
Chapter 2
The Seven Pillars of the Analytic
Hierarchy Process

2.1 Introduction

The Analytic Hierarchy Process (AHP) provides the objective mathematics to
process the inescapably subjective and personal preferences of an individual or a
group in making a decision. With the AHP and its generalization, the Analytic
Network Process (ANP), one constructs hierarchies or feedback networks, then
makes judgments or performs measurements on pairs of elements with respect to a
controlling element to derive ratio scales that are then synthesized throughout the
structure to select the best alternative.

Fundamentally, the AHP works by developing priorities for alternatives and the
criteria used to judge the alternatives. Usually the criteria, whose choice is at the
mercy of the understanding of the decision-maker (irrelevant criteria are those that
are not included in the hierarchy), are measured on different scales, such as weight
and length, or are even intangible for which no scales yet exist. Measurements on
different scales, of course, cannot be directly combined. First, priorities are derived
for the criteria in terms of their importance to achieve the goal, then priorities are
derived for the performance of the alternatives on each criterion. These priorities
are derived based on pairwise assessments using judgment, or ratios of measure-
ments from a scale if one exists. The process of prioritization solves the problem of
having to deal with different types of scales, by interpreting their significance to
the values of the user or users. Finally, a weighting and adding process is used to
obtain overall priorities for the alternatives as to how they contribute to the goal.
This weighting and adding parallels what one would have done arithmetically prior
to the AHP to combine alternatives measured under several criteria having the
same scale (a scale that is often common to several criteria is money) to obtain an
overall result. With the AHP a multidimensional scaling problem is thus trans-
formed to a unidimensional scaling problem.
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The seven pillars of the AHP are: (1) Ratio scales, proportionality, and
normalized ratio scales are central to the generation and synthesis of priorities,
whether in the AHP or in any multicriteria method that needs to integrate existing
ratio scale measurements with its own derived scales; in addition, ratio scales are the
only way to generalize a decision theory to the case of dependence and feedback
because ratio scales can be both multiplied, and added—when they belong to the
same scale such as a priority scale; when two judges arrive at two different ratio scales
for the same problem one needs to test the compatibility of their answers and accept
or reject their closeness. The AHP has a non-statistical index for doing this. Ratio
scales can also be used to make decisions within an even more general framework
involving several hierarchies for benefits, costs, opportunities and risks, and using a
common criterion such as economic to ensure commensurability; ratio scales are
essential in proportionate resource allocation as in linear programming, recently
generalized to deal with relative measurement for both the objective function and the
constraints obtaining a ratio scale solution vector form which it is possible to decide
on the relative values of the allocated resources; one can associate with each alter-
native a vector of benefits, costs, time of completion, etc., to determine the best
alternative subject to all these general concerns; (2) Reciprocal paired comparisons
are used to express judgments semantically automatically linking them to a
numerical fundamental scale of absolute numbers (derived from stimulus response
relations) from which the principal eigenvector of priorities is then derived; the
eigenvector shows the dominance of each element with respect to the other elements;
an element that does not have a particular property is automatically assigned the
value zero in the eigenvector without including it in the comparisons; dominance
along all possible paths is obtained by raising the matrix to powers and normalizing
the sum of the rows; inconsistency in judgment is allowed and a measure for it is
provided which can direct the decision maker in both improving judgment and
arriving at a better understanding of the problem; scientific procedures for giving less
than the full set of n(n - 1)/2 judgments in a matrix have been developed; using
interval judgments eventually leading to the use of optimization and statistical
procedures is a complex process which is often replaced by comparing ranges of
values of the criteria, performing sensitivity analysis, and relying on conditions for
the insensitivity of the eigenvector to perturbations in the judgments; the judgments
may be considered as random variables with probability distributions; the AHP has at
least three modes for arriving at a ranking of the alternatives: (a) Relative, which
ranks a few alternatives by comparing them in pairs and is particularly useful in new
and exploratory decisions, (b) Absolute, which rates an unlimited number of alter-
natives one at a time on intensity scales constructed separately for each covering
criterion and is particularly useful in decisions where there is considerable knowl-
edge to judge the relative importance of the intensities and develop priorities for
them; if desired, a few of the top rated alternatives can then be compared against each
other using the relative mode to obtain further refinement of the priorities; (c)
Benchmarking, which ranks alternatives by including a known alternative in the
group and comparing the other against it; (3) Sensitivity of the principal right
eigenvector to perturbation in judgments limits the number of elements in each set of
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comparisons to a few and requires that they be homogeneous; the left eigenvector is
only meaningful as reciprocal; due to the choice of a unit as one of the two elements in
each paired comparison to determine the relative dominance of the second element, it
is not possible to derive the principal left eigenvector directly from paired compar-
isons as the dominant element cannot be decomposed a priori; as a result, to ask for
how much less one element is than another we must take the reciprocal of what we get
by asking how much more the larger element is; (4) Homogeneity and clustering are
used to extend the fundamental scale gradually from cluster to adjacent cluster,
eventually enlarging the scale from 1–9 to 1–?; (5) Synthesis that can be extended
to dependence and feedback is applied to the derived ratio scales to create a
uni-dimensional ratio scale for representing the overall outcome. Synthesis of the
scales derived in the decision structure can only be made to yield correct outcomes on
known scales by additive weighting. It should be carefully noted that additive
weighting in a hierarchical structure leads to a multilinear form and hence is non-
linear. It is known that under very general conditions such multilinear forms are
dense in general function spaces (discrete or continuous), and thus linear combina-
tions of them can be used to approximate arbitrarily close to any nonlinear element in
that space. Multiplicative weighting, by raising the priorities of the alternatives to the
power of the priorities of the criteria (which it determines through additive
weighting!) then multiplying the results, has four major flaws: (a) It does not give
back weights of existing same ratio scale measurements on several criteria as it
should; (b) It assumes that the matrix of judgments is always consistent, thus
sacrificing the idea of inconsistency and how to deal with it, and not allowing
redundancy of judgments to improve validity about the real world; (c) Most criti-
cally, it does not generalize to the case of interdependence and feedback, as the AHP
generalizes to the Analytic Network Process (ANP), so essential for the many
decision problems in which the criteria and alternatives depend on each other; (d) It
always preserves rank which leads to unreasonable outcomes and contradicts the
many counterexamples that show rank reversals should be allowed; (6) Rank
preservation and reversal can be shown to occur without adding or deleting criteria,
such as by simply introducing enough copies of an alternative or for numerous other
reasons; this leaves no doubt that rank reversal is as intrinsic to decision making as
rank preservation also is; it follows that any decision theory must have at least two
modes of synthesis; in the AHP they are called the distributive and ideal modes, with
guidelines for which mode to use; rank can always be preserved by using the ideal
mode in both absolute measurement and relative measurement; (7) Group judg-
ments must be integrated one at a time carefully and mathematically, taking into
consideration when desired the experience, knowledge, and power of each person
involved in the decision, without the need to force consensus, or to use majority or
other ordinal ways of voting; the theorem regarding the impossibility of constructing
a social utility function from individual utilities that satisfies four reasonable
conditions which found their validity with ordinal preferences is no longer true when
cardinal ratio scale preferences are used as in the AHP. Instead, one has the possi-
bility of constructing such a function. To deal with a large group requires the use of
questionnaires and statistical procedures for large samples.
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2.2 Ratio Scales

