
Chapter 12
Planning Production on an Unreliable Machine
for Multiple Items Subject to Stochastic Demand

David Kletter

Abstract We develop an extension of the classical newsvendor model that
incorporates multiple items, setup times, and an unreliable machine. This model
is motivated by applications at metal stamping plants where machine reliability is
a key source of uncertainty. Given a fixed production schedule, a finite horizon,
and a known demand distribution, we formulate an extension of the newsvendor
model, derive important properties of this model, and exploit these properties
to provide a solution algorithm that determines the cost minimizing production
quantities. Finally, we present three simple extensions to the model: (1) a method
for rescheduling within the planning horizon, (2) an extension to evaluate whether
or not to purchase the option to run overtime within the planning horizon, and (3) an
extension that permits the modeling of a machine that operates at a different speed
depending on the part being produced.

Keywords Multiple items • Setup times • Unreliable machines • Cost
minimization • Solution algorithm • Rescheduling

12.1 Introduction

In this chapter, we develop extension of the classical newsvendor model. We model
a single, unreliable machine that repetitively produces a set of parts in batches
subject to shortage and overage (inventory-holding) costs. Our model makes the
following assumptions. First, we assume that there is only a single demand point
for all parts, and that it occurs at the end of a finite production horizon. Second,
the demand for each part is a random variable with a known distribution, where
the uncertainty in the demand quantity is not resolved until the demand point.
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Lastly, we assume a fixed production sequence. Under these assumptions, our model
determines an optimal production quantity for each part. The development of this
model is motivated by applications at metal stamping plants (Kletter 1994). This
model could be used as part of a manufacturing control system, embedded in a
software tool that would receive data in real time from the shop floor and assist
plant management in decision making.

This chapter is structured as follows. Section 2 presents a review of the literature.
A model is then formulated in Sect. 3 as an extension of a classical newsvendor
problem. In Sect. 4, we derive properties of the objective function that are exploited
to develop a solution algorithm, presented in Sect. 5 and that takes advantage of the
special structure of the model. In Sect. 6, we show numerical results from exercise of
the model. Finally, in Sect. 7, three extensions to the model are presented, including
the incorporation of options to run overtime.

12.2 Literature Review

We briefly review the literature that is related to our model. We will divide our
literature review into two parts: those that model the problem of planning production
quantities on an unreliable machine, and those that use a newsvendor model for
problems closely related to the one we study here.

12.2.1 Unreliable Machine

The presence of machine unreliability in a manufacturing system has been studied
in a variety of different contexts, including problems of sequencing, scheduling, and
lot sizing. We briefly review each of these areas.

We first discuss sequencing of jobs on an unreliable machine. The earliest work
is that of Glazebrook (1984) who models the problem as a rather general cost-
discounted Markov decision process. He shows the conditions under which the
optimal policy is of an index type (i.e., the job to be processed is the one with
the smallest Gittins index; see Gittins 1979). Pinedo and Rammouz (1988) find
the optimal nonpreemptive policies for several objective functions in the case of
a Poisson failure process. For a general failure process and a discrete time model,
Birge and Glazebrook (1988) find bounds on the error of following the strategy
that is optimal when the failure process is memoryless. Birge et al. (1990) study
in greater detail the problem of minimizing weighted flow-time and obtain results
that are consistent with and complementary to Pinedo and Rammouz. Epstein
et al. (2010) analyze optimal sequencing on an unreliable machine where the
machine may slow or stop completely. For a detailed and current overview of this
research area, see the surveys contained in Lee (2004), Pinedo (2008), Diedrich
et al. (2009), and Racke (2009).

