
Chapter 16
A Portfolio Approach to Multi-product
Newsvendor Problem with Budget Constraint∗

Bin Zhang and Zhongsheng Hua

Abstract This chapter investigates a portfolio approach to multi-product
newsvendor problem with budget constraint, in which the procurement strategy
for each newsvendor product is designed as portfolio contract. A portfolio contract
consists of a fixed-price contract and an option contract. We model the problem as
an expected profit-maximization model, and propose an efficient solution procedure
after investigating the structural properties of the model. We conduct numerical
studies to show the efficiency of the proposed solution procedure, and to compare
three models with different procurement contracts, i.e., fixed-price contract, option
contract, and portfolio contract. Numerical results are shown to demonstrate the
advantage of the portfolio model, and sensitivity analysis is provided for obtaining
some managerial insights.

Keywords Newsvendor • Option contract • Portfolio • Budget constraint
• Multiple products

16.1 Introduction

Multi-product constrained newsvendor problem is a classical inventory management
problem, which was firstly introduced by Hadley and Whitin (1963). After Hadley
and Whitin’s seminal work, many researchers have investigated different models and
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solution methods for multi-product newsvendor problems. Khouja (1999) presented
a good literature review on the research. Due to the difficulty of solving large-scale
problems, most recent works have focused on developing efficient solution methods,
e.g. Lau and Lau (1996), Erlebacher (2000), Vairaktarakis (2000), Moon and
Silver (2000), and Abdel-Malek et al. (2004). To address nonnegativity constraints
of the order quantities, Abdel-Malek and Montanari (2005) proposed a modified
Lagrangian-based method by analyzing the solution space. Zhang et al. (2009)
provided an exact solution method for the problem with any continuous demand
distribution. Zhang and Hua (2008) proposed a unified algorithm for solving a
class of convex separable nonlinear knapsack problems, which include the singly
constrained multi-product newsvendor problem with box constraints. Zhang and
Du (2010) studied the multi-product newsvendor problem with limited capacity
and outsourcing. Zhang (2012) analyzed structural properties of the multi-product
newsvendor problem with multiple constraints, and proposed a multi-tier binary
solution method for solving the exact solution. Zhang (2011) investigated a multi-
product newsvendor problem with limited capacity in the presence of mixed
deterministic and stochastic demands.

In the classical newsvendor problem, the product is procured from the supplier
with fixed-price contract. Under this procurement strategy, the retailer will under-
take the salvage loss resulting from lower realized demand. To avoid this risk, the
retailer always does not order enough inventories to maximize the supply chain’s
total profit under the fixed-price contract (Cachon 2003). In order to maximize
the supply chain’s total profit, and share the risk raised from demand uncertainty
with supply chain partners, some different contract types are used for encouraging
the retailer to increase the order in supply chain management practice, such as
buy back contracts, revenue sharing contracts, quantity flexibility contracts, sales
rebate contracts, and quantity discount contracts (Cachon 2003). These contracts
are labeled as “flexibility contract”, in which a fixed amount of supply is determined
when the contract is signed, but the amount to be delivered and paid for can differ
from the quantity determined upon signing the contract. In comparison with fixed-
price contracts, these flexibility contracts not only coordinate the supply chain, but
also have sufficient flexibility (by adjusting parameters) to allow for any division of
the supply chain’s profit between suppliers and retailers. For more details of these
flexibility contracts, please refer to Cachon (2003).

Option contract is one type of flexibility contracts (Martı́nez de Albéniz and
Simchi-Levi 2005), which is defined as an agreement between the retailer and the
supplier, in which the retailer pre-pays a reservation cost up-front for a commitment
from the supplier to reserve certain order quantity. If the retailer does not execute
the option, the initial payment is lost. With option contract, the retailer can purchase
any amount of supply up to the option reservation level by paying an execution cost
for each unit purchased. In other words, option contract provides the retailer with
flexibility to adjust order quantity depending on the realized demand, and, hence,
the inventory risk can be lowered for the retailer by utilizing the flexibility of option
contract.

There are mainly two branches for the research on option contracts in supply
chain management literature: One perspective is supply chain coordination with
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option contracts, e.g., Barnes-Schuster et al. (2002), Wu et al. (2002), Kleindorfer
and Wu (2003), Wu and Kleindorfer (2005), Wang and Liu (2007), Gomez Padilla
and Mishina (2009), and Zhao et al. (2010). The other is on a single firm’s
optimal procurement decisions given particular contractual terms, e.g., Cohen
and Agrawal (1999), Marquez and Blanchar (2004), Wang and Tsao (2006), and
Boeckem and Schiller (2008), etc. In the research, some combinations of different
contracts, such as fixed-price contract, and option contract, have been investigated.

In addition, some research on option contracts also took into account spot
market since it is another source of supply for commodity products, e.g., Martı́nez
de Albéniz and Simchi-Levi (2005), Aggarwal and Ganeshan (2007), and Fu
et al. (2010). Spot market is a supply market in which products are sold for cash and
delivered immediately. Contracts bought and sold on spot market are immediately
effective. For some products, spot market can be used by the firm to purchase
at any time; however, the product price on spot market is random. Over the last
years, the emergence of the business-to-business trading exchange has transformed
the procurement strategies, which provides spot market where buyers and sellers
can trade products any time at online markets (Aggarwal and Ganeshan 2007). As
Carbone (2001) reported, 50% of Hewlett-Packard’s procurement cost was spent
on fixed-price contract, 35% in option contracts, and the remaining was left to the
spot market.

Up to now, all the existing works on the combination strategies of different
contracts focused on single product setting. We have not found any research on
multi-product demand management with the combination of fixed-price contract
and option contract. In this chapter, we introduce a portfolio approach for managing
multi-product newsvendor problem with budget constraint, in which each product
can be procured with a portfolio contract consisting of a fixed-price contract and
an option contract. The dual contracts for each product in the problem make the
optimal ordering decisions more challenging in multi-product setting. On one hand,
the use of option contract for lowering the overage cost should be properly balanced
against the additional cost of using the option contract since unit reservation plus
execution cost of option contract is typically higher than unit cost of a fixed-price
contract. On the other hand, the total budget should be well allocated to different
products for signing the fixed-price contracts and option contracts.

The overall objective of the newsvendor is to decide the optimal quantities
of portfolio contracts for maximizing the total expected profit. We establish the
structural properties for the optimal decisions of the proposed profit-maximization
model, and develop an efficient solution procedure for the studied problem.
Numerical results are shown to demonstrate the advantage of the portfolio model,
and sensitivity analysis is provided for obtaining some managerial insights.

