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A Multi-item Risk-Averse Newsvendor with Law
Invariant Coherent Measures of Risk

Sungyong Choi

Abstract I consider a multi-product risk-averse newsvendor under the law-invariant
coherent measures of risk. I first establish a few fundamental properties of
the model regarding the convexity of the problem and the symmetry of the
solution, and study the impacts of risk aversion and shift in mean demand to the
optimal solution with independent demands. Specifically, I show that for identical
products with independent demands, increased risk aversion leads to decreased
orders. For a large but finite number of heterogenous products with independent
demands, I derive closed-form approximations for the optimal order quantities. The
approximations are as simple to compute as the classical risk-neutral solutions. I
also show that the risk-neutral solution is asymptotically optimal as the number
of products tends to be infinity, and thus risk aversion has no impact in the limit.
For a risk-averse newsvendor with dependent demands, I show that positively
(negatively) dependent demands lead to a lower (higher) optimal order quantities
than independent demands. Using a numerical study, I examine the convergence
rates of the approximations and develop additional insights on the interplay between
dependent demands and risk aversion.
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2.1 Introduction

2.1.1 Motivation

The multi-product newsvendor model is a classical model in the inventory control
literature. In this model, there are multiple products to be sold in a single selling
season. On the one hand, when demand exceeds supply for any product, the
excessive demand is lost. On the other hand, when supply exceeds demand, the
excessive inventory is sold at a loss. The firm’s objective is to determine the optimal
order quantity for each product so as to maximize a certain performance measure.
This model finds its applications in many manufacturing, distribution, and retailing
firms that handle short life cycle products.

The literature of the multi-product newsvendor model has mainly used risk-
neutral performance measures as an objective function. For example, the company
optimizes the expected average profit or average cost per product. Under these
objective functions, the model is decomposable and one can consider each product
separately as multiple single-product newsvendor models, unless resource con-
straints are imposed nor demand substitution is allowed. Under risk-averse objective
functions, however, the model is generally not decomposable. One needs to consider
all products simultaneously, as a portfolio.

Below, I first review the literature of risk-neutral multi-product inventory models
by ways products interact. Then, I review the literature of risk models and its recent
applications in supply chain inventory management.

Hadley and Whitin (1963) consider a multi-product newsvendor model with
storage capacity or budget constraints, and provide the solution methods based
on Lagrangian multiplier. Porteus (1990) presents a thorough review of various
newsvendor models. Veinott (1965) considers the dynamic version of the multi-
product inventory models in a multi-period setting, with general assumptions in
demand process, cost parameters, and lead times. Conditions under which myopic
policy is optimal are identified. Ignall and Veinott (1969) and Heyman and Sobel
(1984) extend the work by identifying new conditions for the myopic policy in
models with risk-neutral assumption, see Aviv and Federgruen (2001), Decroix
and Arreola-Risa (1998), Evans (1967), and Federgruen (1984) for exact analysis
and approximations. Other than resource constraints, multi-product newsvendor
models are also studied under demand substitution, where unsatisfied demand of
one product can be satisfied by on-hand inventory of another product. I refer to
van Ryzin and Mahajan (1999) for a review on multi-item inventory systems with
substitution.

My aim is to replace the risk-neutral performance measure by measures taking
risk aversion into account. Such a model is generally not decomposable, and one
needs to consider all products simultaneously, as a portfolio. In this paper, I lay
the foundations of the multi-product newsvendor model under coherent measures
of risk and derive its basic properties. They provide insight into the impact of risk
aversion on the multi-product newsvendor with either independent or dependent
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demands. Moreover, I study asymptotic properties of the solution as the number of
products tends to infinity and develop simple yet accurate approximations of risk-
averse solutions, which allow fast computation of large-scale problems.

Below, I first review the literature of risk measures and their recent applications
in supply chain inventory management. Then, I summarize my model and main
results.

2.1.2 Risk Measures

The risk-neutral inventory models provide the best decision on average. This
may be justified by the Law of Large Numbers. However, one cannot always
rely on repeated similar chances. The first few outcomes may turn out to be
very bad and entail unacceptable losses. Schweitzer and Cachon (2000) provide
experimental evidence suggesting that inventory managers may be risk-averse for
high-value products. Because of these reasons, attempts to overcome the drawbacks
of the expected value optimization have a long history and there exist four typical
approaches to model decision making under risk. They are expected utility theory,
stochastic dominance, chance constraints, and mean-risk analysis. These approaches
are related and consistent to some extent.

The expected utility theory of von Neumann and Morgenstern (1944) derives,
from simple axioms, the existence of a nondecreasing utility function, which trans-
forms in a nonlinear way the observed outcomes. The decision maker optimizes,
instead of the expected outcome, the expected value of the utility function. In
the maximization context, when the outcome represents profit, risk-averse decision
makers have concave and nondecreasing utility functions.

The second approach is based on the theory of stochastic dominance, developed
in statistics and economics (see Lehmann 1955; Hadar and Russell 1969 and
references therein). Stochastic dominance relations are partial orders on the space
of distributions, and thus allow for pairwise comparison of different solutions. An
important feature of the stochastic dominance theory is its universal character with
respect to utility functions. More specifically, the distribution of a random outcome
V is preferred to random outcome Y in terms of a stochastic dominance relation if
and only if expected utility of V is preferred to expected utility of Y for all utility
functions in a certain class, called the generator of the relation. In particular, the
second-order stochastic dominance corresponds to all concave nondecreasing utility
functions, and is thus well suited to model risk-averse preferences. For an overview
of these issues, see Müller and Stoyan (2002) and Levy (2006). Unfortunately, the
stochastic dominance approach does not provide a simple computational recipe. In
fact, it is a multiple criteria model with a continuum of criteria. Therefore, it has
been used as a constraint (see Dentcheva and Ruszczyński 2003), and also utilized
as a reference standard whether a particular solution approach is appropriate (see
Ogryczak and Ruszczyński 1999; Ruszczyński and Vanderbei 2003).
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Table 2.1 A counterexample
to show problems of
mean-variance models

Policy 1 Policy 2

“Bad” Stake (0.5) −1 −1
“Good” Stake (0.5) 1 3

Mean (μ) 0 1
Variance (σ 2) 1 4
Absolute semi-deviation (σ1) 1/2 1
Standard semi-deviation (σ2) 1/

√
2

√
2

−μ +1 ·σ 2 1 3
−μ +1 ·σ1 1/2 0
−μ +1 ·σ2 1/

√
2

√
2−1

The third approach specifies constraints on probabilities of unfavorable events.
Prékopa (2003) provides a thorough overview of the state of the art of the
optimization theory with chance constraints. Theoretically, a chance constraint is a
relaxed version of the stochastic dominance relation of the first-order, and thus it is
related to the expected utility theory, but there is no equivalence. In finance, chance
constraints are known under the name of Value-at-Risk (VaR) constraints. Chance
constraints sometimes lead to nonconvex formulations of the resulting optimization
problems.

The fourth approach, originating from finance, is the mean-risk analysis. It
quantifies the problem in a lucid form of two criteria: the mean (the expected value
of the outcome), and the risk (a scalar measure of the variability of the outcome).
In the maximization context, one selects from the universe of all possible solutions
those that are efficient: for a given value of the mean they minimize the risk, or
equivalently, for a given value of risk they maximize the mean. Such an approach
has many advantages: it allows one to formulate the problem as a parametric
optimization problem, and it facilitates the trade-off analysis between mean and risk.

In the context of portfolio optimization, Markowitz (1959) used the variance of
the return as the risk. It is easy to compute, and it reduces the financial portfolio
selection problem to a parametric quadratic programming problem. One can, how-
ever, construct simple counterexamples that show the imperfection of the variance
as the risk measure: it treats over-performance equally as under-performance, and
more importantly it may suggest a portfolio which is stochastically dominated by
another portfolio. Table 2.1 below summarizes a defect of mean-variance models.
In Table 2.1, let me consider two policies, policy 1 and 2, defined at the two
equally likely events, “Bad” and “Good.” Then, policy 2 is stochastically bigger than
policy 1. Here, both −μ +σ1 and −μ +σ2 are coherent risk measures. Then, with
these two risk measures, policy 2 is preferred to policy 1, which shows consistency
with stochastic dominance relations. However, with a mean-variance model, policy
1 may be preferred to policy 2 implying contradiction to stochastic dominance.

To overcome the drawbacks of the mean-variance analysis, the general theory
of coherent measures of risk was suggested by Artzner et al. (1999) and extended
to general probability spaces by Delbaen (2002). For further generalizations, see
Föllmer and Schied (2002, 2004), Kusuoka (2003), Ruszczyński and Shapiro
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(2005) and Ruszczyński and Shapiro (2006a). Dynamic version for a multi-period
case were analyzed, among others, by Riedel (2004), Kusuoka and Morimoto
(2004), Cheridito et al. (2006) and Ruszczyński and Shapiro (2006b). In this
theory, an integrated performance measure is proposed, comprising both the mean
and variability measures, and four axioms (Convexity, Monotonicity, Translation
Equivariance, and Positive Homogeneity; see Sect. 2.3 for a precise definition) are
imposed. Coherent measures of risk are extensions of the mean-risk analysis. It is
known that coherent measures of risk are consistent with the 1st and 2nd order
stochastic dominance relations (see Shapiro et al. 2009).

