
Chapter 7
Conclusion and Future Lines of Research

7.1 Summary of Contributions

The main focus of this book has been the exploration and optimization of tree-based
and mesh-based FPGA architectures. The study’s purpose has been to find the ways
to improve the overall efficiency of FPGA architecture with or without compro-
mising their principle advantages. In this regard two distinct FPGA architectures
have been under consideration: one is the island-style while the other is hierarchi-
cal. Mesh-based (island-style) architecture is a known, well explored and thoroughly
investigated architecture. Tree-based (hierarchical) architecture, despite its good per-
formance, is relatively less explored FPGA architecture. The two architectures have
a lot in common in terms of basic logic and routing resources. However, the global
arrangement of logic and routing resources and the detailed interconnect topologies
of their switch blocks make them the two distinct architectures.

In this work a major study is carried out on the improvement of logic resource
usage in heterogeneous mesh-based and tree-based FPGA architectures. For this
purpose separate exploration environments are developed for the two architectures
that efficiently place and route certain number of heterogeneous benchmarks on them.
Although the primary objective of this work is not to establish the supremacy of one
architecture over the other, yet, a detailed comparison between the two architectures
is presented to highlight their advantages and disadvantages. Further, to improve
the routing resource usage, an exploration of tree-based homogeneous Application
Specific Inflexible FPGA (ASIF) is carried out and then its comparison with mesh-
based ASIF is performed to evaluate the two ASIFs. Tree-based ASIF is then extended
to heterogeneous domain where a detailed exploration of tree-based heterogeneous
ASIF and its comparison with mesh-based heterogeneous ASIF is performed.

Some of the major contributions of this book are as follows:

U. Farooq et al., Tree-Based Heterogeneous FPGA Architectures, 173
DOI: 10.1007/978-1-4614-3594-5_7,
© Springer Science+Business Media New York 2012

174 7 Conclusion and Future Lines of Research

7.1.1 Heterogeneous Tree-Based FPGA
Exploration Environment

Chapter 4 presented exploration environments for the exploration of heterogeneous
FPGA architectures. The highlight of the work presented in Chap. 4 includes a
new environment for tree-based heterogeneous FPGA architecture and an optimized
environment for mesh-based heterogeneous FPGA architecture [92]. A significant
amount of research work is already done regarding mesh-based heterogeneous archi-
tectures, but to the best of our knowledge all the previous work uses predetermined
floor-planning technique where hard-blocks are placed in fixed columns. Although
this kind of technique can be helpful for an easy and compact layout, it can lead
to the wastage of precious logic and routing resources and hence increased area.
This work presents an exploration environment for mesh-based FPGA that can opti-
mize automatically the floor-planning of the FPGA architecture for a given set of
applications.

A number of techniques are explored for both mesh-based and tree-based architec-
tures using their respective environments. The techniques of the two architectures are
then evaluated using the results that are obtained by mapping 21 benchmarks on the
two architectures. In order to have a profound analysis of the techniques, these bench-
marks are carefully selected to cover different inter-block communication trends. The
results obtained after the experimentation suggest that, for a mesh-based architec-
ture, the floor-planning technique based on the movement and rotation of logic and
hard-blocks gives the best results and is much better than the one where hard-blocks
are fixed in columns (i.e. the technique normally used in mesh-based architectures).
For 21 benchmarks, on average, a column based floor-planning takes 19% more
area, crosses 8% more switches on critical path, consumes 13% more memories and
20% more buffers than the best non-column floor-planning. Further, the compari-
son between different techniques of mesh-based and tree-based architecture shows
that, on average, the best technique of tree-based architecture is 8.7% more area
efficient, crosses 60% less switches on critical path, consumes 11% less memories
and almost same number of buffers than the best non-column based technique (i.e.
technique based on movement and rotation of logic and hard-blocks) of mesh-based
architecture. Also, the best technique of tree-based FPGA is 22% more area efficient
and crosses 62% less switches on critical path than the equivalent column-based
technique of mesh-based architecture. These results are averaged for 21 benchmarks
which cover different aspects of heterogeneous benchmarks.