The rest of the chapter is organized as follows: Section 16.2 describes the
problem formulation. In Sect. 16.3, the properties of the optimal solution are es-
tablished, and an exact solution procedure is developed. Section 16.4 is dedicated to
numerical studies for demonstrating the advantage of the portfolio contract model,
and obtaining some managerial insights from sensitivity analysis. Section 16.5
briefly concludes the chapter and provides some future research directions.
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16.2 Problem Formulation

We consider the following multi-product newsvendor problem. A retailer sells n
different products with stochastic demands over a single period, and each product
can be acquired from the suppliers by signing a portfolio contract, which includes
a fixed-price contract and an option contract. In the fixed-price contract, the retailer
pay unit fixed cost for procuring each product; in the option contract, the retailer
pays unit reservation cost up-front for a commitment from the supplier, then
the retailer can pays unit execution cost for procuring each product under the
commitment level. If retailer does not exercise the option, the initial payment is lost.
The retailer has limited budget for signing the portfolio contracts. In the following,
we use i to be the index of product 1, . . . ,n.

The cost parameters used in this chapter are summarized in the following:

pi = Unit selling price for product i;
si = Unit salvage value for product i;
ci = Unit procurement cost of fixed-price contract for product i;
vi = Unit reservation cost of option contract for product i;
wi = Unit execution cost of option contract for product i;
B = Total budget available for signing the portfolio contracts.

To avoid the trivial case, we assume that pi > ci > si for i = 1, . . . ,n. Typically,
the total cost of the option contract (reservation plus execution cost) is assumed
to be larger than the cost of fixed-price contract, i.e., vi +wi > ci; otherwise, the
fixed-price contract is dominated by the option contract, and, hence, the fixed-price
contract will never be engaged in the problem. We also assume that the reservation
cost of option contract is smaller than the pure procurement cost of the fixed-price
contract, i.e., vi < ci − si; otherwise, the option contract will be dominated by the
fixed-price contract because the fixed-price contract always has the lower costs
whether the product can be sold or not. From these two assumptions, i.e., vi+wi > ci

and vi < ci − si, we have si < wi, which implies that the retailer will not have an
opportunity to make profit by executing an option contract in order to obtain the
product salvage value.

The retailer makes quantity decisions of the portfolio contracts to fulfill n
independent and stochastic demands. Let Di denote the random demand for product
i = 1, . . . ,n, which has continuous probability density function fi(·), cumulative
distribution function Fi(·), and reverse distribution function F−1

i (·). It is not
uncommon to assume that all demands are nonnegative, thus, we can assume
that Fi(x) = 0 for all x < 0, and Fi(0) ≥ 0. This assumption does not rule out
normal distribution as well as many other distributions with negative support values,
since the distributions with negative support values should be approximated as
nonnegative demand distributions in practice (Zhang and Du 2010).

The retailer’s decisions are made in two stages. At the first stage, the retailer
receives demand forecasts for all products, and determines a fixed-price contract
quantity xi, and an option contract quantity yi to be signed. At the second stage,
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all demands are realized and the retailer exercises the quantity min((Di − xi)
+,yi)

of product i from the option contract to satisfy the demands for maximizing the
revenue, where (·)+ = max{·,0}.

We are ready to present profit-maximization model (denoted as problem P):

Maxπ(x,y) =
n

∑
i=1

πi =
n

∑
i=1

Ei

[
pi min(Di,xi + yi)+ si(xi −Di)

+

−cixi − viyi −wi min((Di − xi)
+,yi)

]
, (16.1)

Subject to

n
∑

i=1
(cixi + viyi)≤ B, (16.2)

xi ≥ 0, yi ≥ 0, i = 1, . . . ,n. (16.3)

For each product i = 1, . . . ,n, the first term pi min(Di,xi + yi) in (16.1) is the selling
revenue, the second term si(xi −Di)

+ is the salvage value, the third term cixi is
the acquisition cost with the fixed-price contract, the fourth term viyi is the option
reservation cost, and the last term wi min((Di−xi)

+,y i) is the option execution cost.
Equation (16.2) specifies the budget constraint on the quantities of the portfolio
contracts. Note that the execution costs are excluded from the budget constraint
because they are not needed to pay when signing the contracts at the first stage.
Equation (16.3) gives the nonnegative constraints on the order quantities.

By using the formula min(Di,xi + yi) = xi + yi − (xi + yi −Di)
+ and integration

by parts formula
∫ x

0 (x− z)dF(z) =
∫ x

0 F(z)dz, the expected profit of problem P can
be rewritten as:

π(x,y) =
n

∑
i=1

Ei

[
pi(xi + yi − (xi + yi−Di)

+)+ si(xi −Di)
+

−cixi − viyi −wi(yi − (xi + yi−Di)
++(xi −Di)

+)

]

=
n

∑
i=1

[
(pi − ci)xi +(pi −wi − vi)yi

−(pi −wi)
∫ xi+yi

0 (xi + yi − zi)dFi(zi)− (wi − si)
∫ xi

0 (xi − zi)dFi(zi)

]

=
n

∑
i=1

[
(pi − ci)xi +(pi −wi − vi)yi

−(pi −wi)
∫ xi+yi

0 Fi(zi)dzi − (wi − si)
∫ xi

0 Fi(zi)dzi

]
.

(16.4)

16.3 Properties and Solution Procedure

In this section, we first establish some structural properties for the optimal decisions,
and then we develop an efficient solution method for the studied problem.
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16.3.1 Properties of the Optimal Solution

Beginning with the objective function, we have the following proposition:

Proposition 1. The expected profit function π is jointly concave in xi and yi, i =
1, . . . ,n.

