


International Series in Operations
Research & Management Science

Volume 176

Series Editor:
Frederick S. Hillier
Stanford University, CA, USA

Special Editorial Consultant:
Camille C. Price
Stephen F. Austin State University, TX, USA

For further volumes:
http://www.springer.com/series/6161

http://www.springer.com/series/6161




Tsan-Ming Choi
Editor

Handbook of Newsvendor
Problems

Models, Extensions and Applications

123



Editor
Tsan-Ming Choi
Business Division, Institute of Textiles

and Clothing
The Hong Kong Polytechnic University
Hung Hom, Kowloon
Hong Kong SAR

ISSN 0884-8289
ISBN 978-1-4614-3599-0 ISBN 978-1-4614-3600-3 (eBook)
DOI 10.1007/978-1-4614-3600-3
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012939061

© Springer Science+Business Media New York 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

Inventory management is a critical factor which accounts for the success or failure
of modern businesses in nearly all kinds of industries. As a fundamental problem
in stochastic inventory control, the newsvendor problem has been studied since
the eighteenth century in the economic literature and it has been widely used to
analyze supply chains with fashionable and perishable products. Starting from the
1950s, newsvendor problem has been extensively studied in operations research and
extended to model a large variety of real-life problems. The simplest and most
elementary version of the newsvendor problem is an optimal inventory stocking
problem in which a newsvendor needs to decide how much newspaper to order for
the future demand, where the future demand is uncertain and follows a stationary
distribution. The newspaper becomes obsolescent at the end of the day and the
newspaper’s cost–revenue structure is known. The newsvendor then determines its
optimal order quantity by either maximizing the expected profit or minimizing
the expected cost and an analytical closed-form solution exists. This classical
newsvendor problem has been extended in many different ways and nowadays, a
search in major research portals will find at least thousands of papers related to this
problem and every year, tens to hundreds of related papers are still being published
in major journals on operations research and management science. Despite the
abundance of both classical and new research results, there is an absence of a
comprehensive reference source that provides the state-of-the-art findings on both
theoretical and applied research on the newsvendor problem. As a result, I organize
this Springer’s handbook with a goal of consolidating many latest research findings
and applications of the newsvendor problem into an edited volume. I believe that
this handbook will be a pioneering text focusing on the newsvendor problem.

The handbook is organized into two parts, namely (1) models and extensions
and (2) applications of the newsvendor problem. I am very pleased to see that this
handbook has generated a lot of new research results with valuable insights into the
following topics:

• A Timely Review on the Multi-Product Newsvendor Problem
• A Multi-Product Risk-Averse Newsvendor with Law Invariant Coherent Mea-

sures of Risk

v



vi Preface

• A Copula Approach to Inventory Pooling Problems with Newsvendor Products
• Repeated Newsvendor Games with Transshipments
• Cooperative Newsvendor Games
• An Economic Interpretation for the Price-Setting Newsvendor Problem
• Newsvendor Models with Alternative Risk Preferences within Expected
• Utility Theory and Prospect Theory Frameworks
• Newsvendor Problems with VaR and CVaR Consideration
• A Two-Period Newsvendor Problem for Closed-Loop Supply Chain Analysis
• The Remanufacturing Newsvendor Problem
• Inventory Centralization in a Newsvendor Setting when Shortage Costs Differ
• Production Planning on an Unreliable Machine for Multiple Items Subject to

Stochastic Demand
• Analysis of the Newsvendor Problem Under Carbon Emissions Policies
• Optimal Decisions of the Manufacturer and Distributor in a Fresh Product Supply

Chain Involving LongDistance Transportation
• A Newsvendor Perspective on Profit Target Setting for Multiple Divisions
• A Portfolio Approach to Multi-Product Newsvendor Problem with Budget

Constraint

I would like to take this opportunity to show my hearty gratitude to Fred Hillier
and Matthew Amboy for their kind support and advice along the course of carrying
out this book project. I sincerely thank all the authors who have contributed their
decent research to this handbook. I am indebted to the anonymous reviewers who
reviewed the manuscripts and provided me with constructive review comments.
I also acknowledge the editorial assistance of my research students Dr Pui-Sze Chow
and Ms Hau-Ling Chan and the funding support of the Research Grants Council of
Hong Kong under grant number PolyU 5424/11H (General Research Fund). Last
but not least, I am grateful to my family, colleagues, and students, who have been
supporting me during the development of this important research handbook.

Kowloon, Hong Kong Tsan-Ming Choi
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Part I
Models and Extensions



Chapter 1
The Multi-product Newsvendor Problem:
Review, Extensions, and Directions for Future
Research

Nazli Turken, Yinliang Tan, Asoo J. Vakharia, Lan Wang, Ruoxuan Wang,
and Arda Yenipazarli

Abstract In this paper, we review the contributions to date for the multi-product
newsvendor problem (MPNP). Our focus is on the current literature concerning
the mathematical models and the solution methods for the multi-item newsvendor
problems with single or multiple constraints, as well as the effects of substitute and
complementary products on the stocking decisions and expected profits. We present
some extensions to the current work for a stylized setting assuming two products
and conclude with directions for future research.

Keywords Multi-product newsvendor • Complementary products • Effects of
substitute • Single constraint • Multiple constraints • Future research

1.1 Introduction

The single-item newsvendor problem is one of the classical problems in the
literature on inventory management (Arrow et al. 1951; Silver et al. 1998) and the
reader interested in a comprehensive review of extant contributions for analyzing the
problem is referred to Qin et al. (2011). In this paper, we focus on the multi-product
newsvendor problem (MPNP) which can be framed as follows. At the beginning of a
single period, a buyer is interested in determining a stocking policy (Qi) for product
i (i = 1, . . . ,n) to satisfy total customer demand for each product. For each product i,
the customer demand is assumed to be stochastic and characterized by a random
variable xi with the probability density function fi(·) and cumulative distribution

N. Turken • Y. Tan • A.J. Vakharia (�) • L. Wang • R. Wang • A. Yenipazarli
Department of Information Systems & Operations Management, University of Florida,
Gainesville, FL 32611–7169, USA
e-mail: nazli.z.turken@warrington.ufl.edu; tanyinliang@ufl.edu; asoov@ufl.edu;
lan.wang@warrington.ufl.edu; rxwang@ufl.edu; arda.yenipazarli@warrington.ufl.edu

T.-M. Choi (ed.), Handbook of Newsvendor Problems, International Series in Operations
Research & Management Science 176, DOI 10.1007/978-1-4614-3600-3 1,
© Springer Science+Business Media New York 2012
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4 N. Turken et al.

function Fi(·). The quantity Qi is purchased by the buyer for a fixed price per unit
vi. Assuming no capacity restrictions on the purchase quantity and zero purchasing
lead time, an order placed by the buyer with the supplier at the beginning of a period
is immediately filled. Sales of the product occur during (or at the end of) the single
period and for each product i: (a) if Qi ≥ xi, then Qi − xi units which are left over at
the end of the period are salvaged for a per unit revenue of gi

1; and (b) if Qi < xi,
then xi −Qi units which represent “lost” sales cost Bi per unit. Assuming a fixed
market price of pi, then the actual end of period profit for the buyer stemming from
the sales of each product i is:

πi(Qi,xi) =

{
pixi − viQi + gi(Qi − xi) if Qi ≥ xi

piQi − viQi −Bi(xi −Qi) if Qi < xi
. (1.1)

Since the buyer cannot observe the actual end-of-period profit when making his
decision at the beginning of the period, the traditional approach to analyze the
problem is based on assuming a risk neutral buyer who makes the optimal quantity
decision at the beginning of the period by maximizing total expected profits. These
profits are:

E[πi(Qi)] =

∫ Qi

0
[pixi − viQi + gi(Qi − xi)] fi(xi)dxi

+

∫ ∞

Qi

[piQi − viQi −Bi(xi −Qi)] fi(xi)dxi

= (pi − gi)μi − (vi − gi)Qi − (pi− gi +Bi)ESi(Qi), (1.2)

where E[·] is the expectation operator, μi is the mean demand for product i, and
ESi(Qi) represents the expected units short assuming Qi units are stocked and can
be determined as

∫ ∞
Qi
(xi −Qi) fi(xi)dxi. Based on this, the buyer’s expected profits

for the MPNP are:

E[Π(Q1, .,Qn)] =
n

∑
i=1

E[πi(Qi)]

=
n

∑
i=1

[(pi − gi)μi − (vi − gi)Qi − (pi− gi +Bi)ESi(Qi)]. (1.3)

Note that (1.1) is separable in each product i. Given that (1.2) is strictly concave
in Q, it follows that the first order conditions (FOCs) for optimizing (1.2) are
necessary and sufficient to determine the optimal value of Qi. Based on this, the
optimal stocking quantity for each product i (Q∗

i ) is set such that:

Fi(Q
∗
i ) =

pi − vi +Bi

pi − gi+Bi
(1.4)

1For obvious reasons, it is generally assumed that gi < vi.
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and the corresponding total profit for the buyer is:

E[Π(Q∗
1,Q

∗
2, ..,Q

∗
n)] =

n

∑
i=1

[
(pi − gi)μi − (pi − gi+Bi)

∫ ∞

Q∗
i

xi fi(x)dxi

]
. (1.5)

Our focus in this chapter is on reviewing and extending the current literature
related to the MPNP. To start with, Sect. 1.2 reviews the current contributions for
analyzing the MPNP with one or more stocking constraints. In Sect. 1.3, we review
prior work which focuses on product substitutability in the context of the MPNP.
Extensions of the MPNP for complementary/substitute products are described in
Sect. 1.4 and finally, in Sect. 1.5, we conclude with directions for future research.

1.2 Buyer Stocking Constraints

1.2.1 Single Constraint

The general problem in this setting is to optimize the total profit in (1.5) subject to
the following constraint:

n

∑
i=1

siQi ≤ S, (1.6)

where si is the storage space or the resource coefficient required per unit of product i
and S is the total available storage space or resource. Since (1.3) is strictly and jointly
concave in the decision variables, Qis, and the constraints are linear, one approach
to solving this problem would be to start with the solution to the unconstrained
MPNP and substitute this solution in the constraint. If the constraint is not violated,
then we have an optimal solution. Of course, the issue that needs to be considered
is how to solve the problem when the constraint is violated with the solution to the
unconstrained MPNP.

Hadley and Whitin (1963) proposed a Lagrange multiplier technique and a
dynamic programming solution procedure for finding the optimal order quantity
in this setting. The Lagrangian for this context is:

L(Qi,λ ) = E[π(Q1, .,Qn)]−λ

(
n

∑
i=1

siQi − S

)
. (1.7)

Since (1.7) is strictly and jointly concave in the decision variables, the FOCs are
necessary and sufficient to obtain an optimal solution. These FOCs are:

∂L
∂λ

= [gi − vi]F(Q∗
i )+ [1−F(Q∗

i )][pi − vi +Bi]−λ si, (1.8)
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∂L
∂Qi

=
n

∑
i=1

siQi − S. (1.9)

Setting (1.8) equal to 0, the optimal stocking quantity for each product Q∗
i is:

Q∗
i = F−1

i

( pi − vi −λ si +Bi

pi − gi+Bi

)
, (1.10)

where λ ≥ 0.
In some practical situations, the optimal Q∗

i will tend to be very small and
any attempt to use the above procedure and round the results (to obtain integer
values of Q∗

i ) could lead to considerable deviations from optimality. To handle
this situation, the authors propose a dynamic programming-based procedure but
of course, this method is not easily applicable when the number of products (n)
is significantly large.

Nahmias and Schmidt (1984) introduced several heuristic methods to solve the
MPNP with a single constraint where the lagrange multiplier, λ , is not easy to
evaluate. They also included an interest rate, I,which is used in determining the
carrying charge per period for the average inventory. Hence, the expected profit
including the interest rate can be shown as:

E[πi(Qi)] = (pi+0.5Ivi−gi)μi− [(1− I)vi−gi]Qi−(pi+0.5Ici−gi+Bi)ESi(Qi).
(1.11)

The optimal quantity then becomes:

Q∗
i = F−1

[
pi − (1+ 0.5I)vi+Bi−λ si

pi + 0.5Ivi− gi +Bi

]
. (1.12)

Guessing an appropriate value of λ , computing the corresponding values of Qi

and subsequently adjusting the value of λ depending on (1.12) is very time
consuming. Thus, four different heuristic methods were introduced. Heuristic 1
finds the solution to the unconstrained problem and adjusts these values until the
constraint is satisfied. In heuristic 2, the critical point of the demand distribution is
scaled to fit the given volume. Finally, heuristics 3 and 4 are proposed based on the
Taylor expansion series of ti(λ ) = Φ−1(ai − biλ ) and the corresponding λ s could
be calculated as follows:

λi =
∑n

i=1 μisi +
√

2π ∑n
i=1 si(ai − 0.5)σi− S√

2π ∑n
i=1 biσivi

. (1.13)

The procedures listed in this paper are mostly useful for the continuous values of
Qis and are thus appropriate for moderate-to-high demand items.

Lau and Lau (1996) were among the first to observe that using Hadley and
Whitin’s approach may lead to infeasible(negative) order quantities for some of
the considered products when the constraint is tight. They based their work on
the classical expected cost minimization problem that was introduced by Hadley
and Whitin, where (vi − gi) is the unit overage cost and (pi − vi +Bi) is the unit
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underage cost. By rearranging terms of (1.8), we can find the expected net benefit
of the marginal unit of product i (EBMUi) at Qi as:

EBMUi = [pi − vi +Bi][1−F(Q∗
i )]− [vi− gi]F(Q∗

i ). (1.14)

Note that EBMU/si is analogous to the λi. Lau and Lau introduced a procedure to
handle distributions with strictly positive lower bounds as well as distributions with
long left tails.

Abdel-Malek et al. (2004) developed the exact solution formulae for uniformly
distributed demand and presented a generic iterative method (GIM) when the
demand distribution is general. The author considered the total budget as the
resource constraint (∑n

i=1 viQi ≤ BG). Different from most of the work in the
literature, the author assumes there is a leftover cost (disposal fee), where a salvage
value is usually considered. In general, if the budget is abundant, the problem could
be solved by the unconstrained solution, yet if the budget is tight, we need to apply
the Lagrangian-based approach to solve the problem. The value of λ is crucial to
solve the problem and the author discusses how to address this under specific and
general demand distributions. The formula for λ when the demand is uniformly
distributed between ai and bi can be written as:

λu =

N

∑
i=1

(cix
∗
i )−BG

N

∑
i=1

(bi − ai)(v
2
i )/(pi + hi)

, (1.15)

where hi is the holding cost. The closed-form expression when the demand is
exponential:

λ (1)
e =

N

∑
i=1

(cix
∗
i )−BG

N

∑
i=1

(μi − v2
i )/(vi + hi)

. (1.16)

The proposed GIM finds the optimum under uniform distribution and near optimum
for other general distributions. GIM first finds the solution without the constraint and
checks whether the constraint is satisfied. If the constraint is satisfied, the solution
is optimal, if not, a solution that satisfies the constraint is found. Next, the error
is estimated, if this is at an acceptable level, the optimal solution is found. As
an extension to this paper, Abdel-Malek and Montanari (2005a) also defined the
thresholds to help the decision maker in recognizing the tightness of the budget
constraint, which can avoid infeasible order quantities by removing products with
low marginal utilities. The following equations determine the thresholds depending
on the available budget and demand patterns:

Threshold 1:

B(1)
G =

n

∑
i=1

viF
(−1)
i

(
pi − vi +Bi

pi − gi+Bi

)
=

n

∑
i=1

viQ
∗
i . (1.17)
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Threshold 2:

B(2)
G =

n

∑
i=1

viF
(−1)
i

(
pi − (θ−+ 1)vi+Bi

pi − gi+Bi

)
, (1.18)

where θ− = min(i=1,.n)(θi) and notice that θi is the marginal utility at the lower
limit of the feasible amount of the product to be ordered and could be calculated as
follows:

θi =
pi +Bi− (pi − gi+Bi)Fi(0)

vi
− 1. (1.19)

Once the thresholds are defined, the solution procedure for each of the resulting
cases can be implemented as shown in the following.

Case 1 B(1)
G ≤ BG. In this case, the budget is abundant and the budget constraint is

redundant, so we can obtain the optimal solution from the unconstrained problem.

Fi(Q
∗
i ) =

(pi − vi+Bi)

(pi − gi +Bi)
. (1.20)

Case 2 B(2)
G ≤ BG < B(1)

G . In this case, we can relax the nonnegativity constraint and
use the Lagrange method to get the optimal solutions.

Fi(Q
∗
i ) =

pi − (θ + 1)vi +Bi

pi − gi +Bi
. (1.21)

Case 3 BG < B(2)
G . In this case, as mentioned before, the nonnegativity constraints

should be added to the model to avoid the infeasible solution. Furthermore, one or
more products will have an order quantity of zero.

To determine the optimal order quantities, one needs to compute the marginal
utilities of each product by using (1.19) first and rank them in ascending order.
Begin with excluding the product (set order quantity to zero) from the top of the
list and continue the exclusion process until the updated budget threshold is less
than the previous budget. B(G,i) is the updated budget threshold as well as the lower
bound of budget required for including item i in the list, which is expressed by:

BG,i =
n
′

∑
i=1

viF
−1
i

(
pi − (θi + 1)vi+Bi

pi − gi+Bi

)
< BG. (1.22)

n
′

is the updated number of items on the list. Once this point is reached, the
problem becomes tractable again and we can apply the Lagrangian method without
nonnegativity constraint to get the optimal solutions.

Several researchers incorporated nonnegativity constraints on the decision vari-
ables in their approaches. Erlebacher (2000) developed optimal and heuristic
solutions for the classical problem. The first optimal solution refers to the event
where each item has a similar cost structure and the demand for each item is from a
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similar distribution. The second case is when the demand for each item follows
a uniform distribution. The first heuristic (H1) is optimal when all of the items
have a similar cost structure and similar shaped demand distribution and requires
only the mean and variance of each demand distribution and the cost data. The
second heuristic (H2) is optimal when the demand is uniformly distributed for each
item. The third heuristic (H3) is a modification of (H1) to account for general cost
structures based on the form of (H2). The authors use computational experiments to
show that (H2) is the most effective one, especially at higher levels of capacity.

Zhang et al. (2009) developed a binary search method to obtain the optimal solu-
tion. They defined the marginal benefit function as ri(xi) = (vi −Bi +

(gi+Bi)Fi(xi)
vi

),
where ri(xi) is a nondecreasing function of xi, when xi ≥ 0 and its inverse is a
strictly increasing function of ri when 1− Bi

vi
≤ ri(xi) < 0. The authors find that

the optimal solution to the constrained problem is the same as the unconstrained
optimal solution when the budget constraint is not binding and is less than the
unconstrained optimal solution when the budget constraint is binding. If there are
nonzero optimal solutions, their marginal benefits should equal each other. When

the budget constraint is binding, the optimal solution is x(∗∗)i , and r(∗∗) = ri(xi)

is the marginal benefit at x(∗∗)i . Zhang and Hua showed that 1 − Bi
vi

≤ r(∗∗) < 0

and r(∗∗) can be found using a binary search between these values. The algorithm
they developed first finds the solution to the unconstrained problem and assesses
whether the optimal value leads to a binding budget constraint. If this solution does
not satisfy the condition, a binary search procedure is applied. This algorithm can
provide an optimal or a near optimal solution to MPNP under any general demand
distribution and it can also provide a good approximate solution under discrete
demand distributions.

Zhang and Du (2010) studied the MPNP with a capacity constraint, where the
products can be outsourced to an external facility at a higher cost. They considered
zero-lead time (ZO) and nonzero lead time (NO) strategies. In ZO strategy, the
manufacturer makes the decision for the in-house production quantity in the first
period, and in the second period, after the demand is realized, the manufacturer
outsources the remaining demand with zero lead time. There are no lost sales
in this case. In the NO strategy, the manufacturer makes the decision for the in-
house production quantity and the outsourcing quantity in the first period. In this
strategy, if the demand exceeds the in-house production and outsourcing, there will
be backorders or lost sales. The NO strategy assumes that there is no difference in
arrival times of the products whether they are outsourced or produced in-house or if
a time difference exists, it is assumed that there is no cost to receiving the product
earlier than required.

It is assumed that each product has a deterministic production capacity and
a random demand. The demand distributions are approximated to exclude the
negative values allowing the following assumptions: Fi(x) = 0 for all x < 0,
and Fi(0) ≥ 0. The expected profit function for the ZO strategy consists of the
revenue of product i, salvage value of the excess of product i, less the outsourcing
and in-house production cost of product i. This model can be viewed as a
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parameter-adjusted single-constraint newsvendor model, and can be solved using
the methods developed by Zhang et al. (2009). Similarly, the expected profit
function of the NO strategy can be written as π2 = ∑n

i=1[(pi − vi)Yi+(pi − di)Zi −
(pi − gi)

∫ Yi+Zi
0 Fi(xi)dxi, where di is the cost of outsourcing one unit, Yi and Zi

are the decision variables for in-house production and outsourcing, respectively.
By analyzing the partial derivatives and the KKT conditions, it is evident that
the constrained optimal solution for in-house production will always be smaller
than the unconstrained optimal solution for in-house production when there is no
outsourcing (Y ∗

i ≤ Ỹ ). The optimal outsourced quantity will also be less than the
unconstrained problem solution and the maximum value it can take is Z̃−Y ∗. If the
unconstrained optimal in-house production quantity does not exceed the available
capacity, everything will be produced in-house. If the unconstrained optimal in-
house production quantity exceeds the available capacity, the limited capacity must
be fully utilized. Finally, the optimal solutions can be designed in a way that there
exists only one product that utilizes both sources of production,and for every other
product only one source of production is used. The results are that ZO strategy
outperforms the NO strategy when outsourcing costs are equal and managers should
try to find a ZO option with low implementing costs to achieve the maximum profit.

Moon and Silver (2000) presented dynamic programming procedures for MPNP,
where the budget is represented as the total value of the replenishment quantities.
In this paper, the decision variable is the order-up-to level, Si. There is an inventory
level of Ii at the beginning of period i, a fixed ordering cost of Ai, and a variable cost
of GF

i (S
∗
i ). Initially, it is assumed that there is enough budget to permit each item

to be ordered at its optimal. The authors formulate the problem as a minimization
of fixed and variable costs CF

i (Si), and decide the ordering rule to be: order up to
S∗i , if Ii < s∗i where GF

i (s
∗
i ) = Ai +GF

i (S
∗
i ). Moon and Silver, then introduced a

restricted budget W and developed a dynamic program to find the optimal order-
up-to level. This dynamic program first tries to solve the single period model with
a fixed ordering cost for each item separately and defines P to be the set of items
that are profitable to order and reaches to an optimum when the ordering cost is
within the budget. This solution method will become time consuming if the number
of items or the number of budget constraints are high. Hence, the authors developed
two heuristic algorithms. The first one, is a greedy allocation algorithm. At each
step, the algorithm reduces the budget until a feasible solution is reached and any
remaining budget is filled in a reverse greedy manner. The second algorithm, a two-
stage heuristic, tries to assign the budget proportionally to the items in P.

The authors also considered the distribution-free model and assumed that
the distribution of the demand belongs to the class F cumulative distribution
functions with mean μ j and variance σ2

j . This approach requires finding
the most unfavorable distribution in F for each S. Then, the objective
function becomes min(S1,...,Sm) max(F∈F) ∑m

i=1 CF
i (Si). The authors rewrite the

cost function as ∑m
i=1 GW

i (Si)+A(i)1(Si>Ii) using the proposition from Gallego
and Moon (1993) indicating that a distribution satisfying E[Di − Si]

+ ≤
1
2{
√
[(σ2

i )+ (Si− μ2
i )

2]− (Si− μi)} can always be found. In this cost function,
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W denotes a worst case distribution function of the demand. The optimal solution
can be found through backward recursive equations. The use of this distribution-
free solution is justified when the expected value of additional information
(EVAI) = ∑m

i=1 CN
i (S

W
i ) − ∑m

i=1 CN
i (S

N
i ) is low. They mentioned two heuristics

can also be modified to solve the distribution-free approach; however, this has not
been studied in this paper.

Shao and Ji (2006) studied the multi-item newsvendor problem where the
demand is fuzzy. They defined the profit for product i to be:

f (xi,xi(ξi)) =

{
(pi − vi)Qi if Qi ≤ xi

(pi − gi)xi − (vi− gi)Qi) if Qi ≥ xi
(1.23)

and the total profit as F(x,X(ξ )) = ∑n
i f (xi,xi(ξi)) subjected to a budget con-

straint. They adopted the credibility theory and defined the credibility of a fuzzy
event as Cr(xi ≥ p) = 1

2 [Pos(xi ≥ Qi) + Nec(xi ≥ Qi)], where Pos(xi ≥ Qi) =
supu≥Qi μ(u) and Nec(xi ≥ Qi) = 1− supu<Qi μ(u). The maximum expected profit
of the newsvendor problem (MEP) is E[F(Q∗,xi)] when E[F(Q∗,xi)]≥ E[F(Q,xi)]
holds for all feasible Q. In the cases where a confidence level, α , is set as a
safety margin, α-maximum profit is F , where max(F |Cr(F(Q∗,xi) ≥ F) ≥ α) ≥
max(F |Cr((Q,xi)≥ F ≥ α). The most maximum profit (MMP) is F(Q∗,xi), when
Cr((Q∗,xi) ≥ F0) ≥ Cr((Q,xi) ≥ F0) where F0 is the predetermined profit. The
authors formulate three models to represent the problem. The first one, the expected
value model, maximizes the expected value operator of the fuzzy event with
nonnegativity and the budget constraints. The second one, chance constraint model,
maximizes α −MP subject to credibility, nonnegativity, and budget constraints. The
third model, dependent chance programming, maximizes the credibility not less than
the predetermined profit with budget and the nonnegativity constraints. In this paper,
a hybrid intelligent algorithm combining fuzzy simulation and genetic algorithm is
introduced and numerical examples are provided to display the performance of this
algorithm with the three different models mentioned.

Lau and Lau (1988) studied an MPNP, where the objective is to maximize the
probability of a given target profit. They assumed that the shortage cost is zero
and also showed that any problem with gi ≥ 0 can be converted to another one
without salvage value. The objective is to maximize PT = Prob(Total Profit ≥
Target Profit(T) ). They consider three different approaches to find the optimum;
use simulation to find Q∗

i s and repeat to find the maximizing PT for different pairs
of Q∗

i s, derive an expression for PT and use a “hill-climbing” method to find Q∗
i s or

analytically solve for the FOCs of PT . They execute approach 2 and 3, and perform
some numerical studies for specific demand distributions. In the first case, they
define Tm as (p1 − v1)μ1 +(p2 − v2)μ2, and the target profit as T ,which is set to
be Tm,0.5Tm, or 0.25Tm. The products are assumed to have identical parameters and
demand distributions. Lau proved previously in a single product model that

Q∗
i = T/(p− v). (1.24)
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In order to find the optimum, they first find the Q∗
I that satisfy (1.24) for the single

item case. The results show that when QI = Qi the individual and global optimal
values are the same. Otherwise, if P∗

T < PI , the optimal for individual products
do not give the global optimum. If P∗

T > PI and QI �= Qi, a reward policy can be
implemented to drive the subordinates to achieve the maximum global probability.
The authors applied this procedure for normally distributed demands as well. While
deriving the mathematical expression for PT in approach 3, they introduced two
different situations. Situation B happens when piQi ≥ T + v1Q1 + v2Q2 for both
products and Situation A happens if piQi ≥ T +v1Q1 +v2Q2 holds for one product,
and piQi < T + v1Q1 + v2Q2 holds for the other.

• Situation A

Range 1: 0 ≤ x1 ≤ L1 where L1 = (T + v1Q1 + v2Q2 − p2Q2)/p1. We know that
the profit from product 2 is p2Q2 − v2Q2; thus, product 1 must contribute
T − (p2Q2− v2Q2). If the demand is in this range, PT 1 = 0.

Range 2: L1 ≤ x1 ≤ Q1. In this range, the profit from product 1 is p1x1 − v1Q1

and the profit from product 2 is T − (p1x1 − v1Q1). Hence, the probability
of achieving T when the demand is in range 2 is: PT 2 =

∫ Q1
L1

f1(x1)[1 −
F2(

T+v1Q1+v2Q2−p1x1
p2

)]dx1.
Range 3: Q1 ≤ x1 ≤ ∞. In this range, the profit from product 1 is constant, (p1 −

v1)Q1, and the profit from product 2 is T − (p1 − v1)Q1. Thus, the probability
of achieving T when the demand is in range 3 is: PT3 =

∫ ∞
Q1

f1(x1)[1 −
F2(

T+v1Q1+v2Q2−p1Q1
p2

)]dx1.

• Situation B

Range 1: 0 ≤ x1 ≤ L2 where L2 = (T + v1Q1 + v2Q2)p1. Hence,
PT1 =

∫ L2
0 f1(x1)[1−F2(

T+v1Q1+v2Q2−p1x1
p2

)]dx2.
Range 2: L1 ≤ x1 ≤ ∞. In this range, the probability of achieving T is:

PT2 = 1−F1(L2).

The authors then derive the optimal ordering quantities assuming that the
parameters for both items are equal and the demand follows a uniform distribution.
Finally, they consider the case where the selling prices of each item is different.
They found using approach 2 that if p1 < p2, then Q∗

1 > Q∗
2 when T is small and

Q∗
1 < Q∗

2 when T ≥ Tm.
Vairaktarakis (2000) mentioned in his paper, “.....along with the traditional risk

averse attitude, the managers render minimax regret approaches very important in
identifying robust solutions, i.e., solutions that perform well for any realization
of the uncertain demand parameters.” Based on this, he presents a number of
minimax regret formulations for the multi-item newsvendor problem with a single
budget constraint, when the demand distribution is completely unknown. Demand
uncertainty is captured by means of discrete and continuous scenarios.

In discrete demand scenarios, let DS(i) be the collection of all possible demand
realizations for item i, i = 1,2, . . . ,n. Then, the solution to any of the multi-item
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problems that will be stated below must be n-tuple in DS(1)×DS(2)× . . .×DS(n).
We consider three different objective functions.

• Absolute robustness. This approach attempts to find an n-tuple of order quantities
that maximize the worst case profit over all possible demand realizations.

max
(Q1...Qn)∈DS(1)×DS(2)×...×DS(n)

min
(d1...dn)∈DS(1)×DS(2)×...×DS(n)

n

∑
i=1

πi(Qi,di)

s.t.
n

∑
i=1

ciQi ≤W .

• Robust deviation. This formulation provides a solution that minimizes the
maximum profit loss due to demand uncertainty. The objective function is:

min
(Q1...Qn)∈DS(1)×DS(2)×...×DS(n)

max
(d1...dn)∈DS(1)×DS(2)×...×DS(n)

×
n

∑
i=1

πi(di,di)−πi(Qi,di) s.t.
n

∑
i=1

ciQi ≤W ,

where πi(di,di)− πi(Qi,di) stands for the profit that could be realized if there
was no demand uncertainty less the profit made for the order quantity Qi.

• Relative robustness. This minimizes the relative profit loss per unit of profit that
could be made if there was no demand uncertainty.

min
(Q1...Qn)∈DS(1)×DS(2)×...×DS(n)

max
(d1...dn)∈DS(1)×DS(2)×...×DS(n)

×
n

∑
i=1

πi(di,di)−πi(Qi,di)

πi(di,di)
s.t.

n

∑
i=1

ciQi ≤W .

In the continuous demand scenario, the demand in (1.4) is bounded by D and D.
Then the minmax problem becomes:

max
Qi

min
di∈[Di,Di ]

n

∑
i=1

πi(Qi,di)

s.t.
n

∑
i=1

ciQi ≤W ,

Qi ∈ [Di,Di].

This problem can be reduced to a continuous knapsack problem, and solved by
the proposed algorithm in this paper. Then, the optimal quantity is:

Q∗ =
(vi − gi)D+(pi − vi +Bi)D

pi − gi +Bi
. (1.25)
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Similarly, Choi et al. (2011) considered a risk-averse MPNP under the
law-invariant coherent measures of risk. They have shown that for heterogeneous
products with independent demands, increased risk aversion leads to decreased
orders, and derived closed-form approximations for the optimal order quantities.
Also, they have shown that risk-neutral (maximize the expected profit) solutions
are asymptotically optimal under risk aversion as the number of products tends to
be infinity. This result has an important business implication: companies with many
products or product families with low demand dependence need to look only at
risk-neutral solutions even if they are risk averse. For a risk-averse newsvendor with
dependent demands, they showed that in a two-product model with positively depen-
dent demands, the optimal order quantities are lower than for independent demands,
while for negatively dependent demands, the optimal order quantities are higher.

In another paper where risk was taken into consideration, Ozler et al. (2009)
consider a single-period MPNP, where a retailer determines the optimal order
quantities of N different products having stochastic demand. Furthermore, they
integrate risk considerations (i.e., the risk of earning less than a desired target profit
or losing more than an acceptable level due to demand uncertainty) through a Value
at Risk (VaR) approach. VaR is a measure of downside risk and is defined as the
probability of earning lower than the target profit value is less than or equal to a
threshold probability value.

In order to illustrate the approach, the authors first derive a compact expression
for the distribution of the profit for two products with a joint demand distribution,
and explicitly derive the VaR constraint in terms of the decision variables Q1

and Q2. The formulated problem turns out to be a mixed-integer programming
formulation with a nonlinear objective function under mixed linear and nonlinear
constraints. They analyze the conditions for the feasibility of this problem and
present a mathematical programming formulation that determines the optimal order
quantities. The authors also consider a correlated demand structure, and by solving
the two-product problem, they show that the expected profit is higher when two
products with negatively correlated demands are used under a VaR constraint. On
the other hand, when the VaR constraint is ignored, demand correlations have no
impact on the expected profit.

The authors also attempt to extend the procedure outlined for the two product
case to more than two products. In this line, they develop an approximation
method in case where there are N products with independent, normally distributed
demands. They utilize the central limit theorem to determine the distribution of
profit approximately and express VaR constraint by using the normal approximation.
Similar to the two-product setting, they analyze the feasibility conditions and
present a mathematical programming approach that yields optimal order quantities.
The case of the MPNP with a correlated demand structure is left for future research.

Mieghem and Rudi (2002) introduce a class of models called newsvendor
networks, which allow for multiple products, multiple processing, and storage points
and investigate how their single-period properties extend to dynamic settings. Such
a model provides a parsimonious framework to study various problems of stochastic
capacity investment and inventory management, including assembly, commonality,
distribution, flexibility, substitution, and transshipment.
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Consistent with the previous multidimensional newsvendor models, the
newsvendor networks are defined by a linear production technology, which
describes how inputs (supply) is transformed into outputs of fill end–product
demand, a linear financial structure, and a probability distribution of end–product
demand. This paper continues by incorporating multiple storage points into the
multidimensional newsvendor model.

We describe the features of a newsvendor network briefly. Before the demand is
realized, a set of “ex-ante” activities are performed on the inputs and their results are
stored in “stocks” or inventories. After the demand is realized, “ex-post”activities
process stocked inputs into demanded outputs using resources. In addition to being
constrained by demand, the sales or the output rate is also constrained both by
input stock levels and by the resource capacities, denoted by vectors S and K.
The ex-ante activities generate the cost vector, v; the ex-post activities generate
the marginal value vector p− v; the units carried over to subsequent period incur
a holding cost h. Let cK denote per unit capacity investment cost and x denote the
flow units. For example, activities 3 and 2 deplete stocks 1 and 2, respectively, and
consume Resource 2’s capacity at a rate of α−1 and 1; activity 1 depletes stock
1 and consumes resource 1. Hence, the inventory constraints are: x1 + x3 ≤ S1

and x2 ≤ S2, while the capacity constraints are x1 ≤ K1 and x2 + α−1x3 ≤ K2.
Newsvendor networks are thus about three decisions: capacity investment decisions
K, input inventory procurement decisions S, and activity decisions x(K,S,D).

The objective is to maximize the expected operating profit, which is the net value
from processing minus the shortage penalty cost and holding cost:

Π(K,S) = E max
x∈X(K,S,D)

[
(p− v)X −B(D−RDx)+− h(S−RSx)+

]
,

where RS and RD are input–output matrices, and A is the capacity consumption
matrix. The set of feasible activities are constrained by supply S, demand D, and
capacity K:

X(K,S,D) = x ≤ 0 : RSx ≤ S,RDx ≤ D,Ax ≤ K.

The expected firm value to be maximized is :

V (K,S) = Π(K,S)− vS− cKK.

This paper presented single period optimality conditions and showed that they
retain their optimality in a dynamic setting, so that a stationary base-stock policy is
optimal. Besides, it also shows that as in most inventory settings, lost sales are more
tractable in newsvendor networks than backlogging. The discussion suggests that
the culprits are discretionary activities or joint ex-post capacity constraints, both of
which make the order-up-to levels of inputs dependent on backlog in a nonlinear
manner.
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1.2.2 Multiple Constraints

Similar to the MPNP with a single constraint, the MPNP with multiple constraints
has also been investigated by a few researchers. Ben-Daya and Raouf (1993)
first presented an analytical solution procedure for a two-constraint multi-item
newsvendor problem in which all items’ demands are uniformly distributed. Lau
and Lau (1995) presented a Lagrangian-based numerical solution procedure of a
multi-item newsvendor problem with multiple constraints. Their proposed solution
procedure is an adaptation of the “Active Set Methods” which consists of two basic
components:

• Component A. For a given subset W(called the “working set”) of all the resource
constraints, component A solves the equality-constrained problem:

Max
N

∑
i=1

E[πi(Qi)]

s.t.
N

∑
i=1

ri, jQi ≤ R j, j = 1,2, ...M, (1.26)

where ri, j is the coefficient of resource j of item i and R jis the amount available
of resource j.

• Component B. This is the procedure for defining and updating the working set
W for each altered component A. This component A and component B cycle is
repeated until the optimal condition is met. The authors provide mathematical
details and numerical examples to validate this method.

Lau and Lau (1997), in the sequel of their earlier works, proposed a three-
step procedure that used subjective probability elicitation to supplement whatever
empirical data is available to construct demand distribution functions. Since the
typical multi-item newsvendor problem solution procedure requires many repeated
evaluations of the demand’s inverse cdfs’, the authors suggest using Tocher’s general
“inverse cdf” to fit the distribution function:

F−1
T (P) = D

= a+ bp+ cp2+α(1− p)2ln(p)+β p2ln(1− p), (1.27)

where five parameters (a,b,c,α , and β ) could be determined by least-squares fitting.
Similar to the normal distribution, F−1

T (P) has a negative tail, which is eliminated
by using the following modification:

F−1
M = D = max[0,F−1

T (P)]. (1.28)

Abdel-Malek and Areeratchakul (2007) and Areeratchakul and Abdel-Malek
(2006) developed an approximate solution procedure to deal with this type of
problem. It is based on a triangular presentation of the areas resulting from integrals
that are included in the objective function, which facilitates expressing the objective
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function in quadratic terms. One can solve this problem using familiar linear
programming packages. The authors have shown that the objective function can
be expressed in the following quadratic form:

MaxZ =
N

∑
i=1

(
A(.)

i x2
i +B(.)

i xi +C(.)
i

)
, (1.29)

where expressions A(.)
i , B(.)

i , and C(.)
i are constants to be determined for each product

according to its demand probability distribution. In order to get the quadratic form
above, we first need to approximate the integral of the cumulative distribution
function using triangular approach as:

∫ xi

0
F(Di)dDi ≈ 1

2
(xi − xl,i)(Δi(xi − xl,i)), (1.30)

where xi − xl,i is the length of the triangle base, F(xi) = Δi(xi − xl,i) is the height
of the triangle with respect to xi, and Δi represents the slope of the triangle. For
more details about these parameters under different distribution functions, readers
can refer to the paper.

Abdel-Malek and Montanari (2005b) discussed a solution procedure for the
MPNP with two constraints. The methodology in the paper is based on analyzing the
dual of the solution space as defined by the constraints of the problem. In order to
avoid infeasible (negative) solutions, the authors propose that we begin by defining
the possible regions of the dual of the solution space. The corresponding solution
method is selected based on the area which the resource point is in. Finally, the
authors present two numerical examples to illustrate the application of the proposed
approach; the first one considers the case where only one of the constraints is
binding, and the second one analyzes the case where both constraints are binding.

In addition to the methods mentioned above, Niederhoff (2007) utilized the
separability of the objective function and used convex separable programming to
minimize the expected cost and calculate the optimal order quantities. Due to
the properties of the piecewise linear approximation method, this problem can
be studied without any specific distribution. This method also provides sensitivity
analysis which can give us some important insights.

1.2.3 Other Constrained MPNP Approaches

In addition to the classical constrained approaches, several authors focused on the
applications of the MPNP to address specific issues. Khouja and Mehrez (1996)
formulated a MPNP under a storage or budget constraint such that progressive
multiple discounts are offered to sell excess inventory. They provided different
algorithms depending on whether the optimal order quantities are large or small.
The authors assumed that there is a perfect and positive correlation between the
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demand at the jth discount price and the demand at the nondiscount price. If the
demand for the product at the nondiscount price is high, then discounting the price
of the product results in a proportionally high additional demand. Observations on
the solution to the constrained problem show that storage (or budget) constraint
in an MPNP reduces the service levels (i.e., probability of satisfying demand)
and order quantities of all products, when compared to the corresponding levels
for the unconstrained problem. Furthermore, the numerical examples that compare
multiple and single discount solutions indicate that using multiple discounts instead
of discounting just once to the salvage value may result in a different optimal
solution.

Shi and Zhang (2010), Shi et al. (2011) and Zhang (2010) investigated the MPNP
with supplier quantity discounts and a budget constraint, and the effect of these two
features on the optimal order quantities. In this line, Zhang presented a mixed integer
nonlinear programming model to formulate the problem. The proposed Lagrangian
relaxation approach is demonstrated by means of numerical tests. Finally, the
problem is extended to multiple constraints, including space or other resource
limitations. It is assumed that suppliers provide all-quantity discounts, and the
newsvendor faces uncertain demand for multiple products. Besides, the probability
density function for each product is assumed to be given.

To solve the problem, the authors use the Lagrangian heuristic and present
methods to find upper and lower bounds, as well as an initial feasible solution.
They relax the budget constraint (instead of discount constraints that potentially
give a tighter dual bound) as it results in a classical newsvendor subproblem
with discount constraints. The computational results indicate that the algorithm is
extremely effective for the newsvendor model with supplier quantity discounts and
a budget constraint (in terms of both solution quality and computing time). The
computational results for the multi-constraint case also indicate that the proposed
approach performs well for the problems with multiple constraints.

In a different extension, Chen and Chen (2010) developed a multi-product
newsvendor model under a budget constraint with the addition of a reservation
policy. Reservation policies reduce the demand uncertainty of newsvendor-type
products. Under the reservation policy studied in this paper, a discount rate is offered
to consumers in order to induce them to make a reservation and buy in advance.
The authors propose a general algorithm, namely the MCR algorithm, which finds
the optimal order quantity and the discount rate necessary to maximize the total
expected profit under the budget constraint. In order to illustrate the efficiency of
the proposed algorithm, MCR, they solve a numerical example and compare the
classical multi-product budget-constraint newsvendor model (CMC model) with
the multi-product budget-constraint newsvendor model with the reservation policy.
Numerical results show that the total expected profit obtained from the MCR is
greater than that of CMC. This is tied to the reservation policy proposed in the
model. The difference between the profits of these two models is treated as the value
of information. Thus, we can conclude that the decision to adopt the reservation
policy depends on the trade-off between the information value and the cost incurred
to establish the willingness function and extra-demand functions.
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Aviv and Federgruen (2001) address the multi-product inventory system problem
with random and seasonally fluctuating demands. Moreover, they extend the anal-
ysis to a multi-echelon problem, two stages specifically. This paper contributes to
the literature on delayed product differentiation strategies and makes an assumption
that “Demands in each period follow a given multivariate distribution with arbitrary
correlations between items.” In addition, “....as in virtually all inventory models, the
demands in different periods are independent and their distributions are perfectly
known.” Unsatisfied demand is backlogged; each cost component of a product is a
function of the product’s inventory position(including inventory on hand, blanks
being transformed into units of the final product and minus the backlogs). The
objective is to minimize expected discounted cost over a finite or infinite horizon
or to minimize the long-run average value.

To include all the cost components, this paper defines a expected value of costs
for jth item in a period of type k as

G
k
j = α jEh j

([
y j − dk

j − dk+1
j . . .− d

k+l j
j

]+)

+p j

([
dk

j + dk+1
j + . . .+ d

k+l j
j − y j

]
+
)
,

where y j is the inventory position of item j at the beginning of a period, dk
j is the

demand at period k for item j, h j is the holding cost, and α j is the discount factor.
The model can be formulated as a Markov Decision Process with countable state
space S = {(x,k), x is integer, k = 1, ...,K} and finite action sets A(x,k) = {y : x ≤ y
and ∑l

j=1 y j ≤ ∑l
j=1 x j + bk}. To solve this problem, the authors propose a lower-

bond approximation and heuristic strategies. In the case of a 2-stage echelon, i.e.,
production has positive lead time, they simply modified Rk(.), which is the one-
step cost function in a single-item model, and introduced the system-wide echelon
inventory position of blanks.

Chung et al. (2008) considered the items with short life cycles or seasonal
demands. They developed a two-stage, multi-item model incorporating the reac-
tive production that employs a firm’s internal capacity. Reactive capacities are
preallocated to each item in preseason stage and cannot be changed during the
reactive stage. The objective is expected profit maximization. A simple algorithm
for computing optimal policies is presented. This paper aims to help managers
understand how employing internal capacity during reactive stage can reduce the
impact of the poor demand forecasts. Without fixed costs, the optimal production
vector for the reactive stage is a simple function of the production vector, Q, for
the preseason stage and the capacity allocation vector, Z, for the reactive stage. By
analyzing the KKT conditions, the optimal solution and the Lagrange multiplier, λ ∗,
can be determined.

Casimir (2002) used MPNP to determine the value of incomplete information.
He focused on the value of information in three newsvendor models: the basic
model with no constraints, the model with budget or capacity constraints, and the
model with substitutability. The value of incomplete information is considered in the
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form of product-mix information and global information. Product-mix information
implies total demand is unknown, but the distribution over products is known
exactly. In this case, the overall optimal order quantity is determined initially,
and then the optimal order quantity for each single item is determined from the
actual value. In the case of global information, total demand is known, but its
distribution over the products is unknown. Then, the optimal order quantity for each
individual item with the given total demand has to be determined. Here, the authors
compute the value of incomplete information by comparing the expected profits of
the two cases, and do not consider the performance criteria. Besides, rather than
the computation of optimal order quantities, results are computed numerically to
provide a research framework for the value of information. Their assumptions are:
(1) demand is normally distributed, (2) demand for different items is independent,
(3) the salvage value for unsold items is zero, (4) there is no penalty for unmet
demand, (5) price, cost, average demand, and standard deviation of demand for all
products are the same, (6) for the model with budget constraint, only two items are
considered, (7) analyzing substitutability, only a two-item newsvendor problem is
considered, and it is assumed that the customer takes a single unit of the substitution
product, and (8) substitutability is assumed to be symmetric.

In the model without additional complications, it is shown that the value
of product-mix information increases with the number of items, whereas the
value of global information decreases with the number of items. The value of
both product-mix information and global information decreases with a budget
constraint. Furthermore, the value of perfect information also decreases with a
budget constraint. The probability of substitution decreases the value of product-
mix information such that it is zero with complete substitution, and increases the
value of global information so that it is equal to the value of perfect information
with complete substitution.

Finally, Zhang and Hua (2010) consider a system where the products are
procured from the supplier with a fixed-price contract. Under this procurement
strategy, the retailer does not order enough products to avoid the risk raised from
demand uncertainty (i.e., lower realized demand). The authors here apply a portfolio
approach to MPNP under a budget constraint, where the retailer’s procurement
strategy is designed as a portfolio contract. In this case, each newsvendor product
can be procured from the supplier with dual contracts: a fixed-price contract and an
option contract. The retailer can lower the inventory risk by utilizing the flexibility of
the option contract. On the other hand, it in turn results in additional costs compared
to fixed-price contracts, since unit reservation and execution cost of option contract
is typically higher than unit cost of a fixed-price contract. In the paper, the objective
is to maximize the total expected profit of the retailer through determining the
optimal order quantities of products procured with portfolio contracts. The authors
consider a single-period model and assume that the retailer sells n products with
independent and stochastic demands. All demands are considered to be nonnegative.
The portfolio contract consists of a fixed-price contract and an option contract. In the
fixed-price contract, the retailer pays a unit fixed cost for each product he procured
from the supplier. In the option contract, to reserve certain order quantity, the retailer
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prepays a unit reservation cost up-front. Then, the retailer pays an execution cost for
each unit purchased up to the option reservation level. The retailer loses the initial
payment if he does not exercise the option. Related to those, it is further assumed
that:

• The total cost of option contract (reservation plus execution cost) is larger than
the cost of fixed-price contract.

• The reservation cost of option contract is smaller than the pure procurement cost
of the fixed-price contract.

Following the problem formulation, the authors establish the structural properties
of the optimal solution (e.g., the concavity of expected profit function) and propose
a polynomial solution algorithm of o(n) order. The main advantage of the proposed
algorithm is that it does not depend on a specific demand distribution and it
is applicable to general continuous demand distributions. Finally, they conduct
numerical studies and sensitivity analysis to show the efficiency of the proposed
algorithm, as well as compare three procurement contracts: fixed-price contract
(FC), option contract (OC), and portfolio contract (PC). It is evident that the
newsvendor model with PC, generates significant improvement compared to FC
and OC models. Furthermore, it is shown that following the increase in the available
budget, the performance gap between FC and PC models decreases, while the gap
between OC and PC increases.

Vaagen and Wallace (2008) study risk hedging in fashion supply chains. They
consider two states of the world: State1 when a variant of a product becomes
popular and the others go out of fashion, and State2 is when the reverse happens.
In this paper, Vaagen and Wallace provide a portfolio building decision model
under uncertainty by combining The Markowitz and the newsboy models into a
stochastic optimization model. This model tries to minimize the profit risk using
semi-variance. The results of the different scenarios show that hedging portfolios
gives any company a competitive advantage. We can also conclude that the uncertain
information such as demand estimates and trend information for a certain group of
products are not as important in the fashion industry as it is in other industries.
The best approach in this case is to define and release hedge portfolios. This model
can be extended to include substitutability, which is discussed by Cheng and Choi
(2010).

1.3 Substitute Products

Retailers often offer product substitutes to prevent customer loss. This substitution
can be perfect, partial, or downward. Most of the early works used two-way
substitution and introduced heuristics to find the optimal order quantities. Recent
works, however, focus more on one-way substitution. This type of substitution arises
in real life, for example, in the semiconductor industry; a higher capacity chip can
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be used to satisfy demands for lower capacity chips. Current literature in this stream
can be classified as those focusing on one-way substitution or two-way substitution.

1.3.1 One-Way Substitution

Bassok et al. (1999) concentrated on full downward substitution among the various
structures of substitution. Considering that there are N products and N demand
classes, full downward substitution implies that excess demand for class i can be
satisfied using stocks of product j for i ≥ j. The authors discuss a two-stage profit
maximization formulation for the multi-product substitution problem. In the first
stage, the orders are placed (before demands are realized) , and in the second stage
the products are allocated to demands (after demand is observed) (i.e., allocation
problem). The authors assume that there are N products and N demand classes,
and the demands for each class are stochastic. The order, holding, penalty, and
salvage costs are assumed to be proportional, and the revenue is linear in the
quantity sold. It is further assumed that the substitution cost is proportional to the
quantity substituted. Delivery lags and capacity constraints are ruled out. Finally,
it is assumed that the revenue earned for each unit of satisfied demand in class i
depends only on i and not on the type of product j used to satisfy the excess demand.
The authors assume that: (a) it is more profitable to satisfy unmet demand of class i
than of class j, for i < j; (b) the effective salvage value of product i is not less than
that of product j, for i < j; and (c) the substitution of product i for demand class j
is profitable.

Let I(−→x ) be the maximum single period profits and P(−→x ,−→y ) be the expected
single period profits when the starting inventory before placing the order is −→x and
after ordering is raised to −→y . Then, I(−→x ) = max(

−→y ≥ −→x )P(−→x ,−→y ). Let
−→
d =

(d1, . . . ,dN) be a vector of realized demands. Define F(
−→
d ) = F1,2,...,N(d1, . . . ,dN)

as the joint distribution of demands from class 1 to N. Let G(−→y ,
−→
d ) be the profits

for a given stock level, −→y , and the realized demand,
−→
d . Let wi j be the quantity of

product j allocated to the demand class j. Then

P(−→x ,−→y ) =−
N

∑
k=1

ck(yk − xk)+
∫

RN
+

G(−→y ,
−→
d )dF(

−→
d ), (1.31)

where:

G(−→y ,
−→
d ) = max

ui,vi,w ji

N

∑
i=1

i

∑
j=1

a jiw ji +
N

∑
i=1

sivi −
N

∑
i=1

πiui.

Subject to

ui +
i

∑
j=1

wji = di for i = 1, . . . ,N,vi +
N

∑
i=1

wji = yi for i = 1, . . . ,N. (1.32)
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The authors present a greedy algorithm for the allocation problem, and give a
new and compact notation of writing the first differentials of the profit function
with respect to stock levels. They prove that given a starting inventory level, the
allocation algorithm will maximize profits in G(−→y ,

−→
d ). In addition, the profit

function P(−→x ,−→y ) is proven to be concave and submodular. They also propose
an iterative algorithm to compute the order points for a two-product problem, and
develop bounds on the optimal order points. Finally, they present a computational
study for the two-product problem and show that the benefits of solving for the
optimal quantities, when substitution is considered at the ordering stage, are higher
with high demand variability, low substitution cost, low profit margins, high salvage
values, and similarity of products in terms of prices and costs.

Smith and Agrawal (2000) have analyzed the impact of retail assortments on
inventory management and customer service. They focused on product variety
in retailing environment, where the customers can often be satisfied by one of
several items, e.g., light colors of T-shirts in apparel. In this paper, they develop
a probabilistic demand model for items in an assortment that capture the effects of
substitution and provide a methodology for selecting item inventory levels so as to
maximize total expected profit, subject to given resource constraints. Because of
substitution, the inventory levels for products in an assortment must be optimized
jointly.

They consider inventory policies that reinitialize at the start of each fixed cycle,
assuming lost sales occur if there is a stockout before the end of the cycle.
The authors also analyze several illustrative numerical examples to demonstrate
the insights, such as, substitution effects can reduce the optimal assortment size,
and policies of ignoring substitution effects can be less profitable than those that
explicitly incorporate substitution effects. Similarly, Shah and Avittathur (2007)
studied the effects of retail assortments on inventory control. Different from
Smith,he defined a demand cannibalization and substitution index and assumed the
demand to be a Poisson process (similar to Anupindi et al. 1998). The numerical
results showed that when the fixed cost and salvage value of a customized product
is high and its incremental profits are low, it is not feasible to carry customized
products.

In addition, Smith and Agrawal (2000) also studied a “static” substitution model.
They assumed that the choice by the customer is independent of the current
inventory levels and the customer does not accept a second choice. Mahajan and
van Ryzin (2001) used a choice process based on a utility that is assigned by the
customer to each product. This utility is interpreted as the net benefit to the customer
from purchasing or not purchasing a product. In this case, the information available
to the retailer is only the probability of a sample path ω = {Ut : t + 1, . . . ,T},
where T is the number of customers. The number of sales is dependent on the
initial inventory level and the sample path. The authors then introduce a sample
path gradient algorithm to obtain the optimal results.
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Dutta and Chakraborty (2010) studied the newsboy problem with one-way
substitution where the demand is fuzzy. The membership function of demand of
product i is represented as:

μD̃t (x)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Li(x) =
x−Di

Di−Di
, Di ≤ x ≤ Di

Ri(x) =
Di−x

Di−Di
, Di ≥ x ≥ Di,

0, otherwise,

(1.33)

where the demand is D̃i = (Di,Di,Di). The fuzzy objective function is complex
and the concavity proof is difficult; therefore, Dutta and Chakraborty developed
an algorithm to find the optimal order quantity. They defined four situations of
demand in relation to the Q∗ and run the complete procedure for each one of these.
They ran some numerical examples to provide validation for their method and made
recommendations for further research to include salvage value and holding cost as
well as two-way substitution.

Considering a stylized scenario for two products, without a loss of generality,
assume that product 1 substitutes for product 2 one-to-one, and if there is a
substitution, this item is sold at the price of product 2. We also assume that the
selling price of the substituted item is higher than the cost of the substitute as well
as its salvage value. Then the actual end of period profit for the buyer is:

Case 1.
2
∑

i=1
[pixi −viQi +gi(Qi −xi)] if x1 ≤ Q1;x2 ≤ Q2

Case 2. p1Q1 + p2x2 −
2
∑

i=1
viQi +g2(Q2 −x2)−B1(x1 −Q1) if x1 > Q1;x2 ≤ Q2

Case 3. p1x1 + p2Q2 −
2
∑

i=1
viQi + p2Min(x2−Q2,Q1 −x1) if x1 ≤ Q1;x2 > Q2

+g1[Q1 −x1 − (x2 −Q2)]
+−B2[x2 −Q2 − (Q1 −x1)]

+

Case 4.
2
∑

i=1
piQi −viQi −Bi(xi −Qi) if x1 > Q1;x2 > Q2

(1.34)

and based on this, the expected profit function is:

E[π(Q1,Q2)] = E

[
[p1Min(x1,Q1)+ p2Min[x2,Q2 +(Q1 − x1)

+]− v1Q1 − v2Q2

+ g1[Q1 − x1 − (x2 −Q2)
+]++ g2(Q2 − x2)

+−B1(x1 −Q1)
+

− B2[x2 −Q2 − (Q1 − x1)
+]+

]

= p1

[∫ Q1

0
x1 f1(x1)dx1 +

∫ ∞

Q1

Q1 f1(x1)dx1

]

+ p2

[∫ Q2

0
x2 f2(x2)dx2 +

∫ ∞

Q2

Q2 f2(x2)dx2
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+

∫ Q1

0

∫ ∞

Q2

(Q1 − x1) f (x1,x2)dx2dx1

]

− v1Q1 − v2Q2 + g1

[∫ Q1

0

∫ Q2

0
(Q1 − x1) f (x1,x2)dx2dx1

+

∫ Q1+Q2−x2

0

∫ Q1+Q2

Q2

(Q1 +Q2 − x1 − x2) f (x1,x2)dx2dx1

]

+ g2

∫ Q2

0
(Q2 − x2) f2(x2)dx2 −B1

∫ ∞

Q1

(x1 −Q1) f1(x1)dx1

− B2

[∫ ∞

Q1

∫ ∞

Q2

(x2 −Q2) f1(x1,x2)dx2dx1

+

∫ Q1

0

∫ ∞

Q1+Q2−x1

(x1 + x2 −Q1 −Q2) f (x1,x2)dx2dx1

]
. (1.35)

Cai et al. (2004) used a similar expected profit function as above and proved that
it is concave and submodular. Using this property, the optimal order quantities can
be found by setting the derivatives with respect to Q1 and Q2 equal to zero. If we
define G(Q1,Q2) =

∫ Q1
0

∫ Q1+Q2−x1
0 f (x1,x2)dx2dx1, the following holds:

F1(Q
∗
1)+

(p2 +B2)− g1)

(p1 +B1)− (p2 +B2)
G(Q∗

1,Q
∗
2) =

(p1 +B1)− v1

(p1 +B1)− (p2 +B2)
, (1.36)

F2(Q
∗
2)+

(p2 +B2)− g1)

(p2 +B2)− g2)

[
G(Q∗

1,Q
∗
2)−F(Q∗

1,Q
∗
2)

]
=

(p2 +B2)− v1

(p2 +B2)− g2
. (1.37)

Fi(Q∗
i ) represents the probability of all of the demand for item i being sat-

isfied when the stock level is Q∗
i . G(Q∗

1,Q
∗
2) is the probability that the total

demand is satisfied given that item 1 was substituted for item 2. F(Q∗
1,Q

∗
2) =∫ Q1

0

∫ Q2
0 f (x1,x2)dx2dx1 is defined as the probability that the demand for each item

is satisfied without any substitution. Finally, F2(Q∗
2)+G(Q∗

1,Q
∗
2)−F(Q∗

1,Q
∗
2) is the

probability that all of the demand for item 2 is satisfied using either of the items.
Cai et al proved four different properties of the optimal order quantities. Property 1
shows that as the unit price of item i increases, Q∗

1 decreases and Q∗
2 increases and,

evidently Q∗
2 decreases as the unit price of item 2 increases. Property 2 states that

when the price of each item increases, their respective optimal quantities decrease.
Conversely, the increase in price of item 1 decreases the optimal quantity for item 2.
Property 3 states a similar argument related to salvage cost. Property 4 indicates that
the optimal order quantity of each item is linearly related to their respective mean
demands. Property 5 states that the variance of item i affects the optimal quantity of
item j reversely. In this paper, the authors showed that the expected profits and the
fill rate can be improved by using substitution.
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Table 1.1 Notations for two-way substitution

Symbol Meaning

R Review period
Li Replenishment lead time
Li +Ri Replenishment cycle
fxi(x0) Density function of demand over the replenishment

cycle for product i
βi Parameter that satisfies, σi = βiσ1

r Inventory holding cost
Si Order up-to level
Ki Safety factor, Si = xi +Kiσi

0 < αi j < 1 Probability that a costumer will substitute j for a unit
of i

fu(u0) Density function of standard normal distribution
Gu(k) Tabulated function of the standard normal distribution

1.3.2 Two-Way Substitution

Unlike the one-way substitution, in two-way substitution case, each of the items can
be used to supply the demand for another one. This only occurs when the demand
for one item is higher than the quantity ordered and the demand for the substitute
item is lower than the quantity ordered. McGillivray and Silver (1978) and Parlar
and Goyal (1984) assumed whenever substitution is possible, there is a probability
that a customer will accept a substitute product. In Parlar’s case, this probability
was between 0 and 1, whereas it was fixed for McGillivray. In McGillivray’s paper,
the demand, xi , is assumed to be normally distributed with a mean of xi and a
standard deviation of σi = βiσ1. The order up to level is given as Si = xi +Kiσi

and the expected shortage per replenishment cycle is ESPRCi = σiGu(Ki). The unit
variable costs and shortage cost of the substitutable, items are also assumed to be
identical. This assumption is justified by the fact that in reality when two items are
substitutable they will have similar prices. Different levels of substitutability were
considered in the paper. The notation used in their paper is shown on Table 1.1.

We know that Gu(k) =
∫ ∞

k (u0−k) fu(u0)du0, and dGu(Ki)
dKi

=−Pu≥(Ki). By setting

the partial derivative of ETRC with respect to Ki to 0, we find that Pu≥(Ki∗) = Rvr
B

for i = 1, . . . ,N. Using the standard normal property fu(u0) = Pu≥(u0) +Gu(u0),
ETRC can be reduced to:

ET RC(K∗
1 ,K

∗
2 , ..,K

∗
n ) =

1
2

DR2vr+σ1B fu(K
∗)

N

∑
i=1

βi. (1.38)

If we assume that there is full demand transferability and all items are perfect
substitutes of each other, ai j = 1, a shortage happens only when the total demand for
all items is smaller than the total stock up-to level. The total shortage and on-hand
inventory decrease the same amount by the transfer sales; therefore, the total net
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stock stays the same as the general case. Consequently, the expected total relevant
costs with perfect substitution is:

ETRCt(K
∗
t1,K

∗
t2, ..,K

∗
tn) =

1
2

DR2vr+σ1B
√

∑β 2
i fu(K

∗). (1.39)

The minimum cost equation is the same as the single item newsvendor model
with the demand equivalent to the total demand of substitutable item problem.
The savings from the substitutability can be expressed as ETRC(K∗

1 ,K
∗
2 , ..,K

∗
n )−

ETRCt(K∗
t1,K

∗
t2, ..,K

∗
tn). Given (1.38) and (1.39) , the maximum possible savings

will occur when substitutability, ai j, is equal to 1. Thus,

MPS = σ1B

(
∑βi −

√
∑β 2

i

)
fu(K

∗)), and K∗
1 = ...= K∗

N = K∗ = ∑βiK∗
ti√

∑β 2
i

.

(1.40)
In addition to these results, the authors (through a numerical analysis for a two

item model) show that when both items are substitutable to each other, the potential
savings increase when K∗ increases. In the case of one way substitution, where
a12 = 0 and a21 = 1, the optimal policy is to stock item 1 only. This theorem also
holds when 0 < a12 < 1 and a21 = 1. There is no analytic expression for ESPRC
when both items are partially substitutable to each other. Hence, McGillivray and
Silver simulated a two-item inventory problem with substitutability. As a result,
they demonstrated that when substitutability levels are between 0 and 0.75, the
model acts as an independent item inventory control problem. Furthermore, a cost
penalty larger than 20% of the MPS only occurs when one of the items is a perfect
substitute of the other. For the case of partial substitutability, a heuristic approach
was developed and tested.

In relation to the heuristic approach, the expected transferred demands were
defined as E(T21) = a21ESPRC2 and E(T12) = a12ESPRC1 for items 1 and 2,
respectively. This approach tries to find the optimal values for K and S using
Pu≥(K∗

i ) = Rvr/[B(1− a ji)+ a jiRvr] and Si = [xi + a jiσ jGu(Kj)] +Kiσi for i �= j
i = 1, . . . ,N. This two-item model can also be extended to include multiple items
and it is computationally straightforward.

Netessine and Rudi’s paper Netessine and Rudi (2003) examines the optimal
inventory stocking policies for a given product line under the notion that consumers
who do not find their first-choice product in the current inventory might substitute
a similar product for it (consumer-driven substitution). Namely, there is an arbitrary
number of products and each consumer has a first choice product. If this product is
out of stock, the consumer might choose one of the other products as a substitute.

Let αi j denote the probability that a customer will substitute j for a unit of i. The
demand vector, D = (D1, ...,Dn), follows a known continuous multivariate demand
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distribution with positive support. In the centralized inventory model, the expected
profit of the company who manages n products is:

π = E ∑
i

[
pi min

(
Di +∑

j �=i

αi j(D j −Q j)
+,Qi

)

−viQi + gi

(
Qi −

(
Di +∑

j �=i

αi j(Di −Q j)
+

))+]
.

The demand vector for i is DS
i = Di +∑ j �=i αi j(D j −Q j)

+, where the superscript
S indicates that the effect from substitution has been accounted for. In other words,
DS

i is the sum of the first-choice demand and demand from substitution. It is
conventional to define ui = pi − vi, the unit underage cost; and oi = vi − gi,the unit
overage cost. This paper proves that the first-order necessary optimality conditions
of the centralized problem are given by:

Pr(Di < Qc
i )−Pr(Di < QC

i < DS
i )

+∑
j �=i

ui + o j

ui + oi
αi jPr(DS

j < QC
i ,Di > QC

i ) =
ui

ui + oi
.

In the decentralized inventory model, the profit for each firm i is:

πi = E
[
uiD

S
i − ui(D

S
i −Qi)

+− oi
(
Qi −DS

i

)]
, i = 1, ...n.

This paper also shows that any Nash equilibrium is characterized by the
following optimality conditions:

Pr(Di < Qd
i )−Pr(Di < Dd

i < DS
i ) =

ui

ui + oi
.

After comparing the optimal ordering quantity Qc
i and Qd

i , the paper finds that:
there exist situations when Qc

i ≥ Qd
i for some i, it is always true that Qc

i ≤ Qd
i for

at least one i, suppose that all the costs are independent and identically distributed,
and the consumers are equally likely to switch to any of the (N −1) products for all
i, j. Then Qc

i ≤ Qd
i for all i.

Nagarajan and Rajagopalan (2008) took a different approach and assumed the
demands of products to be correlated. They defined the total demand to be D, and
the demand portions of the products to be p, (1− p). Without loss of generality, D
is set to be 1, and the optimal order quantities for product 1 and 2 differ from the
general newsvendor solution by (1− γ). This indicates that the higher the fraction
of substitution, the lower the inventory levels. In the case of asymmetric costs and
random total demand, a fixed proportion, γi, of the customers looking for item i
when it is depleted will purchase the substitute and (1− γi) of them will not make a
purchase. If we let γ∗i =max{(pi+Bi)−(hi+2ci)/(p j+h j+Bi),1}, i, j = 1,2, i �= j
then, if γi ≤ γ∗i , the “partially decoupled” inventory policy is optimal. It is evident
that when product 2 is priced higher, the optimal base stock for product 1 is lower.
Especially, in the case of high enough p2 and h2, this base stock level can be



1 The Multi-product Newsvendor Problem. . . 29

below the mean or even close to zero. This means that the risk-pooling effect of
substitution reduces the inventories of both products. This effect is more apparent
for the inventory of the lower priced product. The authors show that this method can
easily be applied to the n-product and multi-period model.

Focusing on a stylized two-product setting, the end of period profit for the buyer
are:

Case 1.
2

∑
i=1

[pixi − viQi +gi(Qi − xi) if x1 ≤ Q1;x2 ≤ Q2

Case 2. p1Q1 + p2x2 −
2

∑
i=1

viQi + p1Min(x1 −Q1,Q2 − x2) if x1 > Q1;x2 ≤ Q2

+g2[(Q2 − x2)− (x1 −Q1)]
+−B1[(x1 −Q1)− (Q2 − x2)]

+

Case 3. p1x1 + p2Q2 −
2

∑
i=1

viQi + p2Min(x2−Q2,Q1 − x1) if x1 ≤ Q1;x2 > Q2

+g1[(Q1 − x1)− (x2 −Q2)]
+−B2[(x2 −Q2)− (Q1 − x1)]

+

Case 4.
2

∑
i=1

piQi − viQi −Bi(xi −Qi) if x1 > Q1;x2 > Q2

(1.41)

and based on this, the expected profit function is:

E[π(Q1,Q2)] = E

[
[p1Min(x1,Q1)+ p2Min[x2,Q2 +(Q1 − x1)

+]− v1Q1 − v2Q2

+ g1[Q1 − x1 − (x2 −Q2)
+]+ + g2(Q2 − x2)

+−B1(x1 −Q1)
+

−B2[x2 −Q2 − (Q1 − x1)
+]+

]

= p1

[∫ Q1

0
x1 f1(x1)dx1 +

∫ ∞

Q1

Q1 f1(x1)dx1

+

∫ Q1

0

∫ ∞

Q2

(Q2 − x2) f (x1,x2)dx2dx1

]

+ p2

[∫ Q2

0
x2 f2(x2)dx2 +

∫ ∞

Q2

Q2 f2(x2)dx2

+
∫ Q1

0

∫ ∞

Q2

(Q1 − x1) f (x1,x2)dx2dx1

]

− v1Q1 − v2Q2 + g1

[∫ Q1

0

∫ Q2

0
(Q1 − x1) f (x1,x2)dx1dx2

+

∫ Q1+Q2−x2

0

∫ Q1+Q2

Q2

(Q1 +Q2 − x1 − x2) f (x1,x2)dx1dx2

]

+ g2

[∫ Q1

0

∫ Q2

0
(Q2 − x2) f (x1,x2)dx2dx1
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+

∫ Q1+Q2−x1

0

∫ Q1+Q2

Q1

(Q1 +Q2 − x1 − x2) f (x1,x2)dx2dx1

]

− B1

[∫ ∞

Q1

∫ ∞

Q2

(x1 −Q1) f (x1,x2)dx1dx2

+

∫ ∞

Q1+Q2−x2

∫ Q2

0
(x1 + x2 −Q1 −Q2) f (x1,x2)dx2dx1

]

− B2

[∫ ∞

Q1

∫ ∞

Q2

(x2 −Q2) f (x1,x2)dx2dx1

+
∫ Q1

0

∫ ∞

Q1+Q2−x1

(x1 + x2 −Q1 −Q2) f (x1,x2)dx2dx1

]
.

(1.42)

Pasternack and Drezner (1991) proved that this function is concave and showed
that the optimal quantities can be found using a specific distribution and parameters.
Assuming that the revenue from substitution is different from the revenue from
regular sales, the authors also explored the effect of substitution on the order
quantities and showed that for a given revenue of t2 for each product 2 that is
substituted for product 1:

dQ∗
1

dt1
> 0 and

dQ∗
2

dt1
< 0, (1.43)

and a similar result holds for product 1. This result implies that if the revenue
from substitution of one product increases, the optimal order quantity for the
other product will decrease and the substitute product will increase. The authors
analytically solved the case for the one-way substitution and reached similar
insights. In addition, the authors explored the effect of substitution on the total
inventory levels and observed that when the revenue from substitution increases,
the optimal quantity of the substitutable product increases faster than the substitute.

Rajaram and Tang (2001) studied the same problem but allowed the substitution
parameter to be anywhere between 0 and 1. The heuristic they presented explores
how the demand variation and correlation as well as the substitution affect the
expected order quantities and expected profits. Khouja et al. (1996) used Monte
Carlo simulation to find the optimal order quantities. Six events are defined to
represent this model. First event is when the demand for each item is less than
its order quantities. Second event is when the demand for each item is equal to or
higher than its order quantities. The third and the fourth events are when the demand
for item 1 is greater than the order quantity, and the excess quantity of item j is
sufficient or insufficient, respectively. Similar case holds for the fifth and the sixth
events. They define the upper and lower quantity bounds for each item and prove that
the optimal quantities will be between these two values. The first property, which
aids the proof of Lemma 1, states that it is more profitable to sell customers one unit
of i than to sell t j quantity of item j. They define the lower bounds to be QL

1 and QL
2 ,

where F1(X1 = QL
1 ) ≈ 1 and F2(X2 = QL

2 ) ≈ 1 holds. Lemma 1 indicates that the
optimal solution will always be higher than the lower bound. In order to prove this,
three scenarios that violate lemma 1 are considered. They show that for each of the
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cases, the expected profit increases when the solution is equal to or higher than the
lower bound. They define upper bounds to be QU

1 and QU
2 , where F3(X3 = QU

1 )≈ 1
and F4(X4 = QU

2 ) ≈ 1, X3 = X1 + t1(X2 −QL
2 ) and X4 = X2 + t2(X1 −QL

1 ). Using
similar arguments to lemma 1, they prove that the optimal solution is lower than the
upper bound. Stricter upper bounds can be found assuming X1 and X2 are normally
distributed; consequently, X3 and X4 can be assumed to be normally distributed.
They prove that any optimal solution will be less than QN

1 and QN
2 , where QN

1
and QN

2 are the solutions to the newsvendor problems with demands X3 and X4.
Numerical tests were run to gain insights to the problem. As a result, it was found
that as t1 increases, Q1 increases and Q2 decreases. This can be explained by the
decrease in the effective cost of underestimating item 2. Consequently, the demand
for item 1 increases and the demand for item 2 decreases.

The assumptions for this paper are: (1) demand is normally distributed, (2)
demand for different items is independent, (3) the salvage value for unsold items is
zero, (4) there is no penalty for unmet demand, (5) price, cost, average demand, and
standard deviation of demand for all products are the same, (6) for the model with
budget constraint, only two items are considered, (7) analyzing substitutability, only
a two-item newsvendor problem is considered, and it is assumed that the customer
takes a single unit of the substitution product, and (8) substitutability is assumed to
be symmetric.

In the model without additional complications, it is shown that the value
of product-mix information increases with the number of items, whereas the
value of global information decreases with the number of items. The value of
both product-mix information and global information decreases with a budget
constraint. Furthermore, the value of perfect information also decreases with a
budget constraint. The probability of substitution decreases the value of product-
mix information such that it is zero with complete substitution, and increases the
value of global information so that it is equal to the value of perfect information
with complete substitution.

1.4 Extensions

In this final section, we describe two recent extensions for handling the uncon-
strained MPNP for the case of substitute products. The first extension examines the
case where the demand is price dependent. This is a common situation that arises in
practices that customers substitute a different product when the price of the desired
product has increased. For example, the supermarkets stock two different brand
shampoos with same price and similar quality. If one of the products has increased
their price, the price sensitive customers will choose the product with the lower
price. The second case addresses the situation where demand is quantity dependent.
This is reasonable in reality because an increase in shelf space for a product attracts
more customers to buy it due to its visibility and popularity. Conversely, low stocks
of certain goods (e.g., perishable food) might leave the impression that they are not
fresh. In both cases, we present the results for a stylized scenario for two products.
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1.4.1 Price Linear Demand

Carrillo et al. (2011) analyze the stocking decision under price linear demand for
substitutive products. The demand function for product i(i = 1,2) is:

xi = ai − bipi + sp j + εi, (1.44)

where ai is the market share for product i, bi represents the price elasticity of demand
for product i, and s is the symmetric price-based substitution effect parameter. εi is
defined as a continuous random variable with probability density function f (·) and
cumulative distribution function F(·) in the range of [−di,di] with mean μi The
profit for each product is:

πi(Qi,xi) =

{
pixi − viQi + gi(Qi − xi) if Qi ≥ xi

piQi − viQi −Bi(xi −Qi) if Qi < xi
. (1.45)

Let zi = Qi − ai+ bipi, the expected profit for each product i is:

E[Π(z1,z2, p1, p2)] =

{∫ z1

−d1

[p1(a1 − b1p1 + sp2 + ε1)+ g1(z1 − ε1)] f (ε1)dε1

}

+

{∫ d1

z1

[p1(a1 − b1p1 + sp2 + z1)+B1(z1 − ε1)] f (ε1)dε1

}

−v1(a1 − b1 p1 + sp2 + z1)

+

{∫ z2

−d2

[p2(a2 − b2p2 + sp1 + ε2)+ g2(z2 − ε2)] f (ε2)dε2

}

+

{∫ d2

z2

[p2(a2 − b2p2 + sp1 + z2)+B2(z2 − ε2)] f (ε2)dε2

}

−v2(a2 − b2 p2 + sp1 + z2)

=
2

∑
i=1

{
(pi − vi)(ai − bipi)− (vi − gi)zi

−(pi − gi)

[∫ di

zi

(εi − zi) f (εi)dεi − μi

]}
+Bi

∫ di

zi

(zi − εi)

× f (εi)dεi + sp1(p2 − v2)+ sp2(p1 − v1). (1.46)

The FOCs are:

∂E[Π ]

∂ z1
=−v1 + g1F(z1)+ (p1 +B1)[1−F(z1)], (1.47)
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∂E[Π ]

∂ z2
=−v2 + g2 +(p2 +B2)[1−F(z2)], (1.48)

∂E[Π ]

∂ p1
= 2b1

[
a1 + b1v1

2b1
− p1

]
−
∫ d1

z1

(ε1 − z1) f (ε1)dε1 +2sp2− sv2 +μ1, (1.49)

∂E[Π ]

∂ p2
= 2b2

[
a2 + b2v2

2b2
− p2

]
−
∫ d2

z2

(ε2 − z2) f (ε2)dε2 +2sp1− sv1 +μ2. (1.50)

The second-order conditions are:

∂ 2E[Π ]

∂ zi
2 = (gi − pi −Bi) f (zi) for i = 1,2, (1.51)

∂ 2E[Π ]

∂ pi
2 = −2bi for i = 1,2, (1.52)

∂ 2E[Π ]

∂ z1∂ p1
= 1−F(z1), (1.53)

∂ 2E[Π ]

∂ z1∂ p2
= 0, (1.54)

∂ 2E[Π ]

∂ z2∂ p2
= 1−F(z2), (1.55)

∂ 2E[Π ]

∂ z2∂ p1
= 0, (1.56)

∂ 2E[Π ]

∂ p1∂ p2
= 2s. (1.57)

We can’t prove that the Hessian is strictly concave without the specific value for
parameters.

For specific values of z1 and z2, (1.49) and (1.50) are strictly and jointly concave
in p1 and p2. Since it was assumed that b j > s for j = 1,2., (1.52) and (1.57) indicate
that |H1| < 0 and |H2| = 4b1b2 − 4s2 > 0. Thus, for given values of z1 and z2, the
optimal prices can be determined by solving the following simultaneous equations
(obtained by setting the FOCs in (1.49) and (1.50) equal to 0):

− 2b1p1 + 2sp2 =

∫ d1

z1

(ε1 − z1) f (ε1)dε1 + sv2 − (a1 + b1v1)− μ1, (1.58)

2sp1 − 2b2p2 =

∫ d2

z2

(ε2 − z2) f (ε2)dε2 + sv1 − (a2 + b2v2)− μ2. (1.59)
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The solution to this set of equations is:

p1(z1,z2) =
b2u1 + su2

2(b1b2 − s2)
, (1.60)

p2(z1,z2) =
b1u2 + su1

2(b1b2 − s2)
, (1.61)

where u1 = (a1 + b1c1)−
∫ d1

z1
(ε1 − z1) f (ε1)dε1 − sc2 + μ1 and u2 = (a2 + b2c2)

−∫ d2
z2
(ε2 − z2) f (ε2)dε2 − sc1 + μ2.

Then the following algorithm could determine the optimal prices, stocking
quantities, and the corresponding optimal profit:

1. Set z1 = −d1 − 0.01; z2 = −d2 − 0.01; Pro f it = 0; m1 = m2 = 0, p1t = p1 = 0;
p2t = p2 = 0 and z1t = z2t = 0.

2. z1 = z1 + 0.01. If z1 > d1, go to 6.
3. z2 = z2 + 0.01. If z2 > d2, go to 2.
4. Compute p1(z1,z2) using (1.60) and p2(z1,z2) using (1.61). Set p1t = p1(z1,z2)

and p2t = p2(z1,z2).
5. Compute E[Π(z1,z2, p1t , p2t ] using (1.46). If Pro f it > E[Π(z1,z2, p1t , p2t)], go

to 3, else set Pro f it = E[Π(z1,z2, p1t , p2t)]; z1t = z1; z2t = z2; m1 = p1t , m2 = p2t

and go to 3.
6. The optimal market prices are: p1∗ = m1 and p2∗ = m2; the optimal stocking

quantities are: q1∗= a1−b1m1 + sm2+ z1t , and q2∗= a2−b2m2 + sm1+ z2t and
associated optimal profit is Pro f it.

1.4.2 Quantity Linear Demand

The demand function for quantity linear demand of product i (i = 1,2) is

xi = ai + biqi − sq j + εi, (1.62)

where ai represents the relative market share for product i, bi is the quantity elasticity
of demand, and s is the symmetric quantity-based substitution effect parameter. Also
εi is defined as a continuous random variable with probability density function f (·)
and cumulative distribution function F(·) in the range of [−di,di] with mean μi. The
profit for each product is:

E[Πi(z1,z2,q1,q2)] =

{∫ zi

−di

[pi(ai + biqi − sp j + εi)+ gi(zi − εi)] f (εi)dεi

}

+

{∫ di

zi

[pi(ai + biqi − sq j + zi)+Bi(zi − εi)] f (εi)dεi

}
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−vi(ai + biqi − sq j + zi)

= (pi − vi)(ai + biqi − sq j)− (vi − gi)zi +(pi − gi)μi

−(pi − gi+Bi)

∫ di

zi

(εi − zi) f (εi)dεi, (1.63)

where zi = qi − (ai + biqi − sq j). The total profit is E[Π(z1,z2,q1,q2)] = E[Π1)]
+E[Π2]

The FOCs are:

∂E[Π ]

∂qi
= (pi − gi)bi +(gi − vi)+ (pi− gi +Bi)[1−F(zi)](1− bi)+

−s{(p j − g j)+ (p j − g j +B j)[1−F(z j)]}. (1.64)

The second-order conditions are:

∂ 2E[Π ]

∂qi
2 =−(pi − gi +Bi)(1− bi)

2 f (zi)− (p j − g j +B j)s
2 f (z j), (1.65)

∂ 2E[Π ]

∂q1∂q2
=−(p1 −g1 +B1)(1−b1)s f (z1)− (p2 −g2 +B2)(1−b2)s f (z2). (1.66)

From the Hessian Matrix, |H1| < 0, |H2| = u1u2[(1 − b1)(1 − b2)− s2]2 > 0,
where ui = (pi − gi +Bi) f (yi). Since the objective function is strictly concave, we
can obtain the solution for this problem from the FOCs (i.e., by setting them equal
to 0 and simultaneously solving for the decision variables).

1.5 Conclusions and Directions for Future Research

In this paper, we have reviewed and critiqued the literature to date for the MPNP. As
is obvious, the majority of prior research has focused on determining the optimal
stocking policy for the constrained MPNP. More recent work on exploring the
impact of substitutability has also been undertaken and in this setting, we present
two possible extensions of the MPNP for price and quantity substitution effects.
For both these cases, we show that optimal solutions can be obtained through
either a search process (for price substitution) or a structural analysis (for quantity
substitution). Here we point out a few areas where further research is needed.



36 N. Turken et al.

1.5.1 Price-Dependent Demand

Previous researches on MPNP assume the independence of price and market
demand. Recent work has mitigated this issue by addressing the joint ordering and
pricing problem in the MPNP framework. But most of these works only consider
single budget constraint, while in practice the retailer may face multiple resource
constraints. So it would be interesting to extend the study to consider the problem
with multiple constraints. Due to the complexity of the problem, high quality
heuristics procedures are anticipated to find good solutions.

1.5.2 Multiple Suppliers

Nearly all the models in this chapter assume single supplier. However, in practice,
retailers may face several suppliers when making the merchandise decision. It would
be interesting to incorporate multiple suppliers into MPNP, especially under price
competition between potential suppliers and availability of several supply options.
We see many opportunities for future research to help bridge this gap.

1.5.3 Product Substitution

Incorporating the substitution effects can have a significant effect on profitability.
However, most previous studies on the substitution effects of the MPNP only
focus on two products substitutability. It would be interesting to extend the
analysis in a more generalized case. This extension requires a better understanding
of interdependencies among the demands for related products. So an empirical
investigation of the generalized substitution effects in customer decision making
will also be an attractive future research area.

1.5.4 Risk and Hedging

The classical newsvendor problem is based on the assumption that most of the
supply chains are risk neutral. The research on risk-averse supply chains has
been considered by several authors. However, these papers focused on independent
demand. As an extension, price and quantity-dependent demands can be considered.
The hedging problem has been tackled by Vaagen and Wallace in the fashion
industry, this research could be extended to other industries with different sales
behavior. Also, the pricing strategies for these hedging portfolios could be examined
to identify policies that further reduce profit risk.
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Abstract I consider a multi-product risk-averse newsvendor under the law-invariant
coherent measures of risk. I first establish a few fundamental properties of
the model regarding the convexity of the problem and the symmetry of the
solution, and study the impacts of risk aversion and shift in mean demand to the
optimal solution with independent demands. Specifically, I show that for identical
products with independent demands, increased risk aversion leads to decreased
orders. For a large but finite number of heterogenous products with independent
demands, I derive closed-form approximations for the optimal order quantities. The
approximations are as simple to compute as the classical risk-neutral solutions. I
also show that the risk-neutral solution is asymptotically optimal as the number
of products tends to be infinity, and thus risk aversion has no impact in the limit.
For a risk-averse newsvendor with dependent demands, I show that positively
(negatively) dependent demands lead to a lower (higher) optimal order quantities
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2.1 Introduction

2.1.1 Motivation

The multi-product newsvendor model is a classical model in the inventory control
literature. In this model, there are multiple products to be sold in a single selling
season. On the one hand, when demand exceeds supply for any product, the
excessive demand is lost. On the other hand, when supply exceeds demand, the
excessive inventory is sold at a loss. The firm’s objective is to determine the optimal
order quantity for each product so as to maximize a certain performance measure.
This model finds its applications in many manufacturing, distribution, and retailing
firms that handle short life cycle products.

The literature of the multi-product newsvendor model has mainly used risk-
neutral performance measures as an objective function. For example, the company
optimizes the expected average profit or average cost per product. Under these
objective functions, the model is decomposable and one can consider each product
separately as multiple single-product newsvendor models, unless resource con-
straints are imposed nor demand substitution is allowed. Under risk-averse objective
functions, however, the model is generally not decomposable. One needs to consider
all products simultaneously, as a portfolio.

Below, I first review the literature of risk-neutral multi-product inventory models
by ways products interact. Then, I review the literature of risk models and its recent
applications in supply chain inventory management.

Hadley and Whitin (1963) consider a multi-product newsvendor model with
storage capacity or budget constraints, and provide the solution methods based
on Lagrangian multiplier. Porteus (1990) presents a thorough review of various
newsvendor models. Veinott (1965) considers the dynamic version of the multi-
product inventory models in a multi-period setting, with general assumptions in
demand process, cost parameters, and lead times. Conditions under which myopic
policy is optimal are identified. Ignall and Veinott (1969) and Heyman and Sobel
(1984) extend the work by identifying new conditions for the myopic policy in
models with risk-neutral assumption, see Aviv and Federgruen (2001), Decroix
and Arreola-Risa (1998), Evans (1967), and Federgruen (1984) for exact analysis
and approximations. Other than resource constraints, multi-product newsvendor
models are also studied under demand substitution, where unsatisfied demand of
one product can be satisfied by on-hand inventory of another product. I refer to
van Ryzin and Mahajan (1999) for a review on multi-item inventory systems with
substitution.

My aim is to replace the risk-neutral performance measure by measures taking
risk aversion into account. Such a model is generally not decomposable, and one
needs to consider all products simultaneously, as a portfolio. In this paper, I lay
the foundations of the multi-product newsvendor model under coherent measures
of risk and derive its basic properties. They provide insight into the impact of risk
aversion on the multi-product newsvendor with either independent or dependent
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demands. Moreover, I study asymptotic properties of the solution as the number of
products tends to infinity and develop simple yet accurate approximations of risk-
averse solutions, which allow fast computation of large-scale problems.

Below, I first review the literature of risk measures and their recent applications
in supply chain inventory management. Then, I summarize my model and main
results.

2.1.2 Risk Measures

The risk-neutral inventory models provide the best decision on average. This
may be justified by the Law of Large Numbers. However, one cannot always
rely on repeated similar chances. The first few outcomes may turn out to be
very bad and entail unacceptable losses. Schweitzer and Cachon (2000) provide
experimental evidence suggesting that inventory managers may be risk-averse for
high-value products. Because of these reasons, attempts to overcome the drawbacks
of the expected value optimization have a long history and there exist four typical
approaches to model decision making under risk. They are expected utility theory,
stochastic dominance, chance constraints, and mean-risk analysis. These approaches
are related and consistent to some extent.

The expected utility theory of von Neumann and Morgenstern (1944) derives,
from simple axioms, the existence of a nondecreasing utility function, which trans-
forms in a nonlinear way the observed outcomes. The decision maker optimizes,
instead of the expected outcome, the expected value of the utility function. In
the maximization context, when the outcome represents profit, risk-averse decision
makers have concave and nondecreasing utility functions.