7.1.2 Tree-Based ASIF Exploration

Chapter 5 presented a new tree-based homogeneous Application Specific Inflexible
FPGAs. If a digital product is required to provide multiple functionalities at exclusive
times, each distinct functionality represented by an application circuit is efficiently

http://dx.doi.org/10.1007/978-1-4614-3594-5_4
http://dx.doi.org/10.1007/978-1-4614-3594-5_4
http://dx.doi.org/10.1007/978-1-4614-3594-5_5

7.1 Summary of Contributions 175

mapped on an FPGA. Later, unused resources of the FPGA are removed to generate
an ASIF.

Conventional partitioning/placement and routing algorithms are designed for indi-
vidual netlists and they do not take into account the inter-netlist optimization. In this
work, however, we have modified these algorithms which has led to the exploration
of four ASIF generation techniques for tree-based architecture. These techniques
are divided on the basis of how each technique uses logic and routing resources of
the architecture. ASIF-NPNR, first of the four techniques, uses normal partition-
ing/placement and routing algorithms that are employed in FPGAs and this tech-
nique in general produces the worst results among the four techniques. ASIF-EPNR
employs efficient logic sharing technique to optimize the use of logic resources
among different netlists but uses normal routing algorithms. This technique produces
slightly better results when compared to ASIF-NPNR, but produces poor results com-
pared to other two techniques. ASIF-NPER is the third among the four techniques.
It uses no efficient logic sharing but employs efficient routing resource sharing and
results in a significant improvement over the first two techniques. ASIF-EPER is
the fourth and the most efficient technique as it uses both efficient logic sharing and
efficient routing and produces the best over all results.

Four ASIF generation techniques are explored for a set of 16 MCNC benchmarks
and comparison of these techniques with tree-based FPGA shows that the most
efficient ASIF generation technique (i.e. ASIF-EPER) is 64% more area efficient
than an equivalent tree-based FPGA. Further the exploration of LUT and arity size
on tree-based ASIF shows that smaller LUTs with larger arity sizes give better area
results whereas larger LUTs with larger arity sizes give better performance results.
The area-delay product of different LUT-arity combinations reveals that an ASIF
with LUT size 4 and arity size 16 produces the most efficient results.

Later the comparison between the best techniques of tree-based and mesh-based
ASIFs is performed. For tree-based ASIF, LUT 4 arity 16 combination is used while
for mesh-based ASIF LUT 4 is used. The two ASIFs are compared over a range
of varying signal bandwidth and the results show that the best tree-based ASIF is
12%, 77% more efficient than the best mesh-based ASIF in terms of routing area and
number of wires used.

The quality analysis of ASIF generation method is performed by generating an
ASIF for a group of netlists for which an ideal ASIF solution is known. So, an
ASIF is generated for same set of netlists. The quality analysis of tree-based ASIF
reveals that ASIF-EPER produces much worse results than ideal solution. The major
cause of these results is the heuristic based partitioning algorithm. New partitioning
techniques need to be explored to further improve area of a tree-based ASIF. Further
a quality comparison between mesh-based and tree-based ASIFs reveals that for a
group of 10 similar netlists, tree-based ASIF is 33% more area efficient than mesh-
based ASIF.