Proof. Since

{
∂π/∂xi = (pi − ci)− (pi−wi)Fi(xi + yi)− (wi − si)Fi(xi)

∂π/∂yi = (pi −wi − vi)− (pi −wi)Fi(xi + yi)
, i = 1, . . . ,n,

we have

{
∂ 2π/∂x2

i =−(pi −wi) fi(xi + yi)− (wi − si) fi(xi)≤ 0
∂ 2π/∂y2

i = ∂ 2π/∂xi∂yi =−(pi −wi) fi(xi + yi)≤ 0
, i = 1, . . . ,n,

and ∂ 2π/∂xi∂x j = ∂ 2π/∂yi∂y j = ∂ 2π/∂xi∂y j = 0 for i �= j, i, j = 1, . . . ,n. Thus,
the Hessian matrix of the objective function is negative semi-definite. ��
Since π is concave and the feasible domain of the problem is convex, the Karush–
Kuhn–Tucker (KKT) conditions are necessary and sufficient for optimality. Let
λ ≥ 0, αi ≥ 0, and βi ≥ 0, i = 1, . . . ,n, be the dual variables corresponding to the
constraints in (16.2)–(16.3), respectively. Then (xi,yi), i = 1, . . . ,n, is optimal if and
only if there exists nonnegative dual variables λ , αi, and βi, i = 1, . . . ,n, such that

(pi−ci)−(pi−wi)Fi(xi+yi)−(wi−si)Fi(xi)−λ ci+αi=0, i=1, . . . ,n, (16.5)

(pi −wi − vi)− (pi −wi)Fi(xi + yi)−λ vi+βi = 0, i = 1, . . . ,n, (16.6)
n
∑

i=1
(αixi +βiyi) = 0, (16.7)

λ
(

B−
n
∑

i=1
(cixi + viyi)

)
= 0. (16.8)

To solve these KKT conditions, we first investigate how to solve (16.5)–(16.7) with
any given λ ≥ 0, and then we illustrate how to decide the optimal value for λ .
Denote by (x̃λ

i , ỹ
λ
i , α̃λ

i , β̃ λ
i ,λ ), i = 1, . . . ,n, an solution of (16.5)–(16.7), then we

have the following propositions:

Proposition 2. For any given λ ≥ 0,(x̃λ
i , ỹ

λ
i ), i = 1, . . . ,n, satisfies

⎧⎪⎪⎨
⎪⎪⎩

x̃λ
i = F−1

i

(
min

{(
wi−(1+λ )(ci−vi)

wi−si

)+
,
(

pi−(1+λ )ci
pi−si

)+})

ỹλ
i =

(
F−1

i

((
pi−wi−(1+λ )vi

pi−wi

)+)−F−1
i

((
wi−(1+λ )(ci−vi)

wi−si

)+))+ .
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Proof. The proof of this proposition is presented in Appendix.
This proposition characterizes the optimal solution of (16.5)–(16.7) with any

given λ ≥ 0, and also indicates the optimal solution to the problem without budget
constraint (denoted as problem P1). Denote by (x̃i, ỹi), i = 1, . . . ,n, an optimal
solution to problem P1, by simply setting λ = 0 in Proposition 2, then the optimal
values of (x̃i, ỹi), i = 1, . . . ,n are given as follows:⎧⎨

⎩
x̃i = F−1

i

(
min

{
wi+vi−ci

wi−si
, pi−ci

pi−si

})

ỹi =
(

F−1
i

(
pi−wi−vi

pi−wi

)
−F−1

i

(
wi+vi−ci

wi−si

))+ . (16.9)

From the result of Proposition 2, we also know that the difference between the
optimal solution of the constraint problem and that of the unconstraint problem
increases too, when λ increases.

Before discussing the result in (16.9), we first investigate the optimal uncon-
strained orders under pure fixed-price contract (FC) and pure option contract (OC).
If there is no budget constraint and only fixed-price contract is used, then we can
solve the optimal unconstrained order x̃i,FC from

∂π/∂xi = (pi − ci)− (pi−wi)Fi(xi + yi)− (wi − si)Fi(xi) = 0,

by setting yi = 0, and, hence, x̃i,FC = F−1
i

(
pi−ci
pi−si

)
, i = 1, . . . ,n. If there is no budget

constraint and only pure option contract is used, then we can solve the optimal
unconstrained order ỹi,OC from

∂π/∂yi = (pi −wi − vi)− (pi−wi)Fi(xi + yi) = 0,

by setting xi = 0, and, hence, ỹi,OC = F−1
i

(
pi−wi−vi

pi−wi

)
, i = 1, . . . ,n. Note that the

option contract (vi,wi) can also be viewed as a fixed-price contract with unit
purchase cost c′i = vi + wi, and unit salvage value s′i = wi. Thus, ỹi,OC and x̃i,FC

have the same form, i.e., ỹi,OC = F−1
i

(
pi−wi−vi

pi−wi

)
= F−1

i

(
pi−c′i
pi−s′i

)
.

Let us discuss the relationship among the unconstrained solution x̃i,FC, ỹi,OC, and
the optimal unconstrained order of portfolio contract, (x̃i, ỹi) presented in (16.9). If
pi−wi−vi

pi−wi
> pi−ci

pi−si
, then the mathematical transform gives pi−wi−vi

pi−wi
> pi−ci

pi−si
> vi+wi−ci

wi−si
,

and we have x̃i = F−1
i

(
wi+vi−ci

wi−si

)
and ỹi = F−1

i

(
pi−wi−vi

pi−wi

)
−F−1

i

(
wi+vi−ci

wi−si

)
; thus,

the total order quantity of portfolio contract is x̃i + ỹi = F−1
i

(
pi−wi−vi

pi−wi

)
; otherwise,

we have pi−wi−vi
pi−wi

≤ pi−ci
pi−si

≤ vi+wi−ci
wi−si

, and, hence, x̃i = F−1
i

(
pi−ci
pi−si

)
and ỹi = 0; thus

the total order quantity of portfolio contract is x̃i + ỹi = F−1
i

(
pi−ci
pi−si

)
. Therefore, the

total optimal unconstrained order of portfolio contract can be expressed as

x̃i + ỹi = max

{
F−1

i

(
pi − ci

pi − si

)
,F−1

i

(
pi −wi − vi

pi −wi

)}
= max{x̃i,FC, ỹi,OC} .
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From the proof of Proposition 2, we have

x̃λ
i + ỹλ

i = max

{
F−1

i

(
pi − (1+λ )ci

pi − si

)+

,F−1
i

(
pi −wi − (1+λ )vi

pi −wi

)+
}
.

Since λ ≥ 0, we know x̃λ
i + ỹλ

i ≤ x̃i + ỹi, which means that the total optimal
unconstrained order of portfolio contract is an upper bound for the total optimal
order of portfolio contract in problem P. Thus, the maximum of the optimal
unconstrained order under pure fixed-price contract and the optimal unconstrained
order under pure option contract is an upper bound for the optimal total order of
portfolio contract in problem P.

Denote by (x∗i ,y∗i ), i = 1, . . . ,n, an optimal solution to problem P, and λ ∗ the
corresponding optimal value of λ , we have the following proposition:

Proposition 3. (a) I f ∑n
i=1 (cix̃i + viỹi)≤ B, then x∗i = x̃i and y∗i = ỹi, i = 1, . . . ,n;

(b) I f ∑n
i=1 (cix̃i + viỹi)> B, then ∑n

i=1 (cix∗i + viy∗i ) = B.

