancer disease live longer
than many decades ago. Patients must receive the palliative therapy that will benefit
them using state-of–the-art technical advances in treatment delivery and based on
properly executed clinical trials. A multidisciplinary team of experts must perform
management of patients with metastatic disease, to ensure that patients are receiving
the best possible treatment.
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Chapter 26
Role of Surgery in the Diagnosis and
Management of Metastatic Cancer

Peter Metrakos, Eli Kakiashvili, Murad Aljiffry, Mazen Hassanain
and Prosanto Chaudhury

26.1 Introduction

Surgery gained an important role in the context of multidisciplinary management
of metastatic disease. In the last decade there have been tremendous advances
in the field of surgical oncology. These therapeutic modalities are employed not
only in the palliative care of the patients with advanced metastatic cancer but
also aim to improve the survival rates. Modern invasive techniques such as thora-
coscopy and laparoscopy are effective treatments with lower morbidity rates allowing
faster recovery. These techniques can be employed nowadays in conjunction with
chemotherapeutic options.
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Advances in imaging techniques such as computed tomography (CT), magnetic
resonance imaging (MRI) and positron emission tomography (PET) scanning, allow
a better diagnosis and eligibility for surgical resection of metastases for selected
patients.

Various minimally invasive techniques are employed to treat metastatic disease in
different sites. For example metastatic brain lesions are operated with highly effective
gamma knife and stereotactic radiotherapy (Kienast and Winkler 2010). Thoracic
metastatic lesions are treated with video assisted thoracoscopic surgery (VATS), a
procedure proven to be less morbid when compared to open lobectomy (Rueth and
Andrade 2010). Another example are surgical options for metastatic lesions to the
bone which include bone fixations and arthroplasties, radiosurgery, radiofrequency
ablation (RFA), and percutaneous cementoplasty (Aboulafia et al. 2007).

Furthermore, new strategies are developed for the treatment of liver metasta-
sis. This organ is the most common site for hematogenous metastatic dissemination
from primary tumors including colorectal cancer, gastrointestinal tumors, breast,
lung, pancreas, and melanoma. A variety of techniques have been described in-
cluding resection, cryosurgery, radiofrequency thermal ablation and hepatic artery
embolization (Dimitroulis et al. 2010).

In the following section we will address more in depth the role of surgery in the
context of a multidisciplinary approach including chemotherapy and radiotherapy
for the management of liver metastasis from colorectal cancer.

26.2 Current Management for Liver Metastases
From Colorectal Cancer

Liver metastasis is encountered in nearly half of patients with stage III colorectal
cancer (CRC) and in majority of cases is the only site of metastases (Taylor et al.
1990; Gilbert and Kagan 1976; Manfredi et al. 2006). Surgical intervention for
colorectal liver metastases (CRLM) is an effective therapy for a significant number
of patients. Due to a better understanding of liver anatomy and advances in peri-
operative management, the operative mortality is now well below 5 % (Fong et al.
1999; Nordlinger et al. 1996; Rees et al. 2008). The 5-year survival after resection
of CRLM is 30 % but recurrence is common in approximately two-third of patients
(Fong et al. 1995; Ito et al. 2010).

Only 10–20 % of patients are candidates for surgery and patient selection should
include careful evaluation and delineation of metastases, exclusion of non-resectable
extrahepatic disease and general physiological fitness tests (Welsh et al. 2008).

Synchronous metastatic lesions may be detected during preoperative evaluation
or identified intraoperatively. Suspicious liver lesions should be biopsied and sent to
pathological evaluation to confirm metastatic disease. Metachronous liver metastases
may be diagnosed after colorectal surgery and confirmed on follow-up radiological
imaging.
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Preoperative hepatic assessment involves advanced imaging techniques employed
to delineate hepatic anatomy and to detect accurately all intrahepatic lesions be-
fore resection. These modalities include transabdominal sonography, helical and
multidetector-row CT (MDCT), FDG- PET and gadolinium-enhanced MR imaging
and superparamagnetic iron oxide (SPIO)-enhanced MR imaging (Martinez et al.
2007; Nesbitt et al. 2007; Bipat et al. 2005). Laparoscopic ultrasound emerged as a
valuable technique for detection of liver metastases and significantly improves the
selection of candidates for resection (Rahusen et al. 1999). The use of enhanced MR
imaging increased detection of small metastases and translates in a lower incidence of
unresectable metastases during laparotomy (Senéterre et al. 1996; Yoon and Tanabe
1999).

The evaluation of visible lesions should include an assessment of both the number,
extent of the lesions and post-surgical volume of the remnant liver parenchyma. The
remaining functional liver volume is an important factor that should be considered
before surgery. Current recommendations suggest that if remnant liver parenchyma
is normal, 75 % of the volume of the liver can be resected (Pawlik and Choti 2007;
Abdalla et al. 2006; Nordlinger et al. 2009). In addition, vascular invasion should also
be assessed as the resection is contraindicated when both branches of liver pedicle,
vena cava or all hepatic veins are affected.

Indications and contraindications for liver resection of colorectal cancer liver
metastases have changed during the past few years. Some of the traditional crite-
ria are now outdated and resections are performed in patients with more than four
or bilobar locations. Although the presence of extrahepatic disease is considered
a contraindication, recent studies suggest that resection may be performed in se-
lected cases (Pawlik and Choti 2007; Hubbard and Alberts 2010). Recently, the
European Colorectal Metastasis Treatment Group (ECMTG) proposed a new CRC
staging system in order to take into account patients with potentially resectable liver
metastases (Nordlinger et al. 2007, 2009). A clinical risk score may assess the long
term outcome for patients undergoing resection for CRLM. The number and size
of metastases, disease-free interval, preoperative carcinoembryonic (CEA), stage of
the primary tumor, number of liver nodules, and resection margin of more than 1 cm
or less than1 cm are the main prognostic factors that predict long term survival after
resection (Fong et al. 1999; Blumgart 2007). This scoring system has been indepen-
dently validated and is useful as a staging system for determining which patients
may benefit from liver resection. The only contraindication for hepatic resection is
the inability to achieve margin-negative resection with an adequate hepatic volume
reserve (Fong et al. 1999; Blumgart 2007; Timmerman et al. 2009).

In recent years, comprehensive knowledge of liver anatomy led to the development
of better surgical techniques and improved outcomes for resection of CRLM. Liver
resections are still performed based on the functional anatomy of the liver as described
by Couinaud (1957), who divided the liver into eight sectors or segments (Huang
et al. 2008; Fig. 26.1).

Some authors recommend that the surgical decision should be individualized
based on number, size, location and distribution of metastases (Pawlik and Choti
2007; Pawlik et al. 2005). They suggested that smaller metastases can be removed
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Fig. 26.1 Segmental anatomy
of the liver according to
Couinaud. (Adapted from
Huang et al. 2008)

without respecting anatomical lines (wedge resection). Large, deep metastases
should be resected along anatomical lines in which one or more segments are re-
moved providing that 20–25 % of hepatic parenchyma is maintained (Chun and
Vauthey 2007).

The standardized future liver remnant (FLR) ratio is defined as the ratio of mea-
sured FLR to the calculated total liver volume (TLV) (Johnson et al. 2005). This
parameter allows a better comparison between patients and estimates prognosis af-
ter resection. The surgical decision regarding FLR should be done on individual
bases taking in consideration patient’s comorbidities, such as diabetes, obesity and
metabolic syndrome which may impair hepatic regeneration (Abdalla et al. 2006). An
expert consensus statement regarding the percentages of future liver remnant (FLR)
after resection, established a cut-off point of 20 % FLR for patients with healthy liver,
of 30 % for patients who received extensive chemotherapy and of 40 % for patients
with hepatic fibrosis or cirrhosis (Abdalla et al. 2006).

In approximately 20 % of cases liver metastases are present at the time of CRC di-
agnosis and they are considered synchronous. In these cases a combined resection of
primary tumor and liver metastases is associated with increased mortality and morbid-
ity (Memon and Beckingham 2001).At present, strategies for the management of syn-
chronous liver metastases are changing. Resection techniques will vary according to
metastatic location and hepatic functional reserve (Li Destri et al. 2008). The surgical
decision should be individualized according to the clinical situation and experience
of the centre and should be made in consultation with the multidisciplinary team.

The alternatives to be taken in consideration are simultaneous or staged resection
with a recovery period or a course of chemotherapy between resections (Nordlinger
et al. 2007). Recent evidence suggests that simultaneous resections are safe, with
shorter hospitalization time and better patient outcomes (Mansour and Fong 2007).
The surgical decision is influenced by the primary tumor and the potential resectabil-
ity of CRLM (Mansour and Fong 2007; Adam 2007). A symptomatic primary tumor
may preclude the possibility of simultaneous resection of liver metastases. In con-
trast, in the case of a asymptomatic primary tumor the approach depends more on
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the resectability of the liver metastases (Adam 2007). Contraindications for simul-
taneous resection are based on medical comorbidities, an advanced primary tumor
and the need of extensive liver resection (Mansour and Fong 2007; Adam 2007).
However, experienced surgical centres for metastatic colorectal cancer resections
are now reporting similar survival rates between simultaneous and staged resections
(Mansour and Fong 2007).

The surgical resection of colorectal cancer liver metastases involves intraoper-
ative assessment for metastases and signs of extrahepatic disease. Intraoperative
ultrasound (IOUS) is a minimally invasive approach which allows the real-time vi-
sualization during surgery. It is standard part of the procedure and it is used for the
location of previously unknown lesions, for guiding the line of transection and mark
important vascular patterns (Roh 1998). Different studies emphasise the role of in-
traoperative ultrasound (IOUS) with regard to the management of patients with liver
metastases. In fact, IOUS has a significant impact on surgical decisions-making and
is comparable to open procedures with respect to the detection of CRLM (Foley et al.
1998; Cervone et al. 2000; Zacherl et al. 2002). In some cases, this procedure in
combination with laparoscopy was reported to provide useful information regarding
resectability and to avoid inadequate laparotomies in 24 out of 47 (51 %) of patients
(Rahusen et al. 1999).

The goal of surgical resection is the complete removal of all macroscopically de-
tectable metastatic lesions if possible with cancer free margin (R0 resection; Ito et al.
2010; Hubbard andAlberts 2010; Cady et al. 1998; Garden et al. 2006). The ability to
achieve a margin-negative resection is very important leading to improved outcomes
(Van Cutsem et al. 2006; Pawlik and Vauthey 2008). Currently, there is no agreed
consensus concerning the extent of the tissue resection. In general liver metastases
should be resected with at least a 1-cm tumor-free margin but smaller margins are
not contraindications to resection (Poultsides et al. 2010; Figueras et al. 2007).

Blood loss following liver resection has a major impact on morbidity and mor-
tality (Hamady et al. 2004). Surgical strategies should include modern transection
techniques, various clamping methods and hemodynamic monitoring in order to min-
imize the risk for blood loss. For example, water-jet cutters and ultrasonic scalpel
technologies are effective methods for transection (Holt et al. 2000; Nguyen et al.
2009; Rau et al. 2001). Different clamping techniques such as interrupted portal
triad clamping seem to preserve vascular and biliary structures and postoperative
liver function (Chiappa et al. 2001; Crenesse et al. 2001; Kimura et al. 2002).

Other options include total vascular exclusion technique (TVE) which is a method
that completely isolates the liver from the circulatory system. Data from a series of 45
consecutive major liver resections has shown that this technique was well tolerated
and had limited intraoperative blood loss (MacKenzie et al. 2005). Due to the strong
correlation between central venous pressure (CVP) and the extent of blood loss
(Johnson et al. 1998), another method to manipulate the bleeding is to lower the
CVP to 5 mmHg or less (Johnson et al. 1998; Smyrniotis et al. 2004).

In rare cases, the resection entails total vascular exclusion and subsequent vascular
reconstruction. This complex major reconstruction of hepatic vessels requires in situ,
ante situ or ex situ surgical approaches and in rare cases results in autotransplantation
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of the remnant liver (Lodge 2004; Lodge et al. 2000; Oldhafer et al. 2001). Although
these techniques are associated with a considerable surgical risk, they remain a viable
therapeutic alternative in patients with vascular tumor involvement.

Several strategies to improve resectability potential in patients who fail to meet
the usual criteria for resection include portal vein embolization (PVE) and two-
stage resection technique. These decisions are carefully assessed and depend on the
individual clinical situation.

Portal vein embolization (PVE) is employed in patients with insufficient FLR
criteria for resectability. This surgical technique redirects the blood flow of the seg-
ments to be resected to the non-embolized healthy segments of the liver (de Baere
et al. 2007). Additionally, portal vein embolization is used to induce an increase in
the volume of non-embolized liver due liver hypertrophy (Abdalla et al. 2006; Chun
and Vauthey 2007).

A two-stage resection consists of two sequential hepatectomies performed in pa-
tients with advanced bilobar or multinodular disease that cannot be resected in a
single procedure (Wicherts et al. 2007). The second stage of this technique is poten-
tially curative and may involve PVE and additional chemotherapeutic courses (Chun
and Vauthey 2007; Wicherts et al. 2007).

Although, the 5-year survival rate after resection of CRLM has improved to rates
ranging between 40 % and 58 % the reported morbidity rates are up to 39 % (Abdalla
et al. 2004).

In several studies the perioperative mortality ranged from 0 to 7 % and was influ-
enced by the extent of liver resection. The most common causes of morbidity included
hepatic failure, haemorrhage, sub- phrenic abscesses, biliary fistula, wound infec-
tion, pneumonia and myocardial infarction (Fong et al. 1997; Schlag et al. 1990;
Doci et al. 1991; Scheele and Altendorf-Hofmann 1999; Cummings et al. 2007)

Recurrence of liver metastasis was reported in up to 65 % within 2 year after
surgery following liver resection for CRLM. The most common sites of recurrence
following resection of colorectal cancer liver metastases are the liver and lung (Fong
et al. 1997; de Jong et al. 2009). Repeat liver resections are feasible and several groups
showed that morbidity, mortality and overall survival (OS) were comparable with
the outcomes of the initial hepatectomy (Adam et al. 2003; Petrowsky et al. 2002).
Liver reoperation in these cases is technically more challenging due to formation of
dense adhesions around the subhepatic space and due to an increased risk of vascular
injuries and haemorrhages (Aramaki et al. 2000).

26.3 Locoregional Methods

1. Cryotherapy Regional therapies for liver metastases, such as hepatic cryosurgery
and radiofrequency ablation are promising surgical techniques that attempt to destroy
the tumors in situ. Hepatic cryotherapy involves freeze/thaw cycles administered
to the liver tumors by means of a cryoprobe inserted into the lesion (Whittaker
1984). The cryogenic approach is suitable for patients with unresectable but isolated
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liver metastases and results in avascular lesions and necrosis of cancer cells. This
procedure spares the surrounding liver tissues and can be repeated. In some centers,
cryosurgery is performed instead of hepatic resection or as an adjunct to surgery
(Gruenberger et al. 2001; Ruers et al. 2001). Different techniques such as hepatic
inflow or outflow occlusion may be employed to prevent inadequate freezing of the
lesions situated adjacent to blood vessels (Seifert et al. 1998). However, cryosurgical
ablation is frequently associated with complications such as subsequent haemorrhage
of cracking frozen liver, biloma, biliary fistula and liver abscess. In one study the
recurrence rate was as high as 53 % (Adam et al. 2002) and overall morbidity ranged
from 6 to 29 % with an overall mortality rate of 1.6 %. Intraoperative ultrasound
technology and an improved liquid nitrogen delivery system allows better control of
freezing (Subar et al. 2003).

2. Radiofrequency ablation Radiofrequency ablation (RFA) of liver metastases is
yet another evolving technology employed to treat patients with unresectable lesions
and with no evidence of extrahepatic disease (Curley 2001). During this technique
a RFA needle electrode is introduced into the centre of the lesion. This method
induces coagulative necrosis through tissue heating to temperatures that exceed 60◦C
(Goldberg et al. 1995). One of the limitations of radiofrequency ablation is the size
of the lesion. Tumors less than 2.5 cm can be ablated with the placement of a needle
electrode in the center of the tumor. For larger tumors repositioning of the needle and
multiple deployments are needed (Abdalla et al. 2004; Goldberg et al. 1995; Livraghi
et al. 2001). A percutaneous approach may be used in patients with a limited number
of small metastases while a laparoscopic approach under ultrasonography guidance
offers an accurate positioning of the RF needle and is recommended in lesions less
than 4.0 cm in diameter. However, percutaneous ablation has been reported to achieve
worse local control rates than the open surgical approach (Kuvshinoff and Ota 2002;
Mulier et al. 2005). Larger lesions are less likely to be successfully ablated completely
and RF can be used as a part of an open surgical procedure (Hamady et al. 2004).
In patients with multilobar disease this procedure can be combined with resection
(Oshowo et al. 2003; Pawlik et al. 2003; Evrard et al. 2004). A significantly higher
local recurrence rate was reported with large tumors more than 4 cm in diameter
(Kuvshinoff and Ota 2002; Solbiati et al. 2001; Wood et al. 2000).

The effects of RFA in the proximity of the major hepatic vessels could be di-
minished due to heat dissipation resulting in a cooling effect dependent on blood
circulation. In these cases vascular occlusion techniques such as hepatic inflow oc-
clusion may prevent heat dissipation (Delis et al. 2007; Goletti et al. 2000).Additional
complications can be encountered if the procedure is performed in tumors close to the
hepatic hilum because of the increased risk of bile duct stricture and fistula. In these
cases vascular occlusion techniques such as hepatic inflow occlusion may prevent
heat dissipation (Curley 2001; Karmali and Dixon 2004). The overall complication
rates after cryoablation range from 15 to 60 %, and include damage to the diaphragm
or colon, pleural effusion, hemorrhage, biloma, liver abscess and arterioportal ve-
nous (Giorgio et al. 2005). Radiofrequency ablation for CRLM provides survival
rates in between 35 and 57 % (Oshowo et al. 2003; Solbiati et al. 2001; Iannitti et al.
2002; Gillams and Lees 2005). However, has a significantly lower survival rate when
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compared to surgical resection alone (Hamady et al. 2004; Abdalla et al. 2004). Cur-
rently this procedure has roles in treating unresectable disease and in combination
with surgery to extend the limits of resection and for recurrent CRLM.

26.4 Chemotherapy for Patients with Colorectal
Cancer Liver Metastases

The chemotherapeutic treatment of CRC has the potential of inducing tumor down-
staging and may permit resection of about 15 % of metastases which have been
initially considered unresectable. Several groups reported the results of resection in
patients who did not initially meet the criteria for resectability (Bismuth et al. 1996;
Giacchetti et al. 1999). In a series of 1,104 initially unresectable patients, (12.5 %)
underwent secondary hepatic resection after an average of 10 courses of chemother-
apy. In this group the survival rate at five-year follow-up was of 33 % and 52 patients
had repeat hepatectomies because of recurrences (Adam et al. 2004).

Chemotherapeutic regimens based on fluorouracil (5-FU) in combination with
leucovorin (LV) are standard theraphies for CRLM, yielding a response rate (RR)
of 20–30 % and median survival time of 11–12 months (Kemeny 2006). Newer sys-
temic chemotherapy regimens including oxaloplatin and irinotecan increased the
response rates in CRLM patients leading to and an OS of 33–62 % (Saltz et al. 2000;
Venook et al. 2006). Modulated infusional 5-FU regimens combined with oxalo-
platin (FOLFOX regimen) or irinotecan (FOLFIRI regimen) produce high response
rates of more than 50 % (Tournigand et al. 2004; Pozzo et al. 2004). In these cases
successful secondary resections have been reported (Tanaka et al. 2003). With the
use of the FOLFOX or a capecitabine and oxaliplatin-regimen, Gruenberger et al.
(2004) reported a peri-operative mortality of 0 % in 50 patients. In a large (n = 364)
phase III clinical trial, European Organization for the Research and Treatment of
Cancer (EORTC) 40983 study, the preoperative FOLFOX4 (six cycles before and
six cycles after surgery) regimen was associated with a longer PFS in patients who
underwent metastases resection (Nordlinger et al. 2008). A phase III, randomised,
open-label multicentre study compared standard treatment with FUFIRI (irinote-
can, 5-fluorouracil) to mIROX which uses an identical schedule of irinotecan plus
oxaliplatin. Both regimens induced a similar response. However, the combination
of high-dose 5-FU/folinic acid and irinotecan remains standard of care in first-line
treatment of metastatic colorectal cancer due to a better tolerability (Fischer von
Weikersthal et al. 2011).