More specifically, in a multi-product newsvendor problem, these four axioms
have following implications to guarantee consistency with intuition about rational
risk-averse decision making. Thus, by satisfying the axioms, a coherent risk measure
has certain attractive features, as compared to these measures, making it worth
considering. First, Convexity axiom means that the global risk of a portfolio should
be equal or less than the sum of its partial risks. Thus, this axiom is consistent
with diversification effects. Second, Monotonicity axiom is consistent with the first-
order stochastic dominance relation. Third, Translation Equivariance axiom means
that adding a constant cost is equivalent to increasing the vendors performance
measure by the same amount. On the contrary, adding a constant gain is equivalent
to decreasing the vendors performance measure by the same amount. Therefore,
by excluding the impact of constant gains or losses, fixed parts can be separated
equivalently from the vendors random performance measure at every possible state
of nature. Lastly, Positive Homogeneity axiom guarantees that the optimal solution
does not change to rescaling of units.

Among the four axioms aforementioned, expected utility models and coherent
risk measures share the properties of convexity and consistency with stochastic
dominance. In addition, the coherent risk measures satisfy the axioms of Translation
Equivariance and Positive Homogeneity. However, under expected utility theory,
these two axioms typically do not hold; see, e.g., the exponential utility function in
Howard (1988).

For inventory systems where the initial endowment effect is significant, i.e.,
when the initial wealth could affect the decision of a risk-averse manager, or
when constant demand for some products could affect order quantities of other
products, an expected utility model may be preferred to a model with a coherent
risk measure, because the latter ignores the endowment effect. In newsvendor
models, where inventory managers are mainly concerned about the overage and
underage costs associated with random demand, and in other problems, where risk
is primarily associated with uncertainty, coherent risk measures may capture risk
preferences better. The following arguments speak in favor of coherent measures of
risk: (1) Translation Equivariance allows them to properly rank risky alternatives by
excluding the impact of constant gains or losses (see Artzner et al. 1999). (2) The
Positive Homogeneity axiom ensures that their attitude to risk will not change when
the unit system is changed (e.g., from dollars to cents). More importantly, this axiom
indicates no diversification effect when demands are completely correlated. To see
this, it is well known that the subadditivity property, ρ(X +Y ) ≤ ρ(X) + ρ(Y ),
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implies ρ(nX) ≤ nρ(X). However ρ(nX) < nρ(X) would imply diversification
effect even when the random demands are completely correlated. To avoid this
counter-intuitive effect, it is left with ρ(nX) = nρ(X) which is the Positive
Homogeneity axiom.

Several modifications and extensions of coherent measures of risk have been
suggested in the literature, including convex measures of risk, insurance risk
measures, natural risk statistic, and tradeable measures of risk. I point out that all
these risk measures ignore the initial endowment effect, implying consistency with
Translation Equivariance.

Föllmer and Schied (2002) consider convex measures of risk, in which the
Positive Homogeneity axiom is relaxed. Again, in my context, this may lead to a
diversification effect when demands are completely correlated; it may also lead to
counterintuitive effects of changing risk attitudes when the outcomes are rescaled,
by changing the currency in which profits are calculated, or by considering the
average profit per product.

The other three risk measures do not satisfy the convexity axiom in general.
They are based on the reality of financial markets where noncoherent risk measures,
such as VaR (Value-at-Risk), are widely used. Wang et al. (1997) suggest insurance
risk measures which are law invariant, and satisfy the axioms of conditional state
independence, monotonicity, comonotone additivity and continuity. Heyde (2006)
propose the natural risk statistics, which is also law invariant, and in which the
convexity axiom is required only for comonotone random variables. Ahmed et al.
(2008) show that such a risk measure can be represented as a composition of a
coherent measure of risk and a certain law preserving transformation, and thus the
insights into models with coherent measures of risk are relevant for natural risk
statistics. Pospišil et al. (2008) propose tradeable measures of risk. They argue
that the proper risk measures should be constructed by historically realized returns.
When compared to the coherent measures of risk, these risk measures appear to be
much more difficult to handle, due to nonconvexity and/or nondifferentiability of
the resulting model. I shall see that even in the case of coherent measures of risk the
technical difficulties are substantial.

2.1.3 Risk-Averse Inventory Models

In recent years, risk-averse inventory models have received increasing attention
in the supply chain management literature. Table 2.2 classifies the literature by
inventory models and risk measures. Because there is no research so far directly
applying stochastic dominance to this field, I drop it from the table.

Most work to date dealt with single-product inventory models. For newsvendor
models, research focused on finding the optimal solution under a risk-averse
measure, and studying the impact of the degree of risk aversion (among other model
parameters) on the optimal solution. A typical finding is that as the degree of risk
aversion increases, the optimal order quantity tends to decrease.
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For single-product but multi-period dynamic inventory models under risk
aversion, the literature focuses on characterizing the structure of the optimal
ordering or pricing policies and quantifying the impact of the degree of risk aversion
on the optimal polices. Chen et al. (2006) review results in this direction.

For multi-product risk-averse newsvendor models, Tomlin and Wang (2005)
study how characteristics of products (e.g., profit margin, demand correlation), re-
source reliability and firm’s risk attitude affect the preference of resource flexibility
and supply diversification. Under a downside risk measure and Conditional Value
at Risk (CVaR), they show that for a risk-averse firm with unreliable resources, a
supply chain can prefer dedicated resources than a flexible resource even if the cost
of the latter is smaller than the former.

Newsvendor networks are studied by van Mieghem (2007), with many products
and many resources under mean-variance and utility function approaches. The
networks feature resource diversification, flexibility (e.g., ex post inventory capacity
allocation) and/or demand pooling. The paper addresses the question of how the
aforementioned operational strategies reduce total risk and create value. It shows
that a risk-averse newsvendor may invest more resources in certain networks than
a risk-neutral newsvendor (i.e., operational hedging) because such resources may
reduce the profit variance and mitigate risk in the network. Among the three
networks, the dedicated one is mostly related to my model. In this network, there
are two products with correlated demand. The author characterizes the impact of
demand correlation on the optimal order quantities in two extreme cases of complete
positive or negative correlation. A numerical study is conducted to cover cases other
than the extreme ones.

Finally, Ağrali and Soylu (2006) conduct a numerical investigation on a two-
product newsvendor model under the risk measure of CVaR . Assuming a discretized
multi-variate normal demand distribution, the authors studied the sensitivity of
the optimal solution with respect to the mean and variance of demand, demand
correlation, and various cost parameters. Interestingly, the report shows that as the
demand correlation increases, the optimal order quantities tend to decrease.

For multi-echelon or multi-agent models, so far all papers consider single-
product and single-period models. Lau and Lau (1999) study a manufacturer’s
pricing strategy and return policy under the mean-variance risk measure. Agrawal
and Seshadri (2000b) introduce a risk-neutral intermediaries to offer mutually
beneficial contracts to risk-averse retailers. Tsay (2002) studies how a manufacturer
can use return policies to share risk under the mean-standard deviation measure.
Gan et al. (2004) study Pareto-optimality for suppliers and retailers under various
risk-averse measures. Gan et al. (2005) design coordination schemes of buyback
and risk-sharing contracts in a supply chain under a Value-at-Risk constraint. For
a review of the literature on risk aversion in capacity investment models and on
operational hedging, see van Mieghem (2003).
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2.1.4 My Model and Main Results

This paper considers a multi-product risk-averse newsvendor using a law-invariant
coherent risk measure (see Sects. 2.2 and 2.3). As I argued in Sect. 2.1.2, coherent
risk measures can be more attractive than the expected utility theory in the multi-
product newsvendor problem due to their properties of Translation Equivariance and
Positive Homogeneity.

The model presents a considerable challenge, both analytically and computa-
tionally, because the objective function cannot be decomposed by each product and
one has to look at the totality of all products as a portfolio. In particular, one has
to characterize the impact of risk aversion and demand dependence on the optimal
solution, identify efficient ways to find the optimal solution, and connect this model
to the financial portfolio theory. While Tomlin and Wang (2005) study a two-product
system under CVaR, their focus is on the design of material flow topology and thus
is different from mine.

I should also point out that in most practical cases where this model is relevant
(either manufacturing or retailing), firms may have a large number of heterogenous
products. Due to the complex nature of risk optimization models, they become
practically intractable for problems of these dimensions. Thus, it is theoretically
interesting and practically useful to study the asymptotic behavior of the system as
the number of products tends to infinity and obtain fast approximation for large-size
problems.

This work contributes to literature in the following ways: I first establish a few
fundamental properties regarding the convexity of the model and the symmetry
of the solution for the model in Sect. 2.4, and study the impacts of risk aversion
and shift in mean demand to the optimal solution with independent demands in
Sect. 2.5. I then consider large but finite number of independent heterogenous
products, for which I develop closed-form approximations in Sect. 2.6 which are
exact in the single-product case. The approximations are as simple to compute as
the risk-neutral solutions. I also show that under certain regularity conditions, the
risk-neutral solutions are asymptotically optimal under risk aversion, as the number
of products tends to be infinity. This asymptotic result has an important economic
implication: companies with many products or product families with low demand
dependence need to look only at risk-neutral solutions, even if they are risk-averse.