A ratio is the relative value or quotient a/b of two quantities a and b of the same kind;
it is called commensurate if it is a rational number, otherwise it is incommensurate.
A statement of the equality of two ratios a/b and c/d is called proportionality. A ratio
scale is a set of numbers that is invariant under a similarity transformation (multi-
plication by a positive constant). The constant cancels when the ratio of any two
numbers is formed. Either pounds or kilograms can be used to measure weight, but
the ratio of the weight of two objects is the same for both scales. An extension of this
idea is that the weights of an entire set of objects whether in pounds or in kilograms
can be standardized to read the same by normalizing. In general if the readings from
a ratio scale are awi

*, i = 1,…,n, the standard form is given by wi = awi
*/awi

* = wi
*/

wi
* as a result of which we have wi = 1, and the wi, i = 1,…,n, are said to be

normalized. We no longer need to specify whether weight for example is given in
pounds or in kilograms or in another kind of unit. The weights (2.21, 4.42) in pounds
and (1, 2) in kilograms, are both given by (1/3, 2/3) in the standard ratio scale form.

The relative ratio scale derived from a pairwise comparison reciprocal matrix of
judgments is derived by solving:

Xn

j¼1

aij wj ¼ kmax wi ð2:1Þ

Xn

i¼1

wi ¼ 1 ð2:2Þ

with aji = 1/aij or aij aji = 1 (the reciprocal property), a ij [ 0 (thus A is known as
a positive matrix) whose solution, known as the principal right eigenvector, is
normalized as in (2.2). A relative ratio scale does not need a unit of measurement.

When aij ajk = aik, the matrix A = (aij) is said to be consistent and its principal
eigenvalue is equal to n. Otherwise, it is simply reciprocal. The general eigenvalue
formulation given in (2.1) is obtained by perturbation of the following consistent
formulation:

A1 � � � An

Aw ¼

A1
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.
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wn

..

. . .
. ..

.

wn
w1

. . . wn
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w1

..

.

wn
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¼ n

w1

..

.

wn

2
666664

3
777775
¼ nw:

where A has been multiplied on the right by the transpose of the vector of weights
w = (w1,…,wn). The result of this multiplication is nw. Thus, to recover the scale
from the matrix of ratios, one must solve the problem Aw = nw or (A - nI)w = 0.
This is a system of homogeneous linear equations. It has a nontrivial solution if and
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only if the determinant of A - nI vanishes, that is, n is an eigenvalue of A. Now
A has unit rank since every row is a constant multiple of the first row. Thus all its
eigenvalues except one are zero. The sum of the eigenvalues of a matrix is equal to
its trace, that is, the sum of its diagonal elements. In this case the trace of A is equal
to n. Thus n is an eigenvalue of A, and one has a nontrivial solution. The solution
consists of positive entries and is unique to within a multiplicative constant.

