
Chapter 6
Tree-Based ASIF Using Heterogeneous Blocks

An Application Specific Inflexible FPGA (ASIF) is an FPGA with reduced flexibility
and improved density that can implement a predetermined set of application circuits
which will operate at mutually exclusive times. A homogeneous ASIF is presented
in the previous chapter; this chapter extends the work to heterogeneous domain. An
ASIF that is reduced from a heterogeneous FPGA is called as heterogeneous ASIF.
A heterogeneous ASIF can contain hard-blocks such as multipliers, adders, RAMS
etc. In order to generate a heterogeneous ASIF, first a minimal FPGA architecture
is defined that can implement any of the applications under consideration. Later
these application circuits are efficiently placed and routed to minimize total routing
switches required by the heterogeneous FPGA architecture. After that, all unused
routing switches are removed from the FPGA to generate a heterogeneous ASIF.

This chapter presents a new tree-based heterogeneous ASIF. Four ASIF genera-
tion techniques are explored for tree-based heterogeneous ASIF using 17 benchmarks
that use heterogeneous blocks. These benchmarks are further divided into two sets
and results show that an ASIF generation technique with efficient logic and routing
resource sharing produces optimal results for both benchmark sets. Further exper-
iments are performed to determine the effect of LUT and arity size on tree-based
heterogeneous ASIF. Later, tree-based ASIF with the best LUT-arity combination
is compared to mesh-based ASIF. Also a quality analysis of tree-based heteroge-
neous ASIF and a quality comparison between mesh-based and tree-based ASIFs is
performed.

6.1 Reference Heterogeneous FPGA Architectures

This section gives a brief overview of heterogeneous mesh-based and tree-based
FPGA architectures and the related software flow that is used to place and route
different benchmarks on these architectures. Application circuits are efficiently
placed and routed on these architectures and later they are reduced to their respective
ASIFs.
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6.1.1 Heterogeneous Tree-Based FPGA Architecture

A tree-based heterogeneous architecture [45] is a hierarchical architecture having
unidirectional interconnect. In this architecture CLBs, I/Os and HBs are partitioned
into a multilevel clustered structure where each cluster contains sub-clusters and
switch blocks allow to connect external signals to sub-clusters. The number of signals
entering into and leaving from the cluster can be varied depending upon the netlist
requirement. The signal bandwidth of clusters is controlled using Rent’s rule [74]
which is easily adapted to tree-based architecture. This rule states that
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In Eq. 6.1 � is a tree level, n is the arity size, k is the number of in/out pins of a LUT,
ax is the number of in/out pins of a HB, �x is the level where HB is located, bx is the
number of HBs at the level where it is located, z is the number of types of HBs sup-
ported by the architecture and IO is the number of in/out pins of a cluster at level �.
Since there can be more than one type of HBs, their contribution is accumulated and
then added to the L .B(p) part of Eq. 6.1 to calculate p. The value of p is a factor
that determines the cluster bandwidth at each level of the tree-based architecture
and it is averaged across all the levels to determine the p for the architecture. Fur-
ther details regarding the tree-based heterogeneous FPGA architecture can be found
in Chap. 4.

6.1.2 Heterogeneous Mesh-Based FPGA Architecture

The architecture used in this work is a VPR-style (Versatile Place & Route) [81]
architecture that contains configurable logic blocks (CLBs), I/Os and hard-blocks
(HBs) that are arranged on a two dimensional grid. In order to incorporate HBs in a
mesh-based FPGA, the size of HBs is quantized with size of the smallest block of
the architecture i.e. CLB. The width and height of an HB is therefore a multiple of
width and height of the smallest block in the architecture. Further details regarding
the architecture can be found in Sect. 4.2.2.
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6.1.3 Software Flow

The software flow used to place and route different benchmarks (netlists) on the two
architectures is same as discussed in Chap. 4. The flow starts with the conversion of
vst (structured vhdl) file to BLIF format [20]. The BLIF file is then passed through
a parser which removes HBs from the file and passes it to SIS [14] that synthesizes
it into LUT format of a given size (K). The file is then passed to T-VPACK [14]
which packs and converts it into net format. A netlist in net format contains CLBs
and I/O instances that are connected together using nets. The size of a CLB is defined
as the number of LUTs contained in it and in this work this size is set to be 1 for
both mesh-based and tree-based architectures. After T-VPACK the netlist is passed
through another parser that adds previously removed HBs and finally it is placed
and routed separately on tree-based and mesh-based FPGAs. A detailed description
regarding the placement and routing of netlists on the two architectures is already
given in Sect. 4.4.