There is also a significant body of work on lot sizing on an unreliable machine.
Yano and Lee (1995) provide a broad review of the literature in this area.
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See Schmidt (2000) for an overview of the scheduling literature in cases where the
machine is continuously available for processing, for example, when there is incom-
plete information about when the machine may change availability. Al-Salamah and
Abudari (2011) model a production process with failures: however, failures don’t
result in the stoppage of the machine but instead produces nonconforming items.
El-Ferik (2008) determines optimal production quantities under an assumption that
the production facility is subject to random failure, where preventative maintenance
schedules need to be balanced with production. Halim et al. (2010) show the effect
on optimal lot sizing when an unreliable machine is subject to fuzzy demand and
repair time. Giri et al. (2005) model a two-stage production system where the
upstream stage is subject to failures but the downstream stage is not. They assume
that after a machine failure, production of the affected lot is not resumed.

In the case of an infinite planning horizon, Giri and Dohi (2004) derive optimal
lot sizes under a net present value (NPV) approach.

Of particular note is the work of Groenevelt et al. (1992a, 1992b), who extend the
basic economic manufacturing quantity (EMQ) model to incorporate the effects of
machine breakdowns. The first paper assumes that repairs are instantaneous but bear
a fixed cost. The second paper assumes (as we do) that repairs are not instantaneous
but instead consume machine time. This model permits any repair time distribution,
but assumes that the time between failures is exponentially distributed. Under the
assumption of lost sales, the authors seek an optimal lot size and safety stock level
to minimize cost subject to a constraint on the service level. They require, however,
some awkward assumptions regarding safety stock to achieve separability in the
optimization of the lot sizes and safety stock level. The authors do not explore the
impacts of multiple parts sharing the same machine.

Other authors, such as Sethi and Zhang (1994) have approached similar problems
from a control theoretic perspective. These authors consider the problem of finding
an optimal setup schedule (a sequence of parts and the times at which the
changeovers will occur) for an unreliable machine. They show that in the limit
(as the length of the horizon tends to infinity), the stochastic problem can be reduced
to a deterministic problem, and show how to obtain the optimal control policy. The
authors also cite many other similar works.

Reiman and Wein (1998) study a two customer class, single server system with
setups. The authors use heavy traffic diffusion approximations to analyze a system
with a renewal arrival process, general service times, and either setup costs or setup
times. They solve a control problem to minimize a linear function of the queue
length plus setup costs, if any. Within these heavy traffic diffusion approximations,
one could model the unreliability of the machine within the service time distribution.

12.2.2 Related Newsvendor Models

The classic “newsvendor” model has been the subject of many extensions that are
similar to those we consider here. For many decades, researchers have considered
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models with multiple items (Evans 1967, Smith et al. 1980). Rose (1992) considers
uncertain replenishment, but assumes demand is deterministic. Others have studied
multiple time periods for production (Bitran et al. 1986; Matsuo 1990; Ciarallo
et al. 1994). Jain and Silver (1995) model uncertainty in supply and permit the
option to reserve reliable capacity for a premium charge. Dada et al. (2007) consider
a newsvendor that purchases a single item provided by multiple suppliers, some of
which are unreliable, and develop a model for optimal supplier selection. Huggins
and Olsen (2010) extend the basic newsvendor problem for a single item to permit
expediting for unmet demand.

12.3 Formulation

The mathematical structure of our model will closely parallel that of the classic
newsboy model, which we now briefly describe. The following table (Table 12.1)
lists the notation that we will use throughout this section.

For simplicity we will first state the formulation as a single part formulation,
dropping the index i from our notation. The problem is then to choose an order-
up-to quantity y to minimize the expected purchase, holding, and shortage costs.
Mathematically, we can state the problem as

C∗(x) = min
y≥x

c(y− x)+ p

∞∫

y

(t − y)g(t)dt + h

y∫

0

(y− t)g(t)dt. (12.1)

Table 12.1 Notation for formulation

i Index which denotes different parts to be produced;
i = 1, . . .,N

yi Decision variable denoting order-up-to level for part i
xi Current inventory level of part i
ci Unit purchase price of part i
hi Cost per unit of inventory remaining at the end of the

period for part i
pi Unit shortage cost for part i
si Time required to set up the machine to begin producing

part i
gi(·) PDF of demand for part i
fi(t;T ) PDF that in T units of time, the cumulative output of

the machine is t units of part i
Fi(·), Gi(·) CDFs for the PDFs fi,gi

Fi(·), Ḡi(·) 1−Fi(·), 1−Gi(·)