In Chap. 6, a new tree-based heterogeneous ASIF is presented. Similar to tree-
based homogeneous ASIF, four ASIF generation techniques are explored for 17 open
core benchmarks. Based on the types of hard-blocks used, benchmarks are divided
into two sets where first set contains 8 benchmarks each of which contains a mixture

http://dx.doi.org/10.1007/978-1-4614-3594-5_6

176 7 Conclusion and Future Lines of Research

of multipliers and logic blocks (SET I) and second set contains 9 benchmarks where
each benchmark contains a mixture of multipliers and adders along with logic blocks
(SET II). Comparison of different techniques with tree-based FPGA shows that the
most efficient ASIF generation technique (i.e. ASIF-EPER) is 64%, 75% more area
efficient than an equivalent tree-based FPGA for SET I and SET II respectively.
Further the exploration of LUT and arity size on tree-based ASIF shows that an ASIF
with LUT size 4 and arity size 16 produces the most efficient area-delay results for
SET I and an ASIF with LUT size 3 and arity size 16 produces the most efficient
area-delay results for SET II. Comparison of tree-based ASIF with mesh-based ASIF
reveals that the best tree-based ASIF is 11.27% better and 1.5% worse than the best
mesh-based ASIF in terms of area for SET I and SET II respectively. Further the
wire comparison of mesh-based and tree-based ASIFs shows that tree-based ASIF
consumes 69%, 70% less wires than mesh-based ASIF for SET I and SET II. Finally
the quality analysis of two architectures reveals that for a group of 10 similar netlists,
tree-based ASIF is 19%, 20% more area efficient than mesh-based ASIF for SET I
and SET II benchmarks respectively.

7.1.3 FPGA and ASIF Hardware Generation for Tree-Based
Architecture

Chapters 3 and 5 presented new FPGA and ASIF hardware generation models for
tree-based architecture. These two chapters also included the description for hardware
generation of mesh-based architecture. The FPGA and ASIF hardware generation
models are similar, however, necessary modifications are made in the two models to
meet the respective needs of FPGA and ASIF architectures. The hardware generator
is integrated with the exploration environment. So the major benefit is that all the
architecture level changes in the exploration environment are directly translated in
VHDL model. The VHDL model of an FPGA and ASIF is generated for multiple
netlists. Layout is performed for FPGAs and ASIFs using 130 nm 6-metal layer
CMOS process of ST Microelectronics.

Chapter 6 presented the layout comparison results between tree-based heteroge-
neous ASIF and sum of ASICs. The results showed that for a group of 9 netlists
(SET II), sum of ASICs is 40% smaller than ASIF. However, the area of ASIF is
affected by the use of LATCH cells instead of SRAMs and the gap between ASIF
and sum of ASICs can be reduced by replacing LATCH cells with SRAMs. Further
the area of ASIF can be improved by performing full-custom design of repeatedly
used cells in the architecture.

http://dx.doi.org/10.1007/978-1-4614-3594-5_3
http://dx.doi.org/10.1007/978-1-4614-3594-5_5
http://dx.doi.org/10.1007/978-1-4614-3594-5_6

7.2 Suggestions for Future Research 177

7.2 Suggestions for Future Research

In this work, we explored a number of techniques for heterogeneous tree-based and
mesh-based FPGA architectures. Also we improved the density of FPGA architec-
tures by customizing them for a pre-determined set of applications. However, there
are a number of aspects that are unexplored yet and a thorough study is required
to explore those aspects and in turn further improve the efficiency of FPGA archi-
tectures. Some of the suggestions for future research are described below. These
suggestions are applicable to both mesh-based and tree-based architectures unless
otherwise specified.

7.2.1 Datapath Oriented FPGA Architectures

During past few years FPGAs have seen a rapid growth in their logic capacity which
has led to the increasing use of FPGAs for the implementation of arithmetic-intensive
applications. Arithmetic-intensive applications often contain large portion of data-
path circuits. Datapath circuits usually contain hard-blocks (e.g. multipliers, adders,
memories etc.) that are connected together by regularly structured signals called
buses. Conventional FPGAs do not use the regularity of datapath circuits. So it is
possible to modify the conventional FPGA architectures to exploit the regularity of
datapath circuits and achieve significant area savings.