6.2 Heterogeneous ASIF Generation Techniques

A heterogeneous ASIF is a modified form of a heterogeneous FPGA architecture.
A heterogeneous ASIF has reduced flexibility but improved density compared to
heterogeneous FPGA and it can contain hard-blocks like multiplier, adders, RAMs
etc. A group of netlists are placed and routed on the FPGA architecture. Different
automatic floor-planning techniques are used to optimize the position of different
blocks on the architecture. Among these floor-planning techniques, the technique
Block-Move-Rotate (BMR) gives the best results (refer to Chap. 4) and this is the
technique that is used for the generation of mesh-based heterogeneous ASIF. Simi-
larly, for tree-based ASIF ASYM techniques gives best results (refer to Chap. 4) and
this is the technique that is used for tree-based ASIF.

In order to generate a mesh-based heterogeneous ASIF, initially a heterogeneous
FPGA architecture is defined using an architecture description file. Blocks of different
sizes are defined, and later mapped on a grid of equally sized slots. The placer maps
multiple netlists together to get a single architecture floor-planning for all netlists.
Efficient placement and routing techniques are exactly the same as discussed in pre-
vious chapter. However, necessary changes are performed to handle heterogeneous
blocks. Efficient placement tries to place the instances of different netlists in such a
way that minimum routing switches are required in an FPGA. Later, efficient routing
encourages different netlists to route their nets on an FPGA with maximum common
routing paths. After all netlists are efficiently placed and routed on FPGA, unused
switches are removed from the architecture to generate a heterogeneous ASIF.

For tree-based ASIF, similar to mesh-based architecture, initially an FPGA archi-
tecture is defined using an architecture description file. Architecture description file
contains complete detail about different parameters of the architecture including the
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Table 6.1 SET I benchmark details

Index Circuit name In Out Mult 18×18 LUT-3 LUT-7

1. cf_fir_3_8_8_ut 42 22 4 217 186
2. diffeq_f_systemC 66 99 4 2,114 1,366
3. diffeq_paj_convert 12 101 5 1,013 471
4. fir_scu 10 27 17 2,267 629
5. iir 33 30 5 524 322
6. iir1 28 15 5 898 410
7. rs_decoder_1 13 20 13 2,367 900
8. rs_decoder_2 21 20 9 4,204 1,835
9. Maximum 66 101 17 4,204 1,835

signal bandwidth of different clusters located at different levels of hierarchy, types
of different blocks, the level where they are located and their pin details etc. Once
the architecture is defined, netlists are efficiently partitioned and then placed and
routed on the architecture. Different ASIF generation techniques are employed for
tree-based architecture in a manner similar to the previous chapter except that nec-
essary modification are made to handle the heterogeneity of the architecture. Once
the netlists are efficiently placed and routed on the architecture, unused resources of
the architecture are removed to generate an ASIF.

6.3 Experimentation and Analysis

6.3.1 Experimental Benchmarks

This work uses 17 open core benchmarks to explore the effect of different ASIF
generation techniques on the tree-based ASIF. These benchmarks are further divided
into two sets. The division of benchmarks into two sets is basically based on the
type of hard-blocks that are supported by these benchmarks. The details of two
sets of benchmarks is shown in Tables 6.1 and 6.2 respectively. As it can be seen
from these tables that one set supports only 18×18 multipliers while the second
set supports 16×16 multipliers along with 20 + 20 adders. Apart from hard-blocks,
these benchmarks also contain logic blocks; size of whom in terms of different LUT
sizes is shown in the last two columns of these tables. These benchmarks are converted
into .net format using the same flow as described in Chap. 4. Netlists with different
LUT sizes are generated where number of I/Os and hard-blocks remain unchanged,
but the number of LUTs change with change in LUT size. Details of netlists for
two sets with LUT size 3 and 7 are shown in last two columns of Tables 6.1 and 6.2
respectively.

http://dx.doi.org/10.1007/978-1-4614-3594-5_4
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Table 6.2 SET II benchmark details