Further development of targeted therapy agents such as the monoclonal antibodies
against the epidermal growth factor receptor (EGFR) such as cetuximab and pan-
itumumab, and bevacizumab, which targets the vascular endothelial growth factor
(VEGF), has clearly improved the outcomes of CRLM (Reidy and Saltz 2007). The
recent recognition of the role of KRAS in predicting response to cetuximab may have
a role in further selection of patients (Lievre et al. 2008). More recently, clinical tri-
als have shown that the addition of cetuximab translated into high response rates
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when added to oxaloplatin and irinotecan-based combination regimens (Tabernero
et al. 2007; Arnold et al. 2008; Saltz et al. 2004). When cetuximab was combined
with an infusional 5-FU/LV plus irinotecan regimen, five out of 19 patients became
candidates for secondary resection that was successfully performed in four patients
(Folprecht et al. 2006).

The anti-VEGF antibody bevacizumab is also able to enhance the activity of cyto-
toxic chemotherapy and several studies have demonstrated a role for bevacizumab in
either first or second line therapy of CRLM. In addition to inhibitory effect on angio-
genesis, this agent possibly acts through an enhanced delivery of chemotherapeutic
agents by lowering intratumoral tissue pressure (Saltz et al. 2008; Hurwitz et al.
2004). These effects were evaluated in a larger phase III trial where bevacizumab
combined with IFL (irinotecan/5FU/leucovorin) was compared with IFL and placebo
in patients with CRLM. Median OS was significantly increased to 20.3 months in the
IFL and bevacizumab arm. Complications including wound healing delays, hepato-
cellular insufficiency, infections, and bleeding were observed in patients who undergo
surgery while receiving bevacizumab (Tamandl et al. 2010) raising concern that the
use of bevacizumab may increase the risk for wound-related complications (Ellis
et al. 2005). However, a subsequent study showed that the postoperative morbidity
and mortality after resection of CRLM did not increase in patients treated with Beva-
cizumab and standard chemotherapy as compared with resection after chemotherapy
alone (Tamandl et al. 2010). There is no general consensus regarding the timing of
surgery after therapy with bevacizumab. In one study, a median time of 58 days from
bevacizumab discontinuation to surgery was not associated with increased surgical
complications (Kesmodel et al. 2008).

The issue of the optimal timing and duration of neoadjuvant chemotherapy still
remains controversial. When the liver metastases are considered unresectable, the
ECMTG recommends the resection of primary tumor if possible. However, if the
primary tumor is essentially asymptomatic, then a course of chemotherapy should
be administered first. In general, short curses of chemotherapy (up to six cycles) are
recommended, with surgery being performed as soon as a response to chemotherapy
is observed (Kemeny et al. 2006).

This approach permits insight into the responsiveness to therapy and also allows
a thorough monitoring of the effects of therapy on tumor progression (Nordlinger
et al. 2007).

When the liver metastases are resectable, the potential benefits of neoadjuvant
chemotherapy include the opportunity to test for chemoresponsiveness (Leonard
et al. 2005) and may allow immediate treatment of microscopic disease (Mandala
et al. 2007). Moreover, the response to neoadjuvant chemotherapy for synchronous
CRLM may have prognostic implications and has a role in patient selection for further
therapy (Allen et al. 2003). However, peri-operative chemotherapy may damage the
liver and impair the functioning of the remaining hepatic tissue after surgery.

Chemotherapy -associated liver injury results in vascular changes and steatohep-
atitis (Aloia and Fahy 2010). Vascular changes include sinusoidal dilatation with
erythrocytic congestion, accompanied by presinusoidal fibrosis and fibrotic venu-
lar occlusion (Rubbia-Brandt et al. 2004). Evidence suggests that oxaloplatin-based
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regimens are associated with higher risk for hepatic vascular lesions (Rubbia-Brandt
et al. 2004; Karoui et al. 2006), whereas irinotecan-based regimens are associated
with higher risk for steatosis and steatohepatitis (Vauthey et al. 2006).

Safety data from the EORTC 40983 study, which compared surgery alone with pe-
rioperative chemotherapy showed very low mortality rates (about 1 %) and acceptable
rate of reversible complications (Taïeb et al. 2005).

Although chemotherapy contributes to downsizing tumors, this approach can
negatively impact the quality of life of patients due to a greater toxicity. The
clinical significance of liver injury associated with perioperative chemotherapy re-
mains uncertain. Patients should be carefully assessed for their ability to undergo
chemotherapy as well as surgery.

26.5 Adjuvant Therapy

Clinical trials have demonstrated the benefit of adjuvant chemotherapy following
resection in order to treat microscopic metastatic disease.

Hepatic Arterial Infusion Hepatic arterial infusion (HAI) delivers high concen-
trations of cytotoxic drugs by localized infusion. Data from different trials suggest
higher response rates for HAI when compared with systemic chemotherapy alone
(Kemeny et al. 1999; Hebbar et al. 2009). This data was confirmed in a meta-analysis
of seven randomized controlled trials in 1,098 patients which showed median OS
durations of 16.04 months and 12.64 months for HAI and systemic chemotherapy
respectively (Mocellin et al. 2007, 2009). HAI with oxaliplatin or irinotecan-based
chemotherapy also achieved encouraging results in approximately 15–20 % of the
patients (Boige et al. 2008). A recent phase II trial assessed the potential benefit of
systemic oxaliplatin and capecitabine alternating with HAI of floxuridine. In this
trial alternating HAI and systemic capecitabine and oxaliplatin rendered survival
rates of 85 % at 2 years and was clinically tolerable (Alberts et al. 2010). New ran-
domized trials with anti-angiogenic and anti-epidermal growth factor receptor agents
are needed to determine the clinical benefit of HAI (Biasco et al. 2006; Alberts and
Wagman 2008).

Systemic Adjuvant Chemotherapy Systemic adjuvant chemotherapy after resec-
tion of liver metastases aims to reduce the risk of relapse and death (Figueras et al.
2001). Data analysis from clinical trials comparing postsurgical chemotherapy to
chemotherapy alone showed that in a pool of 278 patients the adjuvant chemother-
apy group had a significantly reduced risk of relapse and a modest increase in OS
(Mitry et al. 2008). Significant improvement was reported with oxaliplatin and the
5-Fluorouracil/Leucovorin schedule in terms of both disease free survival (DFS) and
OS at 3 years in the MOSAIC (Multicenter International Study of Oxaliplatin/5-
Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer) trial (André
et al. 2009). The update at 6-year follow-up confirmed these results and chemother-
apy with FOLFOX for 6 months has been adopted worldwide as the standard of care
in stage III colon cancer patients. Adjuvant chemotherapy with irinotecan was also
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assessed after complete resection of liver metastases. However, phase III clinical tri-
als evaluating the addition of irinotecan to LV5FU2 failed to show an improvement
in OS or disease DFS (Ychou et al. 2009; Van Cutsem et al. 2009; Saltz et al. 2007).
Preliminary data from a phase III study which assessed adjuvant capecitabine plus
oxaliplatin (XELOX) versus bolus FU/LV (Mayo Clinic or Roswell Park regimen),
(Schmoll et al. 2007) showed that the 3 year DFS for patients receiving XELOX
was superior to DFS in 5-FU/LV arm (Lindsay and Cassidy 2011). An ongoing
phase III trial is evaluating patients randomized after resection to receive adjuvant
oxaliplatin plus capecitabine (CAPOX) combined with bevacizumab versus CAPOX
alone (Snoeren et al. 2010).

The roles of targeted agents associated with adjuvant systemic chemotherapy
following resection of liver metastases as well as the optimal duration of adjuvant
therapy are currently evaluated in ongoing clinical trials.

Immunotherapy Emerging data supports the role of immunotherapy as neoadju-
vant therapy in association with resection of CRLM. Treatment with interleukin
2 before hepatectomy was shown to prevent the postoperative immunodepression
(Okuno et al. 1999, 2000). Vaccination with autologous tumor-derived heat-shock
protein 96, induced a CD8-mediated tumor-specific response and prolonged survival
in metastatic colorectal patients after liver resection (Mazzaferro et al. 2003; Pilla
et al. 2005). Also, adjuvant therapy with OncoVAX (Vaccinogen, Inc.) an autolo-
gous tumor vaccine, significantly improved OS and recurrence-free survival in stage
II colon cancer (Hanna et al. 2006).

Recently, a meta- analysis investigating the role of active specific immunotherapy
(ASI) in advanced colorectal cancer and suspected minimal residual colorectal can-
cer indicated that ASI may provide a promising therapeutic approach in suspected
minimal residual CRC (Rao et al. 2011).

Future work is needed to evaluate the implication of cancer vaccines and
neoadjuvant immunotherapy in the treatment of hepatic colorectal metastases.

Radiotherapy Selective internal radiation therapy (SIRT) is a new promising treat-
ment for metastases to the liver (Stubbs and Wickremesekera 2004). SIRT is a
technique that delivers a single dose of 90Yttrium microspheres into the hepatic
artery, resulting in selective tumor uptake and irradiation. Encouraging results have
been reported in different studies utilizing this technique for the treatment of CRC
liver metastases (Dancey et al. 2000; Campbell et al. 2000). A recent analysis showed
a significant improvement in progression free survival (PFS) and median survival as-
sociated with SIRT, when compared with chemotherapy. However this method is
associated with potential side effects. Further clinical trials are warranted to assess
the effect of SIRT in conjunction with chemotherapeutic modalities and surgery
(Townsend et al. 2009).
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26.6 Key Points

• Liver resection is an effective therapy with potentially curative intent for colorectal
liver metastases

• Patient selection should include careful evaluation and delineation of metastases,
exclusion of non-resectable extrahepatic disease and general physiological fitness
tests

• Resection techniques will vary according to the number and location of metastases
and hepatic functional reserve

• The only contraindication for resection is the inability to achieve margin-negative
resection while maintaining an adequate hepatic volume reserve

• Resectability may be achieved using portal vein embolization, two stage
hepatectomy, or a combination of surgery and ablation

• Patients with unresectable tumors may benefit from tumor ablation techniques
such as cryotherapy or radiofrequency ablation

• Systemic chemotherapies regimens based on 5-fluorouracil, oxaliplatin and
irinotecan are well tolerated and may downstage unresectable tumors into
potentially resectable ones

• Adjuvant chemotherapy improves survival after resection of hepatic colorectal
metastases

• The surgical decision should be individualized according to clinical situation,
experience of the surgical centre and should be made in consultation with a
multidisciplinary team.

26.7 Summary

Patients with liver metastases from CRC that are potentially resectable should be
evaluated by an experienced team. Today it is clear that surgical resection remains the
best treatment for long-term survival. Although a minority of patients are amenable
to this therapeutic modality, resectability with curative intent is rapidly becoming the
standard of care. With the new surgical techniques and advances in chemotherapy, an
increased number of patients can benefit from this procedure. A therapeutic decision
to proceed with resection should be individualized based on a thorough clinical
assessment of the patient.

Only two absolute contraindications to liver resection preclude this therapeutically
decision. The first is inadequate FLR following resection. However, as FLR can be
augmented using PVE, no clinical situation should be ruled out without a careful as-
sessment of available alternatives. The second is tumor invasion of all three hepatic
veins or invasion of both portal pedicles. Patients who are not suitable to surgical
resection and who have no extrahepatic disease are amenable to several newer thera-
pies such as cryosurgery and radiofrequency ablation (RFA). Hepatic artery catheter
chemotherapy and portal vein embolization can be alternatively performed in cases
of extensive hepatic metastases. Systemic chemotherapy has therapeutic roles in
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patients with extrahepatic disease as contributes to improved outcomes when com-
pared with surgery alone. In unresectable disease, consideration should be given to
immunotherapy in combination with antitumor cytotoxic agents in order to amplify
the therapeutic efficacy of anticancer agents. SIRT is beneficial in patients without
extrahepatic metastases who failed chemotherapeutic regimens.

The timing between chemotherapy and surgery is very important for optimal
outcome of patients. All patients should be managed by a multidisciplinary team and
final therapeutically strategies should be guided by a thorough clinical assessment.
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Chapter 27
Prerequisite Genetic Traits for Metastasis

Dana Faingold, Dawn Russell-Hermanns and Silvin Bakalian

The genetic and epigenetic abnormalities in tumors influence the metastatic traits of
disseminated cells by activation of oncogenes and inactivation of tumor-suppressor
genes. Tumor-suppressor genes affect genome stability, cancer-cell survival and
growth while also being involved in the response and repair of DNA. They are a part
of the prerequisites for metastasis and determine initiation and continuous develop-
ment of the oncogenic process resulting in unrestricted proliferation and resistance
to cell death signals. Inactivation of tumor suppressor genes can occur through var-
ious mechanisms such as loss of heterozygosity and chromosomal damage as well
as by genetic mutations and epigenetic mechanisms such as promoter hypermethy-
lation (Nguyen and Massague 2007; Eccles 2005). The amplification and mutation
of oncogenes in primary tumors, together with the selective pressures of the tu-
mor microenvironment play a key role in the formation of metastasis (Bernards and
Weinberg 2002).

27.1 Tumor Suppressor Genes

27.1.1 Retinoblastoma Pathway

The p16Ink4a–CyclinD1-CDK4-RB pathway regulates the cell cycle at the G1/S
transition. Absent or mutated components of the RB pathway lead to the subse-
quent loss of the G1/S checkpoint in multiple cancers, thus promoting aberrant
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proliferation (Sherr and McCormick 2002). The unphosphorylated state of RB is
maintained by p16INK4a which competes with the activity of cyclin D- dependent
kinases (CDK), thus blocking the entry into S phase and the E2F (E2 transcription
factor) transcriptional program (Knudsen and Wang 2010). Mutations in this path-
way occur frequently in many cancers and the RB protein is functionally inhibited in
25 % of primary tumors. Once RB is hyperphosphorylated by the CyclinD1/CDK4
complex, it results in E2F-regulated gene expression, stimulating G1 to S transi-
tion. Persistent mitogenic stimulation could lead to overexpression of either CDK4
or Cyclin D1 resulting in inhibition of the RB pathway function by blocking the
growth-suppressing activity of p16INK4a (Ortega et al. 2002). Transcription of the
cyclin D1 gene, its synthesis and assembly with CDK4, is regulated by ras (reticular
activating system) and phosphatidylinositol 3-kinase (PI3-K) signaling (Kim and
Diehl 2009).

Therapeutic Options Several therapeutic strategies are employed against defects
in the RB-pathway and encouraging results are emerging in preclinical studies in-
ducing the expression of p16Ink4a by means of adenoviral vectors containing human
p16 cDNA (Craig et al. 1998). Additionally, positive results for reactivation of the
RB-pathway are reported in studies using inhibitors of DNA methylation or his-
tone deacetylases, which lead to the activation of epigenetically silenced p16Ink4a.
The authors reported that DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine
(5–7aza-CdR) and the histone deacetylase inhibitor 4-phenylbutyric acid (PBA)
caused cell cycle arrest, apoptosis and induced p16 (CDKN2A/INK4) and p21
(CIP1/SDI1/WAF1) in bladder carcinoma cells (Egger et al. 2007). Together, these
studies suggest that RB-pathway activation could be used therapeutically.

Inhibition of Cdk4/6 kinase activity is another therapeutic option which was
evaluated with second-generation CDK4/6 inhibitors in pre-clinical studies. Oral
administration of these compounds induced tumour regression in xenograft animal
models of human colon carcinoma causing elimination of phospho-RB. This thera-
peutic strategy of activating RB is currently under investigation in phase I-II trials
(Knudsen and Wang 2010; Fry et al. 2004).

Flavopiridol is a semisynthetic flavone CDK inhibitor that interferes with CDK9-
cyclin complex binding resulting in apoptosis. Phase I studies have revealed favorable
responses in metastatic breast cancer carcinoma in combination with doxetacel
(Freyer et al. 2003). Flavopiridol was also shown to have a synergistic effect with Her-
ceptin, a drug active against Her2/neu (human epidermal growth factor receptor 2)
in breast cancer cell lines (Nahta et al. 2002).

The cross talk between p53 status and levels of E2F activity influences the overall
response to therapy. Therapeutic approaches that target p53 include stimulation of
E2F-activity and restoration of the pro-apoptotic activity of p53 (Polager and Gins-
berg 2009). It has been previously shown that RB-deficient tumor lines or those
exhibiting deregulated E2F activity can be good targets for compounds that have the
capacity to activate p53 (Kitagawa et al. 2008). Gene therapy using virus-activated
E2F-regulated gene expression (pESM6), was shown to induce tumor reduction in
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preclinical studies. These studies affirm the potential of pESM6 as a viable agent for
gene therapy of DNA tumor virus-associated cancers (Lim et al. 2006). Also, gene
transfer of a truncated variant of the retinoblastoma gene, (RB94), has been proven
to inhibit proliferation of several human tumor cell types including pancreatic cancer
(Roig et al. 2004).

Key Points Therapeutic strategies for reactivation of the retinoblastoma pathway

• Retinoblastoma gene transfer therapy
• Induction of the expression and activation of epigenetically silenced p16Ink4a
• Inhibition of Cdk4/6 kinase activity
• Stimulation of E2F-dependent apoptosis

27.1.2 The p53 Tumor Suppressor Gene

The p53 tumor suppressor gene maintains genomic integrity. Its transcription factor
is induced in response to DNA damage, hypoxia, and oncogene activation. P53
regulates a number of downstream genes including p21, MDM2 (Mouse Double
Minute 2), GADD45 (Growth Arrest and DNA Damage), BAX (Bcl2- associated
X protein), as well as cell cycle (G1/S) and G2/M DNA check-points. This allows
for cellular repair mechanisms or initiation of apoptosis through both extrinsic and
intrinsic pathways (Sherr and McCormick 2002). The p53 tumor suppressor gene is
the most frequently mutated gene in human tumors resulting in loss of its biological
responses and inhibition of apoptotic mechanisms.

Therapeutic options Several strategies for restoration of wild-type p53 function and
induction of apoptosis in tumors have been explored. These have included p53 gene–
replacement therapy in which the E1 adenoviral region is replaced with the cDNA of
the p53 gene, driven by a cytomegalovirus promoter (Ad-p53, ADVEXIN [Introgen
Therapeutics, Inc.]) (Invitrogen 2007). Preclinical studies have shown encouraging
results for this treatment modality with regard to antitumor activity and feasibility of
gene therapy (Bianco et al. 2007). Evidence of clinical activity was also observed in
clinical trials, where re-expression of wild type p53 by viral-mediated gene transfer
induced tumor regression and stabilization in patients with NSCLC (non-small-cell
lung cancer) and squamous cell carcinoma of the head and neck (HNCC) (Vecil
and Lang 2003; Wiman 2007; Roth 1996; Nemunaitis et al. 2000; Clayman et al.
1999). However, no significant benefit was observed in patients with primary stage
III ovarian cancer when treated with intraperitoneal delivery of a replication-deficient
adenoviral vector expressing wild-type p53 (Zeimet and Marth 2003).

A different strategy employs a genetically modified adenovirus, (Onyx-015) which
eliminates p53 by producing the early region protein E1B 55K. This protein binds
p53 and targets it for destruction by inducing apoptosis in the cells expressing mutant
p53. Evidence of clinical activity was reported after intra-tumor injection in clinical
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trials in combination with chemotherapeutic agents in head and neck cancer as well
as in pancreatic adenocarcinoma (Khuri et al. 2000; Hecht et al. 2003). Adenoviral
vascular delivery for systemic metastases is also currently under investigation. Posi-
tive results have also emerged from additional therapeutic modalities involving small
molecule therapy that functions through reactivation of mutant p53. In preclinical
studies, p53 C-terminus derived semisynthetic peptides were shown to induce p53-
dependent apoptosis in tumor cells (Haupt and Haupt 2004). Other methods exploit
the p53- MDM2-mediated inhibition with drugs that interrupt the p53–MDM 2 inter-
action. For example, a synthetic class of cis-imidazoline analogs (Nutlins) interferes
with the p53-MDM2 complex inhibiting tumor cell cycle and triggering apoptosis
(Vassilev et al. 2004). Anti-sense mRNA therapy directed towards MDM2 was shown
to induce down regulation of the MDM2 and p53-mediated anti proliferative effects
in human cancers cells, in vitro and in vivo (Wang et al. 2003). Other strategies
include Hsp90 (heat shock protein-90) inhibitors where drug exposure was shown
to induce destabilization of the mutant p53 protein in breast and prostate tumor cell
lines (Blagosklonny et al. 1995).