The second approach is based on the theory of stochastic dominance, developed
in statistics and economics (see Lehmann 1955; Hadar and Russell 1969 and
references therein). Stochastic dominance relations are partial orders on the space
of distributions, and thus allow for pairwise comparison of different solutions. An
important feature of the stochastic dominance theory is its universal character with
respect to utility functions. More specifically, the distribution of a random outcome
V is preferred to random outcome Y in terms of a stochastic dominance relation if
and only if expected utility of V is preferred to expected utility of Y for all utility
functions in a certain class, called the generator of the relation. In particular, the
second-order stochastic dominance corresponds to all concave nondecreasing utility
functions, and is thus well suited to model risk-averse preferences. For an overview
of these issues, see Müller and Stoyan (2002) and Levy (2006). Unfortunately, the
stochastic dominance approach does not provide a simple computational recipe. In
fact, it is a multiple criteria model with a continuum of criteria. Therefore, it has
been used as a constraint (see Dentcheva and Ruszczyński 2003), and also utilized
as a reference standard whether a particular solution approach is appropriate (see
Ogryczak and Ruszczyński 1999; Ruszczyński and Vanderbei 2003).
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Table 2.1 A counterexample
to show problems of
mean-variance models

Policy 1 Policy 2

“Bad” Stake (0.5) −1 −1
“Good” Stake (0.5) 1 3

Mean (μ) 0 1
Variance (σ 2) 1 4
Absolute semi-deviation (σ1) 1/2 1
Standard semi-deviation (σ2) 1/

√
2

√
2

−μ +1 ·σ 2 1 3
−μ +1 ·σ1 1/2 0
−μ +1 ·σ2 1/

√
2

√
2−1

The third approach specifies constraints on probabilities of unfavorable events.
Prékopa (2003) provides a thorough overview of the state of the art of the
optimization theory with chance constraints. Theoretically, a chance constraint is a
relaxed version of the stochastic dominance relation of the first-order, and thus it is
related to the expected utility theory, but there is no equivalence. In finance, chance
constraints are known under the name of Value-at-Risk (VaR) constraints. Chance
constraints sometimes lead to nonconvex formulations of the resulting optimization
problems.

The fourth approach, originating from finance, is the mean-risk analysis. It
quantifies the problem in a lucid form of two criteria: the mean (the expected value
of the outcome), and the risk (a scalar measure of the variability of the outcome).
In the maximization context, one selects from the universe of all possible solutions
those that are efficient: for a given value of the mean they minimize the risk, or
equivalently, for a given value of risk they maximize the mean. Such an approach
has many advantages: it allows one to formulate the problem as a parametric
optimization problem, and it facilitates the trade-off analysis between mean and risk.

In the context of portfolio optimization, Markowitz (1959) used the variance of
the return as the risk. It is easy to compute, and it reduces the financial portfolio
selection problem to a parametric quadratic programming problem. One can, how-
ever, construct simple counterexamples that show the imperfection of the variance
as the risk measure: it treats over-performance equally as under-performance, and
more importantly it may suggest a portfolio which is stochastically dominated by
another portfolio. Table 2.1 below summarizes a defect of mean-variance models.
In Table 2.1, let me consider two policies, policy 1 and 2, defined at the two
equally likely events, “Bad” and “Good.” Then, policy 2 is stochastically bigger than
policy 1. Here, both −μ +σ1 and −μ +σ2 are coherent risk measures. Then, with
these two risk measures, policy 2 is preferred to policy 1, which shows consistency
with stochastic dominance relations. However, with a mean-variance model, policy
1 may be preferred to policy 2 implying contradiction to stochastic dominance.

To overcome the drawbacks of the mean-variance analysis, the general theory
of coherent measures of risk was suggested by Artzner et al. (1999) and extended
to general probability spaces by Delbaen (2002). For further generalizations, see
Föllmer and Schied (2002, 2004), Kusuoka (2003), Ruszczyński and Shapiro
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(2005) and Ruszczyński and Shapiro (2006a). Dynamic version for a multi-period
case were analyzed, among others, by Riedel (2004), Kusuoka and Morimoto
(2004), Cheridito et al. (2006) and Ruszczyński and Shapiro (2006b). In this
theory, an integrated performance measure is proposed, comprising both the mean
and variability measures, and four axioms (Convexity, Monotonicity, Translation
Equivariance, and Positive Homogeneity; see Sect. 2.3 for a precise definition) are
imposed. Coherent measures of risk are extensions of the mean-risk analysis. It is
known that coherent measures of risk are consistent with the 1st and 2nd order
stochastic dominance relations (see Shapiro et al. 2009).

More specifically, in a multi-product newsvendor problem, these four axioms
have following implications to guarantee consistency with intuition about rational
risk-averse decision making. Thus, by satisfying the axioms, a coherent risk measure
has certain attractive features, as compared to these measures, making it worth
considering. First, Convexity axiom means that the global risk of a portfolio should
be equal or less than the sum of its partial risks. Thus, this axiom is consistent
with diversification effects. Second, Monotonicity axiom is consistent with the first-
order stochastic dominance relation. Third, Translation Equivariance axiom means
that adding a constant cost is equivalent to increasing the vendors performance
measure by the same amount. On the contrary, adding a constant gain is equivalent
to decreasing the vendors performance measure by the same amount. Therefore,
by excluding the impact of constant gains or losses, fixed parts can be separated
equivalently from the vendors random performance measure at every possible state
of nature. Lastly, Positive Homogeneity axiom guarantees that the optimal solution
does not change to rescaling of units.

Among the four axioms aforementioned, expected utility models and coherent
risk measures share the properties of convexity and consistency with stochastic
dominance. In addition, the coherent risk measures satisfy the axioms of Translation
Equivariance and Positive Homogeneity. However, under expected utility theory,
these two axioms typically do not hold; see, e.g., the exponential utility function in
Howard (1988).

For inventory systems where the initial endowment effect is significant, i.e.,
when the initial wealth could affect the decision of a risk-averse manager, or
when constant demand for some products could affect order quantities of other
products, an expected utility model may be preferred to a model with a coherent
risk measure, because the latter ignores the endowment effect. In newsvendor
models, where inventory managers are mainly concerned about the overage and
underage costs associated with random demand, and in other problems, where risk
is primarily associated with uncertainty, coherent risk measures may capture risk
preferences better. The following arguments speak in favor of coherent measures of
risk: (1) Translation Equivariance allows them to properly rank risky alternatives by
excluding the impact of constant gains or losses (see Artzner et al. 1999). (2) The
Positive Homogeneity axiom ensures that their attitude to risk will not change when
the unit system is changed (e.g., from dollars to cents). More importantly, this axiom
indicates no diversification effect when demands are completely correlated. To see
this, it is well known that the subadditivity property, ρ(X +Y ) ≤ ρ(X) + ρ(Y ),



46 S. Choi

implies ρ(nX) ≤ nρ(X). However ρ(nX) < nρ(X) would imply diversification
effect even when the random demands are completely correlated. To avoid this
counter-intuitive effect, it is left with ρ(nX) = nρ(X) which is the Positive
Homogeneity axiom.

Several modifications and extensions of coherent measures of risk have been
suggested in the literature, including convex measures of risk, insurance risk
measures, natural risk statistic, and tradeable measures of risk. I point out that all
these risk measures ignore the initial endowment effect, implying consistency with
Translation Equivariance.

Föllmer and Schied (2002) consider convex measures of risk, in which the
Positive Homogeneity axiom is relaxed. Again, in my context, this may lead to a
diversification effect when demands are completely correlated; it may also lead to
counterintuitive effects of changing risk attitudes when the outcomes are rescaled,
by changing the currency in which profits are calculated, or by considering the
average profit per product.

The other three risk measures do not satisfy the convexity axiom in general.
They are based on the reality of financial markets where noncoherent risk measures,
such as VaR (Value-at-Risk), are widely used. Wang et al. (1997) suggest insurance
risk measures which are law invariant, and satisfy the axioms of conditional state
independence, monotonicity, comonotone additivity and continuity. Heyde (2006)
propose the natural risk statistics, which is also law invariant, and in which the
convexity axiom is required only for comonotone random variables. Ahmed et al.
(2008) show that such a risk measure can be represented as a composition of a
coherent measure of risk and a certain law preserving transformation, and thus the
insights into models with coherent measures of risk are relevant for natural risk
statistics. Pospišil et al. (2008) propose tradeable measures of risk. They argue
that the proper risk measures should be constructed by historically realized returns.
When compared to the coherent measures of risk, these risk measures appear to be
much more difficult to handle, due to nonconvexity and/or nondifferentiability of
the resulting model. I shall see that even in the case of coherent measures of risk the
technical difficulties are substantial.

2.1.3 Risk-Averse Inventory Models

In recent years, risk-averse inventory models have received increasing attention
in the supply chain management literature. Table 2.2 classifies the literature by
inventory models and risk measures. Because there is no research so far directly
applying stochastic dominance to this field, I drop it from the table.

Most work to date dealt with single-product inventory models. For newsvendor
models, research focused on finding the optimal solution under a risk-averse
measure, and studying the impact of the degree of risk aversion (among other model
parameters) on the optimal solution. A typical finding is that as the degree of risk
aversion increases, the optimal order quantity tends to decrease.
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For single-product but multi-period dynamic inventory models under risk
aversion, the literature focuses on characterizing the structure of the optimal
ordering or pricing policies and quantifying the impact of the degree of risk aversion
on the optimal polices. Chen et al. (2006) review results in this direction.

For multi-product risk-averse newsvendor models, Tomlin and Wang (2005)
study how characteristics of products (e.g., profit margin, demand correlation), re-
source reliability and firm’s risk attitude affect the preference of resource flexibility
and supply diversification. Under a downside risk measure and Conditional Value
at Risk (CVaR), they show that for a risk-averse firm with unreliable resources, a
supply chain can prefer dedicated resources than a flexible resource even if the cost
of the latter is smaller than the former.

Newsvendor networks are studied by van Mieghem (2007), with many products
and many resources under mean-variance and utility function approaches. The
networks feature resource diversification, flexibility (e.g., ex post inventory capacity
allocation) and/or demand pooling. The paper addresses the question of how the
aforementioned operational strategies reduce total risk and create value. It shows
that a risk-averse newsvendor may invest more resources in certain networks than
a risk-neutral newsvendor (i.e., operational hedging) because such resources may
reduce the profit variance and mitigate risk in the network. Among the three
networks, the dedicated one is mostly related to my model. In this network, there
are two products with correlated demand. The author characterizes the impact of
demand correlation on the optimal order quantities in two extreme cases of complete
positive or negative correlation. A numerical study is conducted to cover cases other
than the extreme ones.

Finally, Ağrali and Soylu (2006) conduct a numerical investigation on a two-
product newsvendor model under the risk measure of CVaR . Assuming a discretized
multi-variate normal demand distribution, the authors studied the sensitivity of
the optimal solution with respect to the mean and variance of demand, demand
correlation, and various cost parameters. Interestingly, the report shows that as the
demand correlation increases, the optimal order quantities tend to decrease.

For multi-echelon or multi-agent models, so far all papers consider single-
product and single-period models. Lau and Lau (1999) study a manufacturer’s
pricing strategy and return policy under the mean-variance risk measure. Agrawal
and Seshadri (2000b) introduce a risk-neutral intermediaries to offer mutually
beneficial contracts to risk-averse retailers. Tsay (2002) studies how a manufacturer
can use return policies to share risk under the mean-standard deviation measure.
Gan et al. (2004) study Pareto-optimality for suppliers and retailers under various
risk-averse measures. Gan et al. (2005) design coordination schemes of buyback
and risk-sharing contracts in a supply chain under a Value-at-Risk constraint. For
a review of the literature on risk aversion in capacity investment models and on
operational hedging, see van Mieghem (2003).
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2.1.4 My Model and Main Results

This paper considers a multi-product risk-averse newsvendor using a law-invariant
coherent risk measure (see Sects. 2.2 and 2.3). As I argued in Sect. 2.1.2, coherent
risk measures can be more attractive than the expected utility theory in the multi-
product newsvendor problem due to their properties of Translation Equivariance and
Positive Homogeneity.

The model presents a considerable challenge, both analytically and computa-
tionally, because the objective function cannot be decomposed by each product and
one has to look at the totality of all products as a portfolio. In particular, one has
to characterize the impact of risk aversion and demand dependence on the optimal
solution, identify efficient ways to find the optimal solution, and connect this model
to the financial portfolio theory. While Tomlin and Wang (2005) study a two-product
system under CVaR, their focus is on the design of material flow topology and thus
is different from mine.

I should also point out that in most practical cases where this model is relevant
(either manufacturing or retailing), firms may have a large number of heterogenous
products. Due to the complex nature of risk optimization models, they become
practically intractable for problems of these dimensions. Thus, it is theoretically
interesting and practically useful to study the asymptotic behavior of the system as
the number of products tends to infinity and obtain fast approximation for large-size
problems.

This work contributes to literature in the following ways: I first establish a few
fundamental properties regarding the convexity of the model and the symmetry
of the solution for the model in Sect. 2.4, and study the impacts of risk aversion
and shift in mean demand to the optimal solution with independent demands in
Sect. 2.5. I then consider large but finite number of independent heterogenous
products, for which I develop closed-form approximations in Sect. 2.6 which are
exact in the single-product case. The approximations are as simple to compute as
the risk-neutral solutions. I also show that under certain regularity conditions, the
risk-neutral solutions are asymptotically optimal under risk aversion, as the number
of products tends to be infinity. This asymptotic result has an important economic
implication: companies with many products or product families with low demand
dependence need to look only at risk-neutral solutions, even if they are risk-averse.

The impact of dependent demands under risk aversion poses a substantial
analytical challenge. By utilizing the concept of associated random variables, I
prove in Sect. 2.7 that in a risk-averse two-product model with positively dependent
demands the optimal order quantities are lower than for independent demands,
while for negatively dependent demands the optimal order quantities are higher.
Using a sample-based optimization, I conduct in Sect. 2.8 a numerical study, which
demonstrates that the approximations converge quickly to the optimal solutions
as the number of products increases. It also provides additional insights into the
impact of dependent demands. Specifically, I identify counterexamples to show that
increased risk aversion can lead to greater optimal order quantities for strongly
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negatively dependent demands. In Sect. 2.9, I summarize the paper and compare
the multi-product risk-averse newsvendor model to the financial portfolio problem.

2.2 Problem Formulation

Given products j = 1, . . . ,n, let x = (x1,x2, . . . ,xn) be the vector of ordering quan-
tities and let D = (D1, . . . ,Dn) be the demand vector. I also define r = (r1, . . . ,rn)
to be the price vector, c = (c1, . . . ,cn) to be cost vector, and s = (s1, . . . ,sn) to be
the vector of salvage values. Finally, let f j(·) and Fj(·) be the marginal probability
density function (pdf), if it exists, and the marginal cumulative distribution function
(cdf) of D j, respectively. Denote F̄j(ξ ) = 1−Fj(ξ ).

Setting c̄ j = c j − s j and r̄ j = r j − s j, I can write the profit function as follows:

Π(x,D) =
n

∑
j=1

Π j(x j,D j), (2.1)

where

Π j(x j,D j) =−c̄ jx j + r̄ j min{x j,D j}
= (r j − c j)x j − (r j − s j)(x j −D j)

+, j = 1, . . . ,n, (2.2)

with (x)+ = max{x,0}. I assume that the demand vector D is random and
nonnegative. Thus, for every x ≥ 0 the profit Π(x,D) is a real bounded random
variable.

The risk-neutral multi-product newsvendor optimization problem is to maximize
the expected profit:

max
x≥0

E[Π(x,D)]. (2.3)

This problem can be decomposed into independent problems, one for each product.
Thus, under risk neutrality, a multi-product newsvendor problem is equivalent to
multiple single-product newsvendor problems. However, as I have mentioned it in
the introduction, this formulation is inappropriate, if one is concerned with few (or
just one) realizations and the Law of Large Numbers cannot be invoked.

Under a coherent risk measure, the optimization problem of the risk-averse
newsvendor is defined as follows:

min
x≥0

ρ [Π(x,D)], (2.4)

where ρ [·] is a law-invariant coherent measure of risk, and Π(x,D) represents the
profit of the newsvendor, as defined in (2.1). It is worth stressing that problem (2.4)
cannot be decomposed into independent subproblems, one for each product. Thus,
it is necessary to consider the portfolio of products as a whole.



2 A Multi-item Risk-Averse Newsvendor with Law Invariant. . . 51

2.3 Coherent Measures of Risk

I present a formal definition of the coherent measures of risk following the abstract
approach of Ruszczyński and Shapiro (2005, 2006a). Let (Ω,F ) be a certain
measurable space. In my case, Ω is the probability space on which D is defined. An
uncertain outcome (in my case, Π(x,D)) is represented by a measurable function
V : Ω → R. I specify the vector space Z of possible functions; in my case it
is sufficient to consider Z = L∞(Ω,F ,P), which is the space of all bounded
measurable functions on [0,1]. Indeed, for a fixed order quantity x, the function
ω → Π(x,D(ω)) is bounded. For any V and Y ∈ Z , I write V � Y if V ≥ Y almost
surely (or with probability 1).

In the minimization context, a coherent measure of risk is a function ρ : Z → R

satisfying the following axioms:

Convexity: ρ(αV +(1−α)Y ) ≤ αρ(V )+ (1−α)ρ(Y ), for all V,Y ∈ Z and all
α ∈ [0,1].

Monotonicity: If V,Y ∈ Z and V � Y , then ρ(V)≤ ρ(Y ).

Translation Equivariance: If a ∈R and V ∈ Z , then ρ(V + a) = ρ(V )− a.

Positive Homogeneity: If t ≥ 0 and V ∈ Z , then ρ(tV ) = tρ(V).

A coherent measure of risk ρ(·) is called law invariant, if the value of ρ(V)
depends only on the distribution of V , that is, ρ(V1) = ρ(V2) if V1 and V2 have
identical distributions. It implies that only the distribution matters, but not particular
realizations. This axiom may look so natural. However, each random variable is
actually defined by probability distribution as well as the field of events with a
sigma-algebra structure. Although all practical risk measures are all law invariant,
it is theoretically possible to construct a non law-invariant risk measure. From
now on, without loss of generality, “coherent risk measures” actually mean “law-
invariant coherent risk measures” unless mentioned explicitly. For more details of
mathematical properties of law invariance, see Acerbi and Tasche (2002), Delbaen
(2002) and Kusuoka (2003).

Important examples of law-invariant coherent measures of risk are obtained from
mean–risk models of form:

ρ(V) =−E[V ]+λ r[V ], (2.5)

where λ > 0 and r[·] is a variability measure of the random outcome V . Popular
examples of r[·] are the semideviation of order p ≥ 1:

σp[V ] = E
[{(E[V ]−V)+}p] 1

p , (2.6)

and weighted mean-deviation from quantile:

rβ [V ] = min
η∈R

E [max((1−β )(η −V),β (V −η))] , β ∈ (0,1). (2.7)
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The optimal η in the problem above is the β -quantile of V . Optimization models
with (2.6) and (2.7) were considered in Ogryczak and Ruszczyński (1999, 2001,
2002). In the maximization context, from the practical point of view, it is most
reasonable to consider β ∈ (0,1/2], because then rβ [V ] penalizes the left tail of
the distribution of V much higher than the right tail.

The equation ρ [·] defined at (2.5), with r[·] = σp[·] and p ≥ 1, is a coherent
measure of risk, provided that λ ∈ [0,1]. When r[·] = rβ [·], (2.5) is a coherent
measure of risk, if λ ∈ [0,1/β ]. All these results can be found in Ruszczyński and
Shapiro (2006a).

The mean-deviation from quantile rβ [·] is connected to the Average Value-at-
Risk (AVaR), also known as expected shortfall or CVaR in Rockafellar and Uryasev
(2000), as follows:

AVaRβ (V ) =−max
η∈R

{
η − 1

β
E
[
(η −V)+

]}
=−E[V ]+

1
β

rβ [V ]. (2.8)

All these relations can be found in Föllmer and Schied (2004), Ogryczak and
Ruszczyński (2002) and Ruszczyński and Vanderbei (2003) (with obvious adjust-
ments for the sign of V ). The relation (2.8) allows me to interpret AVaRβ (V ) as a
special case of the mean–risk model where r[V ] is a deviation from quantile in (2.7)
with λ = 1/β .

One of the fundamental results in the theory of law-invariant measures is the
theorem of Kusuoka (2003): For every lower semicontinuous law-invariant coherent
measure of risk ρ [·] on L∞(Ω,F ,P), with an atomless probability space (Ω,F ,P),
there exists a convex set M of probability measures on (0,1] such that

ρ [V ] = sup
μ∈M

1∫
0

AVaRβ [V ]μ(dβ ). (2.9)

Using identity (2.8), I can rewrite ρ [V ] as follows:

ρ [V ] =−E[V ]+ sup
μ∈M

1∫
0

1
β

rβ [V ]μ(dβ ). (2.10)

This means that every problem (2.4) with a coherent law-invariant measure of risk
is a mean–risk model, with the variability measure

κM [V ] = sup
μ∈M

1∫
0

1
β

rβ [V ]μ(dβ ). (2.11)

To illustrate the impact of scaling (the unit system) on risk measurement, I
compare solutions of a single-product risk-averse newsvendor model under the
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Table 2.3 The impact of rescaling on solutions—a coherent measure of risk, entropic exponential
utility function, and a mean–variance model

Unit of profit measurement

1 Dollar 30 Cents 10 Cents 3 Cents 1 Cent

Coherent 20.7824 20.7824 20.7824 20.7824 20.7824
Entropic exponential 20.7786 17.0952 12.2944 7.2879 4.8568
Mean-variance 20.7918 17.6962 14.4454 11.4197 9.5603

coherent risk measure with (2.5) and (2.7), the entropic exponential utility function
1
λ lnE

[
e−λ Π(x;D)

]
and the mean-variance model. The entropic exponential utility

function is an example of a convex measure of risk which is not coherent and is
equivalent to an exponential utility function by a certainty equivalent operator.

I select parameters for each risk measure so that they have the same optimal
solution when the unit of profit measurement is one dollar. Specifically, I set r = 15,
c = 10, and s = 7 (in dollars) for all three risk measures. Demand follows a
lognormal distribution with μ = 3 and σ = 0.4724. This demand distribution is used
in all instances. For the coherent measure of risk, I set β = 0.5 and λ = λ1 = 0.2.
By the sample-based LP method, the optimal solution is x̂RA1 = 20.7824. For the
entropic exponential utility function model, defined as

min
x≥0

1
λ2

lnE
[
e−λ2Π(x;D)

]
. (2.12)

I set λ2 = 0.0072, which results in a sample-based solution x̂RA2 = 20.7786. For the
mean-variance model, defined as

min
x≥0

−E [Π(x;D)]+λ3Var [Π(x;D)] . (2.13)

I set λ3 = 0.0037, which results in a sample-based solution x̂RA3 = 20.7918. Then I
change the unit of r (price), c (cost) and s (salvage value) from dollar to 30 cents, 10
cents, 3 cents and 1 cent while keeping all other parameters unchanged. My results
are summarized in Table 2.3.

As one can see from this table, while the numerical solution under a coherent
measure of risk is invariant with respect to the unit system, it varies significantly
under other risk measures.

2.4 Basic Analytical Results

In this section, I prove two fundamental results for a multi-product risk-averse
newsvendor model. As I do not assume independent demands for the two results
in this section, Propositions 1 and 2 hold true both in independent and dependent
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demands. These two Propositions also take a role of key intermediate steps for
further analysis in Sects. 2.5–2.7.

Proposition 1 (Convexity of the Model). If ρ [·] is a coherent measure of risk, then
ρ [Π(x,D)] is a convex function of x.

Proof. I first note that Π(x,D) = ∑n
j=1 Π j(x j,D j) is concave in x. That is, for any

0 ≤ α ≤ 1 and all x and y,

Π(αx+(1−α)y,D)≥ αΠ(x,D)+ (1−α)Π(y,D) for all D.

Using the monotonicity axiom, I obtain

ρ [Π(αx+(1−α)y,D)]≤ ρ [αΠ(x,D)+ (1−α)Π(y,D)]

≤ αρ [Π(x,D)]+ (1−α)ρ [Π(y,D)].

The second inequality follows by the axiom of convexity. �

Proposition 1 shows the convexity of my model. It means the convexity preserves
in a risk-averse model as well as in a risk-neutral model. Observe that I did
not use the axiom of positive homogeneity, and thus Proposition 1 extends to
more general models (e.g., convex measures of risk). I next prove the intuitively
clear statement that identical products should be ordered in equal quantities under
coherent measures of risk.

Proposition 2 (Symmetry of the Solution). Assume that all products are identi-
cal, i.e., prices, ordering costs, and salvage values are the same across all products.
Furthermore, let the joint probability distribution of the demand be symmetric, that
is, invariant with respect to permutations of the demand vector. Then, for every law-
invariant coherent measure of risk ρ [·], one of the optimal solutions of problem (2.4)
is a vector with equal coordinates, x̂RA

1 = x̂RA
2 = · · ·= x̂RA

n .

Proof. An optimal solution exists, because with no loss of generality I can assume
that x is bounded by some large constant, and ρ [Π(x,D)] is continuous with respect
to x (see Ruszczyński and Shapiro 2006a).

Let me consider an arbitrary order vector x = (x1, . . . ,xn) and let P be an n× n
permutation matrix. Then, the distribution of profit associated with Px is the same
as that associated with x. There are n! different permutations of x and let me denote
them x1, . . . ,xn!. Consider the point

y =
1
n!

n!

∑
i=1

xi.

It has all coordinates equal to the average of the coordinates x j. As the joint
probability distribution of D1,D2, . . . ,Dn is symmetric, the distribution of Π(xi,D)
is the same for each i. By Proposition 1 and law invariance of ρ [·] I obtain
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ρ [Π(y,D)]≤ 1
n!

n!

∑
i=1

ρ [Π(xi,D)] = ρ [Π(x,D)].

This means that for every plan x, the corresponding plan y with equal orders is
at least as good. As an optimal plan exists, there is an optimal plan with equal
orders. �

Note that Proposition 2 only requires symmetric joint demand distribution, but not
independent demands.

2.5 Analytical Results for Independent Demands

In this section, I assume demand independence and provide two analytical results
(impact of degree of risk aversion and impact of shift in mean demand) for the multi-
product newsvendor model under coherent risk measures. First, to study the impact
of the degree of risk aversion, let me first focus on a specific variability measure—
the weighted mean-deviation from quantile, given by (2.7). The corresponding
measure of risk has the form,

ρ [V ] =−E[V ]+λ rβ [V ]. (2.14)

By (2.8), I can write

ρ [V ] =−(1−λ β )E[V ]+λ β AVaRβ [V ]. (2.15)

I consider the problem

min
x≥0

{−E[Π(x,D)]+λ rβ [Π(x,D)]
}
. (2.16)

Proposition 3 (Monotonicity of the Solution with a mean-deviation from
quantile). Assume that all products are identical and demands for all products are
iid (independently and identically distributed) and have a continuous distribution.
Let x̂RA1 be the solution of problem (2.16) for λ = λ1 > 0, having equal coordinates.
If λ2 ≥ λ1 then there exists a solution x̂RA2 of problem (2.16) for λ = λ2, having
equal coordinates and such that x̂RA2

j ≤ x̂RA1
j , j = 1, . . . ,n.

For the proof of Proposition 3, refer to Choi et al. (2011). Then, my goal is to extend
the monotonicity property to all law-invariant coherent measures of risk. Observe
that my assumption about continuous distribution of the demand implies that the
probability space is nonatomic. Consider the problem

min
x≥0

{−E[Π(x,D)]+λκM [Π(x,D)]}, (2.17)

where κM [V ] is given by (2.11).
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Proposition 4 (Monotonicity of the Solution with every coherent measure
of risk). Assume that all products are identical and demands for all products
are iid and have a continuous distribution. Let x̂RA1 be the solution of problem
(2.17) for λ = λ1 > 0, having equal coordinates. If λ2 ≥ λ1 then there exists a
solution x̂RA2 of problem (2.17) for λ = λ2, having equal coordinates and such that
x̂RA2

j ≤ x̂RA1
j , j = 1, . . . ,n.

Proof. As in the proof of Proposition 3, each function x �→ rβ [Π(x,D)] is non-
decreasing, for every β ∈ (0,1). Then the integral over β with respect to any
nonnegative measure μ is nondecreasing as well. Taking the supremum in (2.11)
does not change this property. Therefore, Proposition 4 holds true also for the mean–
risk model with the risk r[·] = κM [·]. �

Finally, I discuss the impact of the shift in mean demand on the optimal order
quantities under general coherent measures of risk.

Proposition 5 (Impact of the Shift in Mean Demand). Assume that all products
are identical and demands for all products are iid except that μ j = E[D j], j =
1, . . . ,n. If μ1 ≥ μ2 ≥ ·· · ≥ μn, then x̂RA

1 ≥ x̂RA
2 ≥ ·· · ≥ x̂RA

n .

Proof. Consider the demand vector D̃ j = D j − μ j + μ1. As it has identical and iid
components, by Proposition 2 there exists an optimal order vector x̃ with equal
coordinates: x̃1 = x̃2 = · · ·= x̃n, for the risk-averse multi-product newsvendor with D̃
as the demand vector. I can interpret the demand D as a sum of the random demand
D̃ and a deterministic demand vector h with coordinates h j = μ j −μ1. If x̃ j > 0, then
by the Translation Equivariance axiom, it is easy to see that x̂ = x̃+h is the solution
of the problem

min
x≥0

ρ [Π(x,D)],

for every coherent measure of risk ρ [·]. �


2.6 Asymptotic Analysis and Closed-Form Approximations

2.6.1 Asymptotic Optimality of Risk-Neutral Solutions

In this section, I study the asymptotic behavior of the risk-averse newsvendor model
when the number of products tends to infinity. I assume heterogenous products with
independent demands.

I start from the derivation of error bounds for the risk-neutral solution. Consider a
sequence of products j = 1,2, . . . , with corresponding prices r j, costs c j, and salvage
values s j. I assume that s j < c j < r j, and that all these quantities are uniformly
bounded for j = 1,2 . . . .
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Consider the risk-neutral optimal order quantities

x̂RN
j = F̄−1

j

(
c̄ j

r̄ j

)
, j = 1,2, . . . . (2.18)

I assume that the following conditions are satisfied:

(i) There exist xmin > 0 and xmax such that

xmin ≤ x̂RN
j ≤ xmax, j = 1,2, . . . .

(ii) There exists σmin > 0 such that

Var
[
min

(
x̂RN

j ,D j
)]≥ σ2

min, j = 1,2, . . . .

My intention is to evaluate the quality of the risk-neutral solution x̂RN in the
risk-averse problem

min
x1,...,xn

ρ

[
1
n

n

∑
j=1

Π j(x j,D j)

]
. (2.19)

Observe that in problem (2.19) I consider the average profit per product, rather
than the total profit, as in problem (2.4). The reason is that I intend to analyze
properties of the optimal value of this problem as n → ∞ and I want the limit of
the objective value of problem (2.19) to exist. Owing to the Positive Homogeneity
axiom, problems (2.19) and (2.4) are equivalent.

I denote by ρ̂n the optimal value of problem (2.19). I also introduce the following
notation,

μRN
j = E

[
min(x̂RN

j ,D j)
]
, μ̄n =

1
n

n

∑
j=1

r̄ jμRN
j ,

(
σRN

j

)2
= Var

[
min

(
x̂RN

j ,D j
)]
, s̄2

n =
1
n2

n

∑
j=1

r̄2
j

(
σRN

j

)2
.

Finally, I denote by N the standard normal variable. Then, I will show asymptotic
convergence of risk-neutral solution to the true risk-averse solution.

Proposition 6 (Asymptotic Convergence of Risk-Neutral Solution with Error
Bound). Assume that ρ [·] is a law-invariant coherent measure of risk and the space
(Ω,F ,P) is nonatomic. Then

ρ

[
1
n

n

∑
j=1

Π j(x̂
RN
j ,D j)

]
≤ min

x1,...,xn
ρ

[
1
n

n

∑
j=1

Π j(x j,D j)

]
+O

(
1√
n

)
. (2.20)
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For the proof, refer to Choi et al. (2011). Asymptotically, the difference between
the optimal objective value (the first term of the right-hand side of (2.20)) and the
value obtained by using the risk-neutral solution (the term in the left-hand side of
(2.20)) disappears at the rate of 1/

√
n. Such difference can be considered as the

error bound of a risk-neutral solution given as an “o” function of 1/
√

n. Thus, for a
firm dealing with very many products having independent demands, the risk-neutral
solution is a reasonable sub-optimal alternative to the risk-averse solution.

2.6.2 Adjustments in the Mean-Deviation from Quantile Model

In this section, I develop close-form approximations to the optimal risk-averse
solution when the number of products is moderately large. My idea is to use the
risk-neutral solution as the starting point, and to calculate an appropriate correction
to account for risk aversion.

I first consider the mean-deviation from quantile model in which the measure
of variability is defined at (2.7). Recall that the corresponding mean–risk model
in (2.14) is equivalent to the minimization of a combination of the mean and the
Conditional Value-at-Risk, as in (2.15). I then consider the general coherent risk
measure in Sect. 2.6.3. I finally discuss several iterative methods that are based on
the approximations in Sect. 2.6.4.

I use the notation Zn
x = 1

n ∑n
j=1 r̄ j min(x j ,D j) (with x as a subscript to stress the

dependence of Zn
x on x). Using (2.1) and (2.2), I can calculate the average profit per

product as follows:

Π̄(x,D) =
1
n

n

∑
j=1

Π j(x j,D j) =−1
n

n

∑
j=1

c̄ jx j +Zn
x .

Thus,

ρ [Π̄(x,D)] =
1
n

n

∑
j=1

c̄ jx j +
(−E[Zn

x ]+λ rβ (Z
n
x )
)

=
1
n

n

∑
j=1

c̄ jx j +

(
E[Zn

x ](λ β − 1)−λ β max
η∈R

{
η − 1

β
E
[
(η −Zn

x )
+
]})

.

(2.21)
Let me denote η̂ to be the maximizer in (2.21), among η ∈ R, at a fixed x. η̂ is the
β -quantile of Zn

x . To take the partial derivative of ρ [Π̄(x,D)] with respect to x j, I
consider two cases.

Case (i): η̂ < 1
n ∑n

j=1 r̄ jx j.

Assuming that the quantile η̂ is unique and differentiating (2.21), I observe again
that
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∂ρ [Π̄(x,D)]

∂x j
=

c̄ j

n
+

r̄ j(λ β − 1)
n

P[D j > x j]− r̄ jλ
n

P [{Zn
x < η̂}∩{D j > x j}] .

(2.22)
Here I used (Bonnans and Shapiro 2000, Theorem 4.13) to avoid differentiating with
respect to η̂ .

Let me analyze the last term on the right-hand side in (2.22) for j = 1,2, . . . ,n:

P [{Zn
x < η̂}∩{D j > x j}] = P [Zn

x < η̂ |D j > x j]P[D j > x j]

= P

[
1
n

n

∑
k �= j

r̄k min(xk,Dk)< η̂ − r̄ jx j

n

]
·P[D j > x j]. (2.23)

Suppose x j ≥ xmin, j = 1,2, . . . ,. Owing to conditions (i) and (ii), exactly as in
Sect. 2.6.1, for large n the random variable Zn

x is approximately normally distributed
with the mean μ̄n = 1

n ∑n
j=1 r̄ jμ j and the variance s̄2

n = 1
n2 ∑n

j=1 r̄2
j σ2

j , where μ j =

E[min{x j,D j}] and σ2
j = Var(min{x j,D j}). Under normal approximation, the β -

quantile of Zn
x can be approximated by η̂ � μ̄n + zβ s̄n, where zβ is the β -quantile

of the standard normal variable. Similarly, 1
n−1 ∑n

k �= j r̄k min(xk,Dk) is approximately

normal with mean 1
n−1 ∑n

k �= j r̄kμk and variance 1
(n−1)2 ∑n

k �= j r̄2
k σ2

k . Using these ap-

proximations and denoting by N the standard normal random variable, I obtain:

P

[
1
n

n

∑
k �= j

r̄k min(xk,Dk)< η̂ − r̄ jx j

n

]
� P

⎡
⎣N <

−r̄ j(x j − μ j)+ zβ

√
∑n

k=1 r̄2
k σ2

k√
∑k �= j r̄2

k σ2
k

⎤
⎦

= P

⎡
⎣N <

−r̄ j(x j − μ j)√
n− 1γn j

+ zβ

√√√√1+
r̄2

j σ2
j

(n− 1)γ2
n j

⎤
⎦,

(2.24)

where γn j =
√

1
n−1 ∑k �= j r̄2

k σ2
k . As r̄2

k σ2
k is uniformly bounded from above and below

across all products, I conclude that γn j is bounded from above and below for all j
and n.

This estimate can be put into (2.23), and thus (2.22) can be approximated as
follows:

∂ρ [Π̄(x,D)]

∂x j
� c̄ j

n
+

r̄ jP[D j > x j]

n

×
⎛
⎝λ β − 1−λP

⎡
⎣N <

−r̄ j(x j − μ j)√
n− 1γn j

+ zβ

√√√√1+
r̄2

j σ2
j

(n− 1)γ2
n j

⎤
⎦
⎞
⎠ . (2.25)
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My next step is to approximate the probability on the right-hand side of (2.25). To
this end, I derive its limit and calculate a correction to this limit for a finite n. When
n → ∞, I have

P

⎡
⎣N <

−r̄ j(x j − μ j)√
n− 1γn j

+ zβ

√√√√1+
r̄2

j σ2
j

(n− 1)γ2
n j

⎤
⎦→ β (2.26)

and thus
∂ρ [Π̄(x,D)]

∂x j
→ 1

n
(c̄ j − r̄ jP[D j > x j]).

This means that the conditions of the risk-averse solution

∂ρ [Π̄(x,D)]

∂x j
= 0, j = 1,2, . . . ,n, (2.27)

approaches that of the risk-neutral solution in (2.18). Thus the risk-neutral solution
will be used as the base value, to which corrections will be calculated.

I can estimate the difference between the probability in (2.26) and β for a
large but finite n, by assuming that x is close to x̂RN. Thus, μ j is close to μRN

j =

E[min{x̂RN
j ,D j}] and σ j is close to σRN

j =
√
Var(min{x̂RN

j ,D j}). Considering only

the leading term with respect to 1/
√

n− 1, I obtain

P

⎡
⎣N <

−r̄ j(x j − μ j)√
n− 1γn j

+ zβ

√√√√1+
r̄2

j σ2
j

(n− 1)γ2
n j

⎤
⎦�P

[
N <

−r̄ j(x̂RN
j − μRN

j )√
n− 1γRN

n j

+ zβ

]
,

where γRN
n j =

√
1

n−1 ∑k �= j r̄2
k (σ

RN
k )

2
. The last probability can be estimated by the

linear approximation derived at zβ . Observing that P[N < zβ ] = β and that its
derivative at z = zβ is the standard normal density at zβ , I get

P

[
N <

−r̄ j(x̂RN
j − μRN

j )√
n− 1γRN

n j

+ zβ

]
� β − δ RN

n j ,

with

δ RN
n j =

e−z2
β /2

√
2π

r̄ j(x̂RN
j − μRN

j )√
n− 1γRN

n j

, j = 1, . . . ,n. (2.28)

These estimates can be substituted to (2.25) for the derivative and yield

∂ρ [Π̄(x,D)]

∂x j
� c̄ j

n
+

r̄ j

n

(−1+λ δ RN
n j

)
P[D j > x j]. (2.29)
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Using the above approximations of the derivatives in (2.27), I obtain the first-order
approximation of the risk-averse solution:

x̂APR
j = F̄−1

j

[
c̄ j

r̄ j(1− δ RN
n j λ )

]
, j = 1,2, . . . ,n. (2.30)

Clearly, this approximation of x̂APR
j is increasing in n, decreasing in λ , and tends to

the risk-neutral solution as n → ∞. Similar to the analysis in Sect. 2.6.1, the error
bound of this approximation in (2.30) is given as follows:

0 ≤−
∂ρ

(
Π̄
(

x̂APR
j ,D

))
∂x j

≤ O(1/n3/2). (2.31)

It implies that as the number of products increases, the convergence rate of my
approximate solution to the risk-averse solution in (2.31), O(1/n3/2), is much faster
than the rate of the risk-neutral solution in (2.20), O(1/n1/2).

Case (ii): η̂ = 1
n ∑n

j=1 r̄ jx j.

I have

ρ [Π̄(x,D)] =
1
n

n

∑
j=1

c̄ jx j +

(
E[Zn

x ](λ β − 1)

−λ β

{
1
n

n

∑
j=1

r̄ jx j − 1
β
E

[
1
n

n

∑
j=1

r̄ jx j −Zn
x

]})
.

Taking derivative with respect to x j yields,

∂ρ [Π̄(x,D)]

∂x j
=

1
n
[c̄ j + r̄ jλ (1−β )+ r̄ jP[D j > x j] (λ (β − 1)− 1)] .

Equating the right-hand side to 0, I get

x̂RA
j = F̄−1

j

(
c̄ j + r̄ jλ (1−β )
r̄ j(1+λ (1−β ))

)
. (2.32)

Note that the solution in Case (ii) is an exact solution and free of the number of
products, n. Clearly, if λ = 0, x̂RA

j = x̂RN
j . As λ increases, x̂RA

j is decreasing. For

any 0 ≤ λ ≤ 1/β , x̂RA
j is well defined.

It should be emphasized that Case (i) is more important, because for large n the
distribution of Zn

x is close to normal and for a small β , the β -quantile of Zn
x tends to

be smaller than 1
n ∑n

j=1 r̄ jx j, for the values of x of interest.
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Consider the special case of identical products. With a slight abuse of notation,
let c j = c, r j = r and s j = s for all j = 1,2, . . . ,n. In Case (i), the first-order
approximation of the risk-averse solution yields:

dρ [Π̄(x,D)]

dx
� c̄+ r̄P[D1 > x](δ RN

n λ − 1),

with

δ RN
n =

e−z2
β /2

√
2π

x̂RN − μRN
x√

n− 1σRN
x

, (2.33)

where x̂RN, μRN
x , and σRN

x are the counterparts of x̂RN
j , μRN

j , and σRN
j , respectively.

Equating the right hand side to 0, I obtain

x̂APR
1 = F̄−1

1

(
c̄

r̄(1− δ RN
n λ )

)
, j = 1, . . . ,n. (2.34)

Here, (2.34) is similar to (2.30) except that the terms c̄ j, r̄ j and δ RN
n j are now identical

for all j. In Case (ii), (2.32) reduces to

x̂RA
1 = F̄−1

1

(
c̄+ r̄λ (1−β )

r̄(1+λ (1−β ))

)
.

In the special case of a single-product problem, by (2.22) in Case (i) I obtain

dρ [Π̄(x,D)]

dx
= c̄+ r̄(λ β − 1)P[D > x]− r̄λP [{Zx < η̂}∩{D > x}] ,

where Zx = min(x,D). Observe that in Case (i),P [{Zx < η̂}∩{D > x}] =

P [Zx < η̂ |D > x]P[D > x] = 0. Therefore, dρ [Π̄(x,D)]
dx = c̄ + r̄(λ β − 1)P[D > x].

This yields the exact solution of the single product problem

x̂RA = F̄−1
(

c̄
r̄(1−λ β )

)
≤ F̄−1

(
c̄
r̄

)
= x̂RN.

This special case solution is the same as the solution obtained by Gotoh and Takano
(2007). To determine whether Case (i) or Case (ii) applies, one can compute x̂RA for
both cases, and then compute η̂ to check the case conditions.

2.6.3 General Law-Invariant Coherent Measures of Risk

So far my analysis focused on a special risk measure, weighted mean-deviation from
quantile, given in (2.7). I now generalize the results to any law-invariant coherent
risk measure ρ [·].
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Consider problem (2.17) where κM [V ] is given by (2.11). By Kusuoka theorem,
for nonatomic spaces, every law-invariant coherent measure of risk has such repre-
sentation. Thus, I focus on Case (i) solution only. Then (2.21) can be replaced by

ρ [Π̄(x,D)] =
1
n

n

∑
j=1

c̄ jx j + sup
μ∈M

1∫
0

(
E[Zn

x ](λ β − 1)

−λ β max
η∈R

{
η − 1

β
E
[
(η −Zn

x )
+
]})

μ(dβ ).

Suppose the maximum over M is attained at a unique measure μ̂ (this is certainly
true for spectral measures of risk, where the set M has just one element). Similarly
to (2.29),

∂ρ [Π̄(x,D)]

∂x j
� c̄ j

n
+

r̄ j

n

⎛
⎝−1+λ

1∫
0

δ RN
n j (β ) μ̂(dβ )

⎞
⎠P[D j > x j]. (2.35)

I denote here the quantity given in (2.28) by δ RN
n j (β ), to stress its dependence on β.

Let me approximate μ̂ by the measure μ̂RN, obtained for the risk-neutral solution
x̂RN. Equating the approximate derivatives in (2.35) to zero, I obtain an approximate
solution:

x̂APR
j = F̄−1

j

⎛
⎜⎜⎝ c̄ j

r̄ j

(
1−λ

∫ 1

0
δ RN

n j (β ) μ̂RN(dβ )
)
⎞
⎟⎟⎠, j = 1,2, . . . ,n. (2.36)

Again, δ RN
n j (β ) ↓ 0 as n → ∞, and thus x̂APR

j increases in n and approaches the

risk-neutral solution x̂RN
j . This is consistent with Proposition 6 and the analysis in

Sect. 2.6.2.
In the special case of identical products, the approximate solution is

x̂APR
1 = F̄−1

1

⎛
⎜⎜⎝ c̄ j

r̄ j

(
1−λ

∫ 1

0
δ RN

n (β ) μ̂RN(dβ )
)
⎞
⎟⎟⎠, j = 1,2, . . . ,n, (2.37)

where δ RN
n is defined at (2.33).

In the single-product problem, I obtain
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ρ [Π̄(x,D)] = c̄x+ sup
μ∈M

1∫
0

(
E[Zx](λ β − 1)

−λ β max
η∈R

{
η − 1

β
E
[
(η −Zx)

+
]})

μ(dβ ). (2.38)

Assuming that μ̂ is the unique maximizer in (2.38), I obtain

dρ [Π̄(x,D)]

dx
= c̄+

1∫
0

(r̄(λ β − 1)P[D > x]− r̄λP [{Zx < η̂}∩{D > x}]) μ̂(dβ ).

Similarly to the model with mean-deviation from quantile case, P [{Zx < η̂}∩
{D > x}] = P [Zx < η̂ |D > x]P[D > x] = 0. Thus,

dρ [Π̄(x,D)]

dx
= c̄+

1∫
0

(r̄(λ β − 1)P[D > x]) μ̂(dβ )

= c̄+ r̄

⎛
⎝−1+λ sup

μ∈M

1∫
0

β μ̂(dβ )

⎞
⎠P[D > x].

Therefore, the closed-form exact solution for general coherent measures of risk is
given by:

x̂RA = F̄−1
(

c̄

r̄(1−λ β̄)

)
≤ F̄−1

(
c̄
r̄

)
= x̂RN, where β̄ =

1∫
0

β μ̂RN(dβ ).

2.6.4 Iterative Methods

So far, I discussed approximations based on expansions about the risk-neutral
solution x̂RN. But exactly the same argument can be used to develop an iterative
method, in which the best approximation known so far is substituted for the risk-
neutral solution. I explain the simplest idea for the approximation developed in
Sect. 2.6.2; the same idea applies to general coherent measures of risk discussed
in Sect. 2.6.3.

The idea of the iterative method is to generate a sequence of approximations
x̂(ν), ν = 0,1,2, . . . . I set x̂(0) = x̂RN. Then I calculate x̂(1) by applying (2.30). In the
iteration ν = 1,2, . . . , I use x̂(ν) instead of x̂RN in my approximation, calculating:
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μ (ν)
j = E

[
min

{
x̂(ν)j ,D j

}]
, σ (ν)

j =

√
Var

(
min

{
x̂(ν)j ,D j

})
,

γ(ν)n j =

√
1

n− 1 ∑
k �= j

r̄2
k

{(
σ (ν)

k

)}2
, δ (ν)

n j =
e−z2

β /2

√
2π

r̄ j

(
x̂(ν)j − μ (ν)

j

)
√

n− 1γ(ν)n j

, j = 1, . . . ,n.

Finally, (2.30) is applied to generate the next approximate solution x̂(ν+1), and the
iteration continues.

The iterative method is efficient if the initial approximation x̂(0) is sufficiently
close to the risk-averse solution. This is true when the risk aversion coefficient κ =
λ β is close to zero or the number of products is very large. I must point out that the
iterative method does not guarantee convergence to the optimal risk-averse solution.
One reason is that my approximation in (2.30) may result in infeasible solutions as
the term

c̄ j

r̄ j

(
1−δ (ν)

n j λ
) can be negative or greater than 1 (due to approximation). When

this occurs less likely, one can say that the approximation is more stable. Generally,
the approximation is more stable for larger number of products and smaller κ . To
improve stability, I propose a more accurate method called the continuation method.
In this approach, I apply the iterative method for a small value of κ , starting from
the risk-neutral solution. Then I increase κ a little, and I apply the iterative method
again, but starting from the best solution found for the previous value of κ . In this
way, I gradually increase κ , until I reach the risk aversion coefficients which are of
interest (usually, between 0 and 1). The stability of the iterative and continuation
methods is summarized in Sect. 2.8.2.

2.7 Impact of Dependent Demands

In this section, I provide some insights on the impact of dependent demands. Due
to significant analytical challenges, I focus on a two-product system and the mean-
deviation from quantile model.

Under the risk-neutral measure, dependence of product demands has no impact
on the optimal order quantities. However, under risk-averse measures, it can
greatly affect the optimal order decisions for the newsvendor. Intuitively, positively
(negatively) dependent demands entail larger (smaller) variability and thus increase
(decrease) risk, as compared to independent demands. Thus, one tends to decrease
(increase) the order quantity in case of positively (negatively) dependent demands
relative to the case of independent demand.

To characterize the impact of demand dependence on the optimal order quan-
tity under the coherent risk measure, I utilize the concept of “associated” ran-
dom variables. Consider random variables D1,D2, . . . ,Dn, denote vector D =
(D1,D2, . . . ,Dn). The following definition is due to Esary et al. (1976); see Tong
(1980) for a review.
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Definition 1. The random variables D1,D2, . . . ,Dn are associated, if Cov[ f (D),
g(D)] ≥ 0, or, equivalently, E[ f (D)g(D)] ≥ E[ f (D)]E[g(D)], for all nondecreasing
real functions f ,g for which E[ f (D)],E[g(D)] and E[ f (D)g(D)] exist.

Lemma 1. (i) Any subset of a set of associated random variables is associated.
(ii) If two sets of associated random variables are independent of each other, their

union is a set of associated random variables.
(iii) Nondecreasing (or nonincreasing) functions of associated random variables

are associated.
(iv) If D1,D2, . . . ,Dn are associated, then for all (y1,y2, . . . ,yn) ∈ Rn

P{D1 ≤ y1,D2 ≤ y2, . . . ,Dn ≤ yn} ≥ Πn
k=1P{Dk ≤ yk},

P{D1 ≥ y1,D2 ≥ y2, . . . ,Dn ≥ yn} ≥ Πn
k=1P{Dk ≥ yk}.

I refer to Tong (1980) for proofs.
Association is closely related to correlation. By (Tong 1980, p. 99), a set of multi-

variate normal random variables is associated if their correlation matrix has the
structure l (Tong 1980, p. 13) in which the correlation coefficient ρi j = γiγ j for
all i �= j and 0 ≤ γi < 1 for all i. This means that I can represent the demands as
having one common factor:

Di = γiD0 +Δi, i = 1, . . . ,n,

where D0 and Δi, i = 1, . . . ,n, are independent. A special case is the bi-variate
normal random variable with a positive correlation coefficient.

Consider a system with two identical products and a solution with equal
coordinates. Let Zx = min{x,D1}+min{x,D2}. Clearly, Π(x,D) =−2cx+ rZx and

ρ(Π(x,D)) = 2cx+ rρ(Zx), (2.39)

ρ(Zx) = E(Zx)(λ β − 1)−λ β maxη∈R
{

η − 1
β E[(η −Zx)

+]
}
. (2.40)

Let η̂ be the maximizer. If η̂ is not an atom of the distribution of Zx, similar to
Case (i) analysis in Sect. 2.6.2, I obtain

dρ(Zx)

dx
=

dE[Zx]

dx
(λ β − 1)+λ

dE[(η̂ −Zx)
+]

dx
,

where η̂ is the β -quantile of Zx and η̂ < 2x. Because the first term depends only
on the marginal distributions of the demands, I focus on the second term, which is
affected by the dependence of D1 and D2. I have

dE[(η̂ −Zx)
+]

dx
=−

2

∑
j=1

P [{Zx < η̂}∩{D j > x}]=−2P[min{x,D2}< η̂−x,D1 > x].

(2.41)
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Consider three cases of (D1,D2), with the same the marginal distributions of D1

and D2. In case 1, (D1,D2) are associated random variables, and I use η̂P to denote
the β -quantile of the corresponding Zx; In case 2, (D1,D2) are independent with η̂I

as the β -quantile of Zx; In case 3, (D1,−D2) are associated random variables with
η̂N as the β -quantile of Zx. I also let x∗P, x∗I , and x∗N be the optimal order quantities
in cases 1, 2, and 3, respectively.

Proposition 7 (Impact of Demand Correlation). If η̂P ≤ η̂I ≤ η̂N < 2x, then

x∗P ≤ x∗I ≤ x∗N . (2.42)

That is, positively (negatively) dependent (D1,D2) results in smaller (larger)
optimal order quantities than independent (D1,D2).

Proof. I first consider associated (D1,D2). I have

P[min{x,D2}< η̂P − x,D1 > x]

= P[D2 < η̂P − x,D1 > x]

= P[D1 > x]−P[D2 ≥ η̂P − x,D1 > x]≤ P[D1 > x]−P[D2 ≥ η̂P − x]P[D1 > x]

= P[D2 < η̂P − x]P[D1 > x]≤ P[D2 < η̂I − x]P[D1 > x].

The first inequality follows by Lemma 1 part (iv). The second inequality follows
by η̂P ≤ η̂I . Note that the last term corresponds to independent (D1,D2). Thus,
by (2.41), associated (D1,D2) have the derivatives dρ(Zx)/dx at least as large as
independent (D1,D2), which implies that x∗P ≤ x∗I .

I then consider associated (D1,−D2). I obtain

P[D2 < η̂N − x,D1 > x] = P[−D2 >−η̂N + x,D1 > x]

≥ P[−D2 >−η̂N + x]P[D1 > x]

= P[D2 < η̂N − x]P[D1 > x]≥ P[D2 < η̂I − x]P[D1 > x].

The first inequality follows by Lemma 1 part (iv). The second inequality follows
by η̂I ≤ η̂N . Note that the last term corresponds to independent (D1,D2). Thus,
by (2.41), associated (D1,−D2) have the derivatives dρ(Zx)/dx no larger than
independent (D1,D2), which implies that x∗I ≤ x∗N . �


The condition η̂P ≤ η̂I ≤ η̂N holds when Y1 = min{x,D1} and Y2 = min{x,D2}
follow bivariate normal distribution and β ≤ 0.5. One can approximate the joint
distribution of Y1 and Y2 very closely by bivariate normal when (D1,D2) follow
bivariate normal and x is set to cover most of the demand, which is very likely in
practice when the underage cost r− c is much greater than the overage cost c− s.
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2.8 Numerical Examples

The objective of this section is twofold. First, I study the accuracy and the
convergence rates of the approximations. Second, I provide insights (in addition
to the analysis in Sects. 2.5–2.7) on the impact of demand dependence and risk
aversion. I first introduce the sample-based optimization method.

2.8.1 Sample-Based Optimization

In all examples considered, I apply sample-based optimization to solve the resulting
stochastic programming problems. I generate a sample D1,D2, . . . ,DT of the
demand vector, where

Dt = (d1t ,d2t , . . . ,dnt), t = 1, . . . ,T.

Then I replace the original demand distribution by the empirical distribution based
on the sample, that is, I assign to each of the sample points the probability pt = 1/T .
It is known that when T → ∞, the optimal value of the sample problem approaches
the optimal value of the original problem (see Shapiro 2007). In all my examples, I
used T = 10,000.

For the empirical distribution, the corresponding optimization problem (2.16)
has an equivalent linear programming formulation. For each j = 1, . . . ,n and t =
1, . . . ,T , I introduce the variable wjt to represent the salvaged number of product j
in scenario t. The variable ut represents the shortfall of the profit in scenario t to the
quantile η . It is also convenient to introduce the parameter κ = λ β to represent the
relative risk aversion (0 ≤ κ ≤ 1). I obtain the formulation

max (1−κ)
n

∑
j=1

[
(r j − c j)x j − (r j − s j)

T

∑
t=1

ptwjt

]
+κ

(
η − 1

β

T

∑
t=1

ptut

)

(2.43)

subject to
n

∑
j=1

[(r j − c j)x j − (r j − s j)wjt ]+ ut ≥ η , t = 1, . . . ,T,

x j − d jt ≤ wjt , j = 1, . . . ,n; t = 1, . . . ,T,

wjt ≥ 0, j = 1, . . . ,n; t = 1, . . . ,T,

ut ≥ 0, t = 1, . . . ,T,

x j ≥ 0, j = 1, . . . ,n.
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To explain this formulation, suppose the order quantities x j are fixed. Then wjt =
(x j −d jt)

+ and ut = (η −Π(x,Dt))+ are optimal, and I maximize with respect to η
the last term in problem (2.43), that is,

max
η

{
η − 1

β
E
[
(η −Π(x,D))+

]}
=−AVaRβ [Π(x,D)] .

In the last expression, I used (2.8). Therefore, (2.43) is equal to (1−κ)E [Π(x,D)]−
κAVaRβ [Π(x,D)].

2.8.2 Accuracy of Approximations

In this section, I assess the accuracy of the closed-form approximations of Sect. 2.6.
I first consider identical products, then nonidentical products.

For identical products, I assume that all products have identical cost structure,
and iid demands. I set r = 15, c = 10, and s = 7. I set the demand distribution of
each product to be lognormal with μ = 3 and σ = 0.4724 (to achieve the desirable
coefficient of variance (cv) of 0.5). Thus, the mean and standard deviation of each

demand are eμ+σ 2/2 = 22.46 and eμ+σ 2/2 ·
√
(eσ 2 − 1) = 11.23. Because the joint

demand distribution is invariant with respect to the permutations of the demand
vector, there exists an order vector with equal coordinates, which is optimal for the
model.

I choose the number of products, n, to be 1, 3, 10, and 30, and I study the
impact of the number of products on the gap between the sample-based LP solutions
and the approximate solutions (generated by the iterative method with ν = 3, see
Sect. 2.6.4). The sample-based LP solutions can take hours to solve, especially for
large n and T . For instance, with n = 30 and a sample size of 10,000, the running
time by CPLEX 9.0 at an Intel Pentium 4 PC is 32,607 s for identical products and
50,889 s for heterogenous products. In contrast, the approximate solution can be
obtained within one or two seconds. I use β = 0.5, that is, I am concerned with the
shortfall below the median.

In my numerical study of identical products, I set the optimal order quantities
for different products to be identical by Proposition 2. In model (2.43), all variables
x j are replaced by a single variable x. The corresponding results are illustrated in
Fig. 2.1, where on the horizontal axis I display the relative risk aversion parameter
κ = λ β . The term “exact,” “numerical,” and “approximation” represent the solution
obtained by the exact calculation, the sample-based LP, and the closed-form
approximation, respectively.

Figure 2.1 shows that my analytical solution is very close to the numerical
solution when n = 1. This is obvious as my solution is exact for the single-
product case (here, the case η̂ = x is valid). In the case of a three-product
model, the approximation does not work well, which is quite understandable as



70 S. Choi

15

16

17

18

19

20

21

22

23

24

0 0.2 0.4 0.6 0.8 1

O
p

ti
m

al
 O

rd
er

in
g

 Q
u

an
ti

ty

Degree of Relative Risk Aversion (K)

1-product (exact)

1-product (numerical)

3-products (approximation)

3-products (numerical)

10-products (approximation)

10-products (numerical)

30-products (approximation)

30-products (numerical)

Fig. 2.1 Identical products with independent demands—Approximate or exact solutions vs.
sample-based solutions. The terms “exact,” “numerical,” and “approximation” refer to exact
solutions, solutions of the sample-based model, and closed-form approximations, respectively

the approximation is based on the Central Limit Theorem. As the number of
products increases, my approximations become more accurate and the gap becomes
negligible when n ≥ 10. I also observe that the order quantities decrease as the
degree of risk-aversion increases, which confirms Proposition 3; and as the number
of products increases, the error of the risk neutral solution decreases (consistent with
Proposition 6).

For independent but heterogenous products, I tested the accuracy of the ap-
proximations on 30 randomly generated problems, 10 for each number of products
n = 3,10,30. At each value of κ = 0.2,0.4,0.6,0.8,1, I calculated the sample-based
LP solution and an approximate solution by the continuation method with ν = 1.
My numerical study shows that the continuation method is much more stable and
accurate than the iterative method with ν = 1, especially for smaller numbers of
products, when the difference between risk-neutral solution and risk-averse solution
is larger (e.g., κ is larger). For n = 30, both methods work very well.

For each instance in which the continuation method can generate a feasible
solution, I compute the absolute percentage error of the approximate solution
relative to the sample-based LP solution, which is defined by the absolute difference
between the approximate solution and the sample-based LP solution over the
sample-based LP solution. For comparison, I also compute the absolute percentage
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Fig. 2.2 Heterogeneous products with independent demands—The average percentage error of
the approximate solutions and risk-neutral solutions

error of the risk-neutral solution relative to the sample-based LP solution. Then for
each value of n and κ , I compute the average and maximum percentage error over
all the solutions generated. The average (and maximum) percentage errors of the
risk-neutral solutions and of the solutions obtained by the continuation method are
displayed in Figs. 2.2 and 2.3, respectively).

In all cases, in terms of the average and maximum errors, my approximation
outperforms the risk-neutral solution. Furthermore, in most cases, the improvement
brought by the approximation is significant. Often, the approximation cuts the error
of the risk-neutral solution by 3–6 times, although only one step of the continuation
method was made at each κ . Second, I observe that the approximation is quite
accurate for all cases of n = 10 and n = 30. However, the approximation does not
work well for n = 3, which is similar to what I observed in the identical products
case. Finally, I observe that the average and maximum errors of the risk-neutral
solutions are decreasing in n, as established in Proposition 6.

2.8.3 Impact of Dependent Demands Under Risk Aversion

I first consider a simple system with two identical products, then a system with
two heterogenous products. The numerical results here are obtained by the sample-
based LP.
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Fig. 2.3 Heterogeneous products with independent demands—The maximum percentage error of
the approximate solutions and risk-neutral solutions

I choose the following cost parameters for the system with two identical products:
r1 = r2 = 15, c1 = c2 = 10 and s1 = s2 = 7. I assume that demand follows bivariate
lognormal distribution, which is generated by exponentiating a bivariate normal
with the parameters μ1 = μ2 = 3, σ1 = σ2 = 0.4724 and a correlation coefficient
of −1,−0.8,−0.6, . . .,1. Thus, the mean and standard deviation of each marginal
distribution are 22.46 and 11.23 respectively with cv = 0.5. The numerical results
are summarized in Fig. 2.4.

Consistent with my analysis in Sect. 2.5, risk aversion reduces optimal order
quantities for independent or positively correlated demands, relative to the risk-
neutral solution. But interestingly, this observation may not hold for strongly
negatively correlated demands, where increased risk aversion can result in a greater
optimal order quantity. To explain the intuition behind these counterexamples, let
me consider two identical products with perfectly negatively correlated demands,
D1 and D2. A larger order quantity, Q, increases negative correlation between the
sales min(D1,Q) and min(D2,Q), and thus leads to smaller variability of the total
sales min(D1,Q)+min(D2,Q). Choi (2009) also studied a special case of a two-
identical product system with bivariate uniform distribution and perfectly negative
demand correlation. As a result, a closed-form optimal solution is obtained which is
an increasing function of degree of risk aversion.

Figure 2.4 also shows that consistent with my analysis in Sect. 2.7, negatively
correlated demands result in higher optimal order quantities than independent
demands under risk aversion, while positively correlated demand leads to lower
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Fig. 2.4 Identical products with dependent demands—The impact of demand correlation and risk
aversion κ

optimal order quantity under risk aversion. Indeed, the impact of demand correlation
is almost monotonic with small deviations due to random sample errors.

These observations imply that if the firm is risk-averse, then demand dependence
can have a significant impact on its optimal order quantities. They agree with
the intuition that stronger positively (negatively) correlated demands indicate
higher (lower) risk, and therefore lead to lower (higher) order quantities. More
interestingly, while in most cases, the order quantity decreases in the degree of risk
aversion, it can increase when the demands are strongly negatively correlated.

For heterogenous products, I consider a simple system with two products and
the following parameters: r1 = 15,c1 = 10,s1 = 7 and r2 = 30,c2 = 10,s2 = 4.
The demand is bivariate lognormal generated by exponentiating a bivariate normal
with μ1 = μ2 = 3, σ1 = 0.4724, σ2 = 1.26864 and a correlation coefficient of
−1,−0.8,−0.6, . . .,1. The marginal demand distributions of products 1 and 2 have
means 22.46 and 44.913, standard deviations 11.23 and 89.826, and cv’s 0.5 and 2,
respectively. Intuitively, product 1 is less risky and less profitable than product 2.

My numerical study shows that for product 1, the impact of demand correlation
is similar to that for identical products; see Fig. 2.5. For product 2, however, the
optimal ordering quantity always decreases in κ but not in correlation, see Fig. 2.6.

The implication is that for heterogenous products, the impact of demand
correlation under risk aversion can be very different in each product. Specifically, as
the firm becomes more risk-averse, it should always order less of the more risky and
more profitable products. However, for the less risky and less profitable products,
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while it should order less when demands are positively correlated, it may order more
when demands are strongly negatively correlated.

For more details on the numerical study, see Choi (2009).

2.9 Conclusions

The multi-product newsvendor problem with coherent measures of risk does not
decompose into independent problems, one for each product. The portfolio of
products has to be considered as a whole. My analytical results focus on the impact
of risk aversion and demand dependence on the optimal order quantities. I analyze
the asymptotic behavior of the optimal risk-averse solution. Then I derive (2.30)
and (2.36) for general law-invariant coherent measures of risk, which are simple
and accurate approximations of the optimal order quantities for a large number of
products with independent demands. My numerical study confirms the accuracy of
these approximations for the numbers of products as small as 10, and enriches my
understanding of the interplay of demand dependence and risk aversion.

It is perhaps appropriate to conclude this paper by comparing the multi-product
risk-averse newsvendor problem (2.4) to the risk-averse portfolio optimization
problem. In a portfolio problem, one has n assets with random returns R1, . . . ,Rn

and the objective is to determine investment quantities x1, . . . ,xn to obtain desirable
characteristics of the total portfolio return P(x,R) = R1x1 + · · ·+ Rnxn. In the
classical mean-variance approach of Markowitz (1959), the mean of the return
and its variance are used to find efficient portfolio allocations. See also Elton
et al. (2006). In more modern approaches (e.g., Konno and Yamazaki 1991; Miller
and Ruszczyński 2008; Ruszczyński and Vanderbei 2003) more general mean–risk
models and coherent measures of risk are used, similarly to problem (2.4). There
are, however, fundamental structural differences which make the multi-product
newsvendor problem significantly different from the financial portfolio problem.

The most important difference is that the portfolio return P(x,R) is linear with
respect to the decision vector x, while the newsvendor profit Π(x,D) is concave and
nonlinear with respect to the order quantities x. This leads to the following different
properties of the problems.

• The risk-neutral portfolio problem has no solution, unless the total amount
invested (e.g., to 1) is restricted, in which case the optimal solution is to invest
everything in the asset(s) having highest expected returns. On the contrary,
the risk-neutral newsvendor problem always has a solution, because of natural
limitations of the demand.

• The effect of using risk measures in the portfolio problem is a diversification
of the solution, which otherwise would remain completely nondiversified. In
the newsvendor problem the use of risk measures results in changes of the
already diversified risk-neutral solution, by ordering more of products having
less variable or negatively correlated demands and less of products having more
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variable or positively correlated demands. Products are unlikely to be eliminated
because of risk aversion, because very small amounts will almost always be sold
and thus they introduce very little risk.

• In the portfolio problem, independently of the number of assets considered,
the risk-neutral solution remains structurally different from the risk-averse
solution. On the contrary, in the newsvendor problem the risk-neutral solution
is asymptotically optimal under risk aversion, when the number of independent
products approaches infinity.

Finally, it is worth stressing that the nonlinearity of the newsvendor profit Π(x,D)
is the source of formidable technical difficulties in the analysis of the composite
function (2.4), which involves two nondifferentiable functions.
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Chapter 3
A Copula Approach to Inventory Pooling
Problems with Newsvendor Products

Burcu Aydın, Kemal Guler, and Enis Kayış

Abstract This study focuses on the inventory pooling problem under the
newsvendor framework. The specific focus is the change in inventory levels when
product inventories are pooled. We provide analytical conditions under which an
increase (or decrease) in the total inventory levels should be expected. We introduce
the copula framework to model a wide range of dependence structures between
pooled demands, and provide a numerical study that gives valuable insights into
the effects of marginal demand distributions and dependence structure on inventory
pooling decisions.

Keywords Copula approach • Inventory pooling • Multiple sources • Total
inventory levels • Sklar’s Theorem

3.1 Introduction: Inventory Pooling Problem

We study the inventory pooling problem using the classic newsvendor framework.
The newsvendor problem occurs when for a given item, the inventory level is
decided before the realization of the demand. Therefore, the optimal inventory
level needs to be decided based on the distribution of the stochastic demand D.
Unsold items at the end of the period are typically assumed to be either discarded or
salvaged. The solution of the newsvendor problem is well known: a quantile of the
demand distribution depending on price and cost of the item is the stock level that
is optimal in terms of profit.

The pooling problem occurs when the decision makers have the option to
combine inventories for an item that serves multiple demand sources. The pooling
could be in the form of determining one physical inventory holding location
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HP Labs, 1501 Page Mill Rd Palo Alto, CA 94304, USA
e-mail: aydin@hp.com; kemal.guler@hp.com; enis.kayis@hp.com

T.-M. Choi (ed.), Handbook of Newsvendor Problems, International Series in Operations
Research & Management Science 176, DOI 10.1007/978-1-4614-3600-3 3,
© Springer Science+Business Media New York 2012

81



82 B. Aydın et al.

that will serve multiple locations, setting up quick transshipment modes between
different inventory locations (therefore allowing to plan inventories together), or
even designing two products so that they are substitutable if the need arises. This
effort has a clear reward: It is a well-known fact in the literature that pooling always
leads to higher profits. (see, for example, Corbett and Rajaram 2006). However, the
optimal inventory levels in the system may increase or decrease after pooling.

Our paper primarily focuses on the change in optimal inventory levels when
demands from multiple sources are pooled. The change in inventory levels is an
important decision factor. Contrary to common intuition, pooling may result in
a decrease or increase in total inventory levels. The pooling decision may bring
additional costs that depend on the targeted inventory level. The costs could be
due to adjusting warehouse capacities, redesign costs, etc., and profits may include
reduced stock-out rates and therefore higher customer satisfaction. These should
be carefully weighed together with the profit increase due to pooling. Furthermore,
after the pooling decision is made, adjusting the inventory levels to the new optimal
levels is important in achieving higher profits. The new optimal levels depend on the
demand for the product in each channel, and how these channels affect each other.
We investigate how pooled inventory levels are affected by marginal distributions of
product demands and the dependence structure between them.

The question we tackle in this paper is mentioned, though not solved, by Corbett
and Rajaram (2006):

Most of this literature in inventory pooling, ... , focuses on the impact of pooling on expected
profits. A related, but usually more intractable problem, concerns the effect of pooling
on optimal inventory levels. We do not consider that question here, though some work,
including Eppen (1979), Erkip et al. (1990), and Van Mieghem and Rudi (2002) do address
that issue under more restrictive distributional assumptions than ours. So far, the work
related to pooling of inventories has generally lacked a formal mechanism for assessing
the impact of dependence on the value of pooling when demands are nonnormal. Whenever
dependence has been explicitly included, it has generally been in the context of bivariate or
multivariate normal demands.

Other previous studies on the subject handled certain cases where the demand
distributions of the channels and their relationship can be explained by well-
known multi-variate distributions. Often independent and identically distributed
(IID) demand is assumed. For example, Gerchak and Mossman (1992) assume IID
exponentially distributed marginals, and Yang and Schrage (2009) studies IID right-
skewed marginals. This approach provides mathematical tractability. In real-life
applications, however, product demands are neither identical nor independent. In
this paper, we take up this problem and show that the theory of copulas provides a
powerful and tractable yet rigorous framework to address the effect of relaxing both
independent and identical demand assumptions on the optimal pooled inventory
levels. They also allow us to analyze a very wide range of different dependence
structures that may not fit into any of the well-known multi-variate distributions.

The details of the model we consider are as follows. The cost of stocking each
unit is c. For each demand unit that can be satisfied from inventory, a revenue of p is
made. Unsatisfied demand is lost as well as the overstocked items. The objective is
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to decide the inventory level Q that will maximize the expected total profit. It is well
known that the optimal inventory level is a quantile of the demand distribution, i.e.:

F−1
(

p− c
p

)
= argmax

Q
{pED [min(D,Q)]− cQ} , (3.1)

where F(.) is the distribution function of demand.
In the stylized inventory pooling problem, two identical items with uncertain

demands, D1 and D2, are considered. These items have the same unit profit and unit
stocking cost. The decision maker has two options: Keeping a dedicated inventory
to satisfy the demand of each item, or holding a single inventory for the aggregate
demand, D1 +D2. It has been shown that pooling is a better option; however, one
still needs to decide on the optimal inventory levels. In the first option, the optimal
inventory in the system can be shown to be F−1

1 (t) + F−1
2 (t), where Fi(.) is the

marginal distribution function of Di and t := p−c
p is defined as the margin ratio. It is

easy to see that this quantity is independent of the dependence structure between the
demands. On the other hand, the optimal pooled inventory level, F−1

1+2(t), depends
not only on the marginal demand distributions but also on the dependence structure
between D1 and D2 (where F1+2(x) := Pr(D1 +D2 ≤ x)).

From a practical point of view, the manager knows pooling is a better option, but
he needs to decide whether to keep more or less total inventory as a result of that
decision. If pooling requires higher levels of total inventory, we say that pooling
effect is positive. Similarly, pooling effect is negative when pooled inventory level is
lower than the dedicated inventory. In other words, we define the pooling effect as
F−1

1+2(t)−F−1
1 (t)−F−1

2 (t).

3.2 Literature Review

The inventory pooling problem has been studied extensively in the operations
management literature. For many of these studies, the main focus has been the profit
comparison under various settings. A smaller number of studies take up the problem
of determining the pooled inventory levels.

The earliest and most well-known reference on the pooling problem is Eppen
(1979). This study considers the pooling problem when product demands are jointly
distributed with multi-variate normal distribution with a known covariance matrix.
He shows that the centralized system brings cost savings, and the magnitude of these
savings depend on the correlation: the lower the dependence, the higher the savings.

Since Eppen (1979), costs and benefits of inventory pooling are investigated
under various other settings. See Gerchak and He (2003) and Alfaro and Corbett
(2003) for recent reviews.

Netessine and Rudi (2003) focus on the inventory centralization problem for
substitutable products. Substitution is the technical equivalent of pooling when
full substitution without stock out penalties are allowed. They show that, when
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substitution is allowed, it is possible that the optimal inventory levels may increase
for some items that are being pooled. However, they give results on the levels of
individual items, and they do not provide any result on the total inventory level of
the items being pooled under centralization.

Erkip et al. (1990) takes up a similar question: the centralization of inventory
ordering policies under the newsvendor framework. They investigate the effect of
correlation between normally distributed demands of items that can be centralized.
They conclude that “the effect of correlation can be highly significant, resulting
in significantly larger amounts of safety stock for optimal control compared to the
no-correlation case.”

In their 2003 paper, Gerchak and He investigate the effect of demand variances
on the pooling savings. They provide a framework in which an increase in demand
variability always increases the savings achieved by combining these demands.
They do not require the demand distributions to be independent for their result to
hold. However, they do not study how the combined inventory levels are affected by
variability.

Alfaro and Corbett (2003) ask an interesting question: if the inventory levels are
not optimal in a current setting, would pooling still bring savings? They investigate
the profits coming from pooling under nonoptimal inventory levels, and com-
pare this to the benefit of optimizing the separate inventory levels rather than pooling
them. They find conditions under which it is better to optimize the inventory levels
of dedicated setting, and conditions where pooling only will be more profitable.

In inventory pooling literature, the effect of dependence on the optimal inventory
levels has been studied assuming multi-variate normal demands. Corbett and
Rajaram (2006) use copulas to model the dependence structure between demands.
As noted by the authors, they focus on the impact of pooling on expected profits.
This focus is particularly essential as the results of superiority of pooling rely
critically on the ability to find the optimal inventory levels.

The small number of studies that focus on the pooled inventory levels provide
examples in which pooling leads to higher inventory levels contrary to the earlier
intuition. For example, Pasternack and Drezner (1991) show that this comparison
depends on the transfer revenue. Transfer revenue is the profit that comes from
the substitution of one product when the other’s inventory is depleted. Their cost
structure for the substituted amount is different than the original costs; therefore,
their results are not directly comparable to the studies where pooling is understood
as full substitution, where costs do not change if parts are substituted.

Gerchak and Mossman (1992) conclude that, contrary to the prevalent intuition,
pooling may lead to higher inventory levels when demands are IID with an
exponential distribution and price per unit and the ratio of cost of underage to cost
of overage is sufficiently low. They show this using a numerical counterexample
where the demands have exponential distribution. However, they do not provide
any generalized findings in terms of providing analytical conditions or distributions
which would imply higher pooled inventory levels.
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In a recent paper, Yang and Schrage (2009) define the case in which pooling
increases inventory levels as “inventory anomaly.” They focus on IID right-skewed
demand distributions as marginals. They claim that for any two IID right-skewed
demand distributions, there exists a range of the margin ratio p−c

p where pooling

leads to higher inventory levels. Moreover, for any newsvendor ratio p−c
p ≥ 0.5, a

right-skewed distribution of IID marginals that leads to higher pooled inventory
levels exist. Their result is important in the sense that they describe certain
conditions where the “inventory anomaly” can be expected.

Our paper attempts to provide a much more general framework, where the level
of pooled inventory can be found under any demand distribution and dependence
structure through the use of copulas. Our numerical analysis provides examples of
some well-known copulas and marginal distributions that can be used.

3.3 Comparison of Inventory Levels

In this section, we explore a qualitative question: How does the sign of pooling
effect change as the margin ratio t varies? The following Proposition sheds light
into this question:

Proposition 1. Let P(t) = F−1
1+2(t)− F−1

1 (t)− F−1
2 (t). Assume that P(t) has a

unique root t0 in (0,1). Then, t0 is a threshold such that the pooling effect is negative
at t if and only if t > t0.

Proof of Proposition 1 follows from Theorem 1 of Liu and David (1989).
The proposition stipulates that if P(t) has a unique root in (0,1), then pooling
effect can only change sign from negative to positive as t increases, the critical
threshold being t0. This threshold depends on both the marginals and the dependence
structure of joint demand distribution. However, we can characterize this value
under certain settings. First, it is easy to verify that for multi-normal family of
demand distributions, this critical threshold is always 0.5. That is, regardless of
specific parameters that describe a multi-normal demand, pooling leads to a lower
inventory level if and only if margin ratio is higher than 0.5. One can extend this
“detail-free” threshold result to other distributions from the same family.

Proposition 2. If (D1,D2) follows a distribution in the elliptical family,1 then
pooling leads to lower inventory if and only if the margin ratio is higher than 0.5.

The proof of this proposition follows trivially from Theorem 6.8 of McNeil et al.
(2005).

1The elliptical family includes well-known distributions such as Normal, Laplace, Student-t,
Cauchy, and Logistic among others.
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For the next result, we use the following definition:

Definition 1. A distribution function F is regularly varying at minus infinity with
tail index α > 0 if,

lim
t→∞

F(−tx)
F(−t)

= x−α ∀x > 0.

The next proposition shows that if the distribution of demand is regularly varying,
then the sign of pooling effect depends on the tail properties of the demand
distribution.

Proposition 3. Assume that the tail probability of the joint demand distribution to
be negligible compared to those of marginal demand distributions. Moreover, let D1

and D2 are identically distributed with regularly varying distribution functions with
the same tail index α . There exists a threshold 0 < t0 < 1 such that if the margin
ratio t is greater than or equal to t0 then:

• The pooling effect is negative if α > 1.
• The pooling effect is positive if 0 < α < 1.

The proof is from Theorem 10 of Jang and Jho (2007).
It is possible to have t0 = 0 which implies that pooling leads to higher inventory

for all margin ratios. For example, when demands are IID with Pareto distributions,
which has infinite mean, then the threshold becomes 0.

Having established some conditions for positive and negative pooling effect and
that pooling may lead to either higher or lower inventory levels, we next investigate
the effect of characteristics of the demand uncertainty on inventory levels. With
multiple products, we need to study the effect of the marginal demand distributions
as well as the dependence structure between these demands. Toward this end, copula
representation provides a unified and rigorous approach for which we provide a
short overview.

3.4 Brief Overview of Copula Theory

The joint distribution of demand is critical in understanding the behavior of optimal
pooled inventory levels. There are two components of a joint distribution: the
marginal distributions of each demand source, and the dependence between these
demand sources. In order to study the effect of these components independently,
we introduce the copula theory.2 Copulas join the univariate marginal distributions
of individual random variables to arrive at the joint distribution function for these
variables.

2Nelsen (1999) provides an excellent general introduction to the theory of copulas.
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Definition 2. A d-dimensional copula C(u1, . . . ,ud) is a distribution function on
[0,1]d with standard uniform marginal distributions.

McNeil et al. (2005) shows that a function C with the following properties is a
copula:

1. C(u1, . . . ,ud) is increasing in each component ui.
2. C(1, . . . ,1,ui,1, . . . ,1) = ui for all i ∈ {1, . . . ,d}, ui ∈ [0,1].
3. For all (a1, . . . ,ad), (b1, . . . ,bd) in [0,1]d with ai ≤ bi, we have:

2

∑
i1=1

· · ·
2

∑
id=1

(−1)i1+···+idC(u1i1 , . . . ,udid )≥ 0,

where u j1 = a j and u j2 = b j for all j ∈ {1, . . . ,d}.

Sklar’s Theorem shows that when the marginal distributions are continuous, then
the copula is unique.

Theorem 1 (Sklar’s Theorem). Let F(x1,x2, ...,xn) be an n-dimensional joint
distribution with continuous marginals F1(x1), ...,Fn(xn). Then the joint distribution
has a unique copula representation given by

F(x1,x2, ...,xn) =C(F1(x1), ...,Fn(xn)). (3.2)

Sklar’s Theorem provides a powerful technique that enables the separation of
marginal distributions from the dependence structure. Since one can fix or vary
the marginals and the copula separately, a rich class of stochastic models can be
constructed. Copula-marginal representation of the joint distribution of a set of
random variables has been used in a variety of application areas from decision and
risk analysis to finance.

Some of the most commonly used examples of the copula include the prod-
uct, Gaussian, and Archimedean family copulas. The product copula models the
independent marginals case. The most commonly used multi-variate distribution,
Normal, can be uniquely represented by normal marginals and a Gaussian copula.

Three important copulas within the Archimedean family are Gumbel, Clayton,
and Frank. An important property that can be modeled using some Archimedean
family copulas is the asymmetry around the mode. With these copulas, the
dependence structure varies along the different section of the distribution tails. Two
copulas that have this property are Gumbel and Clayton. Gumbel distribution is
given by:

CGu(u1, ...,un) = e−((−ln(u1))
θ+...+(−ln(un))

θ )1/θ
,

and Clayton copula is given by:

CC(u1, ...,un) =

(
1− n+

n

∑
i=1

u−1/θ
i

)−θ

.
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Gumbel copula could be used when the dependence is higher in the right tail, and
Clayton could be used when the dependence is higher in the left tail. Clayton copula
exhibits higher dependence in the left tail. Finally, the Frank copula is given as:

CF(u1, ...,un) = logα

(
∏n

i=1 αui − 1

(α − 1)(n−1)
+ 1

)
.

Frank copula is symmetric; it exhibits dependence on both tails. In our numerical
analysis, we will focus on these three Archimedean copulas. The most important
shape qualities of the popular Gaussian copula is already carried by the Frank
copula. Moreover, Frank copula can represent negative dependence structures as
well.

While all of these copula functions represent different two-dimensional struc-
tures, they can be compared through a summary scalar of dependence. One such
scalar used commonly is called Kendall’s τ . For a joint distribution, Kendall’s τ is
independent of the marginals and only depends on the copula. It varies between
[−1,1], while −1 represents perfect negative correlation, 0 represents lack of
correlation and 1 represents perfect positive correlation. Given a two-dimensional
copula function, the associated Kendall’s τ can be found through the following
formula:

τ = 4
∫ 1

0

∫ 1

0
C(u,v)dC(u,v)− 1. (3.3)

This formula can be found in Kaas et al. (2009).
Other scalar measures of dependence also exist. Out of those, we do not use

Pearson’s r, since it only measures linear dependence and is not a robust measure of
nonlinear dependence cases. Spearman’s ρ and Blomqvist’s β are two others that are
also common and can measure nonlinear dependence. These could have been used
instead of Kendall’s τ . However, our numerical results would have come out very
similar; therefore, we limited our analysis to Kendall’s τ only. A wide discussion of
these measures can be found in McNeil et al. (2005) and Nelsen (1999).

3.5 Numerical Analysis

In this section, we independently study the effect of identical versus nonidentical
and symmetric versus asymmetric marginal demand uncertainties, as well as
different types of copulas with varying forms and levels of tail dependence. Our
focus is to investigate whether a unique threshold exists beyond which pooling leads
to higher inventory levels, the value of this threshold, and the magnitude of the
pooling effect. We connect our observations to managerial insights and complement
the existing work on optimal pooled inventory levels.
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The first factor in determining the inventory levels is the marginal distribution
of each demand source. To understand the effect of skewness in marginal demand
sources, we use the beta family. The support for the standard beta family is [0,1];
hence, the optimal total inventory level is always between 0 and 2. To study the
effect of left or right skewness in the marginal demand, we use β (2,8), and β (8,2),
respectively; we keep the variance fixed by only exchanging the two parameters of
the distribution. The case with equal parameters (β (5,5)) represents the distribution
example where the density is symmetric at both tails. Many sources use Normal
distribution for this purpose which cannot model skewed cases. Another setting we
will investigate is when the marginals are not identical.

The knowledge of marginal distributions is sufficient to determine the optimal
dedicated inventory level. However, the optimal pooled inventory level also depends
on the dependence structure. To understand the effect of dependence structure
independent of the level of dependence, we fixed Kendall’s τ to four different values
(0, 0.2, 0.5, and 0.8) and computed the corresponding copula parameters using (3.3)
for the copula families used. For the Frank copula that allows negative correlation,
we followed the same procedure on the negative side as well as the positive side.

Figure 3.1 depicts the main copula functions that we will be using in our analysis:
Gumbel, Clayton, and Frank. All of the these can model strong dependence as well
as weak dependence.

Comparing the graphs of different copulas under the same Kendall’s τ in Fig. 3.1,
we can see that similar levels of “correlatedness” can exist in very different
dependence structures. As Kendall’s τ increases, the densities tend to concentrate
around the 45◦ line. Gumbel copula is appropriate to model cases in which it
is slightly more likely that high-level demands are correlated (i.e., higher the
dependence on the right top quadrant). Clayton copula models cases where low-level
demands are more correlated, perhaps due to unfavorable market conditions that
affect all demand sources (i.e., higher the dependence on the left bottom quadrant).
Frank copula, on the other hand, shows a more dispersed structure and models cases
where dependence is similar in high and low level demands (i.e., it is symmetrical
at both tails).

The combined affect of marginals and copulas is what drives the magnitude and
sign of the pooling effect at any margin ratio. We will not give the joint density
plots of all the marginal-copula pairs that will be used in the numerical analysis, but
for illustrative purposes, the density plots belonging to Gumbel copula are given in
Fig. 3.2. Other density plots reveal similar observations, so they will be omitted to
save space.

To illustrate how both the pooled inventory level and the sum of dedicated
inventory levels change under margin ratio, we present Fig. 3.3. This graph gives the
intuition on how the dedicated and also pooled inventory levels change when margin
ratio changes; i.e., when risk taking is more or less costly. We see that while the
total dedicated inventory level steadily rises with respect to the margin ratio, pooled
inventory level is more robust when margin ratio is medium and more sensitive
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Fig. 3.1 Example dependence structures between two dependent random variables represented as
contour plots of their copulas. Three Archimedean copula functions, Gumbel, Clayton, and Frank
are shown. Lighter shades represent the areas with higher density, and darker shades represent
areas with lower density. The function parameters are selected such that the copulas depict the
dependence structures under Kendall’s τ = 0.2, 0.5, and 0.8 for positive dependence cases (first
three rows), and Kendall’s τ = −0.2, −0.5, and −0.8 for negative dependence with Frank copula
(fourth row)
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Fig. 3.2 The density
functions of joint
distributions obtained by
combining Gumbel copula at
three different Kendall’s τ
levels, and three different
marginals (β (2,8), β (5,5),
and β (8,2)). On top row and
the leftmost column, the plots
of marginal densities used are
given. The top panel shows
six different combinations of
these marginals under the
Gumbel copula with
Kendall’s τ = 0.2. Middle
panel shows the same
combinations under Gumbel
copula with τ = 0.5, and
bottom panel is τ = 0.8. The
effect of higher dependence
can be seen from top to
bottom: higher dependence
concentrates the mass around
its center, and reduces
dispersion. The effect of
nonsymmetry of Gumbel
copula also becomes visible
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Fig. 3.3 The graph of dedicated (dashed purple line) and pooled inventory levels (solid blue line)
where the horizontal axis represents the margin ratio. Product demands are identically distributed
with Beta where α = 2 and β = 4. Their dependence structure is given by Frank copula with
parameter α = 100 (Kendall’s τ =−0.43 for this parameter). The horizontal axis changes from 0
to 1 where 0.5 threshold is marked with a vertical gray line

when margin ratio is either too small or too high. The effects seen on this graph
are consistent with the behaviors we observe in Figs. 3.4–3.7. Similar graphs under
different copulas and marginals contain similar trends with respect to the shape of
inventory level curves, so they will not be presented here.

3.5.1 Effect of Marginal Demand Distribution

The skewness of the marginal demand distribution affects both the threshold and
the magnitude of pooling effect. First, the threshold t0 may be either less or greater
than the critical value 0.5 as the skewness changes. In general, left skewness in
any marginal tends to increase the threshold, while right skewness has the opposite
effect. This means that when a demand source is more likely to be low than high,
then pooling leads to higher inventory for even smaller levels of the margin ratio.
This follows from the fact that left skewed distributions concentrate the mass to
lower left area of the joint distribution density, while right skewed ones concentrate
on the upper right area.
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Pooling Effect (%)- Gumbel Copula
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Fig. 3.4 The plots of percentage pooling effect on inventory levels under Gumbel copula.
The marginal distributions are, from top down, β (2,8), β (5,5), and β (8,2), and from left to
right, β (2,8), β (5,5), and β (8,2). These represent left-skewed, symmetrical, and right-skewed
marginals. The common legend for subplots is given on the top-left corner

For two identical right-skewed marginals, it is clear from the plots that pooling
effect is positive for small values of t. This is consistent with the result of Yang and
Schrage (2009) on the existence of positive pooling effect for two IID right skewed
distributions with small t. Our numerical results extend this finding to nonidentical
marginal demands. We find that as one of the marginals changes from left skewed to
right skewed while keeping the other one fixed, the threshold decreases, implying a
positive pooling effect over a larger set of margin ratio. We also observe that the left
skewness of marginals increases the threshold. Finally, we find that the case with
one demand marginal being left-skewed and the other being right-skewed leads to
similar results to the case wherein both marginals are symmetric around the mean.
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Pooling Effect (%) - Clayton Copula
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Fig. 3.5 The plots of percentage pooling effect on inventory levels under Clayton copula.
The marginal distributions are, from top down, β (2,8), β (5,5), and β (8,2), and from left to
right, β (2,8), β (5,5), and β (8,2). These represent left-skewed, symmetrical, and right-skewed
marginals. The common legend for subplots is given on the top-left corner

The magnitude of the pooling effect decreases as marginals change from being
left skewed to right skewed, for any or both of the marginals. When both of the
marginals are left skewed we observe that pooling changes the inventory levels most,
especially when margin ratio is small.