12 Planning Production on an Unreliable Machine for Multiple Items... 281

The problem is solved by finding the value of y such that ∂C(x)/∂y is zero. To find
this partial derivative, we need to employ Leibnitz’s theorem for differentiation of
an integral:

∂
∂y

q(y)∫

p(y)

f (x,y)dx =

q(y)∫

p(y)

∂ f (x,y)
∂y

dx+
∂q(y)

∂y
f (q(y),y)− ∂ p(y)

∂y
f (p(y),y) (12.2)

(Beyer 1987). We will use this extensively in our analysis. From this rule, it is easy
to see that the optimal solution y∗ to the newsboy model occurs at the point where
G(y∗) = (p− c)/(p+ h), unless this implies y∗ < x, in which case it is optimal not
to order.

We now extend this basic single part model to our multiple part, unreliable
production model, for now ignoring overtime opportunities. The problem is to find
the optimal order-up-to levels to minimize the sum of purchasing, holding, and
shortage costs over all parts. Let y, x, c, p, h, and g(·) retain the same meanings
as above, except now we add a subscript i, for each part i = 1, . . .,N. We assume
without loss of generality that the parts are indexed in the order in which they
will be produced. In practice, the order-up-to strategy would be implemented as
follows: produce the first part until the inventory level reaches the optimal y1, then
the production switches to the part 2 until its inventory level reaches the optimal
y2, etc.

Let T denote the amount of time available for production, and the time available
after setups as Ti = T − s1 −...−si. If we are already setup to produce part 1, then
we set s1 = 0. We assume for simplicity that each part is produced at the same
rate when the machine is working. We now introduce machine unreliability into
the formulation by including the PDF f (t;T ). Kletter (1996) provides a variety of
formulas for this distribution in the case where the interarrival time of machine
failures and repairs are exponentially distributed. However, the results below are
independent of the form of this distribution.

We can now write the problem as

C∗(x) = min
y1≥x1,...,yN≥xN

C(y,x), (12.3)

where

C(y,x) =
N

∑
i=1

Ci(y,x), (12.4)

and

Ci(y,x) = ci

yi∫

xi

(t − xi) f

(
i−1

∑
j=1

y j − x j + t − xi;Ti

)
dt + ci(yi − xi)F̄

(
i

∑
j=1

y j − x j;Ti

)

+pi

yi∫

xi

∞∫

u

(t − u)gi(t)dt f

(
i−1

∑
j=1

y j − x j + u− xi;Ti

)
du
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+piF̄

(
i

∑
j=1

y j − x j;Ti

) ∞∫

yi

(t − yi)gi(t)dt

+piF

(
i−1

∑
j=1

y j − x j;Ti

) ∞∫

xi

(t − xi)gi(t)dt

+hi

yi∫

xi

u∫

0

(u− t)gi(t)dt f

(
i−1

∑
j=1

y j − x j + u− xi;Ti

)
du

+hiF̄

(
i

∑
j=1

y j − x j;Ti

) yi∫

0

(yi − t)gi(t)dt

+hiF

(
i−1

∑
j=1

y j − x j;Ti

) xi∫

0

(xi − t)gi(t)dt, (12.5)

where the summations from 1 to i− 1 are taken to be null at i = 1.
Each Ci(y,x) represents the expected purchasing, holding, and shortage costs

incurred for part i given a set of order-up-to levels yi. We have written Ci(y,x) as the
sum of eight terms. The first two terms express the expected purchasing cost, where
the first term is the expected purchasing cost if the realized uptime of the machine
is such that the available supply of the ith part is between the values of 0 and yi − xi

and the second term is the expected purchasing cost if the realized uptime of the
machine is such that the available supply of the ith part is the desired value yi − xi.
There is no purchasing cost if the available supply of the ith part is not greater than
zero. The next three terms represent the expected shortage costs. The first of these
terms is the expected shortage cost if the available supply is between 0 and yi − xi,
the second term is the expected shortage cost if the available supply is yi − xi, and
the third is the expected shortage cost if the available supply is 0. Similarly, the last
three terms represent the expected holding costs, where the first of these terms is the
expected holding cost if the available supply of the ith part is between 0 and yi − xi,
the second term is the expected holding cost if the available supply is yi − xi, and
the third is the expected holding cost if the available supply is 0.