Key Points Therapeutic strategies involving tumor suppressor p53

• Adenovirus-mediated p53 gene therapy
• Introduction of wild-type p53 gene into tumor cells using viral vectors
• Interference with p53–MDM2 and down-regulation of MDM2 expression
• Targeting mutant p53 (Hsp90 inhibitors)
• Adenovirus-mediated inactivation of mutant p53
• Restoration of inactive or suppressed wild type p53
• Reactivation of mutant p53 with small molecule therapy

27.1.3 BRCA1 and BRCA2 Tumor Suppressor Genes

The tumor suppressor genes BRCA1 (Breast Cancer 1) and BRCA2 (Breast Cancer 2)
are involved in DNA repair and have been identified in breast cancer and ovarian
cancer. In 80 % of the cases mutations in the BRCA1 and BRCA2 genes involve
abnormal truncation of the BRCA protein (Sobol et al. 1996; Welcsh and King
2001). Individuals with mutations in these genes have a 15–20 fold increase in risk
of breast cancer compared with the general population (Wooster et al. 1995). BRCA2
mutation carriers are at an increased risk of developing breast cancer (in both males
and females), as well as melanoma, ovarian, prostatic, pancreatic, and carcinoma of
the gall bladder. BRCA1 gene replacement therapies have shown anti-tumor responses
in preclinical studies. Additionally, responses were seen in Phase I trials of patients
with extensive metastatic breast cancer when treated with retroviral LXSN-BRCA1sv
gene therapy. However, a phase II trial in ovarian patients showed no response, and
no vector stability in response to BRCA1gene therapy (Tait et al. 1999)
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27.1.4 PTEN Tumor Suppressor Gene

PTEN (phosphatase and tensin homolog) functions as a tumor suppressor through
its lipid phosphatase activity negatively influencing Akt through the dephosphoryla-
tion of phosphatidylinositol-3,4,5-trisphosphate (PIP3). Loss of PTEN is a common
event in cancer and occurs through mutation, deletion, or epigenetic silencing induc-
ing PI3K/Akt pathway hyperactivation. PTEN is mutated or deleted in about 30–40 %
of tumors including brain, bladder, breast, prostate, and endometrial cancers. It cor-
relates with poor prognosis and metastatic disease. Gene therapy with wild-type
PTEN has been attempted in preclinical studies, however, clinical-translational ther-
apeutic strategies focus in targeting PI3K-Akt-mTOR pathway in tumors with PTEN
functional loss (Zhang and Yu 2010).

27.1.5 Other Tumor Suppressor Genes

The FHIT (fragile histidine triad) gene located on 3p14.2 is homozygously deleted
and targeted by genomic alterations leading to a decrease or loss of gene and pro-
tein expression in many cancers (Joannes et al. 2009). Lack of FHIT expression
correlates with tumor progression to metastasis as FHIT controls the invasive phe-
notype of lung tumor cells by regulating the expression of genes associated with
epithelial–mesenchymal transition (Joannes et al. 2009). FHIT gene, re-expression
by a recombinant adenoviral vector, resulted in apoptosis and reduced tumorigenicity
in lung cancer (Ji et al. 1999). Additionally, gene therapy involving administration
of the FUS1 (cell fusion 1) tumor suppressor gene might have applicability in lung
cancer (Ji and Roth 2008). Intravenous administration of nanoparticle encapsulated
FUS1 expression plasmid had antitumor effects in human lung cancer xenograft
models (Deng et al. 2008).This treatment was well tolerated in a Phase I clinical
trial of FUS1-nanoparticles in patients with chemotherapy refractory stage IV lung
cancer (Ji and Roth 2008; Lu et al. 2009).

27.1.6 Metastatic Suppressor Genes

Metastatic suppressor genes are differentially expressed between metastatic and non-
metastatic cells and interfere with several signaling pathways involved in metastatic
colonization. Examples include nm23 (non-metastatic gene 23) modulation of
the ERK (extracellular signal-regulated kinase) pathway, BRMS1 (Breast can-
cer metastasis suppressor 1) alteration of phosphoinositide signaling, and MKK4
(mitogen-activated protein kinase kinase 4) activation of JNK (c-Jun NH(2)-terminal
protein kinase) and p38 stress pathways (Rinker-Schaeffer et al. 2006). Silence inac-
tivation or loss of heterozygozity of metastatic suppressor genes and low expression
in tumors were associated with a higher risk of metastatic disease (Martins et al. 2008;
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Bakalian et al. 2007). Therefore, re-expression of metastatic suppressor genes may
have therapeutic effects on micrometastatic tumor cells (Steeg 2004). Several com-
pounds that can elevate nm23 have been identified including indomethacin, gamma
Linolenic Acid, trichostatin A, 5-aza-deoxycytidine, and medroxyprogesterone ac-
etate. Results from in vivo models of lung metastasis demonstrated a reduction of
the metastatic potential with administration of high doses of medroxyprogesterone
acetate (Marshall et al. 2009). This therapeutic strategy is currently evaluated in a
phase II clinical study investigating the effect of nm23 re-expression in breast cancer
cells and subsequent metastatic colonization (Steeg et al. 2008).

27.2 Prerequisites for Metastasis: Oncogenes

Genetic instability in primary tumors increases the chance of further oncogenic mu-
tational events and results in the induction of unrestricted proliferative capabilities
and resistance to apoptotic signals. The amplification and mutation of oncogenes in
primary tumors, together with the selective pressures of the tumor microenvironment
play a key role in the formation of metastasis. This suggests that metastatic potential
might be pre-programmed in tumors, whereas a selective population of cells might
require additional alterations in tumor suppressor genes and oncogenes to initiate the
metastatic cascade (Bernards and Weinberg 2002).

27.2.1 Myc

Oncogene amplifications affect distinct genetic programs leading to cell cycle pro-
gression, invasiveness and metastasis, for example downstream EGFR (epithelial
growth factor receptor), C-ERbB2, Myc (myelocytomatosis viral oncogene) and ras
signaling (Nguyen and Massague 2007). The Myc proto-oncogene family encodes
nuclear products which are deregulated as a result of point mutations, gene amplifi-
cation and translocation. Myc family genes are activated in a wide variety of human
hematological malignancies and solid tumors as a consequence of activation of one or
more signalling pathways. These include RAS-RAF-MAPK, PI3K, WNT- β catenin
pathways and STAT (signal transducer and activator of transcription) pathways (Pe-
lengaris et al. 2002). Myc is a key regulator for many biological activities including
cell-cycle progression, apoptosis, tumor growth, angiogenesis, cell adhesion and
motility. It is associated with poor prognosis and metastasis (Nesbit et al. 1999).

Strategies currently employed for targeting Myc include antisense oligonu-
cleotides resulting in tumor cell growth arrest and induction of apoptosis in a variety
of tumor cell lines. Experiments in xenograft models of breast carcinoma, melanoma
and neuroblastoma resulted in prevention of tumor formation (Vita and Henriksson
2006).
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Phosphorodiamidate morpholino oligomers (PMOs) are DNA antisense oligonu-
cleotides that inhibit Myc gene expression by preventing its mRNA translation. This
agents inhibited tumor growth and induced apoptosis in prostate cancer xenografts.
Further clinical studies evaluated them in adenocarcinoma of prostate and breast
tumor tissues (Devi et al. 2005) and assessed its safety in human trials (Iversen et al.
2003).

Other agents which interfere with Myc promoter and transcription are DNA
analogs. These compounds specifically hybridize to DNA and/or RNA in a com-
plementary manner thus inhibiting transcription and translation of the Myc target
gene (Pession et al. 2004).

Cationic porphyrin (TMPyP4), which inhibits Myc transcription by blocking G
quadruplexes, inhibited the in vitro transcription of Myc and decreased tumor growth
rates in xenograft models (Grand et al. 2002)

The regulatory effect on gene transcription of Myc is dependent on dimerization
and complex formation with a b-HLH-LZ protein Max. Targeting Myc–Max complex
with small molecules is another therapeutic option (Berg et al. 2002). Small inter-
fering RNA (siRNA) against Myc resulted in apoptotic effects and tumor growth
reduction in xenograft models (Shen et al. 2005). Therefore targeting expression or
function of Myc shows interesting promise and development of agents with improved
delivery and efficacy is further anticipated in clinical settings (Ponzielli et al. 2005).

27.2.2 HER-2

The human epidermal growth factor receptor (HER, ERB) family consists of EGFR
(HER1 or ERBB1), HER2 (EGFR2 or ERBB2/NEU), HER3 (EGFR3 or ERBB3),
and HER4 (EGFR4 or ERBB4) (Rowinsky 2004). The HER-2 (human epithelial
receptor 2, also known as HER-2/neu or ERB-2) gene is located on chromosome 17q
and encodes a 185-kDa trans-membrane receptor tyrosine kinase with a key role in
normal cell growth and differentiation. The amplification and over-expression of the
HER-2 gene results in malignant transformation of cells and affects up to 30 % of
patients with metastatic breast cancer correlating with increased metastatic potential
in ovarian, breast cancer and in NSCLC (Yarden and Sliwkowski 2001; Slamon et al.
1989).

Trastuzumab (Herceptin�; Genentech, Inc.; South San Francisco, CA), is the
first approved humanized monoclonal antibody designed to block the receptor ex-
tracellular domain of human epidermal growth factor receptor-2 (HER2) that is over
expressed in metastatic breast cancer and affects intracellular signaling and tumor cell
growth. Trastuzumab therapy alone or in combination with taxanes chemotherapy
provided the proof of principle that targeting HER-2 receptors results in cytotoxic
and cytostatic effects. This combination demonstrated clinical benefit in terms of
response rate and survival for patients with HER-2-positive disease and represents
the first-line therapy for these patients (Cobleigh et al. 1999; Slamon et al. 2001;
Vogel et al. 2002). Other combinations of trastuzumab with chemotherapy are also
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Table 27.1 Monoclonal antibody therapies targeting EGFR (ERB-1 and ERB-2)

Trastuzumab (Herceptin, Genentech Inc) Breast cancer
Cetuximab (Erbitux, ImClone Systems) Colorectal, NSCLC, pancreatic, breast cancer and

HNSCC
Panitumumab (Vectibix, Amgen) Colorectal cancer
ABX-EGF (Amgen) NSCLC, colorectal, prostate, renal, HNSCC
Matuzumab (EMD 72000, Pharma) NSCLC, colorectal, ovarian cancer, HNSCC, pancreas
Pertuzumab (Omnitarg;) Prostate, ovarian, breast and NSCLC
Nimotuzumab (hR3) Squamous cell carcinoma of head and neck

currently under investigation. Clinical data indicate that the therapy with trastuzumab
may induce a decrease in ejection fraction, cardiac dysfunction in about 1–4 % of pa-
tients treated with trastuzumab and this side effect may be augmented in combination
with chemotherapy (Perez and Rodeheffer 2004).

Clinical trials evaluating the response to trastuzumab and other cytotoxic agents
such as vinorelbine (Burstein et al. 2003), gemcitabine (Loesch et al. 2008), and
capecitabine (Tevaarwerk and Kolesar 2009) have shown positive response rates
and increased overall survival times in patients with metastatic breast cancer. Tane-
spimycin a new 17-AAG analog has demonstrated promising antitumor activity
and tolerability in a Phase II clinical trial in patients with HER 2-neu positive
metastatic breast cancer. These results were reported for a combination of 17-AAG
with trastuzumab in patients previously nonresponsive to Herceptin alone (Modi
et al. 2007).

Other humanized anti-EGFR (ERB-1 and ERB-2) monoclonal antibodies cetux-
imab and panitumumab bind to the extracellular domain of EGFR, thus leading to
inhibition of its downstream signaling. These agents are currently being investigated
in phase II and III clinical trials in NSCLC (Jatoi et al. 2010). Cetuximab and panitu-
mumab have shown evidence of activity in combination with cytotoxic chemotherapy
and radiotherapy in the treatment of metastatic colorectal cancer or as monotherapy
for the treatment of metastatic head and neck squamous cell carcinoma (HNSCC). It is
indicated for the treatment of KRAS wild-type metastatic colorectal cancer in combi-
nation with chemotherapy or as a single agent in patients refractory to chemotherapy
(Cutsem et al. 2009; Bokemeyer et al. 2009). The presence of activating K-ras
mutations has been identified as a potent predictor of resistance to cetuximab or
panitumumab therapy (Tol and Punt 2010; Keating 2010). Cetuximab monotherapy
is currently the only approved molecular target therapy in patients with recurrent or
metastatic HNSCC, and has been shown as a radiation-sensitizing agent in primary ra-
diation therapy of this disease (Jackisch 2006; Cripps et al. 2010). Other monoclonal
antibodies targeting HER-2 include humanized antibodies matuzumab (EMD72000),
nimotuzumab (hR3), and pertuzumab (Genentech),which are currently in preclin-
ical or phase I and II clinical studies in low HER-2-expressing breast cancers,
NSCLC, colorectal, ovarian cancer, pancreas, prostate and ovarian cancer (Bianco
et al. 2007). Examples of monoclonal antibody agents are shown in Table 27.1.

The HER, ERB family of trans-membrane receptors forms dimers upon ligand
binding, resulting in activation of the intracellular tyrosine kinase domain, and
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Table 27.2 EGFR tyrosine kinase inhibitors that are currently under investigation for various
malignancies

Inhibitor Specificity Selected tumor types

Gefitinib (Iressa®;
AstraZeneca)

ErbB-1 tyrosine kinase
inhibitor

Metastatic NSCLC, head and neck squamous
cell carcinoma, breast, ovarian, prostate,
glioma, pancreatic, colorectal cancer

Erlotinib (TarcevaTM;
Genentech)

ErbB-1 tyrosine kinase
inhibitor

NSCLC, metastatic pancreatic cancer,
HNSCC, breast, ovarian, prostate,
colorectal, glioma

Lapatinib
(GlaxoSmithKline)

Dual effect ErbB-1 and
ErbB-2

Colorectal cancer and HNSCC

triggering of the downstream effector pathways involved in cellular proliferation,
angiogenesis, and metastasis. Mutations in the EGFR tyrosine kinase receptor fam-
ily of receptors have been associated with poor prognosis in breast cancer, ovarian
and NSCLC (Paez et al. 2004; Lassus et al. 2006; Generali et al. 2007). Tyrosine ki-
nase inhibitors bind to the intracellular ATP-binding site on the receptor and inhibit
cell proliferation by blocking intracellular signals that stimulate gene expression.
The mechanisms of action include inhibition of cancer cell proliferation via G0/G1

cell cycle arrest, anti-angiogenic effects and inhibition of invasion and metastasis
(Olayioye et al. 2000). These agents are reported to be able to cross into the CNS
and have excellent oral bioavailability (Roy and Perez 2009; Gril et al. 2008).

Novel treatment regimens under investigation for patients with advanced breast
cancer and NSCLC include HER tyrosine kinase inhibitors, gefitinib (Iressa®; As-
traZeneca Pharmaceuticals) and erlotinib, (TarcevaTM; Genentech) which are specific
for EGFR and lapatinib (Tykerb, GlaxoSmithKline) a dual EGFR and HER-2 in-
hibitor (Table 27.2). In a phase III clinical trial that led to FDA approval for erlotinib,
731 patients with NSCLC previously treated with one or two chemotherapy regimens
were randomized to receive erlotinib or placebo. Erlotinib treatment was shown to
be superior to placebo in survival, quality of life, and related symptoms in advanced
and metastatic NSCLC patients (Shepherd et al. 2005). However, the combination of
erlotinb with first-line chemotherapy such as carboplatin and paclitaxel has failed to
show additional benefit when compared with chemotherapy alone (Herbst et al. 2005;
Gridelli et al. 2007). Also, the results of a phase III clinical study with combination
therapy between erlotinib and gemcitabine in pancreatic cancer patients showed a
modest improvement in the median overall survival (Moore et al. 2007).

Small molecule therapy with lapatinib, a dual oral inhibitor for EGFR and HER2
showed antitumor activity in preclinical studies (Rusnak et al. 2007). Lapatinib com-
bined with capecitabine (Xeloda; Roche) demonstrated significant improvements in
the time to progression and response rate when compared with capecitabine alone
in breast cancer patients and this combination is currently approved for treatment
of HER-2-overexpressing chemorefractory breast cancer patients (Tevaarwerk and
Kolesar 2009; Jackisch 2006; Higa and Abraham 2007). Lapatinib was proven to
have manageable side effects including diarrhea and skin rash.

A phase III, randomized, open-label study comparing the efficacy of gefitinib for
first line therapy with carboplatin–paclitaxel demonstrated an increase in objective



412 D. Faingold et al.

response rates, significantly longer progression-free survival times and improved
quality of life among EGFR mutation–positive patients who received gefitinib alone
(Jiang 2009). Positive results are also emerging from other phase III clinical trials that
investigated the clinical efficacy of gefitinib as monotherapy and in combination with
chemotherapy for the treatment of NSCLC. These trials have revealed the comparable
efficacy of gefitinib compared with docetaxel, (Douillard et al. 2010; Kim et al. 2008).

HER-2 inhibitors have been proven in clinical trials as beneficial therapeutic
strategies for metastatic disease. Insights into future development of drugs that target
this biochemical pathway will determine optimal sequence of administration as well
as markers for the group of patients most likely to respond.

27.3 Growth Factor Receptors and Their Effector Pathways

Identification of oncogenic kinases has paved the way for further development of
anticancer agents. Specifically, inhibitors of receptor tyrosine kinases (RTKs), such
as BCR-ABL, c-KIT, PDGFR, EGFR, IGF1R, Met and Src, may have a role in the
treatment of cancer.

27.3.1 KIT

KIT (c-KIT receptor) gene encodes a trans-membrane receptor tyrosine kinase which
activates downstream signaling pathways involved in cellular proliferation and sur-
vival. Mutation and activation of KIT oncogene have been described in a variety
of malignancies, such as gastrointestinal stromal tumors (GIST), acute myeloge-
nous leukemia (AML) and result in aberrant signaling, increased proliferation and
antiapoptotic effects. Imatinib (imatinib mesylate, Gleevec) targets the c-KIT tyro-
sine kinase, the Bcr–Abl tyrosine kinase and PDGFR (platelet-derived growth factor
receptor) (Druker 2008). Clinical studies in patients with advanced GIST, where mu-
tations in KIT have been reported in 75–80 % of tumors, demonstrated the efficacy
and safety of imatinib mesylate treatment, leading to its approval for targeted ther-
apy (Demetri et al. 2002). However, phase II clinical studies of imatinib mesylate in
patients with metastatic melanoma and an activating KIT mutation, showed insuffi-
cient therapeutic effect. (Wyman et al. 2006). Also, although the drug was generally
well tolerated, it had minimal activity in recurrent or persistent uterine carcinoma
(Huh et al. 2010), recurrent ovarian cancer (Alberts et al. 2007) or primary peritoneal
carcinoma (Schilder et al. 2008).

Other small molecule tyrosine kinase inhibitors that affect c-KIT are in various
stages of clinical development. Examples include sorafenib, and sunitinib which have
potent KIT inhibitory effect while also inhibiting other tyrosine kinases involved
in oncogenic growth and progression, such as vascular endothelial growth factor
receptors (VEGFR 1, 2, and 3), and PDGFR. Sunitinib was FDA approved for
second-line therapy in GIST and RCC (renal cell carcinoma) (Faivre et al. 2007)



27 Prerequisite Genetic Traits for Metastasis 413

whereas Sorafenib demonstrated potent effects in RCC and hepatocellular carcinoma
(HCC) (Hahn and Stadler 2006).

Recently, a small-molecule multikinase inhibitor Dasatinib, (BMS 354825), an
orally available therapeutic agent was shown to inhibit Bcr-Abl and Src-family
kinases, but also c-KITand PDGFR. This drug demonstrated potent effects and
was approved for the treatment of patients with Bcr-Abl-positive chronic myeloid
leukemia (CML) as well as acute lymphoblastic leukemia (ALL) resistant or in-
tolerant to imatinib. Given its activity against c-KIT, PDGFR and Src kinases, this
drug was evaluated and demonstrated favorable effects on several human solid tumor
lines (González et al. 2006; Buettner et al. 2008; Coluccia et al. 2006). It is currently
being investigated in clinical trials in patients with metastatic breast cancer to the
bone (Rose and Siegel 2010) and in patients with metastatic prostate cancer (Yu et al.
2009).