The discrete formulation given in (2.1) and (2.2) above generalizes to the
continuous case through Fredholm’s integral equation of the second kind and is
given by:

Zb

a

Kðs; tÞwðtÞdt ¼ kmax wðsÞ ð2:3Þ

k
Zb

a

Kðs; tÞwðtÞdt ¼ wðsÞ ð2:4Þ

Zb

a

wðsÞds ¼ 1 ð2:5Þ

where instead of the matrix A we have as a positive kernel, K(s,t) [ 0. Note that the
entries in a matrix depend on the two variables i and j which assume discrete values.
Thus the matrix itself depends on these discrete variables, and its generalization, the
kernel function also depends on two (continuous) variables. The reason for calling it
kernel is the role it plays in the integral, where without knowing it we cannot determine
the exact form of the solution. The standard way in which (2.3) is written is to move the
eigenvalue to the left hand side which gives it the reciprocal form. In general, by abuse
of notation, one continues to use the symbol k to represent the reciprocal value. Our
equation for response to a stimulus is now written in the standard form (2.4) with the
normalization condition (2.5). Here also, we have the reciprocal property (2.6) and as
in the finite case, the kernel K(s,t) is consistent if it satisfies the relation (2.7):

K s; tð ÞK t; sð Þ ¼ 1 ð2:6Þ

K s; tð ÞK t; uð Þ ¼ K s; uð Þ; for all s; t; and u ð2:7Þ

An example of this type of kernel is K(s,t) = es-t = es/et. It follows by putting
s = t = u, that K(s,s) = 1 for all s which is analogous to having ones down the
diagonal of the matrix in the discrete case. A value of k for which
Fredholm = sequation has a nonzero solution w(t) is called a characteristic value
(or its reciprocal is called an eigenvalue) and the corresponding solution is called
an eigenfunction. An eigenfunction is determined to within a multiplicative con-
stant. If w(t) is an eigenfunction corresponding to the charateristic value k and if
C is an arbitrary constant, we can easily see by substituting in the equation that
Cw(t) is also an eigenfunction corresponding to the same k. The value k = 0 is not
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a characteristic value because we have the corresponding solution w(t) = 0 for
every value of t, which is the trivial case, excluded in our discussion.

It may be useful to recount a little of the history of how Fredholm’s equation
came about in the ratio scale formulation of the AHP. My student Hasan
Ait-Kaci and I first recognized the connection between Fredholm’s equation and
the AHP in a paper we wrote in the late 1970s. In the early 1980s, I and my
friend and colleague, Professor Luis Vargas, used this formulation in the
framework of neural firing and published several papers on the subject.
In December of 1996, I had the nagging idea that the ratio scale relation for
electrical firing was not reflected in our solution, and that periodicity had to be
involved in the solution with which I began. Many researchers on the brain had
considered neural firing in the framework of a damped periodic oscillator. It was
my friend Janos Aczel, the leading functional equation mathematician in the
world, who provided me with a variety of solutions for the functional equation
(w(as) = bw(s)). I had proved in the theorem given below that this equation
characterizes the solution of Fredholm’s equation and its solution is an eigen-
function of that equation. My work is an extension of the work I had done earlier
with Vargas. The solution has the form of a damped periodic oscillator of period
one. It has an additional logarithmic property that corresponds to Fechner’s law
discussed later in this paper.

A matrix is consistent if and only if it has the form A = (wi/wj) which is equivalent
to multiplying a column vector that is the transpose of (w1 ,…, wn) by the row vector
(1/w1 ,…, 1/wn). As we see below, the kernel K(s,t) is separable and can be written as

K s; tð Þ ¼ k1 sð Þk2 tð Þ:

Theorem K(s,t) is consistent if and only if it is separable of the form:

K s; tð Þ ¼ k sð Þ=k tð Þ: ð2:8Þ

Theorem If K(s,t) is consistent, the solution of (2.4) is given by

wðsÞ ¼ kðsÞ
Z

S

kðsÞds
: ð2:9Þ

In the discrete case, the normalized eigenvector was independent of whether all
the elements of the pairwise comparison matrix A are multiplied by the same
constant a or not, and thus we can replace A by aA and obtain the same eigen-
vector. Generalizing this result we have:

K as; atð Þ ¼ aK s; tð Þ ¼ k asð Þ=k atð Þ ¼ a k sð Þ=k tð Þ

which means that K is a homogeneous function of order one. In general, when
f (ax1,…,axn) = an f (x1,…,xn) holds, f is said to be homogeneous of order n. Because
K is a degenerate kernel, we can replace k(s) above by k(as) and obtain w(as). We
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have now derived from considerations of ratio scales the following condition to be
satisfied by a ratio scale:

Theorem A necessary and sufficient condition for w(s) to be an eigenfunction
solution of Fredholm’s equation of the second kind, with a consistent kernel that is
homogeneous of order one, is that it satisfy the functional equation

w asð Þ ¼ bw sð Þ

where b = aa.

We have for the general damped periodic response function w(s),

wðsÞ ¼ Celog b log s

log a
P

log s

log a

� �

where P is periodic of period 1 and P(0) = 1.
We can write this solution as

v uð Þ ¼ C1e�buP uð Þ

where P(u) is periodic of period 1, u = log s/log a and log ab/-b, b[ 0. It is
interesting to observe the logarithmic function appear as part of the solution. It gives
greater confirmation to the Weber–Fechner law developed in the next section.