12.4 Properties of the Objective Function

To obtain the optimal order quantities, we wish to show that the total cost function
is convex with respect to the order quantities. If this is so, we can find minimizing
order quantities by finding where the partial derivative of the total cost function is
zero.



12 Planning Production on an Unreliable Machine for Multiple Items... 283

12.4.1 First Order Optimality Condition

We begin by finding the partial derivative of the total cost function with respect
to yN . Using Leibnitz’s rule, we obtain

∂
∂yN

C(y,x) = (cN − pNḠN(yN)+ hNḠN(yN))F̄

(
N

∑
j=1

y j − x j;TN

)
. (12.6)

When written as the product of two terms as we have done, this derivative has a nice
interpretation. The first term is the derivative of the cost function for the classical
newsboy problem. This term is multiplied by the probability that we can complete
our production plan in the time available.

Because of this structure, the first order optimality condition is reduced to
GN(yN) = (pN − cN)/(pN + hN), the solution to the classical newsboy problem. As
before, it is easy to show that if this implies yN < xN , then the optimal yN is xN . The
optimal yN should not be dependent on the other yi, because once we have produced
parts 1, . . .,N − 1, all we can do is try to minimize the costs for part N. The optimal
yN should not be dependent on the machine’s reliability, because the best thing to
do is attempt to achieve the optimal order-up-to quantity exactly.

We now turn to the more difficult task of taking the partial derivative of the total
cost function C(y,x) with respect to yi for i < N. After simplification, the result is

∂
∂yi

C(y,x) = F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

+
N

∑
k=i+1

(pk − ck)

[
F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]

−
N

∑
k=i+1

(pk + hk)

yk∫

xk

Gk(u) f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du, (12.7)

where the summations from i+1 to N are taken to be null at i = N. This expression
is easier to interpret if we rewrite it as

∂
∂yi

C(y,x) = F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

+
N

∑
k=i+1

(pk − ck)

[
F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]
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+
N

∑
k=i+1

(pk + hk)

yk∫

xk

Ḡk(u) f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du

−
N

∑
(k)=i+1

(pk + hk)

yk∫

xk

f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du, (12.8)

and then simplify to obtain

∂
∂yi

C(y,x) = F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

−
N

∑
k=i+1

(ck + hk)

[
F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]

+
N

∑
k=i+1

(pk + hk)

yk∫

xk

Ḡk(u) f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du. (12.9)

The first term is analogous to ∂C(y,x)/∂yN discussed above. The second two terms
give the impact of the choice of yi on the parts k = i+ 1, . . .,N. The first of these
terms represents the marginal cost of machine time. The expression in square
brackets is the probability that machine output is insufficient to produce up to yk

but sufficient to start production of part k. As this probability increases, total cost
decreases at rate ck + hk, assuming that the units built are not sold. The final term
is the marginal cost of lost sales. The integral represents the expected sales given
that machine output is greater than zero but less than yk. As this increases, shortage
costs are accrued at a rate pk and holding costs, which have already been charged in
the second term, are avoided at a rate hk.

It can be seen from the first order condition that as T tends to infinity, the optimal
yi each approach their “newsboy point” yN

i , that is, the point where G(yi) = (pi −
ci)/(pi + hi). However, we can prove a stronger result, as stated by the following:

Theorem 1. The optimal yi are never greater than yN
i , their respective newsboy

points.

Proof. We have already shown that the optimal yN is yN
N , the newsboy point for

part N. Suppose that we have shown that the optimal yk are not greater than yN
k for

k = i+ 1, . . .,N. We will now show that the optimal yi is also less than or equal to
yN

i . We first require the following.