Index Circuit name In Out Mult 16×16 Add 20+20 LUT-3 LUT-7

1. cf_fir_3_8_8_open 42 18 4 3 159 159
2. cf_fir_7_16_16 146 35 8 14 639 638
3. cfft16x8 20 40 – 26 1,937 1,122
4. cordic_p2r 18 32 – 43 803 801
5. cordic_r2p 34 40 – 52 1,497 1,178
6. fm 9 12 1 19 1,508 1,046
7. fm_receiver 10 12 1 20 1,004 677
8. lms 18 16 10 11 965 935
9. reed_solomon 138 128 16 16 537 537

10. Maximum 146 128 16 52 1,937 1,178

This section is basically divided into three parts. First the effect of different ASIF
generation techniques on tree-based heterogeneous ASIF is explored for both sets
of benchmarks. For each ASIF generation technique, separate ASIFs are generated
for both sets of benchmarks. Results of different ASIF generation techniques are
then compared and later results of ASIF generation techniques are also compared
with those of equivalent tree-based heterogeneous FPGA. Secondly, experiments are
performed to determine the effect of LUT and arity size on tree-based heterogeneous
ASIF. Experiments are performed for a range of architectures that are generated using
different combinations of LUT and arity sizes and netlists are placed and routed on
them. Finally, after determining the best LUT and arity size combination for tree-
based ASIF, a comparison between mesh-based and tree-based ASIFs is performed
using their best ASIF generation techniques.

6.3.2 Effect of Different ASIF Generation Techniques
on Heterogeneous Tree-Based ASIF

Figure 6.1 shows the variation in routing area of tree-based architecture using
different ASIF generation techniques. In this experimentation, for all ASIF gen-
eration techniques, LUT size is set to be 4, arity size is 4, and CLB size is 1. In this
figure columns 1–5 correspond to results for SET I benchmarks whereas columns
6 to 10 correspond to results for SET II benchmarks. For each set of benchmarks,
ASIFs of four different kinds are generated over a range of signal bandwidths. The
range of signal bandwidth is varied from the minimum required to the maximum
value beyond which a further increase in signal bandwidth does not improve the
routing area of ASIF. It can be seen from the figure that for each ASIF generation
technique (for both sets), an increase in signal bandwidth decreases the routing area
of architecture. Although the rate of decrease in routing area of the architecture with
increasing signal bandwidth varies, a decrease in the routing area of the architecture
for each ASIF generation technique remains valid. The difference in the routing areas
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Fig. 6.1 Routing area comparison between different tree-based heterogeneous ASIFs

of different ASIF generation techniques is mainly because of the different optimiza-
tion techniques that are employed in each ASIF generation technique. As can be
seen from the figure that the ASIF generation technique with no optimization (i.e.
ASIF-NPNR) produces the worst results among the four ASIF generation techniques
for both sets. Also the technique with only efficient partitioning solution (i.e. ASIF-
EPNR) is not as efficient as the technique with only efficient routing solution (i.e.
ASIF-NPER). Efficient partitioning alone is unable to produce any significant results
because it is unable to exploit the routing resources of the architecture that contribute
a major percentage of the total area. However, when it is combined with efficient
routing, it gives the best overall results compared to the rest of ASIF generation
techniques.

Figure 6.2 shows the variation in the number of wires that are used by different
ASIF generation techniques. Similar to area results, first 5 columns give results for
SET I while the next 5 columns give results for SET II benchmarks. For both sets,
signal bandwidth is varied from the minimum required to the maximum, and results
show that, at maximum signal bandwidth, ASIF-EPNR uses the least number of
wires while ASIF-NPER uses the most number of wires for both sets. Similar to
the results for homogeneous ASIFs, the techniques using efficient routing resource
sharing consume more wires as compared to the techniques that are not using efficient
routing resource sharing. Similarly, techniques with efficient logic resource sharing
consume less number of wires than the techniques that are not using efficient logic
sharing. These two facts combined together result in the trends that are shown in
Fig. 6.2.

Figure 6.3 shows the comparison between different ASIF generation techniques
for different number of netlists. In this figure, first 8 columns give results for SET I
and next 9 columns give results for SET II respectively. For fist 8 columns, column 1
means that ASIF is generated for first netlist of Table 6.1, column 2 means that ASIF
is generated for first two netlists of the table and same rule applies to the netlists
of Table 6.2. For all four techniques, the signal bandwidth is set to be maximum
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Fig. 6.2 Wire comparison between different heterogeneous ASIF techniques

Fig. 6.3 Different ASIFs normalized to ASIF-NPNR

that produces the best results. As it can be seen from the figure that ASIF-NPNR
gives worst results and ASIF-EPER gives best results in terms of area. Further the
gap between the best and the worst ASIF techniques increases with increase in the
number of netlists for which the ASIF is being generated.