27.3.2 Insulin-Like Growth Factor

The insulin-like growth factor (IGF) signaling axis is a prerequisite for oncogenic
transformation and mediates tumor growth in a variety of human malignancies
through its effects on proliferation and anti-apoptosis. The biological actions of the
insulin-like growth factors, IGFI and IGFII, are mediated by activation of the IGFI
receptor (IGFIR), a tyrosine kinase trans-membrane linked to the RAS-RAF-MAPK
and PI3K-PKB/AKT signal transduction cascades. The IGF1R is over-expressed
by tumors such as melanomas, colon cancer, pancreatic, prostate and renal cancer
(Chitnis et al. 2008). This occurs as a result of loss-of-function and mutation of tumor
suppressors such as wild-type p53, BRCA1 and VHL (von Hippel Lindau) resulting
in transcriptional deregulation of the IGFIR gene (Werner and Roberts 2003). Stimu-
lation of IGF1R-pathway results in activation of the RAS/RAF/MAPK pathway and
induces differentiation and survival signals leading to tumor proliferation (Riede-
mann and Macaulay 2006). Anti-apoptotic effects are mediated through interaction
of the IGF-1R with one of its major substrates, insulin receptor substrate 1 (IRS-1)
which activates the PI3K-AKT pathway (Kulik et al. 1997).

IGF1R activation is linked to cancer progression and metastasis through multiple
signaling intermediates. IGF1R-mediated signaling enhances ß-catenin transcrip-
tional activity and interferes with E-cadherin expression, actin polymerization and
focal adhesion complex formation, thus inducing loss of cellular adhesion (Morali
et al. 2001; Playford et al. 2000). Another possible way in which IGF1 pathway
induces the metastatic phenotype is interaction with integrin-mediated signaling
pathways. These include αvβ3 (Shen et al. 2006) and IGF-induced secretion of ma-
trix metalloproteinases (MMPs) as well as regulation of the urokinase plasminogen
activator/plasmin (uPA) system of proteolysis resulting in degradation of the extracel-
lular matrix (ECM) (Bahr and Groner 2005). These mechanisms were confirmed by
several models which demonstrated that IGF1R over-expression confers anchorage-
independent growth and promotes an invasive, metastatic phenotype (All-Ericsson
et al. 2002; Economou et al. 2008; Lopez and Hanahan 2002; Chernicky et al. 2000).



414 D. Faingold et al.

Table 27.3 Examples of IGF1R tyrosine kinase inhibitors that are currently under investigation

Small molecule inhibitor Specificity Selected tumor types

OSI-906 (OSI Pharmaceuticals) IGF1R Phase I advanced solid tumors
IR Phase III Adrenocortical, Phase I

ovarian
Insm-18 (NDGA) Insmed IGF1R Phase I advanced solid tumors

HER2-Neu
NVP-AEW54 1(Novartis) IGF1R Preclinical
NVP-ADW742 IGF1R Preclinical
BMS-536924 (Bristol-Myers-Squibb) IGF1R Phase I

IR
AG1024 (Calbiochem-EMD

Biosciences)
IGF1R Preclinical

IR
Picropodophyllin PPP (Karolinska

Institute/Biovitrum)
Uveal melanoma

PQIP (OSI Pharmaceuticals) IGF1R
XL 228 IGF1R Phase I study of patients with solid

malignancies
SRC

Altering IGF1R function might inhibit tumor cell growth and also has effects
on anchorage-independent growth, survival, migration, invasion and colonization of
tumor cells. Different strategies in blocking the IGF-1R signaling pathway include
small molecule inhibitors, blocking antibodies, antisense oligonucleotides and plas-
mids, antisense and siRNA. In preclinical models as well as in early phase clinical
trials down-regulation of IGF-1R revealed favorable results (Chitnis et al. 2008; Bahr
and Groner 2005; Li et al. 2009).

A. IGF1R tyrosine kinase inhibitors The development of tyrosine kinase inhibitors
downstream of the IGFI receptor has led to the development of compounds with
a high degree of selectivity for IGF1R (Table 27.3). However, as there is a high
degree of sequence homology between the insulin receptor (IR) and IGF1R, this
type of inhibition could potentially result in metabolic changes (Pollak et al. 2004).
Examples of small molecules that compete for the ATP binding pocket of IGF1R are
NVP-ADW742 and NVP-AEW54 1(Novartis). Preclinical data for these compounds
reported anti-proliferative activity in cancer cells by interfering with cell cycle pro-
gression (Martins et al. 2006) and anti-tumor effects in multiple myeloma xenografts
(Mitsiades et al. 2004) and fibrosarcoma xenografts (Garcia-Echeverria et al. 2004).

OSI-906 (OSI pharmaceutical) is a new small molecule, dual kinase inhibitor of
both IGF-1R and IR. Data from a phase I clinical trial in patients with advanced solid
tumors indicated that OSI-906 was well-tolerated and showed that at a low dosing
schedule retained strong anti-tumor activity, with reduced incidence of IR-mediated
side effects (Macaulay et al. 2010). This drug is currently evaluated in a Phase III
clinical trial in adrenocortical carcinoma and in a Phase I/II clinical trial in ovarian
cancer 1.

1 NIH’s ClinicalTrials.gov. Available from (http://www.clinicaltrials.gov/) and ClinicalTrialsFeeds.
org (http://www.clinicaltrialsfeeds.org/) web sites.
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Insm-18 (NDGA) (Nordihydroguaiaretic Acid) (Insmed), is an orally available
small molecule IGF-1 tyrosine kinase inhibitor that has demonstrated anti-tumor
activity in preclinical studies of breast, lung, pancreatic and prostate tumors (Chitnis
et al. 2008; Hewish et al. 2009). This agent is currently evaluated in phase I clinical
studies with non-metastatic recurrent prostate cancer (Harzstark et al. 2007).

Another small-molecule inhibitor, BMS-536924, (Bristol-Myers-Squibb) had an
effect on insulin receptor kinase activity and reduced tumor cell proliferation of
breast cancer cell lines in vitro (Litzenburger et al. 2009) and was also effective in
reducing tumor xenograft size in vivo (Haluska et al. 2006)

Tyrphostin (AG1024), a substrate competitive, specific inhibitor of IGF-1R was
proven to inhibit tumor cell growth in prostate, breast cancer and melanoma cell lines
(Hewish et al. 2009).

Cyclolignans are selective inhibitors of tyrosine phosphorylation of the IGF-1R.
Xenograft data has shown efficacy for one of these compounds, picropodophyllin
(PPP), in Ewing’s sarcoma cells, melanoma cells, and prostate carcinoma cells
(Girnita et al. 2004).

PQIP (OSI pharmaceutical) is a 1,3-disubstituted-8-amino-imidazopyrazine deri-
vative inhibitor of IGF-1R kinase. It has recently been reported to be particularly
effective in breast cancer (Zeng et al. 2009), pancreatic cancer, and ovarian cell lines
as well as in HNSCC and NSCLC. In xenograft models, this agent inhibited IGF-1R
dependent tumor growth in colorectal cancer which correlated with the degree and
duration of inhibition of IGF-IR phosphorylation (Hewish et al. 2009; Ji et al. 2007).

B. Monoclonal Antibodies IGF1R neutralizing monoclonal antibodies block the
receptor–ligand interactions subsequently resulting in receptor internalization and
degradation blocking intracellular signaling. The antibody-induced IGF1R down-
regulation is selective against the IGF1R without interfering with IR and possibly
induces less metabolic toxicity than that seen with the IGF1R small molecule
inhibitors (Gualberto and Pollak 2009).

IMC-A12 (cixutumumab), Imclone, has the ability to induce IGF1R down-
regulation and has shown promising activity in human tumor xenograft models of
breast, lung, colon, and pancreatic cancers (Rowinsky et al. 2007). This agent was
well tolerated evidence of stable disease were reported in a phase I clinical trial in
patients with advanced solid tumors (Higano et al. 2007; Rothenberg et al. 2007). A
similar study combining an IMC-A12 and a mTOR inhibitor (temsirolimus) in pa-
tients with solid tumors or lymphoma reported that the combination is well tolerated
and demonstrated prolonged stable disease in two patients with metastatic prostate
cancer and breast cancer (Naing et al. 2009). IMC-A12 is currently evaluated in
patients with prostate cancer, metastatic colorectal cancer, Ewing’s sarcoma and in
a pediatric population with refractory solid tumors (Atzori et al. 2009).

CP-751871 (figitumumab, Pfizer) a fully human IgG2 monoclonal antibody, that
blocks IGFI binding, and prevents activation of IGF1 causing down-regulation of
IGF1R in vitro and in tumor xenografts of breast cancer, colon cancer, and multiple
myeloma (Cohen et al. 2005). Phase I studies have suggested a favorable toxicity pro-
file and signs of disease stabilization in patients with advanced solid tumors (Molife
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et al. 2010). Clinical trials are ongoing and include prostate, breast, colorectal and
melanoma patients. Preliminary data from a Phase II clinical trial in NSCLC evalu-
ating CP-751871 in combination with paclitaxel and carboplatin (Karp et al. 2008)
suggested promising results showing a 46 % response after addition of CP-751871
in comparison with a response rate of 32 % for patients treated with chemotherapy
alone (Karp et al. 2009). However, results from a phase III study conducted to test the
efficacy of the combination of paclitaxel, carboplatin, and CP-751871 reported that
the addition of CP-751871 did not increase overall survival and resulted in adverse
side effects resulting in discontinuation of this trial (Jassem et al. 2010). Further eval-
uation of CP-751871 in combination with chemotherapy or erlotinib is currently in
progress for patients with advanced NSCLC. Other clinical trials in progress include
phase I- II studies of CP-751871 as monotherapy or in conjunction with chemother-
apy in patients with metastatic colorectal cancer, Ewing’s sarcoma and in breast
cancer (Atzori et al. 2009; Rodon et al. 2008).

R1507 (robatumumab, Roche), is a fully human IgG1 type monoclonal antibody
also selective against IGFIR. Xenograft data has shown efficacy in osteosarcoma
cancer models (Kolb et al. 2010). The results of a phase I study evaluating R1507
administered weekly in patients with advanced solid neoplasms in particular Ewing’s
sarcoma revealed partial responses and evidence of stable disease (Kurzrock et al.
2010).

AMG 479 (Amgen) is a fully IgG1 human monoclonal antibody selective to
IGF1R that exhibited broad antitumor activity in xenograft models (Beltran et al.
2009). Furthermore, AMG 479 administration was proven safe in phase I clinical
trials in patients with advanced solid tumors and demonstrated preliminary efficacy
with one durable complete response and a partial response in two patients with
Ewing-primitive neuroectodermal tumors (Tolcher et al. 2009a). Assessments of a
combination of AMG 479 with panitumumab or gemcitabine in patients with ad-
vanced solid tumors, reported that the combination was well tolerated with very few
side effects. There was a partial response and signs of stable disease were observed
(Sarantopoulos et al. 2008; Puzanov et al. 2010). Further trials include evaluation of
this agent in a Phase II double blind randomised study in hormone receptor positive
metastatic breast, colorectal and lung cancer patients2. Results from a phase II clini-
cal trial assessing safety, tolerability and maximum tolerated dose of a combination
of AMG 479 with gemcitabine in patients with pancreatic cancer were promising
with regard to tolerability. The second stage of this trial randomised the treatment
between gemcitabine and AMG 479, versus gemcitabine and placebo, resulting in
improved overall survival rate at six months (57 % in AMG 479 arm versus 50 % in
gemcitabine plus placebo arm) (Kindler et al. 2010).

Sch717454 (Robatumumab), (19D12, Schering-Plough), a human IgG1 anti-
IGFIR antibody demonstrated antitumor activity in solid tumor xenografts, including
Ewing sarcoma, rhabdomyosarcoma, glioblastoma, neuroblastoma, and osteosar-
coma panels (Kolb et al. 2008; Wang et al. 2010). This drug is currently under

2 NIH’s ClinicalTrials.gov. Available from (http://www.clinicaltrials.gov/) and ClinicalTrials-
Feeds.org (http://www.clinicaltrialsfeeds.org/) web sites.
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Table 27.4 Examples of novel IGF1R monoclonal antibodies

Monoclonal antibodies Specificity Selected tumor types

GSK 621659A (GSK) Preclinical
CP 751–871 (Pfizer) IgG2 Phase I–II in prostate, breast, colorectal and melanoma

Phase III in NSLC with paclitaxel and carboplatin
IMC-A12 (ImClone) Fully human

IgG1
Phase I–II in prostate cancer, Ewing’s sarcoma,

colorectal cancer
AVE1642

(Sanofi-Aventis)
Phase I in patients with advanced solid tumors

MK 0646 (Merck) Phase I in advanced solid tumors
Phase–II in pancreatic cancer and colorectal cancer

AMG 479 (Amgen) Phase I advanced solid tumors
Sarcoma, breast cancer patients, colorectal cancer and

lung cancer
Phase II–II pancreatic cancer in combination with

gemcitabine
R 1507 (Roche) IgG1 Phase I in patients with advanced solid tumors and I–II

in Ewing’s sarcoma
SCH-717454 (19D12,

Schering-Plough)
Phase I–II metastatic osteosarcoma

evaluation in phase II clinical trials in patients with metastatic relapsed osteosar-
coma.3

MK-0646, dalotuzumab (Merck) is an anti-IGFIR antibody that was investigated
in a phase I clinical trial which suggested favorable toxicity in patients with advanced
solid tumors (Hidalgo et al. 2008). Further results and signs of antitumor activity
were reported from a Phase I study of MK-0646, in combination with gemcitabine
for advanced previously untreated pancreatic cancer (Javle et al. 2010). This agent
is currently being evaluated in combination with cetuximab and irinotecan in an
ongoing randomised phase II/III study in patients with refractory metastatic col-
orectal cancer. Preliminary data showed that the combination was tolerable with no
overlapping toxicities (Watkins et al. 2009).

AVE1642, (Axelar), a humanized monoclonal antibody, specific for human IGF1R
was reported to be well tolerated as a single agent in a phase I clinical trial in patients
with advanced solid tumors (Tolcher et al. 2008).

A summary of novel IGF1R monoclonal antibodies therapies is given in
Table 27.4.

27.4 Limitless Replicative Potential: Telomerase

Telomerase is an enzyme that maintains the ability of cancer cells to achieve limitless
proliferation thus allowing them to divide an indefinite number of times.

This process is the result of the addition of TTAGGG nucleotide repeats onto
the telomers of chromosomal DNAs maintaining their length. Telomerase activation

3 (http://www.clinicaltrials.gov/)
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is not found in somatic cells, however, is an early event during oncogenesis and
has been detected in 85–90 % of tumors correlating with poor prognosis (Kim et al.
1994). Telomerase has important roles in angiogenesis, metastasis and cancer stem
cells in addition to its classical function in telomere length maintenance (Dikmen
et al. 2009). Therefore a growing number of anti-telomerase strategies have emerged
against the RNA component hTERC (human telomerase RNA component) and the
protein component of hTERT (human telomerase reverse transcriptase) (Blackburn
et al. 2006). The main strategies are targeting the RNA component hTERC and
hTERT by antisense oligonucleotides.

Other methods target the telomerase associated proteins TP1(telomerase as-
sociated protein 1) and TRF1 (human tekomeric-repeat binding factor) (Burger
2007).

Imetelstat (GRN163L, Geron) is a 13-mer oligonucleotide that targets the active
site of the enzyme TERC- RNA template. It has exhibited promising anti-tumor ef-
fects including antiangiogenic and anti-metastatic effects. Imetelstat was effective in
preclinical studies in breast and lung cancer tumor cell lines and xenograft models
(Dikmen et al. 2005; Hashizume and Gupta 2010). It entered phase I and II clin-
ical trials in patients with chronic lymphocytic leukemia, multiple myeloma, and
advanced solid tumors (NSCL and breast cancer).

Several small molecules, BRACO19 and RHPS4 that target single stranded telom-
eric repeat sequences (G-quadruplex), have shown very promising anticancer activity
in tumour xenograft models (Neidle 2010).

27.5 Resistance to Apoptosis

Evasion of apoptosis is yet another crucial step in the overall process of tumor
development. Anti-apoptotic mechanisms are up-regulated in tumors due to over-
expression of anti-apoptotic proteins. Additionally, resistance to apoptosis and
anoikis are important characteristics of metastatic cells. Apoptosis is the result of
several key events that include inactivation of p53, activation of survival pathways
(PI3k), and the upregulation of MMPs (which down-regulate death receptors, release
growth factors, and prepare the extracellular matrix for invasion). Overexpression
of anti-apoptotic proteins such as BCL-2, BCL-XL or focal adhesion kinase (FAK)
also play a role (Vaux et al. 1988; Cory and Adams 2002).

The BCL-2 family is an important regulator of the mitochondria-dependent apop-
totic pathways. It consists of pro-apoptotic proteins such as the BH3 family, two
multi-domain pro-apoptotic proteins BAX and BAK as well as several multi-domain
anti-apoptotic proteins (BCL-2, BCL-XL, BCL-W, MCL-1 and A1) (Cotter 2009).
The anti-apoptotic BCL-2 promotes cell survival by impeding the activation of pro-
apoptotic caspase proteins thereby contributing to the pathogenesis and progression
of human cancers. Increased expression of BCL-2 is common in a number of tumors
such as melanoma, lung, renal, colo-rectal, head and neck and brain cancer. Increased
expression has also been seen in B cell lymphomas, NHL and chronic myelogenous
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leukemia (CML) (Cotter 2009; Maurer et al. 1998; Ravandi et al. 2001; Sharma
et al. 2004; Shabnam et al. 2004; Sharma et al. 2005; Gradilone et al. 2003). Over-
expression of BCl-2 in tumors has a negative impact on anticancer therapy as a result
of increased resistance to drugs and radiotherapy (Sartorius and Krammer 2002).

Alterations in the expression and function of BCL-2 occur for various reasons.
These include chromosomal abnormalities, gene hypomethylation, altered epigenetic
regulation of the BCL-2 gene (Hanada et al. 1993) and down-regulation of inhibitory
mechanisms of the microRNAs miR-15 and miR-16 (Cimmino et al. 2005). Other
factors, such as p53 mutation contribute to anti-apoptotic mechanisms in tumors
through regulation of pro-apoptotic targets in the BCL-2 family including BAX and
the BH3 proteins PUMA (p53 up-regulated modulator of apoptosis) and NOXA
(Cotter 2009; Yu et al. 2001; Nakano and Vousden 2001; Miyashita and Reed 1995).
Additionally, deregulations in many signal-transduction pathways in cancers affect
the expression of the BCL-2 family members (e.g. RAS pathway, PI3-K and nuclear
factor-κB (NF-κB) transcription factors) (Mayo and Baldwin 2000; Cox and Der
2003). Each of the biological steps of the apoptotic process has been therapeutically
targeted resulting in the development of specialized apoptosis-modulatory therapy.
These agents are currently under investigation in various clinical trials.

Therapeutic opportunities Inactivation of BCL-2 has been shown to induce apop-
tosis in malignant cells and to increase their sensitivity to chemotherapy (Guo et al.
2003). BCL-2 antisense oligonucleotide therapy showed anti-tumor responses and
increased apoptosis in melanoma biopsies (Jansen et al. 1988).

Oblimersen sodium (G3139, Genasense) is an antisense phosphorothioate
oligodeoxynucleotide (ODN) that is designed to be complementary to the first six
codons of the human BCL-2 mRNA sequence. It is currently being extensively eval-
uated in clinical trials in CLL, AML, advanced melanoma (Patel et al. 2009). This
therapy induces pro-apoptotic effects through an increase in BAX and PARP as
well as through the release of cytochrome c with subsequent activation of the cas-
pase cascade (Nicholson 2000). Furthermore, several studies have indicated that
this compound has modulatory effects on the immune system. Results from phase I
and III clinical trials using this agent in combination with classic chemotherapeutic
agents demonstrated modest anti-tumor responses (Jansen et al. 1988; Nicholson
2000; Kang and Reynolds 2009).

Addition of BCL-2 anti-sense therapy to dacarbazine was evaluated in a ran-
domized phase III clinical trial in patients with cutaneous melanoma, and revealed
an improvement in clinical outcomes (Bedikian et al. 2006). BCl-2 antisense drug
therapy has shown chemosensitizing effects in CLL patients when combined with
cyclophosphamide (O’Brien et al. 2007, 2009). In metastatic prostate cancer it has
been used in combination with mitoxantrone (Tolcher et al. 2005). In breast cancer
it has been used as an adjuvant to docetaxel (Moulder et al. 2008) and in colorec-
tal cancer in combination with irinotecan (Mita et al. 2006). However, addition of
oblimersen to etoposide did not improve overall clinical outcome in patients with
SCLC (Rudin et al. 2008).
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Table 27.5 Examples of BCL-2 inhibitors that are currently in clinical development

Drug Target Clinical Trial

Oblimersen Anti-sense BCL-2 CLL, AML, multiple myeloma, SCLC,
non-Hodgkin’s lymphoma and
melanoma

Gossypol (AT-101) BCL-2 small molecule inhibitor Phase I/II CLL, prostate cancer
BH3 mimetic

ABT-737 BCL-2, BCL-XL, BCL-W
(ABT-263) BH3 mimetic Phase I in chronic myelogenous

leukemia and (SCLC)
GX15–070 Pan apoptotic inhibitor BCL-2,

BCL-XL, BCL-W, MCL-1
Phase I in SCLC and NSCLC

An alternative strategy inclusive of the BCL-XL antisense oligonucleotide tar-
geting a specific BCL-XL sequence has been shown to induce even further
chemosensitization of the tumor cells (Zangemeister-Wittke et al. 2000).