Lemma 1.

∂
∂yi

C(y,x)≥ F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))
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Proof.

∂
∂yi

C(y,x) = F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

+
N

∑
k=i+1

(pk − ck)

[
F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]

−
N

∑
k=i+1

(pk + hk)

yk∫

xk

Gk(u) f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du

(from equation (12.7))

≥ F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

+
N

∑
k=i+1

(pk − ck)

[
F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]

−
N

∑
k=i+1

(pk + hk)Gk(yk)

yk∫

xk

f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du

(because Gk(·) is nondecreasing)

= F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

−
N

∑
k=i+1

(ck − pkḠk(yk)+ hkGk(yk))

×
[

F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]

≥ F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi)). (12.10)

(because Gk(yk) ≤ (pk − ck)/(pk + hk) for k = i + 1, . . .,N, by the induction
hypothesis). �

Using this result, it immediately follows that for any yi > yN
i ,∂C(y,x)/∂yi is

positive. Therefore, if xi < yN
i , the optimal yi lies between xi and yN

i . If xi ≥ yN
i , then

it is optimal not to produce (the optimal yi equals xi).
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12.4.2 Convexity of the Total Cost Function

In this section, we prove the following:

Theorem 2. If xk ≤ yk ≤ yN
k for k = i, i + 1, . . .,N, then ∂ yC(y,x)/∂yy

i is
nonnegative.

Proof. We once again use Leibnitz’s rule to take the second partial derivative with
respect to yi to obtain

∂ 2

∂y2
i

C(y,x) =

[
F̄

(
i

∑
j=1

y j − x j;Ti

)
(pigi(yi)+ higi(yi))

]

+

[
− f

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

]

+

[
N

∑
k=i+1

{
(pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))

−(pk + hk)

yk∫

xk

Gk(u)
∂

∂yi

{
f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)}
du

⎫⎬
⎭
⎤
⎦ .

(12.11)

We now show that this second partial derivative is nonnegative. We have written
the second partial derivative as the sum of three (square bracketed) terms. The first
term can be seen to be nonnegative by inspection. The second square bracketed term
is nonnegative if −ci + piḠi(yi)− hiGi(yi) is nonnegative, which is true if Gi(yi)≤
(pi−ci)/(pi+hi), which is always true for yi < yN

i . Showing that the third bracketed
term is nonnegative is slightly more difficult. We note that for each k,

(pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))

−(pk + hk)

yk∫

xk

Gk(u)
∂

∂yi

{
f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)}
du

≥ (pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))

−(pk + hk)Gk(yk)

yk∫

xk

∂
∂yi

{
f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)}
du
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(because Gk(·) is nondecreasing)

≥ (pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))

−(pk + hk)
(pk − ck)

(pk + hk)

yk∫

xk

∂
∂yi

{
f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)}
du

(because Gk(yk)≤ (pk − ck)/(pk + hk))

= (pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))

−(pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))
= 0. (12.12)

��
Given the other y j, j �= i, this result allows us to find the optimal yi by determining
if ∃ yi ∈ [xi,yN

i ] such that ∂C(y,x)/∂yi = 0. If such a yi exists then it is optimal,
otherwise, the optimal policy is not to order. Since ∂C(y,x)/∂yi is a nondecreasing
function of yi over the range [xi,yN

i ] when yk ≤ yN
k for k = i+ 1, . . .,N, the optimal

yi can be found by simple binary search.
Given the above results, after we have found yN we can find the other yi by

solving the above problem as a N − 1 dimensional unconstrained minimization
problem on the interval xi ≤ yi ≤ yN

i , i = 1, . . .,N − 1. For a discussion of general
algorithms to solve such problems, see Bazaraa et al. (1993). Below we present a
solution algorithm that exploits the special structure of the model.