The impact of dependent demands under risk aversion poses a substantial
analytical challenge. By utilizing the concept of associated random variables, I
prove in Sect. 2.7 that in a risk-averse two-product model with positively dependent
demands the optimal order quantities are lower than for independent demands,
while for negatively dependent demands the optimal order quantities are higher.
Using a sample-based optimization, I conduct in Sect. 2.8 a numerical study, which
demonstrates that the approximations converge quickly to the optimal solutions
as the number of products increases. It also provides additional insights into the
impact of dependent demands. Specifically, I identify counterexamples to show that
increased risk aversion can lead to greater optimal order quantities for strongly
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negatively dependent demands. In Sect. 2.9, I summarize the paper and compare
the multi-product risk-averse newsvendor model to the financial portfolio problem.

2.2 Problem Formulation

Given products j = 1, . . . ,n, let x = (x1,x2, . . . ,xn) be the vector of ordering quan-
tities and let D = (D1, . . . ,Dn) be the demand vector. I also define r = (r1, . . . ,rn)
to be the price vector, c = (c1, . . . ,cn) to be cost vector, and s = (s1, . . . ,sn) to be
the vector of salvage values. Finally, let f j(·) and Fj(·) be the marginal probability
density function (pdf), if it exists, and the marginal cumulative distribution function
(cdf) of D j, respectively. Denote F̄j(ξ ) = 1−Fj(ξ ).

Setting c̄ j = c j − s j and r̄ j = r j − s j, I can write the profit function as follows:

Π(x,D) =
n

∑
j=1

Π j(x j,D j), (2.1)

where

Π j(x j,D j) =−c̄ jx j + r̄ j min{x j,D j}
= (r j − c j)x j − (r j − s j)(x j −D j)

+, j = 1, . . . ,n, (2.2)

with (x)+ = max{x,0}. I assume that the demand vector D is random and
nonnegative. Thus, for every x ≥ 0 the profit Π(x,D) is a real bounded random
variable.

The risk-neutral multi-product newsvendor optimization problem is to maximize
the expected profit:

max
x≥0

E[Π(x,D)]. (2.3)

This problem can be decomposed into independent problems, one for each product.
Thus, under risk neutrality, a multi-product newsvendor problem is equivalent to
multiple single-product newsvendor problems. However, as I have mentioned it in
the introduction, this formulation is inappropriate, if one is concerned with few (or
just one) realizations and the Law of Large Numbers cannot be invoked.

Under a coherent risk measure, the optimization problem of the risk-averse
newsvendor is defined as follows:

min
x≥0

ρ [Π(x,D)], (2.4)

where ρ [·] is a law-invariant coherent measure of risk, and Π(x,D) represents the
profit of the newsvendor, as defined in (2.1). It is worth stressing that problem (2.4)
cannot be decomposed into independent subproblems, one for each product. Thus,
it is necessary to consider the portfolio of products as a whole.
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2.3 Coherent Measures of Risk

I present a formal definition of the coherent measures of risk following the abstract
approach of Ruszczyński and Shapiro (2005, 2006a). Let (Ω,F ) be a certain
measurable space. In my case, Ω is the probability space on which D is defined. An
uncertain outcome (in my case, Π(x,D)) is represented by a measurable function
V : Ω → R. I specify the vector space Z of possible functions; in my case it
is sufficient to consider Z = L∞(Ω,F ,P), which is the space of all bounded
measurable functions on [0,1]. Indeed, for a fixed order quantity x, the function
ω → Π(x,D(ω)) is bounded. For any V and Y ∈ Z , I write V � Y if V ≥ Y almost
surely (or with probability 1).

In the minimization context, a coherent measure of risk is a function ρ : Z → R

satisfying the following axioms:

Convexity: ρ(αV +(1−α)Y ) ≤ αρ(V )+ (1−α)ρ(Y ), for all V,Y ∈ Z and all
α ∈ [0,1].

Monotonicity: If V,Y ∈ Z and V � Y , then ρ(V)≤ ρ(Y ).

Translation Equivariance: If a ∈R and V ∈ Z , then ρ(V + a) = ρ(V )− a.

Positive Homogeneity: If t ≥ 0 and V ∈ Z , then ρ(tV ) = tρ(V).

A coherent measure of risk ρ(·) is called law invariant, if the value of ρ(V)
depends only on the distribution of V , that is, ρ(V1) = ρ(V2) if V1 and V2 have
identical distributions. It implies that only the distribution matters, but not particular
realizations. This axiom may look so natural. However, each random variable is
actually defined by probability distribution as well as the field of events with a
sigma-algebra structure. Although all practical risk measures are all law invariant,
it is theoretically possible to construct a non law-invariant risk measure. From
now on, without loss of generality, “coherent risk measures” actually mean “law-
invariant coherent risk measures” unless mentioned explicitly. For more details of
mathematical properties of law invariance, see Acerbi and Tasche (2002), Delbaen
(2002) and Kusuoka (2003).

Important examples of law-invariant coherent measures of risk are obtained from
mean–risk models of form:

ρ(V) =−E[V ]+λ r[V ], (2.5)

where λ > 0 and r[·] is a variability measure of the random outcome V . Popular
examples of r[·] are the semideviation of order p ≥ 1:

σp[V ] = E
[{(E[V ]−V)+}p] 1

p , (2.6)

and weighted mean-deviation from quantile:

rβ [V ] = min
η∈R

E [max((1−β )(η −V),β (V −η))] , β ∈ (0,1). (2.7)
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The optimal η in the problem above is the β -quantile of V . Optimization models
with (2.6) and (2.7) were considered in Ogryczak and Ruszczyński (1999, 2001,
2002). In the maximization context, from the practical point of view, it is most
reasonable to consider β ∈ (0,1/2], because then rβ [V ] penalizes the left tail of
the distribution of V much higher than the right tail.

The equation ρ [·] defined at (2.5), with r[·] = σp[·] and p ≥ 1, is a coherent
measure of risk, provided that λ ∈ [0,1]. When r[·] = rβ [·], (2.5) is a coherent
measure of risk, if λ ∈ [0,1/β ]. All these results can be found in Ruszczyński and
Shapiro (2006a).

The mean-deviation from quantile rβ [·] is connected to the Average Value-at-
Risk (AVaR), also known as expected shortfall or CVaR in Rockafellar and Uryasev
(2000), as follows:

AVaRβ (V ) =−max
η∈R

{
η − 1

β
E
[
(η −V)+

]}
=−E[V ]+

1
β

rβ [V ]. (2.8)

All these relations can be found in Föllmer and Schied (2004), Ogryczak and
Ruszczyński (2002) and Ruszczyński and Vanderbei (2003) (with obvious adjust-
ments for the sign of V ). The relation (2.8) allows me to interpret AVaRβ (V ) as a
special case of the mean–risk model where r[V ] is a deviation from quantile in (2.7)
with λ = 1/β .

One of the fundamental results in the theory of law-invariant measures is the
theorem of Kusuoka (2003): For every lower semicontinuous law-invariant coherent
measure of risk ρ [·] on L∞(Ω,F ,P), with an atomless probability space (Ω,F ,P),
there exists a convex set M of probability measures on (0,1] such that

ρ [V ] = sup
μ∈M

1∫

0

AVaRβ [V ]μ(dβ ). (2.9)

Using identity (2.8), I can rewrite ρ [V ] as follows:

ρ [V ] =−E[V ]+ sup
μ∈M

1∫

0

1
β

rβ [V ]μ(dβ ). (2.10)

This means that every problem (2.4) with a coherent law-invariant measure of risk
is a mean–risk model, with the variability measure

κM [V ] = sup
μ∈M

1∫

0

1
β

rβ [V ]μ(dβ ). (2.11)

To illustrate the impact of scaling (the unit system) on risk measurement, I
compare solutions of a single-product risk-averse newsvendor model under the
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Table 2.3 The impact of rescaling on solutions—a coherent measure of risk, entropic exponential
utility function, and a mean–variance model

Unit of profit measurement

1 Dollar 30 Cents 10 Cents 3 Cents 1 Cent

Coherent 20.7824 20.7824 20.7824 20.7824 20.7824
Entropic exponential 20.7786 17.0952 12.2944 7.2879 4.8568
Mean-variance 20.7918 17.6962 14.4454 11.4197 9.5603

coherent risk measure with (2.5) and (2.7), the entropic exponential utility function
1
λ lnE

[
e−λ Π(x;D)

]
and the mean-variance model. The entropic exponential utility

function is an example of a convex measure of risk which is not coherent and is
equivalent to an exponential utility function by a certainty equivalent operator.

I select parameters for each risk measure so that they have the same optimal
solution when the unit of profit measurement is one dollar. Specifically, I set r = 15,
c = 10, and s = 7 (in dollars) for all three risk measures. Demand follows a
lognormal distribution with μ = 3 and σ = 0.4724. This demand distribution is used
in all instances. For the coherent measure of risk, I set β = 0.5 and λ = λ1 = 0.2.
By the sample-based LP method, the optimal solution is x̂RA1 = 20.7824. For the
entropic exponential utility function model, defined as

min
x≥0

1
λ2

lnE
[
e−λ2Π(x;D)

]
. (2.12)

I set λ2 = 0.0072, which results in a sample-based solution x̂RA2 = 20.7786. For the
mean-variance model, defined as

min
x≥0

−E [Π(x;D)]+λ3Var [Π(x;D)] . (2.13)

I set λ3 = 0.0037, which results in a sample-based solution x̂RA3 = 20.7918. Then I
change the unit of r (price), c (cost) and s (salvage value) from dollar to 30 cents, 10
cents, 3 cents and 1 cent while keeping all other parameters unchanged. My results
are summarized in Table 2.3.