Other therapeutic modalities affecting gene or protein expression are small
molecules that act as BH3 mimetics and bind to BCL2 neutralizing its activity
and inducing pro-apoptotic effects. Several agents targeting the BCL-2 family and
demonstrating inhibition of BCL-2, BCL-XL, and MCL-1 are currently being eval-
uated in clinical trials. An example is Gossypol which is a drug that entered Phase
II clinical trials in CLL and in prostate cancer (Kang and Reynolds 2009; MacVicar
et al. 2008) and was also tested in patients with advanced cancers (Saleh et al. 2009).
Other pan-apoptotic inhibitors have been developed, for example the ABT-737 (A-
779024, Abbott Laboratories), a small-molecule inhibitor of BCL-2, BCL-XL and
BCL-W (Oltersdorf et al. 2005). Yet another example is ABT-263 which is an oral
compound of ABT-737 that was shown to induce tumor regression in xenograft
models of SCLC and acute lymphoblastic leukemia (ALL) (Tse et al. 2008). Lastly,
GX15-070 (Obatoclax, Gemin X), also an inhibitor of BCL-2 family is currently in
preliminary trials in patients with small cell lung cancer (SCLC) (Chiappori et al.
2009). A summary of BCL-2 inhibitors that are currently in preclinical and clinical
development is shown in Table 27.5 (Nicholson 2000; Kang and Reynolds 2009).

27.6 Abnormalities in Growth-Stimulatory Signaling Pathways

27.6.1 RAS/RAF/MEK/ERK

Advancements in the field of molecular and genomic technology have led to the
identification of various pathways that are deregulated in human cancers. This has
paved the way for further investigation of additional targets for anticancer therapy.

The RAS family of oncogenes (HRAS, KRAS, and NRAS) encodes 21-kDa plasma
membrane–associated G-proteins that regulate signaling cascades involved in nor-
mal cellular differentiation, proliferation, and survival (Downward 2003). Activating
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Table 27.6 A summary of novel therapies that s target Ras-Raf-MEK-ERK pathway

Inhibitor Specificity Selected tumor types

Tipifarnib (ZarnestraTM; Ortho Biotech
Products, Lonafarnib (SarasarTM;
Schering-Plough), BMS-214662
(Bristol-MyersSquibb, FTI-277
(Calbiochem). L744832 (Biomol
International L.P., Biosciences.)

Inhibitors of the
farnesyl-transferase
enzyme

NSCLC, HNSCC, breast,
ovarian, prostate, glioma,
pancreatic, colorectal
cancer

Sorafenib (BAY 43–9006, Nexavar�) Raf-1, wild-type
B-Raf, and b-raf
V600E RAF kinase,
VEGFR2,
PDGFR-α and
PDGFR-β, FLT3
and c-Kit

Metastatic RCC, HCC,
melanoma, NSCLC,
breast, ovarian, prostate,
pancreatic, colorectal,
glioma

PLX4032, PLX4720 B-Raf Melanoma
Selumetinib (AZD6244; ARRY-142886) MEK inhibitor Melanoma
Tanespimycin (KOS-953, 17-AGG)

Hsp90 inhibitor
B-Raf, AKT/PKB,

ERBB2, CDK4,
HER2, HIF-1α

Melanoma, breast cancer

Vaccination with mutant KRAS peptides Pancreatic adenocarcinoma
RAS antisense treatment, ISIS2503,

ISIS5132
HRAS, c-RAF1 NSCLC

oncogenic mutations in the all three RAS genes are common in several human can-
cers (Lowy and Willumsen 1993; Davies et al. 2002) and approximately 50 % of
metastatic tumors contain RAS mutations (Chambers and Tuck 1993). RAS onco-
genes contribute to tumor growth, invasion, angiogenesis and metastasis through Ras
binding to Raf protein kinases, Raf-MEK-extracellular signal-regulated kinase fam-
ily, and PI3K pathway. Additionally, RAS oncogenes function through Ral-specific
guanine nucleotide exchange factors (RalGEFs), (Chambers and Tuck 1993; Shields
et al. 2000; Ward et al. 2001) RAC, RHO and NFkB pathways (Downward 2003).
A number of drugs that specifically target KRAS function have been developed and
are currently under investigation in clinical trials (Table 27.6) (Downward 2003; Bos
1989).

Maturation of Ras proteins is a process that relies on farnesylation through
covalent attachment of the enzyme coupling a 15-carbon isoprenyl group to Ras
proteins. (Adjei et al. 2000). Inhibitors of the farnesyl-transferase enzyme are cur-
rently being investigated as potential therapeutic agents in the treatment of various
cancers (Johnston 2001). Farnesyl-transferase enzyme inhibitors (FTIs) mimic the
carboxy-terminal motif of RAS and compete for binding to farnesyltransferase. These
compounds for example tipifarnib (ZarnestraTM; Ortho Biotech Products),lonafarnib
(SarasarTM; Schering-Plough Corporation), BMS-214662 (Bristol-Myers Squibb),
FTI-277(Calbiochem),EMD and L744832 (Biomol International L.P., Biosciences)
were demonstrated to have apoptotic and anti-angiogenic effects. They were also ef-
fective in achieving inhibition of tumor cell growth in various cancers such as that of
colon, bladder, lung, prostate, and pancreas (Johnston 2001). FTIs initially showed
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significant promise in preclinical studies (Appels et al. 2005) and were subsequently
tested in combination with cytotoxic drugs in clinical trials for lung cancer (Isobe
et al. 2005). However, the results gathered from other phase II clinical trials revealed
only moderate effects. Further studies are required for a complete understanding of
the biological activities of FTIs (Brunner et al. 2003).

The RAF–MEK–ERK signaling cascade has an important role in tumor patho-
genesis, and aberrant signaling through RAF (a downstream effector of the RAS
pathway) occurs in approximately 30 % of human cancers (Bos 1989). Activating
mutations of BRAF occur in approximately 8 % of human tumors, most frequently
in melanoma (66 %), colorectal, and thyroid cancers. The three RAF somatic mis-
sense mutations code for cytoplasmic serine/threonine kinases which were shown
to be related to proliferation and resistance to apoptosis. Therefore BRAF protein
serine/threonine kinase could be used as an important and specific therapeutic target
(Davies et al. 2002).

A. Kinase inhibitors targeting RAS effector pathway Sorafenib (BAY 43–9006,
Nexavar�), is a multikinase inhibitor which was designed as an inhibitor for Raf-1,
wild-type B-Raf and b-raf V600E. Sorafenib also inhibits several receptor tyrosine
kinases on the intracellular domain of VEGFR1, VEGFR2, VEGFR3, PDGF recep-
tors FMS-like tyrosine kinase 3 (Flt-3), stem cell factor receptor (KIT), and the glial
cell-line derived neurotrophic factor receptor (RET) (Downward 2003). Sorafenib
demonstrated good safety, tolerability and clinical activity in several tumor types
particularly in patients with RCC and HCC (Strumberg et al. 2007; Lombardi et al.
(in press); Escudier et al. 2007; Llovet et al. 2008). Further phase II and III studies
evaluating sorafenib demonstrated an increased median overall survival and delayed
the median time to progression in patients with advanced HCC and metastatic RCC
(Lombardi et al. (in press); Cheng et al. 2009; Keating and Santoro 2009; Reeves and
Liu 2009). However, a phase III clinical trial of sorafenib in combination with car-
boplatin and paclitaxel in patients with metastatic melanoma did not have an impact
on improvement in overall survival (Hauschild et al. 2009).

Other small-molecule inhibitors of Raf kinases including Raf265 (Novartis),
XL281 (Exelixis/Bristol Myers Squibb), AZ628 (AstraZeneca), SB-590885 (Glax-
oSmithkline) and PLX-4032 (Plexxikon/Roche) a highly selective inhibitor for
BRAF(V600E) has demonstrated a greater selectivity and antitumor activity in pre-
clinical trials and phase I studies (Wellbrock and Hurlstone 2010; Pratilas and Solit
2010).

PLX-4032 is currently under clinical investigation as a single agent in metastatic
cutaneous melanoma. The results from a phase I trial, reported good oral bioavailabil-
ity, tumor regression and a median increased survival in metastatic melanoma patients
(Flaherty et al. 2009). This therapeutic agent is currently being investigated in phase
III clinical trials. However, PLX4032 may paradoxically enhance the proliferation
of tumors through ERK activation in tumor cells that co-express BRAF(V600E) and
mutant RAS (Pratilas and Solit 2010; Poulikakos et al. 2010).

Other drugs targeting the RAS/RAF- ERK–MAPK pathway include inhibitors
of Hsp90 and its target proteins. Some of these client proteins such as RAF, AKT,
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ERK, PI3K, VEGF, uPA, and MMPs are involved in promoting cancer invasion and
angiogenesis. Inhibition of Hsp90 results in destabilization of the client proteins with
antitumor effects (Koga et al. 2009). Tanespimycin (KOS-953) an inhibitor of Hsp90,
was evaluated in a phase II clinical trial in cutaneous melanoma (Solit et al. 2008) and
in combination with trastuzumab in breast cancer (Modi et al. 2007). The combination
of sorafenib and tanespimycin resulted in pharmacodynamic activity in kidney cancer
and melanoma meeting the criteria for further evaluation (Vaishampayan et al. 2010).

B. MEK inhibitors Mitogen-activated protein kinase (MAPK) pathway activation
can result from mutations of BRAF and RAS oncogenes or upstream deregulation of
growth factor receptors.

Inhibitors of the RAF–MEK–ERK signaling could modulate tumor cells growth,
differentiation, and proliferation. MEK inhibitor, PD0325901(Pfizer), significantly
suppresses pERK levels in certain tumors in preclinical studies (Barrett et al.
2008) and showed preliminary clinical activity in patients with advanced cancers
(LoRusso et al. 2010). The specific MEK 1/2 inhibitor AZD6244 (ARRY-142886)
(AstraZeneca)) is an ATP noncompetitive, allosteric inhibitor of MEK1/MEK2 and
has shown tumor suppressive activity in pre-clinical models including melanoma,
pancreatic, colon, lung, and breast cancers (Pratilas and Solit 2010; Bennouna et al.
2010). The results reported from a phase II clinical trial in cutaneous melanoma
have shown lasting remissions in patients with BRAF mutations and this agent is
currently being evaluated in Phase II clinical trials (Bennouna et al. 2010; Board
et al. 2009). However, the activity of this agent was comparable to disease-specific
standard chemotherapy. AZD6244 is currently undergoing evaluation in Phase II
trials in combination with other chemotherapeutic agents in selected patients with
active mutations in BRAF and/or RAS.

Another therapeutic approach is the development of antisense synthetic oligonu-
cleotides that are specific for sequences in the mRNAs for HRAS (ISIS2503) or
c-RAF1 (ISIS5132). These agents are now being evaluated for clinical activity in
phase II trials NSCLC (Sato et al. 2007). However, their high level of specificity
for one target is likely to be less effective in a tumor modulated by pleiotropic
mechanisms.

Immunotherapy via vaccination with mutant KRAS peptides induced a transient
Ras-specific T-cell response, a long-term immune response and increased survival in
patients with pancreatic carcinoma following surgical resection (Wedén et al. 2010)

27.6.2 Phosphatidylinositide 3-Kinase (PI3K) Pathway

The PI3K pathway is a major cellular signal transduction pathway involved in cell
growth, survival, angiogenesis and metabolism (Vivanco and Sawyers 2002). Acti-
vation of the PI3K pathway occurs through stimulation of RTKs which results in the
assembly of receptor–PI3K complexes. Based on their structure PI3Ks are classified
as class I (class IA p110α, p110β, p110δ and class IB, p110γ), class II (PI3KC2α,
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PI3KC2β and PI3KC2γ) and class III (lipid kinases VPS34; homologue of the yeast
vacuolar protein sorting-associated protein 34) which mediates signaling through
mammalian target of rapamycin (mTOR) (Cantley 2002; Workman et al. 2010). The
activation of the catalytic subunit of class I- PI3Ks is followed by the phosphoryla-
tion of phosphatidylinositol-4, 5-bisphosphate (PIP2) to phosphatidylinositol-3, 4,
5-trisphosphate (PtdIns(3,4,5)P3).They recruit PDK1 and AKT to the plasma mem-
brane followed by AKT phosphorylation at Thr308 by PDK1 and at Ser473 by
mammalian target of rapamycin (mTOR) complex 2 (TORC2), (Wullschleger et al.
2006; Sarbassov et al. 2005). PTEN is a major limiting factor of this step and antago-
nizes this process by dephosphorylating PIP3 to inhibit activation ofAKT (Zhang and
Yu 2010; Blanco-Aparicio et al. 2007). PTEN tumor suppressor gene is frequently
inactivated in cancers by mutation, resulting in accumulation of PIP3 thus triggering
the activation of its downstream effectors PDK1 and AKT/PKB (Yuan and Cantley
2008). One of the consequences of AKT activation is mTOR activation. The sig-
naling complex downstream mTOR include ribosomal protein S6 kinase 1(p70S6K)
and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) which are
important factors in protein synthesis, cell growth, metabolism and angiogenesis
(Wang et al. 2006; Sabatini 2006). Phosphorylated AKT mediates the activation and
inhibition of several targets, promoting cell cycle progression, proliferation and inhi-
bition of apoptosis through various mechanisms (Yuan and Cantley 2008). Mutations
in both PI3K and mTOR pathway are critical for tumor growth and survival and are
involved in a wide range of tumors including breast, prostate, colon carcinomas and
malignant brain tumors (Blume-Jensen and Hunter 2001).

The signalling of the PI3K pathway triggers tumor progression through multiple
effects on cellular growth, proliferation, survival, motility and modulates tumor drug
resistance (Vivanco and Sawyers 2002).The PI3K–AKT pathway also modulates
angiogenic effects through upregulation of hypoxia-inducible factor (HIF)-1α and
VEGF (Eccles and Welch 2007; Kong and Yamori 2008).

PI3K -AKT activation in cancer can occur at multiple points including activation
of receptors or oncogenes upstream of PI3K or accumulation of PtdIns(3,4,5)P3.
Additionally this pathway can be deregulated through mutation or loss of the tumor
suppressor PTEN, PI3K or of the downstream elements such as AKT and mTOR
(Yuan and Cantley 2008; Abdel-Rahman et al. 2006; Watters and Huang 2009). Sev-
eral studies indicated that targeting the PI3K-AKT pathway caused a reduction of
tumor cell proliferation as well as their migratory and invasive capacity (Vivanco and
Sawyers 2002). Therefore, the PI3K/AKT/mTOR pathway is considered an attrac-
tive target for novel anti-cancer therapeutic strategies. Several pathway components
including AKT, PI3K and mTOR represent potential therapeutic targets. Many of
these inhibitors are currently being evaluated preclinically or in early clinical trials
(Liu et al. 2009).

A. PI3K inhibitors All PI3K isoforms are mutated in several cancers (Samuels et al.
2004) and are proven to induce oncogenic transformation in xenograft animal mod-
els. They are involved in cancer cell proliferation, growth, apoptosis, cytoskeletal
rearrangement and tumor angiogenesis while also being a therapeutic target in tumors
with PI3K mutations (Kang et al. 2006).
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Table 27.7 Examples of several PI3K inhibitors currently being evaluated in preclinical and patient
trials

Inhibitor Specificity Selected tumor types

PX-866 (Oncothyreon,
Bellevue, WA, USA)

PI3 K (p110α, -δ and -γ) Ovarian and lung carcinoma, colon
xenografts

Phase I clinical trial in patients with
advanced metastatic solid cancer

CAL-101 PI3 K δ Non-Hodgkin’s lymphoma, mantle cell
lymphoma, and CLL

PI-103(Novartis, Basel) Class I PI3 K and mTOR Preclinical studies in ovarian, breast,
glioblastoma

XL765 Dual class I PI3K and
mTOR

Patients with advanced tumors

SF1126 (Semafore,
Indianapolis, IN,
USA)

PI3K class I mTORC1/2 Antitumor and antiangiogenic effects in
preclinical studies

Phase I clinical trials
GDC-0941 pan PI3 K inhibitor Breast, ovarian, lung, prostate xenografts

Phase I clinical trials
GSK1059615 PI3K inhibitor Phase I clinical trial
XL114 Pan PI3K inhibitor Preclinical studies in breast, lung, ovarian,

prostate and glioma tumors Phase I
clinical trials

ZSTK474 (Zenyaku
Kogyo, Tokyo, Japan)

Pan PI3 K inhibitor Tumor xenografts of prostate
adenocarcinoma, colorectal carcinoma
and lung adenocarcinoma

XL184 PI3 K (p110α, -δ and –γ)
and (TORC1, TORC2)

Phase I-III clinical trials in patients with
patients with progressive glioblastoma
and medullary thyroid cancer

MET, VEGFR2, and RET
NVP-BEZ235

(Novartis)
Pan-PI3K/mTOR Phase I and II clinical trials in patients

with advanced breast, prostate, and
brain cancers

NVP-BGT226 Dual class I PI3K and
mTOR inhibitor

Phase I

The first PI3K inhibitors to be extensively researched were the fungal metabo-
lite wortmannin (Arcaro and Wymann 1993) and LY294002 (Vlahos et al. 1994)
which block the enzymatic activity of PI3Ks through an ATP-binding competitive
mechanism (Liu et al. 2009).These compounds showed dose-dependent cell growth
inhibition and antitumor and antiangiogenic efficacy in preclinical studies, but high
levels of toxicity (dermal and liver toxicity), combined with poor solubility and low
bioavailability, prevented their evaluation in clinical trials. However, wortmannin
and LY294002 were widely used as tools for further elucidating the biological roles
of PI3Ks in tumorigenesis (Workman et al. 2010). Several PI3K inhibitors have
been developed and are currently being evaluated in preclinical and patient trials
(Table 27.7)

New generation of PI3K inhibitors include PX-866 (Oncothyreon, Bellevue, WA,
USA), a compound similar to wortmanin which demonstrated activity as an oral
irreversible PI3K inhibitor with selectivity for class I PI3K isoforms α, γ and δc in
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lung carcinoma, ovarian and colon carcinoma xenografts (Ihle et al. 2004). This drug
is currently being investigated in a phase I clinical trial in patients with advanced
metastatic cancers and preliminary results indicated signs of disease stabilization
(Jimeno et al. 2009).

Pan-specific PI3K inhibitors (for example PI-103, NVP-BEZ235, GDC-0941 and
ZSTK474), occupy theATP-binding site of the enzyme and have improved properties
to modulate PI3K kinases.

GDC-0941 is a pan PI3K inhibitor that demonstrated signs of antitumor activity in
multiple xenograft models such as breast, ovarian, lung and prostate cancer (Folkes
et al. 2008). In a phase I clinical trial in patients with advanced solid tumors this
agent was well tolerated, with signs of biological activity (Hoff et al. 2010). Recent
studies with GDC-0941 have shown promising results by combining this agent with
trastuzumab (Yao et al. 2009) and MEK inhibitors (Hoeflich et al. 2009).

ZSTK474 (Zenyaku Kogyo, Tokyo, Japan) is a triazine derivative with selective
pan-PI3K inhibitory activity that showed favorable responses in preclinical studies
with tumor xenografts of prostate adenocarcinoma, colorectal carcinoma and lung
adenocarcinoma, (Yaguchi et al. 2006).

PI-103 (Novartis) is a synthesized molecule of the pyridofuropyrimidine that
shares a similar structure with LY294002 and has the ability to target both PI3K-
p110α and mTOR. It demonstrated antiproliferative and antitumor effects in pre-
clinical studies in, breast and ovarian cells xenografts and enhanced chemotherapy-
induced cell death of glioblastoma GBM cells (Raynaud et al. 2007; Westhoff et al.
2009). Further studies are ongoing to determine the efficacy and the pharmacological
properties of PI-103 agent to target both mTOR and PI3Ks in cancer (Raynaud et al.
2007; Fan et al. 2006).