3.5.2 Effect of Dependence Structure

A comparison across the different copulas gives us interesting insights into seeing
the effect of dependence structure, apart from the level of dependence itself, on the
inventory levels.
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Pooling Effect (%) - Frank Copula
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Fig. 3.6 The plots of percentage pooling effect on inventory levels under Frank copula with
positive Kendall’s τ . The marginal distributions are, from top down, β (2,8), β (5,5), and β (8,2),
and from left to right, β (2,8), β (5,5), and β (8,2). These represent left-skewed, symmetrical, and
right-skewed marginals. The common legend for subplots is given on the top-left corner

We start with some general conclusions that can be drawn from Figs. 3.4–3.7.
First, a stronger dependence measured by a high Kendall’s τ leads to a pooling effect
that is smaller in absolute value. This is expected, as we know that for co-monotone
demand distributions, the sum of quantiles of individual demand distributions is
equal to the quantile of the sum of the two demand distributions, implying no
pooling effect.
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Fig. 3.7 The plots of percentage pooling effect on inventory levels under Frank copula with
negative Kendall’s τ . The marginal distributions are, from top down, β (2,8), β (5,5), and β (8,2),
and from left to right, β (2,8), β (5,5), and β (8,2). These represent left-skewed, symmetrical, and
right-skewed marginals. The common legend for subplots is given on the top-left corner

3.5.2.1 Gumbel Copula

For the high-dependence case (τ = 0.8), we see that pooling does not have a strong
effect on inventory levels for most margin ratios. This is consistent with previous
knowledge. One exception is when the margin ratio is very low: for any marginal
density combination, low margin ratios result in positive pooling effect. Another
observation is that as the dependence decreases, the threshold value increases,
implying a positive pooling effect for even smaller values of margin ratio when
dependence is high.
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3.5.2.2 Clayton Copula

Compared to Gumbel copula, we find two important differences. First, the Clayton
copula implies a higher threshold value t0 compared to Gumbel, given everything
the same. Second, this threshold value increases as the dependence increases. This
observation is in stark contrast to the one with Gumbel copula. Recall that Clayton
copula shifts density toward the left tail of the joint distribution, which is the
underlying reason behind these differences.

3.5.2.3 Frank Copula

This copula can cover both the positive and negative dependence cases. The
threshold value t0 is more robust to the skewness of the marginals as compared
to the first two copulas. This is due to fact that Frank copula’s tail dependencies are
symmetric. The effect of this symmetry can also be seen across the pooling effect
lines at different τ levels.

One case deserves a detailed discussion. When Kendall’s τ = 0.8, we find that
the threshold value is not unique. In Fig. 3.8, we plot the percentile pooling effect
for all six marginal distribution combinations. On the top of the figure, we plot the
regions of the pooling effect where it is positive or negative. For any combination,
we find that pooling requires higher inventory levels in two different disjoint regions
of the margin ratio. Hence, the uniqueness of the threshold value is not valid for this
particular copula when there is very high dependence. We should point out that the
magnitude of pooling effect is quite small in this case, since co-monotonicity leads
to no pooling effect.

With the Frank copula, one can model negative correlation which provides
additional insights. As expected, negative correlation can lead to significant pooling
effects, especially when the margin ratio is high or low. When demands are highly
negatively correlated, the pooled inventory level (which depends on the sum of these
two random variables) is robust against the margin ratio. However, the dedicated
inventory levels are small for low margin ratios, and high for high margin ratios.
Hence, we see that pooling effect is significantly positive for lower ratios and
significantly negative for high margin ratios.

3.5.2.4 Kendall’s τ Versus Pooling Effect

Finally, we address how the magnitude of the pooling effect varies with model
parameters. In particular, we investigate whether the optimal pooled inventory level
varies monotonically with the dependence. Under normality, we know that it does.
Under general dependence structures, however, monotonicity of pooled inventory
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Pooling Effect (%) - Frank Copula
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Fig. 3.8 The plots of percentage pooling effect on inventory levels under Frank copula with
Kendall’s τ = 0.8. The pooling effect for different marginal distribution combinations, β (2,8),
β (5,5), and β (8,2), are depicted in different colors. Top figure shows the regions where pooling
effect is negative or positive

level with respect to dependence does not hold. Figure 3.9 presents the pooled
inventory levels under different copulas with identical normal marginals compared
to dedicated inventory levels, under three different margin ratios.

Figure 3.9 clearly shows the importance of margin ratio. For a low margin ratio,
we see that all three copulas we tried show higher inventory levels compared to
dedicated. For high margins, the opposite seems to be the most common trend. For
mid-range margin ratios, Clayton copula shows the most variation as the Kendall’s
τ changes.
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3.6 Conclusion

We investigate the optimal inventory levels after pooling to determine whether the
manager should increase inventory levels after a switch to pooling. We show that one
has to understand the true underlying dependency structure between the individual
demand sources, as well as the uncertainty within each demand source, to determine
the right level of inventories. In order to understand the effect of each factor, we use
copula theory to separate the effect of demand source uncertainty and dependencies
between these demand sources, and study the interactions in between, as well as the
effects of these interactions on the inventory levels.

We find that the sign of pooling effect depends on the margin ratio: It is positive
if and only if margin ratio is higher than a threshold, under certain conditions.
This threshold depends on the marginal demand distributions as well as the copula
that joins them. Through numerical studies, we investigate these relationships and
conclude that tail dependencies and the strength of dependency are the main factors
that affect this threshold. Finally we show that pooled inventory levels are not
necessarily monotone with respect to the level of dependence. This is especially
true for copulas with asymmetric tail dependencies.

There are open questions that requires further research. In this paper, we focus on
the unimodal distributions. If the marginals of the demand distributions are bimodal,
then pooling effect is expected to be stronger around these modes, especially if these
modes are closer. We also assume that one can estimate the true copula structure
underlying the data. When the quality of this estimation is not high or it is not
available at all, one will need to consider all possible dependence structures given
the limited information, and come up with upper and lower bounds of true optimal
inventory levels. Incorrect estimation of the dependence might also cause setting
incorrect inventory levels.

In this paper we consider the case with two products. However, the copula
framework is able to handle any number of marginals. Therefore it is possible
to easily extend the results of this paper to case with arbitrary finite number of
products. Our conjecture is that, when the marginals are identical, the results of the
multi-item case will be similar to our results when the two marginals are identical.
When they are not identical however, the relative shapes of marginals is critical in
determining the inventory levels. We leave these questions to future work.

Product characteristics are critical in determining pooled inventory levels. This
paper covers the case with perfectly substitutable products. When products are not
perfectly substitutable, then pooling effect will be smaller. At the extreme case when
pooled products are uniquely different from each other, no pooling will be possible.
Hence a deeper understanding of moderate levels of substitutability is required to
investigate those situations. Finally, another assumption in this paper is that the
products are financially identical: They have the same revenue and cost per unit.
When this assumption is not valid, one will need to have a fulfilment policy as to
which demand source to satisfy when there is insufficient inventory. This policy
structure would determine the pooling inventory levels and in turn the efficiency of
pooling.
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Chapter 4
Repeated Newsvendor Game
with Transshipments

Xiao Huang and Greys Sošić

Abstract We study a repeated newsvendor game with transshipments. In every
period n, retailers face a stochastic demand for an identical product and inde-
pendently place their inventory orders before demand realization. After observing
the actual demand, each retailer decides how much of her leftover inventory or
unsatisfied demand she wants to share with the other retailers. Residual inventories
are then transshipped in order to meet residual demands, and dual allocations are
used to distribute residual profit. Unsold inventories are salvaged at the end of
the period. While in a single-shot game retailers in an equilibrium withhold their
residuals, we show that it is a subgame-perfect Nash equilibrium for the retailers
to share all of the residuals when the discount factor is large enough and the
game is repeated infinitely many times. We also study asymptotic behavior of the
retailers’ order quantities and discount factors when n is large. Finally, we provide
conditions under which a system-optimal solution can be achieved in a game with n
retailers, and develop a contract for achieving a system-optimal outcome when these
conditions are not satisfied. This chapter is based on Huang and Sošić (European
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4.1 Introduction and Literature Review

As the intensity of the business competition grows, retailers and distributors want to
achieve more flexibility and become more responsive to their customers. However,
fulfilling the demand is a challenge given the high uncertainty of the market,
the limited capacity, and the tight budget constraints. In many such situations, it
is worthwhile for the distributors to form alliances that will share substitutable
inventory or services. Such cooperation is even more beneficial when products have
short life/sales cycles, become obsolete fast, face long suppliers’ lead times, and
customer’s demands that are hard to predict. Examples of such products are apparel,
pop music, and high-tech products, among others.

Many retail chains implement transshipments or inventory sharing (we will
use both terms in this article) among their stores. For example, Takashimaya, a
Japanese department store chain, adopts inventory sharing policies among its stores
by allowing sales persons to search on their PDAs the inventories held by other
branches when the product is not held in stock at their location. The requested
product is received the following day. In this way, Takashimaya manages to optimize
the inventory within specialized shops. Similar policies are implemented in Music
Millenium, Guess, and others.

While inventory sharing within a company is, intuitively, feasible and profitable,
it is worthwhile to mention that similar practices happen among independent parties
as well. iSuppli.com markets itself as the “collaborative ground” and is trying to
build up a network of unrelated parties that need the same electronic components.

When inventory sharing is introduced into the system, various questions need to
be addressed:

1. Inventory Decision: One of the merits of inventory sharing is the reduction
of the overstocking cost, because inventory-sharing parties usually hold less
inventories.1 An important question here is, to what extent are the inventory
positions going to be reduced?

2. Transshipment: When multiple retailers participate in transshipments, how to
allocate the inventory among them? The transshipping pattern can be either
determined a priori by a contract (i.e., the retailer with surplus inventory may
select where her inventory is going), or a posteriori according to some objective
(i.e., maximize the total profit of all retailers).

3. Profit Allocation: How are the profits generated from transshipments allocated
among the retailers? For example, there may be a flat-rate price for each unit
transshipped, or the total profit can be divided evenly among all participating
retailers.

4. Sharing Decision: How much of their leftover inventories or unsatisfied demands
are the retailers willing to share with others? Are they going to put all their

1For some exceptions, see Yang and Schrage (2009), which show that the inventory levels
can increase after centralization when demand follows right-skewed distributions, or when the
newsvendor ratio is low.
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leftovers (inventories or demands) on the table, or strategically withhold some of
them? This decision may depend upon initial inventory position, transshipment
policies, or profit allocation.

5. Time Horizon: Is inventory sharing a one-time event, or an activity in which the
retailers will be engaged repeatedly? In the latter case, are the unsold inventories
carried over to the next period, or salvaged at the end of the period?

Many of these questions have been addresses by the researchers in various combi-
nations, as inventory sharing has been a subject of extensive research work. One
stream of research focuses on inventory decisions. Parlar (1988) develops a game-
theoretical model for substitutable products in which leftover inventory and unmet
demand are matched through customer-driven search. This implicitly means that
the party that holds the excess inventory receives the entire profit from inventory
sharing. The paper proves that a first-best outcome (that is, a system-optimal
solution) can be achieved in a two-retailer game. Wang and Parlar (1994) analyze
a similar problem with three retailers. They find that the core of the game can be
empty, and thus inventory sharing between sub-coalitions of players may occur.
Lippman and McCardle (1997) consider an environment with aggregated stochastic
industry demand, which has to be divided among different firms. They study
the relationship between initial demand-sharing rules and equilibrium inventory
decisions, and they determine conditions for a unique equilibrium.

Another stream of research analyzes transshipment of inventories. Among more
recent papers, Dong and Rudi (2004) examine the impact of horizontal transship-
ments between the retailers on both the retailers and on the manufacturer, while
Zhang (2005) generalizes their results. Rudi et al. (2001) and Hu et al. (2007) study
decision making in decentralized systems and the significance of transshipment
prices in local decisions. Wee and Dada (2005) consider a one-warehouse n-retailer
system in which the retailers can receive inventory from the warehouse and from
the other retailers. They analyze the impact of the number of retailers and demand
correlation on transshipment decisions. Zhao et al. (2005) study a model in which
the retailers determine both a base-stock policy (for inventory stocking) and a
threshold policy (for inventory sharing) prior to demand realization. Shao et al.
(2011) study a supply chain which is both vertically and horizontally decentralized.
They show the importance of the transshipment price in determining whether firms
benefit or lose from transshipment, and investigate how the control of the parameters
of the transshipment decision affects firms’ transshipment incentives.

If the retailers agree to share their residuals, a decision has to be made as to
how to allocate the additional profit generated through transshipment of inventories.
This decision can be made jointly by the retailers, or it can be, for instance, chosen
by a manufacturer whose products they are selling, or a trade association, or a
larger organization to which the retailers belong. Clearly, different allocation rules
will have different impacts on the retailers’ stocking quantities, on the amount of
inventories shared among retailers, and on the profit levels realized in the system.
Ideally, the retailers would want to choose an allocation rule that would maximize
the additional profit from transshipments. In order to achieve this goal, it is sufficient
that the allocation rule:
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(a) Induces participation of all retailers.
(b) Motivates the retailers to share all of their residuals with others.

We will call condition (a) the full participation condition, and condition (b) the
complete sharing condition. Anupindi et al. (ABZ 2001) and Granot and Sošić
(G&S 2003) develop a multistage model for a problem in which n independent
retailers face stochastic demands for identical products. In the first stage, before the
demand is realized, retailers unilaterally determine their stocking quantities. After
the demand is realized and the retailers fulfill their own demands with inventories
on hand, some retailers are left with unsatisfied demand, while others have
leftover supply. The retailers at this point cooperatively determine a transshipment
pattern for distribution of residual inventories among themselves. The additional
profit generated through transshipments (which we call residual profit) is divided
according to an allocation rule specified at the beginning of the game. ABZ
formulate a two-stage model for this problem and implicitly assume that the retailers
share all of their residuals with the others. Thus, the complete sharing condition
is automatically satisfied. They propose a core allocation rule based on the dual
prices for the transshipment problem (referred hereafter as dual allocations; for
detailed description, see Sect. 4.2), which satisfies the full participation condition.
ABZ point out that dual allocations, in general, do not induce a first-best solution.
When the retailers are allowed to withhold some of their residuals, G&S show
that dual allocations may not be able to induce complete sharing of the residual
supply/demand. This may, in turn, reduce the residual profit. On the other hand,
monotonic allocation rules (such as the fractional rule and the Shapley value) satisfy
the complete sharing condition, but these rules, in general, do not belong to the
core, and thus they violate the full participation condition. Consequently, some
retailers may form inventory sharing subcoalitions, which, in turn, may result in
a reduced residual profit. Notice that all of the above conclusions hold in a myopic
framework. If the retailers are farsighted and consider possible further reactions of
their inventory-sharing partners to their actions, Sošić (2004) shows that complete
inventory sharing among all retailers is a stable outcome when the residual profit is
distributed according to the Shapely value allocations.

In this work, we study the extension of the above one-shot game from G&S to
a repeated setting, in which each retailer faces her demand over several periods.
In each period, the three-stage model corresponds to that described in the one-
shot game. We want to point out that we are interested in studying the impact
of the repeated interactions on the retailer’s decisions in the second stage (how
much of their residuals they want to share with others) and on selecting their
partners for inventory-sharing (possible formation of subcoalitions). As a result,
we continue to assume the newsvendor framework, in which unsold inventories
are salvaged at the end of each period and no demand is backlogged. This setting
is common, for example, for fashion goods or high-tech items. In addition, we
assume that the retailers in each period sell a product with identical characteristics
(demand distribution, cost, and price). This is a simplifying assumption, which
nevertheless may approximate many real-life situations, in which items with similar
characteristics are sold in different periods. For instance, every season apparel
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manufacturers introduce new collections. One can presume that items that fall into
same categories (t-shirts or other casual clothing, business suits, or trendy items
made by the same company) will have similar demand characteristics in different
years. A similar conclusion can be made for Christmas toys (say, different versions
of Barbie or Elmo dolls), music (new CDs released by Prince, Lady Gaga, or Carrie
Underwood), etc. In the high-tech industry, new hard disk drives or new processors
are introduced on a regular basis to replace the previous generation of corresponding
products. As the technology advances and the models with better performance reach
the market, one can assume that the new product will have demand and price similar
to the original demand and price of the product that it is replacing. Note that our
model also covers some instances in which the prices change in different periods—
we discuss this in more detail in Sect. 4.3.

As mentioned earlier, when the retailers cooperatively generate additional profit,
they have to decide how to distribute it among themselves. In our model, we assume
that the retailers apportion this extra income according to the dual allocations. These
allocations are based on the dual solution of the linear programming problem (4.1)
used to determine the optimal shipping pattern for residuals, and are, therefore, easy
to compute. For detailed description of the model and dual allocations, please see
Sect. 4.2. As shown by ABZ, dual allocations are in the core of the corresponding
game, which makes the coalition of all players stable, because no players (or
subsets of players) benefit from a defection, and hence dual allocations satisfy
the full participation condition. Thus, if each retailer shares all of her residuals,
the profit from inventory sharing is maximized. However, if players are allowed to
withhold some of their residuals, G&S show that players will not share all of their
leftover inventory/unmet demand, which, in turn, reduces the profit obtained through
inventory sharing. Note, however, that these results hold in a one-shot setting, where
players do not consider future interactions. Now, in a repeated game, we want to
address the following questions:

1. When the retailers interact repeatedly, what is the impact of the length of the
time horizon on the retailers’ decisions, and is it possible to induce the retailers
to share all of their residuals with dual allocations?

2. Under what conditions can a first-best solution be achieved without additional
enforcement mechanisms, and what type of contracts can induce system-optimal
decisions when these conditions do not hold?

The answers to the first question are obtained through standard game-theoretical
tools. We show that dual allocations induce the retailers to withhold residuals when
the game is played a finite number of times. On the other hand, the retailers in
the infinite-horizon model may be induced to share all of their residuals when they
put enough weight on their future payoffs. As the number of retailers increases,
calculation of the lower bound for the value of the discount factor that induces
the complete sharing of residuals becomes intractable. However, we are able to
obtain some asymptotic results for a large number of players. We also demonstrate
that a complete sharing of residuals may be induced when the punishment (that is,
nonsharing of inventories) is not enforced over an infinite horizon.
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In answering the second question, we provide a condition for achieving a first-
best outcome, and develop a contract that leads to a first-best outcome when some
retailers’ optimal stocking decisions differ from the system-optimal ones.

The structure of this article is as follows: we briefly introduce the one-shot
inventory sharing game in Sect. 4.2, and in Sect. 4.3 we extend this model to a
repeated setting. In Sect. 4.4, we develop some asymptotic results for the retailers’
ordering quantities and lower bounds on discount factors that induce complete
sharing of residuals for large number of players. In Sect. 4.5, we derive conditions
for achieving a first-best outcome without additional enforcement mechanisms,
while in Sect. 4.6 we develop a contract that induces a first-best solution in a more
general setting. We conclude in Sect. 4.7. Longer proofs are given in a technical
appendix.

4.2 One-Shot Inventory-Sharing Game

Each period in our repeated game corresponds to the three-stage inventory-sharing
model from G&S and can be described as follows. We use N = {1,2, . . . ,n} to
denote a set of retailers who are selling an identical product. We assume that
the retailers face independent random demands, Di, and that each retailer knows
the distribution of her demand, Fi, and its density, fi. After demands are realized
and each retailer satisfies her own demand from inventory on hand, the retailers
can share their residuals—leftover inventories or unsatisfied demands. The total
profit from transshipments—residual profit—has to be divided among the retailers
according to an allocation rule agreed upon by all of them before the game begins.
We assume that there are no capacity constraints and that the game begins with zero
inventory. The three stages are modeled as follows:

Stage 1: Before demand Di is realized, each retailer independently makes her own
ordering decision, Xi, contingent upon the demand distribution and the allocation
rule that will be used to distribute the residual profit.

Stage 2: After demand is realized, each retailer decides how much of her residuals
she would like to share with others. Let H̄i = max{Xi − Di,0} and Ēi =
max{Di −Xi,0} denote the total leftover inventory and unsatisfied demand for
retailer i, respectively. We will use bold letters to denote vectors, that is, (H̄, Ē) =
(H̄1, . . . , H̄n, Ē1, . . . , Ēn). We denote the retailers’ sharing decisions (amounts of
residual supply/demand that retailer i decides to share with the other retailers)
by Hi and Ei, respectively. It is straightforward that Hi and Ei must satisfy
0 ≤ Hi ≤ H̄i, 0 ≤ Ei ≤ Ēi.

Stage 3: The shipping pattern for leftover inventory that maximizes the residual
profit is determined. The resulting residual profit is then distributed among the
retailers according to the allocation rule determined before the first stage takes
place (in this article, we assume that the retailers use dual allocations). Any
inventory left at the retailers is salvaged.
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Let ri,ci, and vi denote, respectively, the unit retail price, cost, and salvage value
for retailer i, Yi j and ti j denote the amount of stock shipped and the unit cost of
transshipment from retailer i to retailer j. We assume that ri > r j − ti j, that is, each
retailer satisfies her own demand first, and vi − t ji < v j, that is, the retailers do not
benefit from salvaging unsold items at other locations.

We next present some results from G&S (2003). The transshipment pattern in
the third stage, given demand realizations and retailers’ sharing decisions, can be
solved through linear programming. Let R(X,D,H,E) denote the residual profit
from the transshipments; as the retailers sharing decisions, (H,E), depend on the
actual residual values, (H̄, Ē), this profit is a function of the retailers’ order sizes
and demand realizations, X and D. The optimal shipping pattern, R∗(X,D,H,E),
can be determined by solving the following linear programming problem.

R∗(X,D,H,E) := max
Y

n

∑
i, j=1

(r j − vi− ti j)Yi j , (4.1a)

subject to: ∑n
j=1Yi j ≤ Hi i = 1,2, . . . ,n, (4.1b)

∑n
j=1 Yji ≤ Ei i = 1,2, . . . ,n, (4.1c)

Yi j ≥ 0 i, j = 1,2, . . . ,n. (4.1d)

We denote the allocation of residual profit to retailer i by ϕd
i (X,D,H,E). If λi

and μi denote the dual prices corresponding to the constraints (4.1b) and (4.1c),
respectively, then ϕd

i (X,D,H,E) = λiHi + μiEi, and the profit for a retailer, i, can
be written as:

Pd
i (X,D,H,E) = ri min{Xi,Di}+ viH̄i − ciXi +ϕd

i (X,D,H,E).

Given the stocking quantity decisions and demand realizations, X and D, the
retailers in the second stage of the game make their sharing decisions according
to the Nash equilibrium (NE), which we denote by (HX,D,EX,D). Thus, they must
satisfy the following inequalities:

Pd
i (X,D,HX,D,EX,D)≥ Pd

i (X,D,Hi,H
X,D
−i ,Ei,E

X,D
−i ),

∀Hi ≤ H̄i, Ei ≤ Ēi, i = 1,2, . . . ,n,

where x−i = (x1,x2, . . . ,xi−1,xi+1, . . . ,xn).
Finally, the first-stage NE ordering decisions, Xd, must satisfy

Jd
i (X

d)≥ Jd
i (Xi,Xd

−i),

where Jd
i (X) = E[Pd

i (X,D,HX,D,EX,D)] is retailer i’s expected profit when retailers’
ordering decisions form vector X. Huang and Sošić (2010a) provide conditions for
existence of the NE in ordering quantities, Xd, for this game. As we are primarily
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interested in the effects of repeated interactions on players’ decisions, in what
follows we assume that these conditions are satisfied and that the NE exists.

We also mention, as benchmarks, two related models—the game without trans-
shipments and the centralized model. If the retailers do not share their residuals,
each retailer’s profit can be described as

P1
i (Xi,Di) = ri min{Xi,Di}+ viH̄i − ciXi,

with the expectation J1
i (Xi) = E[P1

i (Xi,Di)]. Superscript 1 denotes the model in
which each retailer acts individually. The optimal ordering decision, X1

i , corre-
sponds to the newsvendor solution. In the centralized model, in which a single
decision maker optimizes the profit of the entire system, the total system profit can
be written as

Pn(X,D) =
n

∑
i=1

ri min{Xi,Di}+ viH̄i − ciXi + R̄∗(X,D),

with the expectation Jn(X) = E[Pn(X,D)]. Superscript n denotes that n retailers
participate in inventory sharing. The optimal ordering amount for this model, Xn,
maximizes the total system profit and is referred to as a first-best solution.

4.3 Repeated Inventory-Sharing Game

In this section, we study the inventory-sharing game in a repeated setting. When the
retailers do not expect future interactions with their inventory-sharing partners, dual
allocations preclude them from formation of subcoalitions, but may also provide an
incentive for some (or all) of them to withhold a portion of their residuals (which
may increase their allocations). The main topic of our interest is to study the impact
of repeated interactions on the retailers’ sharing decisions in the second stage. Our
repeated game is modeled identically in every period, following the steps described
in the one-shot model. The goal of each retailer is to maximize her total discounted
profit, and we consider both a finite and an infinite horizon. A solution concept
commonly used in this setting is subgame perfect Nash equilibrium (SPNE)—a
solution in which players’ strategies constitute a NE in every subgame of the original
game.

We assume that unsold inventories are salvaged at the end of each period and that
inventory level at the beginning of each period is zero. If we allow the retailers to
strategically increase their orders in one period and transfer a portion of inventory to
the next period, the result would be a significantly more complicated model that is
beyond the scope of this work. In addition, when making her decision, each retailer
knows the entire history of previous decisions for all retailers. While this assumption
may be rather strong, it is not uncommon in the repeated-game setting to assume
that all players know the entire history (see, for instance, Bagwell and Staiger 1997;
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Haltiwanger and Harrington 1991; Rotemberg and Saloner 1986). We feel that such
an assumption may be appropriate, say, for settings in which the retailers belong to
a larger organization, or within a trade association.

G&S (2003) show that the retailers who share inventory only once withhold some
of their residuals. By using standard game-theoretical tools, it can be easily shown
that the same is true when the game is repeated a finite number of times; hence, we
state our next result without a proof.

Proposition 1. Complete sharing is not achieved if the inventory-sharing game
with n retailers is repeated a finite number of times.

We next consider an infinitely repeated game and introduce the Nash reversion
strategy (NRS), which can be described as follows: each retailer completely shares
her residuals until one or more of them deviate by withholding some of their
residuals. From that moment on, no residuals are shared in the subsequent periods
by any of the retailers. We show that this strategy is an SPNE.

Let Pit and Xit denote the profit and the ordering quantity of retailer i in period t,
respectively; we use similar notation for her shared and actual residuals in period t,
Hit , Eit and H̄it , Ēit . The retailers’ decisions are based on previous histories, ht−1 =
{Xl , Hl , El}t−1

l=1, that include stocking quantities and shared residuals in all periods
preceding t. Thus, we write (Xit ,Eit ,Hit)(ht−1) to denote that (Xit ,Eit ,Hit) depends
on ht−1. We let (ht−1)l = (Xl , Hl , El) denote the retailers’ decision in period l.
Recall that Xd

i and X1
i denote the optimal stocking quantities in one-shot games

with dual allocations and without transshipments, respectively, and that δ denotes
the discount factor. The following result can be shown through the application of
the folk theorem.

Theorem 1. Suppose that an inventory sharing game with n retailers is repeated
infinitely many times. Then, there exists δ ∗

n ∈ (0,1) such that the NRS, in which

(Xit ,Eit ,Hit)(ht−1) =

⎧⎨
⎩

(Xd
i , H̄it , Ēit) if t = 1 or (ht−1)l = (Xd,H̄, Ē),

∀l = 1, . . . , t − 1
(X1

i ,0,0) otherwise,

constitutes a SPNE of the infinitely repeated game whenever δ > δ ∗
n .

The lower bound for the discount factor, δ ∗
n , can in practice be difficult to

evaluate, so in Sect. 4.4, we explore in more detail its asymptotic behavior. We
illustrate our result with the following numerical example.

Example 1. Suppose that n= 3, all three retailers face two-point demand which can
achieve 0 with probability 0.5 and 10 with probability 0.5, and ci=3.7;ri=10; vi = 1,
i = 1,2,3;ti j = 1, i, j = 1,2,3, i �= j. When the retailers share their inventory and
distribute the residual profit according to dual allocations, their individual stocking
quantities decrease from 10 to 7, and the corresponding expected profits increase
from 18 to 22. The discount factors that induce complete residual sharing by all
retailers satisfy δ > δ ∗

3 = 0.93.
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4.3.1 Finite Punishment Period

The NRS represents the belief that “once the trust is lost, it is lost forever.” However,
one can object that infinite punishment may not be credible, because besides
punishing the defecting retailer, it hurts the punishers as well. Hence, we consider
a “milder” strategy in which punishment lasts only for a finite number of periods
before the retailers recover from the “bad memories” and return to cooperation. In
this framework, only the history of the past k periods, ht−1

t−k = {Xτ , Hτ , Eτ}t−1
τ=t−k,

has an impact on retailers’ decisions.

Theorem 2. Suppose that an inventory sharing game with n retailers is repeated
infinitely many times. Then, there exists k∗n ∈ N such that ∀k > k∗n there is a δ ∗

n (k)
such that the strategy in which

(Xit ,Eit ,Hit)(h
t−1
t−k)=

⎧⎪⎪⎨
⎪⎪⎩

(Xd
i , H̄it , Ēit) if t=1 or (ht−1

t−k)τ = (X1,0,0) ∀τ=1, . . . , k

or (ht−1
t−k)t−1=(Xd,H̄, Ē)

(X1
i ,0,0) otherwise,

constitutes an SPNE of the infinitely repeated game whenever δ > δ ∗
n (k).

The proof is again obtained through the application of the folk theorem. If a
player, j, considers a deviation from (Xd

j , H̄ jt , Ē jt), any momentary gain is canceled
by future reduction in payoffs when the discount factor is large enough and the
punishment is carried over an appropriate number of periods. During the punishment
period, each retailer plays her optimal strategy for noncooperative setting, so a
possible defection cannot increase her profits, while at the same time it prolongs
the length of the punishment.

Theorem 2 implies that it is not necessary to impose infinite punishment to induce
the retailers’ cooperation. Intuitively, a longer punishment horizon requires lower
discount factors—punishment that lasts only a few periods is effective only when
the retailers’ discount of the future is negligible. We illustrate this with the following
example.

Example 2. Suppose that n= 3, all three retailers face two-point demand which can
achieve 0 with probability 0.5 and 10 with probability 0.5, and ci=3.7;ri=10;vi=1,
i = 1,2,3; ti j = 1, i, j = 1,2,3, i �= j. We have shown in Example 1 that δ ∗

3 = 0.93
when the punishment is enforced over an infinite horizon. The value of δ ∗

3 (k) as a
function of k is depicted in Fig. 4.1. Note that, as k increases, δ ∗

3 (k) approaches δ ∗
3 .

4.3.2 Alternative Strategies for Achieving SPNEs

Note that strategies other than the NRS described in Theorem 1 can also lead to
SPNEs. One such strategy can be defined as follows: let Xd(n−1) be the optimal
order quantity for decentralized system with n− 1 retailers under dual allocations.
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Fig. 4.1 δ ∗
3 (k) as a function

of k

If a player, j, deviates from (Xd
j , H̄jt , Ē jt) when t = t̄, the remaining players follow

strategy (Xd(n−1)
i , H̄it , Ēit), i �= j, t > t̄, while retailer j adopts (X1

j ,0,0), t > t̄. If
a cooperating player, say l, deviates after a defection has already occurred, the
punishment restarts and retailer l is excluded from future inventory sharing. Unlike
the previous case (described in Theorem 1), the payoffs for the defecting player
and for the cooperating players differ during the punishment period, and we need
to consider them separately while checking if conditions for a SPNE are satisfied.
When the discount factor is large enough, it can be shown that this strategy defines
a SPNE, and that it leaves cooperating retailers with a larger payoff (during the
punishment phase) than the strategy described in Theorem 1. However, observe that
when the threat of punishment works, it is never actually carried out.

4.3.3 Decreasing/Increasing Costs and Prices

We would also like to mention that our model can be applied to some situations in
which the costs and prices change in different periods. Let superscript t denote the
values of costs/prices in period t, and suppose that rt+1

i = ρrt
i ,v

t+1
i = ρvt

i,c
t+1
i =

ρct
i, t

t+1
i j = ρtt

i j, for some ρ > 0. If ρ < 1, the parameters decrease with time, and

our results hold if we replace δ with δ̃ = ρδ . If ρ > 1, the parameters increase over
time, and our results will hold whenever δ̃ < 1, that is, when 1 < ρ < δ−1.

4.4 Asymptotic Behavior for Large n

In this section, we consider the optimal retailers’ ordering quantity and discount
factors for large values of n. All proofs are given in the Appendix.
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Fig. 4.2 δ ∗
n for different values of the critical fractile q = r−c

r−v

We say that the retailers are symmetric if they face the same demand distribution
Fi, cost ci, retailer price ri, and salvage value vi, along with equal transportation
costs in both directions, ti j = t ji. In this part of the analysis we focus on symmetric
retailers, so we omit indices from notation.

Our next result provides a characterization of the lower bound for the discount
factors that induces complete sharing in the NRS described in Theorem 1, δ ∗

n .

Theorem 3. In an inventory-sharing game with n symmetric retailers facing strictly
increasing and independent distribution functions, there is an M > 0 such that δ ∗

n is
decreasing in n for n ≥ n̂, where n̂ = min{n ∈ Z : nXd ≥ M}.2

Thus, with enough retailers participating in inventory sharing, δ ∗
n is

decreasing in n. Note that in many real-life situations this number can be as low
as two or three. As the number of retailers increases, it is more likely for an
individual retailer to benefit from inventory sharing and she is willing to participate
in transshipments when she discounts her future payoffs more. We illustrate in
Fig. 4.2 the behavior of δ ∗

n for discrete demand that can achieve two values, 0
or 10, with equal probabilities. The two-point format of this distribution is the
reason why we observe some “jumps” in the value of δ for small n. We fix r,v,
and t, and change the value of c to obtain different values of the critical fractile,
q = (r − c)/(r − v). The values of δ ∗

n are equal for “symmetric” critical fractiles

2If D has a finite support with upper bound D̄, then M = D̄.
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Fig. 4.3 Xd for different values of the critical fractile q = r−c
r−v

(q and 1− q). As the number of retailers increases, δ ∗
n shows a decreasing trend,

and converges to a positive value. In addition, the discount factor that induces
complete sharing increases as the critical fractile moves further from 0.5. When the
critical fractile is close to 0.5, the ordering quantities at each retailer are close to
the mean demand, and each retailer is more likely to benefit from transshipments.
As the critical fractile moves further below (resp., above) from 0.5, each retailer
orders less (resp., more), which leads to constant undersupply (resp., oversupply)
and makes cooperation less useful. Therefore, cooperation is less beneficial and a
larger δ is needed to incentivize the retailers.

We next characterize the retailers’ ordering quantity, Xd.

Proposition 2. In an inventory-sharing game with n symmetric retailers and
strictly increasing distribution function F(·), the asymptotic behavior of the equi-
librium ordering quantity can be described by

lim
n→∞

Xd(n) =

⎧⎪⎪⎨
⎪⎪⎩

μ , if t=0 or r−c−p
t ≤ F(μ)≤ r−c

t ,

sup{x : F(x)< r−c
t } if F(μ)> r−c

t ,

inf{x : F(x)> r−c−p
t } if F(μ)< r−c−p

t .

Thus, when the cost of transshipment is not too high and the margin r− c is not
too low, the retailers will order the mean demand value. Once again, we conduct
numerical analysis with a two-point demand distribution to explore the behavior of
the optimal ordering quantities and illustrate it in Fig. 4.3. One can note that in this
case the optimal order quantity converges to the mean demand value, and the values
corresponding to different critical fractiles are symmetric with respect to the line
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Xd = μ . We note that the convergence is faster for the value of the critical fractile
closer to 0.5. Due to the special nature of our demand (two-point), we may see that
the optimal order quantity can exhibit some jumps initially, but eventually starts
monotonic convergence toward its limit.

While in the previous case we assumed that t = 1 and have changed the values of
c to manipulate critical fractile, we now fix the value of c and look at the impact of
changes in the transshipment cost. Figure 4.4 depicts two sample cases: the graph on
the left looks at the low product cost (c = 3.7), while the graph on the right looks at
the high product cost (c = 7.3). In both cases, the changes in the transshipment cost
determine the limiting quantity. With both low and high product cost, the limiting
order quantity corresponds to the mean demand when the transshipment cost is low.
However, as the transshipment cost increases, inventory sharing is less likely to
occur, and the limiting order quantity moves away from the mean value—with low
product cost, it moves up, and with high product cost, it moves down, which is
consistent with the results from Proposition 2. When the high transshipment cost
makes inventory sharing prohibitive (t > 5), each retailer facing high product cost
(low critical fractile) orders zero, while each retailer facing low cost orders 10,
which coincides with their ordering quantities without transshipments.

An immediate corollary of Proposition 2 characterizes the relationship between
the retailers’ optimal ordering quantities in models with and without transshipments:
while the asymptotic ordering quantity may go below (resp., above) the mean
demand value when the cost c becomes large (resp., small), it will never go below
(resp., above) the ordering level without transshipment.

Corollary 1. In an inventory-sharing game with n symmetric retailers and strictly
increasing distribution function F(·), the following relationships hold when n is
large:

1. When t > 0: if F(μ) > r−c
t , then X1 ≤ Xd(n) < μ; if F(μ) < r−c−p

t , then μ <

Xd(n)≤ X1.
2. When t = 0: if F(μ) > r−c

r−v , then X1 ≤ Xd(n) = μ; if F(μ) < r−c
r−v , then X1 ≥

Xd(n) = μ .

The results obtained so far help us in determining asymptotic behavior of δ ∗
n

when n is large.

Theorem 4. In an inventory-sharing game with n symmetric retailers and strictly
increasing distribution function F(·), δ ∗

n → δ ∗
∞ > 0. More specifically, let M be as

defined in Theorem 3, and let ξ (x) =
∫ x

0 y f (y)dy and ρ(x) = pmax{x,M−x}. Then,

δ ∗
∞ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(μ)
ρ(μ)+(r−c−tF(μ))μ+tξ (μ)−(r−v)ξ (X1)

, if r−c−p
t ≤ F(μ)≤ r−c

t or t = 0;

ρ(Xd)

ρ(Xd)+tξ (Xd)−(r−v)ξ (X1)
, if F(μ)> r−c

t and

Xd = sup{x : F(x)< r−c
t };

ρ(Xd)

ρ(Xd)+t(ξ (Xd)−μ)−(r−v)(ξ (X1)−μ) , if F(μ)< r−c−p
t and

Xd = sup{x : F(x)> r−c−p
t }.



4 Repeated Newsvendor Game with Transshipments 117

Fig. 4.4 Xd for different values of the transshipment cost with low and high product cost

Theorem 4 can be used to evaluate the limiting values of discount factors
that induce complete sharing of residuals. An illustrative analysis is given in the
following example.
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Example 3. Suppose that n → ∞, all retailers face demand uniformly distributed on
[0,10], and r = 10;v = 1;t = 1. We consider different values of c, which lead to
different values of the critical fractile q = (r− c)/(r− v), and obtain the following
results:

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ ∗

∞ 0.935 0.871 0.830 0.807 0.800 0.807 0.830 0.871 0.935

4.5 Achieving a First-Best Solution

Unfortunately, even if the retailers share all of their residuals, it is not easy to
coordinate the system (except in some special cases that we discuss below) without
some additional incentives, because some retailers may see a reduction in their
individual profits as a result of ordering system-optimal quantities. We first discuss
the cases under which a first-best outcome can be achieved without additional
coordinating mechanisms, and then discuss what happens when this is not the case.

Note that even when the retailers share their entire residuals, the maximum
system profit is not achieved unless the retailers order the amount optimal for
the centralized model, Xn, in each period. Thus, although the full participation
and complete sharing conditions are satisfied, dual allocations may, in general,
result in inefficiencies. We, therefore, start by analyzing the conditions under which
decentralized stocking quantities, Xd, may coincide with the centralized ones, Xn.

We first assume that the retailers are symmetric. Then, there is an equilibrium in
which all retailers order the same quantity, Xd

i = Xd,∀i, and Jd
i (X

d) = Jd(Xd),∀i.
If we consider the centralized system, there is an equilibrium in which all retailers
order the same quantity, Xn

i = Xn,∀i. Because the centralized model maximizes the
expected profit, Jn(Xn)≥ nJd(Xd), and it is optimal for symmetric retailers to order
at the first-best level, Xd = Xn. We formalize this analysis in the following result.

Proposition 3. If n retailers in the repeated inventory-sharing game are symmetric
and δ > δ ∗

n , a first-best solution can be achieved through dual allocation.

Proposition 3 says that it is sufficient to have symmetric retailers to achieve a first-
best outcome. This condition may be satisfied if, for instance, all retailers belong
to the same organization; hence, they face the same costs/prices, and cover similar
territories. However, in many realistic cases, this condition may not hold. Thus,
we want to find more general conditions under which a first-best outcome can be
achieved. Recall that the expected profit for retailer i is

Jd
i (X) = riE[min{Xi,Di}]− ciXi + viE[H̄i]+E[ϕd

i (X)].
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The total expected profit for the system of retailers is then Jn(X) = ∑i Jd
i (X). The

optimal ordering strategy for the centralized model, Xn, satisfies the following first-
order conditions:

∂Jn(X)

∂Xi
= ri − ci − (ri − vi)Fi(Xi)+

∂E[ϕi(X)]

∂Xi
+

∂E[ϕ−i(X)]

∂Xi
= 0 ∀i, (4.2)

while the optimal order of an individual retailer in the decentralized system, Xd
i ,

satisfies

∂Jd
i (X)

∂Xi
= ri − ci − (ri − vi)Fi(Xi)+

∂E[ϕi(X)]

∂Xi
= 0 ∀i. (4.3)

Equations (4.2) and (4.3) give us a sufficient and necessary condition for a retailer
in the decentralized system with an arbitrary number of retailers to order a system-
optimal quantity.

Proposition 4. If the expected total profit for the system of retailers, Jn(X), is
unimodal in X, the sufficient and necessary condition for achieving a first-best
solution is

∂E[ϕ−i(Xi,Xn
−i)]

∂Xi
= 0 ∀i. (4.4)

For example, when n = 3, one can evaluate that the retailers with Di ∼U [0, 100];
i = 1,2,3; p12 = p23 = p31 = 6; and p21 = p32 = p13 = 8 satisfy the above
condition, and a first-best outcome can be achieved. However, through various
numerical experiments we were able to observe that even small differences among
parameters of different retailers may prevent us from coordinating the system. One
of our analytical results is given in the following proposition.

Proposition 5. If n retailers face i.i.d. demand distributions and differ only in their
material costs (that is, ri = r j = r,vi = v j = v, ti j = t ji = t for i, j ∈ {1, . . . ,n}), a
first-best outcome cannot be achieved.

We conducted a numerical analysis to study what is the impact of retailers’ diversity
on efficiency losses; as in Proposition 5, we assume that the retailers differ only in
their cost, and study the impact of the mean and standard deviation of material cost,
of the number of retailers, of the retail price, and of the salvage value. Although the
system cannot be coordinated, we observe that the efficiency losses are rather small,
even with a very few retailers. Some of our results are depicted in Fig. 4.5.

Our analysis indicates that, as expected, the efficiency improves as the standard
deviation of cost decreases, and as the number of retailers increases. Additional
simulations, in which we fix either the mean value of the cost, c, or the salvage value,
v, while we vary the other parameter, indicate that the efficiency also improves with
the increase of the critical fractile, which can be partially observed in Fig. 4.5. On
one hand, as the decrease of the mean product cost, c, translates into larger profit
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Fig. 4.5 Efficiency losses for different levels of differentiation among retailers

margin, benefits from transshipments are increased; on the other hand, the increase
in the salvage value, v, hedges off the risk in demand uncertainty. In either case, the
retailers’ decisions become closer to those of the centralized system.

4.6 A Contractual Mechanism that Induces a First-Best
Solution

In Sect. 4.5, we have shown that a first-best solution can be achieved if condition
(4.4) is satisfied. However, when this condition is not satisfied, the retailers’
individually optimal decisions may lead to significant efficiency losses. Achieving
a first-best solution in a decentralized system may not be possible in many realistic
situations without the use of some additional enforcing mechanisms.3

In what follows, we assume that the discount factors satisfy δi > δ ∗
n (hence,

complete sharing is achieved), and develop a contract that leads to system-optimal
order quantities without any additional constraints. Although the total system profit
increases if the retailers order a first-best solution, the profit of some retailers may
decrease so that they need to be induced to cooperate by some type of side payments.

3 Note that in our repeated-game setting we were able to achieve Xd as a SPNE, by utilizing the
fact that Jd

i (X
D
i ) ≥ J1

i (X
1
i ). Unfortunately, Jd

i (X
C
i ) can be greater or smaller than J1

i (X
1
i ), hence a

first-best ordering quantity cannot, in general, be obtained as a SPNE.
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In addition, in order to prevent those retailers from defection in the future, deviations
from the contract should be penalized. Thus, our contract consists of the following
parts:

1. Retailer i’s ordering strategy, Xit , and her residual-sharing amount, Eit ,Hit , in
every period. When a retailer orders inventory and shares residuals as prescribed
by the contract, she is included in cooperation (inventory sharing) in the next
period. If she breaks the contract and orders a different quantity or shares a
different amount in period t, she is excluded from cooperation in all subsequent
periods, t + 1, t + 2, . . .

2. Discretionary transfer payments at the end of each period. A retailer, i, who
breaks the contract in period t makes a positive payment, dit . This value is
distributed among the retailers who have followed the contract, ∑i dit = 0.

3. Contract activation bonus, Bi, upon signing the contract. This one-time bonus can
be positive or negative, with ∑i Bi = 0. The retailers who benefit from cooperation
are those that may be required to have a negative activation bonus in order to
induce participation of retailers who would individually prefer not to order a
first-best quantity.

We will refer to this contract as the eviction contract because the most severe
punishment for a defecting retailer is her eviction from the inventory-sharing
system. Changes in the cooperative behavior of the system can be described
through coalition structures, in which cooperating retailers belong to a coalition.
Each time a retailer is evicted, the remaining retailers form a new inventory-
sharing system and completely share residuals in this reduced system. Thus, if
none of the retailers has ever defected, the system operates as the grand coalition.
We assume that the retailers who are evicted do not form new inventory-sharing
groups. This implies that each evicted retailer constitutes a one-member coalition.
In other words, suppose that the current system is described by coalition structure
Z = {S1,S2, . . . ,Sn−k+1}. Then, |S j| = 1 for n − k coalitions, and |Si| = k for
some coalition Si. We will use Zk to denote a coalition structure in which exactly
one coalition has k members, while the remaining n − k coalitions consist of a
single retailer. Thus, Zn denotes the grand coalition, while Z1 denotes the coalition
structure with no inventory sharing. Clearly, the system-optimal stocking quantity
in state Zn is Xn, while X1 maximizes the system profit under state Z1. We denote
by Xk the system-optimal stocking quantities for coalition structure Zk. For an
arbitrary coalition structure, Z, we denote the system-optimal order quantity by XZ .

In order to induce a system-optimal solution, the eviction contract requires the
retailers to order system-optimal quantities and share all of their residuals. Thus,
given a coalition structure, the orders placed and residuals shared by the retailers in
period t, we can determine the coalition structure in period t + 1 as follows:

Zt+1(Zt ,Xt ,Ht ,Et |Zt = Zk) =

⎧⎨
⎩

Zk, if Xt = Xk,Ht = H̄t ,Et = Ēt ;
Zk−l , if (Xit = Xi

k,Hit = H̄it ,Eit = Ēit) does
not hold for l coalition members in Zt .

(4.5)
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Now, the eviction contract can be described by

(Xt(ĥt−1), Ht(ĥt−1),Et(ĥt−1),dt (ĥt), B),

where ĥt denotes the history up to period t, ĥt = {Zτ ,Xτ ,Hτ ,Eτ}t
τ=1.

Recall that we use Jd
i to denote the expected profit for retailer i under dual

allocations when all retailers participate in inventory sharing. We now introduce
some additional notation. We denote by JZ

i (X,H,E) the expected profit for i under
coalition structure Z, and by JZ(X,H,E) the expected total system profit under
coalition structure Z. The following theorem describes how a first-best solution can
be achieved through an eviction contract. Its proof is given in the Appendix.

Theorem 5. Suppose that all retailers participate in inventory sharing and Jn(X)
is unimodal. Then, the eviction contract (Xt(ĥt−1), Ht(ĥt−1),Et (ĥt−1), dt(ĥt ), B) is
a contract that induces a first-best solution if the retailers’ ordering strategies, Xt ,
are given by

Xt(ĥt−1|Zt = Zk) = Xk,

all coalition members share their entire residuals, the evicted members share
nothing, the discretionary transfer payments are

dit(ĥt) =

⎧⎨
⎩

Δit(ĥt )

∑I+t
Δ jt (ĥt )

×∑I−t (−Δ jt(ĥt)) i ∈ I+t

Δit(ĥt) i ∈ I−t ,

where

Δit(ĥt) =
1

1− δi

[
JZt

i (XZt )− δJ1
i (X

1
i )
]
− JZt

i (Xt ,Ht ,Et),

I+t = {i : Δit(ĥt)> 0} and I−t = {i : Δit(ĥt)≤ 0},
and the one-time contract activation bonus is given as

Bi =

{ Λi
∑K− Λi

×∑K+ (−Λi) i ∈ K−

Λi i ∈ K+,

where

Λi =
1

1− δi
(Jn

i (X
d)− Jn

i (X
n)), K+ = {i : Λi > 0} and K− = {i : Λi ≤ 0}.

Despite its seemingly complex structure, the contract is actually quite simple to
implement: at the beginning of their cooperation, the retailers who strictly benefit
from the contract compensate the retailers whose profit is reduced (as a result of
ordering system-optimal quantities) through the activation bonus Bi. In addition,
the retailers agree that in the case of any defection, all benefits should be forfeited
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and allocated among the retailers who suffer a loss after such an action.4 Thus, there
is no incentive for any retailer to defect from the strategy which prescribes ordering
system-optimal quantity, sharing entire residuals, and receiving dual allocations.
The transfer payment is zero as long as the retailers follow the contract—it serves
as a threat that prevents them from defection.5 One could, alternatively, develop
a contract in which retailers whose profit decreases after ordering system-optimal
quantity receive compensations for their losses at the end of every period. This type
of contract would not require activation bonuses, but may lead to more complex
implementation, as the payments need to be calculated and exchanged at the end of
every period (in our contract, this happens only if there was a defection in a given
period).

Note that the eviction contract works not only for dual allocations, but also
for any other allocation rule that induces full participation and complete residual
sharing, but not a first-best inventory decision. This can be easily confirmed by
observing that the proof does not depend upon any pre-specified allocation rules.

4.7 Concluding Remarks

In this work, we study a repeated inventory-sharing game with n retailers in
which the retailers distribute the profit from transshipments according to the dual
allocations. Each retailer faces stochastic demand and salvages all unsold inventory
at the end of each period. Using the standard tools from the theory of repeated
games, we show that the use of NRS induces complete sharing in an SPNE of an
infinitely repeated game (providing that the discount factor of future payoffs is large
enough), while the retailers always withhold residuals if the game is repeated a
finite number of times. We also show that complete sharing can be an SPNE even
if the punishment is not executed over an infinite horizon but instead lasts only
for a finite number of periods. Clearly, shorter punishment periods require larger
discount factors, and a punishment that lasts only a few periods will induce complete
sharing only with the retailers whose discounting of the future periods is very small.
In addition, we provide some analytical results for the asymptotic behavior of the
retailers’ ordering quantities and the lower bounds on discount factors that induce
complete sharing for large number of players.

4The amount of transfer payments di ≤ 0 (realized when a player benefits from a defection)
removes from a retailer all possible gains from that defection. Δit > 0 (which leads to di > 0)
implies that a retailer observes a loss as a result of someone’s defection (and is, therefore,
compensated from payments of those who benefit); this retailer receives a fraction of total transfer
payments proportional to her loss as compared to the total losses observed by the system.
5In the whole contract lifetime, the discretionary transfer payment happens at most n−1 times, as
the number of inventory-sharing retailers is reduced from n to 1.
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While there can be a significant difference in optimal profits generated by
decentralized retailers and those generated in a centralized system, a decentralized
model will result in a system-optimal outcome if the retailers are symmetric. As
this condition may not be satisfied in many cases, we derive another condition,
(4.4), that leads to a first-best outcome. When this condition is not satisfied, we
develop a contract that induces the retailers to order a first-best quantity whenever
the complete sharing condition holds.

We note that our model assumes that all leftover inventory is salvaged at the
end of each period. The reason for this is twofold. On one hand, because we were
mainly interested in studying the impact of repeated interactions on the retailers’
sharing decisions in the second stage, a more complex model in which the retailers
are allowed to carry inventory from one period to another would lead to a more
complicated model that is beyond the scope of this work. On another hand, such
situations do occur in industries where products have short life cycles, long lead
times, and unpredictable demands, like apparel, Christmas toys, and high-tech
electronic components. Retailers in these industries are often open to inventory-
sharing agreements with others.

Our inventory-sharing model may require a neutral third party for its
implementation—monitoring of residuals, making effective transshipment
decisions, and allocation of profits among the members. While this is easily realized
within a trade association or when the retailers belong to a larger organization, it
might be more difficult to execute when the retailers are independent. It is, therefore,
interesting to observe emergence of companies such as iSuppli Corp., which act as
neutral intermediaries among independent entities and, at the same time, improve
the market’s efficiency.

When dual allocations are used in one-shot setting, the retailers withhold their
residuals, and our aim was to study if this property persists when the retailers interact
repeatedly. Note, however, that many of our results can be extended to alternative
allocation rules (though some extensions may require certain modifications in proofs
and results).

Appendix

Proof of Theorem 3. In order to prove this theorem, we first introduce the following
notation: let Fm(y) = P{∑m

i=1 Di ≤ y}, F̂m(y) = P{ 1
m ∑m

i=1 Di ≤ y}, and E[Di] = μ .
Note that Fm(y) = F̂m( y

m ). We will also need the following lemmas.

Lemma 1. In an inventory-sharing game with symmetric retailers facing strictly
increasing and independent distribution functions, a retailer defecting from strategy
(Xd, H̄i, Ēi) maximizes her benefit from defection if she orders Xd.

Proof of Lemma 1. If we have n symmetric retailers, the dual price of retailer i’s
residual will be either 0 or p, depending on the amount she is sharing with the others.
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For example, if ∑ j �=i(Ē j − H̄ j) = k > 0, the retailers other than i need k additional
units of products. Then, retailer i will receive p per unit if 0 < H̄i < k, while she
will get nothing otherwise. More formally, retailer i’s total expected profit when she
orders Xi and other retailers order Xd

−i is given by

Jd
i (Xi|Xd

−i) = rE[min{Xi, Di}]+ vE[Hi]− cXi

+p
∫ ∞

0
f n−1

(
(n− 1)Xd+ k

)∫ Xi

Xi−k
(Xi − u) f (u)dudk

+p
∫ ∞

0
f n−1

(
(n− 1)Xd− k

)∫ Xi+k

Xi

(u−Xi) f (u)dudk,

where f n−1((n − 1)Xd + y) is the probability density when the residual demand
(resp., inventory) for the remaining (n− 1) retailers is y > 0 (resp., (−y) > 0), and
its first derivative is given by

(Jd
i )

′
(Xi|Xd

−i) = r− c− (r− v)F(Xi)

+p
∫ ∞

0
[F(Xi)−F(Xi − k)] f n−1

(
(n− 1)Xd+ k

)
dk

−p
∫ ∞

0
[F(Xi + k)−F(Xi)] f

n−1
(
(n− 1)Xd− k

)
dk

−p
∫ ∞

0
k
[

f (Xi − k) f n−1
(
(n− 1)Xd+ k

)

− f (Xi + k) f n−1
(
(n− 1)Xd− k

)]
dk. (4.6)

Retailer i can increase her profit if she deviates whenever her dual price
is zero. In other words, she maximizes her profit if she withholds part of her
residual inventory/demand to make it lower than the total residual demand/inventory
from other retailers. Under this kind of strategy, her total expected profit will be
increased to

Jdef
i (Xi|Xd

−i) = rE[min{Xi, Di}]+ vE[Hi]− cXi

+p
∫ ∞

0
f n−1

(
(n− 1)Xd+ k

)∫ Xi

Xi−k
(Xi − u) f (u)dudk

+p
∫ ∞

0
f n−1

(
(n− 1)Xd− k

)∫ Xi+k

Xi

(u−Xi) f (u)dudk

+p
∫ ∞

0
k f n−1

(
(n− 1)Xd+ k

)
F(Xi − k)dk

+p
∫ ∞

0
k f n−1

(
(n− 1)Xd− k

)
[1−F(Xi + k)]dk,
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and its derivatives are

(Jdef
i )

′
(Xi|Xd

−i) = r− c− (r− v)F(Xi)

+p
∫ ∞

0
[F(Xi)−F(Xi − k)] f n−1

(
(n− 1)Xd+ k

)
dk

−p
∫ ∞

0
[F(Xi + k)−F(Xi)] f n−1

(
(n− 1)Xd− k

)
dk, (4.7)

(Jdef
i )

′′
(Xi|Xd

−i) =−t f (Xi)− p
∫ ∞

0

[
f (Xi − k) f n−1

(
(n− 1)Xd+ k

)

+ f (Xi + k) f n−1
(
(n− 1)Xd− k

)]
dk < 0. (4.8)

Because all demands follow an identical distribution, it follows from (4.6) and (4.7)
that

[(Jdef
i )

′ − (Jd
i )

′
](Xi|Xd

−i)

= p
∫ ∞

0
k
[

f (Xi − k) f n−1
(
(n− 1)Xd+ k

)
− f (Xi + k) f n−1

(
(n− 1)Xd− k

)]
dk

= E

[
Xi −Di|

n

∑
m=1

Dm = (n− 1)Xd+Xi

]

=
n− 1

n

(
Xi −Xd

)
.

Recall that Xd = argmaxJd
i (Xi|Xd

−i), and consequently (Jd
i )

′
(Xd|Xd

−i)) = 0. This
implies

(Jdef
i )′(Xd|Xd

−i) = (Jd
i )

′(Xd|Xd
−i)+ [(Jdef

i )′(Xd|Xd
−i)− (Jd

i )
′(Xd|Xd

−i)]

= 0+
n− 1

n
(Xd −Xd) = 0.

Since Jdef
i (Xi|Xd

−i) is a concave function, the optimal ordering decision when player

i defects, Xdef
i , should satisfy (Jdef

i )
′
(Xdef

i |Xd
−i)) = 0. Thus, Xdef

i = Xd, and a retailer
contemplating a defection maximizes her profit if she orders at the decentralized
optimal level. �


Lemma 2. In an inventory-sharing game with n symmetric retailers and strictly
increasing demand distribution function, the expected profit for each retailer,
Jd
(
Xd(n),n

)
, is increasing in n, where Xd(n) is the NE ordering decision for each

retailer in the decentralized system.
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Proof of Lemma 2. Consider a game with n + 1 symmetric retailers, and let S
be any n-members subset of these retailers. In terms of cooperative game theory,
the value of the coalition S corresponds to the profit generated by its members;
because the retailers are symmetric, it can be written as V ∗

S = nJd(X , n), where
Jd(X , n) denotes the expected profit generated by an arbitrary retailer in a game with
n symmetric retailers under dual allocations. However, in an (n+ 1)-retailer game
with dual allocations, each retailer will receive a payoff Jd(X , n+ 1). Because dual
allocations belong to the core, we must have nJd(X , n+ 1)>V ∗

S = nJd(X , n). It is
then straightforward that Jd

(
Xd(n+ 1),n+ 1

)≥ Jd
(
Xd(n),n+ 1

)≥ Jd
(
Xd(n),n

)
.
�


We can now prove the theorem. Consider the model with n symmetric retailers
and suppose that there were no prior defections. That is, each retailer orders Xd and
shares her entire residuals. Recall that we have shown in Lemma 1 that defecting
retailers maximize their profit if they order Xd and deviate in the amount they
share with others. Under demand realization D, let P̄def

i (Xd,D,n) denote the highest
payoff that retailer i can generate if she defects in a game with n players, while
the other retailers cooperate, and recall that Pd

i (X
d,D,n) is her profit in the current

period if she shares all of her residuals. After defection, she will receive Ji(X1) in all
subsequent periods. Thus, a possible deviation by player i is deterred if her discount
factor satisfies

P̄def
i (Xd,D,n)+

δ
1− δ

Ji(X1)<
δ

1− δ
Jd

i (X
d,n)+Pd

i (X
d,D,n),∀D, (4.9)

where Jd
i (X

d,n) denotes the payoff that retailer i receives when n retailers use dual
allocations, order Xd, and share their entire residuals. It is easy to verify that (4.9)
holds whenever

δ > δi,n =
1

1+
Jd

i (X
d,n)−Ji(X1)

supD{P̄def
i (Xd,D,n)−Pd

i (X
d,D,n)}

. (4.10)

Note that the upper bound of the extra profit that one can get out of deviation,
supD{P̄def

i (Xd,D,n)− Pd
i (X

d,D,n)}, can be obtained by comparing two cases:
(1) the extra profit generated when Di = 0 and the total residual demand of the
remaining retailers is slightly below Xd; and (2) the extra profit generated when
D−i = 0 and Di is slightly above nXd. In the first case, this profit is pXd; in the
second case, this profit would be p(n− 1)Xd, assuming that demand can achieve
values above nXd. However, note that in most real-life situations there is an M > 0
such that P(Di > M) is negligible (if demand distribution has a finite support
with upper bound D̄, then M = D̄), and the maximum benefit from defection
is p(M − Xd). Let us denote n̂ = min{n : nXd ≥ M}. Then, whenever n ≥ n̂,
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it implies that supD{P̄def
i (Xd,D,n)−Pd

i (X
d,D,n)} = max{pXd, p(M −Xd)}, and

(4.10) corresponds to

δ > δi,n =
pmax{Xd,M−Xd}

pmax{Xd,M −Xd}+ Jd
i (X

d,n)− Ji(X1)
.

Because the players are symmetric, let δn = δi,n. Since Ji(X1) does not depend on n
and we showed in Lemma 2 that Jd

i (X
d,n) increases with n, δn is decreasing in n.

Finally, let δ ∗
n = δn. �


Proof of Proposition 2. When each retailer orders Xd, the total expected profit for
each of them can be determined by

J(Xd) = rE[min{Xd, D}]+ vE[H]− cXd

+p
∫ ∞

0
k f (Xd − k)

[
1− F̂n−1

(
Xd +

k
n− 1

)]
dk

+p
∫ ∞

0
k f (Xd + k)F̂n−1

(
Xd − k

n− 1

)
dk

= (r− c)Xd − (r− v)

[
XdF(Xd)−

∫ Xd

0
y f (y)dy

]

+p
∫ ∞

0
k f (Xd − k)

[
1− F̂n−1

(
Xd +

k
n− 1

)]
dk

+p
∫ ∞

0
k f (Xd + k)F̂n−1

(
Xd − k

n− 1

)
dk.

If we let σ2 =Var[Di], then by the central limit theorem (CLT) we have

lim
m→∞

1
m

m

∑
i=1

Di ∼ N

(
μ ,

σ2

m

)
.

Suppose first that Xd > μ . Then, we have limn→∞[1 − F̂n−1(Xd + k
n−1)] = 0

and limn→∞ F̂n−1(Xd − k
n−1) = 1; hence, the derivative of J(·|Xd

−i) evaluated at Xd

becomes

J
′
(Xd|Xd

−i) = r− c− (r− v)F(Xd)− p+ pF(Xd) =−(c− v)+ t[1−F(Xd)],

which is a decreasing function of Xd. Thus, if t = 0 or F(μ) ≥ 1− c−v
t = r−c−p

t ,

then J
′
(Xd|Xd−i) ≤ 0 for any Xd ∈ (μ ,∞), and the retailer maximizes her profit by

choosing Xd → μ+. Otherwise, Xd = inf{x : F(x) > r−c−p
t } is an optimal solution

within (μ ,∞).
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If Xd < μ , limn→∞[1− F̂n−1(Xd + k
n−1)] = 1 and limn→∞ F̂n−1(Xd − k

n−1) = 0.
The derivative of J(·|Xd

−i) evaluated at Xd becomes

J
′
(Xd|Xd

−i) = r− c− (r− v)F(Xd)+ pF(Xd) = (r− c)− tF(Xd),

which is again a decreasing function of Xd. In this case, if F(μ) ≤ r−c
t or t = 0,

then J
′
(Xd|Xd

−i) ≥ 0 for any Xd ∈ (∞,μ), and the retailer maximizes her profit by
choosing Xd → μ−. Otherwise, Xd = sup{x : F(x) < r−c

t } is an optimal solution
within (−∞,μ).

From the above, we can conclude that whenever F(μ)∈ [ r−c−p
t , r−c

t ] or t = 0, the
retailer should select Xd → μ . Otherwise, because r−c−p

t ≤ r−c
t , any local optimum

is also a global optimum whenever F(μ) �∈ [ r−c−p
t , r−c

t ]. �


Proof of Corollary 1. Suppose first that t > 0. If F(μ) > r−c
t , it follows from

Proposition 2 that limn→∞ Xd(n) = sup{x : F(x)< r−c
t }. This implies that F(Xd)≤

r−c
t < F(μ), hence Xd < μ . On the other hand, when there is no cooperation among

the retailers, the optimal ordering level X1 can be determined by the newsvendor
model, F(X1) = r−c

r−v . Recall that we assume p = r − v − t ≥ 0, which implies
r− v ≥ t, therefore F(X1)≤ F(Xd), and X1 ≤ Xd.

If, on the other hand, F(μ)< r−c−p
t , then limn→∞ Xd(n) = inf{x : F(x)> r−c−p

t }.
This implies that F(μ) < r−c−p

t ≤ F(Xd), hence μ < Xd. Consequently, F(X1) =
r−c
r−v ≥ r−c−p

r−v−p = r−c−p
t = F(Xd), so X1 ≥ Xd.

When t = 0, each retailer orders the expected demand value, and the result is
straightforward. �


Proof of Theorem 4. Recall that the lower bound of δn satisfies

δ ∗
n =

pmax{Xd,M−Xd}
pmax{Xd,M−Xd}+ Jd

i (X
d,n)− Ji(X1)

=
ρ(Xd)

ρ(Xd)+ Jd
i (X

d,n)− Ji(X1)
∀i. (4.11)

In addition, in the model without cooperation, each retailer’s profit is maximized at
X1 = F−1

(
r−c
r−v

)
, and equals

J1(X1) = (r− v)
∫ X1

0
y f (y)dy = (r− v)ξ (X1). (4.12)

If Xd = μ , it follows from the CLT that

lim
n→∞

1− F̂n−1
(

Xd +
k

n− 1

)
= lim

n→∞
F̂n−1

(
Xd − k

n− 1

)
=

1
2
,
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which implies

Jd
i (X

d,n) = (r− c)Xd − (r− v)

[
XdF(Xd)−

∫ Xd

0
y f (y)dy

]

+p
∫ ∞

0
k f (Xd − k)

[
1− F̂n−1

(
Xd +

k
n− 1

)]
dk

+p
∫ ∞

0
k f (Xd + k)F̂n−1

(
Xd − k

n− 1

)
dk

= (r− c)μ − (r− v)

[
μF(μ)−

∫ μ

0
y f (y)dy

]

+
p
2

[∫ ∞

0
k f (μ − k)dk+

∫ ∞

0
k f (μ + k)dk

]

= [r− c− tF(μ)]μ + t
∫ μ

0
y f (y)dy

= [r− c− tF(μ)]μ + tξ (μ). (4.13)

By substituting (4.12) and (4.13) into (4.11), we obtain

δ ∗
∞ =

ρ(μ)
ρ(μ)+ [r− c− tF(μ)]μ + tξ (μ)− (r− v)ξ (X1)

.

If Xd = sup{x : F(x) < r−c
t } < μ , we have limn→∞ 1− F̂n−1(Xd + k

n−1) = 1 and

limn→∞ F̂n−1(Xd − k
n−1) = 0, hence

Jd
i (X

d,n) = (r− c)Xd − (r− v)

[
XdF(Xd)−

∫ Xd

0
y f (y)dy

]

+p
∫ ∞

0
k f (Xd − k)

[
1− F̂n−1

(
Xd +

k
n− 1

)]
dk

+p
∫ ∞

0
k f (Xd + k)F̂n−1

(
Xd − k

n− 1

)
dk

= (r− c)Xd − (r− v)

[
XdF(Xd)−

∫ Xd

0
y f (y)dy

]
+ p

∫ ∞

0
k f (Xd − k)dk

= t
∫ Xd

0
y f (y)dy

= tξ (Xd). (4.14)
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By substituting (4.12) and (4.14) into (4.11), we obtain

δ ∗
∞ =

ρ(Xd)

ρ(Xd)+ tξ (Xd)− (r− v)ξ (X1)
.

Finally, if Xd = inf{x : F(x)> r−c−p
t }> μ , we have limn→∞ 1−F̂n−1(Xd+ k

n−1)= 0

and limn→∞ F̂n−1(Xd − k
n−1) = 1, hence

Jd
i (X

d,n) = (r− c)Xd − (r− v)

[
XdF(Xd)−

∫ Xd

0
y f (y)dy

]

+p
∫ ∞

0
k f (Xd − k)

[
1− F̂n−1

(
Xd +

k
N − 1

)]
dk

+p
∫ ∞

0
k f (Xd + k)F̂n−1

(
Xd − k

n− 1

)
dk

= (r− c)Xd − (r− v)

[
XdF(Xd)−

∫ Xd

0
y f (y)dy

]
+ p

∫ ∞

0
k f (Xd + k)dk

= pμ + t
∫ Xd

0
y f (y)dy

= pμ + tξ (Xd). (4.15)

By substituting (4.12) and (4.15) into (4.11), we obtain

δ ∗
∞ =

ρ(Xd)

ρ(Xd)+ pμ + tξ (Xd)− (r− v)ξ (X1)
.

�


Proof of Proposition 5. Retailers have the same demand distribution F(·), price,
r, salvage value, v, transshipping cost, t, and unit profit from transshipment, p =
r − v− t. Denote X = ∑ j Xj, X−i = ∑ j �=i Xj and let f m the p.d.f of mDi. It can be
verified that

∂Jd
i

∂Xi
− ∂Jn

∂Xi
= p

∫ ∞

0
k f (Xi − k) f n−1(X−i + k)dk− p

∫ ∞

0
k f (Xi + k) f n−1(X−i − k)dk

= pE[Xi −Di |X = D] f n(X).

Denote Oi =
(

∂Jd
i

∂Xi
− ∂Jn

∂Xi

)
|Xn . Achieving first best requires Oi = 0 for all i. However,

for any i �= j,

Oi −O j = p f n(X)E[Xn
i −Xn

j +D j −Di |D = X ]

= p f n(X)
[

Xn
i −Xn

j +E[D j −Di |D = X ]
]

= p f n(X)(Xn
i −Xn

j ).
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It therefore requires Xn
i = Xn

j , ∀i, j. This is obviously not true given that each Xn
i

has to satisfy its FOC with a different ci:

∂Jn

∂Xn
i
= r− ci +(r− v)F(Xn

i )+ pPr{Di ≤ Xn
i , D > Xn}− pPr{Di ≥ Xn

i , D < Xn}

= 0. �


Proof of Theorem 5. The eviction contract described in Theorem 5 will be an optimal
contract if it satisfies the following constraints:

1. Participation constraint—each retailer is better off if she adopts the contract.
2. Early adoption constraint—each retailer prefers to adopt the contract in the

current period than in the later period.
3. Continuation constraints—each retailer is better off if she does not deviate in any

period.

We now show that the eviction contract satisfies all three constraints.

PARTICIPATION CONSTRAINT: If retailer i adopts the contract in period 1, her
infinite horizon discounted payoff is given by

Bi +
∞

∑
t=1

δ t−1
i Jn

i (X
n) = Bi +

1
1− δi

Jn
i (X

n).

If the contract is not adopted and each retailer orders the individually optimal
quantity (under the dual allocation rule), her payoff is

∞

∑
t=1

δ t−1
i Jn

i (X
d) =

1
1− δi

Jn
i (X

d).

The participation constraint is satisfied if

Bi +
1

1− δi
Jn

i (X
n)≥ 1

1− δi
Jn

i (X
d).

First, suppose that Λi > 0, which implies Bi =
1

1−δi
[Jn

i (X
d)− Jn

i (X
n)]. In other

words, retailer i’s profit is larger if the retailers order Xd, and she receives a positive
bonus to compensate for ordering Xn. Then,

Bi +
1

1− δi
Jn

i (X
n) =

1
1− δi

[Jn
i (X

d)− Jn
i (X

n)]+
1

1− δi
Jn

i (X
n) =

1
1− δi

Jn
i (X

d),

and hence i is not better off if she does not adopt the contract.
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Now, suppose that Λi ≤ 0—that is, retailer i’s profit is larger if the retailers order
Xn and she gives a side payment to other retailers to induce their acceptance of
the contract. Observe that Jn(Xn) ≥ Jn(Xd), which implies ∑i Λi ≤ 0. This further
means that 0 ≤ ∑K+ Λ j ≤ ∑K− (−Λ j) and

0 ≤ ∑K+ (−Λ j)

∑K− Λ j
≤ 1. (4.16)

Now,

Bi +
1

1− δi
Jn

i (X
n) =

1
1− δi

[Jn
i (X

d)− Jn
i (X

n)]× ∑K+ (−Λ j)

∑K− Λ j
+

1
1− δi

Jn
i (X

n)

≥ 1
1− δi

[Jn
i (X

d)− Jn
i (X

n)]+
1

1− δi
Jn

i (X
n) =

1
1− δi

Jn
i (X

d),

where the inequality follows from (4.16). Thus, the participation constraint is
satisfied for all i.

EARLY ADOPTION CONSTRAINT: If the contract is adopted in period t = 2 instead
of in period t = 1, the retailers order Xd in period 1, and retailer i realizes the payoff

Jn
i (X

d)+ δiBi +
∞

∑
t=2

δ t−1
i Jn

i (X
n) = Jn

i (X)+ δiBi +
δi

1− δi
Jn

i (X
n).

The early adoption constraint holds if

Bi +
1

1− δi
Jn

i (X
n)≥ Jn

i (X)+ δiBi +
δi

1− δi
Jn

i (X
n).

First, suppose that Λi > 0, which implies Bi =
1

1−δi
[Jn

i (X
d)− Jn

i (X
n)]. Then,

Jn
i (X

d)+ δiBi +
δi

1− δi
Jn

i (X
n) = Jn

i (X
d)+

δi

1− δi
[Jn

i (X
d)− Jn

i (X
n)]+

δi

1− δi
Jn

i (X
n)

=
1

1− δi
Jn

i (X
d),

and

Bi +
1

1− δi
Jn

i (X
n) =

1
1− δi

[Jn
i (X

d)− Jn
i (X

n)]+
1

1− δi
Jn

i (X
n) =

1
1− δi

Jn
i (X

d).

Hence, retailer i does not benefit from late adoption of the contract.
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Next, when Λi ≤ 0, then Jn
i (X

d)− Jn
i (X

n)≤ 0, and (4.16) implies

Bi +
1

1− δi
Jn

i (X
n)−

(
Jn

i (X
d)+ δiBi +

δi

1− δi
Jn

i (X
n)

)

= [Jn
i (X

d)− Jn
i (X

n)]× ∑K+ (−Λ j)

∑K− Λ j
+ Jn

i (X
n)− Jn

i (X
d)

≥ Jn
i (X

d)− Jn
i (X

n)+ Jn
i (X

n)− Jn
i (X

d) = 0.

Thus, retailer i prefers to adopt the contract in the first period.

CONTINUATION CONSTRAINT: We now want to show that a retailer never benefits
from defecting. Recall that Zt denotes the coalition structure in period t, and suppose
that retailer i orders a quantity different from XZt

it and/or withholds some of her
residuals. As a result, she pays a penalty, dit , in period t, and is excluded from
inventory sharing in all subsequent periods. We denote, with slight abuse of notation,
Xt(ĥt−1) =Xt , Ht(ĥt−1) =Ht , Et(ĥt−1) =Et , dit(ĥt) = dit , and Δit(ĥt) = Δit . Then,
retailer i’s discounted payoff starting from period t is given by

JZt
i (Xt ,Ht ,Et )+ dit(Xt ,Ht ,Et )+

δi

1− δi
J1

i (X
1
i ).

The continuation constraint holds if

JZt
i (Xt ,Ht ,Et)+ dit(Xt ,Ht ,Et )+

δi

1− δi
J1

i (X
1
i )≤

1
1− δi

JZt
i (XZt ).

If i ∈ I−t , then Δit ≤ 0, and dit =
1

1−δi

[
JZt

i (XZt )− δJ1
i (X

1
i )
]
− JZt

i (Xt ,Ht ,Et ).

Thus, i receives a payoff

JZt
i (Xt ,Ht ,Et )+

1
1− δi

[
JZt

i (XZt )− δiJ
1
i (X

1
i )
]
− JZt

i (Xt ,Ht ,Et )+
δi

1− δi
J1

i (X
1
i )

=
1

1− δi
JZt

i (XZt ),

and i does not benefit from defection.
Now, suppose i ∈ I+t , and consequently Δit > 0. This implies

1
1− δi

[
JZt

i (XZt )− δiJ
1
i (X

1
i )
]
− JZt

i (Xt ,Ht ,Et)≥ 0. (4.17)

Notice that

∑
i

Δit = ∑
i

{
1

1− δi

[
JZt

i (XZt )− δiJ
1
i (X

1
i )
]
− JZt

i (Xt ,Ht ,Et )

}

=
δi

1− δi

{
JZt (XZt )− J1(X1)

}
+ JZt (XZt )− JZt (Xt ,Ht ,Et)≥ 0,
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where the inequality holds because XZt with complete residual sharing maximizes
the system profit when the state is Zt and systems with inventory-sharing retailers
generate higher profit than systems without inventory sharing. As a result, ∑I+t

Δ jt ≥
∑I−t (−Δ jt), and

0 ≤ ∑I−t (−Δ jt)

∑I+t
Δ jt

≤ 1. (4.18)

Thus, retailer i receives a payoff

JZt
i (Xt ,Ht ,Et )+

{
1

1− δi

[
JZt

i (XZt )− δiJ
1
i (X

1
i )
]
− JZt

i (Xt ,Ht ,Et )

}
× ∑I−t (−Δ jt)

∑I+t
Δ jt

+
δi

1− δi
J1

i (X
1
i )≤ JZt

i (Xt ,Ht ,Et)+
1

1− δi

[
JZt

i (XZt )− δiJ
1
i (X

1
i )
]
− JZt

i (Xt ,Ht ,Et)

+
δi

1− δ
J1

i (X
1
i ) =

1
1− δi

JZt
i (XZt ),

where the inequality follows from (4.17) and (4.18). As a result, i prefers not to
defect in any period. �
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Abstract In this survey, we review some of the main contributions to the
cooperative approach of newsvendor situations. We show how newsvendor
situations with several retailers can be modeled as a transferable-utility cooperative
game and we concentrate on one solution concept: the core. First, we examine
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theoretical and an applied viewpoint.
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5.1 Introduction

In recent years, many companies have started to employ cooperation strategies
to improve their service offerings, reduce costs, and increase profit margins.
Several collaborative actions have been reported in various industries including
pharmaceutical, fashion, automobile, and post-sales support (see Anupindi and
Bassok 1999; Chen and Zhang 2009; Chen 2009, for their motivating examples).
The main driver of these collaborative activities is the cost benefit due to economies
of scale and risk pooling, which can be achieved in several operations including
logistics, purchasing, and inventories. Among them, inventories have a special
importance because in many supply chains they constitute a big portion of the
overall investment and resources. Benefits of physical pooling of inventories have
been long studied mainly for intercompany operations. Recent developments in
information technologies and logistic networks allowed firms to further exploit the
benefit of physical pooling of inventories by virtual pooling in which the stocks are
kept locally but can be transferred to satisfy demand (see Anupindi et al. 2001). This
opened new opportunities for independent firms to reduce inventory-related costs by
cooperation and (physical or virtual) inventory centralization. One typical example
is seen in the automobile industry. Car dealers often cooperate by transferring stocks
if a fellow dealer cannot satisfy a customer’s request from his/her own stock. This
way, they can increase revenues as well as improve customer satisfaction.

Before any collaboration can be established, probably the first decision that firms
need to make is the allocation of anticipated costs and benefits among themselves.
This allocation should be considered advantageous by all the firms to motivate them
to cooperate. Finding such an allocation might be a nontrivial task even though
collaboration usually improves total costs and revenues. In a two-party situation, the
answer would be easy. Any allocation improving the firms’ stand-alone profit will
be considered as a win–win case. However, if more firms are involved, they want to
know that it is not more advantageous for them to cooperate in a smaller group rather
than joining the big group. Existence of such an allocation is crucial for the stability
of the cooperation. This problem can be studied using cooperative game theory (also
called coalitional game theory), which provides, among others, the core as a popular
solution concept. The core is the set of allocations upon which no coalition can
improve. Depending on the characteristics of the game, core allocations may exist
or may fail to exist, i.e., the core can be empty. In this survey, we review the papers
studying inventory cooperation using newsvendor models in combination with the
core as solution concept for the allocation problem of anticipated benefits.

The newsvendor model is probably the most celebrated model in inventory
literature and it is used extensively to study inventory centralization and cooperation.
Newsvendor models are used especially for products with high perishability or
short life cycles. Initial applications appeared in the fashion industry and were then
extended to other industries with decreasing life cycles, such as high tech. Moreover,
because of their ability to capture the basic tradeoffs regarding inventory-related de-
cisions, newsvendor models and their extensions became backbone models to study
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effects of inventory centralization—namely cost reduction and profit increase—in
many decentralized supply chain systems. Inventory cooperation and allocation of
benefits has been a subject of inventory literature for a long time. Early papers
studied slightly different models and approaches to the problem. Eppen (1979) was
one of the first to consider the effect of centralization for a multilocation newsvendor
problem. His approach is not game theoretic. Parlar (1988) used noncooperative
game theory to analyze a simple inventory model with two retailers and studied what
happens when they decide to cooperate. Wang and Parlar (1994) considered a three-
player noncooperative model and provided conditions for cooperation. Gerchak
and Gupta (1991) proposed different cost allocation rules in centralized inventory
systems. In response to their article, Robinson (1993) proposed the use of the
Shapley value to allocate costs.

In the last decade, cooperative game theory and the core concept became a
mean for studying this problem. This part of the literature is the focus of our
review paper. Hartman (1994) introduced the newsvendor centralization game that
will be described in Sect. 5.3. Hartman and Dror (1996) proposed three desirable
criteria for cost allocation rules: stability (core of a related cooperative game),
justifiability (consistency of benefits with costs), and polynomial computability.
They showed that common allocation procedures may fail to satisfy all three criteria,
and they proposed a rule that meets all three. Hartman et al. (2000) showed that the
newsvendor game is balanced (i.e., the core of such a game is nonempty) in some
interesting cases, such as normally distributed demands. Müller et al. (2002) showed
that any finite newsvendor game is balanced whenever the random demand vectors
has finite mean. This result was independently obtained by Slikker et al. (2001) and
generalized to other settings by several authors. For instance, Slikker et al. (2005)
proved balancedness for games with transshipment costs. Montrucchio and Scarsini
(2007) proved that the core is nonempty also for newsvendor games with infinitely
many players. Özen et al. (2008) dealt with balancedness for games with several
warehouses. Chen and Zhang (2009) developed a stochastic programming duality
approach to find a core element of these games.

Game theoretical analysis of inventory centralization, supply chain cooperation
as well as competition is extensive in the literature. The reader is referred to Cachon
and Netessine (2004) and Leng and Parlar (2005) for a comprehensive survey of
applications of game theory to supply chain management. For a review of inventory
centralization games of deterministic and stochastic models, see Fiestras-Janeiro
et al. (2011). Dror and Hartman (2011) extended this review with a specific focus on
joint replenishment games and newsvendor realization games. For a comprehensive
review of game theoretical models of supply chain management, see Nagarajan and
Sošić (2008).

The paper is organized as follows. In Sect. 5.2, we introduce some basic concepts
in cooperative and noncooperative game theory. In Sect. 5.3, the fundamental results
for the basic newsvendor game are presented. Section 5.4 deals with several exten-
sions, such as large games, games with multiple warehouses, nonlinear costs, etc.
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5.2 Preliminaries on Game Theory

5.2.1 Cooperative Games

In this section we provide some basic concepts of cooperative game theory. We refer
the reader to Peleg and Sudhölter (2007) for an extended treatment of this subject.

Consider a finite set N = {1, . . . ,n} of players and a function ν : 2N → R,
called characteristic function, such that ν(∅) = 0. We call G = 〈N,ν〉 a (finite)
cooperative game with transferable utility (or simply TU game). A subset S ⊆ N is
a coalition and ν(S) is the worth that coalition S can achieve by itself. The worth
of the coalition can be transferred among its players and this justifies the name. The
set N is often called the grand coalition. When there is no risk of confusion we will
denote the game by ν rather than 〈N,ν〉.

Given a coalition S, the subgame 〈S,νS〉 is the game with grand coalition S and
characteristic function νS such that νS(T ) = ν(T ) for T ⊆ S.

An allocation is a vector μ ∈ R
N such that ∑i∈N μi = ν(N). Such a vector is a

possible way to split the worth of the grand coalition among all players efficiently,
that is, without any leftover.

The core of the game 〈N,ν〉 is defined as

core(〈N,ν〉) :=

{
μ ∈ R

N : ∑
i∈S

μi ≥ ν(S) for all S ⊂ N, and ∑
i∈N

μi = ν(N)

}
.

If an allocation is not in the core, then it is not stable, because there exists a coalition
S such that ν(S)> ∑i∈S μi. This coalition will therefore have an incentive to deviate
and achieve ν(S) by itself rather than join the grand coalition and obtain only
∑i∈S μi.

Call ei the i-th vector of the canonical basis of Rn and define eS :=∑i∈S ei. A map
κ : 2N → [0,1] is called balanced if

∑
S∈2N\{∅}

κ(S)eS = eN .

A game (N,ν) is called balanced if for every balanced map κ , we have

∑
S∈2N

κ(S)ν(S)≤ ν(N).

The above condition considers the situations where the players can form
subcoalitions (i.e., every balanced map represents a situation where each player i
forms coalition S with i ∈ S κ(S) fraction of his time), and checks whether the
players, if they organized themselves via these subcoalitions with corresponding
weights, can do better than the grand coalition.
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Theorem 5.2.1 (Bondareva 1963; Shapley 1967). Let 〈N,ν〉 be a TU game.
Then, core(〈N,ν〉) �=∅ if and only if (N,ν) is balanced.

A game 〈N,ν〉 is called totally balanced if it is balanced and each of its subgames
is balanced as well.

Another solution concept for cooperative games was proposed by Shapley
(1953). Consider a game 〈N,ν〉 and a bijection σ : N →{1, . . . ,n}. If players arrive
in the order σ(1),σ(2), . . . ,σ(n) (i.e., player i arrives on position σ(i)), denote by
pσ (i) the set of players that precede i in σ , i.e.,

pσ (i) = { j ∈ N : σ( j) < σ(i)},

and call mi
σ (ν) the marginal contribution of player i, i.e.,

mi
σ (ν) = ν(pσ (i)∪{i})−ν(pσ(i)).

The Shapley value φ of the game 〈N,ν〉 assigns to player i her average marginal
contribution, where the average is taken over all possible permutations σ :

φ i(ν) = ∑
σ

1
n!

mi
σ (ν).

It can be shown that the above expression can be written also as

φ i(ν) = ∑
S⊂N:i�∈S

|S|!(n− 1−|S|)!
n!

(ν(S∪{i})−ν(S)).

A game 〈N,ν〉 is called convex (or supermodular) if

ν(S)+ν(T )≤ ν(S∩T )+ν(S∪T ) for all S,T ⊆ N. (5.1)

It can be proved that for the case considered here of finite games (5.1) is
equivalent to

ν(T ∪{i})−ν(T)≥ ν(S∪{i})−ν(S) for all i ∈ N and all S ⊂ T ⊆ N \{i}. (5.2)

Hence, for convex games, the marginal contribution of any player to any coalition
is greater than her marginal contribution to a smaller coalition. Convex games are
well known for having several nice properties related to the structure of the core and
solution concepts. For example, Shapley (1971) and Ichiishi (1990) showed that the
marginal vectors of a game are the extreme points of the core if and only if the game
is convex. Moreover, the Shapley value of a convex game is the barycenter of its
core and hence it is always in the core.

In Sect. 5.4.1, we will consider games with infinitely (possibly uncountably)
many players. This more general setting requires a richer structure and some
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technical details have to be settled precisely. A cooperative game is now defined
as G = 〈I,C ,ν〉, where I is the set of players, C is a σ -algebra of subsets of I (the
feasible coalitions), and ν : C → R is a function such that ν(∅) = 0. To emphasize
the difference between finite and infinite games, we now use the symbol I rather
than N to denote the set of players. Note that with I = N and C = 2N , this definition
covers the definition of a finite cooperative game as well.

A map μ : C → R is called additive if μ(A ∪ B) = μ(A) + μ(B) for every
A,B ∈ C with A ∩ B = ∅ and countably additive if μ(∪∞

i=1Ai) = ∑∞
i=1 μ(Ai) for

every A1,A2, . . . ∈ C with Ai ∩A j =∅ when i �= j.
The concept of allocation in the finite setting is generalized in a straightforward

way to the infinite setting by considering bounded additive maps μ : C → R. The
collection of these maps is denoted by ba(C ). The core of a game ν is the set

core(ν) = {μ ∈ ba(C ) : μ(S)≥ ν(S) for all S ∈ C and μ (I) = ν(I)}.

The game ν is exact if its core is nonempty and

ν(S) = min
μ∈core(ν)

μ(S), for every S ∈ C .

Exact games, introduced by Schmeidler (1972), are a special subclass of the class
of totally balanced games. They have the property that for every coalition S there
is an element μ in the core such that μ(S) = ν(S). This implies in turn that its
restriction μS lies in the core of the subgame 〈S,νS〉. Clearly this property gives rise
to a tight connection between the form of the game and its core. Note further that
convex games are obviously exact. Therefore, exact games can also be viewed as a
intermediate class between totally balanced games and convex ones.