Proof. (a) This property is obvious since the budget constraint is not active. It is
also easily verified that (x∗i ,y∗i ) = (x̃i, ỹi) with λ ∗ = 0 satisfy the condition in
(16.8).

(b) If ∑n
i=1 (cix∗i + viy∗i ) < B, according to ∑n

i=1 (cix̃i + viỹi) > B, there must
exist at least one k ∈ {1, . . . ,n} such that ckx∗k + vky∗k < ckx̃k + vkỹk.
Since ∑n

i=1 (cix∗i + viy∗i )<B, the slackness condition λ (B−∑n
i=1 (cixi + viyi))=

0 in (16.8) implies λ ∗ = 0, and this further means (x∗i ,y∗i ) = (x̃i, ỹi),
i = 1, . . . ,n, which violates ckx∗k + vky∗k < ckx̃k + vkỹk. Thus, we have ∑n

i=1
(cix∗i + viy∗i ) = B. ��

Property (a) indicates that the optimal solution to problem P is the same as that of
problem P1 if budget constraint is inactive. Property (b) illustrates that the budget
must be fully utilized at the optimal solution if the budget constraint is binding, i.e.,

n
∑

i=1
(cix̃i + viỹi)> B.

16.3.2 Solution Procedure

Before developing the solution procedure, we first prove the following result:

Proposition 4. cix̃λ
i + viỹλ

i is nonincreasing in λ .

Proof. The proof of this proposition is presented in Appendix.
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Fig. 16.1 Main steps
of Algorithm 1

Proposition 4 provides a good property with which the optimal value of λ can be
found without using any linear search method. We can develop an efficient way to
decide the optimal value for λ when the budget constraint is binding.

If the budget constraint is binding, according to Proposition 3(b), we know

that ∑n
i=1 (cix∗i + viy∗i ) = B, which implies λ ∗ ≤ λ̄ ≡ maxi=1,...,n

(
pi−ci

ci
, pi−wi−vi

vi

)
.

Otherwise, when λ ∗ > max
{

pi
ci
− 1, pi−wi

vi
− 1
}

, i = 1, . . . ,n, from the proof of

Proposition 2, we know x̃λ ∗
i = ỹλ ∗

i = 0, i = 1, . . . ,n, which violates the necessary
condition ∑n

i=1 (cix∗i + viy∗i ) = B. Thus, according to the results in Propositions 2–4,
we can determine λ ∗ by applying a binary search method over the interval λ ∈ [0, λ̄ ],
and simultaneously solve the optimal solution to problem P.

Main steps of the solution procedure for solving the optimal solution to problem
P are summarized in Algorithm 1 (as shown in Fig. 16.1).

In Algorithm 1, we first solve problem P1 (Step 0) to obtain (x̃i, ỹi), i = 1, . . . ,n.
Then we judge whether (x̃i, ỹi), i = 1, . . . ,n, leads to a binding budget constraint
or not (Step 1). If the budget constraint is inactive at (x̃i, ỹi), i = 1, . . . ,n, then we
let (x∗i ,y∗i ) = (x̃i, ỹi), i = 1, . . . ,n. Otherwise, we apply the binary search procedure
over interval [λL,λU ] to determine (x∗i ,y∗i ) (i = 1, . . . ,n) (Steps 2–5). Step 6 outputs
the optimal solution to problem P. Since we do not assume any specific property
on demand distribution, our approach is applicable to any continuous demand
distribution.

The computational complexity of Algorithm 1 is analyzed as follows. The
complexity of Steps 0–2 is O(n). The search of λ within the interval [0,λ̄ ] in Steps
3–5 needs log2(λ̄/ε) iterations, where ε is the error target for the binary search
procedure. Take λ̄ = 1010 and ε = 10−6 as an example, the number of iterations for
determining λ is log2(λ̄/ε) = 36.8414 ≈ 37. The computation procedure in each
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step of Steps 3–5 has complexityO(n). So the computational complexity of Steps
3–5 is O(log2(λ̄/ε)n). The complexity of Step 6 is O(n). Thus, Algorithm 1 has
computational complexity O(log2(λ̄/ε)n), which is polynomial in the number of
products.

16.4 Numerical Studies

In this section, numerical results are provided to show the efficiency of the proposed
solution procedure, and to compare three models with different procurement
contracts, i.e., fixed-price contract (FC), option contract (OC), and portfolio contract
(PC). Sensitivity analysis is also provided for obtaining some managerial insights.
The two pure contract models (i.e., fixed-price contract, pure option contract) are
easily obtained from the portfolio contract model by setting yi = 0 or xi = 0,
i = 1, . . . ,n, respectively. The portfolio contract model should dominate the two
pure contract models since the optimal solutions to the two pure contract models are
both feasible solutions to the portfolio contract model.

Before presenting numerical results, we first briefly illustrate how to solve pure
fixed-price contract model and pure option contract model. The two pure contract
models can be reformulated as minimizing −πFC(x) and −πOC(y), respectively:

(FC) Min−πFC(x) = −
[

n

∑
i=1

(pi − ci)xi − (pi− si)

∫ xi

0
Fi(zi)dzi

]
,

s.t.
n

∑
i=1

cixi ≤ B, xi ≥ 0, i = 1, . . . ,n.

(OC) Min−πOC(y) = −
[

n

∑
i=1

(pi −wi − vi)yi − (pi −wi)
∫ yi

0
Fi(zi)dzi

]
,

s.t.
n

∑
i=1

viyi ≤ B, yi ≥ 0, i = 1, . . . ,n.

Since the two pure contract models are the special cases of problem P where yi =
0 or xi = 0, i = 1, . . . ,n, according to Proposition 1, we know πFC(x) is concave in x,
and πOC(y) is concave in y. Thus the objective functions of PC and OC models, i.e.,
−πFC(x) and −πOC(y), are both convex. It is obvious that the objective functions of
PC and OC models are both separable, therefore the two pure contract models can
be viewed as the class of convex separable nonlinear knapsack problems studied by
Zhang and Hua (2008).