In order to perform the performance comparison of different ASIF generation
techniques, we have employed a model that calculates the number of switches that
are crossed by different applications mapped on ASIF. Figure 6.4 shows the perfor-
mance comparison results between different techniques for a varying range of signal
bandwidths. In this figure results of first 5 columns correspond to SET I benchmarks
while remaining 5 correspond to SET II benchmarks. Since each ASIF is generated
for a group of netlists and each netlist crosses different number of switches on its
critical path, an average of critical path switch number is presented here for each
technique. It can be seen from the figure that for both sets of benchmarks and for
all generation techniques, an increase in signal bandwidth results in a decrease in
average number of switches that are crossed by critical path. These results are in
direct correspondence with those of Fig. 6.1 and further this observation is enhanced
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Fig. 6.4 Performance comparison between different tree-based heterogeneous ASIFs

Fig. 6.5 Tree-based heterogeneous FPGA vs tree-based heterogeneous ASIFs

by the fact that ASIF-EPER produces the best results in both cases. Although the
performance comparison presented here is based on a simple model and it does not
give the exact temporal delay, yet it gives us an idea about the performance of each
ASIF generation technique.

Figure 6.5 shows the area comparison between tree-based FPGA and the worst and
the best ASIF generation techniques. In this figure first 8 columns give results for SET
I benchmarks and remaining 9 columns give results for SET II benchmarks respec-
tively. Signal bandwidth is set to be maximum for ASIF while equivalent FPGA has
minimum signal bandwidth which is capable of mapping any of the benchmarks of
respective sets. In this figure, starting from 1, ASIFs are generated for a varying range
of netlists and results are then compared to those of tree-based FPGA. For SET I
benchmarks, when varying the number of netlists, the order shown in Table 6.1 is
followed. For example, netlist 1 means an ASIF is generated for “cf_fir_3_8_8_ut”
only and netlist 2 means that an ASIF is generated for “cf_fir_3_8_8_ut” and
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“diffeq_f_SystemC” and so on. Similarly, for SET II benchmarks, the order shown in
Table 6.2 is followed. Results of ASIFs of both sets for varying number of netlists are
compared against their respective LUT-4, arity-4 tree-based FPGAs that can imple-
ment any netlist of the Table 6.1 for SET I and any netlist of Table 6.2 for SET II
respectively. It can be seen from the figure that for best ASIF generation technique,
for SET I, for 1 netlist ASIF is 4.14 times or 76% smaller than tree-based FPGA.
However as the number of netlists increase, the gap between the two decreases and
for 8 netlists ASIF is 2.8 times or 64% smaller than the tree-based FPGA. Simi-
larly for SET II benchmarks, for 1 netlist the best ASIF is 8.4 times smaller than
the corresponding tree-based FPGA and when the count of netlists is increased to 9
the tree-based ASIF is 4.12 times or 75% smaller than the corresponding tree-based
FPGA. The results in Fig. 6.5 suggest that ASIF gives excellent area gain for a small
group of netlist. However, the advantage of ASIF begins to fade as the size of the set
of netlists increases and for a very large group of netlists it might not be able to give
any significant area advantages.

So far in this section we have seen that ASIF-EPER produces best results for both
sets of benchmarks that are under consideration. Although we have fixed LUT and
arity sizes to 4, ASIF-EPER gives the best results even if we change this combination;
hence this is the technique that we will use to determine the effect of LUT and arity
size on a tree-based heterogeneous ASIF.

6.3.3 Effect of LUT and Arity Size on Heterogeneous
Tree-Based ASIF

In order to determine the effect of LUT and arity size on a tree-based heterogeneous
ASIF, experiments are performed for a group of 17 open core benchmarks and these
benchmarks are further divided into two sets (refer to Tables 6.1 and 6.2). For bench-
marks of SET I and SET II, LUT size is varied from 3 to 7 while arity size is varied
from 4 to 8 and 16. So with 5 LUT sizes and 6 arity sizes, we have explored 30
architectures for SET I and SET II where ASIF is generated for each architecture
using the ASIF-EPER technique as it gives the best overall results compared to other
ASIF generation techniques.