2.3 Paired Comparisons and the Fundamental Scale

Instead of assigning two numbers wi and wj and forming the ratio wi/wj we assign
a single number drawn from the fundamental 1–9 scale of absolute numbers to
represent the ratio (wi/wj)/1. It is a nearest integer approximation to the ratio wi/wj.
The derived scale will reveal what the wi and wj are. This is a central fact about the
relative measurement approach of the AHP and the need for a fundamental scale.

In 1846 Weber found, for example, that people while holding in their hand dif-
ferent weights, could distinguish between a weight of 20 g and a weight of 21 g, but
could not if the second weight is only 20.5 g. On the other hand, while they could not
distinguish between 40 and 41 g, they could between 40 and 42 g, and so on at higher
levels. We need to increase a stimulus s by a minimum amount Ds to reach a point
where our senses can first discriminate between s and s ? Ds. Ds is called the just
noticeable difference (jnd). The ratio r = Ds/s does not depend on s. Weber’s law
states that change in sensation is noticed when the stimulus is increased by a constant
percentage of the stimulus itself. This law holds in ranges where Ds is small when
compared with s, and hence in practice it fails to hold when s is either too small or too
large. Aggregating or decomposing stimuli as needed into clusters or hierarchy levels
is an effective way for extending the uses of this law.

In 1860 Fechner considered a sequence of just noticeable increasing stimuli. He
denotes the first one by s0. The next just noticeable stimulus is given by
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s1 ¼ s1 þ Ds0 ¼ s0 þ
D s0

s0
s0 ¼ s0ð1þ rÞ

based on Weber‘s law.

Similarly s2 ¼ s1þD s1 ¼ s1ð1þ rÞ ¼ s0ð1þ r Þ2 � s0 a2 : In general
sn ¼ sn�1 a ¼ s0 anðn ¼ 0; 1; 2; . . .Þ:

Thus stimuli of noticeable differences follow sequentially in a geometric pro-
gression. Fechner noted that the corresponding sensations should follow each other
in an arithmetic sequence at the discrete points at which just noticeable differences

occur. But the latter are obtained when we solve for n. We have n ¼ ðlog sn �log s0Þ
loga and

sensation is a linear function of the logarithm of the stimulus. Thus if M denotes the
sensation and s the stimulus, the psychophysical law of Weber–Fechner is given by

M ¼ a log sþ b; a 6¼ 0:

We assume that the stimuli arise in making pairwise comparisons of relatively
comparable activities. We are interested in responses whose numerical values are
in the form of ratios. Thus b = 0, from which we must have log s0 = 0 or s0 = 1,
which is possible by calibrating a unit stimulus. Here the unit stimulus is s0. The
next noticeable stimulus is s1 ¼ s0 a ¼ a which yields the second noticeable
response a log a. The third noticeable stimulus is s2 ¼ s0 a2 which yields a
response of 2a log a. Thus we have for the different responses:

M0 ¼ a log s0; M1 ¼ a log a; M2 ¼ 2a log a; . . .; Mn ¼ na log a:

While the noticeable ratio stimulus increases geometrically, the response to that
stimulus increases arithmetically. Note that M0 = 0 and there is no response. By
dividing each Mi by M1 we obtain the sequence of absolute numbers 1, 2, 3,… of the
fundamental 1–9 scale. Paired comparisons are made by identifying the less domi-
nant of two elements and using it as the unit of measurement. One then determines,
using the scale 1–9 or its verbal equivalent, how many times more the dominant
member of the pair is than this unit. In making paired comparisons, we use the nearest
integer approximation from the scale, relying on the insensitivity of the eigenvector
to small perturbations (discussed below). The reciprocal value is then automatically
used for the comparison of the less dominant element with the more dominant one.
Despite the foregoing derivation of the scale in the form of integers, someone might
think that other scale values would be better, for example using 1.3 in the place of 2.
Imagine comparing the magnitude of two people with respect to the magnitude of one
person and using 1.3 for how many there are instead of 2.

We note that there may be elements that are closer than 2 on the 1–9 scale, and we
need a variant of the foregoing. Among the elements that are close, we select the
smallest. Observe the incremental increases between that smallest one and the rest of
the elements in the close group. We now consider these increments to be new
elements and pairwise compare them on the scale 1–9. If two of the increments are
themselves closer than 2 we treat them as identical, assigning a 1 (we could carry this
on ad infinitum—but we will not). In the end each component of the eigenvector of

30 2 The Seven Pillars of the Analytic Hierarchy Process



comparisons of the increments is added to unity to yield the un-normalized priorities
of the close elements for that criterion. Note that only the least of these close elements
is used in comparisons with the other elements that can be compared directly using
the normal 1–9 scale. Its priority is used to multiply the priorities of these close
elements and finally the priorities of all the elements are re-normalized.

How large should the upper value of the scale be? Qualitatively, people have a
capacity to divide their response to stimuli into three categories: high, medium and
low. They also have the capacity to refine this division by further subdividing each
of these intensities of responses into high, medium and low, thus yielding in all
nine subdivisions. It turns out, from the requirement of homogeneity developed
below, that to maintain stability, our minds work with a few elements at a time.
Using a large number of elements in one matrix leads to greater inconsistency.