A version of Theorem 5.2.1 holds also for positive infinite games, as proved by
Schmeidler (1967) and Kannai (1969). An extension to bounded (not necessarily
positive) games can be found in Marinacci and Montrucchio (2004, Theorem 4.1).

5.2.2 Noncooperative Games

In this section, we provide some basic concepts of noncooperative game theory that
will be used in Sect. 5.4.4.

A game in strategic form is a tuple Λ = 〈N,Y,u〉 where N = {1, ...,n} is a finite
set of players, Y =×i∈NYi is the Cartesian product of strategy sets Yi of player i ∈ N
and u = (ui)i∈N is the vector of payoff functions ui : Y → R of player i ∈ N. In
this game, every player i selects a strategy yi ∈ Yi simultaneously. As a result of
these strategic decisions, each player i receives a payoff ui(y) where y = (yi)i∈N is
the strategy profile played by the players. For any S ⊆ N and any strategy profile
y ∈ Y we will write yS = (yi)i∈S and y = (yS,yN\S). A strategy profile y∗ ∈ Y is
a Nash Equilibrium if ui(y∗) ≥ ui(yi,y∗N\{i}) for all i ∈ N and all yi ∈ Yi. Under a
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Nash equilibrium strategy, none of the players can increase his utility by a unilateral
deviation in his strategy. A strategy profile y∗ ∈Y is called a strong Nash equilibrium
(see Aumann 1959) if there is no T ⊆ N and yT = (yi)i∈T ∈ ×i∈TYi such that
ui(yT ,y∗N\T ) ≥ ui(y∗) for all i ∈ T with the inequality being strict for at least one
player i ∈ T . Therefore, under a strong Nash equilibrium, no group of players can
increase their payoffs simultaneously by deviating collectively. The set of all strong
Nash equilibria of Λ is denoted by S (Λ).

5.3 The Basic Model

5.3.1 The Newsvendor Problem

We introduce the newsvendor problem in an abstract setting that will prove suitable
for the analysis of the game. Let (Ω ,F ,P) be a probability space, i.e., Ω is the
set of states of the world, F is a σ -algebra of subsets of Ω and P is a probability
measure on F . All random variables in this paper are assumed to be integrable, i.e.,
elements of L1 (Ω ,F ,P). In case there is no ambiguity about the probability space
(Ω ,F ,P), we write L1 instead of L1 (Ω ,F ,P).

A newsvendor has to decide how many newspapers to stock in order to face an
unknown demand, knowing that no replenishment is allowed. If she faces a demand
x and orders a quantity y, then she obtains a profit

ψ(x,y) = pmin{x,y}− cy =

{
px− cy if x ≤ y,

(p− c)y if x > y,
(5.3)

where c is the unitary cost that the newsvendor incurs for buying a newspaper
from the publisher and p is the unitary gain for selling a newspaper to a customer.
Obviously, p > c.

If the newsvendor faces random demand X ∈ L1 she has to find an order quantity
y that maximizes E [ψ (X ,y)]. The operator Π : L1 → R, defined by

Πψ (X) = max
y∈R

E [ψ (X ,y)] , (5.4)

represents the expected profit for a newsvendor who orders the optimal amount of
newspapers.

It is not difficult to prove that the maximizer in (5.4) is a (p− c)/p-quantile of
the distribution of X , that is y∗ ∈ argmaxE [ψ (X ,y)] if

FX(s)≤ p− c
p

≤ FX(t), for all s ≤ y∗ ≤ t, (5.5)
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where FX is the distribution function of X . Therefore, Πψ (X) can be rewritten as

Πψ (X) = (p− c)y∗− p
∫

u≤y∗
FX(u)du. (5.6)

5.3.2 The Simple Newsvendor Game

In this section, we introduce the simplest model of newsvendor games. In order to
do so, we first introduce a newsvendor situation as Γ = 〈N,(Xi)i∈N ,c, p〉, where:

1. N = {1, . . . ,n} is the set of retailers
2. Xi ∈ L1 is the random demand of retailer i
3. c is the unitary cost for ordering from the warehouse
4. p is the unitary selling price for the retailer

For a coalition S ⊆ N, let X(S) := ∑i∈S Xi be the aggregate random demand. The
expected optimal profit of S is Πψ(X(S)), where Πψ is as defined in (5.4). So
all coalitions have the same anonymous profit function and face the same type of
maximization problem, the only difference being the random demand that they face.
Define νΓ : 2N →R as follows:

νΓ (S) = Πψ(X(S)) for all S ⊆ N.

The game 〈N,νΓ 〉 is called the newsvendor game, corresponding to newsvendor
situation Γ .

Theorem 5.3.1 (Müller et al. 2002; Slikker et al. 2001). Every newsvendor game
has a nonempty core.

This result was obtained independently in the two papers. Müller et al. (2002)
actually considered costs instead of profits. In fact, instead of (5.3) they considered
the function

χ(x,y) =

{
c(y− x) if x ≤ y,

(p− c)(x− y) if x > y,

and referred to c as “unit holding cost” and p−c as “unit penalty cost for unsatisfied
demand”. Subsequently, they defined the cost game cΓ : 2N → R by:

cΓ (S) = Πχ(X(S)) for all S ⊆ N.

It is straightforward to check that

νΓ (S) = ∑
i∈S

(p− c)E(Xi)− cΓ (S)
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for all S ⊆ N. That is, the two games differ by a factor −1 and an additive game;
hence, from a game theoretical point of view, they are similar. As recognized by
Slikker et al. (2001), substitution of variables combined with the addition of an
appropriate additive game can prove useful in incorporating additional features
while keeping the game under investigation strategically equivalent to the original
game. In this way, Montrucchio and Scarsini (2007) considered a setting with
unitary gains, unitary costs as well as penalty costs for not ordering enough.

As each subgame is a newsvendor game in itself, total balancedness, i.e.,
nonempty cores for the game and all its subgames, follows naturally. A similar
remark holds for other results in this chapter as well.

The following result determines an allocation that is always contained in the core.

Theorem 5.3.2 (Chen and Zhang 2009; Montrucchio and Scarsini 2007). If Γ
is a newsvendor situation such that Xi has a continuous distribution for every i ∈ N,
then μ ∈ core(〈N,νΓ 〉), where

μi = p
∫

X(N)≤y∗
Xi dP

for every i ∈ N and y∗ is a (p− c)/p-quantile of the distribution of X(N).

Montrucchio and Scarsini (2007) proved the result constructively for general
newsvendor games (not necessarily finite). Chen and Zhang (2009) used stochastic
programming duality to find an allocation in the core of a large class of inventory
games (see Sect. 5.4.3). For the basic newsvendor game the two approaches give the
same result.

Notice that in Theorem 5.3.1 the only assumption is that Xi ∈ L1 for every
i ∈ N, in particular no assumption is made about the dependence structure of
(Xi)i∈N . When some assumptions are made, stronger results can be obtained. This
happens, for instance, when the vector (Xi)i∈N is comonotonic. The reader is
referred, for instance, to Puccetti and Scarsini (2010) for results and references about
comonotonicity.

Definition 5.3.3. Given a random vector X = (Xi)i∈N , its support supp(X) is the
smallest closed set A ⊂ R

n such that P(X ∈ A) = 1. A random vector (Xi)i∈N is
comonotonic if supp(X) is totally ordered, i.e., for all x,y ∈ supp(X), either x ≤ y or
y ≤ x (in the natural component-wise order on R

n).

Proposition 5.3.4 (Müller et al. 2002). If Γ is a newsvendor situation such that
(Xi)i∈N is comonotonic, then core(〈N,νΓ 〉) is a singleton.

When the demands of all the retailers are comonotonic, they all move in the same
direction, which implies that no hedging is possible. Proposition 5.3.4 shows that in
this case the core consists of only one possible allocation of profits.

Proposition 5.3.5 (Müller et al. 2002). If Γ is a newsvendor situation such that
for all S ⊆ N and for all i ∈ S the function s �→ E[Xi|X(S) = s] is increasing, then
for all μ ∈ core(〈N,νΓ 〉), we have μi ≤ (p− c)E(Xi) for all i ∈ N.
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In the cost model studied by Müller et al. (2002) Proposition 5.3.5 has a more
readable meaning. It just says that if E[Xi|X(S) = s] is increasing in s, then all cost
allocations in the core are positive.

Definition 5.3.6. A random vector (Xi)i∈N is exchangeable if its distribution
function is invariant with respect to permutations, i.e., for every permutation π of
{1, . . . ,n} and every (x1, . . . ,xn) ∈R

n, we have

P(X1 ≤ x1, . . . ,Xn ≤ xn) = P(X1 ≤ xπ(1), . . . ,Xn ≤ xπ(n)).

Proposition 5.3.7 (Müller et al. 2002). If Γ is a newsvendor situation such that
for some vector a ∈ R

N the random vector (Xi − ai)i∈N is exchangeable, then there
exists a μ ∈ core(〈N,νΓ 〉) such that μi ≤ (p− c)E(Xi) for all i ∈ N.

Note that in Propositions 5.3.5 and 5.3.7 the statement that “μ ∈ core(〈N,νΓ 〉)
is such that μi ≤ (p− c)E(Xi) for all i ∈ N” is equivalent to the statement that the
corresponding element in the (anti-)core of 〈N,cΓ 〉 is nonnegative.

As we mentioned in Sect. 5.2, convexity is an important property of cooperative
games. Regarding newsvendor games, convexity suggests that the marginal benefit
of inventory pooling is increasing with the size of the coalition. Though newsvendor
games have nonempty cores, in general they are not convex. Counterexamples
can be found even in very simple settings (see, for instance, Özen et al. 2011,
Examples 3.1 and 3.2). The demand distribution of the retailers and the optimal
fractile are two important factors that affect the convexity of newsvendor games.
Özen et al. (2011, Examples 6.1) showed that even newsvendor games with
independent, symmetric, and unimodal demand distributions need not be convex.

The following proposition provides sufficient conditions for the convexity of a
newsvendor game.

Proposition 5.3.8 (Montrucchio and Scarsini 2007; Özen et al. 2011; Slikker
et al. 2001). The newsvendor game 〈N,νΓ 〉 is convex if one of the following
conditions holds:

1. (Xi)i∈N are independent, symmetric, and unimodal distributed random variables
and c = p/2.

2. (Xi)i∈N are independent normal distributed random variables.
3. (Xi)i∈N are exchangeable multi-normal distributed random variables.

Proposition 5.3.8 states that under some realistic assumptions the newsvendor
game turns out to be convex, a very nice property of TU games as we discuss
in Sect. 5.2.1. First of all, these games are convex if demand is independent,
symmetric, and unimodal distributed and c = p/2, which means that the retailers
profit margin is 100%. Secondly, they satisfy convexity under independent normal
demand distributions regardless of the profit margin that the retailers work with.
Finally, convexity extends to situations with identical and positively correlated
normal demand distributions.
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5.4 Extensions

5.4.1 Large Games

In many situations, it is useful to consider newsvendor games with a large number
of retailers. These games are often computationally complex, whereas an infinite
approximation of them can be easier to handle. This is why Montrucchio and
Scarsini (2007) considered newsvendor games where the set of retailers is large,
possibly uncountable. In order to define these games properly we first adjust the
concept of newsvendor situations to this setting. A large newsvendor situation is a
tuple Γ l = 〈(I,C ),(XS)S∈C ,c, p〉, where:

1. I is a (possibly uncountable) set of retailers and C is a σ -algebra of subsets of I.
2. XS ∈ L1 is the joint random demand of coalition S ∈ C ; for all ω ∈ Ω , the map

S �→ XS(ω) is additive on C , that is, XS1∪S2(·) = XS1(·)+XS2(·) for two disjoint
coalitions S1,S2 ∈ C .

3. c is the unitary cost for ordering from the warehouse.
4. p is the unitary selling price for the retailer.

Note that with I = N, C = 2N , and XS = ∑i∈S Xi for all S ⊆ N, this definition
covers the newsvendor situations with a finite retailer set as well.

For S ∈ C , consider the joint random demand XS for coalition S. The expected
optimal profit of S is Πψ(XS), where Πψ is again as defined in (5.4). Define νΓ l

:
C →R as follows:

νΓ l
(S) = Πψ(XS) for all S ∈ C .

The game 〈N,νΓ l 〉 is called the large newsvendor game, corresponding to newsven-

dor situation Γ l .

Theorem 5.4.1 (Montrucchio and Scarsini 2007). If Γ l is a large newsvendor
situation such that

∫
|XS| dP≤ K for all S ∈ C and some K > 0, (5.7)

then the newsvendor game 〈I,νΓ l 〉 is totally balanced.
Moreover, if the aggregate demand XI has a continuous distribution, then μ ∈

core(〈I,νΓ l 〉), where μ : C →R is defined as

μ(S) = p
∫

XI≤y∗
XS dP (5.8)

for all S ∈ C , and where y∗ is a (p− c)/p-quantile of the distribution of XI.

Notice that condition (5.7) is automatically satisfied when the map S �→ XS is
countably additive.
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As in the finite case, stronger results can be obtained by assuming some particular
dependence structure of the random demand.

Proposition 5.4.2 (Montrucchio and Scarsini 2007). If Γ l is a large newsvendor
situation such that XI and XS are comonotone for all coalitions S ∈ C , then the
newsvendor game 〈I,νΓ l 〉 is exact.

In many situations with many retailers, the influence of each one of them is
negligible. This can be expressed by assuming that the random demand vector is
nonatomic. The next theorem establishes that in such a nonatomic setting, when the
aggregate demand has a continuous distribution, the core of newsvendor games is a
singleton.

Theorem 5.4.3 (Montrucchio and Scarsini 2007). If Γ l is a large newsvendor sit-
uation such that random demand vector (XS)S∈C has a Radom-Nikodym derivative

and such that XI has a continuous distribution, then core(〈I,νΓ l 〉) is a singleton,
given by (5.8).

5.4.2 Multiple Warehouses

In the newsvendor games covered so far, a complete consolidation of stocks is
assumed and all retailers face the same purchasing cost c and selling price p. Several
extensions of this simple cost structure are considered in the literature. The model
of Özen et al. (2008) presents such an extension with multiple warehouses.

Consider a distribution system with n retailers and m warehouses. Every retailer i
faces a stochastic demand and sells a single product. As in the standard newsvendor
problem, retailers have to decide on order quantities for one or more warehouses,
before the stochastic demand is realized. After the stochastic demand is realized,
stocks that are available at the warehouses are allocated to the retailers to satisfy
the demand. Formally, a newsvendor situation with warehouses is a tuple Γ w =
〈N,W,(Zi)i∈N ,(Xi)i∈N ,(cw)w∈W ,( fwi)w∈W,i∈N ,(pi)i∈N〉, where1

1. N = {1, . . . ,n} is the set of retailers.
2. W = {1, . . . ,m} is the set of warehouses.
3. Zi ⊆W is the nonempty set of warehouses related to retailer i.
4. Xi ∈ L1 is the random demand of retailer i.
5. cw > 0 is the unitary cost for ordering via warehouse w.

1We remark that in Özen et al. (2008) there is no explicit unitary cost for ordering via a warehouse,
as it is assumed to be incorporated in the transportation costs. With all orders being sent to the
retailers, as prescribed by the admissible allocations in MS below, the two models are equivalent.
Formally, the models coincide by setting unitary transportation costs from warehouse w to retailer
i in Özen et al. (2008) equal to f wi = fwi + cw.
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6. fwi ≥ 0 is the unitary transportation cost from warehouse w to retailer i.
7. pi > 0 is the unitary selling price for the retailer i.

Each retailer i can order goods from the set of warehouses Zi. Since Zi ⊆W , this
model covers two extreme cases:

(a) Every retailer orders only from one warehouse, i.e., |Zi|= 1 for all i ∈ N.
(b) Every retailer can use all warehouses, i.e., Zi =W for all i ∈ N.

Forming coalition S ⊆ N, the retailers are allowed to use any warehouse in ZS :=⋃
i∈S Zi. This generalizes several models studied earlier in the literature and covers

a broad range of situations in which the reallocation of the orders can take place in
different locations between the supplier and the retailers. For example, the situation
with W = {1}, Zi = W , and f1i = 0 for all i ∈ N, and pi = p represents the simple
newsvendor model as described in Sect. 5.3.2. Alternatively, a situation with W = N
and Zi = {i} for all i ∈ N represents a system in which the retailers keep local stock
and cooperate through lateral transshipment as studied in Slikker et al. (2005).

Consider a coalition S ⊆ N. Let xS = (xi)i∈S be a realization of the random vector
XS = (Xi)i∈S. Before the realization of the random vector XS, the retailers in the
coalition jointly choose an order vector qS from the set

QS := {q ∈ R
m|qw = 0 for all w ∈W \ZS and qw ≥ 0 for all w ∈ ZS}.

The cost of placing this order is

C(qS) = ∑
w∈W

cwqS
w. (5.9)

After observing the realization xS of XS, the players in S decide on an allocation
AS of joint orders from the set

MS(qS) : =

{
AS ∈ R

m×n
+ |∑

i∈S

AS
wi = qS

w for all w ∈ ZS

and AS
wi = 0 if i ∈ N \ S or w ∈W \ZS

}
.

The revenue created at each retailer is

Hi(AS
i ,x

S
i ) =− ∑

w∈ZS

AS
wi fwi + pi min

{
∑

w∈ZS

AS
wi,x

S
i

}
. (5.10)

Hence, the coalition’s total revenue is given by

RS(AS,xS) = ∑
i∈S

Hi(AS
i ,xi).
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Lemma 5.4.4 (Özen et al. 2008). Let Γ w be a newsvendor situation with ware-
houses and let S ⊆ N be a coalition. For any qS ∈ QS and demand realization vector
xS, there exists an allocation AS,∗ ∈ MS(qS) that maximizes total revenue RS(·,xS).

We refer to RS(AS,∗,xS) as rS(qS,xS), which is the maximum total revenue that
coalition S can achieve by allocating the available stocks optimally. Then, the
expected profit function of coalition S is defined by

πS(qS) = E[rS(qS,XS)]−C(qS).

Theorem 5.4.5 (Özen et al. 2008). Let Γ w be a newsvendor situation with ware-
houses and let S ⊆N be a coalition. There exists an order vector qS,∗ that maximizes
the expected profit function πS(·).

Let Γ w be a newsvendor situation with warehouses. According to Theorem 5.4.5,
we can define νΓ w

: 2N →R by

νΓ w
(S) = max

qS∈QS
πS(qS) for all S ⊆ N.

The game 〈N,νΓ w〉 is called the newsvendor game with warehouses, corresponding
to Γ w.

Introducing multiple warehouses into the model, can create some externalities.
Although the retailers may prefer not to use a specific warehouse if they act alone,
this warehouse may be used if they cooperate, for example, because of a strategic
position of this warehouse somewhere between the retailers. Moreover, the core of
general newsvendor games can shrink when more warehouses are introduced into
the system as shown by Özen et al. (2008, Example 3). However, the following
theorem shows that the core of a newsvendor game with warehouses is never empty.

Theorem 5.4.6 (Özen et al. 2008). Every newsvendor game with warehouses has
a nonempty core.

5.4.3 A Stochastic Programming Duality Approach

Chen and Zhang (2009) studied a cost game related to a newsvendor network with
warehouses Γ w and developed an alternative approach by formulating their game
via a two-stage stochastic program. Denote XS(ω) = (Xi(ω))i∈S. Then

νΓ w
(S) = max

(
− ∑

w∈ZS

cwqw +E
[
rS(q,XS(·))]

)
, (5.11)

s.t. qw ≥ 0, w ∈ ZS. (5.12)
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Here, q = (qw)w∈ZS . For every q and ω , we have

rS(q,XS(ω)) = max

(
∑
i∈S

pisi(ω)−∑
i∈S

∑
w∈ZS

fwiAwi(ω)

)
, (5.13a)

s.t. si(ω)≤ ∑
w∈ZS

Awi(ω), i ∈ S, (5.13b)

si(ω)≤ Xi(ω), i ∈ S, (5.13c)

qw −∑
i∈S

Awi(ω) = 0, w ∈ ZS, (5.13d)

Awi(ω),si(ω)≥ 0 w ∈ ZS, i ∈ S. (5.13e)

Here, si(ω) denotes actual sales at retailer i and Awi(ω) is the quantity transferred
from warehouse w to retailer i. The first constraint states that total sales cannot
exceed the initial allocation, while the second constraint states that sales cannot
exceed demand. The last constraint implies that warehouses don’t keep inventory
and all ordered units should be transferred to the retailers. Thus, in the second stage
of this model, we determine the allocation of ordered products that maximizes the
revenue after the demand is observed, while in the first stage, we determine the
order quantity, which maximizes the expected profit of the coalition. Denote by
αi(ω),βi(ω), and γw(ω) (ω ∈ Ω , i ∈ S, w ∈ ZS), the dual variables associated with
constraints (5.13b)–(5.13d) . Then, the dual of above two-stage stochastic program
can be written as

min E

[
∑
i∈S

Xi(·)βi(·)
]

(5.14)

s.t. E[γw(·)]≥−cw, w ∈ ZS

αi(ω)+βi(ω)≥ pi, i ∈ S,ω ∈ Ω

αi(ω)+ γw(ω)≤ fwi, i ∈ S,w ∈ ZS,ω ∈ Ω

αi(ω),βi(ω)≥ 0, i ∈ S,ω ∈ Ω .

Results of Rockafellar and Wets (1976) on strong duality of stochastic linear
programs provide the following corollary.

Corollary 5.4.7 (Chen and Zhang 2009). Let Γ w be a newsvendor situation with
warehouses. Then for any coalition, S ⊆ N, ν(S) is equal to the optimal value of
(5.14).

Suppose that ((α∗
i (ω))i∈N,ω∈Ω ,(β ∗

i (ω))i∈N,ω∈Ω ,(γ∗w(ω))w∈W,ω∈Ω ) is an opti-
mal solution of the dual (5.14) with S = N and define

yi = E [Xi(·)β ∗
i (·)] for all i ∈ N. (5.15)
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Theorem 5.4.8 (Chen and Zhang 2009). Let Γ w be a newsvendor situation with
warehouses. Then 〈N,νΓ w〉 is balanced and the vector (yi)i∈N, defined by (5.15), is
in the core.

The advantage of the duality approach of Chen and Zhang (2009) is that it provides
a constructive proof of core nonemptiness by identifying one element in it. Using
a duality approach, Chen and Zhang (2009) also derived a closed-form expression
of a core element for the standard newsvendor games in Sect. 5.3. If demand has a
continuous distribution, their closed-form expression results in the allocation rule in
Theorem 5.3.2, which is shown by Montrucchio and Scarsini (2007) for newsvendor
games with finitely and infinitely many number of players.

5.4.4 Core and Profit Allocation per Demand Realization

We remark that newsvendor games with warehouses consider the profit of all
possible coalitions in expectation. Therefore, the core contains stable allocations
of joint profit in expectation, which would be the main criterion of a retailer to
join the grand coalition. However, for real-life application, one needs to translate a
stable allocation of expected joint profit into a mechanism that allocates the realized
profit at the end of the day. Özen et al. (2008) studied this issue in a noncooperative
game setting in which the retailers strategically choose the coalition they want to
join, the contract they want to sign to allocate joint profit, and the order vector after
joining the coalition. Let therefore Γ w be a newsvendor situation with warehouses
and recall that Q{i} denotes the set of order vectors of retailer i. Let Q̄S =×i∈SQ{i}
be the collection of order vectors of retailers in coalition S. Note that Q̄S is different
from QS because in this noncooperative setting every player chooses her own order
vector even if she belongs to a coalition.

Consider coalition S ⊆ N. Let ϒ S denote the set of realizations of random vector
XS. Let aS : Q̄S ×ϒ S → R

m×n be a recourse action function, which determines an
allocation of total orders for any demand realization xS of XS and any order profile
q̄S ∈ Q̄S. We call a recourse action function aS feasible if for all q̄S ∈ Q̄S and every
realization xS of XS,

aS(q̄S,xS) ∈ MS

(
∑
i∈S

q̄S
i

)
.

The set of all feasible recourse action functions for coalition S is denoted by A S.
Let π̄S :

{
(q̄,m,xS)

∣∣ q̄ ∈ Q̄S, xS ∈ ϒ S, m ∈ MS(∑i∈S q̄i)
}→ R

S be a monetary
transaction function that allocates the profit made by the coalition S among its
members. We call a monetary transaction function π̄S efficient, if for all q̄S ∈ Q̄S,
every realization xS of XS and every recourse action mS ∈ MS(∑i∈S q̄S

i ), we have

∑
i∈S

π̄S
i (q̄

S,mS,xS) =−C

(
∑
i∈S

q̄S
i

)
+RS(mS,xS).
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The set of all efficient monetary transaction functions of coalition S ⊆ N is denoted
by E S.

Definition 5.4.9. An admissible contract for coalition S ⊆ N is a pair (aS, π̄S)
consisting of a feasible recourse action function aS ∈ A S and an efficient monetary
function π̄S ∈ E S. The set of all admissible contracts for coalition S ⊆ N, is denoted
by CS, i.e., CS := {(a, π̄)|a ∈ A S; π̄ ∈ E S}.

Definition 5.4.10. A profit-sharing contract for coalition S ⊆ N is a pair (aS, π̄S) ∈
CS such that, for all q̄S ∈ Q̄S and every realization xS of XS,

aS(q̄S,xS) ∈ argmax
m∈MS( ∑

i∈S
q̄S

i ,x
S)

{
RS(m,xS)

}

and there exist λi > 0 for all i ∈ S such that ∑i∈S λi = 1 and for all q̄S ∈ Q̄S, xS of XS

and mS ∈ MS(∑i∈S q̄S
i ,x

S)

π̄S
i (q̄

S,mS,xS) = λi

(
−C(∑

i∈S

q̄S
i )+RS(mS,xS)

)
.

Briefly, profit-sharing contracts are admissible contracts that choose the optimal
allocation of total orders for each demand realization and divide the total profit
proportionally according to preset rates among the coalition members. Under profit-
sharing contracts, it is all players’ interest to increase the total profit as they get a
fixed percentage of it, and hence these contracts induce strategies that maximize
total expected profit by the players. The set of all profit-sharing contracts for
coalition S ⊆ N is denoted by PS.

Consider a coalition S ⊆ N and an admissible contract cS = (aS, π̄S) ∈ CS. Then,
the expected payoff of player i ∈ S in contract cS for order profile q̄S ∈ Q̄S is
denoted by

Π cS

i (q̄S) = E[π̄S
i (q̄

S,aS(q̄S,XS),XS)].

Now, we can define the associated noncooperative game by Λ = 〈N,(Ti)i∈N ,
(Ki)i∈N〉, where Ti and Ki : ×i∈NTi → R represent the extended strategy space
and payoff function of retailer i ∈ N, respectively. For each i ∈ N, the extended
strategy space Ti is defined by

Ti := {(S,c,q)|S ⊆ N with i ∈ S,c ∈ CS, and q ∈ Qi}

and for every t = (S j,c j,q j) j∈N ∈× j∈NTj, the payoff function Ki is given by

Ki(t) =

{
Π ci

i (qSi) if Si = S j and ci = c j for all j ∈ Si,

τ{i}(qi) otherwise,

where qSi = (q j) j∈Si .



154 L. Montrucchio et al.

In this game in strategic form, a coalition can only be formed if all the players
in a contract agree upon it. If a coalition is formed, recourse actions are taken
and the profit is shared as described in the contract by its recourse action function
and its monetary transaction function. The players that do not form a coalition are
considered as if they worked alone. The following theorem shows that the set of
payoff vectors resulting from strong Nash equilibria coincides with the core.

Theorem 5.4.11 (Özen et al. 2008). Let Γ w be a newsvendor situation with
warehouses and Λ = 〈N,(Ti)i∈N ,(Ki)i∈N〉 the related game in strategic form. For
all y ∈ core(〈N,νΓ w〉), there exists tN ∈S (Λ) such that (Ki(tN))i∈N = y. Moreover,
(Ki(tN))i∈N ∈ core(〈N,νΓ w〉) for all tN ∈ S (Λ).

The proof of this theorem shows how to construct a strong Nash equilibrium that
results in a specific core element using profit-sharing contracts.

Proposition 5.4.12 (Özen et al. 2008). Let Γ w be a newsvendor situation
with warehouses and let y ∈ core(〈N,νΓ w〉). Consider a strategy profile tN =
(N, pN ,qi)i∈N, such that pN ∈PN with λi = yi/v(N) for all i∈ N and ∑i∈N qi = qN,∗,
where qN,∗ is the optimal order vector of the grand coalition. Then, Ki(tN) = yi for
all i ∈ N and tN ∈ S (Λ).

Therefore, the profit-sharing contract as constructed in Proposition 5.4.12 allocates
the realized total profit efficiently and, in expectation, each retailer gets a stable
allocation.

Hartman and Dror (2005) studied realization games defined by characteristic
function v(S,ω) = −C(q∗,S)+ rS(q∗,S,XS(ω)), for each demand scenario ω . They
showed that the core of these games can be empty. Dror et al. (2008) considered
a repeated cost-allocation scheme for dynamic realization games based on some
rules proposed by Lehrer (2002) and they proved that the cost subsequences of the
dynamic realization game process converge almost surely to the core of the expected
game. This is the case even when the one period realization games have an empty
core in general, as in Hartman and Dror (2005).

5.4.5 Nonlinear Costs and Revenues

The newsvendor situations with warehouses studied so far assume linear costs
and revenues. Several extensions of this cost structure have been studied in the
literature. Chen (2009) considered newsvendor situations with warehouses and
pricing. Such a situation can be modeled as a tuple Γ wp = 〈N,W,(Zi)i∈N ,(αi)i∈N ,
(βi)i∈N , (kw)w∈W ,( fwi)w∈W,i∈N ,(ti)i∈N ,(p

i
)i∈N ,(pi)i∈N〉, where N, W , (Zi)i∈N , and

( fwi)w∈W,i∈N are as before and

1. αi and βi are nonnegative random variables such that the demand for retailer
i ∈ N equals Xi(ω) = βi(ω)−αi(ω) · pi for all ω ∈ Ω and pi ∈ [p

i
, pi].

2. kw : R+ →R is the cost function for warehouse w.
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3. ti is the unit penalty cost for unsatisfied demand for retailer i ∈ N.
4. p

i
and pi are the lower and upper bounds for the pricing decisions of retailer

i ∈ N.

Different from the multiple warehouse model in Sect. 5.4.2, retailers have to decide
upon their selling prices, thereby determining their demand. Moreover, to avoid
technicalities, it is assumed that Ω is finite. Chen (2009) distinguishes two types of
models, the postponed pricing model and the nonanticipative pricing model. In the
postponed pricing model, every retailer i ∈ N decides upon his selling price pi(ω)
after realization of the true state of the world ω ∈ Ω , whereas in the nonanticipative
pricing model the pricing decision is made before realization of ω .

In order to define the corresponding cooperative games let S ⊆ N. Let qS ∈ QS

be a joint order vector, AS ∈ MS(qS) an allocation of this joint order and pS =
(pi(ω))i∈S,ω∈Ω ∈ R

S×Ω
+ be a vector of postponed pricing decisions. The coalition’s

total revenue in state of the world ω is

KS(AS, pS(ω),ω)

= ∑
i∈S

(
− ∑

w∈ZS

AS
wi fwi + pi(ω)min

{
∑

w∈ZS

AS
wi,βi(ω)−αi(ω)pi(ω)

}

−ti max

{
βi(ω)−αi(ω)pi(ω)− ∑

w∈ZS

AS
wi,0

})
, (5.16)

where pS(ω) = (pi(ω))i∈S. As in Sect. 5.4.2 we can find, for every ω ∈ Ω , an
allocation AS,∗(ω) ∈ MS(qS) that maximizes (5.16). The expected profit function
of coalition S is defined as

π̄S(qS, pS) = E
[
KS(AS,∗(·), pS(·), ·)]− ∑

w∈W
kw(q

S
w).

The general newsvendor game with warehouses and postponed pricing is given by
the characteristic function νΓ wp

1 : 2N → R, defined by

νΓ wp

1 (S) = max
qS∈QS,pS∈RS×Ω

+

π̄S(qS, pS) for all S ⊆ N.

In the nonanticipative pricing model the corresponding cooperative game νΓ wp

2 is
defined in a completely analogous way, the only difference being the fact that the
selected prices do not depend upon ω , i.e., pS = (pi)i∈S ∈ R

S.
The first result considers linear cost functions.

Theorem 5.4.13 (Chen 2009). Let Γ wp = 〈N,W,(Zi)i∈N ,(αi)i∈N ,(βi)i∈N ,(kw)w∈W ,
( fwi)w∈W,i∈N ,(ti)i∈N ,(p

i
)i∈N ,(pi)i∈N〉 be a newsvendor situation with warehouses

and pricing, such that the cost functions are linear, i.e., for every w ∈ W there is a
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constant cw such that kw(q) = cwq for every q ∈R+. Then 〈N,νΓ wp

1 〉 and 〈N,νΓ wp

2 〉
both have a nonempty core.

The following theorem considers newsvendor situations with one warehouse and
nonlinear cost functions.

Theorem 5.4.14 (Chen 2009). Let Γ wp = 〈N,W,(Zi)i∈N ,(αi)i∈N ,(βi)i∈N ,(kw)w∈W ,
( fwi)w∈W,i∈N ,(ti)i∈N ,(p

i
)i∈N ,(pi)i∈N〉 be a newsvendor situation with warehouses

and pricing, such that |W |= 1 and such that, for every w ∈ W, the cost function kw

satisfies the following three properties:

1. q �→ kw(q)/q is nonincreasing
2. kw is lower semicontinuous
3. kw(q)→ ∞ if q → ∞

Then 〈N,νΓ wp

1 〉 has a nonempty core. If moreover there exists constants fw,w ∈ W,
such that fwi = fw for every w ∈ W and i ∈ N, and a constant t such that ti = t
for every i ∈ N, i.e., the transportation and penalty costs do not depend upon the
retailers, then 〈N,νΓ wp

2 〉 has a nonempty core as well.

We remark that this theorem considers situations with a single warehouse and
symmetric revenue functions. This result does not hold for games with multiple
warehouses even under concave cost functions. In a counterexample, Chen and
Zhang (2009) showed that the core of these games with concave ordering cost can
be empty. On the other hand, they still managed to show that the core of the game is
nonempty if the solution of the dual problem satisfies certain sufficient conditions.

A second generalization of newsvendor games with warehouses considers
the revenue side. Özen et al. (2009) considered a general framework to
study cooperation under uncertainty. This framework covers the general
newsvendor situations with warehouses. Such a situation is a tuple Γ gw = 〈N,W,
(Zi)i∈N ,(Xi)i∈N ,k,(Hi)i∈N〉 where N, W , (Zi)i∈N , and (Xi)i∈N are as before and

1. k : RW →R is a positively homogeneous convex function.
2. Hi : RW ×ϒ {i} →R is for every i ∈ N a function such that Hi(·,xi) is concave for

every xi ∈ϒ {i}. As before, the set ϒ {i} denotes the set of realizations of random
variable Xi.

In order to define the corresponding cooperative game again let S ⊆ N, let qS ∈ QS

be a joint order vector, and let AS ∈ MS(qS) be an allocation of this joint order. The
coalition’s total revenue in state of the world ω is

RS(AS,ω) = ∑
i∈S

Hi((A
S
wi)w∈W ,Xi(ω)). (5.17)

For every ω ∈ Ω , let allocation AS,∗(ω) ∈ MS(qS) be a maximizer of (5.17). The
expected profit function of coalition S is defined as

π̃S(qS) = E
[
RS(AS,∗(·), ·)]− k(qS).
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The general newsvendor game with warehouses is given by the characteristic
function νΓ gw

: 2N → R, defined by

νΓ gw
(S) = max

qS∈QS
π̃S(qS) for all S ⊆ N.

Theorem 5.4.15 (Özen et al. 2009). Every general newsvendor game with ware-
houses has a nonempty core.

5.4.6 Other Results on the Core

Several other aspects of cooperative newsvendor games are studied in the literature.
For instance, Hartman and Dror (2003) studied the cost game among the retailers
with normally distributed and correlated individual demands. In their game, the
value of a coalition is a function of the covariance matrix and each coalition can
manipulate the correlations to minimize costs. They use a greedy approach and
the nucleolus, which is a one-point solution concept for TU games introduced
by Schmeidler (1969) that always selects a core element whenever one exists, as
solution. Burer and Dror (2011) extended their analysis and provided a closed form
solution for this optimization problem and the nucleolus of the game.

Hartman and Dror (2005) studied newsvendor cost games with nonidentical
holding and penalty costs. After showing that the core of these games might be
empty, they derived the conditions under which such a game will be subadditive.

Özen et al. (2012a) studied newsvendor games with delivery restrictions. In their
model, every retailer poses a constraint on the allocation of the joint orders to
guarantee supply if their realized demand is high. After showing that the core of
these games is nonempty, they investigated whether the core of these games satisfies
certain monotonicity properties under dynamic system parameters.

Özen et al. (2012b) considered an extension of general newsvendor games, in
which the allocation of the joint orders takes place after the retailers receive a
demand signal and update their forecasts (not necessarily after demand realization).
They studied two types of cooperation. In the first type of cooperation, the retailers
allocate the joint order after sharing their updated forecasts. In a counterexample,
it has been shown that collaboration with forecast sharing can harm the coalition
if the retailers have asymmetric forecasting capabilities. In these cases, stability of
the grand coalition is not guaranteed. However, if the retailers possess symmetric
forecasting capabilities, the core of the associated game is nonempty. In the second
type of cooperation, the retailers enroll in joint forecasting activities by sharing
market information and the joint order is allocated using the joint forecasts. For
the related games, the core is nonempty.
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5.4.7 Other Approaches and Related Models

Finally, we review some papers studying other (partial) cooperative models of
decentralized distribution systems.

Anupindi et al. (2001) studied a two-stage model where in the first stage the
retailers decide on the order quantities noncooperatively, whereas, in the second
stage, they cooperate by sharing their excess demand or supply through lateral
transshipment. They showed that the second stage cooperative game has a nonempty
core and a core allocation can be derived using dual prices of the transshipment
problem. Moreover, they showed that a profit-allocation mechanism based on these
dual prices can coordinate the system by inducing the retailers to order system
optimal quantities.

Anupindi et al. (2001) assumed that retailers share all of their available excess
demand or supply with other retailers in the second stage. Granot and Sošić (2003)
relaxed this assumption by introducing an intermediate stage to the model, in which
retailers decide noncooperatively on how much of their excess demand or supply
to share with other retailers. They showed that a core allocation mechanism may
not induce the retailers to share their entire excess amounts, which reduces system
profit. On the other hand, the Shapley value and the fractional rule have this property
but they are not necessarily in the core.

Dror and Hartman (2007) studied cost allocation in a multiple product inventory
system, when consolidation of shipments is possible. They constructed a cooperative
game and showed conditions for the core to be nonempty and then examined the
sensitivity of these conditions to the parameters of the model.

Recently another stability concept, namely farsighted stability (Chwe 1994),
has received attention in several papers. Different from the core concept, which
only considers immediate deviations from the grand coalition, farsighted stability
considers further deviations that the players can take as a reaction to a previous
deviation. Hence, a farsighted player would consider these further deviations that
can take place before deciding to deviate from the grand coalition. If the outcome of
these series of deviations is not beneficial, the player would not deviate in the first
place even if it improves his position temporarily, i.e., in myopic sense. Building
on the results of Anupindi et al. (2001) and Granot and Sošić (2003), Sošić (2006)
studied the Shapley value, which does not necessarily result in core allocations.
Sošić (2006) showed that the Shapley value allocations are stable in farsighted
sense. Kemahlioğlu-Ziya and Bartholdi (2011) considered a group of retailers who
share a common supplier who keeps separate stock for each retailer and bears all
of the inventory risk. They investigated the cooperative game, in which the players
can form inventory-pooling coalitions instead of keeping separate stocks and hence
increase total profit. They proposed a mechanism based on the Shapley value and
showed that its allocation is stable in farsighted sense. Finally, they focus on the
retailers’ collusion against the supplier, which, contrary to intuition, turns out to be
not always profitable for the retailers.
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Hanany and Gerchak (2008) studied newsvendor cooperation in a non-TU
(nontransferable utility) game framework. In their model, the retailers negotiate
on the inventories they want to keep and their entitlements on these inventories
in a shortfall situation. Therefore, they cooperate only exchanging inventories but
not money. They study the outcome of this cooperation under the Nash bargaining
solution and for different risk profiles of the retailer, i.e., risk neutral and risk averse.

Techniques similar to the ones described in this survey have been applied by
Anily and Haviv (2010) to a queueing model where servers may improve the
efficiency of the system by pooling their service capacities.

5.5 Conclusion and Future Research

In this survey, we reviewed the papers studying inventory cooperation using
newsvendor models and focusing on the core concept. The fundamental question is
whether the anticipated benefits can allow a stable collaboration to be formed. This
question is answered affirmatively by studying the core of the associated games for
the basic newsvendor models and the extensions we discussed here. However, there
are several questions that are open for further study.

Although it has been shown (by either identifying a core element or showing that
the game is balanced) that the core of cooperative newsvendor games is nonempty,
not much has been done on how one of these core allocations should or would
be selected. It would make an interesting research direction to investigate the
characteristics (e.g., computational complexity or other fairness arguments that the
retailers might ask for) that the core elements or other know solution concepts (e.g.,
the nucleolus and the Shapley value) satisfy.

In the analysis of retailers’ cooperation, it is assumed that there exist binding
agreements between the retailers once they form a coalition (which is a main
assumption in cooperative game theory). However, this type of collaboration would
involve coordination of participants’ actions and sharing of private information in a
cooperative fashion. Although economical benefits might be enough to motivate the
retailers to participate in these actions, there might be other factors or mechanisms
that might lead to this type of collaboration. One such example is given by Özen
et al. (2008), which is also reviewed in Sect. 5.4.4. They showed that a profit-sharing
contract with the rates determined by a core allocation can induce the retailers
to coordinate their actions and form the grand coalition. There might be other
classes of contracts with similar properties. Moreover, proper penalty and review
strategies can be devised as the retailers are in a committed long-term cooperation
(see e.g., Ren et al. 2010). Finally, there might be other sociological mechanisms in
effect. For example, even in the absence of any incentive compatible mechanism,
it has also been argued in the literature (see Maskin and Riley 1984; Crawford and
Sobel 1982; Crawford 1998) that effective information sharing and coordination
can be achieved through cheap talk if the parties share enough common interests.
In another example paper, Özer et al. (2011) studied the role of trust in supply
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chain cooperation. Detailed modeling of retailers’ interactions and further analysis
of incentive mechanisms in this cooperative context would make an interesting
research direction.
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Chapter 6
Inventories and Stock-out Costs
in the Price-Setting Newsvendor:
An Economic Interpretation

Miguel Ampudia and Michael A. Salinger

Abstract According to the Lerner rule, a firm’s profit-maximizing price under
certainty can be characterized with just two parameters: marginal cost and the
elasticity of demand. Salinger and Ampudia (Salinger, M. A., & Ampudia, M.
(2011). Simple economics of the price-setting newsvendor problem. Managament
Science, 57, 1996–1998.) showed that in the most basic version of the price-setting
newsvendor (i.e., with no inventories or stock-out costs), the Lerner rule applies
with suitable modifications to the definition of marginal cost and the elasticity of
demand. This chapter extends that result to the more general version of the price-
setting newsvendor problem that allows for stock-out costs and for unsold output to
have some residual value as inventory. This extension suggests that the Lerner rule
characterization can be a unifying framework for a wide variety of extensions to the
price-setting newsvendor problem.

Keywords Newsvendor problem • Demand uncertainty • Mark-ups • Invento-
ries • Lerner relationship

6.1 Introduction

In the simplest version of the newsvendor problem, a firm must choose its price
and output while facing uncertain demand. Output is completely perishable, so
the firm cannot carry forward any excess product to be sold in future periods, and
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unsatisfied demand imposes no cost other than the opportunity cost of a foregone
profit opportunity. This version of the problem—henceforth, the “simple version”—
can bring essential features of the solution into sharp relief. But, as is clear from
the vast literature on extensions to the problem,1 the need to commit to both price
and output in the face of demand uncertainty is present in a far wider set of
circumstances than the assumptions underlying the simple version.

A striking feature of the existing literature on the newsvendor problem is that
while it contains technically correct solutions for a wide range of extensions, it has
lacked a simple characterization of the solutions. Recently, however, Salinger and
Ampudia (2011) have provided such a characterization for the simple version by
generalizing the Lerner rule under certainty (Lerner 1934) to allow for uncertain
demand. Under certainty, a firm’s profit-maximizing price depends on just two
factors, marginal cost and the elasticity of demand. Salinger and Ampudia show
that the same formula applies in the simple version with suitable generalizations of
the relevant elasticity and marginal cost. Specifically, they show that the relevant
elasticity is the elasticity of the average quantity sold2 with respect to price and that
the relevant marginal cost is the expected marginal cost of an expected unit sold (as
distinct from the marginal cost of a unit produced).3

In this chapter, we show that the generalized Lerner relationship can serve as a
unifying principle for characterizing and understanding how generalizations to the
simple version affect the solution. Specifically, we derive the generalized Lerner
relationship that accounts for two of the most thoroughly analyzed extensions of
the problem. We allow for the possibilities that unsold output retains some residual
value (presumably as inventories) and that the firm incurs a cost of unsold output in
addition to the opportunity cost of the lost sale.4 These “stock-out costs” reflect a
loss in reputation that presumably affects future demand.5 Inventory and stock-out
costs affect the solution through the expected marginal cost of an expected unit sold.

1See Porteus 1990, Petruzzi and Dada 1999, 2009, and Khouja, 1999, for excellent reviews on
these and other variants of the newsvendor problem.
2As we discuss in more detail below, the elasticity of the average quantity sold with respect to price
reflects a weighted average over demand states, with the probabilty of selling all output being the
weight for the demand state in which consumers demand exactly the quantity produced.
3As is discussed in more detail below, both factors reflect specific assumptions about how price
changes in conjunction with changes in output.
4There are other possible extensions. For example, we maintain the assumption that the newsven-
dor is risk neutral and therefore seeks to maximize expected profits. Other possible extensions
include allowing for an objective function other than expected profit maximization (Arcelus
et al. 2012; Wang et al. 2009; Choi and Chiu 2010; Yang et al. 2011) and uncertainty in costs
(Tang et al. 2011).
5They could also reflect direct costs to the extent that the firm has an obligation to supply.
For example, a store that advertises a good at particular price might have an obligation to
satisfy demand in some way; and doing so might prove costly. Stock-out costs are likely to be
particularly important in extending newsvendor analysis to oligopolistic industries. See Krishnan
and Winter 2007. For an empirical estimate of stock-out costs, see Matsa 2011.
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They do not affect the relevant elasticity (and, therefore, the mark-up over marginal
cost).

The result might be surprising at first. To the extent that uncertainty in demand
affects the optimal price, it necessarily affects either marginal cost or the mark-up
over marginal cost. Inventory costs and stock-out costs are associated with output
the firm does not sell. One normally associates marginal cost with the cost of output
the firm does sell. Thus, one might expect the effect of unsold output to enter the
price through the mark-up. But the Lerner rule under uncertainty reveals the sense
in which the cost of unsold output can be part of the marginal cost that enters the
optimal pricing formula.

One of the long-standing puzzles in the literature on the price-setting newsvendor
is the different qualitative effects of additive and multiplicative uncertainty on the
optimal price (Mills 1959; Karlin and Carr 1962). Salinger and Ampudia resolve
this puzzle for the simple version by showing how the form of uncertainty affects
the two factors needed to characterize the optimal price. Holding the probability of
satisfying all demand constant, additive uncertainty is fixed with respect to which
price–output combination the firm chooses. As a result, additive uncertainty does
not affect the marginal cost of an expected unit sold. It does, however, increase the
elasticity of the average quantity sold with respect to price, so it lowers the optimal
mark-up over marginal cost. In contrast, multiplicative uncertainty increases the
marginal cost of an expected unit sold but does not affect the elasticity of the average
quantity sold with respect to price or the mark-up. As we show in this chapter,
the resolution of the uncertainty puzzle that the generalized Lerner rule reveals
for the simple version holds for the extensions considered here. This further
demonstrates the power of the generalized Lerner rule to serve as a unifying
principle behind solutions to different versions of the problem.

6.2 The Model

In the price-setting newsvendor problem with inventories and stock-out costs, a firm
must choose both its price and output before observing random demand. The firm
incurs a constant unit cost, c, for each unit it produces. Each unit it produces but
does not sell has a salvage value, v. In the simple version, v = 0. If v = c, then
the firm suffers no penalty from producing earlier than necessary (in which case,
the problem is no longer within the newsvendor category). A disposal cost implies
v<0. The firm also incurs a stock-out or shortage cost, cs, for each unit demanded
that it cannot supply.
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6.2.1 The Quality Transformation

The standard approach to solving the price-setting newsvendor problem is to make
the quantity produced and the price the two choice variables. While valid, this
approach is not the most useful for assessing the effect of the elasticity of demand on
the solution. Any measure of the sensitivity of demand to price must hold the state
of demand constant.6 In the standard formulation, the derivative of the quantity sold
with respect to price does not hold the state of demand constant and therefore does
not reflect just the sensitivity of demand to price.

Following Salinger and Ampudia, we instead use a “quality factor transfor-
mation,” which is a generalization of the “stocking factor transformation.” In
the price-setting newsvendor literature, the “stocking factor” refers to an amount
(either absolute in the case of additive uncertainty or a percentage in the case of
multiplicative uncertainty) by which production exceeds “deterministic demand.”7

A stocking factor approach to the solution is to substitute the stocking factor for the
quantity produced as a choice variable. Given additive (multiplicative) uncertainty,
the additive (multiplicative) stocking factor determines the probability of being
able to satisfy all demand, which is a dimension of quality. Salinger and Ampudia
generalize the approach by making the probability of satisfying all demand a
choice variable.8 That approach is equivalent to the stocking factor approach for
the cases of additive or multiplicative uncertainty, but does not require any specific
assumption about the form of uncertainty.9

To implement this approach, let Q(ε ,p) be the inverse cumulative distribution
function for the quantity demanded conditional on p, where p is price and ε is
a random variable uniformly distributed between 0 and 1 with ∂Q/∂ε > 0 and
∂Q/∂ p < 0.10 Let x be output. The firm sells x if Q(ε, p)≥ x and Q(ε ,p) otherwise.

Let ε∗ be the probability that x is sufficient to satisfy all demand. The equation
that implicitly defines ε∗ is:

x = Q(ε∗, p) . (6.1)

Using (6.1) to substitute for x and defining the expected quantity the firm sells,
Q̄(ε∗, p), and average demand, D̄(p), as:

6“Constant” can refer to a single state of demand or an average across a distribution of states.
7See Ernst 1970, Thowsen 1975, Petruzzi and Dada 1999, Petruzzi et al. 2009.
8Salinger and Ampudia refer to this as a “general stocking factor approach.” Because the stocking
factor typically refers to a physical quantity, “quality transformation” is a better characterization
of the approach.
9See also Raz and Porteus (2006) fractile approach, which is a discrete approximation to the
generalized stocking factor approach.
10The assumption that ε is uniformly distributed is a consequence of Q(ε , p) being an inverse
cumulative distribution function. It does not impose any particular form of the distribution function
itself.
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Q̄(ε∗, p) = Q(ε∗, p) (1− ε∗)+
ε∗∫

0

Q(ε; p)dε (6.2)

D̄(p) =
∫ 1

0
Q(ε, p)dε. (6.3)

The expected profit function is:

E[π ] = (p−c)Q̄(ε∗, p)−(c−v)[Q(ε∗, p)− Q̄(ε∗, p)]−cs[D̄(p)− Q̄(ε∗, p)]. (6.4)

In (6.4), the first term is expected sales multiplied by the margin between price and
the direct cost of producing the units sold. It resembles the profit function under
certainty except that the expected quantity sold substitutes for the deterministic
quantity sold (and produced). The second term, the expected cost of unsold output,
is the expected quantity of unsold output multiplied by the cost per unit of unsold
output. The third term is the expected cost of unsatisfied demand, estimated as the
expected quantity of unsatisfied demand multiplied by the cost per unit of unsatisfied
demand.

6.2.2 First-Order Conditions

The first order conditions for profit maximization are:

∂E[π ]
∂ε∗

= (p− c)
∂Q(ε∗, p)

∂ε∗
− (c− v)

[
∂Q(ε∗, p)

∂ε∗
− ∂Q(ε∗, p)

∂ε∗

]
+ cs

∂Q(ε∗, p)
∂ε∗

= 0

(6.5)

∂E[π ]
∂ p

= Q̄(ε∗, p)+ (p− c)
∂ Q̄(ε∗, p)

∂ p
− (c− v)

[
∂Q(ε∗, p)

∂ p
− ∂ Q̄(ε∗, p)

∂ p

]

−cs

[
dD̄(p)

dp
− ∂ Q̄(ε∗, p)

∂ p

]
= 0. (6.6)

Because ∂ Q̄(ε∗,p)
∂ε∗ = (1− ε∗) ∂Q(ε∗,p)

∂ε∗ , (6.5) implies:

ε∗ =
p− c+ cs

p− v+ cs
, (6.7)

which is the familiar condition for the critical fractile in the classic (i.e., with fixed
prices) newsvendor problem with inventory and stock-out costs.

Equation (6.6) is the basis for the generalized Lerner Index and, as a result, merits
detailed examination. Because it is the partial first order condition with respect
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to p holding ε∗ constant, the quantity produced (x) changes as p changes. More
precisely, the change in output associated with a price change reflects the derivative
of demand with respect to price in the state of demand associated with the critical
fractile. Because it reflects the simultaneous change in price and output determined
by the associated change in demand, this first order condition corresponds more
nearly to the first order condition under certainty that gives rise to the Lerner
relationship. However, except in the special case of additive uncertainty (which
we discuss below), the effect of price on demand varies across states. Since the
change in output has to be geared to a single state, the amounts of unsold output and
unsatisfied demand and the associated costs vary across states.

The first two terms in (6.6) are the derivative of the first term in (6.4). The first
term is the effect of a change in price on revenue holding expected quantity constant.
The second term is the margin between price and direct production cost on the
change in the expected quantity sold. Together, they resemble the derivative of the
profit function with respect to price under certainty except that expected demand
and its partial derivative with respect to price substitute for deterministic demand
and its derivative.

The third term in (6.6) is the derivative of the second term in (6.4), which
reflects the expected cost of unsold output. The term reflects the sense in which
the cost of unsold output is part of the marginal cost of an expected unit sold. The
Lerner rule under certainty is a reformulation of the firm’s optimal choice of output.
Under certainty, however, a change in output is necessarily accompanied by a price
reduction dictated by the demand curve. Because of the quality transformation, (6.6)
captures simultaneous changes in price and quantity. The rate at which output varies
with price is driven by demand in the critical fractile. Because the sensitivity of
demand to price can vary across states, the decision to lower price and increase
output along the critical fractile can change the expected amount of unsold output.
This change in unsold output associated with a change in output is a component of
the marginal cost of a unit sold to be added to the direct cost of a unit sold.

The fourth term in (6.6) reflects the marginal cost of unsatisfied demand. It is a
component of marginal cost for the same reason that the cost of unsold output is part
of marginal cost. To the extent that the sensitivity of demand to price in the high-
demand states is different than in the critical fractile, a simultaneous change in price
and output along the critical fractile changes the expected amount of unsatisfied
demand and must therefore be included as a marginal cost of an expected unit sold.

6.2.3 Deriving the Lerner Condition

Under certainty, the Lerner condition follows from two basic principles. First,
at the profit-maximizing output, marginal revenue equals marginal cost. Second,
(everywhere), marginal revenue equals p(1 + 1/η), (where, η is the elasticity
of demand). Equation (6.1) follows from equating this alternative expression for
marginal revenue to marginal cost.
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The same principles apply under uncertainty, with one qualification. The standard
definition of marginal revenue is the additional revenue from selling one more unit
of output (taking account of the price reduction needed to do so). The standard
definition of marginal cost is the incremental revenue from producing an extra unit.
Under certainty, the quantity produced equals the quantity sold, so distinguishing
between an additional unit sold and an additional unit produced is unnecessary. But
under uncertainty, the distinction matters.

As when demand is certain, at the optimal quantity produced with uncertain
demand, the expected marginal revenue from an additional unit produced equals
the expected marginal cost of an extra unit produced. However, since the production
of an extra unit does not necessarily entail the sale of an extra unit, the expected
marginal revenue from an additional unit produced has to reflect the expected
increase in the quantity sold, which might be different from 1. Similarly, under
uncertainty, at the optimal price and quantity produced, the marginal expected
revenue from an additional expected unit sold equals the expected marginal cost of
an expected unit sold. However, whenever an extra unit produced does not generate
an extra expected unit sold, the additional quantity produced needed to sell an
additional unit on average is different from 1. The marginal cost of an additional unit
sold has to reflect the actual additional production associated with an extra expected
unit sold. In summary, at the optimum under uncertainty, marginal revenue equals
marginal cost on both a consistent per unit produced and a consistent per unit sold
basis; but, the marginal revenue from an additional unit sold does not necessarily
equal the marginal cost of an extra unit produced.

The standard definitions of marginal revenue and marginal cost are both with
respect to changes in quantity. Equation (6.6) is a partial first order condition with
respect to price. One can transform it into a condition on changes in quantity by
dividing it by either ∂ Q̄ (ε∗, p)/∂ p or ∂Q(ε∗, p)/∂ p. Because the objective is to
characterize the optimal price, which is revenue per unit sold, the former is more
convenient:

Q̄(ε∗, p)

∂ Q̄(ε∗, p)
∂ p

+ p−

⎧⎪⎪⎨
⎪⎪⎩

c+
(c− v)

[
∂Q(ε∗, p)

∂ p
− ∂ Q̄(ε∗, p)

∂ p

]
+ cs

[
dD̄(p)

dp
− ∂ Q̄(ε∗, p)

∂ p

]

∂ Q̄(ε∗, p)
∂ p

⎫⎪⎪⎬
⎪⎪⎭

= 0.

(6.8)

Letting ηA = ∂ Q̄(ε∗,p)
∂ p

p
Q̄(ε∗,p) , the first two terms of (6.8) can be written as

p
(
1+ 1/ηA

)
, which is the expected additional revenue from an additional expected

unit sold. The term in brackets is the expected marginal cost of an expected unit
sold. It is the sum of two terms. The first is c, the direct marginal cost of an extra
expected unit sold. The second is a fraction that reflects the marginal cost of both
unsold output and unsatisfied demand. Because both marginal revenue and the direct
production cost of sold output is on a per expected unit sold basis, the marginal costs
of unsold output and of unsatisfied demand must also be on a per expected unit sold
basis in order to be comparable. The numerator of the fraction reflects changes in the
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quantities produced, demanded, and sold associated with price changes. Dividing
these costs by the derivative of the expected quantity sold with respect to price puts
these marginal cost factors on a per expected unit sold basis.

Letting C(ε∗, p) be the term in brackets in (6.8) (i.e., marginal cost of an expected
unit sold given that the firm changes output with price to preserve the probability of
being able to satisfy all demand), then (6.8) implies:

p−C(ε∗, p)
p

=− 1
ηA

. (6.9)

Equation (6.9) is the generalization of the Lerner relationship to the price-setting
newsvendor problem with inventories and stock-out costs.

6.3 Special cases

As described in the introduction, the different qualitative effects of additive and
multiplicative uncertainty in the “simple price-setting newsvendor” problem arise
because of their different effects on the marginal cost of an expected unit sold and
the elasticity of the average quantity sold with respect to price. In this section,
we demonstrate that the insight still applies with the more general version of the
problem.

6.3.1 Additive Uncertainty

With additive uncertainty, Q(ε, p) = q(p) +Φ(ε), where q(p) is a deterministic
demand function and Φ(ε) is an inverse cumulative distribution function. As a

result, ∂Q(ε,p)
∂ p = ∂Q(ε∗,p)

∂ p ∀ε , which implies that the term in brackets of (6.8) reduces
to c, the marginal cost of producing an additional unit. The cost of unsold output
remains a cost of doing business, but it is a fixed cost in that when the firm lowers
price and increases output so as to hold the probability of being able to meet all
demand constant, the amount (and therefore the cost associated with) unsold output
does not change.

Also,

ηA =
p

q(p)+ Φ̄(ε∗)
, (6.10)

where Φ̄(ε∗) = Φ(ε∗)(1 − ε∗) +
∫ ε∗

0 Φ(ε)dε . Thus, consider a mean-preserving
spread of the distribution around ε∗ so that that both low demand states and stocked-
out states become more probable. Because the slope of the demand curve is constant
across states, the change in the distribution of demand does not affect the slope of
the average quantity sold with respect to price. It does, however, lower the average
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quantity sold because the additional probability of the high demand states does not
generate additional sales whereas the additional probability of low demand states
results in lower sales.

As a result, the elasticity of the average quantity sold with respect to price
increases. In turn, the increase in the average elasticity reduces the optimal mark-up
of price over marginal cost.

6.3.2 Multiplicative Uncertainty

With multiplicative uncertainty,

Q(ε, p) = q(p)Ψ(ε), (6.11)

where q(p) is a deterministic demand function and Ψ(ε) is an inverse cumulative
distribution function with E[Ψ(ε)] = 1. Equation (6.11) implies:

Q(ε∗, p) = q(p)Ψ(ε∗), (6.12)

Q̄(ε∗, p) = q(p)
[
Ψ(ε∗)(1− ε∗)+

∫ ε∗
0 Ψ(ε)dε

]
= q(p)Ψ̄(ε∗), (6.13)

and,

∂ Q̄(ε∗, p)
∂ p

= q′(p)

[
Ψ (ε∗)(1− ε∗)+

∫ ε∗

0
Ψ(ε)dε

]
= q′(p)Ψ̄ (ε∗). (6.14)

Also, since E [Ψ (ε)] = 1,

D̄(p) = q(p). (6.15)

Using (6.13) and (6.14), the elasticity of the average quantity sold with respect
to price (ηA) is:

ηA =
pq′(p)Ψ̄ (ε∗)
q(p)Ψ(ε∗)

=
pq′(p)
q(p)

. (6.16)

Equation (6.16) implies that at a given price, the elasticity of the average quantity
sold with respect to price is independent of the distribution of Ψ(ε), which in turn
implies that a mean-preserving spread of Ψ (ε) around ε∗ would not alter the mark-
up of the optimal price over the bracketed term in (6.8), which is the marginal cost
of an expected unit sold.

Turning attention to that bracketed term, (6.12)–(6.15) imply that it reduces to:

c+
(c− v)[Ψ(ε∗)−Ψ̄(ε∗)]+ cs[1−Ψ̄(ε∗)]

Ψ (ε∗)
. (6.17)
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Since the only effect of a mean-preserving spread around ε∗ on (6.17) would be
a reduction in Ψ̄(ε∗), increased multiplicative uncertainty raises the marginal cost
of an expected unit sold by increasing both the unsold output and unmet demand
components of marginal cost.

6.4 Conclusions

The generalized Lerner rule characterization of the solution to the simple version
of the price-setting newsvendor extends to a more general setting and the extension
demonstrates the power of this characterization to serve as a unifying principle for
understanding solutions to variants of the problem. In addition to those cited in the
introduction, a particularly important extension would be to place the price-setting
newsvendor explicitly in a market setting.11

Under certainty, the Lerner rule is simply a restatement of the principle that the
profit-maximizing output for a firm is where marginal revenue equals marginal cost,
recognizing that the firm needs to cut prices to sell extra output. If the firm does not
have to cut price at all, it gets the entire price as marginal revenue from an additional
unit sold. More generally, the (perhaps negative) fraction of the price that it retains
as marginal revenue depends on how much it has to cut price to stimulate demand,
and that in turn depends on the elasticity of demand.

The Lerner rule generalizes to the price-setting newsvendor because much of the
same logic applies, but uncertainty about demand adds a complication. The Lerner
rule reflects how the firm optimally picks the feasible price–quantity combinations
along a demand curve. But the increase in demand due to a price decrease varies
across states, so the question arises as to how to assess the relevant price–quantity
trade-off.

A key part of the solution lies with the critical fractile. Holding price constant,
the critical fractile is the demand state that determines the optimal output. Thus, in
the analysis of whether increasing output by a unit increases expected profits, it is
useful to think of the associated price cut as being determined by the demand curve
defined by the critical fractile. But, to the extent that the (absolute) sensitivity of
demand to price varies across demand states, that price reduction can generate a
change in demand that is different from the change in output, which in turn affects
both the amount of unsold output and unsatisfied demand.

11While the Lerner rule under certainty and the extensions to uncertainty developed here apply
to any firm provided that the demand parameters and uncertainty are understood as those facing
the individual firm, explicitly modeling the link between market demand uncertainty and the
uncertainty facing an individual firm would greatly extend the scope for practical application.
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Appendix

Second Order Conditions and Comparative Statics

The second order conditions for a maximum are:

∂ 2E [Π ]

∂ p2 = 2
∂ Q̄(ε∗, p)

∂ p
+ p

∂ 2Q̄(ε∗, p)
∂ p2 − c

∂ 2Q(ε∗, p)
∂ p2

+v

⎡
⎣ε∗

∂ 2Q(ε∗, p)
∂ p2 −

ε∗∫
0

∂ 2Q(ε, p)
∂ p2 dε

⎤
⎦

−cs

⎡
⎣

1∫
ε∗

∂ 2Q(ε; p)
∂ p2 dε − (1− ε∗)

∂Q2 (ε∗, p)
∂ p2

⎤
⎦< 0 (A.1)

∂ 2E [Π ]

∂ p2

∂ 2E [Π ]

∂ε∗2 −
[

∂ 2E [Π ]

∂ p∂ε∗

]2

> 0, (A.2)

where:
∂ 2E [Π ]

∂ε∗2 =−(p− v+ cs)
∂Q(p,ε∗)

∂ε∗

and
∂ 2E [Π ]

∂ p∂ε∗
= (1− ε∗)

∂Q(p,ε∗)
∂ε∗

.

Let Eπ .. denote second derivatives. The comparative statics for price with respect to
c is:

dp
dc

=−
Eπpc− Eπpε∗Eπε∗c

Eπε∗ε∗

Eπpp −
Eπ2

pε∗

Eπε∗ε∗

, (A.3)

where

Eπpc =
∂ 2E [Π ]

∂ p∂c
=−∂Q(ε∗, p)

∂ p
.

The comparative statics with respect to v and cs are, respectively,

dp
dv

=−
Eπpv− Eπpε∗Eπε∗v

Eπε∗ε∗

Eπpp−
Eπ2

pε∗

Eπε∗ε∗

(A.4)
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and

dp
dcs

=−
Eπpcs −

Eπpε∗Eπε∗cs

Eπε∗ε∗

Eπpp−
Eπ2

pε∗

Eπε∗ε∗

, (A.5)

where

Eπpv =
∂ 2E [Π ]

∂ p∂v
= ε∗

∂Q(ε∗, p)
∂ p

−
ε∗∫

0

∂Q(ε, p)
∂ p

dε

and

Eπpcs =
∂ 2E [Π ]

∂ p∂cs
=−

1∫
ε∗

∂Q(ε; p)
∂ p

dε +(1− ε∗)
∂Q(ε∗, p)

∂ p
.
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Chapter 7
Newsvendor Models with Alternative Risk
Preferences Within Expected Utility Theory
and Prospect Theory Frameworks

Charles X. Wang, Scott Webster, and Sidong Zhang

Abstract Newsvendor models are widely used in the literature, and usually based
upon the assumption of risk neutrality. Recently there is a growing body of literature
that attempts to use alternative risk preferences rather than risk neutrality to describe
the newsvendor decision-making behavior. In this chapter, we provide an overview
of newsvendor models with alternative risk preferences within the expected utility
theory and prospect theory frameworks and identify some directions for future
research.

Keywords Expected utility theory • Prospect theory • Risk aversion • Loss
aversion • Newsvendor model • Behavioral operations management

7.1 Introduction

The single-period newsvendor model is one of the fundamental models in inventory
management. In the classical newsvendor model setting, a newsvendor who sells a
short life-cycle product with uncertain demand must decide how many products to
order before the season begins. If realized demand is higher than the initial order
quantity, the newsvendor will face lost sales, whereas if realized demand is lower
than the initial order quantity, the newsvendor will liquidate all unsold products
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at a lower salvage value. With the current business trends of shortening product
life-cycles, increasing product variety, and frequent new product introductions, the
single-period newsvendor model has been applied to a large variety of products,
including books, consumer electronics, food, fashion apparel, personal computers,
and toys, etc.

The classical newsvendor model is based upon risk neutrality, meaning that
a manager will place an order to maximize the expected profit or minimize the
expected cost. However, in practice, there is much evidence that managers’ inven-
tory decisions are not always consistent with profit maximization. For example,
Fisher and Raman (1996) observe that a fashion apparel manufacturer orders
systematically less than the profit-maximizing order quantity; Patsuris (2001)
reports that despite the bad economy in 2001, many retailers continue to order
more unnecessary supply; and Schweitzer and Cachon (2000) have designed two
experiments to test the newsvendor’s risk preferences and they find subjects’ order
decisions systematically deviate from profit maximization. Therefore, studying
newsvendor models with alternative risk preferences is important.

Recently, we have seen two growing bodies of literature that attempts to use
alternative risk preferences to describe newsvendor decision biases from the risk-
neutral newsvendor. First, within the expected utility theory (hereafter, EUT)
framework in the field of classical economics, some researchers have studied the
risk-averse newsvendor problem (e.g., Agrawal and Seshadri 2000; Eeckhoudt
et al. 1995; and Wang et al. 2009). Second, within the prospect theory (hereafter, PT)
framework in the field of behavioral economics, some researchers have studied the
loss-averse newsvendor problem (e.g., Wang and Webster 2007, 2009; Wang 2010).
As far as we know, there is a lack of unified framework for the newsvendor models
with alternative preferences within these two frameworks. In view of this, the main
purpose of this chapter is threefold: (1) we summarize the key research findings
in newsvendor models with risk-averse and loss-averse preferences within EUT
and PT frameworks and explain associated newsvendor decision biases; (2) we
provide fairly comprehensive surveys of related newsvendor models within EUT
and PT frameworks; and (3) we identify some directions for future research on the
newsvendor models with alternative risk preferences within and beyond EUT and
PT frameworks.

This chapter is organized as follows. In Sect. 7.2, we provide brief overviews of
EUT and PT frameworks within which we introduce our definitions of risk aversion
and loss aversion for studying the newsvendor problem. In Sect. 7.3, we study a
general newsvendor model with the risk-averse preference in EUT and provide a
survey of related research. In Sect. 7.4, we consider a general newsvendor model
with the loss-averse preference in PT and provide a review of related research.
Finally, in Sect. 7.5, we offer our concluding remarks and suggest opportunities
for future research on the newsvendor problem with alternative risk preferences.
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7.2 Overviews of Expected Utility Theory
and Prospect Theory

In Sect. 7.2.1, we provide an overview of the EUT framework and introduce
the definition of risk aversion. In Sect. 7.2.2, we provide an overview of the PT
framework and introduce the definition of loss aversion.

7.2.1 Risk Aversion in EUT

EUT is concerned with choices among risky prospects with uncertain outcomes. It
may be traced back to Bernoulli (1954) in response to the famous St. Petersburg
paradox. Later, the development of EUT with a set of appealing axioms on
preference by von Neumann and Morgenstern (1944) provided the basis for most
subsequent analysis of decision-making behavior under uncertainty. Today, EUT
is one of the fundamental theories in classical economics and applied fields such
as finance, marketing, and operations management. For example, the classical
newsvendor model is based upon risk neutrality, one of the risk preferences in EUT.
We refer interested readers to Schoemaker (1982) for a comprehensive review of
EUT.

According to EUT, risk preferences could be classified into three main categories:
(1) a decision maker is risk averse if he prefers the expected monetary payoff over a
lottery; (2) a decision maker is risk loving if he prefers the lottery over its expected
monetary payoff; and (3) a decision maker is risk neutral if he is indifferent between
a lottery and its expected monetary payoff. Since the risk-neutral newsvendor model
is well known in the literature and the risk-taking newsvendor model is very rare,
we are more interested in the risk aversion preference in EUT. Below we introduce
a formal definition of risk aversion in EUT.

Definition 1 (Risk Aversion). Let U(W ) be the decision maker’s utility function
over the final wealth level W where U(W ) is twice differentiable. Then the decision
maker is risk averse if the following two assumptions hold:

A1: U ′(W )> 0 for all W .
A2: U ′′(W )< 0 for all W .

Assumption A1 implies that U(W ) is a strictly increasing function of W , meaning
that more wealth is desirable. Assumption A2 implies the diminishing marginal
utility of wealth, i.e., a dollar that helps us avoid poverty is more valuable than a
dollar that helps us become very rich. Assumptions A1 and A2 are commonly used
to describe the risk aversion preference in EUT (see, e.g., Arrow 1971; Pratt 1964).1

1Within the EUT framework, a risk-neutral decision maker’s utility function U(W ) satisfies
U ′(W )> 0 and U ′′(W ) = 0 for all W (i.e., a linear utility function), whereas a risk-loving decision
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We let r(W ) = −U ′′(W )/U ′(W ) denote the well-known Arrow-Pratt measure
of absolute risk aversion (Arrow 1971; Pratt 1964), which measures the insistence
of an individual for more-than-fair bets. Risk-averse utility functions in EUT are
commonly classified into three categories of absolute risk aversion: (1) decreasing
absolute risk aversion (DARA), which states that as an individual becomes wealth-
ier, he will be less risk averse (e.g., logarithmic, mixed exponential, and power
utility functions), (2) increasing absolute risk aversion (IARA), which states that
as an individual becomes wealthier, he will be more risk averse (e.g., quadratic
utility function), and (3) constant absolute risk aversion (CARA), which states
that an individual’s degree of risk aversion is independent of the wealth level (e.g.,
exponential utility function). DARA, IARA, and CARA utility functions have been
used to study the risk-averse newsvendor problem in the literature.

7.2.2 Loss Aversion in PT

In contrast with EUT that is commonly used in classical economics and applied
fields to describe rational decision-making behavior under uncertainty, recently we
have seen a fast development of behavioral economics that incorporates cognitive
and psychological factors to describe irrational decision-making behavior under
uncertainty. Probably the most well-known theory in behavioral economics is
Kahneman and Tversky’s (1979) prospect theory. PT states that people are (1)
more sensitive to changes to a reference point (e.g., wealth) rather than absolute
changes (i.e., reference dependence); (2) more averse to losses than attracted to
same-sized gains (i.e., loss aversion); and (3) risk averse in the domain of gains
and risk loving in the domain of losses (i.e., diminishing marginal sensitivity to
changes with respect to the reference point). We refer interested readers to Bowman
et al. (1999), Kahneman and Tversky (1979), and Köbberling and Wakker (2005)
for comprehensive discussions of PT.

Unfortunately, the general form of PT often makes the newsvendor model
intractable. In view of this, we focus on a simplified piecewise-linear form of PT
defined below, and for simplicity, we refer to such a piecewise-linear PT utility
function as loss aversion.

Definition 2 (Loss Aversion). Let U(W ) be the decision maker’s utility function
over the final wealth level W and let W0 be the reference wealth level. The decision
maker is loss averse if U(W ) is in the following piecewise-linear form:

U(W ) =

{
W −W0 W ≥W0

λ (W −W0), W <W0,
(7.1)

maker’s utility function U(W ) satisfies U ′(W ) > 0 and U ′′(W )> 0 for all W (i.e., a convex utility
function).



7 Newsvendor Models with Alternative Risk Preferences Within Expected. . . 181

W0 W

Loss Aversion

Risk Aversion

U(W)Fig. 7.1 Risk aversion versus
loss aversion

where λ > 1 is defined as the loss aversion coefficient, and a higher value of λ
implies a higher degree of loss aversion.

We note that the piecewise-linear loss-averse utility function defined above
captures two key properties of PT (i.e., reference dependence and loss aversion),
but it does not preserve the diminishing marginal sensitivity property of PT. Due
to its simplicity, it has been commonly used by researchers in economics, finance,
marketing, and operations management (e.g., Barberis and Huang 2001; Bell and
Lattin 2000; Genesove and Mayer 2001; Wang and Webster 2009).

Figure 7.1 below shows the shapes of risk-averse (Definition 1) and loss-averse
(Definition 2) utility functions to be used for our analyses of the newsvendor models
in Sects. 7.3 and 7.4. In summary, loss aversion stems from behavioral economics
and can be traced to the work of Kahneman and Tversky’s (1979) prospect theory.
It is distinguished from risk aversion in EUT by the presence of a reference point
W0 that determines whether an outcome is perceived as a loss or a gain, and by an
abrupt change (kink) in the slope of the utility function at the reference point W0.

7.3 Risk-Averse Newsvendor Models in EUT

In Sect. 7.3.1, we introduce our notation, assumptions, and other preliminaries based
upon the classical risk-neutral newsvendor model. In Sect. 7.3.2, we consider a
newsvendor model with an alternative risk-averse preference in EUT and summarize
its key research findings. Finally, in Sect. 7.3.3, we provide a survey of related risk-
averse newsvendor models.

7.3.1 The Classical Newsvendor Problem

In the classical newsvendor model setting, the newsvendor orders Q units of a short
life-cycle product at a unit cost c from a supplier before the selling season begins
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and sells the product at a unit retail price p > c during the selling season. Demand
X is stochastic with PDF f (x) and CDF F(x) defined over the continuous interval I
= [0, ∞).2 As with most of the newsvendor models, we assume F(x) is continuous,
differentiable, invertible, and strictly increasing over I. We let F̄(x) = 1−F(x) be
the tail distribution. If realized demand x is higher than Q, then a unit shortage cost
s is incurred on x−Q units. While it is typical to assume s ≥ 0 in the newsvendor
literature, to be more general, we also allow the shortage cost s to be negative (c−
p < s < 0). In other words, the case of s > 0 may account for a goodwill cost due to
a stockout, whereas the case of s < 0 corresponds to situations where x−Q units can
be purchased and sold after demand is realized at a lower unit margin of −s instead
of p− c.3 If realized demand x is lower than Q, then the newsvendor salvages Q− x
units of unsold products at a unit value v < c. The newsvendor has the following
payoff function:

π(x,Q) =

{
π−(x,Q) = px+ v(Q− x)− cQ x ≤ Q

π+(x,Q) = pQ− cQ − s(x−Q) x > Q.
(7.2)

If the newsvendor is risk neutral, then there exists a unique optimal order quantity
QN that satisfies the following first-order condition:

(p+ s− c)F̄(QN)− (c− v)F(QN) = 0. (7.3)

For a risk-neutral newsvendor, the first term in (7.3) is the marginal benefit in
expected profit if one more unit is ordered whereas the second term is the marginal
cost in expected profit if one more unit is ordered. After conducting the comparative-
statics analysis, the risk-neutral newsvendor’s optimal order quantity is increasing
in the selling price p, shortage cost penalty s, and salvage value v, but decreasing in
the purchasing cost c. Since we are more interested in the newsvendor models with
alternative risk preferences rather than risk neutrality, we refer interested readers to
Khouja (1999), Lee and Nahmias (1990), Petruzzi and Dada (1999), Porteus (1990),
and Qin et al. (2011) for comprehensive reviews of the risk-neutral newsvendor
model and its extensions.

2To simplify analysis, we assume I = [0,∞). We refer interested readers to Wang et al. (2009) and
Wang and Webster (2009) for newsvendor analyses based upon a more general demand assumption
of I = [a,b] where a = 0 and b > a.
3For example, Eeckhoudt et al. (1995) consider a newsvendor who is allowed to obtain additional
newspapers at a cost c’ satisfying c < c′ < p. Thus, the newsvendor is still able to make money
from replenishment orders to satisfy unmet demand (i.e., the shortage cost penalty is s = c′ − p ∈
(c− p,0)).
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7.3.2 The Risk-Averse Newsvendor Problem

Consider a newsvendor with a risk-averse utility function U(W ) defined by
Definition 1. After mapping the newsvendor’s payoff function (7.2) into the
risk aversion utility function U(W ), we can express the risk-averse newsvendor’s
expected utility function as follows:

E[U(π(X ,Q))] =

Q∫
0

U(π−(x,Q)) f (x)dx+

∞∫
Q

U(π+(x,Q)) f (x)dx. (7.4)

The newsvendor will select an optimal order quantity QR to maximize the expected
utility function E[U(π(X ,Q))]. After taking the first and second derivatives of
expression (7.4) with respect to Q, we get:

dE[U(π(X ,Q))]/dQ = (p+ s− c)

∞∫
Q

U ′(π+(x,Q)) f (x)dx

−(c− v)

Q∫
0

U ′(π−(x,Q)) f (x)dx (7.5)

and

d2E[U(π(X ,Q))]/dQ2

= (p+ s− c)2

∞∫
Q

U ′′(π+(x,Q)) f (x)dx+(c− v)2

Q∫
0

U ′′(π−(x,Q)) f (x)dx

−(p+ s− c)U ′(π+(Q,Q))F̄(Q)− (c− v)U ′(π−(Q,Q))F(Q)< 0. (7.6)

From (7.5) and (7.6) we see that dE[U(π(X ,0))]/dQ > 0, dE[U(π(X ,∞))]/dQ <
0, and d2E[U(π(X ,Q))]/dQ2 < 0 for all Q ∈ (0,∞). Therefore, the risk-averse
newsvendor’s optimal order quantity QR ∈ (0,∞) is unique and satisfies the
following first-order condition:

(p+ s− c)

∞∫

QR

U ′(π+(x,Q
R)) f (x)dx− (c− v)

QR∫
0

U ′(π−(x,QR)) f (x)dx = 0. (7.7)

From (7.3) and (7.7), we can see some differences between the risk-neutral and risk-
averse newsvendors’ optimal order quantities. For the risk-averse newsvendor, the
first term in (7.7) is the marginal benefit in expected utility due to an increase in
the initial order quantity whereas the second term is the marginal loss in expected
utility due to an increase in the initial order quantity. In other words, given that
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there is an underage with a probability of F̄(QR), if one more unit is ordered, then
a unit underage cost cu will be saved. However, in contrast with the risk-neutral
newsvendor, there is also a decrease in the marginal utility of underage U ′(π+)
through a wealth effect, i.e., the diminishing marginal utility if the newsvendor is
richer (by U ′′(W ) < 0). Similarly, given that there is an overage with a probability
of F(QR), if one more unit is ordered, then a unit overage cost cu will be incurred,
and the decrease in wealth will be accompanied by an increase in the marginal utility
of overage U ′(π−) through a wealth effect.

We next use a numerical example to illustrate the results in the risk-averse
newsvendor model analyzed above. We assume demand is uniformly distributed
between [0, 100] and fix the newsvendor’s purchasing cost at c = $100. For
simplicity of analysis, we let s = v =W0 = 0 (i.e., the newsvendor’s salvage value,
shortage cost, and initial wealth are zero). Finally we assume the newsvendor has a
CARA (exponential) utility function U(W ) = 1− e−rW , where r > 0 is the constant
coefficient of absolute risk aversion.

After mapping the demand and utility functions into the risk-averse newsvendor’s
expected utility function (7.4) and plugging in the parameters, we can rewrite (7.4)
as follows:

E[U(π(X ,Q))] =
(100−Q)(1− e−r(p−100)Q)

100
+

rpQ+(e−rpQ− 1)e100rQ

100rp
.

Similarly, after applying some algebraic manipulations to the first-order condition
(7.7), the risk-averse newsvendor’s optimal order quantity QR satisfies the following
first-order condition:

(
p− 100

100
(100−QR)+

1
rp

)
e−rpQR − 1

rp
= 0.

Figure 7.2 below gives us an example which shows the newsvendor’s expected
utility with respect to the order quantity Q when selling price p = $200. It shows
that the newsvendor’s expected utility drops abruptly in the order quantity Q when
the newsvendor is becoming more risk-averse (e.g., r = 0.01). Similarly, Table 7.1
below reports the risk averse newsvendor’s optimal order quantities under various
values of the selling price p and the coefficient of absolute risk aversion r. Note that
the case of r = 0 corresponds to the classical newsvendor model based upon risk
neutrality.

7.3.3 Related Risk-Averse Newsvendor Models

There is a large body of research on the risk-averse newsvendor problem in EUT.
In this subsection, we mainly focus on newsvendor models with risk-averse utility
functions in EUT and defined by Definition 1. We do not strictly organize those
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Fig. 7.2 Risk-averse newsvendor’s expected utility with respect to the order quantity under
various risk aversion coefficients r

Table 7.1 Risk-averse newsvendor’s optimal order quantities under various selling
price p and coefficients of absolute risk aversion r

P r = 0 r = 0.00001 r = 0.0001 r = 0.001 r = 0.01

$200 50 49 40 14 3
$400 75 72 49 12 2
$600 83 80 47 9 1
$800 88 83 44 8 1
$1,000 90 85 40 7 1
$2,000 95 87 28 4 1
$4,000 98 83 18 2 0
$10,000 99 60 9 1 0
$40,000 100 24 3 0 0
$100,000 100 11 1 0 0
$400,000 100 4 0 0 0
$4,000,000 100 0 0 0 0

papers in the order of their publication time. Rather, we prefer to discuss more
closely related papers together. We also note that we may omit some papers due
to the limit of our knowledge of this part of literature.

As far as we know, Baron (1973) is the first to investigate a “newsvendor”
type of decision-making problem under risk aversion. He shows that an increase
in risk aversion (i.e., a higher value of the Arrow-Pratt measure of absolute risk
aversion, r(W )) will decrease the optimal order quantity. However, as pointed out in
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Eeckhoudt et al. (1995), Baron (1973) does not consider the newsvendor problem,
per se, even though his analysis of a piecewise-linear payoff function bears the
newsvendor form.

Eeckhoudt et al. (1995) extends Baron (1973) to a newsvendor model setting in
which the newsvendor is allowed to obtain additional newspapers if the initial order
quantity is insufficient to cover demand, and the newsvendor still makes money
from replenishment orders. This assumption corresponds to the case of a negative
shortage cost (s < 0) in our general newsvendor model setting in Sect. 7.3.2. Similar
to Baron (1973), they find that a risk-averse newsvendor will order strictly less
than a risk-neutral newsvendor, and the optimal order quantity decreases as the
newsvendor becomes more risk averse. They also investigate the comparative-static
effects of changes in price and cost parameters. They find that in contrast with the
risk-neutral newsvendor model, the effects of selling price p and initial purchasing
cost c on the risk-averse newsvendor’s optimal order quantity are ambiguous,
meaning that a risk-averse newsvendor’s optimal order quantity may not increase in
p and decrease in c as predicted by the risk-neutral newsvendor model. In addition,
they investigate the comparative-static effects of changes in the independent additive
background risk and mean-preserving demand risk on the risk-averse newsvendor’s
optimal order quantity.

Wang et al. (2009) extends Eeckhoudt et al. (1995) to a more general newsvendor
model setting that allows for both positive and negative shortage cost. They derive
the risk-averse newsvendor’s optimal order quantity, but their main purpose is to
characterize the relationship between a risk-averse newsvendor’s optimal order
quantity and selling price. For most commonly used CARA, IARA, and bounded
DARA utility functions in EUT, they prove that a risk-averse newsvendor’s optimal
order quantity will decrease in selling price p if p is above a threshold price. For
example, consider the numerical results in Sect. 7.3.2. From Table 7.1, we see
that if the newsvendor is a little risk averse (e.g., r = 0.0001) and selling price
p is relatively low (e.g., p < $400), then the optimal order quantity is increasing
in selling price. However, as the selling price becomes higher (e.g., p > $600),
the optimal order quantity begins to decrease in selling price and approaches zero
when selling price is very high (e.g., p = $4,000,000). In other words, the quantity
that maximizes the newsvendor’s expected utility at r = 0.0001 is 40 when the
opportunity cost of a lost sale (p− c) is only $100, but when the opportunity cost is
very high at $3,999,900, the newsvendor’s optimal order quantity does not increase,
and in fact, goes to zero. As pointed out in Wang et al. (2009), such a counterintuitive
result may be attributed to a limitation of EUT (Arrow 1971; Rabin 2000), i.e., risk
aversion within the EUT framework implies that people are approximately risk
neutral when economic stakes are small.

Next we briefly review other extensions of the risk-averse newsvendor problem.
Agrawal and Seshadri (2000) investigate a risk-averse newsvendor model in which
the selling price and order quantity decisions are made jointly. They find that a risk-
averse newsvendor will charge a higher price and order less than the risk-neutral
newsvendor if the demand distribution has the multiplicative form of relationship
with price. Also, the risk-averse newsvendor will charge a lower price if the demand
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distribution has the additive form of relationship with price, but the effect on the
quantity ordered depends on the demand sensitivity to selling price. Gaur and
Seshadri (2005) consider a risk-averse newsvendor who hedges inventory risk when
demand is correlated with the price of a financial asset. They show that a risk-averse
newsvendor will order more inventory if he or she hedges the inventory risk. Keren
and Pliskin (2006) consider a special risk-averse newsvendor model under uniform
demand and derive the optimal order quantity in a closed form. Chen et al. (2007)
extend Bouakiz and Sobel (1992) by studying a multi-period inventory model
under risk aversion as well as multi-period models that coordinate inventory and
pricing decisions. Van Mieghem (2007) studies resource diversification, flexibility,
and/or demand pooling decisions in newsvendor networks featured with many
products and many resources. He shows that a newsvendor with a general risk-
averse utility function in EUT (and also under the mean-variance criteria) may
invest more resources in certain networks than does a risk-neutral newsvendor.
Sévi (2010) investigates a risk-averse newsvendor model with an independent
multiplicative background risk and identifies conditions under which an introduction
of the multiplicative background risk will decrease the risk-averse newsvendor’s
optimal order quantity. Choi and Ruszczynski (2011) consider a multi-product risk-
averse newsvendor model with a CARA utility function. They establish a few
basic properties for the newsvendor solution. One interesting result they find is
that an increase in risk aversion does not always lead to a lower order quantity
when demands of multiple products are strongly negatively correlated. Colombo
and Labrecciosa (2012) consider the pricing decision for a risk-averse seller with
a fixed supply. Demand uncertainty stems from random consumer valuations of
the product. They show that if the distribution of consumer valuations exhibits an
increasing generalized failure rate (IGFR) property, then the risk-averse seller will
charge a lower price than a risk-neutral seller.

We wish to note that we focus on newsvendor models with risk-averse utility
functions in EUT. An alternative approach to modeling risk aversion is mean-
variance analysis (MV) due to Markowitz (1959), which has become a standard
analytical tool for portfolio optimization. MV specifies a decision maker’s objective
as a function of the mean and variance of a performance measure such as profit. The
MV framework is less precise and general than the EUT framework because the
measure of “utility” depends on only two moments of the probability distribution
of profit rather than the entire distribution, but as an important consequence, the
framework generally affords greater analytical tractability and can be more readily
implemented (e.g., mean and variance can be estimated even if the distribution is
unknown). In addition, under certain conditions (e.g., normally distributed returns
and CARA utility) MV and EUT are equivalent (i.e., return the same optimal
decisions). MV has recently drawn much attention from researchers in operations
management, especially with respect to the newsvendor problem, we refer interested
readers to Anvari (1987), Chen and Federgruen (2000), Choi et al. (2008a, 2008b),
Chung (1990), Gan et al. (2004), Lau (1980), Martı́nez-de-Albéniz and Simchi-
Levi (2006), Van Mieghem (2007), Wei and Choi (2010), and references therein for
this part of literature.
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Finally, there are other risk-averse newsvendor models within other frameworks
such as coherent measures of risk (e.g., Chen et al. 2009; Choi and Ruszczynski
2008) and value at risk (VaR, e.g., Gan et al. 2005). We refer interested readers to
Choi et al. (2011) for a recent survey of related papers.