Effect of varying LUT and arity size on total area of tree-based heterogeneous
ASIF is shown in Fig. 6.6 where first 5 columns give results for SET I and next 5
columns give results for SET II. It can be seen from the figure that smaller LUTs give
better area results as compared to the larger LUTs. Also it can be noticed from the
figure that, in general, for a fixed LUT size the total area of the ASIF decreases with
an increase in the arity size. On the other hand, for a fixed arity size, an increase in
LUT size increases the total area of the architecture. The observations made in this
figure are further elaborated using Figs. 6.7 and 6.8.

Figure 6.7 shows the effect of varying K and N on the logic area of tree-based
heterogeneous ASIF. It can be seen from the figure that for all arity sizes, an increase
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Fig. 6.6 Effect of LUT and arity size on total area of tree-based heterogeneous ASIF

Fig. 6.7 Effect of LUT and arity size on logic area of tree-based heterogeneous ASIF

in K increases the logic area of the architecture. In fact, for a fixed arity size, increase
in LUT size decreases the total number of LUTs required. But at the same time
LUT area increases exponentially with increase in its size. Normally the increase in
LUT area overshadows the decrease in its number; hence causing a sharp rise in the
logic area of the architecture.

Figure 6.8 shows the effect of varying K and N on the routing area of tree-based
heterogeneous ASIF. It can be seen from the figure that for all arity sizes, in general,
a raise in K causes a decline in the routing area of the architecture. For a fixed N,
elevation in K reduces average number of LUTs required by the architecture but it
raises average routing area per LUT. However, the fall in average number of LUTs
required by the architecture outweighs the rise in routing area per LUT; hence leading
to overall decline in routing area of the architecture. Although there is a decrease
in routing area of the architecture (refer to Fig. 6.8) with an increase in LUT and
arity size but this decline is overshadowed by the increase in the logic area of the
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Fig. 6.8 Effect of LUT and arity size on routing area of tree-based heterogeneous ASIF

architecture (refer to Fig. 6.7); therefore leading to an increased total area of the
architecture (refer to Fig. 6.6).

Figure 6.9 shows the effect of LUT and arity size on the critical path switch number
of a tree-based heterogeneous ASIF. This work considers only an elementary model
to have an idea about the critical path delay and wire delays are not considered here.
In Fig. 6.9 columns 1–5 give the results for SET I benchmarks while columns 6–10
give results for SET II benchmarks. It can be seen from the figure that an increase in
LUT and arity size decreases the number of switches that are crossed by critical path.
For both sets of benchmarks, for a fixed K, an increase in N decreases the average
number of switches crossed by critical path. Similarly, for a fixed N, an increase in
K decreases the average number of switches crossed by critical path. However, for a
fixed N, the two benchmark sets have different rates of decrease in average critical
path switch number with increasing K. For example in case of SET I, for N=4, as
the K is varied from 3 to 7, a 28% decline in average switch number is observed.
On the other hand, in case of SET II, a decline of only 7% is observed for N=4
and variation in K from 3 to 7. This is because of the fact that for a fixed N, when
K is varied from 3 to 7, for 5 out of 9 benchmarks of SET II, LUT requirement
remains almost same (refer to Table 6.2). Number of switches of these 5 benchmarks
constitute around 88% of the average switch numbers of SET II; hence a significant
decrease in the average switch numbers is not observed. Figures 6.6 to 6.9 give an
overview about the effect of K and N on tree-based ASIF. Results shown in these
figures imply that ASIFs with small K and large N (K = 3 or 4 and N = 16) give
best area results and large K with large N give best performance results. So, we have
to find a trade-off between area and performance results. For this purpose, area-delay
products of ASIFs with varying LUT and arity size are shown in Fig. 6.10. In this
figure, first five columns give results for SET I benchmarks while next five columns
give results for SET II benchmarks. It can be seen from the figure that K = 4 with
N = 16 gives best results for SET I benchmarks and K = 3 with N = 16 gives
best results for SET II benchmarks. Since, we have determined the best LUT-arity
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Fig. 6.9 Effect of LUT and arity size on critical path of tree-based heterogeneous ASIF

Fig. 6.10 Effect of LUT and arity size on area-delay product of tree-based heterogeneous ASIF

combinations for the two sets, these combinations will be used for comparison of
heterogeneous mesh-based and tree-based ASIFs.