2.4 Sensitivity of the Principal Eigenvector Places a Limit
on the Number of Elements and Their Homogeneity

To a first order approximation, perturbation Dw1 in the principal eigenvector w1

due to a perturbation DA in the matrix A where A is consistent is given by:

D w1 ¼
Xn

j¼2

ðvT
j DA w1 =ðk1� kjÞ vT

j wjÞwj :

The eigenvector w1 is insensitive to perturbation in A, if the principal eigen-
value k1 is separated from the other eigenvalues kj, here assumed to be distinct,
and none of the products vj

T wj of left and right eigenvectors is small. We should
recall that the nonprincipal eigenvectors need not be positive in all components,
and they may be complex. One can show that all the vj

T wj are of the same order,
and that v1

T w1, the product of the normalized left and right principal eigenvectors
is equal to n. If n is relatively small and the elements being compared are
homogeneous, none of the components of w1 is arbitrarily small and corre-
spondingly, none of the components of v1

T is arbitrarily small. Their product cannot
be arbitrarily small, and thus w is insensitive to small perturbations of the con-
sistent matrix A. The conclusion is that n must be small, and one must compare
homogeneous elements. Later we discuss placing a limit on the value of n.

2.5 Clustering and Using Pivots to Extend the Scale
from 1–9 to 1–?

In Fig. 2.1, an unripe cherry tomato is eventually and indirectly compared with a
large watermelon by first comparing it with a small tomato and a lime, the lime is
then used again in a second cluster with a grapefruit and a honey dew where we then
divide by the weight of the lime and then multiply by its weight in the first cluster,
and then use the honey dew again in a third cluster and so on. In the end we have a
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comparison of the unripe cherry tomato with the large watermelon and would
accordingly extended the scale from 1–9 to 1–721.

Such clustering is essential, and must be done separately for each criterion. We
should note that in most decision problems, there may be one or two levels of clusters
and conceivably it may go up to three or four adjacent ranges of homogeneous
elements (Maslow put them in seven groupings). Very roughly we have in decreasing
order of importance: (1) Survival, health, family, friends and basic religious beliefs
some people were known to die for; (2) Career, education, productivity and lifestyle;
(3) Political and social beliefs and contributions; (4) Beliefs, ideas, and things that are
flexible and it does not matter exactly how one advocates or uses them. Nevertheless
one needs them, such as learning to eat with a fork or a chopstick or with the fingers as
many people do interchangeably. These categories can be generalized to a group, a
corporation, or a government. For very important decisions, two categories may need
to be considered. Note that the priorities in two adjacent categories would be suffi-
ciently different, one being an order of magnitude smaller than the other, that in the
synthesis, the priorities of the elements in the smaller set have little effect on the
decision. We do not have space to show how some undesirable elements can be
compared among themselves and gradually extended to compare them with desir-
able ones as above. Thus one can go from negatives to positives but keep the mea-
surement of the two types positive, by eventually clustering them separately.

Fig. 2.1 Clustering
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2.6 Synthesis: How to Combine Tangibles With
Intangibles—Additive Versus Multiplicative

Let H be a complete hierarchy with h levels. Let Bk be the priority matrix of the
kth level, k = 2,…, h. If W0 is the global priority vector of the pth level with
respect to some element z in the (p - 1)st level, then the priority vector W of the
qth level (p \ q) with respect to z is given by the multilinear (and thus non-
linear) form,

W ¼ Bq Bq�1 . . . Bpþ1 W 0:

The global priority vector of the lowest level with respect to the goal is given by,

W ¼ Bh Bh�1 . . . B2 W 0:

In general, W 0 ¼ 1: The sensitivity of the bottom level alternatives with respect to
changes in the weights of elements in any level can be studied by means of this
multilinear form.

Assume that a family is considering buying a house and there are three houses
to consider A, B, and C. Four factors dominate their thinking: the price of the
house, the remodeling costs, the size of the house as reflected by its footage and
the style of the house which is an intangible. They have looked at three houses
with numerical data shown below on the quantifiables (Fig. 2.2):

If we add the costs on price and modeling and normalize we obtain respectively
(A, B, C) = (0.269, 0.269, 0.462). Now let us see what is needed for normalization
to yield the same result.

First we normalize for each of the quantifiable factors. Then we must normalize
the factors measured with respect to a single scale (Fig. 2.3).

Choosing the Best House

Price
($1000)

Remodeling
Costs ($300)

Size
(sq. ft.)

Style

200
300
500

150
50
100

3000
2000
5500

Colonial
Ranch

Split Level

A
B
C

Fig. 2.2 Ranking houses on
four criteria

Choosing the Best House

Price
(1000/1300)

Remodeling
Costs (300/1300)

Size
(sq. ft.)