These knapsack problems have two important characteristics: positive marginal
cost (PMC) and increasing marginal loss-cost ratio (IMLCR). PMC means that the
budget occupancy increases in order quantity, which is guaranteed by the positive
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Table 16.1 Parameters and solutions for the illustrative example

i pi si ci vi wi μi σi x∗i,FC y∗i,OC x∗i,PC y∗i,PC

1 96 14 43 11 42 109 22 85.07 127.23 0.00 117.63
2 96 11 41 14 49 103 28 77.34 117.85 63.15 39.28
3 92 14 47 14 46 102 24 0.00 114.29 0.00 100.84
4 91 17 46 14 46 108 29 34.94 122.29 0.00 105.76
5 99 18 49 14 43 103 27 52.69 121.21 0.00 108.00
6 105 19 45 24 45 106 27 82.37 112.84 93.99 0.00
7 105 18 44 22 49 109 24 89.74 115.53 99.37 0.00
8 104 14 42 22 44 106 22 90.23 113.50 96.28 2.68
9 109 16 46 24 46 108 22 89.34 114.67 95.33 4.20
10 101 17 47 24 44 101 22 72.90 105.38 80.56 7.73

π∗ 37,073.94 33,340.71 44,301.65

linear constraint, i.e., ci > 0, i = 1, . . . ,n, for FC model, and vi > 0, i = 1, . . . ,n, for
OC model; IMLCR requires that the ratio of marginal loss to marginal cost increases
in order quantity, i.e. d[−πFC(x)]

cidxi
= − pi−ci

ci
+ pi−si

ci
Fi(xi) increases in xi, i = 1, . . . ,n,

for FC model, and d[−πOC(y)]
vidyi

= − pi−wi−vi
vi

+ pi−wi
vi

Fi(yi) increases in yi, i = 1, . . . ,n,
for OC model. Since FC and OC models satisfy PMC and IMLCR, the method with
linear computation complexity developed by Zhang and Hua (2008) can be directly
used to solve them.

It is worth noticing that the method proposed by Zhang and Hua (2008) is not
available for solving the portfolio contract model proposed in this chapter, due to
the fact that the objective function of problem P is nonseparable.

In the numerical experiment, the relative profit differences between FC, OC,
and PC, i.e., ΔπPC

FC = (π∗
PC −π∗

FC)/π∗
FC×100%, ΔπPC

OC = (π∗
PC −π∗

OC)/π∗
OC×100%

are reported to show the benefit of portfolio contract model and to obtain some
managerial insights through sensitivity analysis.

16.4.1 An Illustrative Example

In this example, demands of 10 products are all normally distributed, and there is
a budget constraint B = 30,000. Table 16.1 shows the relevant information, where
μi, σi, i = 1, . . . ,n, are parameters of the mean and standard deviation of the normal
demand x∗i,FC and y∗i,OC are the optimal solutions of the fixed-price contract model
and the option contract model, respectively; x∗i,PC and y∗i,PC are the optimal solutions
of the portfolio contract model and π∗ stands for the optimal expected profits of the
three different models. In order to investigate the general case, we set the parameters
such that pi−wi−vi

pi−wi
> pi−ci

pi−si
for i = 1, · · · ,5 and pi−wi−vi

pi−wi
< pi−ci

pi−si
for i = 6, · · · ,10. The

results in Table 16.1 show that the portfolio contract model is better than the fixed-
price contract and option contract models.
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Fig. 16.2 The values of λL, λU , and λ in the iteration process

To show the efficiency of the proposed solution procedure, we plot the iterative
solution process of this example in Fig. 16.2. In this figure, we report the values
of λL, λU , and λ in the iteration process. From this figure, it can be observed that
Algorithm 1 solves the optimal value λ ∗ = 0.7059 within only 18 iteration times.

16.4.2 Sensitivity Analysis

To investigate how the budget constraint affects the relative profit differences among
three procurement strategies, we provide sensitivity analysis by changing B of
the base example shown in Table 16.1 and keeping other parameters unchanged.
The results of more cases with different B are presented in Tables 16.2–16.4.
In Table 16.2, we report the optimal profits and the relative profit differences of
different models, and the ratio of total budget used on option contracts, which is
defined as ΔBO

PC =∑n
i=1 viy∗i,PC/∑n

i=1 (cix∗i,PC + viy∗i,PC)×100%. Tables 16.3 and 16.4
give the optimal order quantity of fixed-price contract and the optimal order quantity
of option contract in the portfolio contract for different B, respectively.

From Table 16.2, we have the following observations:

(1) The optimal profits of three procurement strategies are all nondecreasing in the
available budget. This observation is obvious since a larger B will provide a
larger feasible domain of the optimization problem.
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Table 16.2 The profit comparisons, shadow prices, and ΔBO
PC for different B

B π∗
FC π∗

OC π∗
PC ΔπPC

FC (%) ΔπPC
OC(%) λ ∗

FC λ ∗
OC λ ∗

PC ΔBO
PC(%)

100 147.62 390.91 390.91 164.81 0.00 1.48 3.91 3.91 100
1,100 1,623.74 4,072.63 4,072.63 150.82 0.00 1.48 3.00 3.00 100
2,100 3,096.56 6,943.82 6,943.82 124.24 0.00 1.46 2.45 2.45 100
3,100 4,520.40 9,272.62 9,272.62 105.13 0.00 1.39 2.28 2.28 100
4,100 5,906.56 11,517.79 11,517.79 95.00 0.00 1.39 2.21 2.21 100
5,000 7,150.73 13,453.37 13,453.37 88.14 0.00 1.38 2.05 2.05 100
10,000 13,934.67 21,831.71 21,831.71 56.67 0.00 1.33 1.54 1.54 100
15,000 20,472.33 28,993.59 28,993.59 41.62 0.00 1.24 1.30 1.30 100
20,000 26,527.46 33,198.01 34,978.14 31.86 5.36 1.15 0.27 1.13 60.37
25,000 32,091.06 33, 340.71 40,180.57 25.21 20.52 1.02 0.00 0.91 36.03
30,000 37,073.94 33,340.71 44,301.65 19.50 32.88 0.97 0.00 0.71 21.98
35,000 41,808.94 33,340.71 46,892.01 12.16 40.64 0.91 0.00 0.41 15.77
40,000 45,933.08 33,340.71 48,692.49 6.01 46.05 0.72 0.00 0.31 9.78
45,000 48,838.10 33,340.71 49,983.31 2.34 49.92 0.43 0.00 0.21 5.37
50,000 50,185.62 33,340.71 50,581.42 0.79 51.71 0.11 0.00 0.01 2.71
55,000 50, 276.22 33,340.71 50, 582.34 0.61 51.71 0.00 0.00 0.00 2.63
60,000 50,276.22 33,340.71 50,582.34 0.61 51.71 0.00 0.00 0.00 2.63