As one can see from this table, while the numerical solution under a coherent
measure of risk is invariant with respect to the unit system, it varies significantly
under other risk measures.

2.4 Basic Analytical Results

In this section, I prove two fundamental results for a multi-product risk-averse
newsvendor model. As I do not assume independent demands for the two results
in this section, Propositions 1 and 2 hold true both in independent and dependent
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demands. These two Propositions also take a role of key intermediate steps for
further analysis in Sects. 2.5–2.7.

Proposition 1 (Convexity of the Model). If ρ [·] is a coherent measure of risk, then
ρ [Π(x,D)] is a convex function of x.

Proof. I first note that Π(x,D) = ∑n
j=1 Π j(x j,D j) is concave in x. That is, for any

0 ≤ α ≤ 1 and all x and y,

Π(αx+(1−α)y,D)≥ αΠ(x,D)+ (1−α)Π(y,D) for all D.

Using the monotonicity axiom, I obtain

ρ [Π(αx+(1−α)y,D)]≤ ρ [αΠ(x,D)+ (1−α)Π(y,D)]

≤ αρ [Π(x,D)]+ (1−α)ρ [Π(y,D)].

The second inequality follows by the axiom of convexity. �	
Proposition 1 shows the convexity of my model. It means the convexity preserves
in a risk-averse model as well as in a risk-neutral model. Observe that I did
not use the axiom of positive homogeneity, and thus Proposition 1 extends to
more general models (e.g., convex measures of risk). I next prove the intuitively
clear statement that identical products should be ordered in equal quantities under
coherent measures of risk.

Proposition 2 (Symmetry of the Solution). Assume that all products are identi-
cal, i.e., prices, ordering costs, and salvage values are the same across all products.
Furthermore, let the joint probability distribution of the demand be symmetric, that
is, invariant with respect to permutations of the demand vector. Then, for every law-
invariant coherent measure of risk ρ [·], one of the optimal solutions of problem (2.4)
is a vector with equal coordinates, x̂RA

1 = x̂RA
2 = · · ·= x̂RA

n .

Proof. An optimal solution exists, because with no loss of generality I can assume
that x is bounded by some large constant, and ρ [Π(x,D)] is continuous with respect
to x (see Ruszczyński and Shapiro 2006a).

Let me consider an arbitrary order vector x = (x1, . . . ,xn) and let P be an n× n
permutation matrix. Then, the distribution of profit associated with Px is the same
as that associated with x. There are n! different permutations of x and let me denote
them x1, . . . ,xn!. Consider the point

y =
1
n!

n!

∑
i=1

xi.

It has all coordinates equal to the average of the coordinates x j. As the joint
probability distribution of D1,D2, . . . ,Dn is symmetric, the distribution of Π(xi,D)
is the same for each i. By Proposition 1 and law invariance of ρ [·] I obtain
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ρ [Π(y,D)]≤ 1
n!

n!

∑
i=1

ρ [Π(xi,D)] = ρ [Π(x,D)].

This means that for every plan x, the corresponding plan y with equal orders is
at least as good. As an optimal plan exists, there is an optimal plan with equal
orders. �	
Note that Proposition 2 only requires symmetric joint demand distribution, but not
independent demands.

2.5 Analytical Results for Independent Demands

In this section, I assume demand independence and provide two analytical results
(impact of degree of risk aversion and impact of shift in mean demand) for the multi-
product newsvendor model under coherent risk measures. First, to study the impact
of the degree of risk aversion, let me first focus on a specific variability measure—
the weighted mean-deviation from quantile, given by (2.7). The corresponding
measure of risk has the form,

ρ [V ] =−E[V ]+λ rβ [V ]. (2.14)

By (2.8), I can write

ρ [V ] =−(1−λ β )E[V ]+λ β AVaRβ [V ]. (2.15)

I consider the problem

min
x≥0

{−E[Π(x,D)]+λ rβ [Π(x,D)]
}
. (2.16)

Proposition 3 (Monotonicity of the Solution with a mean-deviation from
quantile). Assume that all products are identical and demands for all products are
iid (independently and identically distributed) and have a continuous distribution.
Let x̂RA1 be the solution of problem (2.16) for λ = λ1 > 0, having equal coordinates.
If λ2 ≥ λ1 then there exists a solution x̂RA2 of problem (2.16) for λ = λ2, having
equal coordinates and such that x̂RA2

j ≤ x̂RA1
j , j = 1, . . . ,n.

For the proof of Proposition 3, refer to Choi et al. (2011). Then, my goal is to extend
the monotonicity property to all law-invariant coherent measures of risk. Observe
that my assumption about continuous distribution of the demand implies that the
probability space is nonatomic. Consider the problem

min
x≥0

{−E[Π(x,D)]+λκM [Π(x,D)]}, (2.17)

where κM [V ] is given by (2.11).
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Proposition 4 (Monotonicity of the Solution with every coherent measure
of risk). Assume that all products are identical and demands for all products
are iid and have a continuous distribution. Let x̂RA1 be the solution of problem
(2.17) for λ = λ1 > 0, having equal coordinates. If λ2 ≥ λ1 then there exists a
solution x̂RA2 of problem (2.17) for λ = λ2, having equal coordinates and such that
x̂RA2

j ≤ x̂RA1
j , j = 1, . . . ,n.

Proof. As in the proof of Proposition 3, each function x 
→ rβ [Π(x,D)] is non-
decreasing, for every β ∈ (0,1). Then the integral over β with respect to any
nonnegative measure μ is nondecreasing as well. Taking the supremum in (2.11)
does not change this property. Therefore, Proposition 4 holds true also for the mean–
risk model with the risk r[·] = κM [·]. �	
Finally, I discuss the impact of the shift in mean demand on the optimal order
quantities under general coherent measures of risk.

Proposition 5 (Impact of the Shift in Mean Demand). Assume that all products
are identical and demands for all products are iid except that μ j = E[D j], j =
1, . . . ,n. If μ1 ≥ μ2 ≥ ·· · ≥ μn, then x̂RA

1 ≥ x̂RA
2 ≥ ·· · ≥ x̂RA

n .

Proof. Consider the demand vector D̃ j = D j − μ j + μ1. As it has identical and iid
components, by Proposition 2 there exists an optimal order vector x̃ with equal
coordinates: x̃1 = x̃2 = · · ·= x̃n, for the risk-averse multi-product newsvendor with D̃
as the demand vector. I can interpret the demand D as a sum of the random demand
D̃ and a deterministic demand vector h with coordinates h j = μ j −μ1. If x̃ j > 0, then
by the Translation Equivariance axiom, it is easy to see that x̂ = x̃+h is the solution
of the problem

min
x≥0

ρ [Π(x,D)],

for every coherent measure of risk ρ [·]. �	

2.6 Asymptotic Analysis and Closed-Form Approximations

2.6.1 Asymptotic Optimality of Risk-Neutral Solutions

In this section, I study the asymptotic behavior of the risk-averse newsvendor model
when the number of products tends to infinity. I assume heterogenous products with
independent demands.

I start from the derivation of error bounds for the risk-neutral solution. Consider a
sequence of products j = 1,2, . . . , with corresponding prices r j, costs c j, and salvage
values s j. I assume that s j < c j < r j, and that all these quantities are uniformly
bounded for j = 1,2 . . . .
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Consider the risk-neutral optimal order quantities

x̂RN
j = F̄−1

j

(
c̄ j

r̄ j

)
, j = 1,2, . . . . (2.18)

I assume that the following conditions are satisfied:

(i) There exist xmin > 0 and xmax such that

xmin ≤ x̂RN
j ≤ xmax, j = 1,2, . . . .

(ii) There exists σmin > 0 such that

Var
[
min

(
x̂RN

j ,D j
)]≥ σ2

min, j = 1,2, . . . .

My intention is to evaluate the quality of the risk-neutral solution x̂RN in the
risk-averse problem

min
x1,...,xn

ρ

[
1
n

n

∑
j=1

Π j(x j,D j)

]

. (2.19)

Observe that in problem (2.19) I consider the average profit per product, rather
than the total profit, as in problem (2.4). The reason is that I intend to analyze
properties of the optimal value of this problem as n → ∞ and I want the limit of
the objective value of problem (2.19) to exist. Owing to the Positive Homogeneity
axiom, problems (2.19) and (2.4) are equivalent.

I denote by ρ̂n the optimal value of problem (2.19). I also introduce the following
notation,

μRN
j = E

[
min(x̂RN

j ,D j)
]
, μ̄n =

1
n

n

∑
j=1

r̄ jμRN
j ,

(
σRN

j

)2
= Var

[
min

(
x̂RN

j ,D j
)]
, s̄2

n =
1
n2

n

∑
j=1

r̄2
j

(
σRN

j

)2
.

Finally, I denote by N the standard normal variable. Then, I will show asymptotic
convergence of risk-neutral solution to the true risk-averse solution.

Proposition 6 (Asymptotic Convergence of Risk-Neutral Solution with Error
Bound). Assume that ρ [·] is a law-invariant coherent measure of risk and the space
(Ω,F ,P) is nonatomic. Then

ρ

[
1
n

n

∑
j=1

Π j(x̂
RN
j ,D j)

]

≤ min
x1,...,xn

ρ

[
1
n

n

∑
j=1

Π j(x j,D j)

]

+O

(
1√
n

)
. (2.20)
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For the proof, refer to Choi et al. (2011). Asymptotically, the difference between
the optimal objective value (the first term of the right-hand side of (2.20)) and the
value obtained by using the risk-neutral solution (the term in the left-hand side of
(2.20)) disappears at the rate of 1/

√
n. Such difference can be considered as the

error bound of a risk-neutral solution given as an “o” function of 1/
√

n. Thus, for a
firm dealing with very many products having independent demands, the risk-neutral
solution is a reasonable sub-optimal alternative to the risk-averse solution.