Style

200/1000
300/1000
500/1000

150/300
50/300

100/300

3000
2000
5500

Colonial
Ranch

Split Level

A
B
C

Fig. 2.3 Normalization of
the measurements
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Here we learn two important lessons to be used in the general approach.
Normalizing the alternatives for the two criteria involving money in terms of the
money involved on both criteria leads to relative weights of importance for the
criteria. Here for example Price is in the ratio of about three to one when compared
with Remodeling Cost and when compared with the latter with respect to the goal
of choosing the best house, it is likely to be assigned the value ‘‘moderate’’ which
is nearly three times more as indicated by the measurements. Here the criteria
Price and Remodeling Cost derive their priorities only from the alternatives
because they are equally important factors, although they can also acquire prior-
ities from higher level criteria as to their functional importance with respect to the
ease and availability of different amounts of money. We now combine the two
factors with a common scale by weighting and adding. We have (Fig. 2.4):

The left column and its decimal values in the second column give the exact
value of the normalized dollars spent on each house obtained by additive synthesis
(weighting and adding). By aggregating the two factor measured with dollars into
a single factor, one then makes the decision as to which house to buy by comparing
the three criteria as to their importance with respect to the goal.

The second lesson is that when the criteria have different measurements, their
importance cannot be determined from the bottom up through measurement of the
alternatives, but from the top down, in terms of the goal. The same process of
comparison of the criteria with respect to the goal is applied to all criteria if, despite
the presence of a physical scale, they are assumed to be measurable on different
scales as they might when actual values are unavailable or when it is thought that
such measurement does not reflect the relative importance of the alternatives with
respect to the given criterion. Imagine that no physical scale of any kind is known!
We might note in passing that the outcome of this process of comparison with
respect to higher level criteria yields meaningful (not arbitrary) results as noted by
two distinguished proponents of multi-attribute value theory (MAVT) Buede and
Maxwell [1], who wrote about their own experiments in decision making:

These experiments demonstrated that the MAVT and AHP techniques, when provided
with the same decision outcome data, very often identify the same alternatives as ‘best’.
The other techniques are noticeably less consistent with MAVT, the Fuzzy algorithm
being the least consistent.

Choosing the Best House

Economic Factors
(combining Price and 

Remodeling Cost)

Size
(sq. ft.) Style

350/1300
350/1300
600/1300

.269

.269

.462

3000/10500
2000/10500
5500/10500

Colonial
Ranch

Split Level

A
B
C

=
=
=

Additive
Synthesis

Multiplicative
Synthesis

.256

.272

.472

Fig. 2.4 Combining the two costs through additive or multiplicative syntheses
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Multiplicative synthesis, as in the third column of numbers above, done by raising
each number in the two columns in the previous table to the power of its criterion
measured in the relative total dollars under it, multiplying the two outcomes for each
alternative and normalizing, does not yield the exact answer obtained by adding
dollars! In addition, A and B should have the same value, but they do not with
multiplicative synthesis. The multiplicative ‘‘solution’’ devised for the fallacy of
always preserving rank and avoiding inconsistency fails, because it violates the most
basic of several requirements mentioned in the introduction to this paper.

Multiplicative and additive syntheses are related analytically through
approximation. If we denote by ai the priority of the ith criterion, i = 1,…,n, and
by xi, the priority of alternative x with respect to the ith criterion, then

Y
xi

ai ¼ exp log
Y

xi
ai ¼ expð

X
log xi

aiÞ ¼ expð
X

ailogxiÞ

� 1þ
X

ai logxi� 1þ
X
ðai xi� aiÞ ¼

X
ai xi

If desired, one can include a remainder term to estimate the error. With regard to
additive and multiplicative syntheses being close, one may think that in the end it
does not matter which one is used, but it does. Saaty and Hu [7] have shown that
despite such closeness on every matrix of consistent judgments in a decision, the
synthesized outcomes by the two methods not only lead to different final priorities
(which can cause a faulty allocation of resources) but more significantly to
different rankings of the alternatives. For all these problems, but more significantly
because it does not generalize to dependence and feedback even with consistency
guaranteed, and because of the additive nature of matrix multiplication needed to
compute feedback in network circuits to extend the AHP to the ANP, I do not
recommend ever using multiplicative synthesis. It can lead to an undesirable
ranking of the alternatives of a decision.

2.7 Rank Preservation and Reversal

Given the assumption that the alternatives of a decision are completely indepen-
dent of one another, can and should the introduction (deletion) of new (old)
alternatives change the rank of some alternatives without introducing new
(deleting old) criteria, so that a less preferred alternative becomes most preferred?
Incidentally, how one prioritizes the criteria and subcriteria is even more important
than how one does the alternatives which are themselves composites of criteria.
Can rank reverse among the criteria themselves if new criteria are introduced?
Why should that not be as critical a concern? The answer is simple. In its original
form utility theory assumed that criteria could not be weighted and the only
important elements in a decision were the alternatives and their utilities under the
various criteria. Today utility theorists imitate the AHP by rating, and some even
by comparing the criteria, somehow. There was no concern then about what would
happen to the ranks of the alternatives should the criteria weights themselves
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change as there were none. The tendency, even today, is to be unconcerned about
the theory of rank preservation and reversal among the criteria themselves.