7.4 Loss-Averse Newsvendor Models in PT

In Sect. 7.4.1, we consider a newsvendor model with an alternative loss-averse
preference in PT and summarize its key research findings. In Sect. 7.4.2, we provide
a survey of related loss-averse newsvendor models.

7.4.1 The Loss-Averse Newsvendor Problem

Consider a newsvendor with a loss aversion utility function U(W ) in PT and defined
by Definition 2. For simplicity of analysis, we assume the newsvendor’s reference
wealth level W0 = 0. Similar analysis could be extended to the case of W0 �= 0.
Following Lemma 1 in Wang and Webster (2009), we define q1(Q) = ( c−v

p−v )Q and

q2(Q) =
( p−c+s

s

)
Q as the loss-averse newsvendor’s two breakeven quantities of

realized demand, where if x < q1(Q) or x > q2(Q), then the newsvendor faces a
loss (i.e., realized profit is negative) and if q1(Q)< x < q2(Q), then the newsvendor
faces a gain (i.e., realized profit is positive). After mapping the newsvendor’s payoff
function (7.2) into the loss aversion utility function (7.1), we can express the
newsvendor’s expected utility E[U(π(X ,Q))] as follows:

E[U(π(X ,Q))] = E[π(X ,Q)]

+(λ − 1)

⎛
⎜⎝

q1(Q)∫
0

π−(x,Q) f (x)dx+

∞∫

q2(Q)

π+(x,Q) f (x)dx

⎞
⎟⎠. (7.8)

In expression (7.8), the term
∫ q1(Q)

0 π−(x,Q) f (x)dx could be defined the expected
overage loss meaning that the newsvendor earns a negative profit if realized demand
is lower than q1(Q) and the term

∫ ∞
q2(Q) π+(x,Q) f (x)dx could be defined as the

expected underage loss meaning that the newsvendor earns a negative profit if
realized demand is higher than q2(Q). The loss-averse newsvendor’s expected utility
is the expected profit plus the total expected underage and overage losses, biased by
a factor of λ − 1. If λ = 1, then the newsvendor is risk neutral and the second term
in (7.8) drops out.
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After taking the first and second derivatives of E[U(π(X ,Q)] in (7.8) with respect
to Q and applying some algebraic manipulations, we get:

dE[U(π(X ,Q)]
/

dQ = (p+ s− c)[F̄(Q)+ (λ − 1)F̄(q2(Q))]

−(c− v)[F(Q)+ (λ − 1)F(q1(Q))] (7.9)

and

d2E[U(π(X ,Q)]
/

dQ2

−(p+ s−w) f (Q)− (λ − 1)

[
(w− v)2 f (q1(Q))

p− v
+

(p+ s−w)2 f (q2(Q))

s

]
.

(7.10)

From (7.9) and (7.10), we see that dE[U(π(X ,0))]/dQ > 0, dE[U(π(X ,∞))]/
dQ < 0, and d2E[U(π(X ,Q))]/dQ2 < 0 for all Q ∈ (0,∞). Then the loss-averse
newsvendor’s optimal order quantity QL ∈ (0,∞) is unique and satisfies the
following first-order condition:

(p+ s− c)F̄(QL)− (c− v)F(QL)+ (λ − 1)[(p+ s− c)F̄(q2(Q
L))

−(c− v)F(q1(Q
L)] = 0. (7.11)

From (7.11), we see that the first two terms reflects the classical risk-neutral
newsvendor trade-off between the overage and underage costs. However, it is the
third term (λ − 1)[(p+ s− c)F̄(q2(QL))− (c− v)F(q1(QL)] in (7.11) that causes
the difference between the risk neutral and loss averse newsvendors’ optimal order
quantities. Define (p+ s− c)F(q2(QL)) as the loss-averse newsvendor’s marginal
underage loss and (c − v)F(q1(QL)) as the loss-averse newsvendor’s marginal
overage loss. Then the third term in (7.11) reflects another type of tradeoff due
to loss aversion. More specifically, it shows that if the loss-averse newsvendor’s
marginal underage loss is lower than the marginal overage loss, then loss aversion
will lead to a larger order quantity than the risk-neutral newsvendor, whereas if
the loss-averse newsvendor’s marginal underage loss is higher than the marginal
overage loss, then loss aversion will lead to a smaller order quantity than the risk-
neutral newsvendor.

We next use exponential and normal demand distributions to illustrate our results.
Figure 7.3 illustrates the loss-averse newsvendor’s optimal order quantity for the
choice of fixed parameters {p = 1, c = 0.5, v = 0}, and an exponential demand
distribution f (x) = 0.01e−0.01x. As it shows, if shortage cost is low (s ≤ 4 to
be exact), then the loss-averse newsvendor will order less than the risk-neutral
newsvendor. In addition, the more loss-averse, the less the newsvendor’s optimal
order quantity. We also observe that if s = 0, then the loss-averse newsvendor only
orders 71%, 56%, and 47% of the risk-neutral newsvendor’s optimal order quantity
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Fig. 7.3 Loss-averse newsvendor’s optimal order quantity under exponential distribution

for λ = 2, λ = 3, and λ = 4, respectively. However, if shortage cost is high (s ≥ 5
to be exact), then the loss averse newsvendor will order more than the risk-neutral
newsvendor. In addition, the more loss averse, the more the newsvendor’s optimal
order quantity. We also observe that if s = 8, then the loss-averse newsvendor
orders 100.4%, 100.5%, and 100.7% of the risk-neutral newsvendor’s optimal order
quantity for λ = 2, λ = 3, and λ = 4 respectively. In summary, if shortage cost is
low, then the loss-averse newsvendor orders significantly less than the risk-neutral
newsvendor; if shortage cost is high, then the loss-averse newsvendor orders slightly
higher than the risk-neutral newsvendor.

Similarly, Fig. 7.4 illustrates the loss-averse newsvendor’s optimal order quantity
for the choice of fixed parameters {p = 1, c = 0.5, v = 0}, and a normal demand
distribution with mean 100 and standard deviation 25. As it shows, if shortage
cost is low (s ≤ 1 to be exact), then the loss-averse newsvendor will order less
than the risk-neutral newsvendor. In addition, the more loss averse, the less the
newsvendor’s optimal order quantity. We also observe that if s = 0, then the
loss-averse newsvendor orders 99.31%, 98.16%, and 98.05% of the risk-neutral
newsvendor’s optimal order quantity for λ = 2, λ = 3, and λ = 4, respectively.
However, if shortage cost is high (s≥ 2 to be exact), then the loss-averse newsvendor
will order more than the risk-neutral newsvendor. In addition, the more loss-averse,
the more the newsvendor’s optimal order quantity. We also observe that if s = 8,
then the loss-averse newsvendor orders 102.01%, 103.10%, and 103.80% of the
risk-neutral newsvendor’s optimal order quantity for λ = 2, λ = 3, and λ = 4
respectively. In summary, if shortage cost is low, then the loss-averse newsvendor
orders slightly less than the risk-neutral newsvendor; if shortage cost is high, then
the loss-averse newsvendor orders slightly higher than the risk-neutral newsvendor.
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Fig. 7.4 Loss-averse newsvendor’s optimal order quantity under normal distribution

Based upon these two numerical examples, we could classify short life-cycle
products into two broad categories: the low-shortage-cost product and the high-
shortage-cost product. We could list computers, food, and shirts as examples of
low-shortage-cost products and airline meal, hotel rooms, and travel package as
high-shortage-cost products. For example, in the airline industry, the cost per meal
varied between $2 and $12 but the per meal shortage cost could be around $120
(Goto et al. 2004). For high-shortage-cost products, a loss-averse newsvendor will
order more than the risk-neutral newsvendor, whereas for low-shortage-cost prod-
ucts, a loss-averse newsvendor will order more than the risk-neutral newsvendor.

7.4.2 Related Loss-Averse Newsvendor Models

Compared to the large body of research on the risk-averse newsvendor prob-
lem within the EUT framework, there is much less research on the loss-averse
newsvendor problem within the PT framework. As far as we know, Schweitzer and
Cachon (2000) and Wang and Webster (2007, 2009) are among the first studying the
loss-averse newsvendor problem.

Schweitzer and Cachon (2000) conduct two experiments to test the newsvendor
problem with alternative risk preferences, including risk neutrality, risk aversion,
and risk-loving preferences in EUT, and loss aversion in PT, among others. In their
analysis of a loss-averse newsvendor problem without a shortage cost (i.e., s = 0),
they find that a loss-averse newsvendor’s optimal order quantity is less than a risk-
neutral newsvendor and decreasing in the loss aversion level λ .
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Wang and Webster (2009) study a more general loss-averse newsvendor problem
with a positive shortage cost (s ≥ 0). They establish necessary and sufficient
conditions under which a loss-averse newsvendor will order (less) more than a
risk-neutral newsvendor and the loss-averse newsvendor’s optimal order quantity
will increase (decrease) in the loss aversion level λ . They also show that a loss-
averse newsvendor’s optimal order quantity may increase in purchasing cost and
decrease in selling price, which can never occur in the risk-neutral newsvendor
model.

Wang and Webster (2007) study a decentralized supply chain setting in which
a single risk-neutral manufacturer is selling a perishable product to a single loss-
averse retailer facing uncertain demand.4 They investigate the role of a gain/loss
sharing provision for mitigating the loss aversion effect, and design a distribution-
free gain/loss sharing-and-buyback contract that can coordinate the supply chain.

Wang (2010) extends the loss-averse newsvendor problem to a game setting
where multiple loss-averse newsvendors are competing for inventory from a risk-
neutral supplier. They show that under the proportional demand allocation rule by
the supplier, there exists a unique Nash equilibrium order quantity in the loss-averse
newsvendor game. They also find that if loss aversion effect is strong enough (i.e.,
λ is large enough), then the total order quantity of the loss-averse newsvendors in
the decentralized supply chain will be less than that of an integrated supply chain.
This result contrasts sharply with the result in the risk-neutral newsvendor game in
which the total order quantity of the risk-neutral newsvendors in the decentralized
supply chain will be more than that of an integrated supply chain due to demand
stealing effect (see e.g., Lippman and McCardle 1997 and Cachon 2003).

Finally, Geng et al. (2010) consider a single-period newsvendor model with a
general PT utility function and exponential demand and characterize the optimal
inventory decision. Shen et al. (2011) study a loss-averse newsvendor-like manu-
facturer who purchases a component from a supplier under a wholesale price-only
contract and an uncertain spot purchase price. They find that the purchasing decision
of the loss-averse manufacturer differs from those of risk-neutral and risk-averse
manufacturers.

7.5 Conclusions and Future Research

In this chapter, we investigate newsvendor models with alternative risk preferences
within the EUT and PT frameworks. Based upon a general newsvendor model
setting, we characterize the optimal order quantities of risk-averse and loss-
averse newsvendors and discuss associated decision biases from the risk-neutral
newsvendor model. We also provide surveys of related risk-averse and loss-averse

4Wang and Webster (2009) and Wang and Webster (2007) are based upon Chap. 3 and 4 of
Wang’s (2003) doctoral dissertation.
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newsvendor models in EUT and PT. We believe that studying newsvendor models
with alternative risk preferences are becoming important.

There are two worthwhile directions for future research related to the newsvendor
problem with alternative risk preferences. First, most of the newsvendor research
is based upon analytical models with assumed risk preferences from classical or
behavioral economic theories. As a result, those theoretical newsvendor models only
tell managers what actions they should take if their risk preferences are consistent
with model assumptions, but little is known about the real risk preferences of the
managers making newsvendor decisions. Therefore, there is a need to test the risk
preferences of managers by experiments (e.g., Becker-Peth et al. 2011; Bolton and
Katok 2008; and Schweitzer and Cachon 2000) or by surveys of managers about
their risk preferences when they are making newsvendor decisions (e.g., Corbett
and Fransoo 2007). Second, in addition to risk preferences within EUT and PT
frameworks, there is a need to study the newsvendor problem with alternative
risk preferences and objectives such as regret theory (e.g., Engelbrecht-Wiggans
and Katok 2008), fairness (e.g., Cui et al. 2007; Loch and Wu 2008), bounded
rationality (e.g., Su 2008), and achieving a profit and/or revenue target (He and
Khouja 2011; Lau and Lau 1988; Yang et al. 2011). We refer interested readers to
Bendoly et al. (2006), Gino and Pisano (2008), and Loch and Wu (2007) for detailed
surveys of other behavioral frameworks.
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Chapter 8
Newsvendor Problems with VaR and CVaR
Consideration

Werner Jammernegg and Peter Kischka

Abstract In this chapter, we consider approaches to express the risk preferences
of a newsvendor by means of the risk measures value at risk (VaR), conditional
value at risk (CVaR), and the mean-CVaR rule, which usually is defined as a
convex combination of expected profit and CVaR. With these risk measures the
decision maker can exploit risk-averse or risk-neutral behavior. In addition, we
introduce a more general mean-CVaR measure where also risk- taking behavior
can be expressed. The overall goal of the paper is a comparative analysis of these
risk measures in the newsvendor framework. On the one hand VaR, CVaR and
the (general) mean-CVaR, measures are used as objective functions to derive the
respective optimal order quantity. Extensions of the basic models are reviewed. On
the other hand the risk measures, especially VaR, are constraints of the model. We
first review models with the expected profit as objective. Then the general mean-
CVaR measure is taken as objective function and a service constraint and a loss
constraint are added. In this framework, the risk attitudes of the newsvendor can
be deduced from the characteristics of a product together with the specified service
target and loss target.
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8.1 Introduction

Historically, in inventory management the newsvendor model is formulated with the
objective to maximize the expected profit. Later on important streams of research
suggest, e.g., to maximize the expected utility of profit (see Eeckhoudt et al. 1995)
or to use the mean-variance objective (Lau 1980; Choi and Chiu 2012). There is
some critique from a theoretical and/or from an empirical point of view on these
(and other) approaches and there are still new suggestions for objective functions
in the literature (see, e.g., Gao et al. 2011). Another early objective function is the
probability to exceed a specific target profit (Lau 1980); this approach is closely
related to the value at risk (VaR) measure which is a central concept for this chapter.

VaR and CVaR (conditional value at risk) are risk measures originating in the
theory of finance. They are used in the newsvendor context to express and to
formulate the risk attitudes of the decision maker. The CVaR measures the expected
profit falling below a quantile level of the profit distribution known as VaR. In
literature, these risk measures are not only used as objective functions but also
as constraints. CVaR is a coherent risk measure, which is an important decision-
theoretical feature (see, e.g., Artzner et al. 1999); this property does neither hold for
VaR nor for the mean-variance measure.

A more general class of risk measures are the so-called mean-deviation rules. An
example is of course the mean-variance measure. Recently, the CVaR is also used
as a deviation measure in inventory management. Usually, a convex combination
of the expected profit and the CVaR for a specified quantile level is considered;
then the mean-CVaR model is coherent. In this framework, risk-neutral as well as
risk-averse attitudes of the decision maker can be expressed. In general, this means
that the optimal order quantity of a risk-averse newsvendor is smaller than that of
a risk-neutral, profit-maximizing decision maker. In the sense of Fisher (1997) this
seems reasonable for functional products with focus on cost minimization. But for
innovative products, the focus should be on high levels of product availability where
a risk-taking behaviour—the random profit is preferred to the expected profit—is
more appropriate. Thus, a general mean-CVaR measure is used where the decision
maker can exploit risk-averse, risk-neutral, as well as risk-taking behavior. For a
recent review of newsvendor models including risk preferences of the decision
maker, we refer to Li et al. (2011), Sect. 1.1 and Qin et al. (2011).

The overall goal of this chapter is a comparative analysis of VaR, CVaR, and
mean-CVaR as objectives and as constraints, respectively, in newsvendor models.
We start the analysis with preliminaries stating the notation and the basic results
of the classical, risk-neutral newsvendor model in Sect. 8.2. In Sects. 8.3–8.5,
the risk measures are used to formulate the objective function. Beside the basic
model we refer to some extensions, e.g., concerning multi-product and price-setting
newsvendor models. The third section is devoted to the VaR objective and the related
objective to maximize the probability of exceeding a specified target profit. Then
the CVaR criterion is presented in Sect. 8.4 and the CVaR-optimal order quantity
is derived. In the fifth section mean-deviation rules are discussed, especially the
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mean-CVaR objective. We present the optimal order quantity depending on the risk
parameters and compare in a numerical example the profit functions and the optimal
order quantities of risk averse, risk-neutral, and risk-taking decision makers.

In Sect. 8.6, some risk measures are used as constraints. E.g., to avoid low
profits or even high losses. First, VaR is used as constraint when the objective is
to maximize expected profit. Then a general model is formulated using the general
mean-CVaR measure of Sect. 8.5 as objective function. In addition, two constraints
are added. The loss constraint is a specific VaR—constraint which is specified
by an upper bound for the probability to result in losses. Moreover, the service
constraint defines a lower bound for the cycle service level, i.e., the probability not
to run out of stock. Here, the optimal order quantity is given by a two-sided control
limit policy depending on the risk parameters. The characteristics of the product
together with the loss target and the service target provide information to specify
the risk preferences of the inventory manager with respect to the product under
consideration.

In Sect. 8.7, we discuss some recent generalisations concerning the mean-CVaR
rule as objective function. Finally, the basic intentions of the chapter are summarized
in Sect. 8.8.

8.2 Preliminaries

We introduce our notation for the classical single-product newsvendor model.
Let X denote the random demand with nonnegative support and let p,c,z be the

per unit selling price, purchase cost, and salvage value, respectively. We assume
p > c > z.

Let y be the order quantity. Then the random profit is given by

g(y,X) = (p− c)y− (p− z) (y−X)+ (8.1)

with (y−X)+ = max(y−X ,0).
Let F denote the distribution function of X ; we assume that F−1 exists. It is well

known that the solution of

max
y

E(g(y,X)) (8.2)

is given by

y∗ = F−1
(

p− c
p− z

)
. (8.3)

Even if F is invertible the distribution function Fy of the profit (8.1) has a point
of discontinuity at (p− c)y, more precisely (Jammernegg and Kischka 2007, see
Fig. 8.1)

Fy(t) =

{
F
(

y+ t−(p−c)y
(p−z)

)
1

for
t < (p− c)y
t ≥ (p− c)y

. (8.4)
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We have

F(y) = sup
{

Fy(t)|t < (p− c)y
}
. (8.5)

In the following, we consider risk measures as objectives or constraints for the
classical newsvendor model. Extensions of the basic model, e.g., by including
shortage cost or price-dependent demand, are mentioned in the respective sections.

8.3 Value at Risk Criterion

8.3.1 General Definition

Let Z be some profit variable with distribution function FZ and let α ∈ [0,1].
The value at risk of Z is

VaRα(Z) = inf{z|FZ(z)≥ α} . (8.6)

If FZ is continuous at z0 and strictly increasing in a neighborhood of z0 we have
for α = F(z0)

VaRα(Z) = F−1
Z (α). (8.7)

The VaR is a widespread measure of risk in finance: The probability that the profit Z
is below VaRα(Z) equals the prescribed α . Note that in decision theory, -VaR often
is denoted as a measure of risk whereas VaR is denoted as a preference functional.

8.3.2 Newsvendor Model With VaR Objective

Let g(y,X) be the profit in the newsvendor model (see (8.1)).
From (8.4) and (8.5), immediately follows:

For α < F(y) : VaRα(g(y,X)) = F−1
y (α) = F−1(α)(p− z)− (c− z)y.

For α ≥ F(y) : VaRα(g(y,X)) = (p− c)y.
(8.8)

Moreover, for α < F(y) : P(g(y,X)≤ VaRα(g(y,X)) = α .
The newsvendor problem with the objective VaR is given by

max
y

VaRα(g(y,X)). (8.9)

This objective can also be interpreted as the maximization of the probability to
achieve a given target (see (8.11) and (8.12) and the following discussion).

As can be seen from (8.8), VaRα is an increasing linear function in y for y ≤
F−1(α) and a decreasing linear function in y for y>F−1(α). Thus, the VaR-optimal
order quantity y∗(α) is given by
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Fig. 8.1 Distribution functions of profit for VaR newsvendor (dotted line), expected demand
newsvendor (dashed line), and classical newsvendor (solid line)

argmax
y

VaR(g(y,X)) = y∗(α) = F−1(α). (8.10)

Note that the optimal solution is independent of p, c, z; it only depends on F and
the prescribed α . In Chiu and Choi (2010), a price-setting newsvendor problem
is considered with the value at risk as objective function. There the optimal order
quantity depends on the stochastic part of demand and on the optimal price only
via c. Another (single-period) inventory model with VaR objective is discussed in
Tapiero (2005).

We illustrate the previous analysis by comparing the distribution functions of
the profit for the classical newsvendor, the VaR newsvendor, and the newsvendor
ordering the expected demand. The random demand is exponentially distributed
with expected demand E(X) = 100 units; furthermore, p = 10, c = 6, z = 5, and
α = 0.5.

Depending on the respective optimal order quantity y for the different objectives
in Fig. 8.1, the intervals of possible profits [(z− c)y, (p− c)y] are shown.

Compared with the classical newsvendor, the probability of resulting in loss
is just about half the amount for the VaR newsvendor. But on the other hand,
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the maximum VaR profit is only 277 currency units whereas that of the classical
newsvendor is 643 currency units. This trade-off is a significant explanation why an
inventory manager in praxis often pursues the pull-to-center strategy, i.e., they order
the expected demand (the maximum expected demand profit is 400 currency units).
In addition, small order quantities result in low levels of customer service which
in any case is not advantageous for products with high profit value; remember that
y∗(α) is independent of p, c, and z.

Up to now the value α is prescribed and the corresponding profit for an order
quantity y is computed, which is to be maximized. Alternatively, one can prescribe
a target profit B and look for an order quantity such that the probability of exceeding
B is maximized. The seminal paper of this approach is Lau (1980). The formal
problem and its solution is

max
y

P(g(y,X)≥ B) (8.11)

argmax
y

P(g(y,X)≥ B) = y∗(B) =
B

p− c
. (8.12)

Note that the optimal solution is independent of F and z. In case of positive shortage
cost, the optimal order quantity depends also on the demand distribution (Lau 1980,
p. 531).

The corresponding maximal probability is

P(g(y∗(B),X)≥ B) = 1−F(y∗(B))

P(g(y∗(B),X)< B) = F(y∗(B)).

Note that (see (8.4))

P(g(y∗(B),X)≤ B) = 1.

There are also models where the target profit B is not assumed to be fixed but
depends on the order quantity y; an example is the expected profit E(g(y, X)) (see
Parlar and Weng 2003). Shi and Chen (2007) show that for objective (8.11) the
wholesale price contract is Pareto-optimal which does not hold for the expected
profit criterion. For a price-setting newsvendor, in addition to a target profit, a target
revenue is considered leading to a model with two objective functions (see Yang
et al. 2011).

The approaches (8.9), (8.10) and (8.11), (8.12) are closely related.
Define for a given satisfying profit B

α := F

(
B

p− c

)
.

Then from (8.10), we have

y∗(α) = F−1(α) =
B

p− c
= y∗(B)
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and therefore

VaRα(g(y
∗(B),X)) = (p− c)F−1(α) = B.

Conversely, for a given α define

B := (p− c)F−1(α).

Then from (8.12), we have

y∗(B) =
B

p− c
= F−1(α) = y∗(α)

and therefore

P(g(y∗(α),X)≥ B) = 1−F(y∗(B)) = 1−α.

Summarizing, from the results obtained so far it is evident that the optimal VaR
order quantity is independent of the selling price, the purchase cost, and the salvage
value whereas the optimal order quantity for the target profit newsvendor does
not depend on the demand distribution. The risk measures used in the following
objective functions do not result in optimal decisions that show these deficiencies.

8.4 Conditional Value at Risk criterion

8.4.1 General Definition

There are different possibilities to define the conditional value at risk (see, e.g.,
Acerbi and Tasche 2002; Rockafellar and Uryasev 2000).

For β ∈ [0,1], the generalized (lower) inverse function of the distribution function
FZ of a random variable Z is defined by

F∗
Z (β ) = inf{z|FZ(z)≥ β} (0 < β ≤ 1)

F∗
Z (0) = lim

β→0
F∗

Z (β ).

The conditional value at risk of Z given α ∈ [0,1] is

CVaRα(Z) :=
1
α

α∫
0

F∗
Z (β )dβ . (8.13)

Alternatively, the CVaRα can be defined by the generalized upper inverse function.
From Rockafellar and Uryasev (2000), we have

CVaRα(Z) = sup
t∈R

(
t − 1

α
E(t −Z)+

)
. (8.14)
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If F−1
Z exists, we have

CVaRα(Z) = E(Z|Z ≤ F−1
Z (α))

= E(Z|Z ≤ VaRα(Z)). (8.15)

Note again that in decision theory -CVaR often is denoted as a measure of risk
whereas CVaR is denoted as a preference functional.

8.4.2 Newsvendor Model With CVaR Objective

For Z = g(y,X), we have (see Jammernegg and Kischka 2007, p. 108)

F∗
Z (β ) = F∗

y (β ) =
{

F−1
y (β )

(p− c)y
for

β < F(y)
β ≥ F(y)

and therefore:

For α < F(y) : CVaRα(g(y,X)) =
1
α

F−1(α)∫
0

g(y,x)dF(x)

=
1
α
(p− z)

F−1(α)∫
0

xdF(x)− (c− z)y. (8.16)

For α ≥ F(y) : CVaRα(g(y,X)) =
1
α

⎛
⎝

y∫
0

g(y,x)dF(x)+ (p− c)y(α −F(y))

⎞
⎠

=
1
α
(p− z)

⎛
⎝

y∫
0

xdF(x)− yF(y)

⎞
⎠+(p− c)y.

(8.17)
CVaRα is monotonically increasing in α (see, e.g. (8.14)) and therefore

CVaRα(g(y,X))≤ CVaR1(g(y,X)) = E(g(y,X)).

Since the CVaRα of a constant equals the constant the expected value E(g(y,X)) is
preferred to CVaRα(g(y,X)), and therefore for any α < 1 the preference functional
CVaRα represents a risk-averse behavior; α is sometimes called “degree of risk
aversion” (see, e.g., Chen et al. 2009).

Now the order quantity is derived that maximizes CVaRα :

max
y

CVaRα(g(y,X)). (8.18)
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Several authors consider the CVaRα as objective function (see, e.g., Gotoh and
Takano 2007; Gao et al. 2011). The CVaR measures the expected profit falling
below a quantile level of the profit distribution. From (8.16) and (8.17), the solution
of (8.18) can be derived:

argmax
y

CVaRα(g(y,X)) = y∗CVaR(α) = F−1
(

α
p− c
p− z

)
. (8.19)

As can be immediately seen, the CVaR order quantity (8.19) is only a fraction of
the optimal order quantity y∗ of the classical risk-neutral newsvendor given in (8.3),
especially for small values of α . The higher the degree of risk aversion is, i.e., the
smaller the α , the smaller is the order quantity (8.19).

Note that the optimal order quantity converges to F−1(α) as z → c. This implies
that the decision maker will not order the maximal demand even if P(g(y,X)≤ 0) =
0. If the newsvendor can realize almost the same salvage value z for leftover products
as the purchasing cost c, then the maximal profit (p− c)F−1(α) is achieved. Of
course the order quantity y∗CVaR(α) is smaller than the order quantity y∗(α) of a
VaR-newsvendor (see (8.10)) for all p, c, z.

The basic model with CVaR objective has been extended in several ways. Chen
et al. (2009) consider the price-setting newsvendor with CVaR criterion. Xu (2010)
analyzes this model with the possibility of emergency procurement, i.e., in a dual
sourcing context where the newsvendor has a second ordering opportunity during
the regular selling season if demand turns out to be larger than the first order
quantity. Furthermore, the optimal solution is derived for positive shortage cost (Xu
and Chen 2007). There are models for supply chain coordination using CVaR as
objective function (see Yang et al. 2009). Also multi-product newsvendor models
with CVaR objective have been investigated (see, e.g., Tomlin and Wang 2005; Choi
et al. 2011).

8.5 Mean-CVaR Criteria

8.5.1 Convex Combination

Mean-deviation rules, e.g., the mean variance approach, are well known in portfolio
theory. Gotoh and Takano (2007), Gao et al. (2011) and others consider mean
deviation rules in the newsvendor context assuming that the deviation is measured
by the CVaR of the profit.

The objective function is a convex combination of expected profit and CVaR

γE(g(y,X))+ (1− γ)CVaRα(g(y,X)) (8.20)

with γ ∈ [0,1].
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Note that for γ = 1, the classical newsvendor problem is given. For γ < 1, the
objective function describes risk averse behavior, i.e., the expected profit E(g(y,X))
is preferred to g(y,X). For γ = 0, we have the CVaR newsvendor of Sect. 8.4.

Of course, the degree of risk aversion increases the smaller γ and/or the smaller
α; a small γ gives a high weight to the risk measure CVaRα , a small α gives a high
weight to high losses.

The solution of the above objective function is a special case of the approach in
Sect. 8.5.2.

8.5.2 A General Mean-CVaR Criterion

In Jammernegg and Kischka (2007), a generalization of objective function (8.20) is
provided. Consider first a profit variable Z with invertible distribution function FZ .
Let B denote a target profit and let α :=FZ(B). Then E(Z|Z ≤F−1

Z (α)) and E(Z|Z ≥
F−1

Z (α)) are conditional expected values of “bad” or “good” profits, respectively.
Let λ ∈ [0,1] be a weight of these expected profits (pessimism parameter).

Then the objective function is

λ E(Z|Z ≤ F−1
Z (α))+ (1−λ )E(Z|Z ≥ F−1

Z (α)).

For the profit variable g(y,X) in the newsvendor model, we use the generalized
inverse of F∗

y introduced in Sect. 8.4.1 and replace the conditional expected values

λ
1
α

α∫
0

F∗
y (β )dβ +(1−λ )

1
1−α

1∫
α

F∗
y (β )dβ . (8.21)

This can be rewritten as (Jammernegg and Kischka 2007, p. 100)

1−λ
1−α

E(g(y,X))+
λ −α
1−α

CVaRα(g(y,X)). (8.22)

Note that for α > λ , the objective function describes a risk-taking behavior, i.e., the
random profit g(y,X) is preferred to E(g(y,X)):

1−λ
1−α

E(g(y,X))+
λ −α
1−α

CVaRα(E(g(y,X))

= E(g(y,X))≤ 1−λ
1−α

E(g(y,X))+
λ −α
1−α

CVaRα(g(y,X)).

For α = λ , α < λ , risk-neutral and risk-averse behavior, respectively, prevails.
The objective functions (8.18) and (8.22) are consistent with dual utility theory.

Dual utility theory as developed by Yaari (1987) is based on the idea that the



8 Newsvendor Problems with VaR and CVaR Consideration 207

probability of a bad result is judged differently from the same probability of a good
result. Whereas in expected utility theory the monetary results are transformed with
a utility function, in dual utility theory the probabilities of the monetary results are
transformed. In Jammernegg and Kischka (2005), it is shown that for every pair
(α,λ ) with 0 < α < 1, 0 ≤ λ ≤ 1 there exists a transformation of probabilities such
that the objective function (8.22) is consistent with the axioms of dual utility theory.

Maximizing the objective functions (8.21) or (8.22), we get (Jammernegg and
Kischka 2007, p. 101)

y∗(α,λ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F−1

(
p− c
p− z

+
α −λ
1−λ

c− z
p− z

)

F−1

(
p− c
p− z

α
λ

) for

λ ≤ p− c
p− z

λ ≥ p− c
p− z

. (8.23)

Note that a risk-averse (risk-taking) decision maker orders less (more) than a
risk-neutral decision maker. For a demand distribution with bounded support, the
maximal demand is ordered as z → c. This is in contrast with a related conclusion
for the CVaR criterion in Sect. 8.4.

For λ = 1, the solution for the objective function in Sect. 8.4 is given. For λ ≥ α ,
the objective function (8.20) with γ = 1−λ

1−α is given. If λ = α , i.e., γ = 1, we have
the special case of the classical risk-neutral newsvendor (8.2) and (8.3).

In the following, we compare the optimal order quantities and values of the
objective functions. In Fig. 8.2, the graphs for the following objectives are shown:
CVaR, VaR, expected profit, and risk taker with λ = 0. The data are the same that
have been used for the profit distributions in Fig. 8.1, especially α = 0.5.

As already mentioned before, Fig. 8.2 shows that the CVaR newsvendor is
dominated by the VaR newsvendor also with respect to the expected profit if the
respective optimal quantities are ordered. Therefore, CVaRα is sometimes called a
relatively conservative criterion. Figure 8.2 also shows that the expected profit curve
is quite flat around its maximum; this is typical for many operations management
models, think, e.g., of the economic order quantity model. Thus, a slight deviation
from the optimum only leads to a small decrease of the expected profit; the optimal
expected profit of the classical risk-neutral newsvendor is about 239 currency units
(y∗ = 160 units) whereas for the most risk-taking newsvendor with y∗(0.5,0) = 230
units the expected profit would be 220 currency units, a reduction in profit of about
8%. High order quantities result in high levels of customer service but also lead to
a high probability to end up with a loss. Of course the opposite is true for low order
quantities. We will come back to this trade-off between conflicting performance
measures when dealing with constrained newsvendor models.

The following extensions of models using the mean-CVaR criterion consider
the objective function (8.20). Like in the previous section there are multi-product
newsvendor models (Choi et al. 2011) and models with positive shortage cost
(Ahmed et al. 2007; Xu and Chen 2007). In a recent paper, the newsvendor not
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Fig. 8.2 CVaR-, VaR-, expected profit- and risk taking (λ = 0)-objectives and optimal order
quantities

only decides the order quantity but also adopts a weather hedging strategy. Using
the mean-CVaR criterion, the weather-derivative hedging can increase the order
quantity and can improve the expected profit as well as the CVaR-profit (Gao
et al. 2011).

8.6 Constraints

In this section, first we present a single-product newsvendor model with a VaR
constraint, where the objective is to maximize the expected profit. Then we
introduce a model with a loss constraint and a service constraint. The loss constraint
specifies an upper bound for the probability resulting in loss, i.e., it is a special
version of the VaR constraint where the target profit is equal to zero. In the service
constraint, a lower bound for the cycle service level is prescribed.
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8.6.1 VaR Constraint

Remember that for order quantity y, the maximum profit is (p − c)y and the
minimum profit is (z − c)y. Let B be some target profit (see Sect. 8.3.2) and let
η be some probability with

P(g(y,X)≤ B)≤ η . (8.24)

If the quantity y is ordered, the probability that the profit is not higher than the target
profit B is at most η .

Consider the following newsvendor problem with a so-called VaR-constraint
(Gan et al. 2005):

max
y

E(g(y,X))

s.t.P(g(y,X)≤ B) = Fy(B)≤ η .
(8.25)

Using (8.4) we can rewrite the constraint (8.24) as follows:

0 ≤ y ≤ F−1(η)(p− z)−B
c− z

. (8.26)

Of course an admissible solution only exists if B ≤ F−1(η)(p− z).
Remember that y∗ denotes the solution of the classical newsvendor (see (8.3)).

Then the solution of (8.25) is given by

y∗(α,B) =

⎧⎨
⎩

y∗
F−1(η)(p− z)−B

c− z

for
y∗ ≤ F−1(η)(p− z)−B

c− z

y∗ ≥ F−1(η)(p− z)−B
c− z

. (8.27)

This result can be found in Gan et al. (2005), Özler et al. (2009), and Zhang
et al. (2009). Gan et al. (2005) use this result to derive a coordinating contract
between a risk-neutral supplier and a retailer with a VaR constraint. In Yang
et al. (2007), the optimal order quantity is derived for the newsvendor model with
positive shortage cost if the cost target is fixed or given by the expected cost. Özler
et al. (2009) extend this model to a multi-product newsvendor problem with VaR
constraint. In Zhang et al. (2009), instead of a VaR constraint a CVaR constraint is
proposed. Furthermore, they use this framework for multi-period inventory models.

8.6.2 A Mean-CVaR Criterion With Service
and Loss Constraints

In this section, we extend the approach of Sect. 8.6.1 in two ways (Jammernegg
and Kischka 2011). First we use the general objective function (8.22); note that for
α = λ , the risk-neutral case of the above Sect. 8.6.1 is included.
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Second we assume that the optimal order quantity is chosen according to
some constraints given by performance measures. E.g., such constraints are also
considered in Sethi et al. (2007) and Özler et al. (2009). Contrary to these papers,
we simultaneously use internal and external performance measures. It is intuitively
clear that these measures may collide and there is no admissible solution. In the
following we discuss the set of admissible solutions and give the optimal order
quantity under the constraints.

As internal performance measure we use the probability of loss, i.e., we consider
the VaR-constraint (8.24) with B = 0:

P(g(y,X)≤ 0)≤ η . (8.28)

From (8.26), it is clear that admissible solutions fulfilling (8.28) always exist.
As external performance measure, we use the cycle service level which is defined

as the probability to fulfill demand, i.e., for order quantity y the cycle service level
is given by F(y):

y ≥ F−1(δ ). (8.29)

Constraint (8.29) states that the cycle service level at least must be δ .
Combining (8.28) and (8.29), the set A of admissible solutions is given by

A =

{
y|F−1(δ )≤ y ≤ F−1(η)(p− z)

c− z

}
. (8.30)

Denoting the profit value of the product pv = p−c
p−z , we have the following condition

for the existence of an admissible order quantity:

A �= Ø ⇔ pv ≥ 1− F−1(η)
F−1(δ )

.

Thus, the higher the profit value of the product the more likely is the existence
of an admissible solution. Moreover, a solution exists the larger is the prescribed
acceptable probability of loss η and/or the smaller is the prescribed cycle service
level δ .

There is no existence problem if either the internal or the external performance
measure is considered. This can be easily seen if the probability of loss η = 1 and the
cycle service level δ = 0, respectively. For η ≥ δ , an admissible solutions always
exists. Of course, this specification is not plausible from an economic point of view.
For the relevant case, η < δ (8.30) represents the problem of considering internal
and external performance measures simultaneously.

The optimal order quantity is the solution of the following constrained model
(see (8.22), (8.30)):

max
y∈A

1−λ
1−α

E(g(y,X))+
λ −α
1−α

CVaRα(g(y,X)). (8.31)
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Table 8.1 Risk preferences for profit value pv, demand distribution F and target
values δ and η (Jammernegg and Kischka 2011)

pv < 1− F−1(η)
F−1(pv)

pv = 1− F−1(η)
F−1(pv)

pv > 1− F−1(η)
F−1(pv)

pv < δ A = Ø A = Ø If A �= Ø, risk-taking
pv = δ A = Ø A =

{
F−1(δ )

}
,

risk-neutral
A �= Ø, risk-neutral

or risk-taking
pv > δ If A �= Ø, risk-averse A �= Ø, risk-neutral

or risk-averse
A �= Ø, all risk

preferences

Solving (8.31) gives the optimal order quantity of an inventory manager who may
have some special kind of risk preferences depending on the relation of α , λ (see
Sect. 8.5.2) and simultaneously tries to fulfill some constraints concerning internal
and external performance measures.

From Jammernegg and Kischka (2007), we know that the objective function
(8.22) is a concave function of y. Therefore, if an admissible solution (see (8.30))
exists, there exists also an optimal solution of (8.31) which we denote by ŷ(α,λ ).
Moreover, from the concavity we can conclude

(1) y∗(α,λ )≤ F−1(δ )⇒ ŷ(α,λ ) = F−1(δ )
(2) y∗(α,λ )≥ F−1(η)

1−pv ⇒ ŷ(α,λ ) = F−1(η)
1−pv

(3) F−1(δ )≤ y∗(α,λ ) ≤ F−1(η)
1−pv ⇒ ŷ(α,λ ) = y∗(α,λ ).

E.g., if—for given α , λ —the optimal unrestricted solution y∗(α,λ ) (see (8.23))

would exceed F−1(η)
1−pv , then the solution of the restricted problem is the right corner

of the set of admissible solutions (see (8.30)). Since y∗(α,λ ) is increasing in α and
decreasing in λ , we see that this situation is more probable for λ < α , i.e., for a
risk-taking inventory manager.

8.6.3 Deduction of Risk Parameters From Specified
Target Values

Using the general mean-CVaR objective function (8.31) in Jammernegg and
Kischka (2011), it is shown that every admissible solution y ∈ A is optimal with
respect to some (α,λ )-combination, i.e., some risk attitude. From the monotonicity
properties of y∗(α,λ ), we can deduce consistent risk attitudes from the prescribed
performance measures. Thus, the newsvendor must not be able to specify the risk
parameters. Instead the risk preferences can be derived from the target values for the
probability of loss η and for the cycle service level δ . The results are summarized
in Table 8.1.

A product is characterised by its profit value pv, its demand distribution F , the
loss target and the service target. For these product characteristics Table 8.1 shows
whether an admissible solution exists and in the positive case the associated risk
preferences of the newsvendor are noted.
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If the loss target is low and the service target is high with respect to the profit
value and the demand distribution then no admissible order quantity exists; this
is described by the upper left area in Table 8.1. Contrary, in any case admissible
solutions exist if both target values η and δ are not very challenging for the specific
product. In Table 8.1, this is represented by the lower right area. Especially for
products with high profitability pv the decision maker can exploit any risk attitude.

If both constraints are fulfilled as equalities then the only admissible solution
is the optimal order quantity (8.3) of the classical, riskneutral newsvendor which is
represented in the centre of Table 8.1. Finally, in the boxes at end of the off-diagonal
one constraint is dominating provided an admissible order quantity exists. The upper
right corner characterizes a high service target for the product; here the newsvendor
shows risktaking behavior. If the loss constraint is dominating the decision maker is
a risk averter. This situation is shown in the lower left corner of Table 8.1

In Fig 8.3 we use the data of the examples in Figs 8.1 and 8.2 to illustrate the
findings of Table 8.1 for fixed cycle service level δ = 0.6 and different probabilities
of loss η . Here, the vertical lines denote the corresponding boundaries of the
admissible sets. Since the profit value of the product is pv = 0.8 the last row of
Table 8.1 is relevant. If η = 0.1 and η = 0.2 then pv < 1 − F−1(η)/F−1(pv)
holds. As can be seen from Fig 8.3 for the low probability of loss η = 0.1 the
loss constraint (upper bound) is smaller than the service constraint (lower bound);
thus, no admissible solution exists. For η = 0.2 admissible solutions exist, but
the newsvendor in any case is a risk averter (remember that the optimal risk-
neutral order quantity y∗ is 160 units). If in addition to the predetermined cycle
service level δ = 0.6 the probability of loss η = 0.3 is not very challenging, too,
then pv > 1 − F−1(η)/F−1(pv) holds, i.e. the existence of admissible solutions
is guaranteed. From the lower right area in Table 8.1 we know that in this case
the decision maker can exploit any risk preference. From Fig. 8.3 we see that
the newsvendor is a risk averter if the chosen order quantity is from the interval
[91.6, 160] in contrast, for an order quantity in the interval [160, 178.4] risk-taking
behavior is expressed. As indicated before the classical risk-neutral newsvendor
orders 160 units of the product.

The relationship of the product characteristics and the implied risk preferences
may not match with the basic intentions of the responsible inventory manager. Then
the findings from Table 8.1 also can be used to reposition the product. According to
Fisher (1997) for a functional product it could be reasonable to increase the profit
value by reducing the purchasing cost, e.g. by renegotiating the supply contract in
place or to lower the loss constraint. Innovative products are characterized by high
profitability. Thus, a high level of product availability is necessary to fulfil the entire
demand in order to generate as much revenue as possible. Of course, in this case the
service target should be increased. Especially for innovative products the demand
distribution should be updated as soon as additional relevant information becomes
available to make it less variable, e.g. by reducing its coefficient of variation.
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Fig. 8.3 CVaR-, expected profit- and risk taking (λ = 0)-objectives and admissible order quanti-
ties for probabilities of loss η = 0.1 (dotted line), η = 0.2 (dashed line) and η = 0.3 (solid line)

8.7 Spectral Risk Measures

So far we have considered approaches to formulate the risk preferences of a
newsvendor by means of the risk measures VaR, CVaR, and mean-CVaR either as
objective function or as constraint. Furthermore, we have presented some reasonable
extensions of these basic models.

In this concluding section, we will consider some rather new developments in the
theory of risk measures, which are also relevant for the newsvendor model. VaR and
CVaR originated in the theory of finance. Because of lacking subadditivity and other
deficiencies, the VaR risk measure is criticized and the focus is now on coherent risk
measures like CVaR and the convex mean-CVaR measure.

Remember that the presented objective functions can be seen as negative risk
measures; e.g., −CVaRα(g(y,X)) is a coherent risk measure; this holds also for
(8.2) and (8.20). A special subset of the coherent risk measures is the class of
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spectral risk measures (Acerbi 2002). It can be shown that every spectral risk
measure ρ is of the form

ρ(Z) =−
1∫

0

F∗
Z (β )ϕ(β )dβ , (8.32)

where F∗
Z is the generalized inverse of the random variable Z (see (8.13)) and ϕ

denotes the so called risk spectrum, i.e.:

ϕ : [0,1]→R+

1∫
0

ϕ(β )dβ = 1 (8.33)

ϕ is monotonically decreasing.

Conversely, every function ϕ fulfilling (8.33) defines a spectral risk measure (8.32).
The objective functions (8.2), (8.18), (8.19), and (8.20) all can be derived from a

spectral risk measure; e.g., with

ϕ(β ) =
{

γ + 1
α (1− γ)

γ
for

0 ≤ β ≤ α
α < β ≤ 1

we have for the corresponding risk measure ρ

−ρ(g(y,X)) = γE(g(y,X))+ (1− γ)CVaRα(g(y,X)),

which is the mean-CVaR measure (8.20) (Brandtner 2011).
In general, we have for the newsvendor problem with a spectral risk measure ρ

max
y

−ρ(g(y,X))

argmax
y

−ρ(g(y,X)) = y∗(ρ) = F−1

(
Φ−1

(
p− c
p− z

))
,

where Φ denotes the primitive of ϕ (Fichtinger 2010).
With the risk spectrum ϕ , the quantiles of Z, i.e., in the newsvendor context the

quantiles of the profit distribution Fy can be weighted. With a special risk spectrum,
e.g., the exponential risk spectrum, special kinds of risk aversion can be modeled
(Fichtinger 2010; Brandtner 2011).

Spectral risk measures are also a subset of the set of convex risk measures
(Föllmer and Schied 2002); first applications of convex risk measures to the
newsvendor problem are given in Brandtner (2011).
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8.8 Summary

In this chapter, we considered the single-product newsvendor model where the risk
preferences of the decision maker were expressed by the risk measures VaR, CVaR,
and (general) mean-CVaR. With the general mean-CVaR measures it is possible to
describe not only risk-averse and risk-neutral but also risk-taking behavior. These
risk measures were included in the newsvendor model as objective functions and
as constraints. The basic intention of the paper are comparative analyses of the risk
measures with respect to their impact on the distribution functions of profit as well
as on the respective optimal order quantities and optimal profits.

For the presented basic models, we reviewed the literature and referred to
extensions, e.g., multi-product models and models with price-dependent demand.
Finally, we briefly described spectral risk measures where CVaR and mean-CVaR
are special cases. A deeper analysis of these risk measures seems to be a promising
stream for future research for newsvendor models with risk preferences.
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Chapter 9
Production and Remanufacturing Strategies
in a Closed-Loop Supply Chain: A Two-Period
Newsvendor Problem

Marc Reimann and Gernot Lechner

Abstract Effective and efficient closed-loop supply chain processes can consti-
tute a significant competitive edge for companies. However, the integration of
forward and reverse processes poses some challenges both on the supply side—
e.g., availability of remanufacturable products—and on the demand side, e.g.,
cannibalization between new and remanufactured products. In this paper a two-
period newsvendor-type approach is presented. The model is used to characterize the
optimal production and remanufacturing policies. The main emphasis is on studying
supply side interactions, in particular, the link between production and sales of new
products and the resulting subsequent supply of used products. Further, the issue
of storing excess production is addressed. The relationship between inventory and
remanufacturing decisions is quantified.

Keywords Closed-loop supply chain • Remanufacturing policies • Two-period
newsvendor • Remanufacturable products • Inventory carryover

9.1 Introduction

Over the last few years the design of closed-loop supply chain operations has
attracted increasing attention in several industries including prominently, e.g.,
automotive or consumer electronics (Guide et al. 2006; Olugu et al. 2011). The
term closed-loop refers to the fact that forward processes and reverse production or
logistics processes are dealt with in an integrated fashion. The reverse processes may
include some or all of the following stages: product acquisition, quality grading,
repair, remanufacturing, recycling, or disposal (Guide and Van Wassenhove 2009).
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In this paper, we study the production decisions of a firm for a single product with
uncertain demand that can be supplied through manufacturing brand new products
or remanufacturing returned cores from sales in previous periods. Specifically our
model explicitly captures the fact that the supply of returned cores depends on manu-
facturing and supply decisions for brand new products in the past. Together with the
demand uncertainty, this link gives rise to two interesting intertemporal phenomena.
First, by increasing the supply in early periods the firm increases the availability of
returned cores in the future. As remanufacturing returned cores is more efficient
than producing brand new products this gives rise to reduced cost in later periods.
However, this effect comes from an increase in first period cost and the trade-off has
to be balanced. Second, given the demand uncertainty excess production in early
periods not only increases the availability of returned cores in the future but also
increases the overage in the early periods. Keeping this overage in stock for sale in
future periods also influences the demand for remanufactured products. Thus, while
the existence of both stocking excess production and remanufacturing returned cores
should increase the incentives for excess production in early periods the two supply
options are also to some extent substitutes and the main interesting question is under
what conditions remanufacturing takes place at all and under what conditions it is
the exclusive supply option chosen.

To answer these questions a stochastic single-product two-period model is
formulated and analyzed. In a first step, the optimal remanufacturing policy is
determined assuming that keeping inventories is not an option. This case can also
be interpreted as a situation where the second period corresponds to the life cycle of
a new generation of the product, e.g., smartphones, video game consoles. In such a
setting, the stocked first period product could not be used toward the satisfaction of
the second period demand (at least not without some rework). Then, this model is
extended by allowing inventories and the main structural properties of this extended
model are also analytically derived. Particularly, it is shown that when inventory cost
is sufficiently small, no remanufacturing may take place even though returned cores
are available. This setting can be observed, e.g., in the printer cartridge market.

The remainder of the paper is organized as follows. Section 9.2 presents
related research and places the current model with respect to the existing scientific
literature. Section 9.3 deals with the formal model definition and the theoretical
results. The model is extended to include the possibility of inventories in Sect. 9.4.
Section 9.5 concludes the paper with a short summary and an outlook on extensions
of the presented work.

9.2 Related Work

We will split the discussion of the existing research in two parts. In the first
part, we will cover the works on related topics in terms of product returns and
remanufacturing, while in the second part we will focus on some of the recent
works on two-period newsvendor models. Note that in neither part the review is
meant to be exhaustive but rather should give a rough overview of some of the
recent developments in these areas.
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9.2.1 Product Returns and Remanufacturing

As mentioned in the introduction, there is a growing body of literature dealing
with reverse logistics and closed-loop supply chains. There is a stream of literature
dealing with game-theoretic models for analyzing competition and supply chain
coordination in remanufacturing settings. A two-period model is used in Ferguson
and Toktay (2006) to study possible competition on the remanufacturing market.
They develop strategies on how to prevent a remanufacturing market entry of a
competitor by collecting used items or collection and remanufacturing. Supply
chains with different coordination mechanisms are studied in Bhattacharya et al.
(2006) and Li et al. (2011). In Bhattacharya et al. (2006), the results show that
the option to remanufacture increases order quantities and profits. It also leads
to a higher service level for customers due to increased product availability.
A higher cost difference between new and remanufactured products results in
increased order quantities. In Li et al. (2011), a supply chain is studied under three
different coordination settings (Stackelberg case, Nash case, inaccessible return
information case). A retailer is confronted with stochastic demand and orders from
a supplier who produces new and remanufactures used products. In the Nash case
with simultaneous decisions concerning the manufacturing/order quantities, the
quantities and profits are the lowest of the three cases.

Our model is most closely related to the stream of research dealing with (the
quality of) product returns and the relationship between new and remanufactured
products. The quality of product returns may be highly heterogeneous and there
are several models that analyze the acquisition and/or grading process in reman-
ufacturing. In a very simple setting without the possibility to grade goods before
acquisition, in Galbreth and Blackburn (2006) the optimal acquisition quantity of
used cores is shown to exceed the demand for remanufactured products. As reman-
ufacturing cost depends on core quality, this strategy enables the remanufacturer
to select only the high quality returns for actual remanufacturing and scrap the
low quality returns. In Ferguson et al. (2009), the return of cores is given and a
grading system is in place that categorizes these returns according to their quality.
The decisions are how many cores of a particular quality class to remanufacture
immediately, how many cores of a particular class to store for later remanufacturing,
and how many cores to scrap. One of the main results is that the company always
remanufactures the exact demand in each period. Moreover, the optimal strategies
are intuitive in that it can be never optimal to store lower quality cores when
higher quality ones are available. Analogously, it can be never optimal to scrap
higher quality cores before all lower quality cores are scrapped. While these two
(and related papers) provide insight into the acquisition and supply process for
remanufacturing, they ignore the link with new products.

This link is addressed in Guide and Li (2010) where the influence of product
and market characteristics on the potential cannibalization of new product sales by
remanufactured products is derived through an empirical, field research. The main
finding is that for the studied commercial product there seemed to be a potential
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for cannibalization, while for the consumer product the risk of cannibalization
was small. The relationship between new and remanufactured products for demand
satisfaction is also studied analytically in Ferrer and Swaminathan (2006, 2010),
Inderfurth (2004), Kelle and Silver (1989), Li et al. (2010), Shi et al. (2011), Teunter
and Flapper (2011), Wei et al. (2011), Zhou et al. (2011), and Zhou and Yu (2011).

In Li et al. (2010) and Wei et al. (2011), the focus is on the solution approach.
In Li et al. (2010), a dynamic programming approach is developed for a multi-period
production planning model including manufacturing, remanufacturing, and disposal
decisions. The structure of the optimal control consists of two order-up-to levels for
remanufacturing and manufacturing, respectively, and a threshold inventory level
above which returned products are disposed of. Robust optimization is applied to an
inventory-production planning model with remanufacturing and uncertain demand
and supply of used products in Wei et al. (2011). Some numerical examples underpin
the effectiveness of the approach and show the sensitivity of the key parameters
concerning the solution. Particularly, holding and shortage costs are shown to have
the strongest influence on the optimal production and remanufacturing decisions.

In Inderfurth (2004), a single-period, combined manufacturing/remanufacturing
and inventory control problem is presented. The same capacity is used by man-
ufacturing and remanufacturing processes, and stochastic demands for new and
remanufactured products as well as stochastic returns of used products are consid-
ered. Downward substitution allows substitution of remanufactured items by new
products but not vice versa. A main result is that the optimal solution deviates
from the newsboy solution, particularly by a decreased inventory level of the
remanufactured product and higher production of new products. In Shi et al. (2011),
a stochastic model for deciding optimal production and remanufacturing quantities
for a product portfolio is presented. Product demands are independent, for each
product new and remanufactured units are perfect substitutes, the returns are of
unknown quality and the amount of returned cores is a function of their acquisition
price, which is also a decision variable. Even for the single-period case studied,
the problem is hard to solve for larger sizes and so a Lagrangian relaxation-
based approach is presented to obtain near-optimal solutions. The optimal strategy
will always include (some) remanufacturing. The optimal acquisition and reman-
ufacturing policies of a model with uncertain quality of returns are determined
in Teunter and Flapper (2011). Considering stochastic demand, optimal newsboy-
like solutions are derived and consequences of demand uncertainty are explored.
Higher demands result in an increased optimal quantity of acquired cores and larger
optimal remanufacturing-up-to levels. The value of quality information decreases
when the demand uncertainty increases.

None of the above-mentioned papers addresses explicitly the link between
previous sales and returns of used products. One of the first papers focusing on
this link is Kelle and Silver (1989), where the case of planning reusable containers
is considered. Returns are stochastic but depend on past sales, and due to loss
sometimes new containers must be acquired. In Zhou et al. (2011), the different
quality of returns is considered in a single-product, finite multi-period inventory
model with stochastic demands. As a result, it is shown that the optimal policy for
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manufacturing, remanufacturing, and disposal has a simple form, represented by
a sequence of constant control parameters. Numerical examples show significant
cost reductions compared to two heuristics (pull policy with sorting, pull policy
without sorting). In Zhou and Yu (2011), dynamic pricing allows to influence the
uncertain supply of used products and random customer demands in a production–
remanufacturing model. An exogenous selling price results in a simple policy,
whereas considering the selling price as endogenous decision variable leads to an
indecomposable state-dependent solution. In this case, the selling price decreases
and the acquisition price increases with rising inventory of serviceable products but
both decrease when the aggregate inventory level increases.

In Ferrer and Swaminathan (2006, 2010), the optimal supply quantities of new
and remanufactured products are analyzed in similar settings as in our model. The
case of perfect substitutability between new and remanufactured products is dealt
with in a deterministic setting in Ferrer and Swaminathan (2006). Using a price-
dependent demand function, it is shown that the possibility of remanufacturing
induces the OEM to reduce early period prices for new products to stimulate
sales and consequently provide a larger supply of returned cores for possible
remanufacturing in later periods. Moreover, it is shown that in the given setting
remanufacturing in later periods will always take place, either as an exclusive
supply or jointly with the production of new products. In Ferrer and Swaminathan
(2010), the model is extended to deal with imperfect substitutability of new and
remanufactured products and the equilibrium prices and quantities of new and
remanufactured products are derived under a simple demand competition setting.
It is shown that in this setting, there may be market constellations where no
remanufacturing takes place. As in Shi et al. (2011), the optimal strategy will always
include (some) remanufacturing.

Our model differs from these approaches by the combined consideration of the
following problem characteristics:

• Uncertain product demand
• Manufacturing and remanufacturing decision making, i.e., a closed-loop view
• Explicit link between sales in earlier periods and subsequent availability of

returns for remanufacturing
• No market clearing and the possibility to store excess production for future use

9.2.2 Two-Period Newsvendor Models

In terms of our modeling approach, we follow a line of research utilizing variants
and extensions of newsvendor-type models. Particularly, there is a recent interest
in two-period newsvendor models for studying different types of flexibility for
satisfying uncertain demands of product portfolios (see, e.g., accurate response
in Cattani et al. 2008; Chung et al. 2008; Reimann 2011a; Zhang and Du
2009 and postponement strategies in Granot and Yin 2008 or Reimann 2011b).
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All of these models extend the classical newsvendor model by allowing (some)
production after the demand revelation, i.e., during the selling season. In Cattani
et al. (2008), the optimal levels of preseason and selling season capacity are
determined under the assumption that the selling season capacity can be allocated to
the different products upon demand realization. Contrary to that, the selling season
capacity has to be pre-allocated to the different products before the selling season
in Chung et al. (2008). The two settings are systematically compared in Reimann
(2011a) to study the value of flexibility induced by delayed capacity allocation.
Slightly deviating from the setting in these three studies, in Zhang and Du (2009)
the value of outsourcing for supplementing limited in-house capacity is studied in
two settings. In one setting, both in-house production and outsourcing decisions
take place prior to the selling season. In the other setting, outsourcing can be used
as an emergency option upon demand realization. Price and order postponement
strategies to enhance effectiveness are studied in Granot and Yin (2008). Price
postponement refers to the possibility of setting the price in reaction to the demand
information, while order postponement is similar to the above-mentioned strategies
and corresponds to adjusting supply quantities in response to demand revelation.
Finally, in Reimann (2011b) accurate response and postponement strategies are
combined in that prior to the selling season some standard component is produced,
while during the selling season this standard component is then customized to the
observed product demands.

In all of these models, the first period is only a preparatory phase and there is no
demand in this period. Moreover, the possibility to utilize selling season capacity,
i.e. to make decisions under certainty greatly enhances profitability and reduces the
preseason production under uncertainty. In contrast to that, our current model deals
with demands in both periods. Moreover, the first period demand and consequently
the first period sales will influence (some of) the second period supply, namely, the
one for remanufacturing. Consequently, it may be optimal to increase first period
supply. In the remainder of the paper, we will show under which conditions this is
the case.

9.3 The Model

We consider a two-period model. The manufacturer offers new products in the first
period and has the opportunity to offer new and remanufactured products in the
second period. Remanufactured products are made from customer returns of period
1 sales. The core collection yield is denoted by γ , i.e., a fraction 0 ≤ γ ≤ 1 of the
units sold in period 1 are available for remanufacturing in period 2.

New and remanufactured products are perfect substitutes. The price in period
t = 1,2 is given by pt , while the production cost for new products is ct < pt .
The cost savings associated with remanufacturing is δ ≥ 0, i.e., remanufacturing
a collected core incurs cost of c2 − δ in period 2. Demand Dt in both periods is
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uncertain with known probability density and cumulative distribution functions fDt

and FDt , respectively. Throughout we will assume that the demand distributions are
continuous and twice differentiable. Let dt denote a demand realization in period t.

The expected sales quantity in the first period is a function of the first period
production decision of new products q1 and denoted by SD1(q1). It is given by
SD1(q1) =

∫ q1
0 u fD1(u) du + q1 [1 − FD1(q1)]. Given the core collection yield γ

defined above, γ SD1(q1) units will be returned by customers and are available for
remanufacturing in the second period. However, the manufacturer may decide not
to remanufacture all of them, and its remanufacturing decision variable is given by
q̂2 ≤ γ SD1(q1). Moreover, the manufacturer can decide to manufacture q2 units of
new products in period 2. Summarizing the total supply in period 2 is given by
q̂2 + q2 and the associated expected sales are SD2(q̂2 + q2).

For formulating our intertemporal optimization problem, let us assume that
second period cash flows are discounted with a factor 0 ≤ β ≤ 1. Then the objective
of maximizing expected profits π is given by

max
q1,q2,q̂2

π =−c1 q1+p1 SD1(q1)+β [−c2 (q2 + q̂2)+ δ q̂2 + p2 SD2(q2 + q̂2)] , (9.1)

while the constraints are

q̂2 ≤ γ SD1(q1), (9.2)

q1,q2, q̂2 ≥ 0. (9.3)

Clearly, the constraints are convex and it is easy to verify that the objective
function is concave. Consequently, the optimal solution is obtained by solving the
set of KKT optimality conditions.

The structure of the optimal solution is summarized by the following result.

Proposition 1. Depending on the shadow-price λR of the remanufacturing con-
straint (9.2), the three possible production scenarios are given by

1. λR = 0 (Exclusive, but limited remanufacturing in period 2):
q1 = F−1

D1
( p1−c1

p1
) and q̂2 = F−1

D2
( p2−c2+δ

p2
) and q2 = 0

2. 0 < λR < β δ (Exclusive, full remanufacturing in period 2):

q1 = F−1
D1

( p1−c1+γ λR
p1+γ λR

) and q̂2 = γ SD1(q1) = F−1
D2

(β (p2−c2+δ )−λR
β p2

) and q2 = 0
3. λR = β δ (Full remanufacturing and new production in period 2):

q1 = F−1
D1

( p1−c1+γβ δ
p1+γβ δ ) and q̂2 = γ SD1(q1) and q2 = F−1

D2
( p2−c2

p2
)− q̂2

Proof. All proofs are given in Appendix. �

The optimal scenario and the associated production and remanufacturing quan-

tities can be obtained easily through line-search for the optimal λR. Note that
in the first case, the first period decision corresponds exactly to the well-known
unconstrained, single-period newsvendor solution. There is no new production
in period 2 and total second period supply is through remanufacturing. The
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second period supply quantity corresponds again to the unconstrained, single-period
newsvendor quantity, this time subject to the remanufacturing cost (c2−δ ). Finally,
in that scenario not all the collected cores are remanufactured.

In the second scenario, first period production exceeds the newsvendor quantity
and all the returned cores are remanufactured and offered to the market in the second
period. However, there is still no new production in period 2.

In the third scenario, there is again excess production in period 1 and all the
returned cores are remanufactured and offered to the market in the second period.
However, this supply is insufficient and consequently supplemented by new produc-
tion. In this third scenario, the total supply in the second period corresponds exactly
to the unconstrained, single-period newsvendor quantity under the manufacturing
cost c2, i.e., the quantity that would also be produced if remanufacturing was not
possible.

Thus, an interesting observation is that while in scenarios 2 and 3 there is excess
period 1 production, it goes along with a reduction of the optimal total supply in
period 2 compared to scenario 1. The excess production in period 1 is used only to
narrow the gap between the optimal unconstrained remanufacturing supply and the
optimal supply associated with the more costly new production.

Note that this result is in line with the results in Ferrer and Swaminathan (2006)
where for the deterministic, but price-dependent demand case lower prices (and con-
sequently larger supply quantities) in early periods are found when remanufacturing
possibilities exist. An interesting new result provided by our approach is the link
between excess production in period 1 and the remanufacturing quantity decision.
Whenever excess production in period 1 occurs, this implies that all the returned
cores are used for remanufacturing.

Using the results given by Proposition 1, the three different scenarios can be
characterized as a function of the core collection yield γ and the remanufacturing
cost savings δ . This is shown in the following lemma.

Lemma 1. The existence of excess period 1 production and new production in
period 2 is characterized by the following conditions.

(a) Excess period 1 production occurs whenever

γ SD1(q
NV
1 )< F−1

D2

(
p2 − c2 + δ

p2

)
. (9.4)

Assuming uniform demand distributions D1 ∼U(a1,b1) and D2 ∼U(a2,b2)
excess period 1 production occurs whenever

δ >
p2

b2 − a2

[
γ
[

E[D1]− (b1 − a1)
1
2

c2
1

p2
1

]
−
[

E[D2]+ (b2 − a2)

(
1
2
− c2

p2

)]]
.

(9.5)
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(b) New production in period 2 occurs whenever

γ SD1(q1)< F−1
D2

(
p2 − c2

p2

)
. (9.6)

Assuming uniform demand distributions D1 ∼ U(a1,b1) and D2 ∼ U(a2,b2)
new production in period 2 occurs whenever

– If γE[D1]−
[

E[D2]+ (b2 − a2)
( 1

2 − c2
p2

)]
> 0

δ <

√√√√√
b1 − a1

2γβ 2

c2
1

γE[D1]−
[

E[D2]+ (b2 − a2)
(

1
2 − c2

p2

)] −
p1

γ β
(9.7)

– If γE[D1]−
[

E[D2]+ (b2 − a2)
( 1

2 − c2
p2

)]≤ 0

δ ≥ 0.

Part (a) of Lemma 1 states that excess production in period 1 can only be optimal
when the expected collection yield associated with the newsvendor quantity qNV

1
is insufficient to cover the optimal unconstrained remanufacturing supply in period
2. This once again highlights the link between excess production in period 1 and
reduced supply in period 2 described above. According to the second part (b) of
Lemma 1 new production in period 2 can only occur when the collection yield
associated with the optimal first period production is insufficient to cover even the
optimal supply quantity associated with new production. It is easy to verify that the
second part of Lemma 1 is more limiting on γ than the first. Whenever γ is large,
i.e. condition (9.4) is violated, remanufacturing does not influence the first period
decision and there is no excess production in period 1. We are in scenario 1. When
γ is at an intermediate level, i.e. (9.4) is satisfied but (9.6) is violated, we are in
scenario 2, while scenario 3 occurs for small values of γ which satisfy (9.6).

This provides an interesting insight into the strategic relationship between the
collection efficiency/effectiveness and the manufacturing decision. Investing in
a better return rate (e.g., by increasing the price paid for collected cores, or
by improving the logistics network for collecting cores) reduces the necessity
to produce excessive units in early periods just to ensure sufficient supply of
remanufacturable cores in later periods.

For the special case of uniform demand distributions the lemma also provides
explicit bounds on the remanufacturing cost savings δ . We first observe that when
expected second period demand or demand uncertainty (given by the gap (b2 −a2))
increases, both excess period 1 production and new production in period 2 are more
likely. When the market expands, i.e., in the early phases of the life cycle, it pays to
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provide a base for capitalizing on the remanufacturing opportunities. In the extreme
case when γE[D1]− [E[D2] + (b2 − a2)(

1
2 − c2

p2
)] ≤ 0 new production in period 2

occurs for all δ ≥ 0. Moreover, in that case the right-hand-side of condition (9.5)
is smaller than zero and hence excess production occurs whenever δ ≥ 0. This can
be easily understood. Observe first, that γE[D1] is the maximum possible expected
sales quantity when q1 = b1. Observe further, that E[D2] + (b2 − a2)

(
1
2 − c2

p2

)
is

the minimum second period production corresponding to the newsvendor quantity
associated with the cost of new production. Both excess production in the first period
and new production in the second period need to take place if the returned cores
induced by the maximum quantity produced in the first period are insufficient to
satisfy the minimum second period production quantity.

Finally we also observe the inverse relationship between the core collection yield
γ and the remanufacturing cost savings δ . When γ increases, the savings associated
with remanufacturing need to be larger to induce additional excess production.
Analogously, δ needs to be smaller, i.e., the cost savings need to be smaller to
induce new production in period 2 when the core collection efficiency increases,
i.e., γ . In both cases, the increased returns from the same first period sales quantity
reduce the necessity of costly actions like excess production in period 1 and new
production in period 2.

9.3.1 Illustrative Example

Let us consider a small illustrative example to support the theoretical findings above.
For reasons of simplicity, we will assume that market prices and production costs
are constant and given by p1 = p2 = p = 10, c1 = c2 = c = 8. The discount factor
β = 0.9. First period demand is given by a uniform distribution D1 ∼U(a1,b1) with
a1 = 25 and b1 = 75.

The main aim of the numerical study is to analyze variations in the core collection
yield γ , the remanufacturing cost savings δ , and the expected second period demand
E[D2] on the supply strategy and expected profitability.

For comparison, we will consider a base case setting, where D2 ∼ U(25,75),
γ = 0.5, and δ = 1. Figures 9.1–9.3 all show the first period production of new
products q1, the second period production of new products q2, and the second period
remanufacturing of returned cores q̂2. Further, for ease of explanation the figures
also show the optimal single-period newsvendor quantity qNV

1 and the available
supply of returned cores γ SD1(q1).

Figure 9.1 focuses on variations of γ from γ = 0.05 to γ = 1 in steps of 0.05. We
first observe that there is excess period 1 production, i.e., q1 > qNV

1 for the entire
range of γ . Thus, we are never in case 1 described above in Proposition 1. This
can also be seen from the fact that q̂2 = γ SD1(q1), i.e., all the returned cores are
remanufactured. Moreover, except for the situation γ = 1 there is new production
q2 > 0 implying that we are in case 3, while for γ = 1 we are in case 2.
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Fig. 9.1 Supply quantities under varying core collection yield γ

Looking at the general effect of γ , we observe some intuitive results. When the
core collection yield increases, remanufacturing increases and second period new
production falls. Expected profits increase almost linearly from 115.53 to 145.64
when γ goes from 0.05 to 1. However, compared to variations in δ and E[D2], the
profit effect of variations in γ is quite moderate.

Finally, we observe an interesting and at first sight counterintuitive phenomenon.
When γ increases q1 first increases, and then drops again for γ = 1. When γ increases
the same level of excess production yields a larger amount of returned cores. Thus,
we would expect that costly excess production should go down. However, this is
only true when γ increases from γ = 0.95 to γ = 1 in which case no more new
production in period 2 takes place. For smaller values of γ , the core collection yield
and excess first period production move in the same direction to enable an extra
reduction of the more costly new production in period 2.

The impact of variations in δ between δ = 0 and δ = c2 in steps of 0.5 are
shown in Fig. 9.2. Here we observe very similar behavior as under variations of
γ . When δ increases, and consequently remanufacturing gets less costly excess
first period production increases, remanufacturing increases and new production in
period 2 decreases. When δ = 0, we obtain a special—and trivial—case. When
remanufacturing yields no cost advantage, the two periods are decoupled and
the optimal decision in both periods is to supply the unconstrained single-period
newsvendor quantities qNV

1 and qNV
2 , respectively. As the base case is stationary

both in terms of demand and cost structure, we observe q1 = q2 = qNV
1 = qNV

2 .
Finally, we observe a steep expected profit increase of about 120.75% between the
cases of δ = 0 and δ = 8. Specifically, the expected profit rises almost linearly from
114.00 when there is no cost difference between new and remanufactured products
(δ = 0), to 251.65, when the returned cores could directly be resold without any
remanufacturing cost (i.e., δ = 8).
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Fig. 9.2 Supply quantities under varying remanufacturing cost savings δ

Fig. 9.3 Supply quantities under varying second period expected demand E[D2]

Figure 9.3 shows the effects of different levels of second period demand. More
precisely, we let D2 ∼ U(a2,b2), where a2 varies from 0 to 50 in steps of 5 and
b2 = a2 + 50. Here we observe all three cases as described by Proposition 1. When
second period demand is very small, i.e., E[D2] = 25, we are in case 1. There is no
new production in period 2, no excess production in period 1 and not all the returned
cores are remanufactured. Supplying the unconstrained single-period newsvendor
quantity in period 1 is sufficient to ensure enough returned cores for satisfying the
very low second period demand. For E[D2] = 30, there is still no new production
in period 2, but all returned cores are remanufactured and first period production
is already excessive. Thus, even on declining markets, excessive production and
remanufacturing may be optimal when the decrease in demand from one period
to the next is not too severe. Further, when E[D2] ≥ 35 full remanufacturing is
supplemented by new production in period 2 to ensure sufficient second period
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supply. Finally, with increasing second period demand expected profits increase
roughly linearly from 80.25 in the case of E[D2] = 25 to 174.61 when E[D2] = 75.

9.4 Inventory Carryover

In the previous section we have assumed that second period supply can only come
from one of two sources, namely, production of new products or remanufacturing of
returned cores in period 2. However, due to the demand uncertainty and pronounced
through excess production in period 1, there may be unsold units of the product at
the end of period 1. These could be carried over and used for demand satisfaction
in period 2. This may not be a reasonable setting when the two periods correspond,
e.g., to life cycles of two generations of a product. However, when the life cycle
of a single product generation is considered inventories can play an important
role. The interesting question is how these inventories will influence the optimal
remanufacturing decision.

To answer this question, we will extend our model to deal with the possibility of
inventory carryover. Given first period production q1 and sales SD1(q1), there is an
expected inventory level ID1(q1) of unsold units at the end of period 1 which is given
by ID1(q1) = q1 − SD1(q1). The manufacturer may be able to keep (some of) these
excess units for sale as new products in period 2. The associated per-unit holding
cost is given by h. To avoid the case where holding can never be optimal (which
would take us back to our previous model), we assume that h < β c2. Further, to
avoid the case where producing and holding units beyond the maximum demand in
period 1 can be optimal we assume that c1 + h > β c2.

Holding excess production from period 1 is at the discretion of the manufacturer
and the decision variable denoting the amount held is I1. Clearly, I1 ≤ ID1(q1). The
total supply in period 2 is given by I1 + q̂2 + q2 and the associated expected sales
are SD2(I1 + q̂2 + q2).

The modified model is given by

max
q1,q2,q̂2,I1

π = −c1 q1 + p1 SD1(q1)− h I1

+β [−c2 (q2 + q̂2)+ δ q̂2 + p2 SD2(I1 + q2 + q̂2)] , (9.8)

while the constraints are

q̂2 ≤ γ SD1(q1), (9.9)

I1 ≤ ID1(q1), (9.10)

q1,q2, q̂2, I1 ≥ 0. (9.11)

As in the previous section, the model can be easily shown to be well behaved.
The relationship between inventory and remanufacturing as supply sources is
summarized in the following result.
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Proposition 2. There is a threshold holding cost h∗ =β (c2−δ ) such that, if h> h∗,
remanufacturing is the primary supply for satisfying second period demand, while
inventory as a secondary and new production as a third supply are only used to fill
demand if necessary.

Specifically, depending on the shadow-price λR of the remanufacturing con-
straint the possible production scenarios are given by

1. λR = 0 (Exclusive, but limited remanufacturing in period 2):
q1 = F−1

D1
( p1−c1

p1
) and q̂2 = F−1

D2
( p2−c2+δ

p2
) and I1 = 0 and q2 = 0

2. 0 < λR < h−β (c2− δ ) (Exclusive, full remanufacturing in period 2):

q1 = F−1
D1

( p1−c1+γλR
p1+γλR

) and q̂2 = γ SD1(q1) = F−1
D2

(β (p2−c2+δ )−λR
β p2

) and I1 = 0 and
q2 = 0

3. λR = h − β (c2 − δ ) (Full remanufacturing and limited use of inventory in
period 2):
q1 =F−1

D1
( p1−c1+γ(h−β (c2−δ ))

p1+γ(h−β (c2−δ )) ) and q̂2 = γ SD1(q1) and I1 =F−1
D2

(β p2−h
β p2

)− q̂2 and
q2 = 0

4. h − β (c2 − δ ) < λR < β δ (Full remanufacturing and full use of inventory in
period 2):
q1 =F−1

D1
( p1−c1+γλR

p1+γλR−[β (c2−δ )−h+λR]
) and q̂2 = γ SD1(q1) and I1 = ID1(q1) and q2 = 0

5. λR = β δ (Full remanufacturing, full use of inventory, and new production in
period 2):
q1 = F−1

D1
( p1−c1+γβ δ

p1+γβ δ−(β c2−h) ) and q̂2 = γ SD1(q1) and I1 = ID1(q1) and q2 =

F−1
D2

( p2−c2
p2

)− q̂2 − I1.

If h ≤ h∗ inventory is the primary supply for satisfying second period demand,
while remanufacturing as a secondary and new production as a third supply are
only used to fill demand if necessary.

Specifically, depending on the shadow-price λI of the inventory constraint the
possible production scenarios are given by

6. λI = 0 (Exclusive, but limited use of inventory in period 2):
q1 = F−1

D1
( p1−c1

p1
) and I1 = F−1

D2
(β p2−h

β p2
) and q̂2 = 0 and q2 = 0

7. 0 < λI < β (c2 − δ )− h (Exclusive, full use of inventory in period 2):
q1 = F−1

D1
( p1−c1

p1−λI
) and I1 = ID1(q1) = F−1

D2
(β p2−h−λI

β p2
) and q̂2 = 0 and q2 = 0

8. λI = β (c2 − δ )− h (Full use of inventory and limited remanufacturing in
period 2):
q1 = F−1

D1
( p1−c1

p1−[β (c2−δ )−h] ) and I1 = ID1(q1) and q̂2 = F−1
D2

( p2−c2+δ
p2

)− I1 and
q2 = 0

9. β (c2 − δ )− h < λI < β c2 − h (Full use of inventory and full remanufacturing
in period 2):
q1 = F−1

D1
( p1−c1+γ[h−β (c2−δ )+λI ]

p1+γ[h−β (c2−δ )+λI ]−λI
) and I1 = ID1(q1) and q̂2 = γ SD1(q1) and

q2 = 0
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10. λI = β c2 − h (Full use of inventory, full remanufacturing, and new production
in period 2):
q1 = F−1

D1
( p1−c1+γβ δ

p1+γβ δ−(β c2−h) ) and I1 = ID1(q1) and q̂2 = γ SD1(q1) and q2 =

F−1
D2

( p2−c2
p2

)− q̂2 − I1.

The results in Proposition 2 can be summarized as follows. The possibility of
keeping inventories never increases the first period excess production and never
decreases total second period supply. Both effects can be easily understood. First
period excess production not only leads to increased sales but also leads to increased
overages. While increased sales induce increased core collection for possible
remanufacturing, overages can be used directly as a second period supply. Thus, for
the same first period production, the total available units for second period supply
are larger when inventories are kept. Consequently, the same second period supply
can be achieved with smaller first period excess production.

Further, remanufacturing may not take place at all. The conditions for this as
well as excess period 1 production and new production in period 2 are given in the
following lemma.

Lemma 2. The existence of excess period 1 production, no remanufacturing, and
new production in period 2 is characterized by the following conditions.

(a) Excess period 1 production occurs whenever

– If h > h∗

γ SD1

(
qNV

1

)
< F−1

D2

(
p2 − c2 + δ

p2

)
(9.12)

– If h ≤ h∗

ID1

(
qNV

1

)
< F−1

D2

(
β p2 − h

β p2

)
. (9.13)

(b) No remanufacturing takes place whenever

h ≤ h∗ and ID1(q1)> F−1
D2

(
p2 − c2 + δ

p2

)
. (9.14)

(c) New production in period 2 takes place whenever

γ SD1(q1)+ ID1(q1)< F−1
D2

(
p2 − c2

p2

)
. (9.15)

This is independent of the level of holding costs h.

Looking first at these results for h > h∗ we observe that the condition for
excess period 1 production is identical to the one presented in Lemma 1. Moreover,
remanufacturing will always take place as it is the primary supply option in period
2. Finally, the condition for new production in period 2 is more strict than the one
given in Lemma 1. When inventories are possible, new production in period 2 can



234 M. Reimann and G. Lechner

only occur when the sum of the collected cores and the inventory level associated
with the optimal first period production is insufficient to cover the optimal supply
quantity associated with new production. As the most costly new production only
occurs when both inventory and remanufacturing are fully utilized, this condition
also applies for h ≤ h∗ and is actually independent of the level of holding cost.

Turning now to the results for h ≤ h∗, the decision on excess period 1 production
depends on whether or not the actual level of inventory from the unconstrained
single-period newsvendor quantity in period 1 is sufficient to optimally supply the
second period. Remanufacturing may not take place when inventory cost is low and
the level of inventory exceeds the optimal second period supply associated with
remanufacturing. From condition (9.14), we can see directly that remanufacturing
is more likely when the associated cost savings δ or the second period price p2

increase, or the second period cost c2 decreases. Also an increase in second period
demand will lead to more remanufacturing. The effect of first period characteristics
is more implicit through the value of ID1(q1). ID1(q1) increases when the first period
demand variance or service level (i.e., the optimal first period supply) increases. The
latter increases when first period price increases or cost decreases. Consequently, in
these cases it is more likely that no remanufacturing will occur.

Assuming uniform demand distributions, it is possible to derive closed-form
expressions for the conditions on excess period 1 production, new production in
period 2, and the occurrence of remanufacturing similar to those presented in
Lemma 1. However, these expressions are more complex (third degree polynomials)
and yield little explicit insight. Thus, we will now again turn to the numerical
analysis of our illustrative example.

9.4.1 Illustrative Example

To show the effects of the possibility to keep inventories of unsold new production
in period 1, we will return to our numerical setting from Sect. 9.3.1 and extend it by
varying the holding cost h between 0 and 7.2 in steps of 1.2.

The results are shown in Fig. 9.4 for the basecase γ = 0.5, δ = 1, and
E[D2] = 50. Figure 9.4 provides the same information as Figs. 9.1–9.3 and
additionally shows the available and utilized inventory at the end of period 1
ID1(q1) and I1, respectively. Let us first consider the settings that apply under
different levels of h. In the numerical example h∗ = β (c2 −δ ) = 6.3. Thus, only for
very high holding cost, in our case h = 7.2, remanufacturing is the primary second
period supply, while in all the other cases inventories are the primary second period
supply. Second, the case h= 7.2 implies that the manufacturer is indifferent between
new production in period 2 and keeping unsold period 1 production in inventory
for sale in period 2. Thus, while the figure shows some level of utilized inventory
for h = 7.2, the expected profit, optimal first period production q1 and optimal
level of remanufacturing q̂2 are identical to the results from the base case without
inventory. Keeping this in mind, we observe some interesting effects. As expected,
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Fig. 9.4 Supply quantities under varying holding cost h

reducing the holding cost increases the expected profit, in particular, from 129.61
when h = 7.2 to 161.07 in the case of h = 0. Thus, whenever keeping inventories
is possible and economically viable (i.e., the manufacturer is not indifferent to its
utilization) the manufacturer increases its efficiency. The interesting fact is that
this is achieved with increasing excessive new production in period 1. Thus, the
manufacturer is willing to give up more and more period 1 profit in exchange for
reduced cost in period 2. Finally, looking at period 2 supply one observes that
remanufacturing and inventory complement each other in substituting the more
costly new production in period 2. Thus, with decreasing holding cost h both the
level of remanufacturing and the utilized inventory increase continuously.

To see whether this observation from the base case holds true in general and
to study the effects of the possibility to store unsold period 1 production more
thoroughly let us perform similar sensitivity analysis as in Sect. 9.3.1. To keep
the unit gains from inventory at a comparable level with the remanufacturing cost
savings we set h = 1.2 for the following experiments.

Tables 9.1–9.3 show the results of varying γ , δ , and E[D2] under both the model
without inventories and the model with inventories. Note that for the model without
inventories, the tables reproduce the results from Figs. 9.1–9.3, respectively.

Concerning the relationship between inventories and remanufacturing, we first
observe from Table 9.1 that the result discussed above does not hold in general.
When γ is small, I1 and q̂2 both increase with increasing core collection yield. This
is in line with the findings from above. However, when γ is large inventories start to
drop as γ increases further, while q̂2 keeps increasing. This happens when q2 = 0.
In that case—as described above—q1 starts to fall. While this fall translates directly
into a fall in available and utilized inventory, the increasing core collection yield
outweighs the reduction in q1 and q̂2 increases.

Comparing in more detail the cases with and without inventories, we find that
profits increase in both cases when γ increases. More interestingly, the gap between
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Table 9.1 Supply quantities and expected profits with and without inventories under varying core
collection yield γ and holding cost h = 1.2

Core collection yield γ

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

π w/o inv. 115.53 117.07 118.62 120.17 121.73 123.29 124.86 126.44 128.02 129.61
w/ inv. 130.97 132.95 134.93 136.92 138.92 140.92 142.92 144.94 146.95 148.97

q1 w/o inv. 35.18 35.36 35.53 35.71 35.88 36.05 36.22 36.39 36.56 36.72
w/ inv. 50.28 50.55 50.82 51.08 51.34 51.58 51.83 52.07 52.30 52.53

q2 w/o inv. 33.29 31.57 29.84 28.09 26.33 24.55 22.76 20.96 19.15 17.33
w/ inv. 26.42 24.07 21.71 19.35 16.97 14.58 12.18 9.78 7.37 4.95

q̂2 w/o inv. 1.71 3.43 5.16 6.91 8.67 10.45 12.24 14.04 15.85 17.67
w/ inv. 2.19 4.40 6.62 8.86 11.10 13.35 15.62 17.90 20.18 22.48

I1 w/o inv. – – – – – – – – – –
w/ inv. 6.39 6.53 6.67 6.80 6.94 7.07 7.20 7.33 7.45 7.58

Core collection yield γ

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

π w/o inv. 131.20 132.80 134.41 136.02 137.63 139.25 140.88 142.51 144.15 145.64
w/ inv. 151.00 153.03 154.85 156.25 157.24 157.86 158.14 158.16 158.16 158.16

q1 w/o inv. 36.89 37.05 37.21 37.37 37.53 37.69 37.84 38.00 38.15 37.65
w/ inv. 52.75 52.97 51.57 50.12 48.71 47.30 45.92 45.41 45.41 45.41

q2 w/o inv. 15.49 13.64 11.78 9.91 8.03 6.14 4.24 2.32 0.40 0.00
w/ inv. 2.52 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

q̂2 w/o inv. 19.51 21.36 23.22 25.09 26.97 28.86 30.76 32.68 34.60 36.05
w/ inv. 24.78 27.09 28.93 30.67 32.31 33.86 35.31 35.83 35.83 35.83

I1 w/o inv. – – – – – – – – – –
w/ inv. 7.70 7.82 7.06 6.31 5.62 4.97 4.38 4.17 4.17 4.17

the expected profits with and without inventory increase first and then decreases.
Thus, the gain from the possibility to hold inventories is largest when γ is around
0.5. Further, first period excess production is much larger when inventories are
possible. This is clear as excess production increases expected sales and expected
inventory at the same time. Another interesting finding is that for small levels of γ ,
remanufacturing is larger with inventories, while for large values of γ the opposite is
true. This can be understood by the fact that for h = 1.2 inventories are the primary
supply and their utilization reduces the need for remanufacturing. Particularly,
for large γ there are no longer all returned cores used for remanufacturing when
inventories are possible.

Looking at Table 9.2, we observe some more interesting facts. The positive
effect of increasing remanufacturing cost savings δ is actually pronounced by the
possibility of keeping inventories, as indicated by the widening gaps between the
expected profits with and without inventories. Concerning the relationship between
I1 and q̂2 we observe the same effect as already discussed for variations of h. When
δ increases, both remanufacturing and utilized inventories increase throughout.

Finally, looking at Table 9.3 we find that expected second period demand has
the strongest impact on new production in period 2 q2. While I1 and q̂2 also increase
when the second period market size increases, once expected second period demand
exceeds expected first period demand the additional demand is met exclusively
through new production. Thus, in that case the cost savings associated with keeping
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Table 9.2 Supply quantities and expected profits with and without inventories under varying
remanufacturing cost savings δ and holding cost h = 1.2

Remanufacturing cost savings δ
0.5 1 1.5 2 2.5 3 3.55 4

π w/o inv. 121.73 129.61 137.63 145.79 154.07 162.47 170.98 179.59
w/ inv. 138.92 148.97 159.14 169.41 179.76 190.19 200.69 211.24

q1 w/o inv. 35.88 36.72 37.53 38.30 39.05 39.76 40.44 41.10
w/ inv. 51.33 52.53 53.62 54.59 55.49 56.31 57.07 57.76

q2 w/o inv. 17.65 17.33 17.02 16.73 16.46 16.21 15.97 15.75
w/ inv. 5.87 4.95 4.10 3.33 2.61 1.94 1.32 0.75

q̂2 w/o inv. 17.35 17.67 17.98 18.27 18.54 18.79 19.03 19.25
w/ inv. 22.20 22.48 22.71 22.92 23.10 23.25 23.39 23.51

I1 w/o inv. – – – – – – – –
w/ inv. 6.93 7.58 8.19 8.76 9.29 9.80 10.28 10.73

Remanufacturing cost savings δ
4.5 5 5.5 6 6.5 7 7.5 8

π w/o inv. 188.31 197.11 206.01 214.98 224.04 233.17 242.38 251.65
w/ inv. 221.85 232.50 243.17 253.86 264.57 275.30 286.05 296.81

q1 w/o inv. 41.74 42.35 42.94 43.50 44.05 44.58 45.09 45.59
w/ inv. 58.40 58.83 59.12 59.39 59.65 59.90 60.15 60.38

q2 w/o inv. 15.53 15.33 15.14 14.96 14.79 14.63 14.47 14.33
w/ inv. 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

q̂2 w/o inv. 19.47 19.67 19.86 20.04 20.21 20.37 20.53 20.67
w/ inv. 23.62 23.69 23.74 23.78 23.82 23.86 23.90 23.93

I1 w/o inv. – – – – – – – –
w/ inv. 11.16 11.45 11.64 11.82 12.01 12.18 12.35 12.51

inventories and remanufacturing do not outweigh the first period profit decrease due
to increased excess production.