2.6.2 Adjustments in the Mean-Deviation from Quantile Model

In this section, I develop close-form approximations to the optimal risk-averse
solution when the number of products is moderately large. My idea is to use the
risk-neutral solution as the starting point, and to calculate an appropriate correction
to account for risk aversion.

I first consider the mean-deviation from quantile model in which the measure
of variability is defined at (2.7). Recall that the corresponding mean–risk model
in (2.14) is equivalent to the minimization of a combination of the mean and the
Conditional Value-at-Risk, as in (2.15). I then consider the general coherent risk
measure in Sect. 2.6.3. I finally discuss several iterative methods that are based on
the approximations in Sect. 2.6.4.

I use the notation Zn
x = 1

n ∑n
j=1 r̄ j min(x j ,D j) (with x as a subscript to stress the

dependence of Zn
x on x). Using (2.1) and (2.2), I can calculate the average profit per

product as follows:

Π̄(x,D) =
1
n

n

∑
j=1

Π j(x j,D j) =−1
n

n

∑
j=1

c̄ jx j +Zn
x .

Thus,

ρ [Π̄(x,D)] =
1
n

n

∑
j=1

c̄ jx j +
(−E[Zn

x ]+λ rβ (Z
n
x )
)

=
1
n

n

∑
j=1

c̄ jx j +

(
E[Zn

x ](λ β − 1)−λ β max
η∈R

{
η − 1

β
E
[
(η −Zn

x )
+
]
})

.

(2.21)
Let me denote η̂ to be the maximizer in (2.21), among η ∈ R, at a fixed x. η̂ is the
β -quantile of Zn

x . To take the partial derivative of ρ [Π̄(x,D)] with respect to x j, I
consider two cases.

Case (i): η̂ < 1
n ∑n

j=1 r̄ jx j.

Assuming that the quantile η̂ is unique and differentiating (2.21), I observe again
that
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∂ρ [Π̄(x,D)]

∂x j
=

c̄ j

n
+

r̄ j(λ β − 1)
n

P[D j > x j]− r̄ jλ
n

P [{Zn
x < η̂}∩{D j > x j}] .

(2.22)
Here I used (Bonnans and Shapiro 2000, Theorem 4.13) to avoid differentiating with
respect to η̂ .

Let me analyze the last term on the right-hand side in (2.22) for j = 1,2, . . . ,n:

P [{Zn
x < η̂}∩{D j > x j}] = P [Zn

x < η̂ |D j > x j]P[D j > x j]

= P

[
1
n

n

∑
k �= j

r̄k min(xk,Dk)< η̂ − r̄ jx j

n

]

·P[D j > x j]. (2.23)

Suppose x j ≥ xmin, j = 1,2, . . . ,. Owing to conditions (i) and (ii), exactly as in
Sect. 2.6.1, for large n the random variable Zn

x is approximately normally distributed
with the mean μ̄n = 1

n ∑n
j=1 r̄ jμ j and the variance s̄2

n = 1
n2 ∑n

j=1 r̄2
j σ2

j , where μ j =

E[min{x j,D j}] and σ2
j = Var(min{x j,D j}). Under normal approximation, the β -

quantile of Zn
x can be approximated by η̂  μ̄n + zβ s̄n, where zβ is the β -quantile

of the standard normal variable. Similarly, 1
n−1 ∑n

k �= j r̄k min(xk,Dk) is approximately

normal with mean 1
n−1 ∑n

k �= j r̄kμk and variance 1
(n−1)2 ∑n

k �= j r̄2
k σ2

k . Using these ap-

proximations and denoting by N the standard normal random variable, I obtain:

P

[
1
n

n

∑
k �= j

r̄k min(xk,Dk)< η̂ − r̄ jx j

n

]

 P

⎡

⎣N <
−r̄ j(x j − μ j)+ zβ

√
∑n

k=1 r̄2
k σ2

k
√

∑k �= j r̄2
k σ2

k

⎤

⎦

= P

⎡

⎣N <
−r̄ j(x j − μ j)√

n− 1γn j
+ zβ

√√
√
√1+

r̄2
j σ2

j

(n− 1)γ2
n j

⎤

⎦,

(2.24)

where γn j =
√

1
n−1 ∑k �= j r̄2

k σ2
k . As r̄2

k σ2
k is uniformly bounded from above and below

across all products, I conclude that γn j is bounded from above and below for all j
and n.

This estimate can be put into (2.23), and thus (2.22) can be approximated as
follows:

∂ρ [Π̄(x,D)]

∂x j
 c̄ j

n
+

r̄ jP[D j > x j]

n

×
⎛

⎝λ β − 1−λP

⎡

⎣N <
−r̄ j(x j − μ j)√

n− 1γn j
+ zβ

√√
√
√1+

r̄2
j σ2

j

(n− 1)γ2
n j

⎤

⎦

⎞

⎠ . (2.25)



60 S. Choi

My next step is to approximate the probability on the right-hand side of (2.25). To
this end, I derive its limit and calculate a correction to this limit for a finite n. When
n → ∞, I have

P

⎡

⎣N <
−r̄ j(x j − μ j)√

n− 1γn j
+ zβ

√√√
√1+

r̄2
j σ2

j

(n− 1)γ2
n j

⎤

⎦→ β (2.26)

and thus
∂ρ [Π̄(x,D)]

∂x j
→ 1

n
(c̄ j − r̄ jP[D j > x j]).

This means that the conditions of the risk-averse solution

∂ρ [Π̄(x,D)]

∂x j
= 0, j = 1,2, . . . ,n, (2.27)

approaches that of the risk-neutral solution in (2.18). Thus the risk-neutral solution
will be used as the base value, to which corrections will be calculated.

I can estimate the difference between the probability in (2.26) and β for a
large but finite n, by assuming that x is close to x̂RN. Thus, μ j is close to μRN

j =

E[min{x̂RN
j ,D j}] and σ j is close to σRN

j =
√
Var(min{x̂RN

j ,D j}). Considering only

the leading term with respect to 1/
√

n− 1, I obtain

P

⎡

⎣N <
−r̄ j(x j − μ j)√

n− 1γn j
+ zβ

√√
√√1+

r̄2
j σ2

j

(n− 1)γ2
n j

⎤

⎦P

[

N <
−r̄ j(x̂RN

j − μRN
j )√

n− 1γRN
n j

+ zβ

]

,

where γRN
n j =

√
1

n−1 ∑k �= j r̄2
k (σ

RN
k )

2
. The last probability can be estimated by the

linear approximation derived at zβ . Observing that P[N < zβ ] = β and that its
derivative at z = zβ is the standard normal density at zβ , I get

P

[

N <
−r̄ j(x̂RN

j − μRN
j )√

n− 1γRN
n j

+ zβ

]

 β − δ RN
n j ,

with

δ RN
n j =

e−z2
β /2

√
2π

r̄ j(x̂RN
j − μRN

j )√
n− 1γRN

n j

, j = 1, . . . ,n. (2.28)

These estimates can be substituted to (2.25) for the derivative and yield

∂ρ [Π̄(x,D)]

∂x j
 c̄ j

n
+

r̄ j

n

(−1+λ δ RN
n j

)
P[D j > x j]. (2.29)
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Using the above approximations of the derivatives in (2.27), I obtain the first-order
approximation of the risk-averse solution:

x̂APR
j = F̄−1

j

[
c̄ j

r̄ j(1− δ RN
n j λ )

]

, j = 1,2, . . . ,n. (2.30)

Clearly, this approximation of x̂APR
j is increasing in n, decreasing in λ , and tends to

the risk-neutral solution as n → ∞. Similar to the analysis in Sect. 2.6.1, the error
bound of this approximation in (2.30) is given as follows:

0 ≤−
∂ρ
(

Π̄
(

x̂APR
j ,D

))

∂x j
≤ O(1/n3/2). (2.31)

It implies that as the number of products increases, the convergence rate of my
approximate solution to the risk-averse solution in (2.31), O(1/n3/2), is much faster
than the rate of the risk-neutral solution in (2.20), O(1/n1/2).

Case (ii): η̂ = 1
n ∑n

j=1 r̄ jx j.

I have

ρ [Π̄(x,D)] =
1
n

n

∑
j=1

c̄ jx j +

(

E[Zn
x ](λ β − 1)

−λ β

{
1
n

n

∑
j=1

r̄ jx j − 1
β
E

[
1
n

n

∑
j=1

r̄ jx j −Zn
x

]})

.

Taking derivative with respect to x j yields,

∂ρ [Π̄(x,D)]

∂x j
=

1
n
[c̄ j + r̄ jλ (1−β )+ r̄ jP[D j > x j] (λ (β − 1)− 1)] .

Equating the right-hand side to 0, I get

x̂RA
j = F̄−1

j

(
c̄ j + r̄ jλ (1−β )
r̄ j(1+λ (1−β ))

)
. (2.32)

Note that the solution in Case (ii) is an exact solution and free of the number of
products, n. Clearly, if λ = 0, x̂RA

j = x̂RN
j . As λ increases, x̂RA

j is decreasing. For

any 0 ≤ λ ≤ 1/β , x̂RA
j is well defined.