12.5 Solution Algorithm

The difficulty in finding the optimal production quantities is that the first order
condition tells us that N − 1 of the yi are mutually dependent. We now describe
a solution procedure that exploits the special structure of these dependencies. In
particular, consider the difference

Ĉi+1 =
∂C(y,x)
∂yi+1

− ∂C(y,x)
∂yi

= F̄

(
i+1

∑
j=1

y j − x j;Ti+1

)
(ci+1 − pi+1Ḡi+1(yi+1)+ hi+1Gi+1(yi+1))



288 D. Kletter

−F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

−(pi+1 − ci+1)

[
F

(
i+1

∑
j=1

y j − x j;Ti+1

)
−F

(
i

∑
j=1

y j − x j;Ti+1

)]

+(pi+1 + hi+1)

yi+1∫

xi+1

Gi+1(u) f

(
i

∑
j=1

y j − x j + u− xi+1;Ti+1

)
du.

(12.13)

Note that if yi is optimal, ∂C(y,x)/∂yi is zero, so that Ĉi+1 = C(y,x)/yi+1. The
reason that this is significant is because Ĉi+1 is a function only of y1, . . .,yi.
Therefore if the optimal y1 is known then Ĉ2 can be used to find the optimal y2,
and then Ĉ3 can be used to find the optimal y3, and so forth.

Since the optimal y1 is not known, we must use a search technique to find it. We
now prove three important properties that will be helpful in this regard.

Let the production quantities that result from the above procedure be denoted
by ŷi. We first show that ŷN = yN

N iff ∂C(y,x)/∂y1 = 0. Observe that ĈN is exactly
equal to ∂C(y,x)/∂yN −∂C(y,x)/∂yN−1, and thus ŷN = yN

N iff ∂C(y,x)/∂yN−1 = 0.
Further, for any i, Ĉi+1 = C(y,x)/yi+1 iff ∂C(y,x)/∂yi = 0. Therefore, ŷN = yN

N iff
∂C(y,x)/∂y1 = 0.

The second property is that if the guess for the optimal value of y1 is too large,
ŷN > yN

N . We have shown above that if xk ≤ yk ≤ yN
i for k = i, i + 1, . . .,N, then

∂ 2C(y,x)/∂y2
i ≥ 0. Accordingly, if the guess for the optimal value of y1 is too

large, ∂C(y,x)/∂y1 > 0, so that in order for Ĉ2 = 0, ŷ2 must be chosen such that
∂C(y,x)/∂y2 > 0, so that ŷ2 will be greater than the optimal y2. Repeating this
argument, we see that each ŷi will be greater than the optimal yi, and thus ŷN > yN

N .
By analogous reasoning, we can conclude that if the guess for the optimal value of
y1 is too small, ŷN < yN

N .
The third and final property that we wish to show is that Ĉi+1 is an increasing

function of yi+1. This property is particularly important, as it allows us to find ŷi+1

by simple binary search. To prove this, we take the partial derivative of Ĉi+1 with
respect to yi+1 and simplify to obtain

∂
∂yi+1

Ĉi+1 = F̄

(
i+1

∑
j=1

y j − x j;Ti+1

)
(pi+1gi+1(yi+1)+ hi+1gi+1(yi+1)), (12.14)

which is clearly nonnegative since each term is nonnegative, and thus the result is
proven.

Using these properties, we are now ready to state the following:
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Algorithm:

1. Preprocessing. Compute the yN
i . If any xi ≥ yN

i , then the optimal ŷi = xi and
it is optimal not to produce this part. Remove all such parts from the list of
parts to be produced over the horizon.

2. Initialization. Set ŷ1 = yN
1 . Set U = yN

1 and L = x1.
3. Main loop. For each i= 2, . . .,N, find the ŷi such that Ĉi = 0. If any ŷi > yN

i ,
then ŷ1 is too large. Set U = ŷ1, ŷ1 = (U +L)/2, and repeat Step 3.

4. Optimality test. If |ŷN − yN
N|< ε , then the ŷi are optimal. Stop.

5. Adjustment step. If ŷN > yN
N , then ŷ1 is too large. Set U = ŷ1, ŷ1 =

(U +L)/2, and go to Step 3. If ŷN < yN
N , then ŷ1 is too small. Set L = ŷ1,

ŷ1 = (U +L)/2, and go to Step 3.