Table 16.3 The optimal order quantity of fixed-price contract in the portfolio contract

x∗i,PC

B 1 2 3 4 5 6 7 8 9 10

100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1,100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2,100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4,100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20,000 0.00 0.00 0.00 0.00 0.00 40.74 73.00 68.60 0.00 0.00
25,000 0.00 0.00 0.00 0.00 0.00 81.87 90.72 86.80 83.27 17.89
30,000 0.00 63.15 0.00 0.00 0.00 93.99 99.37 96.28 95.33 80.56
35,000 0.00 87.44 0.00 54.62 0.00 104.94 108.70 105.92 106.66 96.26
40,000 34.84 92.75 68.96 76.45 0.00 108.33 111.61 108.39 109.27 99.24
45,000 82.66 97.97 80.78 88.40 49.67 111.94 114.72 111.02 112.04 102.36
50,000 100.31 108.10 95.71 105.99 89.37 119.60 121.34 116.57 117.85 108.75
55,000 100.95 108.58 96.31 106.75 90.37 119.98 121.67 116.84 118.13 109.05
60,000 100.95 108.58 96.31 106.75 90.37 119.98 121.67 116.84 118.13 109.05

(2) The optimal profits of three procurement strategies do not change when the
available budget exceeds the maximal active budgets, which are ∑n

i=1 cix̃i,FC,
∑n

i=1 viỹi,OC, and ∑n
i=1 cix̃i,PC + viỹi,PC in FC, OC, and PC models, respectively.

The budget constraint is inactive when the budget is larger than the maximal
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Table 16.4 The optimal order quantity of option contract in the portfolio contract

y∗i,PC

B 1 2 3 4 5 6 7 8 9 10

100 9.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1,100 89.31 0.00 0.00 0.00 8.40 0.00 0.00 0.00 0.00 0.00
2,100 97.30 0.00 0.00 0.00 73.55 0.00 0.00 0.00 0.00 0.00
3,100 99.37 46.36 18.83 0.00 78.16 0.00 0.00 0.00 0.00 0.00
4,100 100.31 55.35 54.38 24.22 80.08 0.00 0.00 0.00 0.00 0.00
5,000 102.20 65.69 66.87 60.58 83.70 0.00 0.00 0.00 0.00 0.00
10,000 108.01 83.45 83.95 84.50 93.63 0.00 34.44 73.13 67.01 0.00
15,000 110.75 89.54 89.45 91.52 97.92 68.17 77.83 83.87 82.62 60.31
20,000 112.63 93.31 92.80 95.75 100.74 36.89 12.33 20.25 88.47 73.03
25,000 115.16 98.07 97.02 101.02 104.47 4.61 1.98 7.58 11.33 64.16
30,000 117.63 39.28 100.84 105.76 108.00 0.00 0.00 2.68 4.20 7.73
35,000 121.38 21.26 106.33 57.90 113.26 0.00 0.00 0.00 0.00 0.00
40,000 87.82 18.01 39.16 38.28 115.02 0.00 0.00 0.00 0.00 0.00
45,000 41.40 15.00 29.27 28.70 67.27 0.00 0.00 0.00 0.00 0.00
50,000 26.77 9.53 18.38 16.06 31.64 0.00 0.00 0.00 0.00 0.00
55,000 26.28 9.28 17.98 15.54 30.84 0.00 0.00 0.00 0.00 0.00
60,000 26.28 9.28 17.98 15.54 30.84 0.00 0.00 0.00 0.00 0.00

active budget. In these examples, the maximal active budgets are 51,706.19,
21,086.23, and 50,196.49 in FC, OC, and PC models, so π∗

FC, π∗
OC, and π∗

PC in
Table 16.2 do not change when B are larger than the maximal active budgets,
respectively.

(3) The relative profit difference between FC and PC decreases as the value of
B increases. When the budget B becomes larger, the total order x∗i,PC + y∗i,PC

will be close to x̃i,PC + ỹi,PC = max
{

F−1
i

(
pi−vi−wi

pi−wi

)
,F−1

i

(
pi−ci
pi−si

)}
, i =

1, . . . ,n, and the optimal order x∗i,FC of fixed-price contract will be close to

x̃i,FC = F−1
i

(
pi−ci
pi−si

)
, i = 1, . . . ,n. When the budget B becomes smaller, the

difference between x∗i,PC + y∗
i,PC and x∗i,FC become smaller, then the relative

profit difference between FC and PC also becomes smaller.
(4) The relative profit difference between OC and PC decreases with the decreasing

of B. When the budget B becomes smaller, ΔBO
PC becomes larger, i.e., most of

the budget will be spent on the option contracts, since option contracts occupy
small unit procurement costs (i.e., vi < ci, i = 1, . . . ,n). Thus, the result of PC
is close to that of OC as B decreases.

According to Tables 16.3 and 16.4, we know that: (1) The optimal order quantity
of fixed-price contract in the portfolio contract increases as B increases, and it will
become zero when B is small enough; (2) The optimal order quantity of option
contract in the portfolio contract initially increases and then decreases with the
increasing of B, and the turning point is x∗i,PC > 0, which is indicated in bold in
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Table 16.5 Statistical comparison of the three different procurement models

Problem size n 10 50 100

Relative profit difference (%) ΔπPC
FC ΔπPC

OC ΔπPC
FC ΔπPC

OC ΔπPC
FC ΔπPC

OC

Mean 21.86 25.35 22.09 25.64 21.89 25.82
Std. Dev. 3.47 3.54 1.61 1.56 1.17 1.07
95% C.I. Lower 21.17 24.65 21.77 25.33 21.65 25.60

Upper 22.55 26.06 22.41 25.95 22.12 26.03

Table 16.4. It will reach the minimal value F−1
i

(
pi−wi−vi

pi−wi

)
−F−1

i

(
wi+vi−ci

wi−si

)
> 0

for the case of pi−wi−vi
pi−wi

> pi−ci
pi−si

as B becomes large enough, and it will be zero for

the case of pi−wi−vi
pi−wi

< pi−ci
pi−si

as B becomes large enough.
From our theoretical results and the above observations, we come to the

following insights: (1) managers should attempt to find FC strategy when the
available budget is large and PC strategy is not available; (2) OC strategy should
be paid more attention to when the available budget is too small and PC strategy
cannot be used.