6.3.4 Comparison Between Heterogeneous Mesh-Based
and Tree-Based ASIFs

Now that we have determined the best LUT-arity combination for tree-based ASIF,
here we present a comparison between the best techniques of tree-based ASIF and
equivalent mesh-based ASIF. The comparison results of heterogeneous mesh-based
and tree-based ASIFs are shown in Fig. 6.11. In this figure columns 1–4 present
routing area comparison between mesh and tree architectures for SET I benchmarks
whereas columns 5–8 present comparison results for SET II benchmarks. For both
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Fig. 6.11 Routing area comparison between heterogeneous mesh-based and tree-based ASIFs

sets, mesh-based and tree-based ASIFs are generated using ASIF-EPER technique
as it gives the best results. Signal bandwidth is varied for both sets starting from a
minimum required to a maximum value. An increase of signal bandwidth beyond
maximum value does not improve further the routing area of the architecture. For
tree-based ASIF, for SET I, LUT size is set to be 4 and arity size is set to be 16 and
for SET II LUT size is set to be 3 and arity size is set to be 16. In case of mesh-based
ASIF, for SET I, LUT size is 4 and for SET II LUT size is 3 while CLB size is 1 for
both architectures.

Since the variation in signal bandwidth does not affect the logic area, only rout-
ing area results are presented in Fig. 6.11. In this figure “p” values correspond to
the signal bandwidth of tree-based ASIF and it is calculated using Eq. 6.1 whereas
“ch-width” values correspond to the signal bandwidth values of mesh-based ASIF.
It can be seen from the figure that for SET I, tree-based ASIF produces better results
when compared to mesh-based ASIF for all signal bandwidths. For maximum signal
bandwidth (i.e. p = 1.5, ch-width = 48) tree-based ASIF gives 11.27% better rout-
ing area than mesh-based ASIF. For SET II benchmarks, however, tree-based ASIF
gives better routing area results for smaller signal bandwidths. But with larger band-
width tree-based ASIF looses the gain and for a maximum signal bandwidth value
mesh-based ASIF is 1.5% better than tree-based ASIF. Intuitively if we look at the
ASIF generation mechanism of the two architectures, they should give same results
as unused resources are removed in both architectures after the mapping of bench-
marks under consideration. However, it is the arrangement of resources and quality of
tools that makes the difference. For example for mesh-based architecture, the ASIF
generation mechanism uses BMR floor-planning at its core (for details regarding
BMR floor-planning refer to Chap. 4). This is the most flexible floor-planning tech-
nique where hard-blocks are allowed to move and rotate and this is the reason that
mesh-based ASIF performs better in case of SET II benchmarks. Since, for SET II
benchmarks, the major percentage of total communication is between CLBs and
HBs and BMR is flexible enough to take full advantage of this trend. However, for

http://dx.doi.org/10.1007/978-1-4614-3594-5_4
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Fig. 6.12 Wire comparison between heterogeneous mesh-based and tree-based ASIFs

tree-based ASIF, ASYM exploration technique is used (for details regarding ASYM
technique refer to Chap. 4) which is comparatively less flexible than BMR; hence
causing an increased area than mesh-based ASIF. For SET I benchmarks however,
the major percentage of total communication is between the CLBs and tree-based
ASIF is not affected in that case.

Area results are not the only comparison performed between mesh-based and
tree-based ASIFs, the two architectures are also compared on the basis of number of
wires consumed by the two architectures and the results are shown in Fig. 6.12. Simi-
lar to area results, first four columns present comparison results for SET I benchmarks
while last four present results for SET II benchmarks. As it can be seen from the
figure that for both sets of benchmarks, tree-based ASIF consumes far less wires than
mesh-based ASIF. For maximum signal bandwidth values, tree-based ASIF uses 70,
69% less wires than mesh-based ASIF. The number of wires can play a pivotal role
while making a choice for the architecture. For mesh-based ASIF, the number of
wires are high and they increase significantly with the increase in the signal band-
width and at higher bandwidth values the architecture might become wire dominant
and it might be obliged to use a lower signal bandwidth. So in such a case, tree-
based ASIF is clearly a better choice when compared to mesh-based ASIF as it gives
relatively better area and consumes significantly less wires than mesh-based ASIF.