The algorithm essentially performs a binary search on the guess for the optimal
y1 by maintaining an upper and lower bound (U and L) on the optimal value. The
algorithm terminates when the current value of ŷN is within some small positive ε
of yN

N .
Because the properties that we have proven above are valid only if xi ≤ yi ≤ yN

i
for i = 1, . . .,N, we must take care to ensure that this remains true throughout the
algorithm. We perform the test in Step 2 to ensure that we do not proceed if any
yi > yN

i . We set L = x1 so that ŷ1 ≥ x1. Lastly, in a preprocessing step we remove a
part i from consideration if xi > yN

i . We can do this because, for any such part, the
optimal ŷi is xi, and it is thus optimal not to produce that part. Since the part would
not be produced, it has no effect on the other parts.

12.6 Numerical Results

In this section, we present numerical results from an implementation of the solution
algorithm described in the previous section.

For simplicity we describe a two part (N = 2) system, with identical parameters
for the two parts. The base case parameters used are summarized in Table 12.2. We
assume that the demand distribution g is normally distributed with mean equal to
100 and standard deviation equal to 10. We also assume that f , the distribution
of output of the machine over a horizon of length T , has a mean of T a standard
deviation of 0.lT , which equates to a coefficient of variation of 0.1.

In this two part example, we know that y∗2 will equal its newsvendor point, which
in this case is equal to 97.47. To find y∗1, we developed a simple spreadsheet model
that computes Ĉi. The solution procedure then simply searches over values of y1

until Ĉ2 = 0. The solution procedure converges to a value equal to the optimal
solution within four digits of precision in just 13 iterations. In this case, the value is
y∗1 = 85.31.
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Table 12.2 Base case
parameters for experiments

Parameter Value

T 160
xi 0
ci 2
hi 1
pi 4
si 0

Fig. 12.1 Optimal production quantity of part 1 as a function of T

Next, we wish to show the effect of the time constraint on the optimal value
for y1. In Fig. 12.1 we show the results of varying the value of T , which also
impacts our production distribution f . As expected, the value of T has a major
effect on the production schedule, until T becomes sufficiently large, at which point
y∗1 approaches its newsvendor point.

Finally, in Fig. 12.2 we show the effect of varying the coefficient of variation in
the production schedule. This was set to 0.1 in the base case. We see that increased
variability has the effect of causing greater levels of planned production as a hedge
against this uncertainty.

12.7 Extensions to the Model

In this section, we present three simple extensions to the model: (1) a method for
rescheduling within the planning horizon, (2) an extension to evaluate whether or
not to purchase the option to run overtime within the planning horizon, and (3) an
extension that permits the modeling of a machine that operates at a different speed
depending on the part being produced.
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Fig. 12.2 Optimal production quantity of part 1 as a function of the variability in production

12.7.1 Dynamic Rescheduling

In the development above, we have discussed how to determine a set of production
quantities to minimize expected total cost. We have assumed up to this point that
this plan, once established, is fixed. That is, the plan is implemented by producing
the predetermined optimal quantity of each part, and then switching production to
the next part. Of course, as this plan is implemented, the reliability of the machine
may be much higher or much lower than expected. As a result, if we were given
the opportunity to do so, we might adjust the production plan based on the actual
realized reliability of the machine.

Suppose we are now permitted to modify our choice of production quantity for
the current part. We propose a simple method that allows someone on the shop
floor to determine when to stop production of the current part based on the part’s
inventory level. We denote this production level as the critical inventory level.
The method described below could produce a chart with two axes: the horizontal
axis will be time, and the vertical axis will be the critical inventory level. In this
sense, this method could produce a visual aide for a production manager on the
factory floor.