Although some work has been done in this regard for mesh-based homogeneous
architecture [127], but to the best of our knowledge no work has been done yet in
heterogeneous domain neither for mesh-based nor for tree-based architecture. Both
heterogeneous mesh-based and tree-based FPGA architectures can be modified to
exploit the regularity of datapath circuits and improve the area efficiency. General-
ized proposition of a datapath oriented tree-based architecture is shown in Fig. 7.1.
Contrary to the conventional one, the proposed version could be divided into two
sub-structures. One sub-structure contains CLBs while other sub-structure contains
only HBs. Interconnect between the two sub-structures and inside the sub-structure
containing only CLBs is fine-grain while it is coarse-grain (i.e. bus-based) in the sub-
structure containing only HBs. Main motivation behind the migration from single
structure to two sub-structures is:

1. Most of the arithmetic-intensive applications have two parts: datapath part and
the control part. Control part is implemented using CLBs while datapath part is
implemented using HBs. So it is better to manage them separately due to their
different communication behaviors.

2. Division of single structure into two sub-structures helps optimizing their logic
and routing resources independently; thus leading to better logic and routing
density of the architecture.

Preliminary experimentation has shown some promising results and for a group
of four datapath circuits, the datapath oriented tree-based architecture consumes

178 7 Conclusion and Future Lines of Research

Fig. 7.1 Generalized example of datapath oriented tree-based FPGA architecture. a Sub-structure
containing only CLBs. b Sub-structure containing only HBs

21% less area than the conventional tree-based heterogeneous FPGA architecture.
However, these are only preliminary results as the benchmarks are small both in
size and in number and improvements regarding resource partitioning are required
to further enhance the results.

As far as the mesh-based heterogeneous FPGA architecture is concerned, modifi-
cation can be made in it in a manner similar to the one suggested by [127]. However,
there might be few exceptions as the architecture proposed by [127] uses only homo-
geneous blocks.

7.2.2 Timing Analysis

One of the major future work is to perform accurate timing analysis of both FPGA
and ASIFs. In this work we presented timing results based on the count of critical path
switch number. Although this is not accurate as it does not contain the wire delays,
it gives an idea about the timing behavior of the architecture. In future we want to
perform the complete timing analysis of both mesh-based and tree-based architecture.
This timing analysis will include measuring the critical path, optimizing the critical
path using timing driven routing, and finding an accurate compromise between area
and delay of an architecture.

7.2 Suggestions for Future Research 179

7.2.3 Integrating ASIF Blocks in an FPGA Architecture

Commercial FPGA vendors use different variety of hard-blocks in their FPGAs.
They provide a range of FPGA device variants to fulfill varying domain-specific
requirements of their customers. Smaller ASIF blocks can also be integrated in
FPGAs to enhance the domain-specific needs of customers. An ASIF block serves
as a multi-tasking hard-block that can support a number of different functionalities
at mutually exclusive times. ASIF blocks can be designed for some general purpose
DSP requirements, or for more specific applications such as video decoders/encoders
applications etc.

7.2.4 Further Optimizing the ASIF Generation

In this work a new tree-based ASIF is presented and its comparison with equivalent
tree-based FPGA shows that it gives significantly better area results than tree-based
FPGA. Tree-based ASIF is basically an intermediate solution between FPGAs and
ASICs where a certain amount of flexibility is retained while removing unnecessary
resources. Although the removal of unnecessary resources in ASIF gives better area
than FPGA, it makes the structure irregular; hence making the layout of ASIF more
difficult than FPGA. So from this point on, the possible research directions in ASIF
architecture can be as follows (these directions are general in nature and they are
applicable to both mesh-based and tree-based ASIFs unless otherwise specified):

• One future direction for ASIF can be to improve their efficiency by further opti-
mizing their logic and routing resources. In Chap. 6, the comparison between
tree-based ASIF and Sum of ASICs revealed that tree-based ASIF consumes more
area than Sum of ASICs. This is because of the fact that tree-based ASIF uses
LUTs and they remain as configurable as in FPGA. So, the possible optimizations
in the ASIF generation can be as follows:

1. Different set of application netlists, mapped on an ASIF, program the SRAM
bits of a LUT differently. If all the netlists program a particular SRAM of a
LUT in a similar fashion, that SRAM bit can be replaced by a hard-coded 0 or
1 eventually leading to further improvement in the area of ASIF. Similarly, if a
2-input multiplexor in a LUT receives similar hard-coded values, that multi-
plexor can be removed, and replaced by the hard-coded value. A major element
of research is to tailor the LUT configuration of different netlists in such a way
that maximum logic block optimization is achieved.