It should be emphasized that Case (i) is more important, because for large n the
distribution of Zn

x is close to normal and for a small β , the β -quantile of Zn
x tends to

be smaller than 1
n ∑n

j=1 r̄ jx j, for the values of x of interest.
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Consider the special case of identical products. With a slight abuse of notation,
let c j = c, r j = r and s j = s for all j = 1,2, . . . ,n. In Case (i), the first-order
approximation of the risk-averse solution yields:

dρ [Π̄(x,D)]

dx
 c̄+ r̄P[D1 > x](δ RN

n λ − 1),

with

δ RN
n =

e−z2
β /2

√
2π

x̂RN − μRN
x√

n− 1σRN
x

, (2.33)

where x̂RN, μRN
x , and σRN

x are the counterparts of x̂RN
j , μRN

j , and σRN
j , respectively.

Equating the right hand side to 0, I obtain

x̂APR
1 = F̄−1

1

(
c̄

r̄(1− δ RN
n λ )

)
, j = 1, . . . ,n. (2.34)

Here, (2.34) is similar to (2.30) except that the terms c̄ j, r̄ j and δ RN
n j are now identical

for all j. In Case (ii), (2.32) reduces to

x̂RA
1 = F̄−1

1

(
c̄+ r̄λ (1−β )

r̄(1+λ (1−β ))

)
.

In the special case of a single-product problem, by (2.22) in Case (i) I obtain

dρ [Π̄(x,D)]

dx
= c̄+ r̄(λ β − 1)P[D > x]− r̄λP [{Zx < η̂}∩{D > x}] ,

where Zx = min(x,D). Observe that in Case (i),P [{Zx < η̂}∩{D > x}] =

P [Zx < η̂ |D > x]P[D > x] = 0. Therefore, dρ [Π̄(x,D)]
dx = c̄ + r̄(λ β − 1)P[D > x].

This yields the exact solution of the single product problem

x̂RA = F̄−1
(

c̄
r̄(1−λ β )

)
≤ F̄−1

(
c̄
r̄

)
= x̂RN.

This special case solution is the same as the solution obtained by Gotoh and Takano
(2007). To determine whether Case (i) or Case (ii) applies, one can compute x̂RA for
both cases, and then compute η̂ to check the case conditions.

2.6.3 General Law-Invariant Coherent Measures of Risk

So far my analysis focused on a special risk measure, weighted mean-deviation from
quantile, given in (2.7). I now generalize the results to any law-invariant coherent
risk measure ρ [·].
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Consider problem (2.17) where κM [V ] is given by (2.11). By Kusuoka theorem,
for nonatomic spaces, every law-invariant coherent measure of risk has such repre-
sentation. Thus, I focus on Case (i) solution only. Then (2.21) can be replaced by

ρ [Π̄(x,D)] =
1
n

n

∑
j=1

c̄ jx j + sup
μ∈M

1∫

0

(
E[Zn

x ](λ β − 1)

−λ β max
η∈R

{
η − 1

β
E
[
(η −Zn

x )
+
]
})

μ(dβ ).

Suppose the maximum over M is attained at a unique measure μ̂ (this is certainly
true for spectral measures of risk, where the set M has just one element). Similarly
to (2.29),

∂ρ [Π̄(x,D)]

∂x j
 c̄ j

n
+

r̄ j

n

⎛

⎝−1+λ
1∫

0

δ RN
n j (β ) μ̂(dβ )

⎞

⎠P[D j > x j]. (2.35)

I denote here the quantity given in (2.28) by δ RN
n j (β ), to stress its dependence on β.

Let me approximate μ̂ by the measure μ̂RN, obtained for the risk-neutral solution
x̂RN. Equating the approximate derivatives in (2.35) to zero, I obtain an approximate
solution:

x̂APR
j = F̄−1

j

⎛

⎜
⎜
⎝

c̄ j

r̄ j

(
1−λ

∫ 1

0
δ RN

n j (β ) μ̂RN(dβ )
)

⎞

⎟
⎟
⎠, j = 1,2, . . . ,n. (2.36)

Again, δ RN
n j (β ) ↓ 0 as n → ∞, and thus x̂APR

j increases in n and approaches the

risk-neutral solution x̂RN
j . This is consistent with Proposition 6 and the analysis in

Sect. 2.6.2.
In the special case of identical products, the approximate solution is

x̂APR
1 = F̄−1

1

⎛

⎜
⎜
⎝

c̄ j

r̄ j

(
1−λ

∫ 1

0
δ RN

n (β ) μ̂RN(dβ )
)

⎞

⎟
⎟
⎠, j = 1,2, . . . ,n, (2.37)

where δ RN
n is defined at (2.33).

In the single-product problem, I obtain
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ρ [Π̄(x,D)] = c̄x+ sup
μ∈M

1∫

0

(
E[Zx](λ β − 1)

−λ β max
η∈R

{
η − 1

β
E
[
(η −Zx)

+
]
})

μ(dβ ). (2.38)

Assuming that μ̂ is the unique maximizer in (2.38), I obtain

dρ [Π̄(x,D)]

dx
= c̄+

1∫

0

(r̄(λ β − 1)P[D > x]− r̄λP [{Zx < η̂}∩{D > x}]) μ̂(dβ ).

Similarly to the model with mean-deviation from quantile case, P [{Zx < η̂}∩
{D > x}] = P [Zx < η̂ |D > x]P[D > x] = 0. Thus,

dρ [Π̄(x,D)]

dx
= c̄+

1∫

0

(r̄(λ β − 1)P[D > x]) μ̂(dβ )

= c̄+ r̄

⎛

⎝−1+λ sup
μ∈M

1∫

0

β μ̂(dβ )

⎞

⎠P[D > x].

Therefore, the closed-form exact solution for general coherent measures of risk is
given by:

x̂RA = F̄−1
(

c̄

r̄(1−λ β̄)

)
≤ F̄−1

(
c̄
r̄

)
= x̂RN, where β̄ =

1∫

0

β μ̂RN(dβ ).

2.6.4 Iterative Methods

So far, I discussed approximations based on expansions about the risk-neutral
solution x̂RN. But exactly the same argument can be used to develop an iterative
method, in which the best approximation known so far is substituted for the risk-
neutral solution. I explain the simplest idea for the approximation developed in
Sect. 2.6.2; the same idea applies to general coherent measures of risk discussed
in Sect. 2.6.3.

The idea of the iterative method is to generate a sequence of approximations
x̂(ν), ν = 0,1,2, . . . . I set x̂(0) = x̂RN. Then I calculate x̂(1) by applying (2.30). In the
iteration ν = 1,2, . . . , I use x̂(ν) instead of x̂RN in my approximation, calculating:
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μ (ν)
j = E

[
min

{
x̂(ν)j ,D j

}]
, σ (ν)

j =

√

Var
(

min
{

x̂(ν)j ,D j

})
,

γ(ν)n j =

√
1

n− 1 ∑
k �= j

r̄2
k

{(
σ (ν)

k

)}2
, δ (ν)

n j =
e−z2

β /2

√
2π

r̄ j

(
x̂(ν)j − μ (ν)

j

)

√
n− 1γ(ν)n j

, j = 1, . . . ,n.

Finally, (2.30) is applied to generate the next approximate solution x̂(ν+1), and the
iteration continues.

The iterative method is efficient if the initial approximation x̂(0) is sufficiently
close to the risk-averse solution. This is true when the risk aversion coefficient κ =
λ β is close to zero or the number of products is very large. I must point out that the
iterative method does not guarantee convergence to the optimal risk-averse solution.
One reason is that my approximation in (2.30) may result in infeasible solutions as
the term

c̄ j

r̄ j

(
1−δ (ν)

n j λ
) can be negative or greater than 1 (due to approximation). When

this occurs less likely, one can say that the approximation is more stable. Generally,
the approximation is more stable for larger number of products and smaller κ . To
improve stability, I propose a more accurate method called the continuation method.
In this approach, I apply the iterative method for a small value of κ , starting from
the risk-neutral solution. Then I increase κ a little, and I apply the iterative method
again, but starting from the best solution found for the previous value of κ . In this
way, I gradually increase κ , until I reach the risk aversion coefficients which are of
interest (usually, between 0 and 1). The stability of the iterative and continuation
methods is summarized in Sect. 2.8.2.

2.7 Impact of Dependent Demands

In this section, I provide some insights on the impact of dependent demands. Due
to significant analytical challenges, I focus on a two-product system and the mean-
deviation from quantile model.

Under the risk-neutral measure, dependence of product demands has no impact
on the optimal order quantities. However, under risk-averse measures, it can
greatly affect the optimal order decisions for the newsvendor. Intuitively, positively
(negatively) dependent demands entail larger (smaller) variability and thus increase
(decrease) risk, as compared to independent demands. Thus, one tends to decrease
(increase) the order quantity in case of positively (negatively) dependent demands
relative to the case of independent demand.

To characterize the impact of demand dependence on the optimal order quan-
tity under the coherent risk measure, I utilize the concept of “associated” ran-
dom variables. Consider random variables D1,D2, . . . ,Dn, denote vector D =
(D1,D2, . . . ,Dn). The following definition is due to Esary et al. (1976); see Tong
(1980) for a review.
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Definition 1. The random variables D1,D2, . . . ,Dn are associated, if Cov[ f (D),
g(D)] ≥ 0, or, equivalently, E[ f (D)g(D)] ≥ E[ f (D)]E[g(D)], for all nondecreasing
real functions f ,g for which E[ f (D)],E[g(D)] and E[ f (D)g(D)] exist.