6.4 Quality Analysis of Heterogeneous Tree-Based ASIF

Similar to the quality analysis of tree-based homogeneous ASIF, the quality analysis
of tree-based heterogeneous ASIF is also performed. Quality analysis of tree-based
heterogeneous ASIF is performed for two sets separately and results for SET I and

http://dx.doi.org/10.1007/978-1-4614-3594-5_4
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Fig. 6.13 Quality analysis of tree-based heterogeneous ASIF (SET I)

Fig. 6.14 Quality analysis of tree-based heterogeneous ASIF (SET II)

SET II are shown in Figs. 6.13 and 6.14 respectively. In these figures, the X-axis shows
the number of same netlists used in the generation of ASIF, whereas Y-axis shows the
total area of ASIFs. For SET I, quality analysis is performed using “rs_decoder_2”
and for SET II quality analysis is performed using “cfft16x8”. The two netlists are
chosen as they are the biggest among the two sets. Similar to the quality analysis of
homogeneous ASIF, five different techniques are used to perform the quality analysis
of tree-based heterogeneous ASIF. It can be seen from these figures that ASIF-NPNR
produces the worst results whereas ASIF-IPIR produces the best results and an ASIF
generated using efficient placement and routing technique lies almost in the middle
of the best and the worst solutions. The major area loss in ASIF is mainly due to the
placement/partitioning inefficiency. New placement techniques need to be explored
to further improve area of an ASIF.
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Fig. 6.15 Quality comparison between heterogeneous mesh-based and tree-based ASIF (SET I)

6.4.1 Quality Comparison Between Heterogeneous Mesh-Based
and Tree-Based ASIF

In order to evaluate the quality of mesh-based and tree-based architectures, a quality
comparison between heterogeneous mesh-based and tree-based ASIFs is performed.
The quality comparison is performed separately for SET I and SET II benchmarks
by using ASIF-EPER techniques for mesh-based and tree-based architectures and
it is shown in Figs. 6.15 and 6.16 respectively. Similar to experiments in previous
sub-section, ASIFs are generated for both architectures using “rs_decoder_2” and
“cfft16x8” netlists and results are also compared against an ideal solution. As it can
be seen from these figures that for both architectures, the quality of ASIFs of both
architectures deteriorates with increase in the count of netlists. However, tree-based
ASIF produces better results as compared to mesh-based ASIF. For small number
of netlists, the gap between mesh-based and tree-based ASIFs is not significant but
as we increase the count of netlists this gap becomes more and more significant and
finally for a group of 10 netlists, tree-based ASIF is around 19%, 20% more area
efficient than mesh-based ASIF for SET I and SET II benchmarks respectively.

6.5 Heterogeneous ASIF Hardware Generation

The hardware of heterogeneous ASIF is generated in a similar manner as that of
homogeneous ASIF. However, modifications are performed to incorporate the effect
of different types of blocks that are used by different netlists. Similar to the homo-
geneous ASIFs, the VHDL model generator of heterogeneous ASIFs is integrated
with their exploration environments and the parameters that are supported by the
exploration environment are also supported by the VHDL generator.
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Fig. 6.16 Quality comparison between heterogeneous mesh-based and tree-based ASIF (SET II)

The ASIF generation flow remains exactly the same except that now the block
database contains details about a variety of blocks that are used by different netlists
being mapped on the architecture. As far as the remaining steps involved in the VHDL
model generation are concerned, they remain the same. The only difference between
the VHDL model generation of homogeneous and heterogeneous ASIFs is that of
the support for hard-blocks. In homogeneous ASIFs all blocks are of uniform size as
there is only a single type of blocks in the architecture. However, in heterogeneous
architectures there are blocks of different types. Although the basic tile size remains
the same, there might be blocks that occupy multiple tiles. However, it does not leave
much of an effect on the the VHDL generation mechanisms. So different processes
involved in the hardware generation of homogeneous ASIFs remain the same for the
hardware generation of heterogeneous ASIFs.