16.4.3 Strategies Comparison

In this section, the three procurement strategies, i.e., FC, OC, and PC, are compared
by using randomly generated problems. In these examples, demands of all products
are all normally distributed, and the total budget is B = 3,500× n. Let μi, σi, i =
1, . . . ,n, are parameters of the mean and standard deviation of the normal demand.
We use the notation x ∼U(α,β ) to denote that x is uniformly generated over [α,β ].
The problem parameters are generated as follows: μi ∼U(101,110), σi ∼U(21,30),
pi ∼ (91,100), ci ∼U(41,50), si ∼U(11,20), wi ∼U(41,50), vi ∼U(11,20), i =
1, . . . ,n. Note that the generated parameters satisfy the assumptions made in this
chapter.

In this numerical study, we set n = 10, 50, 100, respectively. For each problem
size n, 100 test instances are randomly generated. The statistical results of relative
profit difference ΔπPC

FC and ΔπPC
OC, are reported in Table 16.5, and the statistical

results of computation time and number of iterations for searching λ ∗ in the
portfolio contract model, are reported in Table 16.6. In these tables, 95% C.I. stands
for 95% confidence interval.

From Table 16.5, we verify that the portfolio contract model outperforms the
fixed-price contract and option contract models. This suggests that the retailer
should pay more attention to portfolio contract when managing multi-product
newsvendor problem with budget constraint if portfolio contracts are available.
Additionally, the relationship between the two pure contract models depends on
the problem parameters, e.g., in the 100 test instances for the case of n = 10, 34
option contract models outperform fixed-price contract models.
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Table 16.6 Computation times and number of iterations of the solution method

Computation time Number of iterations

Problem size n 10 50 100 10 50 100

Mean 10.92 29.17 52.27 30.10 31.81 32.88
Std. Dev. 1.91 2.35 3.90 3.08 2.66 2.61
95% C.I. Lower 10.54 28.71 51.50 29.49 31.28 32.36

Upper 11.30 29.64 53.04 30.71 32.34 33.40

According to Table 16.6, we know that our solution method can solve the
problems quickly in limited iterations. The standard deviations of number of
iterations and computation times are quite low in Table 16.6, reflecting the fact that
our solution method is quite effective and robust. Robustness of our method should
be attributed to the effectiveness of binary search procedure.

16.5 Conclusion

In this chapter, we investigate a portfolio approach to multi-product newsven-
dor problem with budget constraint, in which the procurement strategy for the
newsvendor products is designed as portfolio contract. By establishing the structural
properties of optimal solution, we develop an efficient solution method for the
studied problem. The proposed algorithm has two main advantages: (1) it has
linear computation complexity; (2) it is applicable to general continuous demand
distribution.

In comparison with fixed-price contract and option contract models, the portfolio
contract model generates significant improvement when managing multi-product
newsvendor problem with budget constraint. Through sensitivity analysis, we come
to the following insights: (1) The performance difference between fixed-price
contract and portfolio contract models will become smaller as the available budget
increases; (2) the performance gap between option contract and portfolio contract
models increases when the available budget becomes larger. These insights suggest
that managers with large budgets should pay more attention to fixed-price contract if
the portfolio contract is not available, and that managers with small budgets should
attempt to seek an option contract if the portfolio contract cannot be used.

There are several ways to extend this research. At first, this work can be
directly extended to consider the scenario where different procurement strategies
are available for different products. Secondly, another area of the future research
is the consideration of an environment with supply uncertainty in sourcing and to
investigate the effect of portfolio contract on managing supply uncertainty. Thirdly,
one extension of this chapter might be to study portfolio contract model with
demand updating in multi-stage settings. In addition, the demands for the multiple
products are independent of one another in our study, an interesting and challenging
extension is to consider the model in which the multiple products are substituted



16 A Portfolio Approach to Multi-product Newsvendor Problem... 377

to some extent and thus the respective demands are correlated. Finally, it will
be a significant issue to consider the model with the horizontal and/or vertical
competition in the supply chain, and some topics of this extension have been
investigated in a working paper of ours.
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Appendix:

Proof of Proposition 2. To prove this proposition, we consider two cases, respec-
tively:

(1) λ > min
{

pi
ci
− 1, pi−wi

vi
− 1
}

, (2) λ ≤ min
{

pi
ci
− 1, pi−wi

vi
− 1
}

.

Case (1): The condition λ > min
{

pi
ci
− 1, pi−wi

vi
− 1
}

holds only if pi − ci < λ ci or

pi −wi − vi < λ vi.
If pi−ci < λ ci, then we have (pi−si)Fi(xi)<αi from (16.5). (pi−si)Fi(xi)<αi

and αixi = 0 implies x̃λ
i = 0.

If pi − wi − vi < λ vi, then we have (pi − wi)Fi(yi) < βi from (16.6). (pi −
wi)Fi(yi)< βi and βiyi = 0 implies ỹλ

i = 0.
If pi − ci < λ ci and pi −wi − vi ≥ λ vi, substituting x̃λ

i = 0 into (16.6), we have
(pi−wi)Fi(yi)≥ βi. (pi−wi)Fi(yi)≥ βi and βiyi = 0 implies β̃ λ

i = 0. Then we have

ỹλ
i = F−1

i

(
pi−wi−(1+λ )vi

pi−wi

)
from (16.6).

If pi −wi − vi < λ vi and pi − ci ≥ λ ci, substituting ỹλ
i = 0 into (16.5), we have

(pi− si)Fi(xi)≥ αi. (pi − si)Fi(xi)≥ αi and αixi = 0 implies α̃λ
i = 0. Then we have

x̃λ
i = F−1

i

(
pi−(1+λ )ci

pi−si

)
from (16.5).

Thus, x̃λ
i = F−1

i

(( pi−(1+λ )ci
pi−si

)+)
, and ỹλ

i = F−1
i

(( pi−wi−(1+λ )vi
pi−wi

)+)
if λ >

min
{

pi
ci
− 1, pi−wi

vi
− 1
}

.

Case (2): According to (16.6), we have xi + yi = F−1
i

(
pi−wi−(1+λ )vi+βi

pi−wi

)
. Sub-

stituting it into (16.5), we have xi = F−1
i

(
wi−(1+λ )(ci−vi)+αi−βi

wi−si

)
. The condition

λ ≤ min
{

pi
ci
− 1, pi−wi

vi
− 1
}

implies pi − ci ≥ λ ci and pi −wi − vi ≥ λ vi.
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In this case, we consider three subcases:

(2.1)
pi − (1+λ )ci

pi − si
<

pi −wi − (1+λ )vi

pi −wi
,

(2.2)
pi −wi − (1+λ )vi

pi −wi
<

pi − (1+λ )ci

pi − si
,

(2.3)
pi −wi − (1+λ )vi

pi −wi
=

pi − (1+λ )ci

pi − si
.