Lemma 1. (i) Any subset of a set of associated random variables is associated.
(ii) If two sets of associated random variables are independent of each other, their

union is a set of associated random variables.
(iii) Nondecreasing (or nonincreasing) functions of associated random variables

are associated.
(iv) If D1,D2, . . . ,Dn are associated, then for all (y1,y2, . . . ,yn) ∈ Rn

P{D1 ≤ y1,D2 ≤ y2, . . . ,Dn ≤ yn} ≥ Πn
k=1P{Dk ≤ yk},

P{D1 ≥ y1,D2 ≥ y2, . . . ,Dn ≥ yn} ≥ Πn
k=1P{Dk ≥ yk}.

I refer to Tong (1980) for proofs.
Association is closely related to correlation. By (Tong 1980, p. 99), a set of multi-

variate normal random variables is associated if their correlation matrix has the
structure l (Tong 1980, p. 13) in which the correlation coefficient ρi j = γiγ j for
all i �= j and 0 ≤ γi < 1 for all i. This means that I can represent the demands as
having one common factor:

Di = γiD0 +Δi, i = 1, . . . ,n,

where D0 and Δi, i = 1, . . . ,n, are independent. A special case is the bi-variate
normal random variable with a positive correlation coefficient.

Consider a system with two identical products and a solution with equal
coordinates. Let Zx = min{x,D1}+min{x,D2}. Clearly, Π(x,D) =−2cx+ rZx and

ρ(Π(x,D)) = 2cx+ rρ(Zx), (2.39)

ρ(Zx) = E(Zx)(λ β − 1)−λ β maxη∈R
{

η − 1
β E[(η −Zx)

+]
}
. (2.40)

Let η̂ be the maximizer. If η̂ is not an atom of the distribution of Zx, similar to
Case (i) analysis in Sect. 2.6.2, I obtain

dρ(Zx)

dx
=

dE[Zx]

dx
(λ β − 1)+λ

dE[(η̂ −Zx)
+]

dx
,

where η̂ is the β -quantile of Zx and η̂ < 2x. Because the first term depends only
on the marginal distributions of the demands, I focus on the second term, which is
affected by the dependence of D1 and D2. I have

dE[(η̂ −Zx)
+]

dx
=−

2

∑
j=1

P [{Zx < η̂}∩{D j > x}]=−2P[min{x,D2}< η̂−x,D1 > x].

(2.41)
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Consider three cases of (D1,D2), with the same the marginal distributions of D1

and D2. In case 1, (D1,D2) are associated random variables, and I use η̂P to denote
the β -quantile of the corresponding Zx; In case 2, (D1,D2) are independent with η̂I

as the β -quantile of Zx; In case 3, (D1,−D2) are associated random variables with
η̂N as the β -quantile of Zx. I also let x∗P, x∗I , and x∗N be the optimal order quantities
in cases 1, 2, and 3, respectively.

Proposition 7 (Impact of Demand Correlation). If η̂P ≤ η̂I ≤ η̂N < 2x, then

x∗P ≤ x∗I ≤ x∗N . (2.42)

That is, positively (negatively) dependent (D1,D2) results in smaller (larger)
optimal order quantities than independent (D1,D2).

Proof. I first consider associated (D1,D2). I have

P[min{x,D2}< η̂P − x,D1 > x]

= P[D2 < η̂P − x,D1 > x]

= P[D1 > x]−P[D2 ≥ η̂P − x,D1 > x]≤ P[D1 > x]−P[D2 ≥ η̂P − x]P[D1 > x]

= P[D2 < η̂P − x]P[D1 > x]≤ P[D2 < η̂I − x]P[D1 > x].

The first inequality follows by Lemma 1 part (iv). The second inequality follows
by η̂P ≤ η̂I . Note that the last term corresponds to independent (D1,D2). Thus,
by (2.41), associated (D1,D2) have the derivatives dρ(Zx)/dx at least as large as
independent (D1,D2), which implies that x∗P ≤ x∗I .

I then consider associated (D1,−D2). I obtain

P[D2 < η̂N − x,D1 > x] = P[−D2 >−η̂N + x,D1 > x]

≥ P[−D2 >−η̂N + x]P[D1 > x]

= P[D2 < η̂N − x]P[D1 > x]≥ P[D2 < η̂I − x]P[D1 > x].

The first inequality follows by Lemma 1 part (iv). The second inequality follows
by η̂I ≤ η̂N . Note that the last term corresponds to independent (D1,D2). Thus,
by (2.41), associated (D1,−D2) have the derivatives dρ(Zx)/dx no larger than
independent (D1,D2), which implies that x∗I ≤ x∗N . �	

The condition η̂P ≤ η̂I ≤ η̂N holds when Y1 = min{x,D1} and Y2 = min{x,D2}
follow bivariate normal distribution and β ≤ 0.5. One can approximate the joint
distribution of Y1 and Y2 very closely by bivariate normal when (D1,D2) follow
bivariate normal and x is set to cover most of the demand, which is very likely in
practice when the underage cost r− c is much greater than the overage cost c− s.
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2.8 Numerical Examples

The objective of this section is twofold. First, I study the accuracy and the
convergence rates of the approximations. Second, I provide insights (in addition
to the analysis in Sects. 2.5–2.7) on the impact of demand dependence and risk
aversion. I first introduce the sample-based optimization method.

2.8.1 Sample-Based Optimization

In all examples considered, I apply sample-based optimization to solve the resulting
stochastic programming problems. I generate a sample D1,D2, . . . ,DT of the
demand vector, where

Dt = (d1t ,d2t , . . . ,dnt), t = 1, . . . ,T.

Then I replace the original demand distribution by the empirical distribution based
on the sample, that is, I assign to each of the sample points the probability pt = 1/T .
It is known that when T → ∞, the optimal value of the sample problem approaches
the optimal value of the original problem (see Shapiro 2007). In all my examples, I
used T = 10,000.

For the empirical distribution, the corresponding optimization problem (2.16)
has an equivalent linear programming formulation. For each j = 1, . . . ,n and t =
1, . . . ,T , I introduce the variable wjt to represent the salvaged number of product j
in scenario t. The variable ut represents the shortfall of the profit in scenario t to the
quantile η . It is also convenient to introduce the parameter κ = λ β to represent the
relative risk aversion (0 ≤ κ ≤ 1). I obtain the formulation

max (1−κ)
n

∑
j=1

[

(r j − c j)x j − (r j − s j)
T

∑
t=1

ptwjt

]

+κ

(

η − 1
β

T

∑
t=1

ptut

)

(2.43)

subject to
n

∑
j=1

[(r j − c j)x j − (r j − s j)wjt ]+ ut ≥ η , t = 1, . . . ,T,

x j − d jt ≤ wjt , j = 1, . . . ,n; t = 1, . . . ,T,

wjt ≥ 0, j = 1, . . . ,n; t = 1, . . . ,T,

ut ≥ 0, t = 1, . . . ,T,

x j ≥ 0, j = 1, . . . ,n.



2 A Multi-item Risk-Averse Newsvendor with Law Invariant. . . 69

To explain this formulation, suppose the order quantities x j are fixed. Then wjt =
(x j −d jt)

+ and ut = (η −Π(x,Dt))+ are optimal, and I maximize with respect to η
the last term in problem (2.43), that is,

max
η

{
η − 1

β
E
[
(η −Π(x,D))+

]
}
=−AVaRβ [Π(x,D)] .

In the last expression, I used (2.8). Therefore, (2.43) is equal to (1−κ)E [Π(x,D)]−
κAVaRβ [Π(x,D)].

2.8.2 Accuracy of Approximations

In this section, I assess the accuracy of the closed-form approximations of Sect. 2.6.
I first consider identical products, then nonidentical products.

For identical products, I assume that all products have identical cost structure,
and iid demands. I set r = 15, c = 10, and s = 7. I set the demand distribution of
each product to be lognormal with μ = 3 and σ = 0.4724 (to achieve the desirable
coefficient of variance (cv) of 0.5). Thus, the mean and standard deviation of each

demand are eμ+σ 2/2 = 22.46 and eμ+σ 2/2 ·
√
(eσ 2 − 1) = 11.23. Because the joint

demand distribution is invariant with respect to the permutations of the demand
vector, there exists an order vector with equal coordinates, which is optimal for the
model.

I choose the number of products, n, to be 1, 3, 10, and 30, and I study the
impact of the number of products on the gap between the sample-based LP solutions
and the approximate solutions (generated by the iterative method with ν = 3, see
Sect. 2.6.4). The sample-based LP solutions can take hours to solve, especially for
large n and T . For instance, with n = 30 and a sample size of 10,000, the running
time by CPLEX 9.0 at an Intel Pentium 4 PC is 32,607 s for identical products and
50,889 s for heterogenous products. In contrast, the approximate solution can be
obtained within one or two seconds. I use β = 0.5, that is, I am concerned with the
shortfall below the median.

In my numerical study of identical products, I set the optimal order quantities
for different products to be identical by Proposition 2. In model (2.43), all variables
x j are replaced by a single variable x. The corresponding results are illustrated in
Fig. 2.1, where on the horizontal axis I display the relative risk aversion parameter
κ = λ β . The term “exact,” “numerical,” and “approximation” represent the solution
obtained by the exact calculation, the sample-based LP, and the closed-form
approximation, respectively.