SF1126 (Semafore) is a LY294002 pro-drug that targets all PI3 K class I isoforms
including mTORC1/2 and has proven antitumor and antiangiogenic responses in
preclinical studies of brain, neuroblastoma, NSCLC, prostate, myeloma, RCC. It
is currently being evaluated in phase I and dose escalation clinical studies (Garlich
et al. 2008).

Encouraging results have been described for XL765 compound which is a dual
PI3K and mTOR inhibitor which is currently in phase I studies in patients with solid
tumors. Preliminary results showed that XL765was well tolerated and demonstrated
pharmacodynamic modulation of PI3K and ERK pathway with evidence of stable
disease in patients with advanced cancer (Papadopoulos et al. 2008; Brana et al.
2010). Other multikinase PI3K inhibitors, XL184, XL147, XL765 and XL147 (Ex-
elixis) are currently in development. Clinical data from patients treated with XL184
a MET, VEGFR2, and RET inhibitor, has demonstrated activity in phase I-III clinical
trials in patients with progressive glioblastoma and medullary thyroid cancer (Wen
et al. 2010; Sugawara et al. 2009).

XL-765, a pan-class I- PI3K inhibitor has an inhibitory effect also on DNA-PK
and MTOR and has the ability to induce delays in tumor growth in xenograft models.
This agent has been well tolerated as monotherapy in a phase I clinical trial when
administered orally to patients with advanced solid tumors, (Papadopoulos et al.
2008) or in combination with temozolomide (TMZ), (Nghiemphu et al. 2010).
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Interim analyses of an ongoing phase I clinical trial in patients with advanced
cancer showed that the XL147 compound was well tolerated and induced prolonged
stable disease in several cases (Shapiro et al. 2009). Also, preliminary results of a
trial evaluating the combination of XL147 and erlotinib resulted in clinical activity
and simultaneous inhibition of PI3K and EGFR signaling (Moldovan et al. 2010).

NVP-BEZ235 (Novartis) is an imidazo-quinoline derivative, which exhibits dual
pan-PI3 K/mTOR inhibition. Preclinical data show that NVP- BEZ235 has strong
anti-proliferative activity in cell lines and tumor xenografts with abnormal PI3K
signalling. This therapeutic agent has entered Phase I and II clinical trials in patients
with advanced breast, prostate, and brain cancers (Maira et al. 2008). Other PI3K
inhibitors that have entered phase I clinical trials include: NVP-BGT226 (a dual
class I PI3K and mTOR inhibitor) and NVP-BKM120 (a selective pan-class I PI3K
inhibitor) (Brachmann et al. 2009).

Several other phase I studies investigating PI3K inhibitors are ongoing. Two exam-
ples of the study drugs are GSK1059615 (GlaxoSmithKline) (Brachmann et al. 2009)
and CAL-101 (Calistoga Pharmaceuticals). CAL-101 is a selective agent targeting
p110δ. Interim results from a phase I trial with CAL-101 demonstrated favourable
clinical results in patients with haematological malignancies such as non-Hodgkin’s
lymphoma (NHL), mantle cell lymphoma, and chronic lymphocytic leukemia (CLL)
(Lannutti 2010)

B. PDK inhibitors Phosphorylation of the threonine residue in the activation loop
of the three AKT isoforms and PKC (protein kinase C) is modulated by PDK1.
This process stimulates cell growth, proliferation and survival, as well as promoting
angiogenesis. Several anti-PDK 1 inhibitors such as UCN-01 were tested in phase I
and II clinical trials, however they did not have significant antitumor activity (Welch
et al. 2007). Further development of an indoline-based series of PDK1 inhibitors
such as BX-517, demonstrated a potent inhibitory effect through binding to the ATP
pocket of PDK1 (Islam et al. 2007a, b).

C. AKT inhibitors AKT amplification and activation occurs in a variety of tumors
such as melanoma, breast, ovarian and pancreatic cancers. It is critical for phos-
phorylation of many downstream substrates involved in tumor survival as well
as organization of the actin cytoskeleton and invasion (Liu et al. 2009; Carpten
et al. 2007). Over expression of AKT2 was reported in late-stage colorectal cancer
and metastases suggesting that AKT2 promotes metastatic disease (Rychahou et al.
2008). The involvement of AKT in these processes supports a role for selective tar-
geting of the PI3K/AKT pathway as a strategy for metastasis (Table 27.8) (Vivanco
and Sawyers 2002).

Perifosine (Keryx) is a lipid-based phosphatidylinositol analogue that inhibits
AKT by targeting the pleckstrin homology (PH) domain of AKT thus blocking AKT
membrane translocation. This drug has the end result of reduction of proliferation
while also inhibitingAKT. This effect has been shown in a variety of tumors cells such
as melanoma, lung, prostate, colon, and breast cancer (Crul et al. 2002). Results from
a phase I clinical trial in patients with advanced solid tumors showed that the drug was
well tolerated (Unger et al. 2010) with evidence of stable disease in sarcoma (Bailey
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Table 27.8 AKT inhibitors that are currently under investigation for various malignancies

Inhibitor Specificity Selected tumor types

Perifosine (Keryx) AKT Phase I and II in advanced solid tumors
GSK690693 AKT, GSK3 beta,

PRAS40,
Forkhead

Preclinical studies in ovarian, breast,
prostate carcinoma

API-2 AKT Phase I in advanced solid tumors NSCLC,
leukemia

XL418 (Exelixis) AKT Phase I in advanced solid tumors
MK2206 (Merck) AKT Phase I in advanced solid tumors
Tanespimycin (KOS-953, Hsp90 inhibitor Phase II metastatic breast cancer
Kosan) AKT Multiple myeloma

et al. 2006) and renal cell carcinoma. However, these results were not clinically
validated in phase II clinical studies in breast, pancreas, prostate, head and neck, and
lung cancer (Kondapaka et al. 2003; Ummersen et al. 2004; Gills and Dennis 2009).

Other AKT inhibitors that are phosphatidylinositol ether lipid analogues (PIA)
which interfere with the PH domain of AKT inhibit the translocation of AKT to
the plasma membrane (Hu et al. 2000). Lipid analogues and PH domain-targeting
inhibitors were shown to have AKT inhibitory effects (Gills et al. 2007) in addition
to reducing tumor cell growth in preclinical studies (Powis et al. 1992).

Inositol polyphosphates such as InsP5, a novel inhibitor of the PI3K/AKT path-
way, can compete with PtdIns(3,4,5)P3 by binding to AKT- PH domain. InsP5 has
anti-AKT and antiangiogenic effects resulting in xenograft tumor growth inhibition
(Maffucci et al. 2005). A derivative of InsP5, 2-O-Bn-InsP5, resulted in enhanced pro-
apoptotic and anti-tumor activity through inhibition of PDK1 and mTOR (Falasca
et al. 2010). The recent development of the aminofurazan AKT series of inhibitors
has led to the identification of GSK690693, a compound that causes dephosphory-
lation of targets downstream of AKT, including GSK3 beta, PRAS40, and Forkhead
(Heerding et al. 2008). Xenograft studies resulted in antitumor activity in ovarian,
prostate, and breast carcinoma (Rhodes et al. 2008).

Several AKT antagonists have been identified using high throughput screening.
API-1 inhibits AKT by binding to the PH domain and blocking AKT membrane
translocation (Kim et al. 2010). API-2 (triciribine phosphate), a water-soluble tri-
cyclic nucleotide selectively induces apoptosis and inhibits cell growth in tumors
with PTEN mutations and AKT amplification. This drug is currently being tested in
Phase I clinical trials in patients with both solid and haematological malignancies.
(Yang et al. 2004)

MK2206 (Merck), an orally active allostericAKT inhibitor is under evaluation for
the treatment of patients with locally advanced or metastatic solid tumors (Tolcher
et al. 2009b). Preclinical data showed enhanced anticancer activity for MK-2206 in
combination with several anticancer agents (erlotinib, lapatinib) (Hirai et al. 2010)
as well as in combination with MEK inhibitor, AZD6244.

XL418 (Exelixis), a small molecule that inhibits the activity of AKT and S6
Kinase (S6K). It has shown inhibitory effects on tumor growth in preclinical studies,
including breast and lung adenocarcinomas and has currently entered Phase I clinical
trials.
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Table 27.9 Summary of mTORC1 and mTORC2 inhibitors currently in clinical trials

Inhibitor Specificity Selected tumor types

Rapamycin (Wyeth) mTOR Approved advanced RCC
Phase I and II in advanced solid tumors

Temsirolimus (Torisel;
Wyeth)

mTORC1 Approved advanced RCC and mantle cell
lymphoma

Phase I-III in advanced solid tumors,
ovarian, endometrial carcinoma,
NSCLC, melanoma

Everolimus (Afinitor;
Novartis)

mTORC1 Approved advanced RCC
Phase I-II in advanced breast cancer, lung

cancer, pancreatic carcinoma,
melanoma or glioma

Ridaforolimus
(Merck/Ariad)

mTORC1 Approved soft-tisse and bone sarcomas
Phase I clinical trial in patients with

advanced malignancies
WYE-132 (Wyeth) Dual mTORC1 and

mTORC2
Preclinical studies in breast, glioma, lung,

renal tumors

Hsp90 inhibitors: Both AKT and its activating kinase 3-phosphoinositide-
dependent kinase-1 rely on Hsp90 for stability. Hsp90 and its co-chaperones
modulate tumor cell apoptosis through formation of AKT-Hsp90 complexes, thus
stabilizing the AKT kinase activity and phospho-AKT dephosphorylation (Sato et al.
2000). Several studies indicated that targeting the PI3K-AKT pathway with 17-AAG
caused inhibition of AKT phosphorylation, induction of apoptosis and downregula-
tion of multiple AKT and RAF dependent pathways (Workmann et al. 2007; Basso
et al. 2002; Georgakis et al. 2006; Hostein et al. 2001; Solit et al. 2002).

D. mTOR inhibitors mTOR has a critical effect through regulation of several intra-
cellular functions including cell growth, cell cycle progression, actin cytoskeleton
organization, angiogenesis and apoptotic cell death. Several downstream compounds
targeting mTOR have been designed (Faivre et al. 2006) (Table 27.9).

Rapamycin (sirolimus, Wyeth) is a macrolide antibiotic which binds to mTORC1
via FKBP12-rapamycin binding domain adjacent to the catalytic site of mTORC1.
It suppresses mTOR-mediated phosphorylation. Analogues of rapamycin, such as
temsirolimus (Torisel; Wyeth), everolimus (RAD001/Afinitor) and ridaforolimus
(Ariad Pharamceuticals/Merck) have demonstrated antiproliferative activity against
a diverse range of malignancies in preclinical studies, and have also been evaluated
in multiple clinical trials. Results from phase III clinical trials showed improved
clinical outcomes for everolimus in patients with RCC that had progressed after
sunitinib or sorafenib therapy. Also, temsirolimus improved overall survival when
compared with interferon in patients with metastatic RCC leading to FDA approval
(Motzer et al. 2008; Hudes et al. 2007; Motzer et al. 2010). Temsirolimus is also
approved for the treatment of mantle-cell lymphoma following results from a phase III
clinical trial which reported improved progression free survival (PFS) and objective
responses (Hess et al. 2009). Partial response rates were reported in patients with
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soft-tissue sarcoma, neuroendocrine tumors and endometrial carcinoma and led to
phase III trials evaluating everolimus and ridaforolimus in neuroendocrine and soft-
tissue sarcoma. However, low response rates have been seen in trials of patients
with advanced breast, lung, and pancreatic cancer as well as melanoma and glioma
(Dancey 2010).

In addition to inhibiting tumor growth, mTOR inhibitors also act as anti-
angiogenic agents, interfering with HIF-1α (hypoxia inducible factor), VEGF and
PDGF signalling cascades (Faivre et al. 2006; Thomas et al. 2006). These agents
can therefore be effective when used in combination with anti-angiogenic drugs.
Evidence of this was seen in a phase II clinical trial investigating the efficacy of the
combination of bevacizumab and everolimus which revealed biological activity and
good tolerability in the treatment of advanced clear cell renal cancer. This combina-
tion had moderate activity in patients with metastatic melanoma (Hainsworth et al.
2010a, b).

Ridaforolimus is an analog of rapamycin that has been shown to inhibit mTOR ac-
tivity, as evidenced by reduced phosphorylation of 4E-BP1 and S6. This drug inhibits
the proliferation of multiple tumor cell lines including breast, colon, lung, prostate,
glial, and those of pancreatic origin. This drug was well tolerated with favorable
antitumor activity in a phase I clinical trial in patients with advanced malignan-
cies including NSCLC, RCC, and Ewing sarcoma (Mita et al. 2008). Ridaforolimus
is currently being evaluated in a phase III clinical trial in patients with advanced
sarcoma4.

Dual ATP-competitive inhibitors of both mTORC1 and mTORC2 are emerg-
ing. They have been reported to reduce cancer cell proliferation in vitro and tumor
xenograft formation in vivo. In preclinical studies, oral administration of WYE-132
inhibited mTORC1 and mTORC2 and resulted in antitumor activity against breast,
glioma, lung, and several renal tumor cell lines (Yu et al. 2010).
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Chapter 28
Metastasis Initiation

Dana Faingold, Dawn Russell-Hermanns and Silvin Bakalian

Metastasis initiation genes are involved in tumor cell motility, invasion and angiogen-
esis contributing to the dissemination of tumor cells in the circulation. The initiation
and progression of tumors depend on oncogene activation and loss or inactivation of
tumor suppressor genes at both the primary and metastatic sites. Processes associated
with the initiation of metastasis challenge tumor cells during local invasion, angio-
genesis, circulation and metastatic niche formation. Most functions for the initiation
of both the tumor and metastasis remain essential for cancer cells to continue their
metastatic development (Chiang and Massagué 2008).

28.1 Angiogenesis

Angiogenesis supports the primary tumor blood supply, vasculogenic mimicry and
provides an escape route by which cells can intravasate into the body’s circulatory
blood system. After survival into circulation the cells extravasate and initiate for-
mation of the pre-angiogenic micrometastases followed by the development of new
blood vessels (Eccles 2004). New vessel formation arises in the hypoxic environ-
ment of the tumor which stimulates the synthesis of HIF in the endothelial cells
resulting in the production of VEGF that promotes endothelial cell proliferation,
migration, survival, expression of adhesion molecules, and increased vascular per-
meability (Liao and Johnson 2007; Bergers and Benjamin 2003; Carmeliet and Jain
2000). Tumor cells modulate angiogenesis by producing VEGF-A which binds to
VEGFR 1 and 2 as well as other angiogenic factors such as placenta growth factor
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Table 28.1 Anti-VEGF treatment with monoclonal antibodies

Inhibitor Specificity Selected tumor types

Bevacizumab antibody VEGF-A Approved for colon, breast, NSCLC, GBM
Aflibercept Fusion molecule VEGF Prostate cancer, NSCLC, colorectal, and

pancreatic cancer
HuMV833 antibody VEGF-A Phase I clinical trials
IMCL-1121b (ramucirumab) antibody VEGFR-2 Breast, colorectal, NSCLC, ovary, prostate,

RCC, HCC, melanoma

(PlGF) and VEGFB. These bind to VEGFR1, VEGFC and VEGFD which primarily
interact with VEGFR3 stimulating lymphangiogenesis (Ferrara 2004). Hypoxia also
promotes neoangiogenesis via HIF-1α which signals through PI3K and MAPK path-
ways. Hypoxia induces transcriptional activation of uPA, and CXCR4 and influences
adhesion, matrix degradation and invasion (Kerbel 2008).

Malignant, stromal or inflammatory cells produce angiogenic factors that stimu-
late the endothelial cells to proliferate and promote new-vessel formation in tumors.
TheVEGF pathway contributes to the migratory potential of endothelial cells through
induction of proteolytic enzymes such as MMP-2, MMP-9, and uPA (Ferrara and
Kerbel 2005).

Anti-VEGF therapy induces cytostatic effects and transient normalization of the
tumor vasculature, rendering it more vulnerable to therapy (Table 28.1, Jain 2005).

Antiangiogenic agents: monoclonal antibodies Monoclonal antibodies prevent
receptor activation by binding directly to the ligand and were demonstrated to sup-
press tumor growth and angiogenesis in several studies (Chung et al. 2010; Kim
et al. 1993; Gerber and Ferrara 2005). In a large, randomized, double-blind, phase
III study the combination between bevacizumab (Avastin�), (a humanized variant
of a VEGF-A monoclonal antibody) with irinotecan, 5FU and leucovorin (IFL),
showed statistically significant improvement in terms of PFS and overall survival.
The study was conducted in patients with metastatic colorectal cancer and clearly
established the efficacy of this anti-VEGF antibody in first-line therapy (Hurwitz
et al. 2004). The Eastern Cooperative Oncology Group (ECOG) trial evaluated the
addition of bevacizumab to FOLFOX (5-FU, LV, oxaliplatin) in colorectal cancer
patients and showed increased PFS, overall suvival, and response rates leading to
the approval of bevacizumab in combination with chemotherapy in the second-line
setting (Giantonio 2007).

The ECOG phase III trial E4599 in patients with NSCLC, randomized 878 stage
IIIB/IV patients comparing bevacizumab and chemotherapy with chemotherapy
alone. The results showed evidence of improvement in median overall sruvival
of more than 12 months in the bevacizumab arm. Hence, bevacizumab in com-
bination with carboplatin and paclitaxel chemotherapy was approved for patients
with NSCLC (Sandler 2006). In a phase III clinical trial of patients with metastatic
breast cancer, whereby the participants were randomized to receive paclitaxel with
or without bevacizumab, the results showed that bevacizumab in combination with
paclitaxel improved survival in women with previously untreated metastatic breast
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cancer (Miller 2007). Several other clinical trials are currently under way study-
ing the use of bevacizumab in the treatment of RCC. The study demonstrated the
favourable effects of bevacizumab in a randomized phase II trial in these patients
(Yang 2003). Encouraging results are also emerging for other cancers, indicating that
the antiangiogenic approach with bevacizumab may have wider applicability, such as
in ovarian cancer (Cannistra 2007; Burger et al. 2007) and glioblastoma multiforme
(Vredenburgh 2007).

HuMV833, a recombinant humanized IgG4 anti- VEGF monoclonal antibody,
demonstrated tolerability, safety and some clinical activity in patients with advanced
cancer in phase I studies (Jayson 2005). Several other antibodies targeting VEGF
receptors are being clinically pursued. Specifically, fusion soluble receptors such as
VEGF-trap (aflibercept), a decoy receptor protein is currently being investigated. This
agent is the product of the fusion of the Ig extracellular domains of both VEGFR-1
and VEGFR-2 with the Fc fragment of an antibody that has a high affinity for VEGF-
A. The results have been favourable in phase I studies in solid tumors (Tew 2008;
Rixe 2006) and is currently being evaluated in phase III trials in prostate cancer,
NSCLC, colorectal, and pancreatic cancer (Chung et al. 2010; Grothey and Galanis
2009).

IMC-1121b (ramucirumab) is a fully human monoclonal IgG1 antibody which
blocks ligand binding of VEGF-R2. Ramucirumab exhibited good tolerability and
safety in phase I clinical trials (Camidge 2006) and therefore phase II clinical studies
are now underway for advanced liver, kidney, prostate, ovarian, colorectal, NSCLC
and malignant melanoma. This agent has also been evaluated in a phase III clinical
trial of docetaxel with or without IMC-1121b as first-line therapy in advanced breast
cancer (Ferrara and Kerbel 2005; Grothey and Galanis 2009).

Tyrosine kinase inhibitors Tyrosine kinase inhibitors (TKIs) target the ligand-
dependent receptor and inhibit kinase activity by competing with ATP in the tyrosine
kinase catalytic domain. Several tyrosine kinase receptors are targets for antiangio-
genic therapy for example VEGFR, FGFR, PDGFR and Tie-2 (Morin 2000). The
use of anti-VEGF receptor TKIs yielded encouraging results in various advanced
cancers such as metastatic colorectal cancer, metastatic NSCLC, metastatic breast
cancer, RCC, HCC and recurrent glioblastoma (Table 28.2, Jain 2009).

Sunitinib (SU11248/Sutent; Pfizer), is a multi-targeted TKI having anti-angiog-
enic and anti growth tumor activities. This is achieved through the selective inhibition
of VEGFR2, PDGFR, Kit, Flt3, and REarranged during Transfection (RET) tyrosine
kinases. Studies have demonstrated its definitive efficacy in metastatic RCC and
in a randomized phase III study assessing sunitinib in the treatment of imatinib-
resistant GIST. Currently a phase III clinical study investigates the effect of sunitinib
in combination with erlotinib in advanced, platinum-refractory NSCLC (Scagliotti
and Govindan 2010).