Subcase (2.1): In this case, we have wi−(1+λ )(ci−vi)
wi−si

< pi−(1+λ )ci
pi−si

< pi−wi−(1+λ )vi
pi−wi

.
By combining (16.5) and (16.6), we have wi − (1 + λ )(ci − vi) − βi = (wi −
si)Fi(xi)−αi.

If wi − (1+λ )(ci − vi) < 0, then we have (wi − si)Fi(xi) < αi. (wi − si)Fi(xi) <
αi and αixi = 0 implies x̃λ

i = 0. Substituting x̃λ
i = 0 into (16.6), we have (pi −

wi)Fi(yi) > βi. (pi −wi)Fi(yi) > βi and βiyi = 0 implies β̃ λ
i = 0. Then we have

ỹλ
i = F−1

i

(
pi−wi−(1+λ )vi

pi−wi

)
from (16.6).

If wi−(1+λ )(ci−vi)≥ 0, then wi−(1+λ )(ci−vi) = (wi−si)Fi(xi)−αi+βi ≥
0. Since pi−wi−(1+λ )vi > 0, there must be xi+yi > 0. According to αixi+βiyi =
0, we know αiβi = 0. If βi = 0, then (wi − si)Fi(xi)−αi ≥ 0 and αixi = 0 implies
αi = 0. If αi = 0, then xi+yi > xi implies yi > 0, and then βi = 0. Thus α̃λ

i = β̃ λ
i = 0,

and

x̃λ
i = F−1

i

(
wi − (1+λ )(ci− vi)

wi − si

)
,

ỹλ
i = F−1

i

(
pi −wi − (1+λ )vi

pi −wi

)
−F−1

i

(
wi − (1+λ )(ci− vi)

wi − si

)
.

These results in subcase (2.1) can be rewritten as:

x̃λ
i = F−1

i

((
wi − (1+λ )(ci− vi)

wi − si

)+
)
,

ỹλ
i = F−1

i

(
pi −wi − (1+λ )vi

pi −wi

)
−F−1

i

((
wi − (1+λ )(ci− vi)

wi − si

)+
)
,

if λ ≤ min
{

pi
ci
− 1, pi−wi

vi
− 1
}

and pi−(1+λ )ci
pi−si

< pi−wi−(1+λ )vi
pi−wi

.

Subcase (2.2): In this case, we have pi−wi−(1+λ )vi
pi−wi

< pi−(1+λ )ci
pi−si

< wi−(1+λ )(ci−vi)
wi−si

.

xi+yi ≥ xi requires β̃ λ
i > 0, and, hence, ỹλ

i = 0. Since x̃λ
i = F−1

i

( pi−wi−(1+λ )vi+β̃ λ
i

pi−wi

)
> 0,αixi = 0 implies α̃λ

i = 0.
wi−(1+λ )(ci−vi)−β̃ λ

i
wi−si

=
pi−wi−(1+λ )vi+β̃ λ

i
pi−wi

implies
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β̃ λ
i =

(pi −wi)(wi − si)

pi − si

(
wi − (1+λ )(ci− vi)

wi − si
− pi −wi − (1+λ )vi

pi −wi

)
.

Substituting it into x̃λ
i , we have x̃λ

i = F−1
i

(
pi−(1+λ )ci

pi−si

)
.

Subcase (2.3): In this case, we have pi−wi−(1+λ )vi
pi−wi

= pi−(1+λ )ci
pi−si

= wi−(1+λ )(ci−vi)
wi−si

. If
αi > 0 and βi = 0, then xi + yi < xi, it is in contradiction with xi + yi ≥ xi. If αi = 0
and βi > 0, then xi < xi + yi, and, hence, yi > 0; It is in contradiction with βiyi = 0.
If αi > 0 and βi > 0, then xi + yi > 0, and, hence, αixi +βiyi �= 0, which violates
the slackness condition. Thus, there must be α̃λ

i = β̃ λ
i = 0, then x̃λ

i + ỹλ
i = x̃λ

i , and

ỹλ
i = 0, x̃λ

i = F−1
i

(
pi−(1+λ )ci

pi−si

)
.

Thus, the results in subcases (2.2) and (2.3) are both x̃λ
i = F−1

i

(
pi−(1+λ )ci

pi−si

)
, and

ỹλ
i = 0, if λ ≤ min

{
pi
ci
− 1, pi−wi

vi
− 1
}

and pi−wi−(1+λ )vi
pi−wi

≤ pi−(1+λ )ci
pi−si

.

In summary, all these results in the three subcases can be generalized as the
equations in Proposition 2. ��
Proof of Proposition 4. To prove this proposition, we first cite the following results
from the proof of Proposition 2:

(a) If λ > min
{ pi

ci
− 1, pi−wi

vi
− 1
}

, then x̃λ
i = F−1

i

(( pi−(1+λ )ci
pi−si

)+)
, and ỹλ

i =

F−1
i

(( pi−wi−(1+λ )vi
pi−wi

)+)
;

(b) If λ ≤ min
{

pi
ci
− 1, pi−wi

vi
− 1
}

and pi−(1+λ )ci
pi−si

< pi−wi−(1+λ )vi
pi−wi

, then

x̃λ
i = F−1

i

((
wi − (1+λ )(ci− vi)

wi − si

)+
)
, ỹλ

i = F−1
i

(
pi −wi − (1+λ )vi

pi −wi

)

−F−1
i

((
wi − (1+λ )(ci− vi)

wi − si

)+
)

;

(c) If λ ≤ min
{

pi
ci
− 1, pi−wi

vi
− 1
}

and pi−wi−(1+λ )vi
pi−wi

≤ pi−(1+λ )ci
pi−si

, then

x̃λ
i = F−1

i

(
pi − (1+λ )ci

pi − si

)
, ỹλ

i = 0.

Under case (a) or (c), the result in this proposition is obvious. Under case (b), we
have x̃λ

i = F−1
i

((wi−(1+λ )(ci−vi)
wi−si

)+)
and x̃λ

i + ỹλ
i = F−1

i

( pi−wi−(1+λ )vi
pi−wi

)
. Thus

cix̃λ
i + viỹλ

i = (ci − vi)x̃λ
i + vi(x̃λ

i + ỹλ
i ) is nonincreasing in λ . ��
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