2. Also, the routing network of ASIFs contains SRAMs that are used to provide
limited configurability. However, this configurability is not much of a use as
tools do not guaranty the mapping of extra circuits. So, the routing network of
ASIF can be further optimized as there is a good probability that certain SRAMs
of the routing network have same value over all the circuits that are required

http://dx.doi.org/10.1007/978-1-4614-3594-5_6

180 7 Conclusion and Future Lines of Research

to be implemented on ASIF. In such a case these SRAMs can be replaced with
constants; hence resulting in further improvement of area results.

• The generation of ASIF is based on the removal of unused resources which makes
it irregular and tile-based layout of ASIF does not remain possible. So, another
future direction on ASIF can be to add more flexibility to it than required. The
main objective of this additional flexibility would be to have a minimum tile or a
set of tiles that can be repeated to perform the layout of ASIF. Although additional
flexibility will reduce the area gain of ASIF compared to FPGA, it will make the
layout easier; hence resulting in faster time to market. Further, it will increase
the probability of implementing additional circuits that are not in the set for whom
the ASIF is generated.

• Quality analysis of ASIF in Chaps. 5 and 6 revealed that there is significant room
for improvement in the placement/partitioning algorithms. This improvement can
be achieved by better exploiting the inter-netlist dependance. However, in this
approach, a major element of research would be to optimize the inter-netlist depen-
dance without compromising the intra-netlist optimization.

• In Chap. 6, area comparison between ASIF and sum of ASICs revealed that even
for 1 netlist ASIC is 20% smaller than ASIF. This is because of the fact that in
case of ASIFs, the netlist synthesis involves a number of open source tools. These
tools are not optimal and they add some imperfections while converting the netlist
from its hardware description to .net format. On the contrary, ASIC generation
involves only one commercial synthesis tool. So, the deficiencies introduced by
open source tools play an important role in the area gap between ASIF and sum
of ASICs and this gap can be reduced by performing the netlist synthesis using
more efficient commercial tools.

The above mentioned optimizations an be combined together to give either an ASIF
with better area density; hence reduced gap between ASIF and ASIC or an ASIF
with reduced layout efforts; hence faster time to market.

7.2.5 The Unexplored Parameters of Mesh-Based Architecture

In this work we have used single length, unidirectional routing network with CLB
size 1 for mesh-based architecture which is at the core of both FPGA architecture
and ASIF architecture. However, it would be interesting to explore the behavior of
mesh-based ASIF having CLB size greater than 1, or having a mixture of different
length routing wires some of whom span a single architecture tile whereas others
span multiple tiles or having a mixture of fine-grain and coarse-grain routing wires.

http://dx.doi.org/10.1007/978-1-4614-3594-5_5
http://dx.doi.org/10.1007/978-1-4614-3594-5_6
http://dx.doi.org/10.1007/978-1-4614-3594-5_6

	7 Conclusion and Future Lines of Research
	7.1 Summary of Contributions
	7.1.1 Heterogeneous Tree-Based FPGA Exploration Environment
	7.1.2 Tree-Based ASIF Exploration
	7.1.3 FPGA and ASIF Hardware Generation for Tree-Based Architecture

	7.2 Suggestions for Future Research
	7.2.1 Datapath Oriented FPGA Architectures
	7.2.2 Timing Analysis
	7.2.3 Integrating ASIF Blocks in an FPGA Architecture
	7.2.4 Further Optimizing the ASIF Generation
	7.2.5 The Unexplored Parameters of Mesh-Based Architecture