Another FDA-approved anti-angiogenic agent for cancer treatment is sorafenib
(BAY 43-9006, Nexavar�), a TKI that inhibits RAF serine/threonine kinases and
receptor tyrosine kinases involved in tumor growth and angiogenesis. This agent
acts on the intracellular domain of VEGFR1, VEGFR2, VEGFR3, PDGF receptor
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Table 28.2 Examples of anti-VEGF receptor tyrosine kinase inhibitors

Inhibitor Specificity Selected tumor types

Sunitinib (SU11248/Sutent;
Pfizer)

VEGFR2, PDGFR, Kit, Flt3,
RET

RCC, phase III GIST and
NSCLC

Sorafenib (BAY 43-9006,
Nexavar�)

VEGFR1, VEGFR2, VEGFR3,
PDGF receptor β, FLT3,
RAF, and c-KIT

Advanced RCC, Approved for
HCC

Vatalanib (PTK787;
Novartis/Schering AG)

VEGFR1, VEGFR2, VEGFR3,
PDGFR- and c-KIT

Phase II/III trials in metastatic
colorectal cancer and NSCLC

Vandetanib (Zactima�,
ZD6474; AstraZeneca
Pharmaceuticals)

VEGFR-2, EGFR, and RET Phase III clinical trials in
NSCLC

Axitinib (AG-013736;
Pfizer Inc.)

VEGFR2, PDGF receptor and
c-KIT

NSCLC, RCC

Motesanib diphosphonate
(Amgen)

VEGFR-1, VEGFR-2, VEGFR
-3, RET and c-KIT

Progressive medullary thyroid
carcinoma, GIST

Pazopanib (Votrient,
GW786034)

VEGFR-1, VEGFR-2
VEGFR-3, PDGF-α,
PDGF-β, and c-KIT

Phase III clinical trial in
metastatic RCC

β, FMS-like tyrosine kinase 3 (FLT3), RAF, and c-KIT. Phase III data indicate
that sorafenib monotherapy results in an increase in median overall survival and
a significant increase in PFS in patients with advanced RCC. Sorafenib was also
approved for use in HCC after results of an international phase III clinical trial in
HCC patients receiving sorafenib had extended survival (Lang 2008).

Vatalanib (PTK787; Novartis/Schering AG) targets VEGFR1, VEGFR2, VEG-
FR3, PDGFR- and c-KIT. It is currently being studied in phase II/III trials in
metastatic colorectal cancer and NSCLC. Encouraging data from a phase II trial
examining vatalanib monotherapy administered once or twice daily in previously
treated patients with NSCLC have been reported (Scagliotti and Govindan 2010).
Vatalanib was investigated in the treatment of metastatic colorectal cancer in double-
blind, placebo-controlled, phase III studies: Colorectal Oral Novel Therapy for the
Inhibition of Angiogenesis and Retarding of Metastases in First-line (CONFIRM-1
and 2) trials. These trials investigated the effect of 5-FU, leucovorin, and oxaliplatin,
(FOLFOX-4) chemotherapy with or without vatalanib as second-line therapy of pa-
tients with metastatic colorectal cancer. Although the primary objectives were not
achieved in these trials, the PFS time was significantly longer in the vatalanib arm
in patients with high LDH levels (Los et al. 2007; Scott et al. 2007).

Another therapeutic approach involves Vandetanib (Zactima�, ZD6474; Astra-
Zeneca Pharmaceuticals) which is an orally available, ATP-mimetic small molecule
that inhibits VEGFR-2, EGFR, and RET-tyrosine kinases. Four randomized phase III
clinical trials in NSCLC were exploring the efficacy of vandetanib as monotherapy
or in combination with chemotherapeutic agents such as docetaxel or emetrexed in
NSCLC (Morabito et al. 2009). Preliminary data reported an acceptable safety profile
and a modest improvement in the primary endpoint (PFS), however, this agent didn’t
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significantly improve overall survival (Scagliotti and Govindan 2010; Herbst et al.
2010).

Axitinib (AG-013736; Pfizer Inc.) is an anti-VEGFR- TKI, which also acts on
PDGFRs and KIT. It has shown dose-dependent antitumor efficacy associated with
the blockage of VEGFR-2 phosphorylation in multiple solid tumor settings (Hu-
Lowe et al. 2008). Results from a phase II clinical trial with axitinib in patients
with advanced NSCLC showed that it was well tolerated (Schiller 2009). There are
currently other studies evaluating axitinib in combination with chemotherapy such
as those involving nonsquamous NSCLC patients (Scagliotti and Govindan 2010)
and others in patients with metastatic RCC with favorable results so far (Rixe et al.
2007).

Motesanib diphosphonate is yet another multi-kinase inhibitor of VEGFR-1,
VEGFR-2, VEGFR -3, RET and c-KIT. In patients with progressive medullary thy-
roid carcinoma, this drug has shown moderate potential with respect to overall disease
stability and response rates. (Sherman 2009).

Pazopanib (Votrient, GW786034) is a multi-targeted TKI against VEGFR-1,
VEGFR-2 and VEGFR-3, PDGF-α, PDGF-β, and c-KIT. It demonstrated antitu-
mor activity in multiple tumor settings (Sonpavde and Hutson 2007; Bukowski et al.
2010). Pazopanib therapy was well tolerated in a phase II clinical trial in patients with
RCC and results from a Phase III clinical trial in metastatic RCC showed clinical
activity (Limvorasak and Posadas 2009; Sternberg et al. 2010).

Other multitargeted broad-spectrumTKIs that target the proliferation of metastasis
were shown to have indirect antiangiogenic effects (Jain et al. 2006). These agents
include lapatinib, (Moy et al. 2007), trastuzumab (Izumi et al. 2002) imatinib (Jain
2005; Stegmeier et al. 2010) and canertinib (CI-1033). Canertinib is a pan-ERB TKI
which demonstrated clinically activity in NSCLC (Janne et al. 2007).

Combination therapy with these agents has gained interest and is currently un-
der investigation in certain clinical trials. There have been promising reports of its
activity in a randomized phase II trial in patients with previously treated NSCLC
using the combination of bevacizumab and erlotinib (Herbst and Sandler 2008). Ad-
ditionally, cetuximab has shown evidence of antitumor activity in NSCLC and was
studied in combination with bevacizumab in a phase II Southwest Oncology Group
(SWOG) trial (Scagliotti and Govindan 2010). However, in phase II-III clinical trials
in metastatic colorectal cancer, the combined use of cetuximab, panitumumab and
bevacizumab had a negative effect on the primary end point (PFS) compared with
the arm without the addition of an anti-EGFR antibody (Tol et al. 2009).

Angiogenesis inhibitors have proven themselves with regard to improvement in
progression-free or overall survival in a number of malignancies (Table 28.2). How-
ever it is unfortunate that with these agents there always remains the threat of eventual
drug tolerance and potential side effects. The reported adverse effects of angiogenesis
inhibitors are hypertension, fatigue, arterial thromboembolic events, gastrointesti-
nal perforations, impaired wound healing and life-threatening or fatal hemorrhage
(Jain et al. 2006). The mechanisms by which these drugs mediate their antitumor
effect are not well understood and predictive markers for the efficacy of anti-VEGF
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therapy have yet to be identified, attesting to the complexity of inhibiting the tumor
angiogenic cascade.

28.2 Epithelial Mesenchymal Transition

28.2.1 EMT and Cancer Stem Cells

Motility, intravasation and progression towards metastasis are facilitated by
epithelial-to-mesenchymal transition (EMT). This is a process enabled by the loss
of E-cadherin (Thiery et al. 2002; Iwatsuki et al. 2010). EMT can be controlled by
different signaling pathways such as TGF-β, PI3-AKT and RAS-MAP kinase path-
ways. Other factors that control this pathway include IGF1R, FGFR, MET and SRC
family kinases (Huber et al. 2005).

Transcriptional repressors of the E-cadherin gene (CDH1), such as zinc finger
proteins (ZEB1, ZEB2), bHLH protein (Twist), and the snail family of zinc finger
proteins (Snail, Slug) are inducers of EMT. They are involved in several processes
that result in loss of E-cadherin as well as cell–cell junctions resulting in early
invasion and metastasis (Thiery 2002; Huber et al. 2005; Tse and Kalluri 2007).
Their activity is regulated by cellular pathways known to be involved in EMT such
as TGFβ, β-catenin, Wnt signaling pathways, Notch and NF-kappaB-dependent
pathways (Voulgari and Pintzas 2009). EMT was linked to the migration of cells
from a primary tumor into the circulation and also to the later stages of metastasis
(Huber et al. 2005).

Cancer stem cells represent a small population of undifferentiated cells with self-
renewal properties that were identified in a variety of solid tumors (Al-Hajj et al.
2003; O/’Brien et al. 2007). This population of cells displays embryonic EMT char-
acteristics and they are signaling through pathways that are found in normal stem
cells, such as Wnt, Notch, and Hedgehog. It has been suggested that EMT in tumors
could induce the formation of an invasive undifferentiated population of cells, stem
cells, which are resistant to anoikis (Mani et al. 2008; Onder et al. 2008). Stem
cells were demonstrated to generate different types of tumors including metastases
in xenograft immune-deficient mice. Therapeutic targeting of cancer stem cells and
development of agents that target critical steps in the Wnt, Notch, and Hedgehog
pathways have been proven to inhibit metastasis (Takebe et al. 2011).

The acquisition of a migratory and invasive phenotype during the EMT program
may lead to metastatic progression. Therefore, targeting this pathway is repre-
sentative of yet another viable strategy in the overall management of metastatic
disease. EMT-related pathways provide targets such as β-catenin and the transcription
factors—Slug, Snail and Twist.

There are various techniques of targeting EMT. One example is the use of antisense
oligonucleotides complementary to a specific miRNA (antagomirs) (Krutzfeldt et al.
2005). Other strategies aim to reverse the EMT phenotype utilizing short hairpin
RNA (shRNA) delivered to the cancer cells in order to target Snail. In one study,
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blockage of Snail function induced a mesenchymal-to-epithelial transition (MET)
phenotype and also resulted in the up-regulation of E-cadherin (Olmeda et al. 2006).

The blockade of oncogenic cascades with trastuzumab, gefitinib and/or erlotinib
also contributes to the inhibition of EMT. Additional pathways that could be targeted
include TGF-β, SRC, Wnt/β-catenin, Notch, Hedgehog and NF-kappaB, which all
show great potential that their inhibition may actually prevent tumor cells from
gaining an invasive phenotype.

Stem cells are representing another way of targeting EMT. Two techniques that
have been employed for this purpose include the activation of monoclonal antibodies
directed towards CD44 positive cells (Jin et al. 2006) by using promoter-controlled
oncolytic viruses. These viruses were shown to have significant antitumor activity in
CD44+CD24−/low–derived tumors (Bauerschmitz et al. 2008). Current evidence in-
dicates that systemically administered stem/progenitor cells migrate to and infiltrate
primary and metastatic solid tumors. This modality can be used to deliver therapeutic
genes selectively to tumor foci. (Aboody et al. 2008)

28.2.2 Transforming Growth Factor Beta Signaling

Transforming growth factor beta (TGF-β) is a cytokine that participates in a number
of functions including cell proliferation, survival and immune-surveillance. Early
in the development of tumors, TGF-β acts as a tumor suppressor, inhibiting cell
proliferation and inducing pro-apoptotic effects. It achieves this by down-regulation
of genes encoding c-Myc and up-regulation of CDK- inhibitors (Derynck et al. 2001).
In the later stages of tumorigenesis TGF-β is involved in metastatic invasion and
colonization of secondary organs promoting angiogenesis, EMT, motility, migration,
and homing (Iwatsuki et al. 2010; Padua and Massague 2009).

Therapeutic strategies involving TGF-β include ligand trap monoclonal TGF-
β-neutralising antibodies, which were proven effective in reducing the biological
activity of TGF-β. A human IgG4 pan-specific monoclonal antibody, GC-1008
(CAT/Genzyme), was shown to neutralize TGF-β. A Phase I/II study of GC-1008
in patients with advanced malignant melanoma or RCC was well tolerated and this
agent is currently being evaluated in Phase II studies for patients with metastatic
melanoma (Morris et al. 2008).

Antisense technology is being applied with the use of AP12009 (trabedersen), a
drug which mediates inhibition of TGF-β2 gene expression. It has been shown to
be effective in anaplastic astrocytoma and showed signs of early clinical activity
when delivered locally to the tumor in patients with high-grade gliomas (Hau et al.
2009). This therapeutic agent is currently under assessment in a Phase III clinical
trial in patients with recurrent or refractory anaplastic astrocytoma following standard
radio- and chemotherapy (Hau et al. 2009). It has also been evaluated in phase I and II
clinical trials for patients with recurrent or refractory high-grade gliomas, advanced
pancreatic carcinoma, metastatic melanoma and metastatic colorectal carcinoma
(Schlingensiepen et al. 2006, 2008).
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Other therapeutic modalities include small molecule inhibitors of TGF-β receptors
(TGF-β RI/II). The novel inhibitor LY2109761, a TGF-βRI kinase inhibitor, was
shown to inhibit metastases in xenograft models of pancreatic (Melisi et al. 2008)
and breast cancer (Ganapathy et al. 2010). LY2157299 dose escalation studies were
safe and well tolerated in a Phase I clinical trial in patients with advanced metastatic
malignancies (Calvo-Aller et al. 2008).

28.2.3 Src Signaling Pathways

Src is a non-receptor cytoplasmic tyrosine kinase critical in regulating cell survival
and reorganization of the cytoskeleton. It is considered an integral part of metastatic
colonization and the invasion pathway (Guarino 2010). Drugs targeting the inhibi-
tion of Src and its network effectively prevent the growth of cells undergoing EMT.
An example of such an agent is the small molecule inhibitor Dasatinib, which acts
by reducing adhesion, proliferation and migration of tumor cells in colorectal can-
cer, breast cancer and melanoma cells. This drug is currently being investigated in
clinical trials in patients with metastatic breast cancer. Encouraging results of dasa-
tinib activity have emerged from a phase II study in patients with metastatic prostate
cancer. Moreover, the ability of this agent to also inhibit BCR-ABL has led to its
approval for the treatment of imatinib-resistant CML and ALL (Giles et al. 2009).

Another agent, SKI-606 (bosutinib), which is a Src/ABL kinase inhibitor, was
proven to have anti-migratory and anti-invasive effects in prostate cancer cells (Rab-
bani et al. 2010). This drug is currently enrolled in clinical trials for breast cancer
and CML. Preclinical studies with AZD0530 (saracatinib), a dual-specific inhibitor
of Src showed that this drug resulted in reduced motility and invasion of tumor cells
(Vries et al. 2009). Furthermore this compound was well tolerated in phase I clinical
trials at doses that resulted in significant inhibition of Src activity (Tabernero et al.
2007) and is currently under evaluation in Phase II clinical trials in patients with
advanced metastatic stomach, gastroesophageal junction and ovarian cancer1.

Other compounds such as KX2–391, a small molecule that targets the protein
substrate-binding site on Src has been shown to have preliminary evidence of bi-
ological activity in patients with advanced malignancies (Adjei et al. 2009). It is
currently under evaluation in a phase II clinical trial in patients with metastatic
prostate cancer.

28.2.4 NF-KappaB

The nuclear factor-κB, (NFκB) promotes the oncogenic phenotype through aberrant
regulation of BCL-2, BCL-xl, cIAP (integrin associated protein), survivin, TRAF

1 NIH’s ClinicalTrials.gov. Available from (http://www.clinicaltrials.gov/) and ClinicalTrials-
Feeds.org (http://www.clinicaltrialsfeeds.org/) web sites.
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(TNF receptor associated factor) and COX-2 (Shen and Tergaonkar 2009; Basseres
and Baldwin 2006; Mantovani 2010). Also, the NFκB-dependent pathway is required
for the induction and maintenance of EMT through regulation of the vascular cell
adhesion molecules -MMPs, CXCR4, and uPA. Therefore, this pathway has a key
role in promoting angiogenesis, invasion and metastatic colonization (Basseres and
Baldwin 2006; Huber et al. 2004).

Preclinical studies have shown that blockage of NFκB activity in highly metastatic
human prostate cancer cells affects proliferation, angiogenesis and also causes inhi-
bition of metastasis in a nude mouse model (Huang et al. 2001). Also, re-expression
of NFκB inhibitors (microRNA-146a and microRNA-146b), was shown to reduce
the metastatic potential in a human breast cancer cell line (Bhaumik et al. 2008).

The NFκB pathway is an important target in clinical studies. A large number
of compounds including steroids, non-steroidal anti-inflammatory drugs (NSAIDs),
antioxidants and cell permeable peptides have been shown to contribute to the block-
ade of NFκB activation (Shen and Tergaonkar 2009; Basseres and Baldwin 2006;
Baldwin 2001; Gilmore and Herscovitch 2006). Preclinical studies have shown that
natural small molecule NFκB pathway inhibitors such as curcumin (Aggarwal et al.
2005), genistein (Li et al. 2005) resveratrol (Bhardwaj et al. 2007) and parthenolide
(Sweeney et al. 2005) enhance the apoptotic effects and overall therapeutic activity
when combined with chemotherapy and radiotherapy.

Alternative options that target IκB have shown apoptotic activity and antitumor
effects in hematological malignancies, prostate cancer cells (Yemelyanov et al. 2005)
and in melanoma xenograft models (Yang et al. 2006b).

The NKκB inhibitors discussed so far in this section have only been investi-
gated in pre-clinical trials. Newer agents that specifically target the proteasome, IκB
(inhibitor-κB kinase) as well as activation of NF-κB are now under investigation
in humans. The synthetic small molecule proteasome inhibitor, Bortezomib (Vel-
cade, Millennium Pharmaceuticals) inhibits NFκB activation in a dose-dependent
manner by blocking proteasome-mediated degradation of the NFκB inhibitor, IκB.
Bortezomib is currently approved for the treatment of multiple myeloma (MM)
(Richardson et al. 2004). Unfortunately, Bortezomib failed to exhibit sufficient clin-
ical activity in patients with metastatic melanoma (Markovic et al. 2005), colon
(Mackay et al. 2005) and breast carcinomas (Yang et al. 2006a). It generated modest
results in patients with prostate cancer (Papandreou et al. 2004) and RCC (Davis
et al. 2004). A number of phase I and II clinical trials demonstrated superior results
of the combination of Bortezomib with radiotherapy in patients with HNSCC (Carter
et al. 2005). Phase I clinical trials in recurrent ovarian cancer confirmed the safety of
the combination of bortezomib with carboplatin (Aghajanian et al. 2005) and sim-
ilar results were observed in patients with advanced solid tumors (Voortman et al.
2007). In a phase II clinical trial in patients with advanced NSCLC, bortezomib in
combination with gemcitabine and carboplatin resulted in improved survival (Davies
et al. 2009). Additionally, results from a trial investigating the combination of tane-
spimycin with bortezomib in patients with MM reported that the drug was well
tolerated and demonstrated clinical activity (Taldone et al. 2008; Richardson et al.
2010).
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28.2.5 Hedgehog Signaling Pathways

The Hedgehog signaling pathway is one of the key regulators of the stem-cell dur-
ing embryonic development. Mutation, deregulation and aberrant activation of this
pathway has been linked to malignancy in multiple types of human cancer including
brain tumors, BCC, pancreatic adenocarcinoma, SCLC, breast and prostate cancer
(Magliano and Hebrok 2003). Members of the Hedgehog family bind to Patched1 and
Patched2 transmembrane receptors. This inhibits the repression of another transmem-
brane protein, Smoothened (Smo) by Patched complex.The release of Smo initiates
a signalling cascade and transcriptional activation of target genes occurs through the
GLI family of proteins (Ruiz i Altaba et al. 2002).

Activation of the Hedgehog pathway in tumors leads to an increase in Snail protein
expression and a decrease in E-cadherin. These events contribute to acquisition of a
migratory and invasive phenotype and metastatic progression. Moreover, the Hedge-
hog pathway has been implicated in the regulation of angiogenesis and survival and
self-renewal of cancer stem cells (Dai 2009). Therefore, targeting this pathway is
representative of yet another viable strategy in the overall management of metastatic
disease. Different therapeutic targets including Smoothened (Smo), sonic hedgehog
protein (Shh), and Gli are currently under investigation.

Hedgehog signaling inhibitor cyclopamine, is a small-molecule inhibitor acting
by direct binding to the transmembrane Smo receptor. This compound was shown
to inhibit EMT and metastases in pancreatic cancer cell lines (Cooper et al. 1998).
A cyclopamine derived inhibitor IPI-926 (Infinity Pharmaceuticals), entered phase I
clinical trials for trials for advanced and metastatic cancer (NCT00761696)2.