The house example of the previous section teaches us an important lesson. If
we add a fourth house to the collection, the priority weights of the criteria Price
and Remodeling Cost would change accordingly. Thus the measurements of the
alternatives and their number, which we call structural factors, always affect the
importance of the criteria. When the criteria are incommensurate and their
functional priorities are determined in terms of yet higher level criteria or goals,
one must still weight such functional importance of the criteria by the structural
effect of the alternatives. What is significant in all this is that the importance of the
criteria always depends on the measurements of the alternatives. If we assume that
the alternatives are measured on a different scale for each criterion, it becomes
obvious that normalization is the instrument that provides the structural effect to
update the importance of the criteria in terms of what alternatives there are.
Finally, the priorities of the alternatives are weighted by the priorities of the
criteria that depend on the measurements of the alternatives. This implies that the
overall ranking of any alternative depends on the measurement and number of all
the alternatives. To always preserve rank means that the priorities of the criteria
should not depend on the measurements of the alternatives but should only derive
from their own functional importance with respect to higher goals. This implies
that the alternatives should not depend on the measurements of other alternatives.
Thus one way to always preserve rank is to rate the alternatives one at a time. In
the AHP this is done through absolute measurement with respect to a complete set
of intensity ranges with the largest value intensity value equal to one. It is also
possible to preserve rank in relative measurement by using an ideal alternative
with full value of one for each criterion.

The logic about what can or should happen to rank when the alternatives
depend on each other has always been that anything can happen. Thus, when the
criteria functionally depend on the alternatives, which implies that the alternatives,
which of course depend on the criteria, would then depend on the alternatives
themselves, rank may be allowed to reverse. The Analytic Network Process (ANP)
is the generalization of the AHP to deal with ranking alternatives when there is
functional dependence and feedback of any kind. Even here, one can have a
decision problem with dependence among the criteria, but with no dependence of
criteria on alternatives and rank may still need to be preserved. The ANP takes
care of functional dependence, but if the criteria do not depend on the alternatives,
the latter are kept out of the supermatrix and ranked precisely as they are dealt with
in a hierarchy [8].

Examples of rank reversal abound in practice, and they do not occur because
new criteria are introduced. The requirement that rank always be preserved or that
it should be preserved with respect to irrelevant alternatives. To every rule or
generalization that one may wish to set down about rank, it is possible to find a
counterexample that violates that rule. Here is the last and most extreme form of
four variants of an attempt to qualify what should happen to rank given by Luce
and Raiffa, each of which is followed by a counterexample. They state it but and
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then reject it. The addition of new acts to a decision problem under uncertainty
never changes old, originally non-optimal acts into optimal ones. The all-or-none
feature of the last form may seem a bit too stringent… a severe criticism is that it
yields unreasonable results. The AHP has a theory and implementation procedures
and guidelines for when to preserve rank and when to allow it to reverse. One
mode of the AHP allows an irrelevant alternative to cause reversal among the
ranks of the original alternatives.

2.7.1 Guidelines for Selecting the Distributive or Ideal Mode

The distributive mode of the AHP produces preference scores by normalizing the
performance scores; it takes the performance score received by each alternative
and divides it by the sum of performance scores of all alternatives under that
criterion. This means that with the Distributive mode the preference for any given
alternative would go up if we reduce the performance score of another alternative
or remove some alternatives.

The Ideal mode compares each performance score to a fixed benchmark such as
the performance of the best alternative under that criterion. This means that with the
Ideal mode the preference for any given alternative is independent of the perfor-
mance of other alternatives, except for the alternative selected as a benchmark. Saaty
and Vargas [11] have shown by using simulation, that there are only minor differ-
ences produced by the two synthesis modes. This means that the decision should
select one or the other if the results diverge beyond a given set of acceptable data.

The following guidelines were developed by Millet and Saaty [3] to reflect the
core differences in translating performance measures to preference measures of
alternatives. The Distributive (dominance) synthesis mode should be used when the
decision maker is concerned with the extent to which each alternative dominates all
other alternatives under the criterion. The Ideal (performance) synthesis mode
should be used when the decision maker is concerned with how well each alternative
performs relative to a fixed benchmark. In order for dominance to be an issue the
decision-maker should regard inferior alternatives as relevant even after the ranking
process is completed. This suggests a simple test for the use of the Distributive
mode: if the decision maker indicates that the preference for a top ranked alternative
under a given criterion would improve if the performance of any lower ranked
alternative was adjusted downward, then one should use the Distributive synthesis
mode. To make this test more actionable we can ask the decision maker to imagine
the amount of money he or she would be willing to pay for the top ranked alternative.
If the decision maker would be willing to pay more for a top ranked alternative after
learning that the performance of one of the lower-ranked alternatives was adjusted
downward, then the Distributive mode should be used.

Consider selecting a car: Two different decision makers may approach the same
problem from two different points of views even if the criteria and standards are the
same. The one who is interested in ‘‘getting a well performing car’’ should use the Ideal

2.7 Rank Preservation and Reversal 37



mode. The one who is interested in ‘‘getting a car that stands out’’ among the alter-
natives purchased by co-workers or neighbors, should use the Distributive mode.

2.8 Group Decision Making

Here we consider two issues in group decision making. The first is how to
aggregate individual judgments, and the second is how to construct a group choice
from individual choices.

2.8.1 How to Aggregate Individual Judgments

Let the function f(x1, x2,…, xn) for synthesizing the judgments given by n judges,
satisfy the

1. Separability condition (S): f(x1, x2,…,xn) = g(x1)g(x2)… g(xn) for all x1,
x2,…,xn in an interval P of positive numbers, where g is a function mapping P
onto a proper interval J and is a continuous, associative and cancellative
operation. [(S) means that the influences of the individual judgments can be
separated as above.]