When looking at q̂2, we observe a similar effect as discussed above for variations
of γ . When expected second period demand is small, q̂2 is smaller in the model
with inventories than in the model without inventories. This effect is reversed
when the expected second period demand increases—and in our numerical case
exceeds E[D2] = 35. The driver for this is again that for small expected second
period demand not all of the returned cores are used. Specifically, we observe,
e.g., for E[D2] = 25 that the optimal second period supply in both models is 15.
Without inventories this comes exactly from remanufacturing, while in the model
with inventories this supply is split between inventories and remanufacturing. The
most interesting observation is that even though the market is clearly declining—
from E[D1] = 50 to E[D2] = 25—there is significant increased excess production in
period 1 when inventories are possible. Yet this still leads to a considerable increase
in expected profits.
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Table 9.3 Supply quantities and expected profits with and without inventories under varying
expected second period demand E[D2] and holding cost h = 1.2

Expected second period demand E[D2]

25 30 35 40 45 50

π w/o inv. 80.25 93.04 102.61 111.61 120.61 129.61
w/ inv. 90.66 104.16 117.66 129.91 139.97 148.97

q1 w/o inv. 35.00 35.93 36.72 36.72 36.72 36.72
w/ inv. 45.41 45.41 45.55 48.99 52.49 52.53

q2 w/o inv. 0.00 0.00 2.33 7.33 12.33 17.33
w/ inv. 0.00 0.00 0.00 0.00 0.00 4.95

q̂2 w/o inv. 15.00 17.37 17.67 17.67 17.67 17.67
w/ inv. 10.83 15.84 20.66 21.62 22.48 22.48

I1 w/o inv. – – – – – –
w/ inv. 4.17 4.16 4.22 5.75 7.56 7.58

Expected second period demand E[D2]

55 60 65 70 75

π w/o inv. 138.61 147.61 156.61 165.61 174.61
w/ inv. 157.97 166.97 175.97 184.97 193.97

q1 w/o inv. 36.72 36.72 36.72 36.72 36.72
w/ inv. 52.53 52.53 52.53 52.53 52.53

q2 w/o inv. 22.33 27.33 32.33 37.33 42.33
w/ inv. 9.94 14.95 19.95 24.95 29.95

q̂2 w/o inv. 17.67 17.67 17.67 17.67 17.67
w/ inv. 22.48 22.48 22.48 22.48 22.48

I1 w/o inv. – – – – –
w/ inv. 7.58 7.58 7.58 7.58 7.58

9.5 Conclusion

In this paper, we have presented a stochastic single-product two-period newsvendor
model to analyze the optimal production and remanufacturing decisions of a
firm under uncertain demand. Our model extends previous research by jointly
considering demand uncertainty, the possibility of keeping inventories of first period
production and the fact that the supply of returned cores depends on manufacturing
and supply decisions for brand new products in the past.

We analytically derive conditions on the optimality of strategies like excessive
first period production, new production in period two, and remanufacturing. Using
a numerical analysis we present sensitivity analysis, of the results with respect
to model parameters like core collection yield, remanufacturing cost savings, and
second period expected demand.

One of our main results is that contrary to some findings in the existing literature
remanufacturing may not take place when costs for storage are relatively low.

Further we find that depending on the particular characteristics of the scenario
studied, inventories and remanufacturing may either be substitutes or complements.
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The former effect is observed when the core collection yield γ is large, while the
latter effect occurs when core collection yield γ is small.

Finally, a third interesting observation is that excess first period production first
increases and then decreases when the core collection yield γ increases. This is
due to two opposite effects. First an increase in γ lowers the level of excess first
period production necessary to obtain the same level of returned cores. Second,
an increase in returned cores enables increased remanufacturing to substitute the
more costly new production in period 2. Obviously, the latter effect explains the
increase in excess new production in period 1 for small levels of γ when new period
2 production is necessary to achieve a sufficient second period supply. The former
effect takes over, when the level of remanufacturing is already sufficient to substitute
all new production in period 2.

Our work can be extended in several interesting directions. First, the core
acquisition process seems to be an interesting area to study in detail. Following some
models in the literature the amount of returned cores can be linked to an acquisition
price function.

Second, in the same context it should be promising to include the quality of
returned cores to allow for a more comprehensive analysis of the remanufacturing
profitability. Third, following some of the literature, an extension toward a setting
where manufacturers compete for the market of new and/or remanufactured prod-
ucts is interesting to focus on the strategic decisions whether and how to set up the
closed-loop supply chains under different market environments.

Appendix

Proof of Proposition 1. Let λ R correspond to the lagrangian multiplier of the
remanufacturing constraint, while λ q2 and λ q̂2 correspond to the lagrangian mul-
tipliers of the nonnegativity constraints for q2 and q̂2, respectively. Note that we do
not need the nonnegativity constraint for first period production q1 since this will
be trivially q1 ≥ 0 due to our assumption p1 > c1 and the nonnegativity of demand.
Then the system of Karush-Kuhn-Tucker (KKT) conditions is given by

−c1 +(p1 +λ R γ) [1−FD1(q1)] = 0, (9.16)

−β c2 +β p2 [1−FD2(q2 + q̂2)]+λ q2 = 0, (9.17)

−β c2 +β δ +β p2 [1−FD2(q2 + q̂2)]−λ R +λ q̂2 = 0, (9.18)

λ R [q̂2 − γ SD1(q1)] = 0, (9.19)

q̂2 ≤ γ SD1(q1), (9.20)

q2 λ q2 = 0, (9.21)

−q2 ≤ 0, (9.22)

q̂2 λ q̂2 = 0, (9.23)
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−q̂2 ≤ 0, (9.24)

λC ≥ 0, (9.25)

λ q2 ,λ q̂2 ≥ 0. (9.26)

Case 1. Exclusive, but limited remanufacturing in period 2:

This case implies that λ q̂2 = 0 and λ q2 > 0. Further, since q̂2 < γ SD1(q1) it
follows from (9.19) that λ R = 0.

Consequently, (9.17) leads to

FD2(q̂2) =
β (p2 − c2)+λ q2

β p2
, (9.27)

while (9.18) leads to

FD2(q̂2) =
β (p2 − c2 + δ )

β p2
=

p2 − c2 + δ
p2

. (9.28)

From (9.27) and (9.28), we obtain λ q2 = β δ > 0. Finally, (9.16) leads directly
to

FD1(q1) =
p1 − c1

p1
. (9.29)

This completes the proof of case 1.

Case 2. Exclusive, full remanufacturing in period 2:

In this case, λC > 0 whereas λ q̂2 = 0 and λ q2 > 0. While (9.17) again gives rise
to (9.27), (9.18) now yields

FD2(q̂2) =
β (p2 − c2 + δ )−λ R

β p2
, (9.30)

which—together with (9.27)—gives

λ R = β δ −λ q2. (9.31)

Since λ q2 > 0, the upper boundary λ R < β δ follows directly. Finally, (9.16)
leads directly to

FD1(q1) =
p1 − c1 +λ R γ

p1 +λ R γ
. (9.32)

This completes the proof of case 2.

Case 3. Full remanufacturing and new production in period 2:
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This case is induced by λ R > 0 as well as λ q2 = λ q̂2 = 0. Then, (9.17) yields

FD2(q2 + q̂2) =
β (p2 − c2)

β p2
=

p2 − c2

p2
, (9.33)

while (9.18) once again gives rise to

FD2(q2 + q̂2) =
β (p2 − c2 + δ )−λ R

β p2
(9.34)

and (9.16) leads to (9.32). From (9.33) and (9.34), it follows that λ R = β δ and as a
result (9.32) can be rewritten as

FD1(q1) =
p1 − c1 + γ β δ

p1 + γ β δ
, (9.35)

which concludes the proof of this third case.
�


Proof of Lemma 1. The proof of (9.4) follows directly from Proposition 1 and
its proof. Consider the case λ R = 0. In that case, we observe from (9.29) that
the optimal first period decision corresponds to the well-known single-period
newsvendor quantity, denoted by qNV

1 . Moreover, the optimal second period supply
comes exclusively from remanufacturing and is given by (9.27). We will denote this
quantity by q̂max

2 . Since λ R = 0, this second period supply is unconstrained, which
implies that q̂max

2 ≤ γ SD1(q
NV
1 ). On the other hand, whenever λ R > 0 we know from

(9.19) that q̂2 = γ SD1(q1). Further, from (9.32) we observe that q1 > qNV
1 which

implies that SD1(q1) > SD1(q
NV
1 ), while (9.30) yields q̂2 < q̂max

2 . These conditions
jointly hold only if q̂max

2 > γ SD1(q
NV
1 ) which concludes the proof of this part of

Lemma 1.
The proof of (9.6) follows directly from the proof of case 3 in Proposition 1.

To prove (9.5) and (9.7), we need to consider the explicit formulae of SD1(q1) and
F−1

Dt
(qt) associated with the uniform demand distributions. The expected sales are

given by SD1(q1) = q1 − (q1−a1)
2

2 (b1−a1)
. The supply quantity is given by qt = F−1

Dt
(qt) =

at +(bt − at)FDt (qt). The rest is achieved by simple algebra. �

Proof of Proposition 2. Let λ R and λ I correspond to the lagrangian multipliers of
the remanufacturing and inventory constraint, respectively. Further let λ I1, λ q2 and
λ q̂2 correspond to the lagrangian multipliers of the non-negativity constraints for I1,
q2 and q̂2, respectively. Note that we do not need the nonnegativity constraint for
first period production q1 since this will be trivially q1 ≥ 0 due to our assumption
p1 > c1 and the nonnegativity of demand. Then the system of KKT conditions is
given by

−c1 +(p1 +λ R γ −λ I) [1−FD1(q1)]+λ I = 0, (9.36)

−h+β p2 [1−FD2(q2 + q̂2 + I1)]−λ I +λ I1 = 0, (9.37)
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−β c2 +β p2 [1−FD2(q2 + q̂2 + I1)]+λ q2 = 0, (9.38)

−β c2 +β δ +β p2 [1−FD2(q2 + q̂2 + I1)]−λ R +λ q̂2 = 0, (9.39)

λ R [q̂2 − γ SD1 (q1)] = 0, (9.40)

q̂2 ≤ γ SD1 (q1), (9.41)

λ I [I1 −q1 + SD1(q1)] = 0, (9.42)

I1 ≤ q1 − SD1 (q1), (9.43)

q2 λ q2 = 0, (9.44)

−q2 ≤ 0, (9.45)

q̂2 λ q̂2 = 0, (9.46)

−q̂2 ≤ 0, (9.47)

I1 λ I1 = 0, (9.48)

−I1 ≤ 0, (9.49)

λC ≥ 0, (9.50)

λ q2 ,λ q̂2 ,λ I1 ≥ 0. (9.51)

Case 1. Exclusive, but limited remanufacturing in period 2:

This case implies that λ q̂2 = 0, λ q2 > 0, and λ I1 > 0. Further, since q̂2 < γ SD1(q1)
it follows from (9.41) that λ R = 0. Finally, λ I = 0 since I1 = 0 ≤ q1 − SD1(q1).

Consequently, (9.36), (9.38), and (9.39) lead again to (9.27), (9.28), and (9.29)
while (9.37) gives rise to

FD2(q̂2) =
β p2 − h+λ I1

β p2
. (9.52)

From (9.28) and (9.52), it follows that h = β (c2 − δ ) + λ I1 . Since λ I1 > 0, this
implies that h > β (c2 − δ ) which concludes the proof of this part.

Case 2. Exclusive, full remanufacturing in period 2:

In this case, λC > 0 whereas λ I = 0, λ q̂2 = 0, λ q2 > 0 and λ I1 > 0. Once again
the first part of the proof is identical to the proof of case 2 in Proposition 1. Further,
(9.37) again gives rise to (9.52). Thus, from (9.30) and (9.52) we get

λ R = h−β (c2 − δ )−λ I1 > 0, (9.53)

which implies h > β (c2 − δ ) and completes the proof of case 2.

Case 3. Full remanufacturing and limited use of inventory in period 2:
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This case is induced by λ R > 0, λ q2 > 0 as well as λ I = λ q̂2 = λ I1 = 0. In this
case, (9.36) gives rise to (9.32), while (9.38) leads to

FD2(q̂2 + I1) =
β (p2 − c2)+λ q2

β p2
. (9.54)

From (9.39), we obtain

FD2(q̂2 + I1) =
β (p2 − c2 + δ )−λ R

β p2
(9.55)

and (9.37) gives rise to

FD2(q̂2 + I1) =
β p2 − h

β p2
. (9.56)

Together, (9.54)–(9.56) yield λ R = h − β (c2 − δ ) and λ R > 0 implies that
h > β (c2 − δ ) which concludes the proof of this part.

Case 4. Full remanufacturing and full use of inventory in period 2:

In this case λ R > 0, λ I > 0 and λ q2 > 0 while λ q̂2 = λ I1 = 0. Consequently,
from (9.36) we obtain

FD1(q1) =
p1 − c1 +λ R γ
p1 +λ R γ −λ I . (9.57)

From (9.38) and (9.39) we once again obtain (9.54) and (9.55), respectively.
Equation (9.37) now gives

FD2(q̂2 + I1) =
β p2 − h−λ I

β p2
. (9.58)

From (9.54) and (9.55), we get λ R = β δ −λ q2 which—due to λ q2 > 0—implies
λ R < β δ . Moreover, from (9.55) and (9.58) we obtain λ R = h−β (c2 − δ )+λ I.
Since λ I > 0, it follows that λ R > h−β (c2 −δ ), which concludes the proof of this
case.

Case 5. Full remanufacturing, full use of inventory and new production in period 2.

This case is characterized by λ R > 0 and λ I > 0, while λ q2 = λ q̂2 = λ I1 = 0. As
in case 4 above, (9.36) gives rise to (9.57). From (9.37), we get

FD2(q2 + q̂2 + I1) =
β p2 − h−λ I

β p2
, (9.59)
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(9.38) yields

FD2(q2 + q̂2 + I1) =
β (p2 − c2)

β p2
=

p2 − c2

p2
, (9.60)

while (9.38) gives

FD2(q2 + q̂2 + I1) =
β (p2 − c2 + δ )−λ R

β p2
. (9.61)

From (9.60) and (9.61), we get λ R = β δ . Further from (9.59) and (9.60), we
obtain λ I = β c2−h which implies h< β c2 since λ I > 0. Finally, note that using the
expressions for λ I and λ R and our assumption c1+h > β c2 we get 0 ≤ FD1(q1)≤ 1
which concludes the proof of case 5.

Case 6. Exclusive, but limited use of inventory in period 2:

This case implies that λ q̂2 > 0, λ q2 > 0 and λ I1 = 0. Further, since 0 = q̂2 <
γ SD1(q1) it follows from (9.19) that λ R = 0. Finally, λ I = 0 since I1 ≤ q1− SD1(q1).

Consequently, (9.36) leads again to (9.29). Further, (9.37) gives rise to

FD2(I1) =
β p2 − h

β p2
, (9.62)

(9.38) yields

FD2(I1) =
β (p2 − c2)+λ q2

β p2
, (9.63)

and from (9.39), we obtain

FD2(I1) =
β (p2 − c2 + δ )+λ q̂2

β p2
. (9.64)

Finally, together (9.62) and (9.64) imply that h= β (c2−δ )−λ q̂2 . Since λ q̂2 > 0,
this implies that h ≤ β (c2 − δ ) which concludes the proof of this part.

Case 7. Exclusive, full use of inventory in period 2:

In this case, λ R = λ I1 = 0 while λ I > 0, λ q2 > 0, and λ q̂2 > 0. Thus, (9.36) gives

FD1(q1) =
p1 − c1

p1 −λ I , (9.65)

while (9.37) leads to

FD2(I1) =
β p2 − h−λ I

β p2
. (9.66)
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From (9.38) and (9.39), we obtain once again (9.63) and (9.64), respectively.
As a result, it follows from (9.64) and (9.66) that λ I = β (c2 − δ )− h−λ q̂2 . Since
λ q̂2 > 0, this gives the upper bound of λ I. Further, by rewriting this term we get
h = β (c2 −δ )−λ I−λ q̂2 . Clearly, this implies that h ≤ β (c2 −δ ) which concludes
the proof of this case.

Case 8. Full use of inventory and limited remanufacturing in period 2:

In this case, λ R = λ I1 = λ q̂2 = 0 while λ I > 0 and λ q2 > 0. From (9.36), we once
again obtain (9.65) while (9.37) leads to

FD2(I1 + q̂2) =
β p2 − h−λ I

β p2
, (9.67)

(9.38) yields

FD2(I1 + q̂2) =
β (p2 − c2)+λ q2

β p2
, (9.68)

and from (9.39) we obtain

FD2(I1 + q̂2) =
β (p2 − c2 + δ )

β p2
. (9.69)

From (9.67) and (9.69), we get λ I = β (c2 − δ )− h. Since λ I > 0, this implies
that h ≤ β (c2 − δ ) which concludes the proof of this case.

Case 9. Full use of inventory and full remanufacturing in period 2:

This case is identical to case 4. From (9.54) and (9.58), we get λ I =
β c2 − h− λ q2 , which given that λ q2 > 0 yields the upper bound on λ I. Further,
from (9.55) and (9.58) we obtain λ I = β (c2 − δ )− h + λ R which—given that
λ R > 0—directly yields the lower bound on λ I and concludes the proof of this case.

Case 10. Full use of inventory, full remanufacturing, and new production in
period 2:

This case and its proof is identical to case 5.
�


Proof of Lemma 2. For h > h∗, the proof of (9.12) is identical to the proof of
the first part of Lemma 1. For h ≤ h∗, consider the case λ I = 0. In that case,
we observe from (9.29) that the optimal first period decision corresponds to the
well-known single-period newsvendor quantity, denoted by qNV

1 . Moreover, the
optimal second period supply comes exclusively from inventory and is given by
(9.62). We will denote this quantity by Imax

1 . Since λ I = 0, this second period
supply is unconstrained, which implies that Imax

1 ≤ q1 − SD1(q
NV
1 ). On the other

hand, whenever λ I > 0 we know from (9.42) that I1 = q1 − SD1(q1). Further, from
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(9.65) we observe that q1 > qNV
1 which implies that SD1(q1) > SD1(q

NV
1 ). Since

at most the complete additional production can be sold we get q1 − SD1(q1) ≥
qNV

1 − SD1(q
NV
1 ). Further, (9.66) yields I1 < Imax

1 . These conditions jointly hold
only if Imax

1 > q1 − SD1(q
NV
1 ) = ID1(q

NV
1 ) which concludes the proof of this part

of Lemma 2.
Let us now turn to the proof of condition (9.14). From the proof of Proposition

2, we know that no remanufacturing can only occur if h > h∗. Whenever h ≤ h∗, we
observe from (9.28) and (9.62) that Imax

1 ≥ q̂max
2 . From case 7 of Proposition 2, we

know that whenever inventory is fully used I1 = F−1
D2

(β p2−h−λ I

β p2
) = ID1(q1)≤ Imax

1 .
From case 8 of Proposition 2, we observe that remanufacturing occurs as soon as
λ I ≥ β (c2−δ )−h which implies that the associated inventory level ID1(q1)≤ q̂max

2 .
Thus no remanufacturing occurs whenever ID1(q1)> q̂max

2 .
The proof of (9.15) follows directly from the proof of case 5 of Proposition 2.

�
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Chapter 10
The Remanufacturing Newsvendor Problem

Matthew J. Drake, David W. Pentico, and Robert P. Sroufe

Abstract As companies have synchronized and streamlined their traditional supply
chains to improve customer service while reducing costs, many firms have begun
to consider the impact of end-of-life unit flows on their overall profitability. Many
companies have begun to accept end-of-life items from their customers for corporate
social responsibility or customer service reasons, and they must develop processes
to handle this large volume of units. Some firms have chosen to capture value from
these flows by remanufacturing them and selling the units in a secondary market.
The quality of the end-of-life items acquired from customers, however, is quite
variable, and some items may not be in good enough condition to remanufacture.
Thus, the items must be inspected either one by one (discrete) or in a batch to assess
their condition. We have developed newsvendor models to assist firms in making
the inspection decision to yield maximum expected profit when faced with a fixed
number of end-of-life items. Both inspection processes generate the same target
inventory level to sell in the secondary market. We examined the difference between
the batch and discrete inspection processes using simulation and found that the batch
process yields a higher average profit because it can allow the firm to take advantage
of large demands with higher than expected inspection yields.
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10.1 Introduction

Traditional supply chain management initiatives tend to focus on improving the
“forward” supply chain, which consists of the flow of goods and services down-
stream from suppliers to manufacturers, distributors, retailers, and ultimately end
users. Over the past decade, however, many firms have begun to consider the reverse
flows that inevitably occur from retailers and customers back to the manufacturers.
These reverse flows are so significant that the Supply-Chain Council amended its
existing Supply Chain Operations Reference (SCOR c©) model processes of plan,
source, make, and deliver in the early 2000s to include an additional basic supply
chain process: return.

Reverse supply chain flows occur for a number of reasons. A major source of
these flows is the products that customers return because of damages, shipping
errors, buyback agreements, or customer service policies. Manufacturers have
always had to deal with these returned items, and the volume of returned products
can be quite significant depending on the industry. It is estimated that consumer
returns in the United States represents approximately 6% of a firm’s revenue, and
the return rates can vary from 10% for many companies to over 40% for catalog and
Internet retailers (Horvath et al. 2005; Rogers and Tibben-Lembke 2006). The costs
associated with transporting, inspecting, and processing returns can be significant
as well; for some products, the cost can be $150 or more per unit (Wyld 2004).
Firms can even realize some hidden costs associated with returned items such as
poor warehouse space utilization and higher taxes on inventory (Mannella 2003).
Not surprisingly, many companies traditionally viewed their return operations as a
cost center and designed their operations to process these items at the minimum
possible cost.

In recent years, end-of-life items have become another prominent reverse flow
in the supply chain for many manufacturers. In some instances, such as in Europe
after the European Union adopted the Waste Electrical and Electronic Equipment
(WEEE) legislation, companies are forced by governments to collect these end-
of-life items and dispose of them in ways other than simply depositing them
in a landfill (Mollenkopf 2006). In countries, such as the United States, that
have not legislated manufacturer responsibility for end-of-life items, innovative
companies are accepting or proactively acquiring end-of-life items with the goal
of capturing value. This value could come through enhancement of the company’s
brand as being “sustainable” or “eco-friendly” or from more tangible processes such
as remanufacturing or materials reclamation that increase the firm’s profitability
(Drake and Ferguson 2008).

Firms seeking to create value from their reverse supply chain flows must develop
an efficient way to inspect and process their incoming items quickly and effectively.
Depending on the quality of the items received, which can vary greatly for end-of-
life items, the company has a set of viable disposal options. It is critical for firms to
be able to direct specific units to the most appropriate disposal option that generates
the maximum value possible given the unit’s condition. Some of these options such
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as donations to charitable organizations, recycling, or reclaiming materials from the
product have limited value potential; whereas, reconditioning or remanufacturing
the product and selling it in a secondary market could bring significantly more value.
A portion of the returned items will ultimately end up in a landfill if there are no
other viable alternatives (Rogers and Tibben-Lembke 1999).

For items with particularly short life cycles such as many consumer electronics
goods, the speed of quality assessment and remanufacturing can be crucial in
maximizing the value that companies can capture in the secondary market for
refurbished or remanufactured goods. Blackburn et al. (2004) estimate that the
value of these short-life-cycle items can fall by more than 1% per week, and this
rate can increase as the product reaches the end of its useful life. They note that
Hewlett-Packard notebook computers spend approximately 18 weeks in transit and
refurbishing before they reach the secondary market; thus, the computers have lost
20% or more of their potential value due to this delay (Guide et al. 2005). The time-
sensitive value of short-life-cycle products also suggests that firms only have one
reasonable opportunity to supply the secondary market with remanufactured units
of a particular model or style. This factor led us to model inventory decisions in this
environment with the newsvendor framework.

While some firms such as Bosch tools have proactively installed counters,
sensors, or data loggers in their products to help their personnel assess the quality of
an end-of-life item quickly and easily, the quality inspection process for reverse
flows can be costly for many companies (Krikke 2001). The products’ quality
themselves can be highly variable, from like-new to unsalvageable. If the inspection
process is costly and difficult, firms may want to limit the number of units that they
inspect to avoid these large expenses as well as a result of the variability in the
quantity of high-valued, remanufacturable units that the process yields.

In this chapter, we model the firm’s inspection decision when faced with a fixed
quantity of returned items. We determine the optimal inspection policy under batch
and discrete assessment processes to maximize expected profit that the firm earns
in the secondary market. The next section discusses our models in the context of
relevant literature. Section 10.3 develops the two models, and Sect. 10.4 provides
some simulation results on several numerical examples. The chapter concludes with
some conclusions and discussion of future research possibilities.

10.2 Literature Review

The models we develop in this chapter are related to several distinct bodies of
literature. The models are adaptations and extensions of the classic newsvendor
models for single-period inventory control decisions. One such model is that by
Mostard and Teunter (2006), which extends the traditional newsvendor model to
include the possibility of receiving items returned by customers that are in good
enough condition to resell in the primary market. Khouja (1999) provides a review
of almost 100 newsvendor models and classifies the extensions to the classic model



252 M.J. Drake et al.

into 11 categories where one or more of the original assumptions have been relaxed
or modified. Our model fits into several of these categories including models that
consider multiple products and models with random yield.

There is a broad class of newsvendor models that generate single-period ordering
or production quantities for multiple products subject to a set of constraints. These
constraints often represent budget or capacity limitations (e.g., Abdel-Malek et al.
2004; Abdel-Malek and Montanari 2005; Abdel-Malek and Areeratchakul 2007;
Ben-Daya and Raouf 1993; Erlebacher 2000; Lau and Lau 1995; Lau and Lau
1996; Moon and Silver 2000; Niederhoff 2007; Vairaktarakis 2000). Our models
do include multiple products (remanufacturable units, nonremanufacturable units,
and items that the company chooses not to inspect) with capacity constrained by the
total end-of-life items available, but we consider random yield as well because the
quality of the inspected units is variable.

A related model by Grubbström (2010) models the newsvendor problem using a
compound demand process. Customers arrive according to a renewal process, and
their quantity demanded when they arrive follows a second independent demand
distribution. This model includes two demand distributions just as our model does,
but our one source of uncertainty is remanufacturing yield rather than customer
arrivals.

Another class of inventory models considers random production yield. Yano and
Lee (1995) provide a review of many of these models. There have been a few
studies that have treated random yield in a single-period newsvendor context such
as those by Noori and Keller (1986), Inderfurth (2004), and Rekik et al. (2007).
Yang et al. (2007) use the active set method and Newton’s method to determine
the optimal quantities to order from multiple suppliers each with its own random
yield. These models, however, have not considered a capacitated environment as our
model does. Ketzenberg et al. (2006) develop single- and multiple-period models for
remanufacturing quantity decisions with random yield. The firm has the additional
option of purchasing new units from a reliable supplier to meet demand, which is
not an option in our model. They also assume that all returns are remanufactured,
whereas our major decision variable is the number of returned items to inspect and
consider for remanufacturing. The one model that does consider capacity limitations
as well as random yield is that of Abdel-Malek et al. (2008). This model considers
the problem faced by farmers or gardeners who have to determine the quantity
of each product to plant in a given amount of farm land to minimize total cost
(including lost revenue for demand that is not satisfied). Both the demand and
the yield of each product is randomly distributed according to general probability
functions. Our models differ from Abdel-Malek et al. (2008) in the decision and
cost structures and in the fact that we consider both discrete and batch inspection
decisions.

Our models are also related to a body of literature containing closed-loop supply
chain inventory models. The models in these studies often simultaneously consider
the tradeoffs between new production and remanufacturing operations to satisfy
current demand. They also focus on the decisions related to the acquisition of end-
of-life items that can be remanufactured through various incentive mechanisms.
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See, for example, Savaskan et al. (2004), Aras et al. (2006), Bakal and Akcali
(2006), Debo et al. (2006), Ferrer and Swaminathan (2006), Galbreth and Blackburn
(2006), Mukhopadhyay and Ma (2009), and Ahiska and King (2010). These models
treat a broader problem than ours does by looking at the interaction between new
and remanufactured products in the market. Bhattacharya et al. (2006) develop
a particularly relevant closed-loop newsvendor model for a retailer ordering new
products from a manufacturer as well as remanufactured products from a prior
product generation. They consider multi-period decisions and investigate channel
coordination efforts among all three firms involved. They also assume that the
new and remanufactured products are perfect substitutes in the consumer demand
market. Our models apply to products that have a clear secondary market that is not
a strong substitute for new items in the traditional market. We consider a separate
demand for remanufactured products that is distinct from that of new products.
Many of these models also assume that the remanufacturer has the ability to acquire
as many end-of-life units as it wants; our model addresses a fixed supply of end-of-
life items.

Inventory and production decisions for remanufacturing operations have become
popular research topics in the past fifteen years. Many inventory models such as
Teunter (2001), Mahadevan et al. (2003), Atasu and Cetinkaya (2006), and Tang
and Teunter (2006) have been developed in recent years to accommodate reman-
ufacturing operations, but these have focused on multiple-period, ongoing policies
and not the single-period newsvendor-type decisions that are most appropriate for a
short-life-cycle product market.

10.3 The Remanufacturing Newsvendor Models

Suppose that a firm has acquired Q end-of-life items. History has shown that
ρ (where ρ ∈ [0,1]) proportion of the units are of high enough quality to be
remanufactured effectively. The firm can inspect the quality of an end-of-life units
at a cost of ci per unit, and each unit is assumed to have a ρ percent chance of being
remanufacturable. The inspection process in this model can accurately identify the
quality of the end-of-life items, and the firm chooses to remanufacture all units of
requisite quality. The unit cost of remanufacturing is cr, and the remanufacturing
process produces no defects or waste. The main decision variable in the model is k,
the number of units to inspect (where k ≤ Q).

Demand for remanufactured units in the secondary market is probabilistic
with cumulative distribution function F(x) and probability density function f (x);
remanufactured units sold in the secondary market yield a revenue of r per unit.
We assume that the remanufacturing operation is a profitable one, meaning that
the revenue obtained from selling a remanufactured unit is larger than the cost of
inspecting and remanufacturing (i.e., r > ci+cr). Any remanufactured units that are
not sold in the secondary market at the end of the selling season have a salvage
value of s1 per unit. End-of-life items that have not had their quality inspected
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Table 10.1 Summary of model notation

Parameter Description

r Unit revenue for remanufactured item sold in secondary market
cr Unit remanufacturing cost
ci Unit inspection cost
s1 Salvage value of unsold remanufactured unit
s2 Salvage value of end-of-life item that was not inspected
s3 Salvage value of nonremanufacturable end-of-life item
Q Supply of end-of-life items available for inspection
k Number of end-of-life items to be inspected (decision variable)

number Q− k units and have a salvage value of s2 per unit. Units that have been
inspected and were found to be unsuitable for remanufacturing have a salvage value
of s3. As the value of these leftover units is dependent upon their utility and potential
attractiveness in a salvage market, we assume that remanufactured units are the most
valuable followed by units that have not been inspected (because they still hold the
possibility that they could turn out to be remanufacturable); thus, s1 > s2 > s3. This
notation is summarized in Table 10.1.

When considering the decision of how many units to inspect, the firm has two
general options available. It could decide on a fixed number of units to inspect before
any inspections are performed and then remanufacture whichever units turn out to
be of high enough quality. This would be appropriate if the inspection process is
long or if all of the units can be inspected at once. We denote this situation as
batch inspection. In other circumstances, however, it may be possible for the firm
to inspect the end-of-life units one at a time and decide when to stop the inspection
process based on the results of the previous inspections. We refer to this decision
environment as discrete inspection because the firm decides whether to inspect each
unit sequentially. We analyze each situation in the remainder of this section.

10.3.1 Batch Inspection Model

Under a batch inspection environment, the firm must determine the optimal number
of end-of-life units to inspect before inspecting any of the units. As a result, we
can analyze the inspection decision in a traditional newsvendor framework by
developing the expected profit function and finding the value of k ∈ [0,Q] where
the first derivative equals zero. The firm’s expected profit function for the batch
inspection decision is:

Π(k) = r

[∫ ρk

0
x f (x)dx+ρk(1−F(ρk))

]
+ s1

∫ ρk

0
(ρk− x) f (x)dx

+s2(Q− k)+ s3(1−ρ)k− cik− crρk, (10.1)

where ρk represents the expected number of remanufacturable end-of-life units that
are identified through the inspection process, (1− ρ)k is the expected number of
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nonremanufacturable units, and Q− k is the number of units that are not inspected.
Taking the first derivative and setting it equal to zero yield the following critical
ratio which represents the optimal batch inspection quantity:

k∗ ∈
{

k : F(ρk) =
ρ(r− cr)+ s3(1−ρ)− s2− ci

ρ(r− s1)

}
. (10.2)

We can use the structure of the critical ratio to determine minimum and maximum
values of ρ for which this quantity is optimal. The numerator of the fraction must
be greater than or equal to zero for the equation to have a solution. Thus, we have

ρmin =
s2 + ci − s3

r− cr − s3
. (10.3)

For values of ρ less than ρmin, the optimal decision is for the firm to refrain
from inspecting the quality of any of the end-of-life items. In this case, the
likelihood of finding items of high enough quality to be remanufactured is too
small in comparison with the given cost and revenue parameter values to support
a remanufacturing operation.

The critical ratio must also be less than or equal to one in order for the equation in
(10.2) to have a solution. Setting the numerator less than or equal to the denominator
yields

ρmax =
s2 + ci − s3

s1 − cr − s3
. (10.4)

For values of ρ greater than ρmax, the firm’s optimal strategy is to inspect all Q of
the end-of-life items that it has available. This is also the case if the value of k∗ in
(10.2) happens to be larger than Q.

10.3.2 Discrete Inspection Model

In the discrete inspection environment, the firm is able to inspect the quality of end-
of-life units one by one; thus, the firm can stop the inspection process whenever
it has the total number of units that it wants to remanufacture. In response to the
structure of the decision environment, we analyze the optimal inspection decision
using an iterative framework.

Suppose that you already have k remanufacturable units as a result of previous
inspections and you want to decide whether or not to inspect one additional unit.
The firm earns a marginal profit of s2 from salvaging the unit with an unknown
quality level. An inspection can yield two possible outcomes: a remanufacturable
unit or a nonremanufacturable unit. If the inspection process finds that the unit
is not remanufacturable, the firm earns a marginal profit of s3 − ci. If the unit is
remanufacturable, on the other hand, that unit could either be demanded in the
secondary market for revenue r, or it could not sell in the market and would
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only return salvage value s1. Thus, the expected marginal profit if the unit is
remanufacturable is

E[Π Reman] = [r− (ci + cr)]P(D ≥ k+ 1)+ [s1− (ci + cr)]P(D < k+ 1). (10.5)

Combining these two possible expected marginal profit values, we can express the
expected profit from inspecting the next end-of-life item as

E[Π Inspect] = {[r− (ci + cr)]P(D ≥ k+ 1)+ [s1− (ci + cr)]

P(D < k+ 1)}ρ + {s3 − ci}(1−ρ). (10.6)

We can rewrite the expected marginal profit from inspecting the additional unit in
(10.6) as

E[Π Inspect] = r̄− ci − crρ , (10.7)

where r̄ = [rP(D ≥ k+ 1)+ s1P(D < k+ 1)]ρ + s3(1−ρ) represents the expected
marginal revenue depending on the uncertain outcome of the inspection process and
the demand for the remanufactured item in the secondary market. The firm should
inspect the additional unit if

r̄− ci− crρ ≥ s2. (10.8)

Formally, the firm should stop the inspection process when either of the following
two situations occur:

1. r̄ < s2 + ci+ crρ .
2. k = Q, which means that there are no more end-of-life items to inspect.

By rearranging the terms algebraically, we can write the first condition above as a
critical-ratio-type expression:

P(D < k+ 1) = F(k)>
ρ(r− cr)+ s3(1−ρ)− s2− ci

ρ(r− s1)
. (10.9)

Note that the critical ratio for the discrete inspection process in (10.9) is identical
to that of the batch inspection process developed in (10.2). The only element
that differs between the two optimal inspection quantities is the argument of the
cumulative distribution function of demand in the secondary market. The arguments
both represent the number of remanufacturable units that the firm would like to have
to sell in the secondary market. In the batch inspection process, however, the firm
can only make its decision on the number of items to inspect (k) with the hope
of having ρk units to remanufacture. In the discrete inspection environment, the
firm knows exactly how many remanufacturable units that it currently has when it
makes the decision about whether or not to inspect the next unit. These two optimal
quantities may look different at first glance, but they are identical in that the firm
wants to have the same quantity of remanufacturable units to sell in the secondary
market.
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10.4 Numerical Examples

The fact that the optimal inspection policy has the same target number of remanu-
facturable units in both batch and discrete inspection environments prompted us to
investigate the behavior of the profit function in each scenario to see if the inspection
structure has an impact on a firm’s profit from remanufacturing operations. We built
a simulation model in Crystal Ball (a spreadsheet add-in) to examine the firm’s profit
under batch and discrete inspection processes. This simulation model uses the same
demand values and inspection results to compute profit realizations for batch and
discrete inspections. The only part of each realization that differs is the inspection
policy, which means that all observed differences in profit are attributed to the policy
itself and not any other form of variation.

This section presents and discusses the results of two simulation studies per-
formed with the base model. These two studies are not intended to provide a
comprehensive analysis of the two inspection policies’ performance overall; the
goal is merely to illustrate that the two inspection processes generate different
behavior in the profit function. A structured, comprehensive simulation analysis
(to be completed in future research) is required to fully assess the impact of the
inspection policy on the firm’s expected profit. The two simulation studies are
distinguished by their values of ρ to evaluate performance under high quality end-
of-life items (ρ = 0.75) and low quality end-of-life items (ρ = 0.35). We ran 10,000
replications of each model to limit the standard error of our results. Demand in the
secondary market was assumed to follow a normal distribution with mean 30 and
standard deviation of 10, and the firm had Q = 100 end-of-life items that could be
inspected. Table 10.2 provides the common revenue and cost parameter values used
throughout the study.

Figures 10.1 and 10.2 display the results of the two simulation studies. In both
scenarios, the batch inspection process yields a higher average profit than the
discrete inspection process does, and this difference is statistically significant with a
p-value less than 0.001. This may seem counterintuitive because discrete inspection
allows the firm to react to the results of previous inspections whereas the batch
inspection process requires that the firm make an irrevocable decision to inspect
a fixed number of end-of-life items before seeing the results of any individual
inspections.

The batch process has a higher average profit in both scenarios because it
allows the firm to take advantage of favorable effects of randomness in some
selling seasons. In the discrete environment, the firm will never have any more
remanufacturable units to sell in the secondary market than the number prescribed

Table 10.2 Summary
of simulation model
parameter values

Parameter Value Parameter Value

r 50 s1 5
cr 8 s2 3
ci 3 s3 1
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Fig. 10.1 Simulation results for batch and discrete inspection process with ρ = 0.75

by the critical ratio. The inspection process stops at this point (if the firm is
maximizing expected profit). In the batch inspection environment, the firm tries to
have the same number of remanufacturable units, but the actual number of units
available to sell in the secondary market could easily be larger or fewer depending
on the uncertain outcome of each inspection. If the firm lucks out and identifies a
large number of remanufacturable units, and that happens to coincide with a large
amount of demand in the secondary market, the firm will earn a large profit. The
firm does not have the inventory to take advantage of large amounts of demand in
the secondary market under the discrete inspection environment; thus, the upper
bound of potential profit is smaller than in the batch case.

The same situation can occur at the other end of the demand spectrum. In
periods where demand in the secondary market turns out to be low, it is possible
for the firm in the batch environment to happen to identify only a small number
of remanufacturable units. The firm would not have the large amount of leftover,
remanufactured inventory at the end of the selling season that it would in the
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Fig. 10.2 Simulation results for batch and discrete inspection process with ρ = 0.35

discrete environment. The discrete inspection process almost always yields the
critical ratio-specified number of remanufacturable units; the only way that the firm
has a different number of remanufacturable units available is if it runs out of end-
of-life items to inspect before it reaches the desired amount.

10.5 Conclusions and Future Research

In this chapter, we have developed a newsvendor inventory model to guide the
inspection decision for remanufacturers with a fixed number of end-of-life items
at hand. We analyzed the optimal inspection decision under both batch and
discrete inspection environments, and we found that the target inventory level
for the secondary market was identical for both inspection processes. Through a
simulation study, we found that the batch inspection process yields a higher average
profit compared with the discrete inspection process. This result is somewhat
counterintuitive because the discrete process allows the firm to base the inspection
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decision for each individual unit on the history of previous inspections to that point;
whereas, the batch inspection process requires that the firm decide to inspect a fixed
number of units before observing any results. The batch process has a higher average
profit because it gives the firm a chance to have a large number of remanufactured
items to sell in the secondary market when demand happens to be high and vice
versa; the discrete process, on the other hand, yields approximately the same number
of remanufactured items in every selling season. A more complete simulation study
under various problem parameter values (such as demand variance and the cost
values) is required in the future to capture a full understanding of the relative
performance of the two different inspection policies.

This study is the first in what could be a series of research studies related
to inventory control for remanufactured items in the short-life-cycle market. A
natural next step would be to relax the assumption in this study that the firm
has a given number of end-of-life items available and consider an endogenous
acquisition decision within the model. Depending on the proportion of high-quality
items available as well as the acquisition cost, the firm may want to obtain more or
fewer end-of-life items in the first place to maximize expected profit. It would also
be interesting to investigate the efficacy of different pricing mechanisms to acquire
the end-of-life items. If the remanufacturing firm was a subsidiary of the same
company that originally manufactured the item, it may be possible to incorporate the
remanufacturing operation into the initial production planning models for new items
to create a comprehensive closed-loop supply chain model. One final extension to
the base models in this chapter would be to introduce defects into the inspection or
remanufacturing processes to analyze how the optimal inspection decision would
change in response to increased process variability.
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Chapter 11
Inventory Centralization in a Newsvendor
Setting When Shortage Costs Differ: Priorities
and Costs Allocation

Niv Ben-Zvi and Yigal Gerchak

Abstract Risk pooling is a practical managerial tool which can reduce the
consequences of the uncertainty involved in a system. In operations management,
it is often achieved by consolidating a product with a random demands into one
location, which is known to be beneficial. The basic assumption that underlies most
previous research is that the cost parameters (overage and underage cost per unit)
of all populations are identical, and therefore are equal to those of the centralized
system. But in many contexts, underage cost per unit is not independent of the
type of customer. This work generalizes the centralized inventory model so that
one group of retailers differs from another in the underage cost per unit. In such
a system, the proper allocation of the centralized inventory among the groups is a
challenge. When the inventory is not allocated optimally, the expected cost of the
centralized system may exceed that of the decentralized one. We define a priority
rule for allocating the pooled inventory and prove that giving absolute priority to
the population whose underage cost is higher (“preferred population”) is optimal.
Under this policy, we model the pooled inventory system with priorities and prove
its advantage over the un-pooled system. We then prove the advantage of the pooled
inventory system with absolute priority from each retailer’s point of view, meaning
that the core of the cooperative inventory game is not empty. Thus, with appropriate
cost allocation, it is better to join the pool even if you were to become a low-priority
customer. Finally, we introduce a pooled inventory model where the inventory is
allocated according to each retailer contribution to the system, which is defined as
the number of units it produces and deposits in the central warehouse. We use game
theory concepts to model this system where each player’s strategy is the number
of units it contributes to the system. We prove the existence and uniqueness of the
Nash equilibrium and characterize each player’s strategy according to it.
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11.1 Introduction

Risk pooling, or statistical economies of scale, is a pervasive property which
underlies major economic activities such as banking and insurance. In the field of
Operations Management, such a benefit is known to be derived from strategies like
postponement (delayed differentiation), product substitutability, and assemble-to-
order systems with component commonality (e,g., Gerchak and Henig 1989). But
the most basic and best- known manifestation of risk pooling in operations is the
centralization of inventories when demands are random. Eppen (1979), Chen and
Lin (1989), Cherikh (2000), Gerchak and He (2003), and others proved the benefits
of such centralization under various assumptions, and explored the determinants of
these benefits. Note that pooling can be achieved by physical pooling of inventory,
virtual pooling, or product substitution (e.g., Anupindi et al. 2001). For the intuition
behind the benefits of pooling, see Sobel (2008). Note that the inventory level can
increase or decrease as a result of pooling (Gerchak and Mossman 1992, Sect. 3,
Yang and Schrage 2009).

These observations take the system (social) point of view. Yet it is plausible that
the distributed system consists of several firms, which are considering as to whether
centralizing their inventories will be beneficial to all of them, as they intend to
remain independent regardless. That is, whether there always exists an allocation of
the pooled system costs’ which is lower than each firm’s stand-alone costs. Müller
et al. (2002) answered that question in the affirmative, by proving that the core of
this cooperative game is never empty.

All these works assumed that the unit shortage cost is the same for all firms.
But such may not be the case in practice. For example, if a hospital and adjacent
pharmacy are to centralize their stock of some medical equipment or materials,
a shortage of an item means something quite different at the hospital and the
pharmacy. Differential shortage costs raise issues of stock rationing, priorities, and
a question, of whether a prospective low-priority partner can be enticed to join such
shared inventory arrangements. These are the issues explored here. Since our focus
is on comparisons of schemes, we do not really need to estimate the shortage cost
parameters (just their relative magnitudes). Thus, the thorny issue of defining and
estimating shortage costs is not central to our work.

Deshpande et al. (2003) consider an inventory system with continuous rationing
to demand classes. Anupindi et al. (2001) assume that each player keeps its own
inventory, giving itself priority over it, and if excess occurs there is a transshipment
game. That setting is related to our last, “contribution,” scheme. Also related is work
by Slikker et al. (2005), but they assume transferable utility (TU), while we do not.
Hanany and Gerchak (2008) analyze a nontransferable utility model solved via Nash
Bargaining.
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Assemble-to-order systems with component commonality actually allocate com-
ponents for each realization of demands, so that revenue will be maximized. That
has similarity to allocating by shortage cost, but the stochastic program it translates
to cannot be solved analytically, so insights are hard to obtain. Our approach is
analytical.

We first show that if differential shortage costs are ignored by the centralized
system when it allocates stock in case of shortage, the system costs can be higher
than the decentralized systems’ costs. Thus to guarantee improvement, priorities,
which depend on the shortage costs, need to be set. One extreme approach, common
in various service systems, is giving absolute priority (AP) to the firm with higher
shortage costs. A less extreme class of policies is to allocate based on the ratios of
shortage costs, either directly or according to a function of these ratios. We show that
these always bring about an improvement over the decentralized system. Various
properties of such systems are explored.

An interesting question is whether the low priority firm always gains from
centralization, without the high priority firm subsidizing them “too much.” We show
that there exists a linear cost-sharing scheme which, for some range of shares,
improves the situation of both firms vis-à-vis decentralized systems. That is, the
core of this allocation game is not empty.

Finally, we explore a centralized system which is based on a very different
principle. Here the centralized stock consists of stocks which the individual firms
“contributed.” In case of shortage, each firm is allocated up to its share of
contribution. We characterize the Nash equilibrium of this game.

11.2 Pooling Without Recognizing Differences
in Shortage Costs

Consider two markets, with random demands X and Y , with demand distributions
F and G, respectively. The unit production cost c is the same in both markets. From
what we know about the Newsvendor problem, if the unit shortage cost b is also the
same in both markets, the total optimal inventory level will be

Q∗(X)+Q∗(Y ) = F−1
(

b− c
b

)
+G−1

(
b− c

b

)
, (11.1)

and the costs

φ∗(X)+φ∗(Y ) = b

∞∫

F−1( b−c
b )

x · f (x)dx+ b

∞∫

G−1( b−c
b )

y ·g(y)dy. (11.2)
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When the inventories are pooled, the combined demand, X +Y, will be denoted by
Z, and its distribution by H. The optimal pooled quantity is Q∗(X +Y ). Thus, the
pooled inventory is

Q∗(X +Y ) = H−1
(

b− c
b

)
, (11.3)

and

φ∗(X +Y) = b

∞∫

H−1( b−c
b )

z ·h(z)dz. (11.4)

The well-known advantage of the pooled system can be written as

φ∗(X +Y)≤ φ∗(X)+φ∗(Y ). (11.5)

(Eppen 1979; Chen and Lin 1989; Gerchak and He 2003). This and all our other
results also hold for n markets.

Now, if the unit shortage cost is market specific, we will have

Q∗
X +Q∗

Y = F−1
(

bX − c
bX

)
+G−1

(
bY − c

bY

)
, (11.6)

and

ϕ∗
X +ϕ∗

Y = bX ·
∞∫

Q∗
X

x · f (x)dx+ bY ·
∞∫

Q∗
Y

y ·g(y)dy. (11.7)

As the pooled system does not use any priorities, a plausible assumption is that, in
case of shortage, it allocates proportionally to the relative demand realizations, x
and y; that is, X receives QX+Y · x

x+y , making its shortage

(x+ y−QX+Y ) · x
x+ y

(11.8)

and similarly for Y .
So the total shortage cost will be

bX ·
{
(x+ y−QX+Y ) · x

x+ y

}
+ bY ·

{
(x+ y−QX+Y ) · y

x+ y

}
. (11.9)

Define b̄ ≡ bX ·x+bY ·y
x+y , as the average shortage cost weighted according to the

realizations. Then the total shortage costs can be written as

b · (x+ y−QX+Y) . (11.10)

It is difficult to analyze such systema .
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A simpler way to average the shortage costs is to use the mean demands rather
than realized demands. That is,

bμ =
bX ·μX + bY ·μY

μX + μY
. (11.11)

Then the problem can be solved explicitly:

Q∗
X+Y = H−1

(
bμ − c

bμ

)
, (11.12)

and, as in (11.4),

φ∗(X +Y ) = bμ

∞∫

H−1
(

bμ−c

bμ

)
z ·h(z)dz. (11.13)

One can construct an example where the total cost of the pooled system (which
ignores the differential shortage costs) is higher than the sum of the separate
markets’ costs. Suppose that both demands are independent and exponentially
distributed with λX = 0.5 and λY = 0.1, respectively. Let bX = 30 and bY = 2, and
c = 1. Then φ∗(X) + φ∗(Y ) = 25.734. If the allocation is by demand realization,
we have φ∗(X +Y ) = 26.4. If we allocate by weighting the shortage costs by the
expected demands, we obtain φ∗(X +Y ) = 31.203. So, in this example, pooling
without recognizing the differential shortage costs is not worthwhile using either
method.

Not surprisingly then, we look for a system that gives priority to demands from
markets with higher shortage cost.

11.3 Pooling with Priorities

Assume that bX > bY . Then absolute priority (AP) allocates to market X first, and
only if any inventory is left to Y . A less extreme priority scheme which reflects
the differential shortage costs is one that allocated to market X a fraction bX

bX+bY
of

available inventory (if needed); the rest is available to market Y . Thus if, say, bX is
twice as large as bY , market X will be allocated 2/

3. Let αp be “Alpha-priority” (see
below).

One way to parameterize allocation schemes which are intermediate between the
above two is

(
bX

bX + bY

)α
·Qα p(X +Y), to X , and

[
1−

(
bX

bX + bY

)α]
·Qα p(X +Y ) to Y,

(11.14)
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where α is a “priority” parameter on [0,1]. The larger the α , the lower the priority.
It can be proved that α = 0, i.e., an absolute priority to X , is socially optimal.

We will thus analyze a system with absolute priority1.

11.3.1 Absolute Priority

Under AP, if x ≤ QAP(X +Y ), market X will have no shortage, while market Y ’s
shortage will be (y− (QAP(X +Y )− x))+. If x > Q(X +Y ), market X will have a
shortage (x−Q(X +Y )), and market Y will have a shortage y. Thus,

φX+Y (Q)

= minQX+Y

{
c ·QX+Y +bY ·EX ,Y [(Y − (QX+Y −X)) |X ≤ QX+Y ,Y ≥ QX+Y − x]

+bY ·P(X ≥ QX+Y ) ·EY (Y )+bX ·EX (X −QX+Y )
+

}

= minQX+Y

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c ·QX+Y +bY ·
∫∫

x ≤ QX+Y

y ≥ QX+Y − x

(y− (QX+Y − x)) · t (x,y)dxdy

+bY ·F (QX+Y ) ·E (Y )+ bX ·
∞∫

QX+Y

(x−QX+Y ) · f (x)dx

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (11.15)

where t(x,y) is the joint density of Xand Y .
For independent demands, the above becomes

φX+Y (QX+Y )

= minQX+Y

⎧⎨
⎩c ·QX+Y+bY ·

QX+Y∫
x=0

∞∫
y=QX+Y−x

(y−(QX+Y−x)) ·g(y) · f (x)dydx

+bY ·F (QX+Y ) ·E (Y )+ bX ·
∞∫

QX+Y

(x−QX+Y ) · f (x)dx

⎫⎬
⎭ . (11.16)

1For the expected costs and optimality condition expression for an arbitrary α and independent
demands, see Appendix.
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Since

∂ 2φX+Y (Q)

∂Q2
X+Y

= (bX − bY ) · f (QX+Y )+ bY ·
QX+Y∫
x=0

g(QX+Y − x) · f (x)dx,

as bX > bY that is positive so the expected cost function is convex. The unique
optimum is the solution of the FOC

(bX − bY ) ·FX(QX+Y )+ bY ·H(QX+Y ) = bX − c. (11.17)

This optimality condition can be shown to generalize the simpler cases we men-
tioned. If bX = bY ≡ b, we have H(QX+Y ) = P(X +Y ≤ QX+Y ) =

b−c
b , which is the

pooled solution with identical shortage costs. If bY
∼= 0, we have F(QX+Y ) =

bX−c
bX

,
as in a single-market newsvendor solution. One can show that the quantity in the
pooled system is increasing in both bX and bY , as we would intuitively expect.

Under AP, pooling is beneficial:

Proposition 1. Under AP

φ∗
X+Y (AP)≤ φ∗

X +φ∗
Y .

Proof. See Appendix.
Also, in a pooled system AP is always better than no priority (NP), where the

shortage cost is weighed by the realized values.

Proposition 2.
φ∗

X+Y (AP)≤ φ∗
X+Y (NP).

Proof. See Appendix.

11.4 Do Both Markets Benefit from Pooling with AP?

While pooling with AP was shown to be beneficial socially, it is not yet clear if or
when the low-priority market benefits from the arrangement. If market X approaches
market Y proposing to pool their inventories whereby X will have AP, should Y
agree?

For pooling with equal shortage costs it has been proved by Müller et al. (2002)
that the core of such a game is not empty. That is, there is a way to allocate the costs
of the pooled system so that both markets will benefit, in agreement with intuition.
With AP to the more lucrative market, the situation is less clear.

We now assume that each market pays for a fixed share of the production costs,
Y a share θ andX a share 1−θ . The reason we allocate only the production costs is
that, unlike the shortage costs, they will be clear-cut and noncontroversial. But each
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market will also “carry” its shortage costs. We will then ask if there always is a range
of shares which makes pooling with AP better, in expectation, for both markets than
nonpooled systems. Note that θ does not affect the solution Q∗

X+Y of the pooled
system. Denoting the cost allocated to market X as φX+Y (X), we have

φ∗
X+Y (X) = (1−θ) · c ·Q∗

X+Y + bX ·
∞∫

Q∗
X+Y

(x−Q∗
X+Y ) · f (x)dx, (11.18)

while in the unpooled system its costs are

ϕ∗
X (X) = c ·Q∗

X + bX ·
∞∫

Q∗
X

(x−Q∗
X) · f (x)dx. (11.19)

Clearly, if the low priority market’s share θ is sufficiently high, the arrangement
will be attractive to the high priority market. In particular, φ∗

X+Y (X)≤ φ∗
X (X). If θ is

sufficiently low, the high priority market will not participate in the pooling. Let θmin

be the break-even point. The situation is reversed for the low priority market. Now,
one can show that for θ = θmin (the breakeven point of the high priority market)
φ∗

Y (Y ) ≥ φ∗
X+Y (Y ). Thus, the core of this game is not empty. In fact, even if θ is

slightly higher than θmin the low priority market will still benefit. Thus, the core is
a range of shares from θmin upward to some point.

We are unable to say much about the upper end of the core in the general model.
To obtain some concrete insight, we derive it for uniformly distributed independent
demands.

Example 1. Let X and Y be independent and uniform on [0,1]. It can be shown that
their convolution is

H(Q) =

{
− 1

2 Q2 + 2Q− 1 1 ≤ Q ≤ 2
1
2 Q2 Q < 1

and thus

Q∗ =

⎧⎪⎨
⎪⎩

2−
√

2c
bY

, 1 ≤ Q ≤ 2,

bY−bX+
√

b2
X+b2

Y−2bY c
bY

, Q < 1.

Also Q < 1 iff 2c
bY

> 1. If 2c
bY

< 1 , then φ∗
X+Y = 2−

√
2c
bY

> 1.

Since X ≤ 1, then F̄(Q∗
X+Y ) = 0. Thus, the third term in (11.16), as well as the

fourth, equal zero.
Thus, here

ϕ (X +Y ) = c ·Q∗+ bY ·
Q∗∫

x=0

∞∫
y=Q∗−x

(y− (Q∗ − x)) ·g(y) · f (x)dydx,
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and thus it can be shown that at optimum for 2c
bY

< 1, we have

φ∗
X+Y = 2c

(
1− 1

3

√
2c
bY

)
.

The case 2c
bY

> 1 is more complex, and will not be pursued.
When the markets operate separately, we have, for our example,

φ∗
Y = c

(
1− 1

2
· c

bY

)

and

φ∗
Y = c

(
1− 1

2
· c

bX

)
.

Consider the case 2c
bY

< 1. The costs share of the low priority market is

φ∗
X+Y (Y ) = θ · c ·

(
2−

√
2 · c
bY

)
+

(
1
3
· c ·

√
2 · c
bY

)
.

It follows that Y will benefit from pooling if

θ <
c ·
(

1− 1
2 · c

bY

)
−
(

1
3 · c ·

√
2·c
bY

)

c ·
(

2−
√

2·c
bY

)

=
1− 1

2 · c
bY

− 1
3 ·
√

2·c
bY

2−
√

2·c
bY

.

Market X’s share in the costs is

φ∗
X+Y (X) = (1−θ) · c ·

(
2−

√
2 · c
bY

)
,

which means that it will benefit if

θ >
2−

√
2·c
bY

− 1+ 1
2 · c

bX

2−
√

2·c
bY

.

The lower bound on θ can be shown to be indeed smaller than the upper bound.
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Thus, in this case the core is

0 <
1−

√
2·c
bY

+ 1
2 · c

bX

2−
√

2·c
bY

< θ <
1− 1

2 · c
bY

− 1
3 ·
√

2·c
bY

2−
√

2·c
bY

< 1.

This core is not empty.

11.5 Allocation According to Contribution to Inventory

Here we view the system in a different, and rather unusual, manner. We envision
a centralized inventory which is created by the individual firms. Each decides on
the quantity it will contribute to the joint stock. The decisions are simultaneous.
Then, if there is a shortage, each will receive an allocation proportional to its relative
contribution. There are no imposed priorities. Thus we have a noncooperative game,
somewhat related to the model of decentralized transshipment by Rudi et al. (2001),
and Hanany et al. (2010), and we seek its Nash equilibrium.

Assume that the firms produce/contribute QX and QY , respectively. In case of
shortage, firm X is allocated QX

QX+QY
of the stock, and firm Y, QY

QX+QY
. Essentially,

each firm is first allocated its contribution, or as much as it requires, whichever is
less, and then any excess from another firm, if it exists and is needed. The firms are
aware of that when they choose their contributions.

Given QY , firms X’s cost function is

φX (QX ,QY ) = cQX + bXE
{
(X −QX)

+
}

P(Y > QY )

+bX E
{
(X +Y −QX −QY )

+ |X > QX , Y < QY
}
. (11.20)

Assuming independence that can be shown to equal

φX (QX ,QY ) = c ·QX + bX ·G(QY ) ·
∞∫

x=QX

(x−QX) · f (x)dx

+bX ·
QY∫

y=0

∞∫
x=QX+QY−y

(x+ y−QX −QY ) · f (x) ·g(y)dxdy , (11.21)

and similarly for φY , given QX .
Differentiating each cost function (which is convex) with respect to its strategy,

we obtain the best-response functions

(i) c− bX ·G(Q∗
Y ) ·F (QX)− bX ·

Q∗
Y∫

y=0

F (QX +Q∗
Y − y) ·g(y)dy = 0 (11.22)
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(ii) c− bY ·F (Q∗
X) ·G(QY )− bY ·

Q∗
X∫

x=0

G(Q∗
X +QY − x) · f (x)dx = 0 . (11.23)

The Nash equilibrium obtained by solving these equations can be shown to exist
and is unique. We shall prove uniqueness:

We use a contraction-mapping argument (e.g., Cachon and Netessine 2004). Now,

∂Q∗
X

∂QY
=−

∂ 2φX
∂QX ∂QY

∂ 2φX
∂Q2

X

=−
bX ·

QY∫
y=0

f (QX +QY − y) ·g(y)dy

bX ·G(QY ) · f (QX )+ bX ·
QY∫

y=0
f (QX +QY − y) ·g(y)dy

< 0 ,

(11.24)
which is not surprising, as there is a “free rider” situation here.

Also, ∣∣∣∣∂Q∗
X

∂QY

∣∣∣∣< 1 and

∣∣∣∣ ∂Q∗
Y

∂QX

∣∣∣∣ < 1. (11.25)

That establishes that the response functions are contractions.
It can be shown that dQX

dbX
> 0, which is intuitive, and dQY

dbX
< 0, which occurs since

firm Y knows that with high shortage cost firm X will contribute a large amount, so
Y itself need not contribute much.

One can show that the amounts contributed in the Nash equilibrium are lower
than in the decentralized system. That is consistent with observations made by others
about inventory games with substitutable products.

11.6 Concluding Remarks

Risk pooling underlies many types of arrangements in the financial sector (banks,
insurance companies) as well as in various operational settings. The benefits in some
of these settings were explored before, but mainly for systems where customers are
treated equally. But customers are not always, nor should they be from a social
perspective, treated equally. The waiting costs of one population may be higher
than the other’s. Or, one class of customers has more power. In such settings an
important issue is whether, or when, the would-be low priority customer class will
still benefit from the pooled arrangement,. That is, whether the core is nonempty.
These and related issues were explored here. We also considered a setting where
the customer classes choose their “contributions” to the pooled inventory, and, in
case of shortage, are allocated units in proportion to their relative contribution.
We establish the existence and uniqueness of a Nash equilibrium in that model
and characterize it. We wish to note that the setting-up of schemes like AP, or
contribution-based allocation, do not require the knowledge of actual shortage
costs. Thus, the conceptually and practically difficult task of estimating these
nebulous costs is not encountered at this phase.
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Table 11.1 Shortage allocation

Shortage

Centralized system with
absolute priority

Decentralized
system

X Y X Y

x ≤ QX y ≤ QY 0 0 ≤ 0 0

x ≤ QX y ≥ QY 0 0 ≤ 0 y−QY

x+ y ≤ QX +QY

x ≤ QX y ≥ QY 0
y− (QX +QY − x)≤
y−QY

≤ 0 y−QY

x+ y ≥ QX +QY

x ≥ QX y ≥ QY 0 y− (QX +QY − x) ≤ x−QX y−QY

x ≤ QX +QY

x ≥ QX y ≥ QY x− (QX +QY ) y ≤ x−QX y−QY

x ≥ QX +QY

x ≥ QX y ≤ QY 0 0 ≤ x−QX 0

x+ y ≤ QX +QY

⇒ x ≤ QX +QY

x ≥ QX y ≤ QY 0
y− (QX +QY − x)≤
x−QX

≤ x−QX 0

x+ y ≥ QX +QY

x ≤ QX +QY

x ≥ QX y ≤ QY x− (QX +QY ) y ≤ x−QX 0
x ≥ QX +QY

⇒ x+ y ≥ QX +QY

Further research could address the extension from two to n populations. The
notion of priority needs to be expanded to deal with that case. Dependencies among
group demand magnitudes also should be explored. A multi-period model with
inventory carry over would also be of interest. A different direction is to derive
entitlements (as well as stocks) in the form of Nash Barganing Solutions (Hanany
and Gerchak 2008).

The model which assumes that the parties make inventory contributions, ought to
be explored further. The existence of a nonempty core will be of a particular interest.

Appendix

Proof of Proposition 1. Let QX and QY be the optimal respective quantities in the
decentralized system. Now suppose that the centralized system will hold a quantity
of QX +QY (that is not optimal, but if we show that a centralized system holding
that amount has lower costs than the decentralized system, the optimal centralized
system costs will be even lower). We now show that for a demand realization (x,y)



11 Inventory Centralization in a Newsvendor Setting When Shortage Costs Differ... 275

Table 11.2 AP vs. NP

Realizations Expected shortage cost with AP
Expected shortage costs
with NP

x+ y ≤ Q∗
NP 0 0

x+ y ≥ Q∗
NP x ≤ Q∗

NP bX ·0+bY · (x+ y−Q∗
NP) = bY · (x+ y−Q∗

NP) b · (x+ y−Q∗
NP)

x+ y ≥ Q∗
NP x ≥ Q∗

NP bX · (x−Q∗
NP)+bY · y b · (x+ y−Q∗

NP)

the magnitude of shortage in the centralized system will be smaller than in the
decentralized for each of the two groups (Table 11.1).

Now, since production costs are equal and the shortage of population X as well as
the total shortage are lower, it follows that the costs of the centralized system with
AP are lower than the decentralized system. As that is the case for a nonoptimal
centralized stock, it is a fortiori the case for the optimal stock.

Proof of Proposition 2. Let Q∗
NP be the optimal quantity in the no-priority system,

and assume that the AP system stocks the same amount (which is not optimal)
(Table 11.2). Then the expected shortage costs of the two systems for various
demands realizations are

In the second case, since b̄ ≥ bY the expected shortage with AP is clearly lower.
In the third case, the difference between the expected costs with AP and NP is

(bX · (x−Q∗
NP)+ bY · y)− (b · (x+ y−Q∗

NP)) =
y

x+ y
·Q∗

NP︸ ︷︷ ︸
>0

·(bY − bX)︸ ︷︷ ︸
<0

,

which is clearly negative. Thus then expected costs with AP is lower than with NP
for all demand realizations.

Arbitrary Priority

It can be shown that for independent demands, and denoting β = bX/(bX + bY ), we
obtain the following expected costs function:

j∗ (X +Y ) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c×QX+Y +bX ×
(1−β α )QX+Y∫

y=0

�∫
x=QX+Y−y

(x+ y−QX+Y )× f (x)×g(y)dxdy

+bX × Ḡ((1−β α)×QX+Y )×
�∫

x=β α QX+Y

(x−β α ×QX+Y )× f (x)dx

+bY ×
β α QX+Y∫

x=0

�∫
y=QX+Y−x

(x+ y−QX+Y )× f (x)×g(x)dxdy

+bY × F̄ (β α ×QX+Y )×
�∫

y=(1−β α )QX+Y

(y− (1−β α)×QX+Y )×g(y)dy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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The optimality equation becomes

c− bX ·
(1−β α)·QX+Y∫

y=0

F̄ (QX+Y − y) ·g(y)dy− bY ·
β α ·QX+Y∫

x=0

Ḡ(QX+Y − x) · f (x)dx

−F̄ (β α ·QX+Y ) · Ḡ(1−β α) ·Qx+y · (bX ·β α + bY · (1−β α)) = 0.
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Chapter 12
Planning Production on an Unreliable Machine
for Multiple Items Subject to Stochastic Demand

David Kletter

Abstract We develop an extension of the classical newsvendor model that
incorporates multiple items, setup times, and an unreliable machine. This model
is motivated by applications at metal stamping plants where machine reliability is
a key source of uncertainty. Given a fixed production schedule, a finite horizon,
and a known demand distribution, we formulate an extension of the newsvendor
model, derive important properties of this model, and exploit these properties
to provide a solution algorithm that determines the cost minimizing production
quantities. Finally, we present three simple extensions to the model: (1) a method
for rescheduling within the planning horizon, (2) an extension to evaluate whether
or not to purchase the option to run overtime within the planning horizon, and (3) an
extension that permits the modeling of a machine that operates at a different speed
depending on the part being produced.

Keywords Multiple items • Setup times • Unreliable machines • Cost
minimization • Solution algorithm • Rescheduling

12.1 Introduction

In this chapter, we develop extension of the classical newsvendor model. We model
a single, unreliable machine that repetitively produces a set of parts in batches
subject to shortage and overage (inventory-holding) costs. Our model makes the
following assumptions. First, we assume that there is only a single demand point
for all parts, and that it occurs at the end of a finite production horizon. Second,
the demand for each part is a random variable with a known distribution, where
the uncertainty in the demand quantity is not resolved until the demand point.
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Lastly, we assume a fixed production sequence. Under these assumptions, our model
determines an optimal production quantity for each part. The development of this
model is motivated by applications at metal stamping plants (Kletter 1994). This
model could be used as part of a manufacturing control system, embedded in a
software tool that would receive data in real time from the shop floor and assist
plant management in decision making.

This chapter is structured as follows. Section 2 presents a review of the literature.
A model is then formulated in Sect. 3 as an extension of a classical newsvendor
problem. In Sect. 4, we derive properties of the objective function that are exploited
to develop a solution algorithm, presented in Sect. 5 and that takes advantage of the
special structure of the model. In Sect. 6, we show numerical results from exercise of
the model. Finally, in Sect. 7, three extensions to the model are presented, including
the incorporation of options to run overtime.

12.2 Literature Review

We briefly review the literature that is related to our model. We will divide our
literature review into two parts: those that model the problem of planning production
quantities on an unreliable machine, and those that use a newsvendor model for
problems closely related to the one we study here.

12.2.1 Unreliable Machine

The presence of machine unreliability in a manufacturing system has been studied
in a variety of different contexts, including problems of sequencing, scheduling, and
lot sizing. We briefly review each of these areas.

We first discuss sequencing of jobs on an unreliable machine. The earliest work
is that of Glazebrook (1984) who models the problem as a rather general cost-
discounted Markov decision process. He shows the conditions under which the
optimal policy is of an index type (i.e., the job to be processed is the one with
the smallest Gittins index; see Gittins 1979). Pinedo and Rammouz (1988) find
the optimal nonpreemptive policies for several objective functions in the case of
a Poisson failure process. For a general failure process and a discrete time model,
Birge and Glazebrook (1988) find bounds on the error of following the strategy
that is optimal when the failure process is memoryless. Birge et al. (1990) study
in greater detail the problem of minimizing weighted flow-time and obtain results
that are consistent with and complementary to Pinedo and Rammouz. Epstein
et al. (2010) analyze optimal sequencing on an unreliable machine where the
machine may slow or stop completely. For a detailed and current overview of this
research area, see the surveys contained in Lee (2004), Pinedo (2008), Diedrich
et al. (2009), and Racke (2009).

There is also a significant body of work on lot sizing on an unreliable machine.
Yano and Lee (1995) provide a broad review of the literature in this area.
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See Schmidt (2000) for an overview of the scheduling literature in cases where the
machine is continuously available for processing, for example, when there is incom-
plete information about when the machine may change availability. Al-Salamah and
Abudari (2011) model a production process with failures: however, failures don’t
result in the stoppage of the machine but instead produces nonconforming items.
El-Ferik (2008) determines optimal production quantities under an assumption that
the production facility is subject to random failure, where preventative maintenance
schedules need to be balanced with production. Halim et al. (2010) show the effect
on optimal lot sizing when an unreliable machine is subject to fuzzy demand and
repair time. Giri et al. (2005) model a two-stage production system where the
upstream stage is subject to failures but the downstream stage is not. They assume
that after a machine failure, production of the affected lot is not resumed.

In the case of an infinite planning horizon, Giri and Dohi (2004) derive optimal
lot sizes under a net present value (NPV) approach.

Of particular note is the work of Groenevelt et al. (1992a, 1992b), who extend the
basic economic manufacturing quantity (EMQ) model to incorporate the effects of
machine breakdowns. The first paper assumes that repairs are instantaneous but bear
a fixed cost. The second paper assumes (as we do) that repairs are not instantaneous
but instead consume machine time. This model permits any repair time distribution,
but assumes that the time between failures is exponentially distributed. Under the
assumption of lost sales, the authors seek an optimal lot size and safety stock level
to minimize cost subject to a constraint on the service level. They require, however,
some awkward assumptions regarding safety stock to achieve separability in the
optimization of the lot sizes and safety stock level. The authors do not explore the
impacts of multiple parts sharing the same machine.

Other authors, such as Sethi and Zhang (1994) have approached similar problems
from a control theoretic perspective. These authors consider the problem of finding
an optimal setup schedule (a sequence of parts and the times at which the
changeovers will occur) for an unreliable machine. They show that in the limit
(as the length of the horizon tends to infinity), the stochastic problem can be reduced
to a deterministic problem, and show how to obtain the optimal control policy. The
authors also cite many other similar works.

Reiman and Wein (1998) study a two customer class, single server system with
setups. The authors use heavy traffic diffusion approximations to analyze a system
with a renewal arrival process, general service times, and either setup costs or setup
times. They solve a control problem to minimize a linear function of the queue
length plus setup costs, if any. Within these heavy traffic diffusion approximations,
one could model the unreliability of the machine within the service time distribution.

12.2.2 Related Newsvendor Models

The classic “newsvendor” model has been the subject of many extensions that are
similar to those we consider here. For many decades, researchers have considered
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models with multiple items (Evans 1967, Smith et al. 1980). Rose (1992) considers
uncertain replenishment, but assumes demand is deterministic. Others have studied
multiple time periods for production (Bitran et al. 1986; Matsuo 1990; Ciarallo
et al. 1994). Jain and Silver (1995) model uncertainty in supply and permit the
option to reserve reliable capacity for a premium charge. Dada et al. (2007) consider
a newsvendor that purchases a single item provided by multiple suppliers, some of
which are unreliable, and develop a model for optimal supplier selection. Huggins
and Olsen (2010) extend the basic newsvendor problem for a single item to permit
expediting for unmet demand.

12.3 Formulation

The mathematical structure of our model will closely parallel that of the classic
newsboy model, which we now briefly describe. The following table (Table 12.1)
lists the notation that we will use throughout this section.

For simplicity we will first state the formulation as a single part formulation,
dropping the index i from our notation. The problem is then to choose an order-
up-to quantity y to minimize the expected purchase, holding, and shortage costs.
Mathematically, we can state the problem as

C∗(x) = min
y≥x

c(y− x)+ p

∞∫
y

(t − y)g(t)dt + h

y∫
0

(y− t)g(t)dt. (12.1)

Table 12.1 Notation for formulation

i Index which denotes different parts to be produced;
i = 1, . . .,N

yi Decision variable denoting order-up-to level for part i
xi Current inventory level of part i
ci Unit purchase price of part i
hi Cost per unit of inventory remaining at the end of the

period for part i
pi Unit shortage cost for part i
si Time required to set up the machine to begin producing

part i
gi(·) PDF of demand for part i
fi(t;T ) PDF that in T units of time, the cumulative output of

the machine is t units of part i
Fi(·), Gi(·) CDFs for the PDFs fi,gi

Fi(·), Ḡi(·) 1−Fi(·), 1−Gi(·)
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The problem is solved by finding the value of y such that ∂C(x)/∂y is zero. To find
this partial derivative, we need to employ Leibnitz’s theorem for differentiation of
an integral:

∂
∂y

q(y)∫

p(y)

f (x,y)dx =

q(y)∫

p(y)

∂ f (x,y)
∂y

dx+
∂q(y)

∂y
f (q(y),y)− ∂ p(y)

∂y
f (p(y),y) (12.2)

(Beyer 1987). We will use this extensively in our analysis. From this rule, it is easy
to see that the optimal solution y∗ to the newsboy model occurs at the point where
G(y∗) = (p− c)/(p+ h), unless this implies y∗ < x, in which case it is optimal not
to order.

We now extend this basic single part model to our multiple part, unreliable
production model, for now ignoring overtime opportunities. The problem is to find
the optimal order-up-to levels to minimize the sum of purchasing, holding, and
shortage costs over all parts. Let y, x, c, p, h, and g(·) retain the same meanings
as above, except now we add a subscript i, for each part i = 1, . . .,N. We assume
without loss of generality that the parts are indexed in the order in which they
will be produced. In practice, the order-up-to strategy would be implemented as
follows: produce the first part until the inventory level reaches the optimal y1, then
the production switches to the part 2 until its inventory level reaches the optimal
y2, etc.

Let T denote the amount of time available for production, and the time available
after setups as Ti = T − s1 −...−si. If we are already setup to produce part 1, then
we set s1 = 0. We assume for simplicity that each part is produced at the same
rate when the machine is working. We now introduce machine unreliability into
the formulation by including the PDF f (t;T ). Kletter (1996) provides a variety of
formulas for this distribution in the case where the interarrival time of machine
failures and repairs are exponentially distributed. However, the results below are
independent of the form of this distribution.

We can now write the problem as

C∗(x) = min
y1≥x1,...,yN≥xN

C(y,x), (12.3)

where

C(y,x) =
N

∑
i=1

Ci(y,x), (12.4)

and

Ci(y,x) = ci

yi∫
xi

(t − xi) f

(
i−1

∑
j=1

y j − x j + t − xi;Ti

)
dt + ci(yi − xi)F̄

(
i

∑
j=1

y j − x j;Ti

)

+pi

yi∫
xi

∞∫
u

(t − u)gi(t)dt f

(
i−1

∑
j=1

y j − x j + u− xi;Ti

)
du
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+piF̄

(
i

∑
j=1

y j − x j;Ti

) ∞∫
yi

(t − yi)gi(t)dt

+piF

(
i−1

∑
j=1

y j − x j;Ti

) ∞∫
xi

(t − xi)gi(t)dt

+hi

yi∫
xi

u∫
0

(u− t)gi(t)dt f

(
i−1

∑
j=1

y j − x j + u− xi;Ti

)
du

+hiF̄

(
i

∑
j=1

y j − x j;Ti

) yi∫
0

(yi − t)gi(t)dt

+hiF

(
i−1

∑
j=1

y j − x j;Ti

) xi∫
0

(xi − t)gi(t)dt, (12.5)

where the summations from 1 to i− 1 are taken to be null at i = 1.
Each Ci(y,x) represents the expected purchasing, holding, and shortage costs

incurred for part i given a set of order-up-to levels yi. We have written Ci(y,x) as the
sum of eight terms. The first two terms express the expected purchasing cost, where
the first term is the expected purchasing cost if the realized uptime of the machine
is such that the available supply of the ith part is between the values of 0 and yi − xi

and the second term is the expected purchasing cost if the realized uptime of the
machine is such that the available supply of the ith part is the desired value yi − xi.
There is no purchasing cost if the available supply of the ith part is not greater than
zero. The next three terms represent the expected shortage costs. The first of these
terms is the expected shortage cost if the available supply is between 0 and yi − xi,
the second term is the expected shortage cost if the available supply is yi − xi, and
the third is the expected shortage cost if the available supply is 0. Similarly, the last
three terms represent the expected holding costs, where the first of these terms is the
expected holding cost if the available supply of the ith part is between 0 and yi − xi,
the second term is the expected holding cost if the available supply is yi − xi, and
the third is the expected holding cost if the available supply is 0.

12.4 Properties of the Objective Function

To obtain the optimal order quantities, we wish to show that the total cost function
is convex with respect to the order quantities. If this is so, we can find minimizing
order quantities by finding where the partial derivative of the total cost function is
zero.
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12.4.1 First Order Optimality Condition

We begin by finding the partial derivative of the total cost function with respect
to yN . Using Leibnitz’s rule, we obtain

∂
∂yN

C(y,x) = (cN − pNḠN(yN)+ hNḠN(yN))F̄

(
N

∑
j=1

y j − x j;TN

)
. (12.6)

When written as the product of two terms as we have done, this derivative has a nice
interpretation. The first term is the derivative of the cost function for the classical
newsboy problem. This term is multiplied by the probability that we can complete
our production plan in the time available.

Because of this structure, the first order optimality condition is reduced to
GN(yN) = (pN − cN)/(pN + hN), the solution to the classical newsboy problem. As
before, it is easy to show that if this implies yN < xN , then the optimal yN is xN . The
optimal yN should not be dependent on the other yi, because once we have produced
parts 1, . . .,N − 1, all we can do is try to minimize the costs for part N. The optimal
yN should not be dependent on the machine’s reliability, because the best thing to
do is attempt to achieve the optimal order-up-to quantity exactly.

We now turn to the more difficult task of taking the partial derivative of the total
cost function C(y,x) with respect to yi for i < N. After simplification, the result is

∂
∂yi

C(y,x) = F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

+
N

∑
k=i+1

(pk − ck)

[
F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]

−
N

∑
k=i+1

(pk + hk)

yk∫
xk

Gk(u) f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du, (12.7)

where the summations from i+1 to N are taken to be null at i = N. This expression
is easier to interpret if we rewrite it as

∂
∂yi

C(y,x) = F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

+
N

∑
k=i+1

(pk − ck)

[
F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]
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+
N

∑
k=i+1

(pk + hk)

yk∫
xk

Ḡk(u) f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du

−
N

∑
(k)=i+1

(pk + hk)

yk∫
xk

f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du, (12.8)

and then simplify to obtain

∂
∂yi

C(y,x) = F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

−
N

∑
k=i+1

(ck + hk)

[
F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]

+
N

∑
k=i+1

(pk + hk)

yk∫
xk

Ḡk(u) f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du. (12.9)

The first term is analogous to ∂C(y,x)/∂yN discussed above. The second two terms
give the impact of the choice of yi on the parts k = i+ 1, . . .,N. The first of these
terms represents the marginal cost of machine time. The expression in square
brackets is the probability that machine output is insufficient to produce up to yk

but sufficient to start production of part k. As this probability increases, total cost
decreases at rate ck + hk, assuming that the units built are not sold. The final term
is the marginal cost of lost sales. The integral represents the expected sales given
that machine output is greater than zero but less than yk. As this increases, shortage
costs are accrued at a rate pk and holding costs, which have already been charged in
the second term, are avoided at a rate hk.

It can be seen from the first order condition that as T tends to infinity, the optimal
yi each approach their “newsboy point” yN

i , that is, the point where G(yi) = (pi −
ci)/(pi + hi). However, we can prove a stronger result, as stated by the following:

Theorem 1. The optimal yi are never greater than yN
i , their respective newsboy

points.

Proof. We have already shown that the optimal yN is yN
N , the newsboy point for

part N. Suppose that we have shown that the optimal yk are not greater than yN
k for

k = i+ 1, . . .,N. We will now show that the optimal yi is also less than or equal to
yN

i . We first require the following.

Lemma 1.

∂
∂yi

C(y,x)≥ F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))
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Proof.

∂
∂yi

C(y,x) = F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

+
N

∑
k=i+1

(pk − ck)

[
F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]

−
N

∑
k=i+1

(pk + hk)

yk∫
xk

Gk(u) f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du

(from equation (12.7))

≥ F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

+
N

∑
k=i+1

(pk − ck)

[
F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]

−
N

∑
k=i+1

(pk + hk)Gk(yk)

yk∫
xk

f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)
du

(because Gk(·) is nondecreasing)

= F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

−
N

∑
k=i+1

(ck − pkḠk(yk)+ hkGk(yk))

×
[

F

(
k

∑
j=1

y j − x j;Tk

)
−F

(
k−1

∑
j=1

y j − x j;Tk

)]

≥ F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi)). (12.10)

(because Gk(yk) ≤ (pk − ck)/(pk + hk) for k = i + 1, . . .,N, by the induction
hypothesis). �

Using this result, it immediately follows that for any yi > yN
i ,∂C(y,x)/∂yi is

positive. Therefore, if xi < yN
i , the optimal yi lies between xi and yN

i . If xi ≥ yN
i , then

it is optimal not to produce (the optimal yi equals xi).
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12.4.2 Convexity of the Total Cost Function

In this section, we prove the following:

Theorem 2. If xk ≤ yk ≤ yN
k for k = i, i + 1, . . .,N, then ∂ yC(y,x)/∂yy

i is
nonnegative.

Proof. We once again use Leibnitz’s rule to take the second partial derivative with
respect to yi to obtain

∂ 2

∂y2
i

C(y,x) =

[
F̄

(
i

∑
j=1

y j − x j;Ti

)
(pigi(yi)+ higi(yi))

]

+

[
− f

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

]

+

[
N

∑
k=i+1

{
(pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))

−(pk + hk)

yk∫
xk

Gk(u)
∂

∂yi

{
f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)}
du

⎫⎬
⎭
⎤
⎦ .

(12.11)

We now show that this second partial derivative is nonnegative. We have written
the second partial derivative as the sum of three (square bracketed) terms. The first
term can be seen to be nonnegative by inspection. The second square bracketed term
is nonnegative if −ci + piḠi(yi)− hiGi(yi) is nonnegative, which is true if Gi(yi)≤
(pi−ci)/(pi+hi), which is always true for yi < yN

i . Showing that the third bracketed
term is nonnegative is slightly more difficult. We note that for each k,

(pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))

−(pk + hk)

yk∫
xk

Gk(u)
∂

∂yi

{
f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)}
du

≥ (pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))

−(pk + hk)Gk(yk)

yk∫
xk

∂
∂yi

{
f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)}
du
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(because Gk(·) is nondecreasing)

≥ (pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))

−(pk + hk)
(pk − ck)

(pk + hk)

yk∫
xk

∂
∂yi

{
f

(
k−1

∑
j=1

y j − x j + u− xk;Tk

)}
du

(because Gk(yk)≤ (pk − ck)/(pk + hk))

= (pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))

−(pk − ck)

(
f

(
k

∑
j=1

y j − x j;Tk

)
− f

(
k−1

∑
j=1

y j − x j;Tk

))
= 0. (12.12)

�

Given the other y j, j �= i, this result allows us to find the optimal yi by determining
if ∃ yi ∈ [xi,yN

i ] such that ∂C(y,x)/∂yi = 0. If such a yi exists then it is optimal,
otherwise, the optimal policy is not to order. Since ∂C(y,x)/∂yi is a nondecreasing
function of yi over the range [xi,yN

i ] when yk ≤ yN
k for k = i+ 1, . . .,N, the optimal

yi can be found by simple binary search.
Given the above results, after we have found yN we can find the other yi by

solving the above problem as a N − 1 dimensional unconstrained minimization
problem on the interval xi ≤ yi ≤ yN

i , i = 1, . . .,N − 1. For a discussion of general
algorithms to solve such problems, see Bazaraa et al. (1993). Below we present a
solution algorithm that exploits the special structure of the model.

12.5 Solution Algorithm

The difficulty in finding the optimal production quantities is that the first order
condition tells us that N − 1 of the yi are mutually dependent. We now describe
a solution procedure that exploits the special structure of these dependencies. In
particular, consider the difference

Ĉi+1 =
∂C(y,x)
∂yi+1

− ∂C(y,x)
∂yi

= F̄

(
i+1

∑
j=1

y j − x j;Ti+1

)
(ci+1 − pi+1Ḡi+1(yi+1)+ hi+1Gi+1(yi+1))
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−F̄

(
i

∑
j=1

y j − x j;Ti

)
(ci − piḠi(yi)+ hiGi(yi))

−(pi+1 − ci+1)

[
F

(
i+1

∑
j=1

y j − x j;Ti+1

)
−F

(
i

∑
j=1

y j − x j;Ti+1

)]

+(pi+1 + hi+1)

yi+1∫
xi+1

Gi+1(u) f

(
i

∑
j=1

y j − x j + u− xi+1;Ti+1

)
du.

(12.13)

Note that if yi is optimal, ∂C(y,x)/∂yi is zero, so that Ĉi+1 = C(y,x)/yi+1. The
reason that this is significant is because Ĉi+1 is a function only of y1, . . .,yi.
Therefore if the optimal y1 is known then Ĉ2 can be used to find the optimal y2,
and then Ĉ3 can be used to find the optimal y3, and so forth.

Since the optimal y1 is not known, we must use a search technique to find it. We
now prove three important properties that will be helpful in this regard.

Let the production quantities that result from the above procedure be denoted
by ŷi. We first show that ŷN = yN

N iff ∂C(y,x)/∂y1 = 0. Observe that ĈN is exactly
equal to ∂C(y,x)/∂yN −∂C(y,x)/∂yN−1, and thus ŷN = yN

N iff ∂C(y,x)/∂yN−1 = 0.
Further, for any i, Ĉi+1 = C(y,x)/yi+1 iff ∂C(y,x)/∂yi = 0. Therefore, ŷN = yN

N iff
∂C(y,x)/∂y1 = 0.

The second property is that if the guess for the optimal value of y1 is too large,
ŷN > yN

N . We have shown above that if xk ≤ yk ≤ yN
i for k = i, i + 1, . . .,N, then

∂ 2C(y,x)/∂y2
i ≥ 0. Accordingly, if the guess for the optimal value of y1 is too

large, ∂C(y,x)/∂y1 > 0, so that in order for Ĉ2 = 0, ŷ2 must be chosen such that
∂C(y,x)/∂y2 > 0, so that ŷ2 will be greater than the optimal y2. Repeating this
argument, we see that each ŷi will be greater than the optimal yi, and thus ŷN > yN

N .
By analogous reasoning, we can conclude that if the guess for the optimal value of
y1 is too small, ŷN < yN

N .
The third and final property that we wish to show is that Ĉi+1 is an increasing

function of yi+1. This property is particularly important, as it allows us to find ŷi+1

by simple binary search. To prove this, we take the partial derivative of Ĉi+1 with
respect to yi+1 and simplify to obtain

∂
∂yi+1

Ĉi+1 = F̄

(
i+1

∑
j=1

y j − x j;Ti+1

)
(pi+1gi+1(yi+1)+ hi+1gi+1(yi+1)), (12.14)

which is clearly nonnegative since each term is nonnegative, and thus the result is
proven.

Using these properties, we are now ready to state the following:
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Algorithm:

1. Preprocessing. Compute the yN
i . If any xi ≥ yN

i , then the optimal ŷi = xi and
it is optimal not to produce this part. Remove all such parts from the list of
parts to be produced over the horizon.

2. Initialization. Set ŷ1 = yN
1 . Set U = yN

1 and L = x1.
3. Main loop. For each i= 2, . . .,N, find the ŷi such that Ĉi = 0. If any ŷi > yN

i ,
then ŷ1 is too large. Set U = ŷ1, ŷ1 = (U +L)/2, and repeat Step 3.

4. Optimality test. If |ŷN − yN
N|< ε , then the ŷi are optimal. Stop.

5. Adjustment step. If ŷN > yN
N , then ŷ1 is too large. Set U = ŷ1, ŷ1 =

(U +L)/2, and go to Step 3. If ŷN < yN
N , then ŷ1 is too small. Set L = ŷ1,

ŷ1 = (U +L)/2, and go to Step 3.