Suppose for a particular future point in time t1 we would like to determine the
amount of inventory at or above which it is optimal to stop producing the current part
and switch to the next part. We denote this production level as the critical inventory
level, and determine it as follows. The first step is to update the horizon length in
the equations above by replacing T with T − t1. This reflects the amount of time
that would be remaining for production at time t1. Next, search over values for x1,
at each iteration finding the optimal yi, until we identify the lowest x1 such that at
the optimum, y1 = x1. This is the critical inventory level, since this is the inventory
level at which is it optimal not to produce.
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We now prove the existence of such a critical inventory level. Recall that we are
only interested in the lowest x1 such that at the optimum y1 − x1 = 0, so the only
question we must answer is whether or not such an x1 exists. But this is clearly
so, since if we set x1 = G1

−1((p1 − c1)/(p1 + h1)), we know y1 ≤ G1
−1((p1 −

c1)/(p1 + h1)) and since we must constrain y1 to be at least x1,y1 = x1.
We can vary the value of t1 and find the critical inventory levels at each point

over the planning horizon. The optimal dynamic operating policy is therefore
implemented on the shop floor by producing until the inventory level crosses this
curve. Once this happens and production is switched to the next part, the model
should be solved again to find the critical inventory level as a function of time for
the next part.

12.7.2 Including Options to Run Overtime

In the development above, we purposely omitted any discussion of how to make
optimal overtime decisions. Suppose now that there are m= 1, . . .,NOT opportunities
over the horizon to run overtime, and for simplicity assume that they are each
of duration OT at cost wm. Without loss of generality, we will assume that the
opportunities are indexed in the order of increasing cost.

In the development above, we computed optimal production quantities ignoring
overtime opportunities. This is equivalent to assuming that we choose not to run
overtime, and the resulting expected cost is the expected cost of this strategy.
Suppose instead that we decide that we are going to run overtime once. To evaluate
the expected cost of this strategy we simply replace T by T + OT and find the
optimal production quantities to compute the minimum expected cost, and then
add wm. Note that it does not matter where within the planning horizon that we
run overtime, since all overtime opportunities occur before the demand point. As
a result, we can find the optimal policy by simply running the solution algorithm
above NOT + 1 times, with T taking on the values T,T +OT,T + 2OT, . . .,T +NOT

OT, and choosing the strategy with lowest expected cost. Intuitively, increasing the
length of the horizon will have a non-increasing benefit. If this is true, which we
leave as a conjecture, the evaluation of policies can be stopped when the total cost
increases from the previous iteration.

12.7.3 Extension to Different Machine Speeds

For notational convenience, up to this point we have assumed that the machine
operates at the same speed when producing different parts. If the speeds are
different, then the requirements on the machine need to be expressed in common
units, such as time, instead of parts. This can be accommodated easily, replacing
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all expressions such as F
(

∑i
j=1 y j − x j;Ti

)
with F

(
∑i

j=1
y j−x j

Pj
;Ti

)
, where Pj is

the speed at which the machine produces part j when it is working. Our solution
procedure for finding the optimal yi is unchanged by this modification.

12.8 Conclusion and Future Research

In this chapter, we have extended the basic newsvendor model to an unreliable
machine that must produce multiple parts in a given period of time. We have seen
that with an infinite production horizon, the problem simply decomposes into a
single item newsvendor problem for each part. However, under a time constraint,
the optimal production quantities are reduced from those in the infinite horizon
case. We showed that the optimal production quantities are mutually dependent on
one another, but have discovered a special structure in these relationships, and also
proven other important properties of the objective function and decision variables.
These results allowed us to construct a simple algorithm that performs a binary
search for the optimal value of the production quantity for the first part. In each
iteration, we exploit the special structure of the problem to easily determine the
production quantities for the other parts, and easily test if the overall solution is
optimal.

Our formulation has assumed that the production sequence is fixed. This could
be the result of sequence-dependent setup costs or setup times, or a function of
the timing of arrivals of materials from upstream suppliers. A future research
topic could include relax this assumption and allow the decision maker to change
the sequence, possibly with penalty costs associated with changes. We have also
assumed that demand is satisfied for all parts at the end of the horizon. Another
future research topic could be an extension to multiple time periods, or allowing
different parts to have demand pull from inventory at different points in time.
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