The generated VHDL model of heterogeneous ASIF is translated to 130 nm stan-
dard cell library of STMicroelectronics, and then passed to Cadence encounter for
layout generation. Some of the layout results are shown in Fig. 6.17 where tree-based
ASIFs and ASICs are generated for a varying number of netlists. Figure 6.17a, c, e
show the layout generated for tree-based ASIF and Fig. 6.17b, d, f show the layout
of ASIC generated for 1, 5 and 9 netlists of SET II benchmarks. Here from netlist 1
we mean that layout is generated for first netlist of Table 6.2. Similarly from netlist 5
and 9, we mean that layout is generated for first 5 and all the 9 netlists of Table 6.2.
The hardware of tree-based ASIF is generated using LUT-3, Arity-16 combination
with maximum channel width that gives best area results. It can be seen from the
figure that for 1 netlist ASIC is 20% smaller than tree-based ASIF and for 9 netlists
this gap increases to almost 40%. Although for 1 netlist both ASIF and ASIC contain
no switches or memories, but ASIF consumes more area than ASIC. This is because
of the fact that ASIF layout is generated using a VHDL description which is the
result of software flow of ASIF (refer to Fig. 4.7). During that flow different tools are
used starting from the synthesis of the netlist to its routing on the architecture and
these tools have added different imperfections in the design which at the end result
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Fig. 6.17 ASIF/ASIC layout for varying number of netlists using encounter (SET II). a Tree-ASIF,
netlists=1, 0.05 mm2. b ASIC, netlists=1, 0.04 mm2. c Tree-ASIF, netlists=5, 0.56 mm2. d Sum of
ASICs, netlists=5, 0.37 mm2. e Tree-ASIF, netlists=9, 1 mm2. f Sum of ASICs, netlists=9, 0.6 mm2

in a larger area. Also tree-based ASIF uses LUTs which remain as configurable as
in FPGAs. On the other hand, ASIC is generated directly from hardware description
of the netlist and it uses gates that require no configuration bits.

Further, the increase in number of netlists increases the gap between ASIF and
ASIC and for 9 netlists ASIC is 40% smaller than ASIF. This is because of the fact
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that increase in number of netlists increases the switches and configuration memory
for ASIF while there are no configuration memories in ASICs. Also the standard cell
library of STMicroelectronics does not contain SRAM cell. So LATCH cell is used
instead of SRAM for configuration memory. Generally LATCH cells are larger than
SRAMs and for an ASIF generated for 9 netlists, SRAMs take up to 23% of total
routing area. The percentage of configuration memory area is measured from VHDL
model generated using symbolic standard cell library (i.e. measure before mapping it
to ST standard cell library). The high percentage of area taken by SRAMs indicates
that the gap between ASIF and ASIC can further be reduced by replacing LATCH
cells with SRAMS cell in ST standard cell library.

6.6 Summary and Conclusion

In this chapter, a new tree-based heterogeneous ASIF is presented. Four ASIF gen-
eration techniques are explored for 17 open core benchmarks. Based on the types
of hard-blocks used, benchmarks are divided into two sets where first set contains a
mixture of logic blocks and multipliers (SET I) while second set contains a mixture
of logic blocks, multipliers and adders (SET II). Comparison of different techniques
with tree-based FPGA shows that the most efficient ASIF generation technique is
64%, 75% more area efficient than an equivalent tree-based FPGA for SET I and
SET II respectively. Further the exploration of LUT and arity size on tree-based ASIF
shows that an ASIF with LUT size 4 and arity size 16 produces the most efficient
results for SET I and an ASIF with LUT size 3 and arity size 16 produces the most
efficient results for SET II. Comparison of tree-based ASIF with mesh-based ASIF
reveals that tree-based ASIF is 11.27% better and 1.5% worse in terms of area for
SET I and SET II while it consumes 69%, 70% less wires than mesh-based ASIF for
two sets respectively. Finally the quality analysis of two architectures reveals that
for a group of 10 similar netlists, tree-based ASIF is 19%, 20% more area efficient
than mesh-based ASIF for SET I and SET II benchmarks respectively. The results
presented in this chapter are also published in [115].

Layout of the tree-based heterogeneous ASIF is also performed in this chapter
using Cadence encounter and its comparison with equivalent sum of ASICs shows
that ASIC is 40% smaller than ASIF for a group of 9 open core netlists (SET II).
However, the gap between sum of ASICs and ASIF can be reduced by replacing
LATCH cells with the SRAM cells. Further, full-custom design of repeatedly used
cells can be performed to further decrease the area of ASIF and reduce the gap
between ASIF and ASIC. These repeatedly used cells can be groups of similar size
SRAMs, switches and logic blocks etc. However, full-custom design can not be much
of a benefit for ASICs as there are no major repeatedly used components in them.
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