The algorithm essentially performs a binary search on the guess for the optimal
y1 by maintaining an upper and lower bound (U and L) on the optimal value. The
algorithm terminates when the current value of ŷN is within some small positive ε
of yN

N .
Because the properties that we have proven above are valid only if xi ≤ yi ≤ yN

i
for i = 1, . . .,N, we must take care to ensure that this remains true throughout the
algorithm. We perform the test in Step 2 to ensure that we do not proceed if any
yi > yN

i . We set L = x1 so that ŷ1 ≥ x1. Lastly, in a preprocessing step we remove a
part i from consideration if xi > yN

i . We can do this because, for any such part, the
optimal ŷi is xi, and it is thus optimal not to produce that part. Since the part would
not be produced, it has no effect on the other parts.

12.6 Numerical Results

In this section, we present numerical results from an implementation of the solution
algorithm described in the previous section.

For simplicity we describe a two part (N = 2) system, with identical parameters
for the two parts. The base case parameters used are summarized in Table 12.2. We
assume that the demand distribution g is normally distributed with mean equal to
100 and standard deviation equal to 10. We also assume that f , the distribution
of output of the machine over a horizon of length T , has a mean of T a standard
deviation of 0.lT , which equates to a coefficient of variation of 0.1.

In this two part example, we know that y∗2 will equal its newsvendor point, which
in this case is equal to 97.47. To find y∗1, we developed a simple spreadsheet model
that computes Ĉi. The solution procedure then simply searches over values of y1

until Ĉ2 = 0. The solution procedure converges to a value equal to the optimal
solution within four digits of precision in just 13 iterations. In this case, the value is
y∗1 = 85.31.
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Table 12.2 Base case
parameters for experiments

Parameter Value

T 160
xi 0
ci 2
hi 1
pi 4
si 0

Fig. 12.1 Optimal production quantity of part 1 as a function of T

Next, we wish to show the effect of the time constraint on the optimal value
for y1. In Fig. 12.1 we show the results of varying the value of T , which also
impacts our production distribution f . As expected, the value of T has a major
effect on the production schedule, until T becomes sufficiently large, at which point
y∗1 approaches its newsvendor point.

Finally, in Fig. 12.2 we show the effect of varying the coefficient of variation in
the production schedule. This was set to 0.1 in the base case. We see that increased
variability has the effect of causing greater levels of planned production as a hedge
against this uncertainty.

12.7 Extensions to the Model

In this section, we present three simple extensions to the model: (1) a method for
rescheduling within the planning horizon, (2) an extension to evaluate whether or
not to purchase the option to run overtime within the planning horizon, and (3) an
extension that permits the modeling of a machine that operates at a different speed
depending on the part being produced.
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Fig. 12.2 Optimal production quantity of part 1 as a function of the variability in production

12.7.1 Dynamic Rescheduling

In the development above, we have discussed how to determine a set of production
quantities to minimize expected total cost. We have assumed up to this point that
this plan, once established, is fixed. That is, the plan is implemented by producing
the predetermined optimal quantity of each part, and then switching production to
the next part. Of course, as this plan is implemented, the reliability of the machine
may be much higher or much lower than expected. As a result, if we were given
the opportunity to do so, we might adjust the production plan based on the actual
realized reliability of the machine.

Suppose we are now permitted to modify our choice of production quantity for
the current part. We propose a simple method that allows someone on the shop
floor to determine when to stop production of the current part based on the part’s
inventory level. We denote this production level as the critical inventory level.
The method described below could produce a chart with two axes: the horizontal
axis will be time, and the vertical axis will be the critical inventory level. In this
sense, this method could produce a visual aide for a production manager on the
factory floor.

Suppose for a particular future point in time t1 we would like to determine the
amount of inventory at or above which it is optimal to stop producing the current part
and switch to the next part. We denote this production level as the critical inventory
level, and determine it as follows. The first step is to update the horizon length in
the equations above by replacing T with T − t1. This reflects the amount of time
that would be remaining for production at time t1. Next, search over values for x1,
at each iteration finding the optimal yi, until we identify the lowest x1 such that at
the optimum, y1 = x1. This is the critical inventory level, since this is the inventory
level at which is it optimal not to produce.
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We now prove the existence of such a critical inventory level. Recall that we are
only interested in the lowest x1 such that at the optimum y1 − x1 = 0, so the only
question we must answer is whether or not such an x1 exists. But this is clearly
so, since if we set x1 = G1

−1((p1 − c1)/(p1 + h1)), we know y1 ≤ G1
−1((p1 −

c1)/(p1 + h1)) and since we must constrain y1 to be at least x1,y1 = x1.
We can vary the value of t1 and find the critical inventory levels at each point

over the planning horizon. The optimal dynamic operating policy is therefore
implemented on the shop floor by producing until the inventory level crosses this
curve. Once this happens and production is switched to the next part, the model
should be solved again to find the critical inventory level as a function of time for
the next part.

12.7.2 Including Options to Run Overtime

In the development above, we purposely omitted any discussion of how to make
optimal overtime decisions. Suppose now that there are m= 1, . . .,NOT opportunities
over the horizon to run overtime, and for simplicity assume that they are each
of duration OT at cost wm. Without loss of generality, we will assume that the
opportunities are indexed in the order of increasing cost.

In the development above, we computed optimal production quantities ignoring
overtime opportunities. This is equivalent to assuming that we choose not to run
overtime, and the resulting expected cost is the expected cost of this strategy.
Suppose instead that we decide that we are going to run overtime once. To evaluate
the expected cost of this strategy we simply replace T by T + OT and find the
optimal production quantities to compute the minimum expected cost, and then
add wm. Note that it does not matter where within the planning horizon that we
run overtime, since all overtime opportunities occur before the demand point. As
a result, we can find the optimal policy by simply running the solution algorithm
above NOT + 1 times, with T taking on the values T,T +OT,T + 2OT, . . .,T +NOT

OT, and choosing the strategy with lowest expected cost. Intuitively, increasing the
length of the horizon will have a non-increasing benefit. If this is true, which we
leave as a conjecture, the evaluation of policies can be stopped when the total cost
increases from the previous iteration.

12.7.3 Extension to Different Machine Speeds

For notational convenience, up to this point we have assumed that the machine
operates at the same speed when producing different parts. If the speeds are
different, then the requirements on the machine need to be expressed in common
units, such as time, instead of parts. This can be accommodated easily, replacing
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all expressions such as F
(

∑i
j=1 y j − x j;Ti

)
with F

(
∑i

j=1
y j−x j

Pj
;Ti

)
, where Pj is

the speed at which the machine produces part j when it is working. Our solution
procedure for finding the optimal yi is unchanged by this modification.

12.8 Conclusion and Future Research

In this chapter, we have extended the basic newsvendor model to an unreliable
machine that must produce multiple parts in a given period of time. We have seen
that with an infinite production horizon, the problem simply decomposes into a
single item newsvendor problem for each part. However, under a time constraint,
the optimal production quantities are reduced from those in the infinite horizon
case. We showed that the optimal production quantities are mutually dependent on
one another, but have discovered a special structure in these relationships, and also
proven other important properties of the objective function and decision variables.
These results allowed us to construct a simple algorithm that performs a binary
search for the optimal value of the production quantity for the first part. In each
iteration, we exploit the special structure of the problem to easily determine the
production quantities for the other parts, and easily test if the overall solution is
optimal.

Our formulation has assumed that the production sequence is fixed. This could
be the result of sequence-dependent setup costs or setup times, or a function of
the timing of arrivals of materials from upstream suppliers. A future research
topic could include relax this assumption and allow the decision maker to change
the sequence, possibly with penalty costs associated with changes. We have also
assumed that demand is satisfied for all parts at the end of the horizon. Another
future research topic could be an extension to multiple time periods, or allowing
different parts to have demand pull from inventory at different points in time.
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Chapter 13
Analysis of the Single-Period Problem
under Carbon Emissions Policies

Jingpu Song and Mingming Leng

Abstract We investigate the classical single-period (newsvendor) problem under
carbon emissions policies including the mandatory carbon emissions capacity,
the carbon emissions tax, and the cap-and-trade system. Specifically, under each
policy, we find a firm’s optimal production quantity and corresponding expected
profit, and draw analytic managerial insights. We show that, in order to reduce
carbon emissions by a certain percentage, the tax rate imposed on the high-
margin firm should be less than that on the low-margin firm for the high-profit
perishable products, whereas the high-margin firm should absorb a high tax than
the low-margin firm for the low-profit products. Under the cap-and-trade policy, the
emissions capacity should be set to a level such that the marginal profit of the firm
is less than the carbon credit purchasing price. We also derive the specific (closed-
form) conditions under which, as a result of implementing the cap-and-trade policy,
the firm’s expected profit is increased and carbon emissions are reduced.

Keywords Cap-and-trade • Carbon emissions • Carbon tax • Single-period
model

13.1 Introduction

The past three decades have clearly witnessed an increasingly serious impact of
carbon dioxide on the environment. Carbon dioxide has been regarded as the main
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pollutant that is warming the Earth. It is a greenhouse gas that is emitted through
transport, land clearance, and the production and consumption of food, fuels,
manufactured goods, materials, wood, roads, buildings, and services CO2List.org
(2006). For the purpose of environmental protection, many governments and
organizations have been contributing to carbon emissions reduction with a common
goal that carbon emissions should be reduced by at least half by 2050, as reported
by, e.g., the International Energy Agency (2008).

In practice, a great number of governments have implemented some policies
to control carbon emissions. In Congress of the United States (2008), the Con-
gressional Budget Office (CBO) of the Congress of the United States provided
a comprehensive study on the policy options for reducing CO2 emissions. We
find from the CBO’s study that there are four major carbon emissions policies as
follows: (i) a mandatory capacity on the amount of carbon emitted by each firm;
(ii) a tax imposed to each firm on the amount of carbon emissions; (iii) a cap-and-
trade system implemented to allow the emission trading; and (iv) an investment
made by each firm in the carbon offsets to meet its carbon capacity requirement.
In Sect. 13.2.2, we shall specify these four major policies, and show that the fourth
policy can be per se regarded as a special case of the third Policy and it should
be thus necessary, and interesting, to investigate the first, the second, and the third
policies.

In this paper, we analyze the impact of the three policies on a profit-oriented
firm’s production quantity decision. We note that many profit-oriented firms have
also observed the importance of the carbon emissions reduction, and responded
by developing low-carbon technologies and adopting new and renewable energy
resources. Furthermore, the Barloworld Optimus—the logistics arm of the multi-
national corporation “Barloworld”—reported that, even though over 80% of carbon
savings are usually achieved at the product design stage, each firm can reduce carbon
emissions by optimizing its operations in production, inventory, and transportation;
see, for example, Benjaafar et al. (2010) and BuySmart network (2008). A survey
by Accenture.com (2009) indicated that more than 86% supply chain executives
have undertaken at least one green initiative in the areas such as recycling, lighting
management, and energy-efficient systems. We also learn from Accenture.com
(2009) that 10% of companies have actively modeled their supply chain carbon
footprints and implemented successful sustainability initiatives.

For our analysis of carbon emissions policies, we focus on the optimal quantity
decision of a firm making a perishable item with a short lifespan. The production
of the item results in carbon emissions. It is realistic to consider the perishable
item for the firm. For example, in the Huber Group (2003), the Huber Group—
which provides facility services to commercial, industrial, educational, medical,
retail, government, and institutional customers—released a technical information
regarding the impact of newspaper printing with the carbon-based ink on the envi-
ronment. In addition, as reported in Environmental News Energies Correspondent
(2009), Carbon Trust, a British governmental organization, suggests that consumers
should use real Christmas trees instead of artificial equivalents, because the carbon
footprint left by artificial trees is at least ten times greater than real Christmas trees.
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However, in today’s market, the demand for artificial Christmas trees is still very
high; for example, Tesco—the largest British supermarket chain—sold 300,000
artificial Christmas trees in December 2009.

To examine how each carbon emissions policy affects the firm’s production
quantity decision, we shall involve a corresponding parameter into the classical
single-period model, and address the following questions:

1. What are the firm’s optimal production quantity decision and corresponding
maximum expected profit under each carbon emissions policy?

2. How does the implementation of a policy influence the carbon emissions
reduction and the expected profits of the low-margin, the moderate-margin, and
the high-margin firms?

3. Does there exist a “win–win” scenario in which the carbon emissions are
decreased while the firm’s expected profit is not reduced?

Our paper contributes to the literature by analyzing the single-period problem
under carbon emissions policies and presenting managerial discussion on the
incentive of the firm on the carbon emissions reduction. Even though our discussions
on the policies are motivated by the practice of the U.S., our analytic approach and
results should be useful to any government who intends to choose a proper policy
to reduce carbon emissions. The remainder of this paper is organized as follows: In
Sect. 13.2, we briefly review the relevant literature in Sect. 13.2.1, which shows the
originality of this paper; and we present our discussion on existing carbon emissions
policies in Sect. 13.2.2. In Sect. 13.3, we consider three policies, and for each policy
analyze the single-period model to find the corresponding optimal quantity decision.
Numerical study with sensitivity analysis are provided in Sect. 13.4. This paper ends
with a summary of our results in Sect. 13.5. In addition, a list of major notations used
in this paper is given in Table 13.1.

13.2 Preliminaries: Literature Review and Carbon
Emissions Policies

In this section, we briefly review major relevant publications and discuss four carbon
emissions policies, which are preliminaries to our analysis of the single-period
problem under carbon emissions policies.

13.2.1 Brief Literature Review

We now review major publications that are closely related to this paper where
we analyze the classical single-period model in the presence of carbon emissions
policies. For a detailed description of the classical model, see, e.g., Hadley and
Whitin (1963). The single-period model has been widely used to investigate a
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Table 13.1 A list of major notations that are used in this paper

Notation Definition

α Unit purchasing price of the carbon credits
β Unit selling price of the carbon credits
c Unit acquisition cost of the perishable product
co Unit overage cost
cu Unit underage cost
C Fixed carbon capacity
e Average carbon emissions per unit of the perishable product
κ Percentage of the reduction in carbon emissions
Q Order/production quantity
Qc Mandatory capacity for carbon emissions
s Shortage (stockout) cost for each unsatisfied demand
τ Tax amount paid by the firm for each unit of the perishable product
v Salvage value per unit of the unsold perishable product
X Aggregate demand, which is assumed to be a random variable with

the probability density function (p.d.f.) f (x) and the cumulative
distribution function (c.d.f.) F(x).

variety of problems in the operations management (OM) area. Khouja (1999)
proposed a literature review of various single-period problems. In today’s OM area,
many scholars still extend the classical model to incorporate different objectives and
utility functions, address different pricing policies, analyze the value of the demand
information, etc.

Starting from the middle of 1990s, the carbon emissions-related issues have
been attracting the OM scholars’ attention. As a seminal publication, Penkuhn
et al. (1997) considered the emission taxes and developed a nonlinear programming
model for a production planning problem. Letmathe and Balakrishnan (2005)
constructed two analytic models to determine a firm’s production quantities under
different environmental constraints. Kim et al. (2009) investigated the relationship
between transportation costs and CO2 emissions using the multi-objective optimiza-
tion method. Cachon (2009) discussed how a reduction in carbon footprints affects
supply chain operations and structures.

In recent two years, an increasing number of OM scholars examine some carbon
emissions-related issues. For example, Hoen et al. (2010) investigated the effects of
two regulation mechanisms on the decision on the transportation mode selection.
Benjaafar et al. (2010) discussed how the carbon emissions concerns could be
involved into the operational decision-making models with regard to procurement,
production, and inventory management. They also provided insights that highlight
the impact of operational decisions on the carbon emissions and the importance
of the operational models in assessing the benefits of investments in more carbon-
efficient technologies. Hua et al. (2010) investigated how firms manage the carbon
emissions in their inventory control under the carbon emissions- trading mechanism.
They derived the EOQ model, and analytically examined the impact of carbon
trade, carbon price, and carbon capacity on order decisions, carbon emissions, and
total cost.
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Table 13.2 Four major carbon emission policies discussed by the Congressional Budget Office
of the Congress of the United States

Policy Brief Description

Policy 1: Mandatory carbon
emissions capacity

A firm’s production quantity Q of the items that emit the
carbon cannot exceed the mandatory capacity Qc.

Policy 2: Carbon emissions tax A firm absorbs the tax τ for each unit of the produced item
that emits the carbon.

Policy 3: Cap-and-trade A firm—with carbon credits prescribed by the
policy-maker to allow the firm to make at most Qc
units of the items—can sell its unused credits at the
sale price $β per item or buy other firms’ extra credits
at the purchasing price $α per item.

Policy 4: Investment in the
carbon offsets

A firm is allowed to invest for the reduction in carbon
emissions to meet the requirement of the mandatory
capacity Qc.

In this paper, we consider the classical single-period problem under three carbon
emissions policies, which significantly distinguishes our analysis and those by, e.g.,
Benjaafar et al. (2010) and Hua et al. (2010). Moreover, we quantify the impact of
different policies on the emissions reduction and the expected profit of the firm. This
further shows the originality of our paper.

13.2.2 Description of Carbon Emissions Policies

We now describe four major carbon emissions policies that are discussed by the
Congressional Budget Office of the Congress of the United States (2008). We begin
by presenting a summary of these four policies as given in Table 13.2, where Q
denotes a firm’s production quantity of the items that emit the carbon, and Qc means
the mandatory capacity of the production that results in carbon emissions. Moreover,
in Table 13.2, τ represents the tax amount paid by the firm for each unit of the
item that emits the carbon; and, β and α denote the firm’s unit sale price and unit
purchasing price of the carbon credits in the cap-and-trade system, respectively.

Next, we discuss the four policies listed in Table 13.2 to determine which policies
shall be later used to analyze the single-period problem. For our single-period
problem under Policy 1 (“mandatory carbon emissions capacity”), the firm’s optimal
decision is subject to the mandatory capacity. That is, the firm needs to determine
an optimal production quantity that maximizes its profit under the constraint that
the firm’s production quantity Q is smaller than or equal to the mandatory capacity
Qc, i.e., Q ≤ Qc. Note that, to simplify our analysis and facilitate our managerial
discussion, we measure the carbon emissions-related parameters and constraints on
the product-unit basis throughout the paper. This is justified as follows: In reality,
carbon emissions can be generated from production, transportation, inventory, etc.
Letting e denote the average carbon emissions generated by making one unit of
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product over the single period, we find that, when the firm has to adhere to a
fixed carbon capacity C, he cannot produce more than Qc = C/e products (that is,
Q ≤ Qc). This implies that it is reasonable to use Qc instead of C for our analysis of
the single-period problem.

For our problem under Policy 2 (“carbon emissions tax”), there is no carbon
emissions constraint; but, the firm absorbs the tax on the amount of carbon
emissions. Specifically, denoting by τ the carbon tax charged for one unit of product,
we can calculate the firm’s total tax payment as τQ. Under Policy 3 (“cap-and-
trade”), the firm has prescribed carbon credits from the policy-maker, which allow
the firm to produce at most Qc units of products. However, the firm can trade
extra (unused) carbon credits through a cap-and-trade system to vary its carbon
capacity. This means that, in the cap-and-trade system, the firm can buy and sell the
“right to emit.”

Under Policy 4 (“investment in the carbon offsets”), the firm can invest in the
carbon emissions-reduction projects to offset emissions in excess of the capacity
Qc. We note that the investment under Policy 4 is per se the same as the credit
purchase in a cap-and-trade system under Policy 3 with β = 0. That is, if the firm’s
unused carbon credits cannot be sold, i.e., β = 0, then Policy 3 is equivalent to
Policy 4 because α can be assumed to be the unit investment cost. Hence, Policy 4
can be regarded as a special case of Policy 3. For generality, we do not analyze our
single-period problem under Policy 4 in this paper.

According to the above, we subsequently investigate the impact of Policies 1, 2,
and 3 on the optimal decision in the single-period problem.

13.3 Analysis of the Single-Period Problem Under
Carbon Emissions Policies

In this section, we analyze the classical single-period inventory model under three
carbon emissions policies—i.e., Policies 1, 2, and 3 in Table 13.2. Our analytic
results are also compared to investigate the impact of the three policies on the
reduction in carbon emissions and the firm’s expected profit. Next, we start with
the firm’s single-period inventory problem under Policy 1.

13.3.1 The Single-Period Problem Under Policy 1
(Mandatory Carbon Emissions Capacity)

For our analysis of the classical single-period problem, we let X denote the
aggregate demand, which is assumed to be a random variable with the probability
density function (p.d.f.) f (x) and the cumulative distribution function (c.d.f.) F(x).
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In addition, p is the selling price per unit of the perishable product; c is the firm’s
unit acquisition cost; s is the shortage (stockout) cost for each unsatisfied demand;
and v is the salvage value per unit of the unsold product. Then, co ≡ c− v is the
unit overage cost, and cu ≡ p+ s− c represents the unit underage cost. Note that Q
denotes the firm’s order quantity, as defined in Table 13.1.

Using the above, we write the firm’s expected profit function as,

J (Q) = (p− v)
∫ Q

0
x f (x)dx+(p+ s− c)

∫ ∞

Q
Q f (x)dx

− s
∫ ∞

Q
x f (x)dx− (c− v)

∫ Q

0
Q f (x)dx. (13.1)

We learn from our discussion in Sect. 13.2.2 that, in order to find optimal quantity Q∗
under Policy 1 (“mandatory carbon emissions capacity”), the firm should maximize
its expected profit J (Q) in (13.1) under the constraint that Q ≤ Qc, where Qc is
the mandatory capacity. That is, the firm’s maximization problem under Policy 1 is
written as follows: maxQ≤Qc J(Q).

Theorem 1. For the single-period problem under Policy 1 (mandatory carbon
emissions capacity), the optimal quantity decision is found as Q∗

1 = min(Q∗,Qc),
where Q∗ is optimal solution of the classical single-period problem, i.e.,

Q∗ = F−1 (w) , where w ≡ cu

cu + co
=

p+ s− c
p+ s− v

. (13.2)

Proof. For a proof of this theorem and the proofs of all subsequent theorems,
see 13.5. �


From the above theorem, we note that Policy 1 is effective only when the
mandatory capacity Qc does not exceed the Q∗, i.e., Qc ≤Q∗. Otherwise, if Qc >Q∗,
then the firm always determines its optimal solution as Q∗ for any value of Qc, which
means that the firm’s optimal solution under Policy 1 is the same as that with not any
policy. It thus follows that, in order to effectively reduce carbon emissions generated
by the firm, the policy-maker needs to set the mandatory capacity as a value lower
than the firm’s optimal decision under no policy constraint.

Theorem 1 also indicates that we can compute Q∗
1 when the c.d.f. F(x) is

explicitly given. For simplicity, we hereafter assume that the aggregate demand
X for the perishable product is normally distributed with mean μ and standard
deviation σ , i.e., X ∼ N(μ ,σ). We thus have,

J (Q∗) = μ (p− c)−σ (cu + co)φ (z∗) , (13.3)

where z∗ ≡ (Q∗ − μ)/σ , and φ is the p.d.f. of the standard normal distribution.
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13.3.2 The Single-Period Problem Under Policy 2
(Carbon Emissions Tax)

Under the policy, the firm needs to pay the tax $τ for each unit of product, as
discussed in Sect. 13.2.2. This means that the firm incurs the per unit cost $τ in
addition to its acquisition cost c. Thus, we can easily write the firm’s corresponding
profit function, by replacing c in J (Q) given in (13.1) with c+ τ . As a result, the
optimal production quantity under Policy 2 is given as,

Q∗
2 = F−1

(
p+ s− c− τ

p+ s− v

)
= F−1 (w2) . (13.4)

Next, we discuss the effect of the carbon tax τ on the reduction in carbon
emissions. More specifically, we need to consider the following question: what
should be the value of τ if we desire to reduce the firm’s carbon emissions by a
certain percentage. Note that, if Policy 2 does not apply, then the firm’s optimal
quantity decision is Q∗, as given in (13.2); and, if this policy applies, then the
optimal decision is Q∗

2 as in (13.4). Therefore, the reduction in carbon emissions
can be calculated as κ ≡ (Q∗ −Q∗

2)/Q∗.
In addition, we should also consider the impact of the profitability-related

attributes of the perishable product on the policy-maker’s tax decision. As discussed
by Schweitzer and Cachon (2000), in the single-period problem, the perishable
product with w2 ≥ 0.5 and that with w2 < 0.5—where w is defined as in The-
orem 1—are called a high-profit product and a low-profit product, respectively.
Noting that the aggregate demand X follows a normal distribution, we find from
(13.2) that Q∗ ≥ μ for the high-profit products with w2 ≥ 0.5, and Q∗ < μ for
the low-profit products with w2 < 0.5. Furthermore, it should be interesting to
investigate whether or not the firm selling a high-profit product and the firm selling
a low-profit product should have the same tax payment if they desire to achieve a
same emission-reduction percentage κ .

Theorem 2. If the firm makes a high-profit perishable product (i.e., w2 ≥ 0.5), then
the carbon emissions-reduction percentage κ is decreasing in c, i.e., ∂κ/∂c < 0.
But, if the firm makes a low-profit perishable product (i.e., w2 < 0.5), then the
carbon emissions-reduction percentage κ is increasing in c, i.e., ∂κ/∂c > 0.

As the above theorem indicates, for a high-profit and a low-profit products under
Policy 2 with a fixed value of the carbon tax τ , we find that, ceteris paribus, the
carbon emissions-reduction percentage κ varies in different manners as the unit
cost is changed. For a high-profit product, the reduction decreases as c increases,
whereas, for a low-profit product, the reduction increases as c increases. The result
implies an important insight from the perspective of the policy-maker, as given in
the following remark.

Remark 1. The policy-maker should consider the attributes of the perishable
product and the unit acquisition cost of the firm, in order to achieve the emissions
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reduction at a certain desired level. Specifically, for a given value of κ , if the
perishable product belongs to the high-profit category, then the tax rate τ imposed
on the high-margin firm (i.e., its unit acquisition cost c is small) should be less than
that on the low-margin firm (i.e., c is high). On the other hand, for the low-profit
product, the high-margin firm should absorb a high tax than the low-margin firm.

13.3.3 The Single-Period Problem Under Policy 3
(Cap-and-Trade)

Under the policy, the firm has to buy the carbon credits at the per unit price α if
it produces more than the prescribed capacity Qc. We thus calculate the purchasing
cost of carbon credits as α (Q−Qc)

+, where,

(Q−Qc)
+ = max(Q−Qc,0) =

{
Q−Qc, if Q ≥ Qc,
0, otherwise.

(13.5)

Note that, if Qc ≤ Q, then α (Q−Qc)
+ = 0, which implies that the firm makes

no payment if it does not need any extra carbon credits. However, the firm may
benefit from emitting less than the capacity Qc by selling its unused carbon credits
in the trading market. In fact, for the single-period problem where the unused credits
should be salvaged, the firm has to sell unused credits and thus obtain the revenue
as β (Qc −Q)+.

Therefore, the firm’s expected profit under the cap-and-trade policy can be
written as,

J3 (Q) = J (Q)+α(Q−Qc)
+ +β (Qc −Q)+, (13.6)

where J (Q) is given as in (13.1); and as discussed above, the second and third
terms can be regarded as the firm’s “penalties” and “rewards” generated by
transferring carbon credits under the cap-and-trade policy, respectively. The firm
should maximize J3 (Q) in (13.6) to find the optimal quantity Q∗

3 under Policy 3.

Theorem 3. When Policy 3 (“cap-and-trade”) is implemented, we find the firm’s
optimal quantity decision Q∗

3 as given in Table 13.3, where Q∗ is the optimal solution
for the classical single-period problem, as given in (13.2); and,

wα ≡ cu −α
cu + co

, wβ ≡ cu −β
cu + co

, γ ≡ dJ(Q)

dQ

∣∣∣∣
Q=Qc

. (13.7)

Note that γ in (13.7) means the firm’s marginal profit at the point that Q =
Qc. Moreover, the firm’s corresponding expected profit is also calculated as in
Table 13.3. �
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Table 13.3 The firm’s optimal quantity decision Q∗
3 under Policy 3 (“cap-and-trade”). Note that

wα , wβ , and γ are defined as in (13.7)

Condition Qc < Q∗ Qc ≥ Q∗

β ≥ cu Q∗
3 = 0; J3 (Q∗

3)> J(Q∗) Q∗
3 = 0; J3 (Q∗

3)> J(Q∗)
cu > β > γ Q∗

3 = F−1
(
wβ
)
< Qc Q∗

3 = F−1
(
wβ
)≤ Qc J3 (Q∗

3)> J(Q∗)
β ≤ γ ≤ α Q∗

3 = Qc; J3 (Q∗
3)< J (Q∗)

α < γ Q∗
3 = F−1 (wα )> Qc ; J3 (Q∗

3)< J (Q∗)

We learn from Theorem 3 that, if Qc is sufficiently high such that Qc ≥ Q∗, then
the firm’s optimal production quantity should be smaller than the capacity Qc and
the firm should sell its unused carbon credits under the cap-and-trade policy. For
this case, the trade-off between reducing the production quantity and selling unused
carbon credits is that the revenue reduction generated by decreasing Q from Q∗ to
Q∗

3 should be compensated by selling the increments in the unused carbon credits
(i.e., Q∗ −Q∗

3).

Remark 2. Theorem 3 indicates that the firm’s carbon emissions could be reduced
when a proper cap-and-trade policy is implemented. Specifically, the amount of
the carbon-emissions reduction depends on the values of α , β , cu, and γ . In order
to assure that the firm’s carbon emissions are reduced to Qc or less, the policy-
maker should set the unit carbon-credit purchasing cost α no less than γ , i.e., α≥ γ;
otherwise, Policy 3 may not be effective in reducing carbon emissions that are
generated by the firm.

We find from Theorem 3 that Q∗
3 = 0 when β ≥ cu. This implies that the firm can

profit more from selling carbon credits than from selling perishable products, when
the price for carbon credits is extremely high. In practice, the policy-maker should
effectively “manage” the cap-and-trade market to prevent the firm from acting as a
carbon credit “dealer” instead of as a product “manufacturer.”

Corollary 1. When Q∗ > Qc and cu > β > γ , we find that

{
J3 (Q∗

3)≥ J (Q∗) , if β ≥ β0 ≡ cu − (cu + co)F (2Qc −Q∗) ;
J3 (Q∗

3)< J (Q∗) , if β < β0.

Proof. For a proof of this corollary, see 13.5.

From the above corollary, we note that, if Q∗ > Qc, cu > β > γ , and β ≥ β0, then,
as a result of implementing Policy 3, the firm’s profit is increased (i.e., J3 (Q∗

3) ≥
J (Q∗)) and its carbon emissions are decreased (i.e., Q∗

3 < Qc). That is, under the
conditions that Q∗ > Qc, cu > β > γ , and β ≥ β0, the firm should be willing to
reduce its production quantity under Policy 3 and the policy is thus effective.
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13.4 Numerical Study

In this section, we provide numerical examples to illustrate our analysis in
Sect. 13.3. Since the analysis under Policy 1—which is provided in Sect. 13.3.1—is
simple, we next compute the firm’s optimal production quantities and expected
profits under Policy 2 (carbon emissions tax) and Policy 3 (cap-and-trade). For
simplicity, we assume that the firm does not incur a shortage cost (i.e., s = 0)
and does not have a salvage value (i.e., v = 0). In addition, X ∼ N(500,150),
and p = 100. We consider several scenarios that differ in the values of other
parameters including the unit acquisition cost c, the carbon tax τ , the unit carbon-
credit purchasing cost α , the unit carbon-credit selling price β , and the prescribed
emissions capacity Qc.

13.4.1 Numerical Example for Policy 2

We now provide an example to illustrate our analysis for Policy 2 in Sect. 13.3.2. In
this example, we use four different values of the unit cost c to represent four types of
products, which include two high-profit products (c = 15 and c = 35) and two low-
profit products (c = 65 and c = 85). For each product, we consider three scenarios,
and for each scenario, we compute the corresponding optimal quantity for the firm.

In the first scenario, we assume that there is no capacity constraint. Accordingly,
we calculate Q∗ and J (Q∗). In the second scenario, we assume that the carbon tax
τ is equal to 10, and we calculate Q∗

2 and J2 (Q∗
2), which are then compared with

Q∗ and J (Q∗) in the first scenario, respectively. We also compute the emissions
reduction percentage κ = (Q∗ − Q∗

2)/Q∗ and find the profit decrease percentage
ω ≡ [J(Q∗)− J2(Q∗

2)]/J(Q∗). In the third scenario, assuming that the firm desires
to reduce carbon emissions by a specific percentage κ (e.g., κ = 10%), we calculate
Q∗

2, J2 (Q∗
2), and ω ; and also compute the corresponding tax rate τ in order to

achieve the emissions reduction percentage κ . Our numerical results are presented
in Table 13.4.

As Table 13.4 indicates, the firm’s optimal production quantity is reduced as
a result of implementing the carbon tax policy. From Scenario 2, we find that, if
the per unit tax rate is 10, then the carbon emissions reduction for the high-profit
products decreases as the profit margin (p− c) decreases, whereas the reduction
for the low-profit products significantly increases (from 9.73% to 26.38%) as the
profit margin declines. We also note that the profit reduction percentage ω is strictly
increasing in c; that is, if the profit margin is reduced, then the profit reduction
percentage is increased.

In Scenario 3, when the carbon-emissions reduction percentage κ is equal to
10% for all products, the tax rate τ imposed on the high-profit product with c = 35
should be higher than that imposed on the high-profit product with c = 15. On the
other hand, for the two low-profit products, the tax rate τ should be higher for the
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Table 13.4 The firm’s
optimal quantities and
corresponding expected
profits in three scenarios

High-profit Low-profit

c 15 35 65 85

Scenario 1: No carbon emissions policy
Q∗ 656 558 442 345
J (Q∗) 39,009 26,954 11,958 4,017

Scenario 2: Policy 2 with τ = 10
Q∗

2 601 519 399 254
J2 (Q∗

2) 32,741 21,377 7,748 965
κ(%) 8.34 6.99 9.73 26.38
ω(%) 16.07 20.69 35.21 75.98

Scenario 3: Policy 3 with κ = 10%
Q∗

3 590 502 398 310
J2 (Q∗

3) 31,254 19,279 7,688 2,443
ω(%) 19.88 28.47 35.71 39.18
τ 12.5 14.5 10.2 4.8

Table 13.5 The numerical
results when Q∗ ≤ Qc

High-profit product Low-profit product

c 15 35 65 85
cu 85 65 35 85
Qc 706 608 492 395
β 10 10 10 10
Q∗

3 601 519 399 254
J3 (Q∗

3) 39,799 27,652 12,666 4,914
κ(%) 8.34 6.99 9.73 26.38
ω(%) −2.03 −2.59 −5.92 −22.33

product with a smaller value of c. We also find that, even though the profit reduction
percentage ω increases as the profit margin decreases, the increases for the four
products are not as significant as those in Scenario 2.

13.4.2 Numerical Example for Policy 3

We now consider two examples to illustrate our analysis for Policy 3 in Sect. 13.3.3.
From Theorem 3, we find that the firm’s optimal quantity decision depends on the
comparison between Q∗ and Qc. Next, we first present an example for the case
that Qc ≥ Q∗, using the values of the unit acquisition cost c for four products as in
Sect. 13.4.1. Setting the specific values of Qc and β for each product, we present
our calculation results in Table 13.5, where we find that, for each product, carbon
emissions are decreased but the firm’s expected profit is increased.

Next, we present another example to illustrate our analysis for the case that
Qc < Q∗. We set α = 12.5 and β = 10, and we select three different values of
Qc for each product, as given in Table 13.6, where we find the following results.
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For each product, Q∗
3 is reduced as Qc is smaller; and, J3 (Q∗

3) is greater than J (Q∗)
as long as β > β0. We also find that Qc more significantly impacts Q∗

3 and J3 (Q∗
3)

for the low-profit products than for the high-profit products. In addition, if the profit
margin is lower, then the impact of the carbon capacity on carbon emissions and the
firm’s expected profit are more significant.

13.5 Summary and Concluding Remarks

In this paper, we investigated the single-period problem under three carbon emis-
sions policies including the mandatory carbon emissions capacity, the carbon
emissions tax, and the cap-and-trade system. Under each policy, we obtained the
optimal production quantity and calculated the corresponding expected profits for
the firm. From our analysis, we draw some important analytic managerial insights.
For example, we showed that, in order to reduce carbon emissions by a certain
percentage, the tax rate τ imposed on the high-margin firm should be less than that
on the low-margin firm for the high-profit perishable products, whereas the high-
margin firm should absorb a higher tax than the low-margin firm for the low-profit
products.

We also found that, from the perspective of the policy-maker, the emissions
capacity should be set to a level such that the marginal profit of the firm is less than
the carbon credit purchasing price, because, otherwise, the firm would produce more
than the emissions capacity. We also derived the specific conditions under which,
as a result of implementing the cap-and-trade policy, the firm’s expected profit is
increased and carbon emissions are reduced. The conditions assure the firm’s and
the policy-maker’s incentives on the cap-and-trade policy.

The research problem discussed in this paper could be extended in several
directions. In future, we may relax the single-period assumption and consider the
quantity decisions of nonperishable products in multiple periods. In another possible
research direction, we may also consider pricing decision for the firm, assuming
the price-dependent aggregate demand in an additive and a multiplicative function
form. In addition, from the policy-maker prospective, it would be nice if one could
propose a way for a firm to select the best policy. The method of choosing the best
carbon emission reduction policy for a given managerial situation likely has critical
business implications for manufacturers.

Appendix A: Proofs of Theorems

Proof of Theorem 1. Temporarily ignoring the constraint that Q≤Qc, we can solve
the classical single-period problem to find that

F (Q∗) = w ≡ p+ s− c
p+ s− v

. (13.8)
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Fig. 13.1 The analysis of J3(Q) in four scenarios: (1) β > cu, (2) cu > β > γ , (3) β < γ < α , and
(4) α < γ

Taking the constraint into consideration, we can easily obtain the result in this
theorem. �


Proof of Theorem 2. To discuss the impact of w on the effectiveness of the carbon
tax policy, we assume that the unit cost c in (13.4) takes two different values, e.g.,
c1 and c2 (w.l.o.g., c1 < c2); and then, ceteris paribus, the corresponding optimal
quantities given by (13.2) are Q̂∗

2 and Q̃∗
2, respectively.

Using (13.2) and (13.4), we find that, replacing c with c + τ , the optimal
production quantity is changed from Q∗ to Q∗

2. If τ → 0+, then Q∗ − Q∗
2 =

−dQ∗/dc. Differentiating both sides of (13.8) once w.r.t. c, we have, dQ∗/dc =
−1/[(p+ s− v) f (Q∗)]. It thus follows that, as τ → 0+, κ = (Q∗ − Q∗

2)/Q∗ =
1/[(p+ s− v) f (Q∗)], which is easily shown to be strictly increasing in Q∗ when
Q∗ ≥ μ but strictly decreasing in Q∗ when Q∗ < μ . Therefore, for a high-profit
product, Q̂∗

2 > Q̃∗
2, and κ̂ ≡ (Q̂∗ − Q̂∗

2)/Q̂∗ > κ̃ ≡ (Q̃∗ − Q̃∗
2)/Q̃∗, whereas, for a

low-profit product, κ̂ < κ̃ . This theorem is thus proved. �

Proof of Theorem 3. We find from (13.6) that J3(Q) is a continuous, piecewise
function in Q. We next consider two cases: Qc < Q∗ and Qc ≥ Q∗; and for each
case, we compute the corresponding optimal decision Q∗

3.
When Qc < Q∗, we depict four scenarios as shown in Fig. 13.1; and, for each

scenario, we compute the optimal solution Q∗
3 as follows: If β ≥ cu, then we find

from Fig. 13.1(1) that J3(Q) is strictly decreasing in Q over [0,+∞); and thus, the
optimal quantity maximizing J3 is Q∗

3 = 0, and J3 (Q∗
3) = β Qc − sμ . If cu > β > γ ,

then as Fig. 13.1(2) indicates, Q∗
3 can be obtained as Q∗

3 = F−1
(
wβ
)
, which is in

the range (0,Qc). If β ≤ γ ≤ α , then, as Fig. 13.1(3) indicates, J3(Q) is increasing
in Q ∈ [0,Qc] but decreasing in Q ∈ (Qc,+∞). The optimal solution Q∗

3 is thus
determined as Q∗

3 = Qc. If α < γ , then Q∗
3 = F−1 (wα ) ∈ (Qc,+∞), as shown in

Fig. 13.1(4).
When Qc ≥ Q, we find from (13.6) that J3(Q) = J (Q) + β (Qc −Q), which

is a concave function of Q. Similarly, we can show that J3(Q) is a decreasing,
concave function of Q in the range (Qc,+∞). Thus, the optimal solution Q∗

3 must
exist in the range [0,Qc]. If J3(Q) is also strictly decreasing in Q ∈ [0,Qc], then
Q∗

3 = 0. Otherwise, Q∗
3 should be obtained by solving dJ3(Q)/dQ = 0; that is,

Q∗
3 = F−1

(
wβ
)
. Noting that dJ3(Q)/dQ|Q=0 < 0 only if β > cu, we find that Q∗

3 = 0
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if β > cu; Q∗
3 = F−1

(
wβ
)

otherwise. In addition, Q∗
3 ≤ Qc because wβ ≤ w; and,

J3 (Q∗
3)≥ J (Q∗)+β (Qc −Q∗)≥ J (Q∗). �


Appendix B: Proof of Corollary 1

We learn from Theorem 3 that, if cu > β > γ , then Q∗
3 = F−1

(
wβ
)

and Φ (z∗3) =wβ .
Hence, z∗3 is dependent on β , and φ (z∗3) can be written as φ (z∗3) =−[1/(p+s−v)]×
(dβ/dz∗3). Using (13.3), we have,

J3 (Q
∗
3)− J (Q∗) = β (Qc − μ)+σ (cu + co) [φ (z∗)−φ (z∗3)]

= β (Qc − μ)+σβ ′+σ (cu + co)φ (z∗) . (13.9)

Equating J3 (Q∗
3) to J (Q∗) and solving the resulting equation for β , we find that

β =
σ (cu + co)φ (z∗)

Qc − μ
[e(Qc−μ)(z∗−z∗3)/σ − 1]. (13.10)

Substituting β in (13.9) into (13.10), we obtain z∗3 as z∗3 = z∗ = 2(Qc − μ)/σ −
z∗. It is easy to show that the corresponding value of β for z∗3 is β0 = cu −
(cu + co)F (2Qc −Q∗). We also find that J3 (Q∗

3)− J (Q∗) > 0 for β > β0, but
J3 (Q∗

3)− J (Q∗)< 0 for β < β0.
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Chapter 14
Optimal Decisions of the Manufacturer
and Distributor in a Fresh Product Supply
Chain Involving Long-Distance Transportation

Xiaoqiang Cai, Jian Chen, Yongbo Xiao, Xiaolin Xu, and Gang Yu

Abstract We consider a supply chain in which a distributor procures from a
manufacturer a type of fresh product, which has to undergo long distance trans-
portation before reaching the market. In addition to the risk caused by random
fluctuations of the market demand, the distributor also faces the risk that the product
procured may decay and deteriorate during transportation. The market demand for
the product depends on its level of freshness and the distributor’s selling price.
The manufacturer has to determine his wholesale price based on its effect on
the order quantity of the distributor, whereas the distributor has to determine his
order quantity and selling price, based on the wholesale price, the likely loss of
the product in long distance transportation, the product’s level of freshness when
it reaches the market, and the possible demand for the product. We develop a
model to formulate this problem, and derive each party’s optimal decisions in both
uncoordinated and coordinated situations. We introduce a new incentive scheme to
facilitate the coordination of the two parties, which comprises two parts: (1) the
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manufacturer offers his wholesale price as a function of the actual transportation
time and price discount in the market; and (2) the manufacturer compensates the
distributor for any unsold unit of the product. We show that this incentive scheme
can induce the distributor to order up to the quantity required to maximize the total
benefit of the centralized system, and both parties will all be better off than in the
uncoordinated case. Computational studies are also conducted, which reveal some
interesting managerial insights.

Keywords Fresh product supply chain • Long distance transportation • Coordi-
nation • Level of freshness • Incentive scheme

14.1 Introduction

The production of food products, such as live seafood, fresh fruit, fresh vegetables,
etc., is highly characterized by geographical location. As such, it is quite common
that a product which is produced in one region is sold to another distant market
in which the product is consumed. For example, fresh fruit is imported into China
from California, fresh vegetables are exported from China to other countries such as
Europe and Japan, live seafood is imported into Hong Kong from Australia, Canada,
and the United States of America. According to OECD (2005), agricultural goods
trade has become a significant portion of the GDP of many countries: in 2003, EU-
15 and U.S. exports of agriculture accounted for 8.4% and 8.6% of their GDPs,
respectively, whereas that for New Zealand reached 48.1%. The monthly statistics
of the Commerce Ministry of China (December, 2005) show that in 2005, China’s
exports of fishery and seafood products totaled more than $4.35 billion, and exports
of vegetables reached $3.05 billion. According to U.S. Horticulture Exports to
Asia (Sanchez and Kipe 2004), “In the calendar year (CY) 2003, U.S. horticultural
exports to the world totaled more than $12.3 billion. Approximately 28 percent, or
$3.5 billion, of these exports were shipped to markets of Asia. Asia is a significant
market for U.S. horticultural products, with 10 of the top 25 horticultural export
markets located in the region.” In addition to international trading, in countries of
vast geographical size, it is also common that fresh products are produced in one
place and sold in another domestic, but distant market.

Because of the geographical difference between the origin of production and
the destination of consumption, a common feature of the supply chain of such
products is the requirement of long distance transportation. For example, according
to Hagen et al. (1999), “In California more than 485,000 truckloads of fresh fruits
and vegetables travel 100 to 3,100 miles to reach their destinations.” While there is
a great profit potential in selling a product in a market in which the product is not
readily producible, long distance transportation of fresh products involves, however,
a high risk. Due to the perishable nature of the products and the transport time that
is required, it is almost inevitable that a certain degree of decay or deterioration will
have taken place by the time the products arrive at the distant markets. As indicated
by Kasmire (1999): “All fresh products continue to deteriorate with time, even under
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optimum handling and transport conditions. Postharvest and transport times should
be kept as short as possible, especially under less than optimum conditions, to limit
deterioration and extend marketable life of products.” Long distance transportation
is also prone to unexpected delays, which may be caused by disruptive variations
of weather, equipment breakdowns, transport network congestion, etc. When such
a delay occurs, the products may experience even severer decay and deterioration
during the prolonged transportation process.

The market demand for a fresh product, however, often depends on the product’s
level of freshness and the selling price. How to determine the appropriate pricing
decision, by considering the freshness of the product and its correlation with
the market demand? This is an important question facing all fresh product dis-
trubtors/retailers. Before (and in addition to) this pricing decision, the distributor has
another critical decision to make; i.e., the quantity of the product to be procured from
the manufacturer, based on the wholesale price charged by the manufacturer and all
other information including the transportation time, the possible loss in the order
quantity due to decay, and the market demand. The manufacturer, on the other hand,
has to determine the wholesale price based on its possible effect to the order quantity
of the distributor. How can we model the decisions to be made by the manufacturer
and the distributor? What are their optimal decisions if they do not coordinate and
want to optimize their individual objectives? What are their decisions to optimize
the joint objective of the centralized system? Can any incentive schemes (contracts)
be introduced to facilitate the coordination between the two parties, so that the risks
involved in the supply chain can be shared with a mutually acceptable mechanism
to allow both parties to be all benefited by the coordination? In particular, because
time is a crucial element for perishable products, how should decisions be made
with consideration of the relationship between perishability and time?

The main purpose of our research is to investigate the above questions. Specif-
ically, we will consider a supply chain of fresh products, with the following
features: (1) Uncertain transportation time; (2) decay and deterioration during
transportation, which may cause reduction in both quality (freshness level) and
quantity, respectively; and (3) random market demand, sensitive to the selling price
and the level of freshness of the product when it reaches the market. We obtain the
following results:

(1) The optimal decisions for both the manufacturer and the distributor in the
decentralized system, to optimize their respective objectives;

(2) The optimal decisions in the centralized system, to optimize their joint objec-
tive;

(3) A transportation-time dependent, price-discount sharing mechanism and a
compensation scheme, which can ensure that both parties take the coordinated
decisions and are all better off by the coordination; and

(4) Managerial insights, uncovered from both theoretical results and computational
studies.

The remainder of the paper is organized as follows. In Sect. 14.2, we will provide
a brief review of the related literature. Problem formulation, assumptions, and
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notation will be presented in Sect. 14.3. In Sect. 14.4, we will derive the optimal
decisions of the manufacturer and the distributor in the uncoordinated, decentralized
system. Optimal decisions for the centralized system will be developed in Sect. 14.5,
followed by the development of an incentive scheme that motivates both parties
to adopt the coordinated decisions in Sect. 14.6. Sect. 14.7 will report and analyze
the numerical results obtained from our computational studies. Finally, concluding
remarks will be given in Sect. 14.8.

14.2 Related Literature

Studies on supply chain management of perishable products have begun with
concerns about inventory management of such products, which is to analyze
and determine the replenishment policies for inventory. An early work on a
perishable inventory problem was described by Whitin (1957), where fashion goods
deteriorating at the end of certain storage periods were considered. Since then,
considerable attention has been paid to this line of research. Nahmias (1982)
provides a comprehensive survey of research published before the 1980s. More
recent studies on the deteriorating inventory models can be found in Raafat (1991),
Goyal and Giri (2001), and Karaesmen et al. (2011), in which relevant literature
published in 1980s, 1990s, and 2000s are reviewed respectively.

Our model considers fresh products that may face the two kinds of loss:
decreases in quantity and quality. That is, as time goes by, some quantity of
the product procured becomes obsolete (for example, some of the fish die and
become valueless); Meanwhile, the product also becomes less fresh gradually.
Our model therefore deals with both the quantity and quality effects: the quantity
decrease affects the effective product supply, whereas the quality (or freshness
level) deterioration affects the market demand. Both effects will be captured in
our model, by using general functions based on the elapsed transportation time.
The work of Rajan et al. (1992) is an earlier study considering both value drop
and quantity decrease. Their focus is, however, on the inventory replenishment and
pricing decisions of perishable products. They study a model in which the demand
is deterministic, and the decision maker optimizes the price p(t) and the order cycle
length to maximize the average profit per unit time (the optimal price is assumed to
be a deterministic function of t).

We investigate the coordination between the manufacturer and the distributor,
which takes into account the decay and deterioration of the product during
transportation and in the market. Coordination between suppliers and distributors
(or retailers) has been a subject of extensive study in supply chain management in
the last few decades (see, e.g., Chen 2003; Song et al. 2005). Such coordination
is usually achieved through “contracts” between the upstream suppliers and the
downstream distributors, to increase the total supply chain profit so as to make
it closer to the profit that can be generated from a centralized control (channel
coordination), or to share the risks among the supply chain partners (Tsay et al.
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1999). Various models of supply chain contracts have been developed in the
literature. Price discount is often suggested as an incentive to facilitate coordination
(see Parlar and Wang 1994; Weng 1995; Wang 2001). Other incentive schemes
include quantity commitment (Anupindi and Bassok 1999), quantity flexibility
contracts (Tsay 1999), backup agreements (Eppen and Iyer 1997), buy back or
return policies (Pasternack 1985), revenue sharing (Cachon and Lariviere 2005),
sales rebate or “markdown allowance” (Taylor 2000; Krishan et al. 2004). Cachon
(2003) provides an excellent survey on supply chain coordination with contracts.
As Cachon (2003) points out, the buy backs, quantity flexibility, and sales-
rebate contracts do not coordinate in settings in which the demands are price
dependent. These contracts encounter problems because the incentives they provide
to coordinate the distributor’s quantity action distorts the pricing decision. One
of the main contributions of our work is the design of a price-discount sharing
mechanism (which is also time dependent) together with a compensation scheme
to coordinate the manufacturer and the distributor.

By considering long distance transportation with uncertain transport time, we
actually take the uncertain lead-time into account. In the production-inventory
literature, there are numerous papers published that investigate the stochastic lead
times (see, e.g., Eppen and Martin 1988; Lau and Zhao 1993; and Bookbinder and
Cakanyildirim 1999). Most of them study multi-period models and focus on the
influence of the stochastic lead time upon the inventory/safety inventory. Under a
discrete multi-period inventory setting, Lodree and Uzochukwu (2008) and Shen
et al. (2010) consider time-dependent demands of perishable product. Our model,
however, deals with the effects of stochastic lead time on the effective inventory and
demand simultaneously. In a broader sense, our work represents a new attempt on
supply chain coordination considering the effects of uncertain lead times.

Our model addresses the issue that the distributor is risk averse towards the
loss that may be incurred by the random transportation time. By use a parameter
ρ ≥ 0, our model considers the different degree of risk aversion. While the majority
of the literature on supply chain coordination is based on the assumption that
decision makers are risk neutral (consequently, the objective commonly considered
is to maximize the expected profit), there have been some studies that examine
the influence of risk aversion in supply chain contracting (see, e.g., Agrawal and
Seshadri 2000; Plambeck and Zenios 2000). The conventional way of modeling
risk attitude is to set the objective as maximizing the expected utility instead of
the expected profit. An exponential utility function has been used by Feng and
Xiao (2008). Another approach is to set a target revenue (or profit) level, and to
apply a “downside penalty” if the target level is not reached (Nawrocki 1999).
A “required probability of achieving at least the maximum expected profit” can
be imposed as a constraint of the optimization problem (Weng 1999). Our model
also uses “downside penalty” to reflect the risk-averse attitude of the distributor on
the uncertain transportation delays. That is, in cases when the realized profit does
not reach its expected level, a penalty will be incurred, the magnitude of which is
proportional to the profit gap relative to the expected profit.
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Our model can be regarded as an extension of the traditional newsvendor problem
(of one supplier and one distributor) with price-dependent demands. Our model
differs, however, from the previous literature in two aspects. First, the order quantity
and selling price decisions, which can be made simultaneously in the newsvendor
models, are determined sequentially (and optimally) because the ordering decision
has to be made before the product is ready for transportation, whereas the optimal
selling price, which depends on the freshness level of the product and the timing
of the market, can be determined only when the product arrives at the distributor.
That is, the optimal selling price depends on the arrival time, which is not known
at the point when the order quantity is determined. Second, the contract to facilitate
the coordination between the manufacturer and the distributor may also correlate to
the (stochastic) transportation time.

Recently, Ray et al. (2005) have studied a problem to determine the optimal
pricing and stocking decisions, in which the market demand is stochastic and
price sensitive, and the delivery times are random. In addition to addressing these
important issues in our model, we investigate, moreover, the specific requirements
imposed by fresh and perishable products. The optimal uncoordinated and coordi-
nated decisions and strategies we derive for the fresh-product supply chain depend
significantly on the features of decay and deterioration of the product. The pricing
decision, for example, in our model has to be made based on the level of freshness
of the product when it reaches the market and the effective supply that remains after
long distance transportation. Under a risk-neutral setting, Cai et al. (2010) study the
optimization and coordination of a fresh product supply chain, where the freshness-
keeping effort of the downstream distributor is taken into account as a decision
variable. Our present paper differs from Cai et al. (2010) mainly in two aspects: (1)
We consider a risk-averse setting, under which the degree of risk aversion of the
distributor affects his decisions; and (2) rather than assuming that the transportation
time is an endogenous controllable variable, we consider the situation in which it is
an exogenous random variable.

14.3 The Model

We investigate the following problem. A distributor procures a kind of fresh product
from a manufacturer on a make-to-order basis. The product ordered has to undergo
long distance transportation before it reaches the market. The transaction between
the manufacturer and the distributor is conducted on a free-on-board (FOB) basis,
under which the price of the seller (manufacturer) includes the cost of loading onto
the transport vessel at the designated point, whereas the transportation and insurance
are the responsibilities of the buyer (distributor).

The product is fully fresh when it is loaded onto the vehicle (e.g., the cargo ship).
It remains fresh during a period that we call its fresh duration τ . The fresh duration
τ , where τ ≥ 0, is a constant which depends on the nature of the product and the
way to treat and keep it (Kasmire 1999). After that, the product starts to perish at a
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significant rate. The perishability may lead to “deterioration” or “obsolescence,”
which may all occur during the process of transportation. Deterioration lessens
the quality (freshness) of the product, whereas obsolescence reduces its effective
(marketable) quantity. Specifically, we model the two types of perishability by the
following two time-dependent indices, where t = 0 is the time when the product is
uploaded to the vehicle:

• A function θ (t) of time t, defined over [0,1], as the freshness index of the product.
θ (t) = 1 if t ≤ τ and 0 ≤ θ (t) < 1 otherwise. Especially, if the freshness level
declines at a constant exponential rate δ , then θ (t) takes the following form:

θ (t) =
{

1 if t ≤ τ;
exp(−δ (t − τ)) otherwise.

• A function m(t) of time t, define over [0,1], as the index on the marketable
quantity of the product at time t. Suppose that q units of the product are
loaded to the vehicle, the amount becomes qm(t) after a period of time t, where
0 < m(t)≤ 1.

Note that exponential functions have been used in the literature to model the
quantity decrease and quality decline of perishable products; see Raafat (1991) and
Rajan et al. (1992). Our functions θ (t) and m(t) are not limited to the exponential
forms, which can be any functions depending on the nature of the product.

The market demand for the product depends on its freshness level θ (t) when
it reaches the market at time t and the selling price p of the distributor, with the
following multiplicative functional-form:

D(p, t) = y0ε p−kθ (t), k > 1,

where y0 is a constant, ε is a random variable, and k is the price-elasticity index. The
variable ε reflects the random fluctuations of the market demand. We assume that its
PDF and CDF are f (x) and F(x), respectively. Without loss of generality, we assume
that the mean of ε is equal to 1 (this can be achieved by appropriately scaling the
parameter y0). The parameter k reflects the sensitivity of the demand to the price.
The larger the k value, the more sensitive the demand to the price. If k > 1, then
the demand is price-elastic, and inelastic otherwise. We focus on the price elastic
case (If k ≤ 1, then we can show that the optimal price under consideration goes to
infinity; see Remark 1.5 below). Note that if θ (t) = 1 for all t (that is, the product
is not deteriorative), then the demand function above reduces to that considered by
Petruzzi and Dada (1999), Wang (2004), and Wang et al. (2004).

Denote T as the transportation time, which is a continuous random variable
distributed over [a,b], with its CDF and PDF being G(t) and g(t), respectively.
When b = a, the model reduces to the special case with a deterministic (fixed)
transportation time. Assume that the transportation cost is cTq if the quantity of
the product to be transported is q, where cT is the unit transportation cost.
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14.3.1 The Decision of the Manufacturer

Let cM be the unit production cost of the manufacturer. In the situation where there
is no coordination between the manufacturer and the distributor, the manufacturer
is to determine a wholesale price w so as to maximize his profit πm:

πm(w) = (w− cM)q, (14.1)

where q is the order quantity of the distributor, which is influenced by the whole
sales price w.

14.3.2 The Decision of the Distributor

Let q and p be the order quantity and the selling price of the distributor. For any
transportation time t, the expected profit of the distributor w.r.t. the random demand
is given below:

πd(p,q|t) = pEε{min{D(p, t),qm(t)}}−wq− cTq. (14.2)

The profit function above has an implicit assumption that the salvage value of any
unsold product is zero. This is common for fresh products as they usually become
valueless if they cannot be sold within a period of time.

The distributor is risk averse to the transportation delay (which could incur a very
substantial loss). Thus, we introduce the following utility function:

Ud(p,q) = Et
{

πd(p,q|t)−ρ [Et{πd(p,q|t)}−πd(p,q|t)]+} , (14.3)

where ρ ≥ 0 and x+ is defined as x+ = max{0,x}. It is easy to see that
[Et{πd(p,q|t)} −πd(p,q|t)]+ represents the downside penalty, which will occur
if the realized profit is lower than the expected profit. Thus, ρ represents the degree
of risk aversion. If ρ = 0, the utility reduces to the expected profit, that is, the
risk-neutral case.

In the situation where there is no coordination between the manufacturer and the
distributor, the distributor is to determine q and p so as to maximize Ud(p,q).

14.3.3 The Decisions of the Manufacturer and the Distributor
Under a Joint Objective

In the centralized system, the manufacturer and the distributor should make
decisions to optimize their joint objective. For any transportation time t, their joint
expected profit with respect to the random demand is given below:
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Πc(p,q|t) = πm(w|t)+πd(p,q|t)
= pEε{min{D(p, t),qm(t)}}− (cM+ cT)q (14.4)

Note that the wholesale price w vanishes in the centralized system (in which the
selling profit of the manufacturer equals the purchase cost of the distributor). Thus,
the expected profit for the centralized system is equal to the revenue generated from
the market minus the production and the transportation costs, as shown by (14.4)
above.

The two parties should maximize their joint utility function:

U(p,q) = Et
{

Πc(p,q|t)−ρ [Et{Πc(p,q|t)}−Πc(p,q|t)]+} , (14.5)

where ρ ≥ 0.
Again, the utility function reduces to the expected profit when ρ = 0.

14.4 Optimal Decisions in the Decentralized System

In this section, we will characterize the optimal decisions of the manufacturer and
the distributor in the decentralized system in which they are not coordinated. We
will do so by using a backward approach. First, we will derive the optimal selling
price p∗ of the distributor, given any arbitrary order quantity q, wholesale price w,
and transportation time t. We will then derive his optimal order quantity q∗ based
on its relationship with p∗. The optimal wholesale price w∗ of the manufacturer will
be obtained based on its relationship with q∗.

Following Petruzzi and Dada (1999), we define

z := qm(t)/[y0 p−kθ (t)],

and call it the “stocking factor.” Then, the problem of choosing a price p is
equivalent to choosing a stocking factor z. By substituting p = (zy0θ (t)/qm(t))1/k

into (14.2), the distributor’s objective function can be rewritten as

πd(z|q, t) =
(

zy0θ (t)
qm(t)

)1/k

·Eε

{
min

{
qm(t)

z
ε,qm(t)

}}
− (w+ cT)q. (14.6)

Lemma 1. The optimal stocking factor z that maximizes π(z|q, t) is determined by

∫ z

0
(k− 1)x f (x)dx = z[1−F(z)]. (14.7)
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Moreover, if ε has a generalized increasing failure rate (GIFR), and limx→∞ x[1−
F(x)] = 0, then (14.7) has a unique solution z0.

Proof. Equation (14.6) can be transformed as follows:

πd(z|q, t) = (zy0θ (t))1/k (qm(t))1−1/k ·Eε

{
min

{
ε
z
,1

}}
− (w+ cT)q

= (zy0θ (t))1/k (qm(t))1−1/k
(

1−
∫ z

0
(1− x/z) f (x)dx

)
− (w+ cT)q.

(14.8)

The optimal stocking factor z that maximizes πd(z|q, t) must satisfy the first order
condition:

dπd(z|q, t)
dz

=
(y0θ (t))1/k (qm(t))1−1/k

z1−1/kk

(
1−

∫ z

0
[
x
z
(k− 1)+ 1] f (x)dx

)
. (14.9)

Since (y0θ (t))1/k(qm(t))1−1/kz1/k−1k−1 > 0, dπd(z|q, t)/dz = 0 implies

∫ z

0
[
x
z
(k− 1)+ 1] f (x)dx = 1,

which gives (14.7).
We next prove the uniqueness of z0. Let

φ(z) :=
∫ z

0
[x(k− 1)+ z] f (x)dx− z =−zF̄(z)+ (k− 1)

∫ z

0
x f (x)dx,

where F̄(z) = 1−F(z). Then we have

φ ′(z) =
∫ z

0
f (x)dx+ zk f (z)− 1 = zk f (z)− F̄(z) = kF̄(z)

[
h(z)− 1

k

]
,

where h(z) is the generalized failure rate function of ε , i.e., h(z) = z f (z)/F̄(z).
When h(z) increases in z, we know that φ(z) decreases before z reaches h−1(1/k)
and increases after h−1(1/k), and hence is unimodal (see Fig. 14.1). Since φ(0) = 0
and limz→∞ φ(z)> 0, it is apparent that φ(z) = 0 has only one solution within (0,∞).
Therefore, z0 is uniquely determined by (14.7). It is also clear that for z > z0, φ(z)>
0 and thus dπd(z|q, t)/dz < 0; for 0 < z < z0, φ(z) < 0 and thus dπd(z|q, t)/dz > 0.
Therefore, πd(z|q, t) is also unimodal in z, and z0 is the unique maximizer (instead
of minimizer) of πd(z|q, t). This completes the proof. �


Note that both GIFR and limx→∞ xF̄(x) = 0 are very mild restrictions on the
demand distribution. GIFR is a weaker condition than IFR (increasing failure
rate)—a property that is known to be satisfied by distributions such as normal,
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Fig. 14.1 The curve of
function φ (z)

uniform, and also the gamma and Weibull families, subject to parameter restrictions
(Barlow and Proschan 1965). The condition limx→∞ xF̄(x) = 0 is also satisfied by
the above-mentioned distribution functions.

From (14.7), we can see that the optimal stocking factor is dependent on the
price-elasticity k and the distribution of the random factor ε , but independent of
other parameters (including the order quantity and the transportation time). The
optimal selling price p∗ can therefore be obtained directly. This is summarized in
the theorem below.

Theorem 1. Suppose that the distributor orders a quantity q and the product
arrives at time t. Then the optimal selling price p∗(q, t) of the distributor is:

p∗(q, t) =
(

y0z0θ (t)
qm(t)

)1/k

. (14.10)

Remark 1. (1) Note that θ (t) is the product’s level of freshness when it reaches the
market at time t. It follows from (14.10) that, the higher the level of freshness,
the higher the selling price. Note also that qm(t) is the marketable quantity of
the product (effective supply) when it reaches the market at time t. It is easy to
see from (14.10) that, the smaller the effective supply, the higher the price.

(2) It is interesting to analyze the relationship between the optimal selling price
p∗(q, t) and the transportation time t. A general intuition may suggest that
the price may decrease if a transportation delay occurs (t is longer) because
the product may have become less fresh. The key here is, nevertheless, that the
selling price also depends on the effective supply—If a transportation delay
occurs, the marketable quantity qm(t) may have dropped and thus the effective
supply to the market is reduced.

(3) Our result shows that whether p∗(q, t) decreases or increases in t depends on the
function θ (t)/m(t), which we call the “quality–quantity” ratio. If the quantity
decreases quickly (a small m(t)) but the quality drops slowly (a large θ (t)), then
the optimal selling price may be even higher than the “normal” optimal selling
price (y0z0/q)1/k with a fully fresh product.
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(4) Suppose that the actual transportation time is t and the order quantity of the
distributor is q. Equation (14.10) gives a close-loop formula to determine
the optimal price: When the product arrives at t, the distributor can observe
“the level of freshness” and “the effective supply” and then set his selling price.

(5) If the price elasticity k ≤ 1, from (9) we can see that dπd(z|q,t)
dz > 0 holds; that

is, πd(z|q, t) is strictly increasing in z. Therefore, the optimal stocking factor z0

goes to infinity, and so is the distributor’s optimal retail price.

We can now determine the optimal order quantity of the distributor, under
any wholesale price of the manufacturer. By substituting p∗(q, t) of (14.10) into
(14.2), we can rewrite the distributor’s optimal expected profit conditional on the
transportation time t as

πd(q|t) : = πd(p∗(q, t)|q, t)

=
k

k− 1
(y0θ (t))1/k (qm(t))1−1/k z1/k

0 [1−F(z0)]− (w+ cT)q. (14.11)

As stated in Sect. 14.3, the distributor seeks to maximize his expected utility Ud(q):

Ud(q) = Et{Ud(q, t)}= πd(q)−ρEt{[πd(q)−πd(q|t)]+}, (14.12)

where πd(q) = Et{πd(q|t)}.

Theorem 2. For any given wholesale price w of the manufacturer, the distributor’s
optimal order quantity should be:

q∗ = y0z0

(
1−F(z0)

w+ cT
[K0 −ρEt{S(t)+}]

)k

, (14.13)

where K0 = Et{θ (t)1/km(t)1−1/k} and S(t) = K0 − θ (t)1/km(t)1−1/k. The corre-
sponding optimal expected utility value is:

U∗
d =

(w+ cT)y0z0

k− 1

(
1−F(z0)

w+ cT
[K0 −ρEt{S(t)+}]

)k

. (14.14)

Proof. Taking expectations with respect to t, we have:

πd(q) = Et{πd(q, t)}= k
k− 1

y1/k
0 q1−1/kz1/k

0 [1−F(z0)]K0 − (w+ cT )q. (14.15)

Hence,

πd(q)−πd(q|t) = k
k− 1

y1/k
0 q1−1/kz1/k

0 [1−F(z0)]S(t), (14.16)

where S(t) = K0 −θ (t)1/km(t)1−1/k.
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Therefore,

Ud(q) =
k

k− 1
y1/k

0 q1−1/kz1/k
0 [1−F(z0)]

(
K0 −ρEt{S(t)+})− (w+ cT)q. (14.17)

Notice that when the downside penalty parameter ρ is sufficiently large, i.e., ρ ≥
K0/Et{S(t)+}, the distributor’s utility function will be strictly decreasing in q and
hence the optimal decision is q∗ = 0. To avoid such trivial cases, in the following we
limit ρ within the interval [0,K0/Et{S(t)+}). The first and second order conditions
are as follows:

dUd(q)
dq

=−(w+ cT)+ y1/k
0 z1/k

0 [1−F(z0)]
(
K0 −ρEt{S(t)+})q−1/k, (14.18)

d2Ud(q)
dq2 =−1

k
y1/k

0 z1/k
0 [1−F(z0)]

(
K0 −ρEt{S(t)+})q−1−1/k < 0. (14.19)

Therefore, Ud(q) is concave in q, and the optimal order quantity q∗ that maximizes
Ud(q) is determined by the first-order condition (14.18), from which (14.13) is
obtained. Substituting q∗ of (14.13) into (14.17), we obtain the distributor’s optimal
utility, which is (14.14). �


For brevity, let us denote

K1 := K0 −ρEt{S(t)+}. (14.20)

From Theorem 2, we have the following observations.

Remark 2. (1) q∗ decreases in the manufacturer’s wholesale price w and the unit
transportation cost cT.

(2) We can also show that:

q∗ = y0z0

(
k− 1

k
· 1−F(z0)

cT + cM
K1

)k

, (14.21)

where
K1 = K0 −ρEt{S(t)+} ≤ K0 < 1.

Should the transportation lead time be zero (or the product not be perishable),
the distributor would have ordered

q0 = y0z0

(
k− 1

k
· 1−F(z0)

cT + cM

)k

. (14.22)

Therefore, q∗ < q0. That is, the possibility of deterioration and decay discour-
ages the distributor from ordering more.
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We can now develop the optimal wholesale price w∗ of the manufacturer, based
on the relationship with q∗ as defined by (14.13). The manufacturer’s profit function,
denoted by πm(w), can now be expressed as

πm(w) = (w− cM)q∗ = y0z0

(
1−F(z0)

w+ cT
K1

)k

(w− cM). (14.23)

Theorem 3. The manufacturer’s optimal wholesale price w∗ is

w∗ =
cT + kcM

k− 1
. (14.24)

Proof. Taking the first derivative with respect to w, we have

dπm(w)
dw

= y0z0 ((1−F(z0))K1)
k (w+ cT)

−k−1[(1− k)w+ cT+ kcM)].

The sign of dπm(w)/dw is the same as that of (1− k)w + cT + kcM. Apparently,
πm(w) increases before w reaches (cT + kcM)/(k − 1) and starts to decrease after
this point because k > 1. That is, πm(w) is unimodal in w and therefore the optimal
wholesale price that maximizes πm(w) is (cT + kcM)/(k− 1). This completes the
proof. �

Remark 3. (1) w∗ is greater than cM because k > 1, which guarantees that the

manufacturer always earns a positive profit.
(2) w∗ is decreasing in k, which implies that the manufacturer should decrease his

wholesale price if the market demand is more price sensitive.
(3) We can derive the profits π∗

m and π∗
d achievable by the manufacturer and the

distributor, respectively, and compare their ratio

β :=
π∗

d

π∗
m
= k

(
k

k− 1
· K0

K1
− 1

)
. (14.25)

Because K0 ≥ K1, we have β ≥ k( k
k−1 − 1) = k

k−1 > 1. Therefore, without
coordination, the manufacturer’s profit might be much lower than that of the
distributor.

(4) We can see that β increases in ρ . This means that the manufacturer’s share
of the profit decreases as the distributor becomes more conservative toward
the transportation risk. Whether the manufacturer should coordinate with the
distributor to share his transportation risk, so that everyone will be better off?
This is an important question facing the manufacturer, which we will further
investigate in Sect. 14.6.
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14.5 Optimal Decisions in the Centralized System

The uncoordinated decisions derived in Sect. 14.4 may not be optimal from the point
of view of the entire supply chain. We will investigate, in this section, the optimal
decisions under a joint objective in the centralized system.

In the centralized system the manufacturer and the distributor seek to achieve
the maximization of their objective (14.5). First, note that the optimal selling price
of the distributor depends on the transportation time t and the order quantity qc

(see Theorem 1). Thus, given order quantity qc of the distributor and transportation
time t, the optimal selling price p∗c(qc, t) can be obtained by Theorem 1.

On the other hand, we can show that (14.5) can be written as a function of qc:

Uc(qc) = Πc(qc)−ρEt{[Πc(qc)−Πc(qc|t)]+}, (14.26)

where Πc(qc) = Et{Πc(qc|t)}, and Πc(qc|t) is the maximal expected profit provided
that the transportation time is t:

Πc(qc|t) = Eε{p∗c(qc, t)min(qcm(t),D(p∗c(qc, t), t))}− (cM + cT)qc. (14.27)

Note that the wholesale price w of the manufacturer disappears in (14.26) and
(14.27). This is because in the centralized system, the manufacturer’s price w
becomes an internal parameter, which does not affect the profit of the centralized
system at all. Thus, the optimal decisions to be taken by the centralized system are
the order quantity and the selling price in the market. The optimal selling price pc

is given by Theorem 1, whereas the optimal order quantity qc is to be determined to
maximize (14.26). These results are summarized in the theorem below.

Theorem 4. In the centralized system, the optimal decisions are as follows:

• Optimal order quantity:

q∗c = y0z0

(
1−F(z0)

cT + cM
K1

)k

. (14.28)

• Optimal selling price, where t is the arrival time of the product at the market and
qc is the order quantity:

p∗c(qc, t) =

(
y0θ (t)z0

qcm(t)

)1/k

. (14.29)

The corresponding expected profit and expected utility are

Π ∗
c = y0z0(cT + cM)

(
k

k− 1
· K0

K1
− 1

)(
1−F(z0)

cT + cM
K1

)k

, (14.30)
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and

U∗
c =

y0z0(cT + cM)

k− 1

(
1−F(z0)

cT + cM
K1

)k

. (14.31)

Proof. Substituting (14.29) into (14.27), we have

Πc(qc|t) = k
k− 1

(y0θ (t))1/k (qcm(t))1−1/k z1/k
0 [1−F(z0)]− (cM + cT)qc.

Therefore,

Πc(qc) = Et{Πc(qc|t)}=−(cT + cM)qc +
k

k− 1
y1/k

0 q1−1/k
c z1/k

0 [1−F(z0)]K0,

and

Uc(qc) =
k

k− 1
y1/k

0 q1−1/k
c z1/k

0 [1−F(z0)]K1 − (cT + cM)qc.

For ρ ∈ [0,K0/Et{S(t)+}), Uc(qc) is concave in qc; hence, the optimal order
quantity q∗c is determined by the first-order condition, from which (14.28) is
obtained. By substituting (14.28) into Πc(qc) and Uc(qc), we have (14.30) and
(14.31), respectively. This completes the proof. �


Note that the optimal order quantity now depends on information on the market
demand (y0, k and the demand distribution as contained in the stocking factor
(see Lemma 1)), but not on the wholesale price w of the manufacturer. The
optimal selling price can still be determined by a close-form relationship with the
transportation time t: Given any realization of the random transportation time t,
the optimal selling price can be determined by (14.29). See also Remark 1.

We now analyze the effects of coordination. We do so by examining the impact
on the joint expected profit. We first present the following theorem.

Theorem 5. The optimal centralized order quantity is always larger than that in
the decentralized system:

η := q∗c/q∗ =
(

k
k− 1

)k

> 1.

Proof. It follows by comparing (14.21) with (14.28). �

The above result states that the ratio q∗c/q∗ depends only on the price elasticity of

the market demand. This is obtained under the assumption that all the information
is transparent to both the manufacturer and the distributor. It is not difficult to see
that [k/(k−1)]k is decreasing in k ∈ (1,∞). Therefore, the more sensitive the market
demand to the selling price (i.e., the larger the k value), the closer the optimal order
quantity in the centralized system to that in the decentralized order quantity. This is
in sharp contrast to the result of Weng (1999) where information is not transparent
when there is a lack of coordination between the manufacturer and the distributor.



14 Fresh Product Supply Chain Management Involving Long Distance Transportation 331

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5
Price-Elasticity (k)

P
ro

fit
 L

os
s 

(%
)

Lower Bound

Upper Bound

Fig. 14.2 The lower and upper bound of the profit loss

Next, we study the effects on the expected profit by coordination. Recall that the
manufacturer and the distributor’s expected profits in the absence of coordination
are π∗

m and π∗
d , respectively. We define π∗

m + π∗
d as the expected profit of the

system in the absence of coordination. We are interested in the magnitude of the
expected profit loss because of the lack of coordination between the manufacturer

and the distributor. Denote ς := 1− π∗
m+π∗

d
Π∗

c
as the expected profit loss due to lack of

coordination. Hence, we have

ς = 1− 1
k− 1

(
k− 1

k

)k
[

k+

(
k

k− 1
· K0

K1
− 1

)−1
]
. (14.32)

It can be shown that when the decision makers are risk neutral (i.e., ρ = 0 and

hence, K0 = K1), ς becomes ς− = 1− 2k−1
k−1

(
k−1

k

)k
, which is increasing in k (as

Fig. 14.2 shows). That is, the more sensitive the market demand to a change in price,
the more profit loss incurred due to lack of coordination. The profit loss will become
even larger if the decision makers are more risk averse toward the transportation loss
because K0 ≥ K1. Therefore, ς− can be seen as the lower bound of the profit loss. It
can be shown that as ρ increases (i.e., the decision makers are more risk averse), the

profit loss also increases. We define ς+ := 1− ( k−1
k

)k−1
as the upper bound of the

profit loss, which is obtained by letting ρ → K0/Et{S(t)+}. The lower bound and
upper bound of the profit loss are plotted in Fig. 14.2.

We can see that the profit loss due to lack of coordination could be substantial,
in particular, when the market demand is very price sensitive or the distributor
is very risk averse. It follows from Theorem 5 that the distributor tends to order
less in the decentralized system and consequently, the manufacturer would earn less
when there is no coordination. As a result, the manufacturer would be much more
interested in coordination with the distributor. How to motivate the distributor to
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order up to the quantity q∗c required for the centralized system? This is the key for
coordination. We investigate this topic in the next section.

14.6 An Incentive Scheme to Induce Coordination

Coordination between the distributor and the manufacturer should result in the
scenario that the optimal decisions of the centralized system (Theorem 4) are
adopted so that a higher level of welfare is achieved for all parties. For any
transportation time t and order quantity qc, there should be no problem for the
distributor to set the selling price as specified by the optimal one (14.29). The
problem is whether the distributor is willing to order up to the quantity q∗c required
for the centralized system. Due to risks involved in long transportation and random
market demand, the distributor tends to order less, as our analysis has indicated in
the previous section. The manufacturer, on the other hand, should more welcome
coordination because in the decentralized system he would earn less since the
distributor orders less. In other words, the manufacturer is the one that directly
benefits from coordination. Whether the coordination can be achieved? The key
is, therefore, whether the manufacturer can motivate the distributor to order up to
the quantity q∗c by offering the latter the appropriate incentive.

To motivate the distributor to order more, the manufacturer may offer to share
a certain portion of the distributor’s risk, such as the transportation risk. A direct
mechanism one might think of is the use of a “flexible” wholesale price. That
is, the manufacturer sets a basic wholesale price w0 and offers the distributor a
compensation when a transportation delay actually occurs. The compensation rate
may depend on the realized transportation time t; i.e., the longer the t, the more
compensation to be given to the distributor to offset his loss due to the deterioration
and decay of the product during transportation. Technically, the manufacturer may
set his wholesale price as a decreasing function of t in this scheme; hence, we
call it the “flexible wholesale price” mechanism and denote the wholesale price
as w(t). An essential assumption is that the wholesale price should not be less than
the manufacturer’s cost, i.e., w(t)≥ cM for ∀t.

Although the flexible wholesale price above seems simple and reasonable, it
is, however, unfortunate that it cannot make the supply chain coordinated in our
problem involving price-sensitive demand and uncertain transportation time. This
can be shown as follows, by using a counterexample with ρ = 0: It follows from
Theorem 2 that the distributor’s optimal order quantity q̂ is given as

q̂ = y0z0

(
1−F(z0)

w̄+ cT
K0

)k

, (14.33)

where w̄ is the mean of w(t). This means that the distributor’s optimal order quantity
depends only on the average level of the wholesale policy. To achieve q̂ = q∗c ,
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the relation w̄ = cM must hold; that is, the average wholesale price should be set
equal to the unit manufacturing cost. It is apparent that the expected profit of the
manufacturer will equal to zero, which would not be acceptable by the manufacturer.
In such a case, coordination is not feasible.

We now propose a new incentive scheme. Our scheme consists of two parts:

(1) A price-discount sharing contract, under which the manufacturer shares a
certain portion of the price discount that the distributor has to mark due to
deterioration and decay of the product;

(2) A compensation contract (similar to the traditional buyback arrangement),
under which the manufacturer compensates the distributor a certain amount for
any unsold unit of the product.

Specifically, our price-discount sharing contract suggests

w(p, t) = cM +α[m(t)p− cT− cM], (14.34)

where w(p, t) is the wholesale price of the manufacturer, which depends on the
transportation time and the actual selling price of the distributor, and α is a constant
taking value in (0,1), which we will discuss later in this section.

We can show that (14.34) is equivalent to the following

w0(t)−w(p, t) = αm(t)(p0 − p), (14.35)

where w0(t) is the base or gross wholesale price equal to α[m(t)p0 − cT] + (1−
α)cM, and p0 is the “list price” of the product in the market. The relationship
(14.34) indicates that the manufacturer should offer a wholesale price discount that
is dependent upon the distributor’s price-discount in the market as well as m(t)—the
market quantity of the product after transportation.

This incentive scheme can be regarded as an extension of the price-discount
sharing (PDS) scheme of Lal et al. (1996) and Bernstein and Federgruen (2005).
Our scheme depends, however, on the transportation time of the product, which we
call a time-dependent price-discount sharing (TDPDS) scheme.

Moreover, for any unit of the product that the distributor has failed to sell in the
market, the manufacturer compensates the distributor an amount v as follows:

v = α p. (14.36)

Theorem 6. TDPDS (14.34) together with the compensation contract (14.36) will
induce the distributor to order the quantity q∗c for any 0 < α < 1.

Proof. Under the TDPDS scheme, the distributor’s profit is as follows:

πd(p|q, t) = p ·Eε{min{D(p, t),qm(t)}}− (w+ cT)q+ vEε{[qm(t)−D(p, t)]+}
= pqm(t)− pEε{[qm(t)−D(p, t)]+}− (w+ cT)q

+vEε{[qm(t)−D(p, t)]+}
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= [m(t)p−w− cT]q− (p− v)Eε{[qm(t)−D(p, t)]+}
= (1−α)[m(t)p− cM− cT]q− (1−α)pEε{[qm(t)−D(p, t)]+}
= (1−α)Πc(p|q, t), (14.37)

where the second equality is due to min(a,b) = b− (b− a)+. Thus, any optimal
solution p∗c(t,q) and q∗c that maximizes Uc optimizes Ud as well. That is, if the
manufacturer applies the scheme (14.34) and (14.36), while seeking to maximize his
expected utility, the distributor will order up to q∗c. Therefore, the optimal welfare
of the entire supply chain is achieved. �

Remark 4. (1) Suppose that the total profit achieved by the centralized system is

Π ∗
c . We can show that the manufacturer and the distributor’s shares of the profit

will be αΠ ∗
c and (1−α)Π ∗

c , respectively (cf. (14.37)).
(2) To ensure that each party’s profit with coordination is not less than that before,

we can derive a lower bound α− and upper bound α+, respectively:

α− = π∗
m/Π ∗

c and α+ = 1−π∗
d/Π ∗

c . (14.38)

(3) The final choice of α ∈ [α−,α+] depends on the chain members’ bargaining
powers, but all such choices ensure that both parties will be better off by
coordinating with each other.

14.7 Computational Studies

We have conducted a series of computational experiments to evaluate the effects
of the following parameters on the optimal decisions in order to uncover certain
managerial insights that are not obvious in the theoretical results:

• The fresh duration τ
• The downside penalty factor ρ
• The price elasticity k

The experiments have been designed as follows. The unit cost parameters are
normalized as cM = 1 and cT = 0.5. The transportation time T is assumed to follow
a uniform distribution in [a,b]with a= 1 and b= 5. The product decays at a constant
exponential rate γ = 0.1 beyond the fresh duration, i.e., m(t) = exp(−γ(t − τ)) for
t ∈ (τ,b], and the value drop is also exponential with rate δ = 0.2, i.e., θ (t) =
exp(−δ (t − τ)) for t ∈ (τ,b]. In the demand function, y0 = 100, the price elasticity
k = 2, and the random factor ε follows a normal distribution with mean 1 and
variance σ = 0.2. The downside penalty factor ρ = 1.

In the first group of experiments, we changed the value of fresh durations τ
from 2 to 5. For each τ , we derived the optimal decisions for both decentralized
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Table 14.1 Optimal decisions under different fresh durations

Decentralized Centralized

τ w∗ q∗ π∗
m π∗

d q∗c Π∗
c β =

π∗
d

π∗
m

ς = 1− π∗
m+π∗

d
Π∗

c

2.00 2.50 1.47 2.21 5.03 5.89 10.07 2.28 28.05%
2.25 2.50 1.57 2.35 5.30 6.27 10.60 2.25 27.82%
2.50 2.50 1.66 2.49 5.55 6.64 11.10 2.23 27.56%
2.75 2.50 1.75 2.63 5.79 7.02 11.58 2.20 27.28%
3.00 2.50 1.85 2.77 6.01 7.39 12.02 2.17 26.97%
3.25 2.50 1.94 2.90 6.21 7.74 12.43 2.14 26.64%
3.50 2.50 2.02 3.03 6.40 8.08 12.79 2.11 26.32%
3.75 2.50 2.10 3.15 6.55 8.39 13.11 2.08 25.99%
4.00 2.50 2.17 3.25 6.69 8.67 13.37 2.06 25.69%
4.25 2.50 2.23 3.34 6.79 8.90 13.59 2.03 25.42%
4.50 2.50 2.27 3.41 6.87 9.09 13.74 2.02 25.20%
4.75 2.50 2.30 3.45 6.92 9.20 13.84 2.00 25.06%
5.00 2.50 2.31 3.46 6.93 9.24 13.87 2.00 25.03%

and centralized distribution systems and the corresponding performance measures.
The results are summarized in Table 14.1.

Observation I:

• Note that τ is an index on the perishability of the product. As τ decreases, the
quantity and quality losses of the product increases.

• Table 14.1 shows that if the product is more perishable, the distributor’s share
of profit in the decentralized scenario increases. This can be explained as
follows: When the product is more perishable, the quantity ordered by the
risk-averse distributor becomes smaller, which in turn results in a decrease in
the manufacturer’s profit. However, the distributor could partly mitigate his
loss through properly adjusting the selling price. As a result, the ratio of the
distributor’s profit over the manufacturer’s profit increases when the product
becomes more perishable.

• The profit loss when there is no coordination, ς , strictly decreases in τ .
This implies that cooperation between the manufacturer and the distributor is
especially profitable when the product is highly perishable.

In the second group of experiments, we changed the value of downside penalty
factors ρ from 0.5 to 5. Again, for each ρ , we derived the optimal decisions
for both decentralized and centralized distribution systems and the corresponding
performance measures. The results are summarized in Table 14.2.
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Table 14.2 Optimal decisions under different downside penalty factors

Decentralized Centralized

ρ w∗ q∗ π∗
m π∗

d q∗c Π∗
c β =

π∗
d

π∗
m

ς = 1− π∗
m+π∗

d
Π∗

c

0.50 2.50 1.58 2.37 5.05 6.31 10.10 2.13 26.57%
1.00 2.50 1.47 2.21 5.03 5.89 10.07 2.28 28.05%
1.50 2.50 1.37 2.06 5.01 5.49 10.02 2.43 29.44%
2.00 2.50 1.28 1.91 4.97 5.10 9.94 2.60 30.75%
2.50 2.50 1.18 1.77 4.92 4.73 9.85 2.78 31.98%
3.00 2.50 1.09 1.64 4.86 4.37 9.73 2.97 33.15%
3.50 2.50 1.01 1.51 4.80 4.03 9.59 3.18 34.26%
4.00 2.50 0.92 1.39 4.72 3.69 9.43 3.40 35.31%
4.50 2.50 0.84 1.27 4.62 3.38 9.25 3.65 36.31%
5.00 2.50 0.77 1.15 4.52 3.07 9.05 3.92 37.25%

Table 14.3 Optimal decisions under different price elasticities

Decentralized Centralized

k w∗ q∗ π∗
m π∗

d q∗c Π∗
c β =

π∗
d

π∗
m

η = q∗c
q∗ ς = 1− π∗

m+π∗
d

Π∗
c

1.25 7.00 0.72 4.34 24.00 5.41 35.88 5.53 7.48 21.02%
1.50 4.00 1.21 3.63 12.15 6.28 21.04 3.35 5.20 25.02%
1.75 3.00 1.46 2.91 7.67 6.42 14.48 2.63 4.41 26.90%
2.00 2.50 1.47 2.21 5.03 5.89 10.07 2.28 4.00 28.05%
2.25 2.20 1.44 1.73 3.57 5.39 7.45 2.07 3.75 28.87%
2.50 2.00 1.36 1.36 2.63 4.88 5.66 1.94 3.59 29.52%
2.75 1.86 1.25 1.07 1.97 4.33 4.35 1.84 3.47 30.06%
3.00 1.75 1.11 0.83 1.48 3.75 3.33 1.78 3.37 30.54%

Observation II:

• When ρ increases from 0.50 to 5.00, the distributor’s expected profit has a
decrease of only 10.50%, whereas the manufacturer has a profit decrease of
51.27%.

• Therefore, the manufacturer should cooperate with the distributor, especially
when the distributor is quite risk averse.

• The profit loss because of noncoordination, ς , is also increasing in ρ . This means
the supply chain members should coordinate when they are risk averse.

The last group of experiments focus on the price elasticity k and the results are
summarized in Table 14.3.

Observation III:

• As the market demand becomes more sensitive to the selling price, the manufac-
turer’s optimal wholesale price strictly decreases in the absence of coordination.
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• The profits for both the manufacturer and the distributor do strictly decrease in k.
Hence, both of them should prefer a less price-sensitive market demand.

• The profit loss due to noncoordination is increasing in k. Therefore, if the market
is very sensitive to the price, the coordination of the manufacturer and the
distributor is more beneficial.