2. Unanimity condition (U): f(x, x,…,x) = x for all x in P. [(U) means that if all
individuals give the same judgment x, that judgment should also be the syn-
thesized judgment.]

3. Homogeneity condition (H): f(ux1, ux2,…,uxn) = uf(x1, x2,…,xn) where u [ 0
and xk, uxk (k = 1,2,…,n) are all in P. [For ratio judgments (H) means that if all
individuals judge a ratio u times as large as another ratio, then the synthesized
judgment should also be u times as large.]

4. Power conditions (Pp): f(x1
p,x2

p,…,xn
p) = fp(x1, x2,…,xn). [(P2) for example

means that if the kth individual judges the length of a side of a square to be xk,
the synthesized judgment on the area of that square will be given by the square
of the synthesized judgment on the length of its side.]

Special case (R = P-1): f(1/x1, 1/x2,…,1/xn) = 1/f(x1, x2,…,xn). [(R) is of par-
ticular importance in ratio judgments. It means that the synthesized value of the
reciprocal of the individual judgments should be the reciprocal of the synthesized
value of the original judgments.]

Aczel and Saaty (see [9, 10]) proved the following theorem:

Theorem The general separable (S) synthesizing functions satisfying the una-
nimity (U) and homogeneity (H) conditions are the geometric mean and the root-
mean-power. If moreover the reciprocal property (R) is assumed even for a single
n-tuple (x1, x2,…,xn) of the judgments of n individuals, where not all xk are equal,
then only the geometric mean satisfies all the above conditions.
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In any rational consensus, those who know more should, accordingly, influence
the consensus more strongly than those who are less knowledgeable. Some people
are clearly wiser and more sensible in such matters than others, others may be
more powerful and their opinions should be given appropriately greater weight.
For such unequal importance of voters not all g’s in (S) are the same function. In
place of (S), the weighted separability property (WS) is now: f(x1,
x2,…,xn) = g1(x1)g2(x2)… gn(xn). [(WS) implies that not all judging individuals
have the same weight when the judgments are synthesized and the different
influences are reflected in the different functions (g1, g2,…,gn).]

In this situation, Aczel and Alsina (see [9]) proved the following theorem:

Theorem The general weighted-separable (WS) synthesizing functions with the
unanimity (U) and homogeneity (H) properties are the weighted geometric mean
f ðx1; x2; . . .; xnÞ ¼ xq1

1 xq2
2 . . . xqn

n and the weighted root-mean-powers

f ðx1; x2; . . .; xnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 xc

1þ q2 xc
2 . . .þ qn xc

n
c
p

; where q1 ? q2 ? … ? qn = 1,
qk [ 0 (k = 1,2,…,n), c [ 0, but otherwise q1,q2,…,qn, c are arbitrary constants.

If f also has the reciprocal property (R) and for a single set of entries
(x1,x2,…,xn) of judgments of n individuals, where not all xk are equal, then only
the weighted geometric mean applies. We give the following theorem which is an
explicit statement of the synthesis problem that follows from the previous results,
and applies to the second and third cases of the deterministic approach:

Theorem If xðiÞ1 ; . . .; xðiÞn i = 1,…, m are rankings of n alternatives by m inde-
pendent judges and if ai is the importance of judge i developed from a hierarchy

for evaluating the judges, and hence
Pm

i¼1
ai ¼ 1; then

Qm

i¼1
xai

l

� �
; . . .;

Qm

i¼1
xai

n

� �
are

the combined ranks of the alternatives for the m judges.

The power or priority of judge i is simply a replication of the judgment of that
judge (as if there are as many other judges as indicated by his/her power ai), which
implies multiplying his/her ratio by itself ai times, and the result follows.

The first requires knowledge of the functions which the particular alternative
performs and how well it compares with a standard or benchmark. The second
requires comparison with the other alternatives to determine its importance.

2.8.2 On the Construction of Group Choice
from Individual Choices

Given a group of individuals, a set of alternatives (with cardinality greater than (2),
and individual ordinal preferences for the alternatives, Arrow proved with his
Impossibility Theorem that it is impossible to derive a rational group choice
(construct a social choice function that aggregates individual preferences) from
ordinal preferences of the individuals that satisfy the following four conditions,
i.e., at least one of them is violated:
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Decisiveness: the aggregation procedure must generally produce a group order.
Unanimity: if all individuals prefer alternative A to alternative B, then the
aggregation procedure must produce a group order indicating that the group pre-
fers A to B.
Independence of irrelevant alternatives: given two sets of alternatives which both
include A and B, if all individuals prefer A to B in both sets, then the aggregation
procedure must produce a group order indicating that the group, given any of the
two sets of alternatives, prefers A to B.
No dictator: no single individual preferences determine the group order.

Using the ratio scale approach of the AHP, it can be shown that because now the
individual preferences are cardinal rather than ordinal, it is possible to derive a
rational group choice satisfying the above four conditions. It is possible because:
(a) Individual priority scales can always be derived from a set of pairwise cardinal
preference judgments as long as they form at least a minimal spanning tree in the
completely connected graph of the elements being compared; and (b) The cardinal
preference judgments associated with group choice belong to a ratio scale that
represents the relative intensity of the group preferences.
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