Figure 2.1 shows that my analytical solution is very close to the numerical
solution when n = 1. This is obvious as my solution is exact for the single-
product case (here, the case η̂ = x is valid). In the case of a three-product
model, the approximation does not work well, which is quite understandable as
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3-products (numerical)

10-products (approximation)
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Fig. 2.1 Identical products with independent demands—Approximate or exact solutions vs.
sample-based solutions. The terms “exact,” “numerical,” and “approximation” refer to exact
solutions, solutions of the sample-based model, and closed-form approximations, respectively

the approximation is based on the Central Limit Theorem. As the number of
products increases, my approximations become more accurate and the gap becomes
negligible when n ≥ 10. I also observe that the order quantities decrease as the
degree of risk-aversion increases, which confirms Proposition 3; and as the number
of products increases, the error of the risk neutral solution decreases (consistent with
Proposition 6).

For independent but heterogenous products, I tested the accuracy of the ap-
proximations on 30 randomly generated problems, 10 for each number of products
n = 3,10,30. At each value of κ = 0.2,0.4,0.6,0.8,1, I calculated the sample-based
LP solution and an approximate solution by the continuation method with ν = 1.
My numerical study shows that the continuation method is much more stable and
accurate than the iterative method with ν = 1, especially for smaller numbers of
products, when the difference between risk-neutral solution and risk-averse solution
is larger (e.g., κ is larger). For n = 30, both methods work very well.

For each instance in which the continuation method can generate a feasible
solution, I compute the absolute percentage error of the approximate solution
relative to the sample-based LP solution, which is defined by the absolute difference
between the approximate solution and the sample-based LP solution over the
sample-based LP solution. For comparison, I also compute the absolute percentage
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Fig. 2.2 Heterogeneous products with independent demands—The average percentage error of
the approximate solutions and risk-neutral solutions

error of the risk-neutral solution relative to the sample-based LP solution. Then for
each value of n and κ , I compute the average and maximum percentage error over
all the solutions generated. The average (and maximum) percentage errors of the
risk-neutral solutions and of the solutions obtained by the continuation method are
displayed in Figs. 2.2 and 2.3, respectively).

In all cases, in terms of the average and maximum errors, my approximation
outperforms the risk-neutral solution. Furthermore, in most cases, the improvement
brought by the approximation is significant. Often, the approximation cuts the error
of the risk-neutral solution by 3–6 times, although only one step of the continuation
method was made at each κ . Second, I observe that the approximation is quite
accurate for all cases of n = 10 and n = 30. However, the approximation does not
work well for n = 3, which is similar to what I observed in the identical products
case. Finally, I observe that the average and maximum errors of the risk-neutral
solutions are decreasing in n, as established in Proposition 6.

2.8.3 Impact of Dependent Demands Under Risk Aversion

I first consider a simple system with two identical products, then a system with
two heterogenous products. The numerical results here are obtained by the sample-
based LP.
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Fig. 2.3 Heterogeneous products with independent demands—The maximum percentage error of
the approximate solutions and risk-neutral solutions

I choose the following cost parameters for the system with two identical products:
r1 = r2 = 15, c1 = c2 = 10 and s1 = s2 = 7. I assume that demand follows bivariate
lognormal distribution, which is generated by exponentiating a bivariate normal
with the parameters μ1 = μ2 = 3, σ1 = σ2 = 0.4724 and a correlation coefficient
of −1,−0.8,−0.6, . . .,1. Thus, the mean and standard deviation of each marginal
distribution are 22.46 and 11.23 respectively with cv = 0.5. The numerical results
are summarized in Fig. 2.4.

Consistent with my analysis in Sect. 2.5, risk aversion reduces optimal order
quantities for independent or positively correlated demands, relative to the risk-
neutral solution. But interestingly, this observation may not hold for strongly
negatively correlated demands, where increased risk aversion can result in a greater
optimal order quantity. To explain the intuition behind these counterexamples, let
me consider two identical products with perfectly negatively correlated demands,
D1 and D2. A larger order quantity, Q, increases negative correlation between the
sales min(D1,Q) and min(D2,Q), and thus leads to smaller variability of the total
sales min(D1,Q)+min(D2,Q). Choi (2009) also studied a special case of a two-
identical product system with bivariate uniform distribution and perfectly negative
demand correlation. As a result, a closed-form optimal solution is obtained which is
an increasing function of degree of risk aversion.

Figure 2.4 also shows that consistent with my analysis in Sect. 2.7, negatively
correlated demands result in higher optimal order quantities than independent
demands under risk aversion, while positively correlated demand leads to lower
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Fig. 2.4 Identical products with dependent demands—The impact of demand correlation and risk
aversion κ

optimal order quantity under risk aversion. Indeed, the impact of demand correlation
is almost monotonic with small deviations due to random sample errors.

These observations imply that if the firm is risk-averse, then demand dependence
can have a significant impact on its optimal order quantities. They agree with
the intuition that stronger positively (negatively) correlated demands indicate
higher (lower) risk, and therefore lead to lower (higher) order quantities. More
interestingly, while in most cases, the order quantity decreases in the degree of risk
aversion, it can increase when the demands are strongly negatively correlated.

For heterogenous products, I consider a simple system with two products and
the following parameters: r1 = 15,c1 = 10,s1 = 7 and r2 = 30,c2 = 10,s2 = 4.
The demand is bivariate lognormal generated by exponentiating a bivariate normal
with μ1 = μ2 = 3, σ1 = 0.4724, σ2 = 1.26864 and a correlation coefficient of
−1,−0.8,−0.6, . . .,1. The marginal demand distributions of products 1 and 2 have
means 22.46 and 44.913, standard deviations 11.23 and 89.826, and cv’s 0.5 and 2,
respectively. Intuitively, product 1 is less risky and less profitable than product 2.

My numerical study shows that for product 1, the impact of demand correlation
is similar to that for identical products; see Fig. 2.5. For product 2, however, the
optimal ordering quantity always decreases in κ but not in correlation, see Fig. 2.6.

The implication is that for heterogenous products, the impact of demand
correlation under risk aversion can be very different in each product. Specifically, as
the firm becomes more risk-averse, it should always order less of the more risky and
more profitable products. However, for the less risky and less profitable products,
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while it should order less when demands are positively correlated, it may order more
when demands are strongly negatively correlated.

For more details on the numerical study, see Choi (2009).

2.9 Conclusions

The multi-product newsvendor problem with coherent measures of risk does not
decompose into independent problems, one for each product. The portfolio of
products has to be considered as a whole. My analytical results focus on the impact
of risk aversion and demand dependence on the optimal order quantities. I analyze
the asymptotic behavior of the optimal risk-averse solution. Then I derive (2.30)
and (2.36) for general law-invariant coherent measures of risk, which are simple
and accurate approximations of the optimal order quantities for a large number of
products with independent demands. My numerical study confirms the accuracy of
these approximations for the numbers of products as small as 10, and enriches my
understanding of the interplay of demand dependence and risk aversion.

It is perhaps appropriate to conclude this paper by comparing the multi-product
risk-averse newsvendor problem (2.4) to the risk-averse portfolio optimization
problem. In a portfolio problem, one has n assets with random returns R1, . . . ,Rn

and the objective is to determine investment quantities x1, . . . ,xn to obtain desirable
characteristics of the total portfolio return P(x,R) = R1x1 + · · ·+ Rnxn. In the
classical mean-variance approach of Markowitz (1959), the mean of the return
and its variance are used to find efficient portfolio allocations. See also Elton
et al. (2006). In more modern approaches (e.g., Konno and Yamazaki 1991; Miller
and Ruszczyński 2008; Ruszczyński and Vanderbei 2003) more general mean–risk
models and coherent measures of risk are used, similarly to problem (2.4). There
are, however, fundamental structural differences which make the multi-product
newsvendor problem significantly different from the financial portfolio problem.

The most important difference is that the portfolio return P(x,R) is linear with
respect to the decision vector x, while the newsvendor profit Π(x,D) is concave and
nonlinear with respect to the order quantities x. This leads to the following different
properties of the problems.

• The risk-neutral portfolio problem has no solution, unless the total amount
invested (e.g., to 1) is restricted, in which case the optimal solution is to invest
everything in the asset(s) having highest expected returns. On the contrary,
the risk-neutral newsvendor problem always has a solution, because of natural
limitations of the demand.

• The effect of using risk measures in the portfolio problem is a diversification
of the solution, which otherwise would remain completely nondiversified. In
the newsvendor problem the use of risk measures results in changes of the
already diversified risk-neutral solution, by ordering more of products having
less variable or negatively correlated demands and less of products having more
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variable or positively correlated demands. Products are unlikely to be eliminated
because of risk aversion, because very small amounts will almost always be sold
and thus they introduce very little risk.

• In the portfolio problem, independently of the number of assets considered,
the risk-neutral solution remains structurally different from the risk-averse
solution. On the contrary, in the newsvendor problem the risk-neutral solution
is asymptotically optimal under risk aversion, when the number of independent
products approaches infinity.

Finally, it is worth stressing that the nonlinearity of the newsvendor profit Π(x,D)
is the source of formidable technical difficulties in the analysis of the composite
function (2.4), which involves two nondifferentiable functions.
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Ruszczyński, A., & Shapiro, A. (2006b). Conditional risk mappings. Mathematics of Operations
Research, 31(3), 544–561.
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