14.8 Concluding Remarks

Supply chains involving long distance transportation of fresh products have become
increasingly common in international as well as domestic markets. The requirement
of long distance transportation and the perishability of fresh products make the
decisions faced by the members in such a supply chain quite different from the
traditional pricing and ordering decisions. A key issue that the decision makers have
to take into consideration is the possible quantity decrease and quality decline of
the product during long distance transportation. Another important issue that has
to be addressed is the dependence of the market demand upon the level of the
freshness of the product when it reaches the market. We have developed, in this
paper, a model to address the decision concerns in such supply chains. We have
derived the optimal decisions of the manufacturer and the distributor, in both the
decentralized system and the centralized system. We have further developed a new
incentive scheme by taking into account the specific features of the fresh-product
supply chains, to facilitate coordination between the manufacturer and distributor.
Computational studies have also been conducted to examine the effects of those
critical parameters to the optimal decisions in different situations.

In our model the deterioration function θ (t) and the decay (obsolescence)
function m(t) take general forms, which can therefore be used to model the nature
of different products in reality. A very useful characterization of the optimal pricing
decision that we have obtained is its close-loop dependence on the realization of the
transportation time, which enables the price to be set according to the actual level
of freshness and the effective supply of the product when it reaches the market.
The dependence of the optimal order quantity of the distributor and the wholesale
price of the manufacturer on the information and data of the problem, such as
the distribution of the transportation time, decay, and deterioration functions, and
the distribution of the market demand, also enable important managerial insights
to be analyzed and revealed.

A general conclusion derived from our study is that the coordination between
the manufacturer and the distributor is an important strategy to be considered and
enhanced; this is especially so when the following three scenarios prevail:

• The product has a very short fresh duration;
• The supply chain members are very conservative toward the transportation risk;

and
• The market demand is very sensitive to the distributor’s selling price.
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The inventive scheme that we have proposed ensures that both parties will all
be better off by coordination. The distribution of the extra benefit generated by
coordination to each party depends, however, on the actual bargaining power of
each party (as reflected by the parameter α in the incentive scheme). The incentive
scheme can serve as the basis of contracts between the two parties.

The investigation of fresh product supply chains involving uncertain transporta-
tion is relative new line of research. We have considered the situation where the
transaction between the manufacturer and the distributor is based on an FOB basis.
In reality, there are many different business models between the upstream manufac-
turer and the downstream distributor. Another common model in export business is
the so called “CIF” (cost insurance and freight), in which the manufacturer bears
the transportation cost and risk. Apparently the uncoordinated and coordinated
decisions and schemes in CIF transactions will be different. This is a topic we
are currently investigating. It is also possible that a third-party logistics provider
is responsible for the transportation, whose participation into the supply chain will
impose new issues on the decisions, strategies, and coordination of the supply chain
members. This is an interesting problem for further research. Another interesting
topic is to consider the situation in which the product is to be sorted into different
grades based on their levels of freshness when reaching the market. Different prices
will then be determined for different grades of the product. This problem seems to
be much more difficult, due to the interactions of the market demands for different
grades of the product. Other topics for further research include multiple distributors,
multiple products, etc. We expect that the framework of the model and the related
results we have established in the current paper can serve as a basis for these further
studies.
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Chapter 15
Profit Target Setting for Multiple Divisions:
A Newsvendor Perspective

Chunming (Victor) Shi and Lan Guo

Abstract Managers and firms often engage in decision making based on certain
profit targets. Consequently, they may adopt the objective of maximizing the profit
probability, namely, the probability of achieving those profit targets. However, there
has been limited research on modeling profit target setting. In this chapter, we study
analytic target setting under a common business scenario where a firm owns multiple
divisions. The firm sets a profit target for each division, which then decides on
production level and selling price to maximize the profit probability. We obtain
the divisions’ optimal profit targets in closed forms when the firm’s objective is
to maximize its expected profit. When the firm’s own objective is also to maximize
profit probability, the problem of profit target setting is more complicated. To gain
more managerial insights, we focus on two specific cases. In the first case of fair
target setting, we show that for most reasonable customer demand distributions,
if a division has a relatively high (low) production cost, its assigned profit target
decreases (increases) in its price elasticity. In the second case, if the firm is in control
of two identical divisions, each division’s optimal profit target is just half of the
firm’s profit target when the price elasticity is two or more, regardless of production
cost and demand distribution. We hope that the managerial insights from this chapter
help practitioners who are involved with target setting and target attainment.
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15.1 Introduction

A great deal of research in Operations Management assumes the objective of
maximizing expected profit or, sometimes equivalently, minimizing expected cost.
However, in business practice, employees, managers, and firms often engage in
decision making based on profit targets (Bordley and Kirkwood 2004; Abbas and
Matheson 2005; Abbas et al. 2009). That is, they either are assigned profit targets
by some external forces such as the corporate headquarters and analysts or set profit
targets themselves through participative budgeting process, and they are rewarded
or penalized based on whether they meet those targets or miss them (Jensen 2003).
As a result, they may adopt the objective of maximizing profit probability, namely,
the probability of reaching those profit targets.

The difference between the objective of maximizing expected profit and that
of maximizing profit probability is by no means trivial. Jensen (2003) provides
examples of how the latter objective drives managerial behaviors that diverge from
those driven by the former objective. In one case, a manager knows the target is far
from reach and even if he tries his best, he is unlikely to reach the profit target. In
the other case, a manager knows that he can easily beat the target and increasing
profit will not bring him extra earnings. In both cases, the manager would not be
motivated to maximize expected profit.

Assuming objective of maximizing profit probability has two advantages over
assuming objective of maximizing expected profit. First, given a profit target exoge-
nously set, the objective of maximizing profit probability assumes risk aversion by
definition. To be more specific, it operationalizes risk aversion through a critical
probability, specifically, the probability that the profit is no less than a certain
threshold. Note that there are two closely related risk measures including Value-at-
Risk and Conditional Value-at-Risk (Gan et al. 2005; Ozler et al. 2009). With those
two measures, decision makers maximize expected profit while controlling for some
critical probability. It is certainly worthwhile for future research to incorporating
those more complicated measures when setting profits for divisions.

The second advantage is that under some situations, the objective of maximizing
profit probability is more descriptive of how firms and managers make decisions.
A big literature on public firms’ earnings management behaviors (e.g., Burgstahler
and Dichev 1997; Degeorge et al. 1999; Healy and Wahlen 1999; Dechow and
Skinner 2000) indicates that meeting or beating various profit targets or thresholds
(e.g., prior years’ profit, analysts’ forecasts, avoiding losses, and performance
targets specified in executive compensation contracts) is the most important motive
for firms to manipulate accounting numbers. Although such unlawful or unethical
behavior is not carried out in most firms, it does indicate the extreme importance
of meeting or beating profit targets at the firm level. One such example involves
eBay. In the 4th quarter of 2004, eBay’s reported profit of 33 cents per share
missed the profit target of 34 cents, which was set by Wall Street analysts. Although
the gap was only one cent, eBay’s stock price fumbled by 12% right after the
report (http://money.cnn.com/2005/01/19/news/fortune500/ebay/index.htm). For a

http://money.cnn.com/2005/01/19/news/ fortune500/ebay/index.htm
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more recent example, Swiss Life Holding, Switzerland’s largest life insurer, missed
its profit target of $1.6 billion for the year 2008. Consequently, its stock price fell
20% in Zurich trading (Giles 2008).

It has been well documented that the objective of maximizing profit probability
is also common and important for divisional managers. As shown by Bouwens and
Van Lent (2007), it is not uncommon for firms to evaluate their divisional managers
based on their performance on profits. Paying managers based on their actual profits
relative to a profit budget or target is also often seen in practice (Jensen 2003). In
a recent paper, Brown and Tang (2006) interview six buyers from different firms
and find that product profit and gross margin are ranked as the most important
performance measures in their firms, and targets for profit and gross margin are often
used. The authors use profit-target-based reward system to explain the irregularity
they observe in their experimental setting, i.e., participants consistently select order
quantities less than the newsvendor solution.

Limited research has been done on the objective of maximizing profit probability
in the Operations Management literature. The earliest work includes Kabak and
Schiff (1978) and Lau (1980). These two papers study a newsvendor with the
objective of maximizing profit probability. Lau and Lau (1988) and Li et al. (1990)
study the problem of a newsvendor selling two products with the objective of
maximizing profit probability. These two studies focus on the special case where the
customer demand for each product has a uniform distribution. Li et al. (1991) focus
on the special case of exponential distribution. Parlar and Weng (2003) study the
newsvendor model where the objective is to maximize the probability of achieving
the expected profit, which is a function of order quantity. Recently, the study on the
objective of maximizing profit probability is extended to the framework of supply
chains. Shi and Chen (2007) study a basic supply chain where a single supplier
sells to a newsvendor-type retailer and both adopt the objective of maximizing
profit probability. Contrary to the result under the objective of maximizing expected
profit, they show that a properly designed wholesale price contract can coordinate
the supply chain.

It appears that the extant literature usually assumes that profit targets are
exogenously set. However, it is of strategic importance to study profit target setting,
i.e., how the values of profit targets are set. Too high a profit target provokes
frustration and cynicism, whereas too low a profit target causes apathy and lacks
motivational value. As has long been documented in the organizational behavior
literature (for a review, see Locke 2001; Locke and Latham 1990, 2002), target or
goal difficulty has a significantly positive effect on task performance until limits of
ability are reached or individuals cease to be committed to the highly difficult target.
As for how firms actually set their profit targets, Merchant and Manzoni’s (1989)
field study provides some interesting insights. They find that among firms with
multiple divisions, 80% to 90% of the time they set their annual profit targets
at achievable levels (vs. stretch goals). However, to best of our knowledge, little
research has been done on modeling profit target setting.

There are three papers (Lau and Lau 1988; Li et al. 1990, 1991) that relate
to analytic target setting indirectly. In these three papers, the authors study the
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two-product newsvendor problem where order quantity and profit target are related.
However, their focus is on determining the optimal order quantities under the
uniform and exponential demand distributions. Further, the authors assume that
selling prices of the products are exogenously fixed. Finally, it is noted that there
has been some research (see, e.g., Yang et al. 2009; Lovell and Pastor 1997) on
target setting using the DEA, which is basically a nonparametric methodology based
on deterministic linear programming. Consequently, DEA is not applicable to our
research problem of profit target setting which involves stochastic customer demand.

In this chapter, we attempt to address the profit target setting issue for multiple
divisions within a firm. To be more specific, we study a business scenario where a
firm owns multiple autonomous divisions that have authority over operations and
other decision making. Such a scenario is common in modern decentralized cor-
porations to allow for rapid and flexible decision making (Aghion and Tirole 1997;
Roberts 2004). When a firm sells a single product or service in different countries or
continents, one division can be set for each country or continent. For example, Dell
has Dell USA, Dell Germany, and Dell China as three of its divisions. When a firm
sells different products within the same market, one division can be set for each
product or product category. An example is Hewlett-Packard, which is organized
into three divisions: the personal systems group, the imaging and printing group, and
the technology solutions group (http://www.hp.com/hpinfo/abouthp/). In general,
the roles of the firm include allocating resources (e.g., capital) across divisions and
specifying outside vendors for economies of scale and/or quality assurance. It is also
possible that the firm supplies some products directly to its divisions.

We model a single division as a newsvendor with the objective of maximizing
profit probability. Furthermore, we extend the existing literature by considering a
price-setting newsvendor. That is, given a profit target, each division decides on
production level and selling price simultaneously to maximize the probability of
achieving its profit target. We also examine how the firm should set profit targets
for its divisions, all of which have the objective of maximizing profit probability.
Our results are derived in two specific cases. In the first case of fair target setting,
we follow prior studies (e.g., Bushman et al. 1995) and assume that the sum of all
divisional profit targets equals the profit target for the firm. In the second case, we
assume the firm only owns two divisions.

The rest of the chapter is organized as follows. In Sect. 15.2, we derive the
optimal production and pricing decisions of a single division given its assigned profit
target. We proceed on studying the problem of profit target setting from the firm’s
perspective when a firm owns multiple divisions, each of which has a profit target.
In Sect. 15.3, we study the firm with the objective of maximizing expected profit.
In Sect. 15.4, we study the firm with the objective of maximizing profit probability,
where we focus on the special cases of fair target setting and two identical divisions.
Finally, in Sect. 15.5, we summarize and discuss future research directions.

http://www.hp.com/hpinfo/abouthp/
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15.2 A Single Division Given a Profit Target

Before we study the problem of profit target setting for multiple divisions, we need
to derive the optimal production level and selling price of a single division given a
profit target. This is the focus of this section.

Suppose that a division has a unit production cost (or procurement cost) of c
and a unit selling price of r. To simplify the presentation, both salvage value and
loss-of-goodwill cost are assumed to be zero. Furthermore, instead of the traditional
objective of maximizing expected profit, the division is assigned a profit target t
and, hence, adopts the objective of maximizing profit probability. In other words,
the division maximizes the probability of achieving the profit target t. For simplicity,
the probability is called the profit probability.

It is worth noting that targets may not be always set to maximize profit. Under
uncertain business environment (e.g., stochastic customer demand), only expected
profit can be maximized. However, even if expected profit is maximized, it is likely
that the actual profit is lower than the expected profit due to the variability in profit.
This is particularly a concern because by definition, newsvendors make one-time
and, hence, nonrepeatable decisions.

The market demand is random and is affected by selling price. In this research,
the market demand is modeled as a multiplicative form:

D(r) = r−bε (15.1)

where ε is a random variable taking positive values with cumulative distribution
function F(x) and probability density function f (x). To avoid trivial situations, F(x)
is assumed to be increasing and differentiable. The price elasticity b represents the
extent to which the customers are sensitive to price changes. To be more specific,
if the price changes by 1%, the customer demand changes by b% in the opposite
direction. Some examples of price elasticity for a product category include fresh
green peas (b = 2.8), fresh tomatoes (b = 4.6), and Chevrolet automobiles (b =
4.0) (Gwartney 1976). In this chapter, it is assumed that each division is selling
an individual product, which tends to have a greater price elasticity mainly due to
the great availability of substitutes in the same product category (Gwartney 1976).
Therefore, it is reasonable to limit ourselves to elastic goods or services (b > 1).

The multiplicative demand model is also called an isoelastic demand model or
double-log-linear model. One limitation of such a model is that a price change
results in a scale change, but not a location change, in the demand distribution.
Despite this limitation, this demand model is the most frequently used demand
specification among econometricians, market empiricists, and researchers in Op-
erations Management. Monahan et al. (2004) summarize four reasons to explain the
popularity of this multiplicative demand model:

1. It is consistent with consumer-utility-maximization theory; thus, it is a reasonable
candidate for model building.
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2. By explicitly accounting for the effects of price elasticity on demand, it has an
unambiguous economic interpretation.

3. Its log-linearity is particularly amenable to empirical analysis because its param-
eters can be estimated using well-established linear regression techniques.

4. Perhaps most importantly, it typically provides a good statistical fit with available
sales data.

Typical products whose demands may follow the multiplicative model include high
fashion products or newly introduced products (Agrawal and Seshadri 2000).

The division’s random profit function as a function of production level and selling
price is given by:

Π(q,r) = (r− c)q− r(q−D(r))+. (15.2)

Now, the division is given a profit target t to achieve. For simplicity, the profit target
t, once determined, is assumed to be independent of the market demand in this
section. Of course, when a profit target is being set, a number of factors may be
taken into account, including the market demand. This is the target-setting problem
to be studied in later sections.

If selling price r is exogenous, the division’s optimal production level and the
maximal profit probability are given by (see, e.g., Kabak and Schiff 1978):

q(r) =
t

r− c
(15.3)

P(r) = 1−FD(r)

(
t

r− c

)
= 1−F

(
t

(r− c)r−b

)
, (15.4)

where FD(r)(·) denotes the cumulative distribution function of demand D(r). To
choose r to maximize the profit probability P(r), it is equivalent to maximize
(r−c)r−b. It can be easily verified that the optimal selling price, denoted by G(b,c),
is given by:

G(b,c) =
b

b− 1
c. (15.5)

It can be seen from (15.5) that the greater the price elasticity, the lower the optimal
selling price. More interestingly in the current context, the optimal selling price is
independent of profit target t. This is because of the multiplicative demand model
where pricing affects only the scale, but not the location, of the demand distribution.
Finally, the optimal profit margin is:

G(b,c)− c
G(b,c)

=
1
b
, (15.6)

which is exactly the reciprocal of the price elasticity. Hence, a greater price elasticity
always leads to a lower profit margin.

By substituting the optimal price G(b,c) into (15.3) and (15.4), we have the
optimal production level and the maximal profit probability as:
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q∗ =
b− 1

c
t = H(b,c)t (15.7)

P∗ = 1−F(L(b,c)H(b,c)t)

= 1−F

(
cb−1bb

(b− 1)b−1 t

)
, (15.8)

where H(b,c) = (b − 1)/c and L(b,c) = (bc/(b− 1))b are defined for notation
simplicity.

It can be seen from (15.7) that the optimal production level q∗s increases with
respect to the price elasticity. This is because a greater price elasticity leads to
a lower profit margin. To achieve the same profit target, production level (and,
hence, sales revenue) has to be larger. From (15.8), it can be seen that the higher
the production cost and the higher the profit target, the smaller the maximal profit
probability P∗. Both predictions make intuitive sense. To detail how price elasticity
impacts the maximal profit probability, we have the following two propositions.

Proposition 1. When production cost is relatively high, i.e., c ≥ (b−1)/b, the term
L(b,c)H(b,c) increases with respect to the price elasticity b. Otherwise, the term
L(b,c)H(b,c) decreases with respect to the price elasticity b.

Proof. It can be seen from (15.8) that:

L(b,c)H(b,c) =
cb−1bb

(b− 1)b−1 . (15.9)

Differentiating L(b,c)H(b,c) with respect to b, we have:

∂L(b,c)H(b,c)
∂b

=
cb−1bb

(b− 1)b−1 ln
bc

b− 1
. (15.10)

Therefore, if production cost is relatively high, i.e., c ≥ (b − 1)/b, we have
ln(bc/(b− 1)) ≥ 0 and, hence, the first derivative ∂L(b,c)H(b,c)/∂b ≥ 0. Oth-
erwise, we have ∂L(b,c)H(b,c)/∂b < 0. This concludes the proof. �

Proposition 2. When production cost is relatively high, i.e., c ≥ (b − 1)/b, a
greater price elasticity leads to a smaller maximal profit probability. When pro-
duction cost is relatively low, i.e., c < (b− 1)/b, a greater price elasticity leads to
a larger maximal profit probability.

Proof. It can be seen from (15.8) that the maximal profit probability P∗ and the term
L(b,c)H(b,c) change with respect to the price elasticity b in opposite directions.
Hence, Proposition 2 can be proved similarly to Proposition 1. �


Therefore, how maximal profit probability changes with respect to price elasticity
depends on the value of production cost. The intuitions are as follows. To increase
profit and, hence, profit probability, a division has two options. Option 1 is to
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increase selling price, which, however, reduces customer demand. Option 2 is to
lower selling price, which increases customer demand. For a division with high price
elasticity, Option 1 is unattractive because the benefit of price increase is more than
offset by the cost of demand drop. Therefore, a division with high price elasticity
should adopt Option 2. If the same division has relatively low production cost, the
greater the price elasticity, the larger demand increase will result from the same level
of price drop. Consequently, profit as well as profit probability will be higher. On the
other hand, if the same division has a relatively high production cost, there is a limit
in terms of price reduction because selling price has to be larger than production
cost to have a positive profit. Therefore, with high price elasticity, the benefit of
demand increase is insufficient to compensate for the cost of price drop. As a result,
both profit and profit probability will be lower.

The discussion above implicitly assumes that the random variable ε , and, hence,
the customer demand, is defined on [0,+∞], which implies any profit target t in
theory could be achieved. However, we assume that only an achievable profit target
will be assigned. We thus establish an upper bound on profit target where ε is defined
on a limited interval. The result is given in the following proposition, which will be
used in Sect. 15.4.

Proposition 3. Suppose that the market demand is given by D(r) = r−bε where the
random variable ε is defined on [α,β ]. For a profit target t to be achievable at all,

it is required that t < 1
cb−1

(b−1)b−1

bb β .

Proof. If the division sets selling price at r, then the maximal achievable profit is
(r − c)r−bβ . This happens when the random variable ε is realized at its maximal
possible value β . Furthermore, (r − c)r−bβ is maximized at G(b,c) (defined in
(15.5)). Therefore, all feasible profit targets are less than (G(b,c)− c)L−1(b,c)β ,

which is equivalent to t < (b−1)b−1

cb−1bb β . This concludes the proof. �


15.3 A Firm with the Objective of Maximizing
Expected Profit

Starting with this section, we will study the business scenario where a firm owns
n divisions. Suppose each division’s performance is evaluated based on whether or
not it achieves a predetermined profit target. As a result, each division always adopts
the objective of maximizing profit probability, i.e., the objective of maximizing the
probability of achieving its profit target. On the other hand, the firm itself may adopt
the objective of maximizing expected profit or the objective of maximizing profit
probability, which will be addressed in this section and next section, respectively.

If the firm adopts the objective of maximizing expected profit, the firm is assumed
to be risk neutral. This assumption of risk neutrality could be reasonable when
the firm is able to diversify its risk through the n divisions, especially when n is
relatively large.
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Because of the objective of maximizing expected profit, maximizing expected
profit of the firm is equivalent to maximizing the expected profit of each division
assuming that intra-firm transactions and interdependence between divisions are
negligible. This property holds true only because expected value is a linear operator.
Since there are n divisions, the firm needs to assign n profit targets ti, where subscript
i = 1 · · ·n denotes division i. Division i has a unit production cost ci and a price
elasticity bi. Its customer demand is given by Di(ri) = r−bi

i εi, where the random
variables εi (with cumulative distribution function Fi(·)) is independent of ε j, j �= i.

It can be shown from (15.2) that the expected profit of division i is given by:

EΠ ∗
i (ti) = ti −Gi(bi,ci)

∫ Hi(bi,ci)ti

0
Fi(Li(bi,ci)x)dx. (15.11)

We have the following theorem on setting the optimal profit targets for the divisions.

Theorem 1. If the firm is risk neutral, the divisions’ optimal profit targets are
given by:

t∗i =
1

cbi−1
i

(bi − 1)bi−1

b−bi
i

F−1
i

(
1
bi

)
, i = 1 · · ·n (15.12)

Proof. Based on (15.11), we have the following derivatives:

∂EΠ ∗
i (ti)

∂ ti
= 1− biFi(Li(bi,ci)Hi(bi,ci)ti), (15.13)

∂ 2EΠ ∗
i (ti)

∂ t2
i

=−biLi(bi,ci)Hi(bi,ci) fi(Li(bi,ci)Hi(bi,ci)ti). (15.14)

Because ∂ 2EΠ ∗
i (ti)/∂ t2

i < 0, Π ∗
i (ti) is concave in ti. By setting the first derivative

to zero, we can obtain (15.12). This concludes the proof. �

Based on (15.12), an immediate observation is that a division with a higher

production cost should be assigned a lower profit target. Moreover, it can be seen
from Proposition 1 that when production cost is relatively high, Li(bi,ci)Hi(bi,ci)
increases in price elasticity and, hence, a division with a greater price elasticity
will be assigned a lower profit target. However, when production cost is relatively
low, because both the denominator Li(bi,ci)Hi(bi,ci) and the nominator F−1

i (1/bi)
decrease in b, the optimal profit target may increase or decrease with price elasticity.

15.4 A Firm with the Objective of Maximizing Profit
Probability

In this section, we assume the firm itself has a profit target T to achieve, and the
firm adopts the objective of maximizing profit probability, i.e., the objective of
maximizing the probability of achieving the target T . Its decisions are to assign
profit target ti to division i, i = 1 · · ·n.
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Given a profit target ti, division i chooses the optimal selling price as in (15.5)
and the optimal production level as in (15.7). Substituting (15.5) and (15.7) into
(15.2), we have the associated random profit of division i as:

Πi(ti) = ti −Gi(bi,ci)(Hi(bi,ci)ti −L−1
i (bi,ci)εi)

+. (15.15)

The random profit function of the firm is then given as:

Π(t1, · · · tn) = ∑n
i=1

[
ti −Gi(bi,ci)(Hi(bi,ci)ti −L−1

i (bi,ci)εi)
+
]
. (15.16)

It can be seen from (15.16) that the maximal achievable profit target for the firm
is the sum of individual profit target, i.e., ∑n

i=1 ti. This is because the function
(·)+ only takes non-negative values. Therefore, to make sure the profit target is
achievable for the firm, it is required that ∑n

i=1 ti ≥ T .
The firm’s optimization problem is to select profit target ti such that its own profit

probability is maximized. Mathematically, it is formulated as follows:

max
ti

PT (t1, · · · tn) = max
ti

P{Π (t1, · · · tn)≥ T}

= max
ti

P

{
∑n

i=1 Gi(bi,ci)
(

Hi(bi,ci)ti −L−1
i (bi,ci)εi

)+ ≤ ∑n
i=1 ti−T

}
.

(15.17)

Unfortunately, this optimization problem in general does not have analytic solutions
and may require the use of numerical simulation. To simplify the optimization
problem and thus gain more managerial insights, we study two simplified cases,
namely, the case of fair target setting and the case of two divisions in the following
two sections, respectively. Further, for concision, we denote the functions Gi(bi,ci),
Hi(bi,ci) and Li(bi,ci) by Gi, Hi, and Li, respectively, when no confusion arises.

15.4.1 Fair Target Setting Case

In the case of fair target setting, the sum of the divisions’ profit targets is equal to
the profit target of the firm, i.e., ∑n

i=1 ti = T (see, e.g., Lau and Lau 1988). This is
consistent with Bushman et al. (1995) who assumes that the sum of the multiple
divisions’ outputs is the firm’s output.

Under the requirement of fair target setting, i.e., ∑n
i=1 ti = T , the optimization

problem (15.17) can be simplified to:

max
ti

P
{
∑n

i=1 Gi
(
Hiti −L−1

i εi
)+ ≤ 0

}
. (15.18)
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Because the function (·)+only takes nonnegative values and random variables εi’s
are independent of each other, the optimization problem (15.18) can be further
simplified to:

max
ti

P
{

L−1
i εi ≥ Hi ti, i = 1, · · ·n}= max

ti
F̄1(L1H1t1)F̄2(L2H2t2) · · · F̄n(LnHntn),

(15.19)

where F̄i(x) = 1−Fi(x). We further define Wi(x) = fi(x)/F̄i(x) as the failure rate (or
the hazard rate) of random variable εi. A demand distribution exhibits the property
of increasing failure rate if ∂Wi(x)/∂x > 0. Examples of such distributions include
most reasonable customer demand distributions such as uniform, exponential, nor-
mal, gamma, and Weibull distributions (Barlow and Proschan 1965; Lariviere 2006).

Theorem 2. If each division’s demand distribution has an increasing failure rate,
under fair target setting, the optimal profit targets for the divisions can be solved
from the following equations:

W1(L1H1t∗1 )L1H1 = . . .=Wn(LnHnt∗n)LnHn and ∑n
i=1 t∗i = T. (15.20)

Further, for a division with a relatively high (low) production cost, a greater price
elasticity leads to a lower (higher) optimal profit target.

Proof. To maximize (15.19), it is equivalent to maximize

∑n
i=1 lnF̄i(LiHiti) (15.21)

subject to the constraint ∑n
i=1 ti = T . The Lagrangian function for this optimization

problem is:

Z(t1, · · · tn,λ ) = ∑n
i=1 lnF̄i(LiHiti) =−λ

(
∑n

i=1 ti −T
)
. (15.22)

The first-order derivatives are given by:

∂Z(t1, · · · tn,λ )
∂ ti

= −LiHi
fi(LiHiti)
F̄i(LiHiti)

−λ=−LiHiWi(LiHiti)−λ , i=1, · · ·n

(15.23)

∂Z(t1, · · · tn,λ )
∂λ

= ∑n
i=1 ti −T (15.24)

The second-order derivatives with respect to ti are given by:

∂ 2Z(t1, · · · tn,λ )
∂ t2

i

=−L2
i H2

i
∂Wi(LiHiti)

∂ ti
. (15.25)

Because the demand is modeled as Di(ri) = r−bi
i εi, the distribution of Di has an in-

creasing failure rate if and only if the distribution of εi has an increasing failure rate
Wi(x). Therefore, we have ∂Wi(LiHiti)/∂ ti > 0 and thus ∂ 2Z(t1, · · · tn,λ )/∂ t2

i < 0.
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Hence, Z(t1, · · · tn,λ ) is concave in (t1, · · · tn). Setting the first-order derivatives
(15.23) and (15.24) to zero, we can obtain (15.20).

Suppose division i has a relatively high production cost. It can be seen from
Proposition 1 that the term Li(b,c)Hi(b,c) increases in the price elasticity bi. Based
on (15.20), the optimal profit target then decreases in bi because Wi(x) is an
increasing function. Using similar arguments, we can show that the opposite is true
for a division with a relatively low production cost. �

Example 1. Suppose that εi follows uniform distribution defined on interval [0,βi].
So we have:

F̄i(x) =
βi − x

βi
, 0 ≤ x ≤ βi and Wi(x) =

1
βi − x

. (15.26)

Based on (15.20), we have:

L1H1

β1 −L1H1t∗1
=

L2H2

β2 −L2H2t∗2
= . . .=

LnHn

βn −LnHnt∗n
, (15.27)

which further gives:

t∗j = t∗i +
β j

L jHj
− βi

LiHi
, i, j = 1, · · ·n and i �= j. (15.28)

Together with ∑n
i=1 t∗i = T , we have the optimal profit target for each division:

t∗i =
T
n
+

1
n ∑n

j=1, j �=i

(
βi

LiHi
− β j

L jHj

)
, i = 1, · · ·n (15.29)

Therefore, the optimal profit target consists of two components. The first
component is the firm’s profit target divided by the number of divisions. The second
component shows how the optimal profit target for each division is further adjusted
by its market size βi and the term Li(b,c)Hi(b,c), which increases (decreases) with
respect to the price elasticity bi when production cost ci is relatively low (high).

15.4.2 Two Divisions Case

In this section, we focus on the case where the firm owns only two divisions. For
the firm, the optimization problem is then to decide on profit target t1 and t2 for the
two divisions, respectively. We first have the following proposition.

Proposition 4. Suppose that the firm with profit target T owns two divisions. Under
the following reasonable assumptions:

t1 ≤ (b2 − 1)t2 +T and t2 ≤ (b1 − 1)t1 +T, (15.30)
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Fig. 15.1 The four possible
scenarios where the firm
achieves its profit target

the firm’s profit probability is given by:

PT (t1, t2) = P{ε1≥L1G−1
1 (K(t1, t2)−b2t2),ε2

≥L2G−1
2 (K(t1, t2)−b1t1), G1L−1

1 ε1+G2L−1
2 ε2≥K(t1, t2)}, (15.31)

where
K(t1, t2) = (b1 − 1)t1 +(b2 − 1)t2 +T. (15.32)

Proof. Based on (15.17), it can be seen that the firm’s profit target T will be achieved
if and only if

∑2
i=1 Gi(Hiti −L−1

i εi)
+ ≤ (t1 + t2 −T). (15.33)

Of course, we should have the constraint t1+t2 ≥ T to guarantee that T is achievable
at all. Depending on the possible realizations of ε1 and ε2, we have the following
four possible scenarios:

Scenario 1: If ε1 ≥ L1H1t1 and ε2 ≥ L2H2t2, (15.33) becomes t1 + t2 ≥ T .
Scenario 2: If ε1 ≤ L1H1t1 and ε2 ≤ L2H2t2, (15.34) becomes G1L−1

1 ε1

+G2L−1
2 ε2 ≥ K(t1, t2).

Scenario 3: If ε1 ≤ L1H1t1 and ε2 ≥ L2H2t2, (15.35) becomes ε1 ≥ L1G−1
1 [K(t1, t2)

−b2t2].
Scenario 4: If ε1 ≥ L1H1t1 and ε2 ≤ L2H2t2, (15.36) becomes ε2 ≥ L2G−1

2 [K(t1, t2)
−b1t1].

The four scenarios are shown graphically in Fig. 15.1.
When plotting the graph, assumptions as in (15.30) are employed to

guarantee that L1G−1
1 (K(t1, t2)− b2t2) > 0 and L2G−1

2 (K(t1, t2)− b1t1) > 0.
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These assumptions are reasonable because a division’s profit target is generally
no more than the firm’s profit target. Moreover, it can be verified that:

L1H1t1 −L1G−1
1 (K(t1, t2)− b2t2) = L1G−1

1 (t1 + t2 −T)

L2H2t2 −L2G−1
2 (K(t1, t2)− b1t1) = L2G−1

2 (t1 + t2 −T). (15.34)

Hence, the Area 2 in Fig. 15.1 directly depends on the difference between the firm’s
profit target and the sum of the divisions’ profit targets. Finally, because the firm’s
profit probability PT (t1, t2) is the sum of the four areas in Fig. 15.1, (15.31) is true.
This concludes the proof. �


Proposition 4 greatly simplifies the calculation of PT (t1, t2) for the case of two
divisions. To obtain more concrete results, now we assume two identical divisions.
This means that the two divisions have the same production cost c, the same price
elasticity b, and ε1 and ε2 are independent and identically distributed. Given these
two identical divisions, it is practical to assume that the two divisions should be
assigned an identical profit target, denoted by t. The optimization problem for the
firm is then to select a single profit target t for both divisions so that the firm’s profit
probability is maximized. We have the following theorem.

Theorem 3. Suppose that the firm with profit target T is in control of two identical
divisions. Then its profit probability is given by:

PT (t) = P{ε1 + ε2 ≥ K1(t),ε1 ≥ K2(t),ε2 ≥ K2(t)} , (15.35)

where

K1(t) = LG−1[(2b− 2)t+T ] (15.36)

K2(t) = LG−1 [(b− 2)t +T ] . (15.37)

Furthermore, if b ≥ 2, the optimal profit target for each division t∗ is just half of the
firm’s profit target T , i.e., t∗ = T/2.

Proof. Because this is the special case of two identical divisions, we can (15.35)
readily from (15.31). In addition, the requirements in (15.30) become:

(2− b)t ≤ T. (15.38)

If b ≥ 2, (15.38) is true. If 1 < b < 2, (15.38) is true as well because t ≥ T/2.
Therefore, for the case of two for the case of two identical divisions, the assumption
in (15.38) is satisfied automatically. To prove the second half of the theorem, we
differentiate PT (t) with respect to t:

P′
T (T ) = −(b− 2) fε1|ε2≥k2(t),ε1+ε2≥K1(t)(K2(t))P{ε2 ≥ K2(t),ε1 + ε2 ≥ K1(t)}

−(b− 2) fε2|ε1≥K2(t),ε1+ε2≥K1(t)(K2(t))P{ε1 ≥ K2(t),ε1 + ε2 ≥ K1(t)}
−2(b− 1) fε1+ε2|ε1≥K2(t),ε2≥K2(t)(K2(t))P{ε1 ≥ K2(t),ε2 ≥ K2(t)} .

(15.39)
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Fig. 15.2 The firm’s profit probability as a function of each division’s profit target when
b = 1.4,1.6, and 1.8

If the price elasticity b ≥ 2, P′
T (T ) < 0. Therefore, the firm’s profit probability

decreases in t and the optimal profit target t∗ should be set at its minimum, i.e.,
t∗ = T/2. This concludes the proof. �


It can be seen when the price elasticity of the product is reasonably large (b≥ 2),
the optimal profit target for each division is always half of the firm’s profit target.
This result holds independent of all the other parameters including the underlying
market demand distribution and production cost. It is also worth noting that for many
individual products, it is common to have substitutes from competitors in the market
(Gwartney 1976). As a result, b ≥ 2 should hold for many business scenarios.

In the case of a relatively small price elasticity, in this case b < 2, it is difficult
to obtain an analytic expression for the optimal profit target in general. In this case,
the use of numerical simulation may be necessary. We present two examples here.
In the first example, we conduct a computer simulation when the underlying market
demand is normally distributed. In the second example, we are able to derive the
closed-form expression of the optimal profit target for uniform distribution.

Example 2. Suppose that εi follows a normal distribution with mean 200 and
standard deviation 50. Other parameters are: c = 2, T = 60, and b = 1.4, 1.6, and
1.8. Figure 15.2 shows the firm’s profit probability as a function of the profit target of
each division when b = 1.4, 1.6, and 1.8. The computer simulation is implemented
using Matlab.
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It can be seen from Fig. 15.2 that the firm’s maximal profit probability (P∗
T (t)) is

quite sensitive to the price elasticity b. As b changes from 1.4 to 1.8 (a change of
29%), P∗

T (t) changes from almost 1.00 to approximately 0.45 (a change of 55%).
Finally, the optimal target for each division (t∗) decreases with respect to b. As b
approaches 2, the optimal target t∗ approaches T/2 = 30.

Example 3. Suppose that εi follows a uniform distribution with lower bound 0 and
upper bound β . To calculate the probability based on (15.31), we need to check
the lower and upper bounds of K1(t) and K2(t) defined in (15.32) and (15.33),
respectively. This is important because the random variable εi now is defined on
a limited interval.

Because we have T ≤ 2t, we have K2(t) = LG−1[(b− 2)t+T ] ≤ G−1Lbt.
Further, based on Proposition 3 (see Sect. 15.2), we have 0<K2(t)< LG−1b∗(g−c)
L−1β = β . Similarly, we can have 0 < K1(t)< 2β .

Based on (15.35), we can have:

PT (t) = P{ε1 ≥ K2(t),ε2 ≥ K2(t)}−P{ε1 ≥ K2(t),ε2 ≥ K2(t),ε1 + ε2 ≤ K1(t)}

=
(β −K2(t))2

β 2 − L2

2G2

(2t −T )2

β 2 . (15.40)

The first- and second-order conditions are given by:

P′
T (t) =

2L2

β 2G2 [(2− b)(L−1Gβ +(2− b)t−T )− (2t −T)]. (15.41)

P′′
T (t) =

2L2

β 2G2

[
(2− b)2− 2

]
(15.42)

When 1 < b < 2, we have (2− b)2 − 2 < 0 and, hence, P′′
T (t) < 0. Therefore, the

profit probability PT (t) is concave in the divisions’ profit target t. The solution to
P′

T (t) = 0 is given by:

to =
(b− 1)T +L−1G(2− b)β

2− (2− b)2 . (15.43)

Therefore, the optimal profit target for each division is given by t∗ = max(to,T/2).
Similar to Example 2, as the price elasticity approaches 2, to and, hence, the optimal
target t∗ approaches T/2.

15.5 Conclusions and Future Research

Existing studies have shown that the objective of maximizing profit probability
leads to vastly different managerial insights than those based on the objective of
maximizing expected profit. For example, Shi and Chen (2007) demonstrate that the



15 Profit Target Setting for Multiple Divisions: A Newsvendor Perpective 357

simple wholesale price contract, when properly designed, can coordinate a supply
chain with a single supplier and a single retailer, both of which adopt the objective
of maximizing profit probability.

However, there has been little research on profit target setting under stochastic
customer demand. We attempt to fill this gap with this chapter. To be more specific,
we present analytic models on profit target setting under a common business
scenario where a firm owns n divisions. While each division always has a profit
target to achieve and, hence, adopts the objective of maximizing profit probability,
the firm may adopt the objective of maximizing expected profit or the objective
of maximizing profit probability. Given its assigned target, each division acts as
a price-setting newsvendor and decides on divisional production level and selling
price simultaneously.

We start by deriving the optimal behavior of a single division given its assigned
profit target. We obtain the close-form expressions of the optimal production level,
the optimal selling price, and the maximal profit probability. We show that for a
division with a relatively higher (lower) production cost, a greater price elasticity
always leads to a smaller (larger) profit probability.

We then study the problem of profit target setting from the firm’s perspective.
We first study the firm with the objective of maximizing expected profit, where we
obtain closed-form expressions of the optimal profit target for each division. We then
study the firm with the objective of maximizing profit probability. After deriving the
firm’s profit probability as a function of the divisions’ profit targets, we proceed to
study two special cases to gain more managerial insights.

In the first case of fair target setting, we derive the optimal profit targets when
each division has a demand distribution with the property of increasing failure rate.
We show that for a division with a relatively high (low) production cost, a greater
price elasticity always leads to a (lower) higher profit target. In the second case
where the firm has two divisions, we first derive the firm’s profit probability as a
function of the profit targets of the two divisions. If those divisions are identical,
we show that each division’s optimal target is just half of the firm’s profit target
when the price elasticity is two or more. This result is true regardless of the other
parameters such as production cost and the demand distribution.

Our results in this chapter are helpful for practitioners who engage in the profit
target setting and target attainment. However, much more work can be done in
the area of profit target setting, which is both interesting and challenging. The
first natural extension is to confirm the robustness of the results in this chapter
by considering additive demand models. It is well documented that additive and
multiple demand models may lead to different managerial insights (see, e.g.,
Choi 1991). The second natural extension is to see how risk seeking of firms
impacts profit target setting for multiple divisions. Risk seeking can be modeled, for
example, using the utility function approach where variance positively contributes
to utility. Third, we can try to answer the following question: how does a firm set
targets on multiple and potentially conflicting performance measures, such as profit,
revenue, and market share? Fourth, we can study analytic target setting over multiple
periods. For example, if a division of a firm has a yearly target to achieve, how can
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the division set quarterly targets and adjust them over time if necessary? Last but
not least, it would be important to conduct empirical studies on profit target setting
in business practice.
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Chapter 16
A Portfolio Approach to Multi-product
Newsvendor Problem with Budget Constraint∗

Bin Zhang and Zhongsheng Hua

Abstract This chapter investigates a portfolio approach to multi-product
newsvendor problem with budget constraint, in which the procurement strategy
for each newsvendor product is designed as portfolio contract. A portfolio contract
consists of a fixed-price contract and an option contract. We model the problem as
an expected profit-maximization model, and propose an efficient solution procedure
after investigating the structural properties of the model. We conduct numerical
studies to show the efficiency of the proposed solution procedure, and to compare
three models with different procurement contracts, i.e., fixed-price contract, option
contract, and portfolio contract. Numerical results are shown to demonstrate the
advantage of the portfolio model, and sensitivity analysis is provided for obtaining
some managerial insights.

Keywords Newsvendor • Option contract • Portfolio • Budget constraint
• Multiple products

16.1 Introduction

Multi-product constrained newsvendor problem is a classical inventory management
problem, which was firstly introduced by Hadley and Whitin (1963). After Hadley
and Whitin’s seminal work, many researchers have investigated different models and
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solution methods for multi-product newsvendor problems. Khouja (1999) presented
a good literature review on the research. Due to the difficulty of solving large-scale
problems, most recent works have focused on developing efficient solution methods,
e.g. Lau and Lau (1996), Erlebacher (2000), Vairaktarakis (2000), Moon and
Silver (2000), and Abdel-Malek et al. (2004). To address nonnegativity constraints
of the order quantities, Abdel-Malek and Montanari (2005) proposed a modified
Lagrangian-based method by analyzing the solution space. Zhang et al. (2009)
provided an exact solution method for the problem with any continuous demand
distribution. Zhang and Hua (2008) proposed a unified algorithm for solving a
class of convex separable nonlinear knapsack problems, which include the singly
constrained multi-product newsvendor problem with box constraints. Zhang and
Du (2010) studied the multi-product newsvendor problem with limited capacity
and outsourcing. Zhang (2012) analyzed structural properties of the multi-product
newsvendor problem with multiple constraints, and proposed a multi-tier binary
solution method for solving the exact solution. Zhang (2011) investigated a multi-
product newsvendor problem with limited capacity in the presence of mixed
deterministic and stochastic demands.

In the classical newsvendor problem, the product is procured from the supplier
with fixed-price contract. Under this procurement strategy, the retailer will under-
take the salvage loss resulting from lower realized demand. To avoid this risk, the
retailer always does not order enough inventories to maximize the supply chain’s
total profit under the fixed-price contract (Cachon 2003). In order to maximize
the supply chain’s total profit, and share the risk raised from demand uncertainty
with supply chain partners, some different contract types are used for encouraging
the retailer to increase the order in supply chain management practice, such as
buy back contracts, revenue sharing contracts, quantity flexibility contracts, sales
rebate contracts, and quantity discount contracts (Cachon 2003). These contracts
are labeled as “flexibility contract”, in which a fixed amount of supply is determined
when the contract is signed, but the amount to be delivered and paid for can differ
from the quantity determined upon signing the contract. In comparison with fixed-
price contracts, these flexibility contracts not only coordinate the supply chain, but
also have sufficient flexibility (by adjusting parameters) to allow for any division of
the supply chain’s profit between suppliers and retailers. For more details of these
flexibility contracts, please refer to Cachon (2003).

Option contract is one type of flexibility contracts (Martı́nez de Albéniz and
Simchi-Levi 2005), which is defined as an agreement between the retailer and the
supplier, in which the retailer pre-pays a reservation cost up-front for a commitment
from the supplier to reserve certain order quantity. If the retailer does not execute
the option, the initial payment is lost. With option contract, the retailer can purchase
any amount of supply up to the option reservation level by paying an execution cost
for each unit purchased. In other words, option contract provides the retailer with
flexibility to adjust order quantity depending on the realized demand, and, hence,
the inventory risk can be lowered for the retailer by utilizing the flexibility of option
contract.

There are mainly two branches for the research on option contracts in supply
chain management literature: One perspective is supply chain coordination with
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option contracts, e.g., Barnes-Schuster et al. (2002), Wu et al. (2002), Kleindorfer
and Wu (2003), Wu and Kleindorfer (2005), Wang and Liu (2007), Gomez Padilla
and Mishina (2009), and Zhao et al. (2010). The other is on a single firm’s
optimal procurement decisions given particular contractual terms, e.g., Cohen
and Agrawal (1999), Marquez and Blanchar (2004), Wang and Tsao (2006), and
Boeckem and Schiller (2008), etc. In the research, some combinations of different
contracts, such as fixed-price contract, and option contract, have been investigated.

In addition, some research on option contracts also took into account spot
market since it is another source of supply for commodity products, e.g., Martı́nez
de Albéniz and Simchi-Levi (2005), Aggarwal and Ganeshan (2007), and Fu
et al. (2010). Spot market is a supply market in which products are sold for cash and
delivered immediately. Contracts bought and sold on spot market are immediately
effective. For some products, spot market can be used by the firm to purchase
at any time; however, the product price on spot market is random. Over the last
years, the emergence of the business-to-business trading exchange has transformed
the procurement strategies, which provides spot market where buyers and sellers
can trade products any time at online markets (Aggarwal and Ganeshan 2007). As
Carbone (2001) reported, 50% of Hewlett-Packard’s procurement cost was spent
on fixed-price contract, 35% in option contracts, and the remaining was left to the
spot market.

Up to now, all the existing works on the combination strategies of different
contracts focused on single product setting. We have not found any research on
multi-product demand management with the combination of fixed-price contract
and option contract. In this chapter, we introduce a portfolio approach for managing
multi-product newsvendor problem with budget constraint, in which each product
can be procured with a portfolio contract consisting of a fixed-price contract and
an option contract. The dual contracts for each product in the problem make the
optimal ordering decisions more challenging in multi-product setting. On one hand,
the use of option contract for lowering the overage cost should be properly balanced
against the additional cost of using the option contract since unit reservation plus
execution cost of option contract is typically higher than unit cost of a fixed-price
contract. On the other hand, the total budget should be well allocated to different
products for signing the fixed-price contracts and option contracts.

The overall objective of the newsvendor is to decide the optimal quantities
of portfolio contracts for maximizing the total expected profit. We establish the
structural properties for the optimal decisions of the proposed profit-maximization
model, and develop an efficient solution procedure for the studied problem.
Numerical results are shown to demonstrate the advantage of the portfolio model,
and sensitivity analysis is provided for obtaining some managerial insights.

The rest of the chapter is organized as follows: Section 16.2 describes the
problem formulation. In Sect. 16.3, the properties of the optimal solution are es-
tablished, and an exact solution procedure is developed. Section 16.4 is dedicated to
numerical studies for demonstrating the advantage of the portfolio contract model,
and obtaining some managerial insights from sensitivity analysis. Section 16.5
briefly concludes the chapter and provides some future research directions.
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16.2 Problem Formulation

We consider the following multi-product newsvendor problem. A retailer sells n
different products with stochastic demands over a single period, and each product
can be acquired from the suppliers by signing a portfolio contract, which includes
a fixed-price contract and an option contract. In the fixed-price contract, the retailer
pay unit fixed cost for procuring each product; in the option contract, the retailer
pays unit reservation cost up-front for a commitment from the supplier, then
the retailer can pays unit execution cost for procuring each product under the
commitment level. If retailer does not exercise the option, the initial payment is lost.
The retailer has limited budget for signing the portfolio contracts. In the following,
we use i to be the index of product 1, . . . ,n.

The cost parameters used in this chapter are summarized in the following:

pi = Unit selling price for product i;
si = Unit salvage value for product i;
ci = Unit procurement cost of fixed-price contract for product i;
vi = Unit reservation cost of option contract for product i;
wi = Unit execution cost of option contract for product i;
B = Total budget available for signing the portfolio contracts.

To avoid the trivial case, we assume that pi > ci > si for i = 1, . . . ,n. Typically,
the total cost of the option contract (reservation plus execution cost) is assumed
to be larger than the cost of fixed-price contract, i.e., vi +wi > ci; otherwise, the
fixed-price contract is dominated by the option contract, and, hence, the fixed-price
contract will never be engaged in the problem. We also assume that the reservation
cost of option contract is smaller than the pure procurement cost of the fixed-price
contract, i.e., vi < ci − si; otherwise, the option contract will be dominated by the
fixed-price contract because the fixed-price contract always has the lower costs
whether the product can be sold or not. From these two assumptions, i.e., vi+wi > ci

and vi < ci − si, we have si < wi, which implies that the retailer will not have an
opportunity to make profit by executing an option contract in order to obtain the
product salvage value.

The retailer makes quantity decisions of the portfolio contracts to fulfill n
independent and stochastic demands. Let Di denote the random demand for product
i = 1, . . . ,n, which has continuous probability density function fi(·), cumulative
distribution function Fi(·), and reverse distribution function F−1

i (·). It is not
uncommon to assume that all demands are nonnegative, thus, we can assume
that Fi(x) = 0 for all x < 0, and Fi(0) ≥ 0. This assumption does not rule out
normal distribution as well as many other distributions with negative support values,
since the distributions with negative support values should be approximated as
nonnegative demand distributions in practice (Zhang and Du 2010).

The retailer’s decisions are made in two stages. At the first stage, the retailer
receives demand forecasts for all products, and determines a fixed-price contract
quantity xi, and an option contract quantity yi to be signed. At the second stage,
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all demands are realized and the retailer exercises the quantity min((Di − xi)
+,yi)

of product i from the option contract to satisfy the demands for maximizing the
revenue, where (·)+ = max{·,0}.

We are ready to present profit-maximization model (denoted as problem P):

Maxπ(x,y) =
n

∑
i=1

πi =
n

∑
i=1

Ei

[
pi min(Di,xi + yi)+ si(xi −Di)

+

−cixi − viyi −wi min((Di − xi)
+,yi)

]
, (16.1)

Subject to

n
∑

i=1
(cixi + viyi)≤ B, (16.2)

xi ≥ 0, yi ≥ 0, i = 1, . . . ,n. (16.3)

For each product i = 1, . . . ,n, the first term pi min(Di,xi + yi) in (16.1) is the selling
revenue, the second term si(xi −Di)

+ is the salvage value, the third term cixi is
the acquisition cost with the fixed-price contract, the fourth term viyi is the option
reservation cost, and the last term wi min((Di−xi)

+,y i) is the option execution cost.
Equation (16.2) specifies the budget constraint on the quantities of the portfolio
contracts. Note that the execution costs are excluded from the budget constraint
because they are not needed to pay when signing the contracts at the first stage.
Equation (16.3) gives the nonnegative constraints on the order quantities.

By using the formula min(Di,xi + yi) = xi + yi − (xi + yi −Di)
+ and integration

by parts formula
∫ x

0 (x− z)dF(z) =
∫ x

0 F(z)dz, the expected profit of problem P can
be rewritten as:

π(x,y) =
n

∑
i=1

Ei

[
pi(xi + yi − (xi + yi−Di)

+)+ si(xi −Di)
+

−cixi − viyi −wi(yi − (xi + yi−Di)
++(xi −Di)

+)

]

=
n

∑
i=1

[
(pi − ci)xi +(pi −wi − vi)yi

−(pi −wi)
∫ xi+yi

0 (xi + yi − zi)dFi(zi)− (wi − si)
∫ xi

0 (xi − zi)dFi(zi)

]

=
n

∑
i=1

[
(pi − ci)xi +(pi −wi − vi)yi

−(pi −wi)
∫ xi+yi

0 Fi(zi)dzi − (wi − si)
∫ xi

0 Fi(zi)dzi

]
.

(16.4)

16.3 Properties and Solution Procedure

In this section, we first establish some structural properties for the optimal decisions,
and then we develop an efficient solution method for the studied problem.
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16.3.1 Properties of the Optimal Solution

Beginning with the objective function, we have the following proposition:

Proposition 1. The expected profit function π is jointly concave in xi and yi, i =
1, . . . ,n.

Proof. Since

{
∂π/∂xi = (pi − ci)− (pi−wi)Fi(xi + yi)− (wi − si)Fi(xi)

∂π/∂yi = (pi −wi − vi)− (pi −wi)Fi(xi + yi)
, i = 1, . . . ,n,

we have

{
∂ 2π/∂x2

i =−(pi −wi) fi(xi + yi)− (wi − si) fi(xi)≤ 0
∂ 2π/∂y2

i = ∂ 2π/∂xi∂yi =−(pi −wi) fi(xi + yi)≤ 0
, i = 1, . . . ,n,

and ∂ 2π/∂xi∂x j = ∂ 2π/∂yi∂y j = ∂ 2π/∂xi∂y j = 0 for i �= j, i, j = 1, . . . ,n. Thus,
the Hessian matrix of the objective function is negative semi-definite. �

Since π is concave and the feasible domain of the problem is convex, the Karush–
Kuhn–Tucker (KKT) conditions are necessary and sufficient for optimality. Let
λ ≥ 0, αi ≥ 0, and βi ≥ 0, i = 1, . . . ,n, be the dual variables corresponding to the
constraints in (16.2)–(16.3), respectively. Then (xi,yi), i = 1, . . . ,n, is optimal if and
only if there exists nonnegative dual variables λ , αi, and βi, i = 1, . . . ,n, such that

(pi−ci)−(pi−wi)Fi(xi+yi)−(wi−si)Fi(xi)−λ ci+αi=0, i=1, . . . ,n, (16.5)

(pi −wi − vi)− (pi −wi)Fi(xi + yi)−λ vi+βi = 0, i = 1, . . . ,n, (16.6)
n
∑

i=1
(αixi +βiyi) = 0, (16.7)

λ
(

B−
n
∑

i=1
(cixi + viyi)

)
= 0. (16.8)

To solve these KKT conditions, we first investigate how to solve (16.5)–(16.7) with
any given λ ≥ 0, and then we illustrate how to decide the optimal value for λ .
Denote by (x̃λ

i , ỹ
λ
i , α̃λ

i , β̃ λ
i ,λ ), i = 1, . . . ,n, an solution of (16.5)–(16.7), then we

have the following propositions:

Proposition 2. For any given λ ≥ 0,(x̃λ
i , ỹ

λ
i ), i = 1, . . . ,n, satisfies

⎧⎪⎪⎨
⎪⎪⎩

x̃λ
i = F−1

i

(
min

{(
wi−(1+λ )(ci−vi)

wi−si

)+
,
(

pi−(1+λ )ci
pi−si

)+})

ỹλ
i =

(
F−1

i

((
pi−wi−(1+λ )vi

pi−wi

)+)−F−1
i

((
wi−(1+λ )(ci−vi)

wi−si

)+))+ .
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Proof. The proof of this proposition is presented in Appendix.
This proposition characterizes the optimal solution of (16.5)–(16.7) with any

given λ ≥ 0, and also indicates the optimal solution to the problem without budget
constraint (denoted as problem P1). Denote by (x̃i, ỹi), i = 1, . . . ,n, an optimal
solution to problem P1, by simply setting λ = 0 in Proposition 2, then the optimal
values of (x̃i, ỹi), i = 1, . . . ,n are given as follows:⎧⎨

⎩
x̃i = F−1

i

(
min

{
wi+vi−ci

wi−si
, pi−ci

pi−si

})

ỹi =
(

F−1
i

(
pi−wi−vi

pi−wi

)
−F−1

i

(
wi+vi−ci

wi−si

))+ . (16.9)

From the result of Proposition 2, we also know that the difference between the
optimal solution of the constraint problem and that of the unconstraint problem
increases too, when λ increases.

Before discussing the result in (16.9), we first investigate the optimal uncon-
strained orders under pure fixed-price contract (FC) and pure option contract (OC).
If there is no budget constraint and only fixed-price contract is used, then we can
solve the optimal unconstrained order x̃i,FC from

∂π/∂xi = (pi − ci)− (pi−wi)Fi(xi + yi)− (wi − si)Fi(xi) = 0,

by setting yi = 0, and, hence, x̃i,FC = F−1
i

(
pi−ci
pi−si

)
, i = 1, . . . ,n. If there is no budget

constraint and only pure option contract is used, then we can solve the optimal
unconstrained order ỹi,OC from

∂π/∂yi = (pi −wi − vi)− (pi−wi)Fi(xi + yi) = 0,

by setting xi = 0, and, hence, ỹi,OC = F−1
i

(
pi−wi−vi

pi−wi

)
, i = 1, . . . ,n. Note that the

option contract (vi,wi) can also be viewed as a fixed-price contract with unit
purchase cost c′i = vi + wi, and unit salvage value s′i = wi. Thus, ỹi,OC and x̃i,FC

have the same form, i.e., ỹi,OC = F−1
i

(
pi−wi−vi

pi−wi

)
= F−1

i

(
pi−c′i
pi−s′i

)
.

Let us discuss the relationship among the unconstrained solution x̃i,FC, ỹi,OC, and
the optimal unconstrained order of portfolio contract, (x̃i, ỹi) presented in (16.9). If
pi−wi−vi

pi−wi
> pi−ci

pi−si
, then the mathematical transform gives pi−wi−vi

pi−wi
> pi−ci

pi−si
> vi+wi−ci

wi−si
,

and we have x̃i = F−1
i

(
wi+vi−ci

wi−si

)
and ỹi = F−1

i

(
pi−wi−vi

pi−wi

)
−F−1

i

(
wi+vi−ci

wi−si

)
; thus,

the total order quantity of portfolio contract is x̃i + ỹi = F−1
i

(
pi−wi−vi

pi−wi

)
; otherwise,

we have pi−wi−vi
pi−wi

≤ pi−ci
pi−si

≤ vi+wi−ci
wi−si

, and, hence, x̃i = F−1
i

(
pi−ci
pi−si

)
and ỹi = 0; thus

the total order quantity of portfolio contract is x̃i + ỹi = F−1
i

(
pi−ci
pi−si

)
. Therefore, the

total optimal unconstrained order of portfolio contract can be expressed as

x̃i + ỹi = max

{
F−1

i

(
pi − ci

pi − si

)
,F−1

i

(
pi −wi − vi

pi −wi

)}
= max{x̃i,FC, ỹi,OC} .
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From the proof of Proposition 2, we have

x̃λ
i + ỹλ

i = max

{
F−1

i

(
pi − (1+λ )ci

pi − si

)+

,F−1
i

(
pi −wi − (1+λ )vi

pi −wi

)+
}
.

Since λ ≥ 0, we know x̃λ
i + ỹλ

i ≤ x̃i + ỹi, which means that the total optimal
unconstrained order of portfolio contract is an upper bound for the total optimal
order of portfolio contract in problem P. Thus, the maximum of the optimal
unconstrained order under pure fixed-price contract and the optimal unconstrained
order under pure option contract is an upper bound for the optimal total order of
portfolio contract in problem P.

Denote by (x∗i ,y∗i ), i = 1, . . . ,n, an optimal solution to problem P, and λ ∗ the
corresponding optimal value of λ , we have the following proposition:

Proposition 3. (a) I f ∑n
i=1 (cix̃i + viỹi)≤ B, then x∗i = x̃i and y∗i = ỹi, i = 1, . . . ,n;

(b) I f ∑n
i=1 (cix̃i + viỹi)> B, then ∑n

i=1 (cix∗i + viy∗i ) = B.

Proof. (a) This property is obvious since the budget constraint is not active. It is
also easily verified that (x∗i ,y∗i ) = (x̃i, ỹi) with λ ∗ = 0 satisfy the condition in
(16.8).

(b) If ∑n
i=1 (cix∗i + viy∗i ) < B, according to ∑n

i=1 (cix̃i + viỹi) > B, there must
exist at least one k ∈ {1, . . . ,n} such that ckx∗k + vky∗k < ckx̃k + vkỹk.
Since ∑n

i=1 (cix∗i + viy∗i )<B, the slackness condition λ (B−∑n
i=1 (cixi + viyi))=

0 in (16.8) implies λ ∗ = 0, and this further means (x∗i ,y∗i ) = (x̃i, ỹi),
i = 1, . . . ,n, which violates ckx∗k + vky∗k < ckx̃k + vkỹk. Thus, we have ∑n

i=1
(cix∗i + viy∗i ) = B. �


Property (a) indicates that the optimal solution to problem P is the same as that of
problem P1 if budget constraint is inactive. Property (b) illustrates that the budget
must be fully utilized at the optimal solution if the budget constraint is binding, i.e.,

n
∑

i=1
(cix̃i + viỹi)> B.

16.3.2 Solution Procedure

Before developing the solution procedure, we first prove the following result:

Proposition 4. cix̃λ
i + viỹλ

i is nonincreasing in λ .

Proof. The proof of this proposition is presented in Appendix.
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Fig. 16.1 Main steps
of Algorithm 1

Proposition 4 provides a good property with which the optimal value of λ can be
found without using any linear search method. We can develop an efficient way to
decide the optimal value for λ when the budget constraint is binding.

If the budget constraint is binding, according to Proposition 3(b), we know

that ∑n
i=1 (cix∗i + viy∗i ) = B, which implies λ ∗ ≤ λ̄ ≡ maxi=1,...,n

(
pi−ci

ci
, pi−wi−vi

vi

)
.

Otherwise, when λ ∗ > max
{

pi
ci
− 1, pi−wi

vi
− 1

}
, i = 1, . . . ,n, from the proof of

Proposition 2, we know x̃λ ∗
i = ỹλ ∗

i = 0, i = 1, . . . ,n, which violates the necessary
condition ∑n

i=1 (cix∗i + viy∗i ) = B. Thus, according to the results in Propositions 2–4,
we can determine λ ∗ by applying a binary search method over the interval λ ∈ [0, λ̄ ],
and simultaneously solve the optimal solution to problem P.

Main steps of the solution procedure for solving the optimal solution to problem
P are summarized in Algorithm 1 (as shown in Fig. 16.1).

In Algorithm 1, we first solve problem P1 (Step 0) to obtain (x̃i, ỹi), i = 1, . . . ,n.
Then we judge whether (x̃i, ỹi), i = 1, . . . ,n, leads to a binding budget constraint
or not (Step 1). If the budget constraint is inactive at (x̃i, ỹi), i = 1, . . . ,n, then we
let (x∗i ,y∗i ) = (x̃i, ỹi), i = 1, . . . ,n. Otherwise, we apply the binary search procedure
over interval [λL,λU ] to determine (x∗i ,y∗i ) (i = 1, . . . ,n) (Steps 2–5). Step 6 outputs
the optimal solution to problem P. Since we do not assume any specific property
on demand distribution, our approach is applicable to any continuous demand
distribution.

The computational complexity of Algorithm 1 is analyzed as follows. The
complexity of Steps 0–2 is O(n). The search of λ within the interval [0,λ̄ ] in Steps
3–5 needs log2(λ̄/ε) iterations, where ε is the error target for the binary search
procedure. Take λ̄ = 1010 and ε = 10−6 as an example, the number of iterations for
determining λ is log2(λ̄/ε) = 36.8414 ≈ 37. The computation procedure in each
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step of Steps 3–5 has complexityO(n). So the computational complexity of Steps
3–5 is O(log2(λ̄/ε)n). The complexity of Step 6 is O(n). Thus, Algorithm 1 has
computational complexity O(log2(λ̄/ε)n), which is polynomial in the number of
products.

16.4 Numerical Studies

In this section, numerical results are provided to show the efficiency of the proposed
solution procedure, and to compare three models with different procurement
contracts, i.e., fixed-price contract (FC), option contract (OC), and portfolio contract
(PC). Sensitivity analysis is also provided for obtaining some managerial insights.
The two pure contract models (i.e., fixed-price contract, pure option contract) are
easily obtained from the portfolio contract model by setting yi = 0 or xi = 0,
i = 1, . . . ,n, respectively. The portfolio contract model should dominate the two
pure contract models since the optimal solutions to the two pure contract models are
both feasible solutions to the portfolio contract model.

Before presenting numerical results, we first briefly illustrate how to solve pure
fixed-price contract model and pure option contract model. The two pure contract
models can be reformulated as minimizing −πFC(x) and −πOC(y), respectively:

(FC) Min−πFC(x) = −
[

n

∑
i=1

(pi − ci)xi − (pi− si)

∫ xi

0
Fi(zi)dzi

]
,

s.t.
n

∑
i=1

cixi ≤ B, xi ≥ 0, i = 1, . . . ,n.

(OC) Min−πOC(y) = −
[

n

∑
i=1

(pi −wi − vi)yi − (pi −wi)
∫ yi

0
Fi(zi)dzi

]
,

s.t.
n

∑
i=1

viyi ≤ B, yi ≥ 0, i = 1, . . . ,n.

Since the two pure contract models are the special cases of problem P where yi =
0 or xi = 0, i = 1, . . . ,n, according to Proposition 1, we know πFC(x) is concave in x,
and πOC(y) is concave in y. Thus the objective functions of PC and OC models, i.e.,
−πFC(x) and −πOC(y), are both convex. It is obvious that the objective functions of
PC and OC models are both separable, therefore the two pure contract models can
be viewed as the class of convex separable nonlinear knapsack problems studied by
Zhang and Hua (2008).

These knapsack problems have two important characteristics: positive marginal
cost (PMC) and increasing marginal loss-cost ratio (IMLCR). PMC means that the
budget occupancy increases in order quantity, which is guaranteed by the positive
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Table 16.1 Parameters and solutions for the illustrative example

i pi si ci vi wi μi σi x∗i,FC y∗i,OC x∗i,PC y∗i,PC

1 96 14 43 11 42 109 22 85.07 127.23 0.00 117.63
2 96 11 41 14 49 103 28 77.34 117.85 63.15 39.28
3 92 14 47 14 46 102 24 0.00 114.29 0.00 100.84
4 91 17 46 14 46 108 29 34.94 122.29 0.00 105.76
5 99 18 49 14 43 103 27 52.69 121.21 0.00 108.00
6 105 19 45 24 45 106 27 82.37 112.84 93.99 0.00
7 105 18 44 22 49 109 24 89.74 115.53 99.37 0.00
8 104 14 42 22 44 106 22 90.23 113.50 96.28 2.68
9 109 16 46 24 46 108 22 89.34 114.67 95.33 4.20
10 101 17 47 24 44 101 22 72.90 105.38 80.56 7.73

π∗ 37,073.94 33,340.71 44,301.65

linear constraint, i.e., ci > 0, i = 1, . . . ,n, for FC model, and vi > 0, i = 1, . . . ,n, for
OC model; IMLCR requires that the ratio of marginal loss to marginal cost increases
in order quantity, i.e. d[−πFC(x)]

cidxi
= − pi−ci

ci
+ pi−si

ci
Fi(xi) increases in xi, i = 1, . . . ,n,

for FC model, and d[−πOC(y)]
vidyi

= − pi−wi−vi
vi

+ pi−wi
vi

Fi(yi) increases in yi, i = 1, . . . ,n,
for OC model. Since FC and OC models satisfy PMC and IMLCR, the method with
linear computation complexity developed by Zhang and Hua (2008) can be directly
used to solve them.

It is worth noticing that the method proposed by Zhang and Hua (2008) is not
available for solving the portfolio contract model proposed in this chapter, due to
the fact that the objective function of problem P is nonseparable.

In the numerical experiment, the relative profit differences between FC, OC,
and PC, i.e., ΔπPC

FC = (π∗
PC −π∗

FC)/π∗
FC×100%, ΔπPC

OC = (π∗
PC −π∗

OC)/π∗
OC×100%

are reported to show the benefit of portfolio contract model and to obtain some
managerial insights through sensitivity analysis.

16.4.1 An Illustrative Example

In this example, demands of 10 products are all normally distributed, and there is
a budget constraint B = 30,000. Table 16.1 shows the relevant information, where
μi, σi, i = 1, . . . ,n, are parameters of the mean and standard deviation of the normal
demand x∗i,FC and y∗i,OC are the optimal solutions of the fixed-price contract model
and the option contract model, respectively; x∗i,PC and y∗i,PC are the optimal solutions
of the portfolio contract model and π∗ stands for the optimal expected profits of the
three different models. In order to investigate the general case, we set the parameters
such that pi−wi−vi

pi−wi
> pi−ci

pi−si
for i = 1, · · · ,5 and pi−wi−vi

pi−wi
< pi−ci

pi−si
for i = 6, · · · ,10. The

results in Table 16.1 show that the portfolio contract model is better than the fixed-
price contract and option contract models.
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Fig. 16.2 The values of λL, λU , and λ in the iteration process

To show the efficiency of the proposed solution procedure, we plot the iterative
solution process of this example in Fig. 16.2. In this figure, we report the values
of λL, λU , and λ in the iteration process. From this figure, it can be observed that
Algorithm 1 solves the optimal value λ ∗ = 0.7059 within only 18 iteration times.

16.4.2 Sensitivity Analysis

To investigate how the budget constraint affects the relative profit differences among
three procurement strategies, we provide sensitivity analysis by changing B of
the base example shown in Table 16.1 and keeping other parameters unchanged.
The results of more cases with different B are presented in Tables 16.2–16.4.
In Table 16.2, we report the optimal profits and the relative profit differences of
different models, and the ratio of total budget used on option contracts, which is
defined as ΔBO

PC =∑n
i=1 viy∗i,PC/∑n

i=1 (cix∗i,PC + viy∗i,PC)×100%. Tables 16.3 and 16.4
give the optimal order quantity of fixed-price contract and the optimal order quantity
of option contract in the portfolio contract for different B, respectively.

From Table 16.2, we have the following observations:

(1) The optimal profits of three procurement strategies are all nondecreasing in the
available budget. This observation is obvious since a larger B will provide a
larger feasible domain of the optimization problem.
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Table 16.2 The profit comparisons, shadow prices, and ΔBO
PC for different B

B π∗
FC π∗

OC π∗
PC ΔπPC

FC (%) ΔπPC
OC(%) λ ∗

FC λ ∗
OC λ ∗

PC ΔBO
PC(%)

100 147.62 390.91 390.91 164.81 0.00 1.48 3.91 3.91 100
1,100 1,623.74 4,072.63 4,072.63 150.82 0.00 1.48 3.00 3.00 100
2,100 3,096.56 6,943.82 6,943.82 124.24 0.00 1.46 2.45 2.45 100
3,100 4,520.40 9,272.62 9,272.62 105.13 0.00 1.39 2.28 2.28 100
4,100 5,906.56 11,517.79 11,517.79 95.00 0.00 1.39 2.21 2.21 100
5,000 7,150.73 13,453.37 13,453.37 88.14 0.00 1.38 2.05 2.05 100
10,000 13,934.67 21,831.71 21,831.71 56.67 0.00 1.33 1.54 1.54 100
15,000 20,472.33 28,993.59 28,993.59 41.62 0.00 1.24 1.30 1.30 100
20,000 26,527.46 33,198.01 34,978.14 31.86 5.36 1.15 0.27 1.13 60.37
25,000 32,091.06 33, 340.71 40,180.57 25.21 20.52 1.02 0.00 0.91 36.03
30,000 37,073.94 33,340.71 44,301.65 19.50 32.88 0.97 0.00 0.71 21.98
35,000 41,808.94 33,340.71 46,892.01 12.16 40.64 0.91 0.00 0.41 15.77
40,000 45,933.08 33,340.71 48,692.49 6.01 46.05 0.72 0.00 0.31 9.78
45,000 48,838.10 33,340.71 49,983.31 2.34 49.92 0.43 0.00 0.21 5.37
50,000 50,185.62 33,340.71 50,581.42 0.79 51.71 0.11 0.00 0.01 2.71
55,000 50, 276.22 33,340.71 50, 582.34 0.61 51.71 0.00 0.00 0.00 2.63
60,000 50,276.22 33,340.71 50,582.34 0.61 51.71 0.00 0.00 0.00 2.63

Table 16.3 The optimal order quantity of fixed-price contract in the portfolio contract

x∗i,PC

B 1 2 3 4 5 6 7 8 9 10

100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1,100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2,100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4,100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20,000 0.00 0.00 0.00 0.00 0.00 40.74 73.00 68.60 0.00 0.00
25,000 0.00 0.00 0.00 0.00 0.00 81.87 90.72 86.80 83.27 17.89
30,000 0.00 63.15 0.00 0.00 0.00 93.99 99.37 96.28 95.33 80.56
35,000 0.00 87.44 0.00 54.62 0.00 104.94 108.70 105.92 106.66 96.26
40,000 34.84 92.75 68.96 76.45 0.00 108.33 111.61 108.39 109.27 99.24
45,000 82.66 97.97 80.78 88.40 49.67 111.94 114.72 111.02 112.04 102.36
50,000 100.31 108.10 95.71 105.99 89.37 119.60 121.34 116.57 117.85 108.75
55,000 100.95 108.58 96.31 106.75 90.37 119.98 121.67 116.84 118.13 109.05
60,000 100.95 108.58 96.31 106.75 90.37 119.98 121.67 116.84 118.13 109.05

(2) The optimal profits of three procurement strategies do not change when the
available budget exceeds the maximal active budgets, which are ∑n

i=1 cix̃i,FC,
∑n

i=1 viỹi,OC, and ∑n
i=1 cix̃i,PC + viỹi,PC in FC, OC, and PC models, respectively.

The budget constraint is inactive when the budget is larger than the maximal
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Table 16.4 The optimal order quantity of option contract in the portfolio contract

y∗i,PC

B 1 2 3 4 5 6 7 8 9 10

100 9.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1,100 89.31 0.00 0.00 0.00 8.40 0.00 0.00 0.00 0.00 0.00
2,100 97.30 0.00 0.00 0.00 73.55 0.00 0.00 0.00 0.00 0.00
3,100 99.37 46.36 18.83 0.00 78.16 0.00 0.00 0.00 0.00 0.00
4,100 100.31 55.35 54.38 24.22 80.08 0.00 0.00 0.00 0.00 0.00
5,000 102.20 65.69 66.87 60.58 83.70 0.00 0.00 0.00 0.00 0.00
10,000 108.01 83.45 83.95 84.50 93.63 0.00 34.44 73.13 67.01 0.00
15,000 110.75 89.54 89.45 91.52 97.92 68.17 77.83 83.87 82.62 60.31
20,000 112.63 93.31 92.80 95.75 100.74 36.89 12.33 20.25 88.47 73.03
25,000 115.16 98.07 97.02 101.02 104.47 4.61 1.98 7.58 11.33 64.16
30,000 117.63 39.28 100.84 105.76 108.00 0.00 0.00 2.68 4.20 7.73
35,000 121.38 21.26 106.33 57.90 113.26 0.00 0.00 0.00 0.00 0.00
40,000 87.82 18.01 39.16 38.28 115.02 0.00 0.00 0.00 0.00 0.00
45,000 41.40 15.00 29.27 28.70 67.27 0.00 0.00 0.00 0.00 0.00
50,000 26.77 9.53 18.38 16.06 31.64 0.00 0.00 0.00 0.00 0.00
55,000 26.28 9.28 17.98 15.54 30.84 0.00 0.00 0.00 0.00 0.00
60,000 26.28 9.28 17.98 15.54 30.84 0.00 0.00 0.00 0.00 0.00

active budget. In these examples, the maximal active budgets are 51,706.19,
21,086.23, and 50,196.49 in FC, OC, and PC models, so π∗

FC, π∗
OC, and π∗

PC in
Table 16.2 do not change when B are larger than the maximal active budgets,
respectively.

(3) The relative profit difference between FC and PC decreases as the value of
B increases. When the budget B becomes larger, the total order x∗i,PC + y∗i,PC

will be close to x̃i,PC + ỹi,PC = max
{

F−1
i

(
pi−vi−wi

pi−wi

)
,F−1

i

(
pi−ci
pi−si

)}
, i =

1, . . . ,n, and the optimal order x∗i,FC of fixed-price contract will be close to

x̃i,FC = F−1
i

(
pi−ci
pi−si

)
, i = 1, . . . ,n. When the budget B becomes smaller, the

difference between x∗i,PC + y∗
i,PC and x∗i,FC become smaller, then the relative

profit difference between FC and PC also becomes smaller.
(4) The relative profit difference between OC and PC decreases with the decreasing

of B. When the budget B becomes smaller, ΔBO
PC becomes larger, i.e., most of

the budget will be spent on the option contracts, since option contracts occupy
small unit procurement costs (i.e., vi < ci, i = 1, . . . ,n). Thus, the result of PC
is close to that of OC as B decreases.

According to Tables 16.3 and 16.4, we know that: (1) The optimal order quantity
of fixed-price contract in the portfolio contract increases as B increases, and it will
become zero when B is small enough; (2) The optimal order quantity of option
contract in the portfolio contract initially increases and then decreases with the
increasing of B, and the turning point is x∗i,PC > 0, which is indicated in bold in
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Table 16.5 Statistical comparison of the three different procurement models

Problem size n 10 50 100

Relative profit difference (%) ΔπPC
FC ΔπPC

OC ΔπPC
FC ΔπPC

OC ΔπPC
FC ΔπPC

OC

Mean 21.86 25.35 22.09 25.64 21.89 25.82
Std. Dev. 3.47 3.54 1.61 1.56 1.17 1.07
95% C.I. Lower 21.17 24.65 21.77 25.33 21.65 25.60

Upper 22.55 26.06 22.41 25.95 22.12 26.03

Table 16.4. It will reach the minimal value F−1
i

(
pi−wi−vi

pi−wi

)
−F−1

i

(
wi+vi−ci

wi−si

)
> 0

for the case of pi−wi−vi
pi−wi

> pi−ci
pi−si

as B becomes large enough, and it will be zero for

the case of pi−wi−vi
pi−wi

< pi−ci
pi−si

as B becomes large enough.
From our theoretical results and the above observations, we come to the

following insights: (1) managers should attempt to find FC strategy when the
available budget is large and PC strategy is not available; (2) OC strategy should
be paid more attention to when the available budget is too small and PC strategy
cannot be used.

16.4.3 Strategies Comparison

In this section, the three procurement strategies, i.e., FC, OC, and PC, are compared
by using randomly generated problems. In these examples, demands of all products
are all normally distributed, and the total budget is B = 3,500× n. Let μi, σi, i =
1, . . . ,n, are parameters of the mean and standard deviation of the normal demand.
We use the notation x ∼U(α,β ) to denote that x is uniformly generated over [α,β ].
The problem parameters are generated as follows: μi ∼U(101,110), σi ∼U(21,30),
pi ∼ (91,100), ci ∼U(41,50), si ∼U(11,20), wi ∼U(41,50), vi ∼U(11,20), i =
1, . . . ,n. Note that the generated parameters satisfy the assumptions made in this
chapter.

In this numerical study, we set n = 10, 50, 100, respectively. For each problem
size n, 100 test instances are randomly generated. The statistical results of relative
profit difference ΔπPC

FC and ΔπPC
OC, are reported in Table 16.5, and the statistical

results of computation time and number of iterations for searching λ ∗ in the
portfolio contract model, are reported in Table 16.6. In these tables, 95% C.I. stands
for 95% confidence interval.

From Table 16.5, we verify that the portfolio contract model outperforms the
fixed-price contract and option contract models. This suggests that the retailer
should pay more attention to portfolio contract when managing multi-product
newsvendor problem with budget constraint if portfolio contracts are available.
Additionally, the relationship between the two pure contract models depends on
the problem parameters, e.g., in the 100 test instances for the case of n = 10, 34
option contract models outperform fixed-price contract models.
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Table 16.6 Computation times and number of iterations of the solution method

Computation time Number of iterations

Problem size n 10 50 100 10 50 100

Mean 10.92 29.17 52.27 30.10 31.81 32.88
Std. Dev. 1.91 2.35 3.90 3.08 2.66 2.61
95% C.I. Lower 10.54 28.71 51.50 29.49 31.28 32.36

Upper 11.30 29.64 53.04 30.71 32.34 33.40

According to Table 16.6, we know that our solution method can solve the
problems quickly in limited iterations. The standard deviations of number of
iterations and computation times are quite low in Table 16.6, reflecting the fact that
our solution method is quite effective and robust. Robustness of our method should
be attributed to the effectiveness of binary search procedure.

16.5 Conclusion

In this chapter, we investigate a portfolio approach to multi-product newsven-
dor problem with budget constraint, in which the procurement strategy for the
newsvendor products is designed as portfolio contract. By establishing the structural
properties of optimal solution, we develop an efficient solution method for the
studied problem. The proposed algorithm has two main advantages: (1) it has
linear computation complexity; (2) it is applicable to general continuous demand
distribution.

In comparison with fixed-price contract and option contract models, the portfolio
contract model generates significant improvement when managing multi-product
newsvendor problem with budget constraint. Through sensitivity analysis, we come
to the following insights: (1) The performance difference between fixed-price
contract and portfolio contract models will become smaller as the available budget
increases; (2) the performance gap between option contract and portfolio contract
models increases when the available budget becomes larger. These insights suggest
that managers with large budgets should pay more attention to fixed-price contract if
the portfolio contract is not available, and that managers with small budgets should
attempt to seek an option contract if the portfolio contract cannot be used.

There are several ways to extend this research. At first, this work can be
directly extended to consider the scenario where different procurement strategies
are available for different products. Secondly, another area of the future research
is the consideration of an environment with supply uncertainty in sourcing and to
investigate the effect of portfolio contract on managing supply uncertainty. Thirdly,
one extension of this chapter might be to study portfolio contract model with
demand updating in multi-stage settings. In addition, the demands for the multiple
products are independent of one another in our study, an interesting and challenging
extension is to consider the model in which the multiple products are substituted
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to some extent and thus the respective demands are correlated. Finally, it will
be a significant issue to consider the model with the horizontal and/or vertical
competition in the supply chain, and some topics of this extension have been
investigated in a working paper of ours.
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Appendix:

Proof of Proposition 2. To prove this proposition, we consider two cases, respec-
tively:

(1) λ > min
{

pi
ci
− 1, pi−wi

vi
− 1

}
, (2) λ ≤ min

{
pi
ci
− 1, pi−wi

vi
− 1

}
.

Case (1): The condition λ > min
{

pi
ci
− 1, pi−wi

vi
− 1

}
holds only if pi − ci < λ ci or

pi −wi − vi < λ vi.
If pi−ci < λ ci, then we have (pi−si)Fi(xi)<αi from (16.5). (pi−si)Fi(xi)<αi

and αixi = 0 implies x̃λ
i = 0.

If pi − wi − vi < λ vi, then we have (pi − wi)Fi(yi) < βi from (16.6). (pi −
wi)Fi(yi)< βi and βiyi = 0 implies ỹλ

i = 0.
If pi − ci < λ ci and pi −wi − vi ≥ λ vi, substituting x̃λ

i = 0 into (16.6), we have
(pi−wi)Fi(yi)≥ βi. (pi−wi)Fi(yi)≥ βi and βiyi = 0 implies β̃ λ

i = 0. Then we have

ỹλ
i = F−1

i

(
pi−wi−(1+λ )vi

pi−wi

)
from (16.6).

If pi −wi − vi < λ vi and pi − ci ≥ λ ci, substituting ỹλ
i = 0 into (16.5), we have

(pi− si)Fi(xi)≥ αi. (pi − si)Fi(xi)≥ αi and αixi = 0 implies α̃λ
i = 0. Then we have

x̃λ
i = F−1

i

(
pi−(1+λ )ci

pi−si

)
from (16.5).

Thus, x̃λ
i = F−1

i

(( pi−(1+λ )ci
pi−si

)+)
, and ỹλ

i = F−1
i

(( pi−wi−(1+λ )vi
pi−wi

)+)
if λ >

min
{

pi
ci
− 1, pi−wi

vi
− 1

}
.

Case (2): According to (16.6), we have xi + yi = F−1
i

(
pi−wi−(1+λ )vi+βi

pi−wi

)
. Sub-

stituting it into (16.5), we have xi = F−1
i

(
wi−(1+λ )(ci−vi)+αi−βi

wi−si

)
. The condition

λ ≤ min
{

pi
ci
− 1, pi−wi

vi
− 1

}
implies pi − ci ≥ λ ci and pi −wi − vi ≥ λ vi.
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In this case, we consider three subcases:

(2.1)
pi − (1+λ )ci

pi − si
<

pi −wi − (1+λ )vi

pi −wi
,

(2.2)
pi −wi − (1+λ )vi

pi −wi
<

pi − (1+λ )ci

pi − si
,

(2.3)
pi −wi − (1+λ )vi

pi −wi
=

pi − (1+λ )ci

pi − si
.

Subcase (2.1): In this case, we have wi−(1+λ )(ci−vi)
wi−si

< pi−(1+λ )ci
pi−si

< pi−wi−(1+λ )vi
pi−wi

.
By combining (16.5) and (16.6), we have wi − (1 + λ )(ci − vi) − βi = (wi −
si)Fi(xi)−αi.

If wi − (1+λ )(ci − vi) < 0, then we have (wi − si)Fi(xi) < αi. (wi − si)Fi(xi) <
αi and αixi = 0 implies x̃λ

i = 0. Substituting x̃λ
i = 0 into (16.6), we have (pi −

wi)Fi(yi) > βi. (pi −wi)Fi(yi) > βi and βiyi = 0 implies β̃ λ
i = 0. Then we have

ỹλ
i = F−1

i

(
pi−wi−(1+λ )vi

pi−wi

)
from (16.6).

If wi−(1+λ )(ci−vi)≥ 0, then wi−(1+λ )(ci−vi) = (wi−si)Fi(xi)−αi+βi ≥
0. Since pi−wi−(1+λ )vi > 0, there must be xi+yi > 0. According to αixi+βiyi =
0, we know αiβi = 0. If βi = 0, then (wi − si)Fi(xi)−αi ≥ 0 and αixi = 0 implies
αi = 0. If αi = 0, then xi+yi > xi implies yi > 0, and then βi = 0. Thus α̃λ

i = β̃ λ
i = 0,

and

x̃λ
i = F−1

i

(
wi − (1+λ )(ci− vi)

wi − si

)
,

ỹλ
i = F−1

i

(
pi −wi − (1+λ )vi

pi −wi

)
−F−1

i

(
wi − (1+λ )(ci− vi)

wi − si

)
.

These results in subcase (2.1) can be rewritten as:

x̃λ
i = F−1

i

((
wi − (1+λ )(ci− vi)

wi − si

)+
)
,

ỹλ
i = F−1

i

(
pi −wi − (1+λ )vi

pi −wi

)
−F−1

i

((
wi − (1+λ )(ci− vi)

wi − si

)+
)
,

if λ ≤ min
{

pi
ci
− 1, pi−wi

vi
− 1

}
and pi−(1+λ )ci

pi−si
< pi−wi−(1+λ )vi

pi−wi
.

Subcase (2.2): In this case, we have pi−wi−(1+λ )vi
pi−wi

< pi−(1+λ )ci
pi−si

< wi−(1+λ )(ci−vi)
wi−si

.

xi+yi ≥ xi requires β̃ λ
i > 0, and, hence, ỹλ

i = 0. Since x̃λ
i = F−1

i

( pi−wi−(1+λ )vi+β̃ λ
i

pi−wi

)
> 0,αixi = 0 implies α̃λ

i = 0.
wi−(1+λ )(ci−vi)−β̃ λ

i
wi−si

=
pi−wi−(1+λ )vi+β̃ λ

i
pi−wi

implies
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β̃ λ
i =

(pi −wi)(wi − si)

pi − si

(
wi − (1+λ )(ci− vi)

wi − si
− pi −wi − (1+λ )vi

pi −wi

)
.

Substituting it into x̃λ
i , we have x̃λ

i = F−1
i

(
pi−(1+λ )ci

pi−si

)
.

Subcase (2.3): In this case, we have pi−wi−(1+λ )vi
pi−wi

= pi−(1+λ )ci
pi−si

= wi−(1+λ )(ci−vi)
wi−si

. If
αi > 0 and βi = 0, then xi + yi < xi, it is in contradiction with xi + yi ≥ xi. If αi = 0
and βi > 0, then xi < xi + yi, and, hence, yi > 0; It is in contradiction with βiyi = 0.
If αi > 0 and βi > 0, then xi + yi > 0, and, hence, αixi +βiyi �= 0, which violates
the slackness condition. Thus, there must be α̃λ

i = β̃ λ
i = 0, then x̃λ

i + ỹλ
i = x̃λ

i , and

ỹλ
i = 0, x̃λ

i = F−1
i

(
pi−(1+λ )ci

pi−si

)
.

Thus, the results in subcases (2.2) and (2.3) are both x̃λ
i = F−1

i

(
pi−(1+λ )ci

pi−si

)
, and

ỹλ
i = 0, if λ ≤ min

{
pi
ci
− 1, pi−wi

vi
− 1

}
and pi−wi−(1+λ )vi

pi−wi
≤ pi−(1+λ )ci

pi−si
.

In summary, all these results in the three subcases can be generalized as the
equations in Proposition 2. �

Proof of Proposition 4. To prove this proposition, we first cite the following results
from the proof of Proposition 2:

(a) If λ > min
{ pi

ci
− 1, pi−wi

vi
− 1

}
, then x̃λ

i = F−1
i

(( pi−(1+λ )ci
pi−si

)+)
, and ỹλ

i =

F−1
i

(( pi−wi−(1+λ )vi
pi−wi

)+)
;

(b) If λ ≤ min
{

pi
ci
− 1, pi−wi

vi
− 1

}
and pi−(1+λ )ci

pi−si
< pi−wi−(1+λ )vi

pi−wi
, then

x̃λ
i = F−1

i

((
wi − (1+λ )(ci− vi)

wi − si

)+
)
, ỹλ

i = F−1
i

(
pi −wi − (1+λ )vi

pi −wi

)

−F−1
i

((
wi − (1+λ )(ci− vi)

wi − si

)+
)

;

(c) If λ ≤ min
{

pi
ci
− 1, pi−wi

vi
− 1

}
and pi−wi−(1+λ )vi

pi−wi
≤ pi−(1+λ )ci

pi−si
, then

x̃λ
i = F−1

i

(
pi − (1+λ )ci

pi − si

)
, ỹλ

i = 0.

Under case (a) or (c), the result in this proposition is obvious. Under case (b), we
have x̃λ

i = F−1
i

((wi−(1+λ )(ci−vi)
wi−si

)+)
and x̃λ

i + ỹλ
i = F−1

i

( pi−wi−(1+λ )vi
pi−wi

)
. Thus

cix̃λ
i + viỹλ

i = (ci − vi)x̃λ
i + vi(x̃λ

i + ỹλ
i ) is nonincreasing in λ . �
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