Several other small-molecule Smo inhibitors are currently in clinical trials. The
administration of GDC-0449 (Genentech) was well tolerated in patients with ad-
vanced solid tumors. In a cohort of 33 patients with locally advanced or metastatic
BCC, treated with GDC-0449 the response rate for was 55 % (Hoff et al. 2009).
Phase I- II trials are evaluating the efficacy of GDC-0449 alone or in different ther-
apeutic combinations in patients with ovarian cancer, advanced colorectal cancer,
advanced BCC recurrent medulloblastoma, advanced pancreatic carcinoma, gastric
carcinoma, prostate carcinoma and SCLC (Peukert and Miller-Moslin 2010; Low
and Sauvage 2010).

BMS-833923 (Bristol–Myers Squibb, Exelixis) an oral hedgehog pathway antag-
onist was evaluated BMS-833923 (XL139), in patients with advanced or metastatic
solid tumors. This agent is currently tested in multiple myeloma small-cell lung
cancer and in metastatic gastric and esophageal adenocarcinoma (Low and Sauvage
2010).

In preclinical studies, blockade of aberrant Hedgehog signalling was achieved
with the orally bio-available small-molecule Hedgehog inhibitor, IPI-269609, which
induced Snail down-regulation and up-regulation of E-cadherin. Additionally, this

2 NIH’s ClinicalTrials.gov. Available from (http://www.clinicaltrials.gov/) and ClinicalTrials-
Feeds.org (http://www.clinicaltrialsfeeds.org/) web sites.
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drug inhibited systemic metastases in orthotopic xenografts established from human
pancreatic cancer cell lines (Feldmann et al. 2008).

Several drugs such as RO4929097 (Roche) and MK0752 (Merck) which are tar-
geting Notch cleavage or DLL4 ligand–receptor interaction are currently evaluated
in phase I clinical trials (Takebe et al. 2011).

28.2.6 Wnt Pathway

Wnt (Wingless and Int-1 genes) signals through the β-catenin/T-cell factor-mediated
pathway and has an important role in modulating cancer stem cell differentiation
and EMT (Reya and Clevers 2005; Fodde and Brabletz 2007). The Wnt ligands,
Frizzleds (Fzd) and low-density lipoprotein receptor–related proteins (LRP5 and
LRP6), signal through the scaffold protein Axin and the tumor suppressor gene
adenomatous polyposis coli (APC). In cancers, deregulation of this pathway results
in axin destabilization and nuclear translocation of β-catenin and transcription of
several oncogenes involved in proliferation and migration. Examples include c-MYC,
cyclin D1, uPAR, MMPs, and EMT-associated target genes (Brabletz et al. 2005).
β-catenin was shown to be mutated in approximately 50 % of colorectal cancers. It
has been shown that colorectal cancer results from the inactivation of APC or axin
(Fodde and Brabletz 2007).

The Wnt pathway is involved in the development of a broad range of human
malignancies like melanoma (Alonso and Fuchs 2003), NSCLC (Giles et al. 2003),
colorectal carcinoma (Fodde and Brabletz 2007) and breast cancer (Li et al. 2003).

Current strategies targeting Wnt signaling involve compounds that disrupt key
components such as β-catenin and axin. These compounds include anti-sense, RNA-
interference and protein knockdown strategies (Barker and Clevers 2006; Luo et al.
2007).

In preclinical models, the development of inhibitors of the Wnt pathway is un-
derway. Targeting Wnt with recombinant adenoviral vectors carrying fusion proteins
(WIF1-Fc and sFRP1-F) caused down-regulation of E2F1, cyclin D1, and c-MYC.
It also promoted cell apoptosis in hepatocellular carcinoma cells and resulted in sig-
nificant inhibition of xenograft tumors (Hu et al. 2009). At the extracellular level,
the Wnt ligands can be targeted by a soluble Wnt receptor comprising the Frizzled8
cysteine-rich domain (CRD) fused to the human Fc domain (F8CRDhFc). This com-
pound exhibited potent antitumor efficacy in teratoma cell lines and retarded the
growth of tumor xenografts (Almeida et al. 2007)

High-throughput screening programs identified compounds that have the ability
to induce degradation of β-catenin (Ewan et al. 2010; Chen et al. 2009). For ex-
ample, ICG-001, a small molecule that down-regulates the β-catenin/T cell factor,
induced apoptosis and tumor formation in xenograft models of colon cancer (Emami
et al. 2004). The recently discovered small molecule, XAV939, stimulates β-catenin
degradation by blocking tankyrase activity, which is required for degradation of axin.
In preclinical studies XAV939 was shown to inhibit proliferation of APC-deficient
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CRC cells (Huang et al. 2009a). A different compound, PKF115–584, was shown
to disrupt the interaction of the β-catenin/TCF protein complex. In MM cells, this
compound induced cytotoxicity and also reduced tumor growth in xenograft models
(Sukhdeo et al. 2007).

NSAIDs were reported to target the Wnt pathway by inhibiting the Wnt target
enzyme cyclooxygenase 2 (COX2) or by activating E-cadherin, possibly affecting
the level of β-catenin. This supports the use of NSAIDS and selective COX inhibitors
for reducing COX-induced prostaglandin levels in Wnt-driven cancers (Castellone
et al. 2005).

28.3 Cell Motility and Invasion

28.3.1 MET

The MET proto-oncogene and its ligand hepatocyte growth factor (HGF) regulate
genetic programs leading to cell proliferation, survival, motility, invasion and protec-
tion from apoptosis (Birchmeier et al. 2003). MET gene amplification and mutation,
leading to receptor over-expression are associated with tumorigenesis and progres-
sion to metastatic disease in several human cancers (breast, lung, hepatocellular
carcinoma, multiple myelomas and gliomas) (Migliore and Giordano 2008). Aber-
rant activation of the c-Met receptor and autocrine stimulation by its ligand, HGF, are
involved in regulation of tumor angiogenesis. They also function through enhance-
ment of the invasive growth program by interacting with plexins, integrin, FAK and
Src signalling (Eder et al. 2009). Several methods to target the HGF/c-Met signalling
pathway are under development including tyrosine kinase-ligand binding inhibitors
and monoclonal antibodies (Table 28.3).

AMG102 an anti-HGF/SF-neutralizing antibody that has good pharmacokinetic
and safety profiles resulting in antitumor activity when administered in combination
with bevacizumab in patients with advanced solid tumors (Jun et al. 2007; Rosen
et al. 2010). AMG 102 is currently in Phase II clinical trials against glioblastomas
and advanced metastatic RCC.

PF-2341066 (crizotinib) (Pfizer) is a small molecule kinase inhibitor that targets
the c-Met kinase catalytic domain and is also an anaplastic lymphoma kinase (Alk)
selective inhibitor. Its overall effects are on tumor cell growth and anti-angiogenesis
(Zou et al. 2007). This orally available c-Met inhibitor, demonstrated efficacy in
reducing tumor burden and increasing survival in a preclinical model of metastatic
ovarian cancer (Zillhardt et al. 2010) and is currently undergoing Phase I/II clinical
trials in NSCLC.

EXEL-880 (Exelixis,) is a small-molecule kinase inhibitor that targets Met and
members of theVEGF receptor tyrosine kinase family by inhibiting phosphorylation.
In vivo, these effects were demonstrated in xenograft models of lung metastasis
through inhibition of tumor cell proliferation, invasion and angiogenesis mediated
by HGF andVEGF receptors. Phase I data indicate that EXEL-880 was well tolerated
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Table 28.3 Inhibitors of HGF/c-Met signalling pathway

Inhibitor Specificity Selected tumor types

AMG102(Amgen) HGF/SF Phase II clinical trials in glioblastomas and
renal cancer

PF-2341066 (crizotinib)
(Pfizer)

c-Met and ALK inhibitor Phase I
Phase II-III in NSCLC

EXEL-880(Exelixis)
Small molecule
inhibitor

Met, VEGFR2 Phase I
Phase II in papillary renal cancer, gastric

and head and neck cancer
ARQ197(ArQule) Met Phase I advanced solid tumors

Phase II in NSCLC and hepatocellular
carcinoma

in patients with a range of solid tumors and partial responses of disease stabilization
were reported. The drug is now in Phase II trials in papillary RCC, gastric cancer, and
HNSLC (Qian et al. 2009). A different small molecule inhibitor, XL184 (Exelixis)
has also been confirmed to exhibit clinical activity and inhibitory effects on both Met
and VEGFR2 in patients with progressive glioblastoma (Wen et al. 2010).

ARQ 197(ArQule) is a highly selective small molecule inhibitor that binds to the
Met receptor in a non-ATP competitive fashion. Data from phase I clinical trials in
a variety of solid tumors have revealed early partial responses and signs of disease
stabilization (Eder et al. 2009; Garcia et al. 2007). In a phase II clinical trial the com-
bination between ARQ 197 and erlotinib has demonstrated a 66 % improvement in
median progression-free survival (PFS) in patients with advanced, refractory NSCLC
(Schiller et al. 2010).This compound is currently being evaluated in clinical trials as
a single agent or in combination with other anti-cancer therapies in HCC (Borbath
et al. 2010), pancreatic adenocarcinoma, breast cancer, germ cell tumors and CRC3.

Another small molecule Met inhibitor that is currently under investigation in clin-
ical trials is SGX523 (SGX Pharmaceuticals) which is an ATP-competitive inhibitor
that demonstrated potent anti-tumor activity when administered orally in human tu-
mor xenograft models (Buchanan et al. 2009). Unfortunately, the results of a phase
II trial showed that patients treated with SGX523 exhibited compromised renal func-
tion (Diamond et al. 2010). Another example of these agents is MP470 (SuperGen)
which is an oral multi-targeted tyrosine kinase inhibitor that demonstrated inhibitory
activity against tyrosine kinase targets, including c-Met, c-Kit, PDGFRα, and mutant
Flt-3 (Mita et al. 2009).

28.3.2 CXCR4

Chemokines are signaling molecules that induce the migration of cells toward a
gradient. They have recently been implicated in tumor progression and metastasis

3 NIH’s ClinicalTrials.gov. Available from (http://www.clinicaltrials.gov/) and ClinicalTrialsFeeds.
org (http://www.clinicaltrialsfeeds.org/) web sites.
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(Payne and Cornelius 2002). The chemokine receptor, CXC chemokine receptor 4
(CXCR4) and its ligand CXCL12 (which is expressed in the lungs, liver and bone
marrow) may play an important role in guiding disseminating cells to specific lo-
cations (Zlotnik and Yoshie 2000). Activation of CXCR4 by CXCL12 leads to the
stimulation of a variety of intracellular signal transduction pathways and regulation
of cellular survival. Examples include the phosphorylation of PI3K, FAK and the up-
regulation of MMP-2 and MMP-9 (Fernandis et al. 2004). Hypoxia induced CXCR4
is also upregulated by MET and EGFR.

CXCR4 and its endogenous ligand CXCL12 represent chemokine signaling sys-
tems that modulate important pathophysiological processes involved in metastasis.
The interaction between CXCR4(expressed by tumor cells) and its ligand CXCL12
plays an important role in facilitating tumor cell migration towards secondary
metastatic sites such as the lung, kidney, and bone (Vicari and Caux 2002). How-
ever, in addition to the CXCR4-CXCL12 axis, there are other chemokines involved
in tumor cell progression supporting organ selectivity. Examples are the CCR7–
CCL21/CCL19 axis involved in lymph node metastasis, CCR6 in liver metastasis,
and CCL2 and CXCL8 in bone and skeleton metastasis. One of the most inten-
sively reviewed interactions is the CXCL12–CXCR4 axis which has been proven to
promote migration, adhesion and invasion of tumor cells (Balkwill 2004).

Disruption of CXCR4 signaling represents an exciting strategy for therapeutic
intervention in cancer. Several CXCR4 inhibitors were developed and preclinical
studies revealed that the inhibition of the CXCR4/CXCL12 axis significantly de-
creased the amount of metastasis seen in xenograft models of breast cancer (Muller
et al. 2001), RCC, (Pan et al. 2006), HNSCL and in NSCLC (Belperio et al. 2004).

Antibodies to CXCR4 significantly reduced the total bone metastatic load in
prostate cancer metastasis models (Wong and Korz 2008; Sun et al. 2005). Also
recent studies indicated the possibility of blocking the expression of CXCR4 on the
cell surface, with a novel recombinant chimeric protein, TAT/54R/KDE. This agent
has been shown to inhibit metastasis mediated by CXCR4/CXCL12 interaction (Ma
et al. 2009).

AMD 3100 is a small molecule antagonist of the CXCR4 receptor which com-
petitively binds and prevents the interaction of the receptor with CXCl12 (Persio
et al. 2009). The blockage of CXCR4 with AMD3100 has been shown to reduce
peritoneal dissemination of epithelial ovarian carcinoma (Kajiyama et al. 2008).
In a xenograft model of breast cancer, AMD3100 was shown to delay metastatic
growth of breast cancer cells in the lung. In another model, the inhibition of CXCR4
by small interfering RNAi exhibited a substantial delay of growth in experimental
lung metastasis (Smith et al. 2004). Another agent, plerixafor (Mozobil�; Genzyme
Corp.), was recently proven to mobilize hematopoietic progenitor cells in combina-
tion with granulocyte colony-stimulating factor (GCSF) for patients with NHL or
ML (Brave et al. 2010). Plerixafor is currently being investigated in clinical trials
for the treatment of lymphoma and acute myelogenous leukemia.

A number of preclinical animal studies have shown the effects of peptide therapy
against the CXCR4 –CXCL12 axis. TN14003 blocks the receptor by competing with
its ligand CXCL12 and demonstrates efficacy in suppressing primary tumor growth
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in addition to inhibiting lung metastasis in an experimental head and neck cancer
model (Yoon et al. 2007).

Another agent, CTCE-9908, which is a small peptide CXCR4 antagonist was
proven to inhibit the CXCR4/CXCL12 pathway and to decrease the metastatic burden
in xenograft tumors. This demonstrated the potential for CTCE-9908 as adjuvant
therapy for metastatic disease (Wong and Korz 2008; Porvasnik et al. 2009; Richert
et al. 2009; Kim et al. 2008; Huang et al. 2009b). CTCE-9908 was well tolerated and
revealed preliminary signs of efficacy with no dose-limiting toxicities in a phase I/II
clinical trial in patients with advanced solid tumors (Hotte et al. 2008). It is currently
under evaluation in HCC in combination with trans-arterial chemo-embolization.

28.4 Metastatic Progression and Colonization

Metastatic progression genes are characterized by specific functions that allow the
tumor cells to infiltrate and colonize distant organs. They could be expressed in
primary tumors involved in metastatic initiation and be included in gene signatures
that correlate a primary tumor with metastatic dissemination at a secondary site.
Examples include TGF-β induced expression of angiopoietin-like 4 (ANGPTL4)
which disrupts endothelial contacts in lung capillaries (Padua et al. 2008), lysyl
oxidase roles in establishing a metastatic niche and epiregulin and MMP1and MMP2
roles in tumor remodeling and extravasation (Gupta et al. 2007). Multiple therapeutic
strategies targeting IGF-1R, c-Met, TGF-β, Src, stem cells and metastatic suppressor
genes will be relevant for metastatic progression.

28.4.1 MMPs

MMPs are a family of zinc-dependent proteinases which mediate growth regulatory
signals, apoptosis induction, and angiogenic switch during carcinogenesis (Bergers
et al. 2000; Kessenbrock et al. 2010). Over-expression of MMPs in cancer causes
EMT and induces genomic instability (Egeblad and Werb 2002). They are implicated
in the degradation of the extracellular matrix (ECM) and loss of junctional contact
between tumor cells, thus promoting their detachment from the primary tumor site
(Egeblad and Werb 2002). Increased evidence links MMP-mediated signal trans-
duction to the migration and invasion of metastatic tumor cells (Baker et al. 2001;
Friedl and Wolf 2008). In a variety of malignancies, MMP-1 activates the proteolytic
cleavage of proteinase-activated receptors (PARs) resulting in increased metastasis
(Kessenbrock et al. 2010). MMP-1 proteolytically engage EGF-like ligands, which
in turn promotes osteolysis and metastasis to the bone. MMPs were identified in a set
of genes resulting in activation of the RANKL pathway and bone or lung metastasis
(Minn et al. 2005).

Due to their critical role in tumor growth, angiogenesis and metastasis, MMPs
are considered promising therapeutic targets. In preclinical studies MMP- inhibitors
were shown to suppress migration and the invasive potential of tumor cells. However,
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when evaluated in phase III clinical trials, they were not effective in increasing the
survival rate of the patients and resulted in dose limiting toxicity (Coussens et al.
2002; Roy et al. 2009; Miller et al. 2004; Hirte et al. 2006).

Other agents under investigation are the peptide-mimetic derivatives (Dublanchet
et al. 2005), the gelatinase inhibitors (Krüger et al. 2005) and the small-molecule
inhibitors of ADAM proteases (Fridman et al. 2007). MMPs play an important
role in tissue remodeling. MMP-1 and MMP-7 were shown to be implicated in
the activation of the RANKL (Receptor Activator for Nuclear Factor κB Ligand)
pathway, which mediates osteolysis and metastatic dissemination to the bones
(Kang et al. 2003). A better understanding of the structure of MMPs and their mode
of action will challenge future research in designing additional potent inhibitors
(Roy et al. 2009; Cuniasse et al. 2005).

Key points

• Recent advances in genetics, molecular biology and molecular pharmacology
have enabled the development of molecular targeted agents

• These novel therapeutic strategies include agents designed to specifically interfere
with molecular mechanisms responsible for the malignant phenotype

• Multiple oncogenic pathways functionally disrupted in primary tumors, could be
targeted resulting in antiproliferative, anti-invasive and apoptotic effects

• Targeting molecular pathways involved in processes such as angiogenesis, inva-
sion, EMT program and colonization constitute a promising therapeutic approach
for metastatic disease

• Targeted agents can be used in combination therapies and may reduce the
secondary effects associated with the use of cytotoxic drugs

• There is a need to identify pharmacodynamic markers of drug response and pre-
dictive biological markers that enable selection of patients most likely to benefit
from targeted therapy

28.5 Summary

The progression to metastatic disease can be a devastating transition in the course
of cancer patients. Despite early diagnosis and management of the primary tumor
overall mortality rate remains high with metastasis.

In general, the limited therapeutic options available for metastatic disease have
minimal efficacy. Therapeutic options that address localized metastatic disease such
as surgical resection, regional chemotherapy and chemo-embolization, have failed
to show significant improvement in metastatic disease-associated mortality. Sys-
temic chemotherapy has also failed in providing any major influence on survival.
This is due to the high resistance to chemotherapeutic agents in various metastatic
diseases. These challenges in the management of metastasis have led to the shift
towards more targeted therapy. The basis for targeted therapy originated from inves-
tigations into the molecular mechanisms that allow the tumor cells to successfully
metastasize. These monumental studies have led to the identification of several
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therapeutic targets involved in apoptosis, proliferation, angiogenesis, invasion and
metastasis.

The detection of over-expression of specific molecular targets could biologically
predict the aggressive behavior of tumor cells and may provide beneficial information
with regard to tumor sensitivity to targeted therapy. Novel techniques including
genomics and proteomics have the potential to define better targets in tumors and
improve the ability to predict whether certain tumor types or individual patients are
particularly sensitive or more resistant to therapy. These techniques could allow for
the simultaneous evaluation of samples from an individual patient for the presence of
specific targets and evidence of therapeutic activity after the inhibition of a specific
target.

The pathways that have been evaluated for the purposes of targeted therapy include
Rb, p53, c-Kit, c-Met, VEGF, E-cadherin, HIF-1α, EGFR, NFKB, MMP2, RAS–
MAPK and PI3K–Akt pathways. There are also a host of other molecular pathways
mentioned in earlier chapters that could potentially be targeted. There are several
ongoing clinical trials investigating the use of targeted therapeutic agents alone or
in combination with systemic chemotherapy in an effort to delay tumor progression
and to potentially arrest metastatic disease. These drugs have been shown to affect
signal transduction, cell-cycle control as well as apoptotic processes and may in
actuality result in a reduction of the migratory and invasive capacity of the tumor
cells.

In this section we have outlined the various therapeutic options for the treat-
ment of metastatic disease. Targeted therapy may potentially provide more viable
management options in this patient population. A better understanding of the role of
biological targets in the metastatic cascade is essential to the overall progress towards
an improvement in the care of patients with metastatic disease.
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