
Chapter 4
Heterogeneous Architectures Exploration
Environments

During past few years, the advancement in process technology has resulted in a
great increase in the capacity of FPGAs; the devices which were once small have
now become large and are used to implement complete designs. Increase in the
capacity of FPGAs has allowed their transition from devices that once contained only
homogeneous blocks to the devices that now contain a mixture of blocks ranging
from soft blocks (e.g. Configurable Logic Blocks) to hard-blocks like multipliers,
adders, RAMs etc. The use of hard-blocks in FPGAs has resulted in an improved
overall efficiency and now they are used for large and complex applications.

This chapter presents a new exploration environment for tree-based heteroge-
neous FPGA architecture. This environment is based on the environment discussed
in previous chapter. The environment of the previous chapter is modified so that an
architecture description mechanism allows to define various architectural parameters
including definition of new heterogeneous blocks, the level where they are located
and their arity (i.e. number of blocks per cluster). Once the architecture is defined, a
software flow partitions and routes the target netlist on the architecture. The partition-
ing and routing tools are modified to incorporate a mixture of heterogeneous blocks
in the architecture. A mesh-based heterogeneous exploration environment, initially
presented in [92], is also explored and enhanced in this chapter. This environment
is an extended version of homogeneous exploration environment of mesh-based
architecture presented in previous chapter. Different floor-planning techniques are
explored for mesh-based architecture using different sets of benchmarks and results
of those benchmarks are compared with results of tree-based architecture.

4.1 Introduction and Previous Work

During recent past, embedded hard-blocks (HBs) in FPGAs (i.e. heterogenous
FPGAs) have become increasingly popular due to their ability to implement com-
plex applications more efficiently as compared to homogeneous FPGAs. The work
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in [123] shows that the use of embedded memory in FPGA improves its density and
performance. Authors in [19] have incorporated floating point multiply-add units in
the FPGA and have reported significant area and speed improvements over homo-
geneous FPGAs. In [58] a virtual embedded block (VEB) methodology is proposed
that predicts the effects of embedded blocks in commercial FPGA devices; and it has
shown that the use of embedded blocks causes an improvement in area and speed
efficiencies. Also authors in [52] and [118], suggest the use of embedded blocks in
FPGAs for better performance regarding complex scientific applications. The work
in [72] shows that the use of HBs in FPGAs reduces the gap between ASIC and
FPGA in terms of area, speed and power consumption. Some of the commercial
FPGA vendors like Xilinx [126] and Altera [13] are also using HBs (e.g. multipliers,
memories and DSP blocks) in their architectures.

Almost all the work cited above considers mesh-based FPGAs as the reference
architecture where HBs are placed in fixed columns; these columns of HBs are
interspersed evenly among columns of configurable logic blocks (CLBs). The main
advantage of mesh-based, fixed-column heterogeneous FPGA lies in its simple and
compact layout generation. However, the column-based floor-planning of FPGA
architectures limits each column to support only one type of HB. Due to this limi-
tation, the architecture is bound to have at least one separate column for each type
of HB even if the application or a group of applications that is being mapped on it
uses only one block of that particular type. This can eventually result in the loss of
precious logic and routing resources. This loss can become even more severe with
the increase in number of types of blocks that are required to be supported by the
architecture.

Although, significant amount of research has already been done regarding mesh-
based heterogeneous FPGA architectures; no work has been done yet in this domain
for tree-based heterogeneous FPGA architectures. Contrary to mesh-based archi-
tectures where logic and routing resources are arranged in an island style, tree-
based architecture is a hierarchical architecture where logic and routing resources
are arranged in a multilevel clustered structure. So, in this chapter we present a new
exploration environment for tree-based heterogeneous FPGA architectures. Differ-
ent techniques are explored to optimize the use of logic and routing resources of the
architecture. Further, in this chapter, an exploration environment for mesh-based het-
erogeneous FPGA architecture is described [92]. The environment for mesh-based
architecture is jointly developed by authors of this book and a previous student of our
research team [94]. Contrary to existing environments of mesh-based architecture that
use a fixed floor-planning technique, this environment automatically optimizes the
floor-planning of hard-blocks. Also, unlike previous research [72, 123] that mainly
compares mesh-based heterogeneous FPGA architectures with their homogeneous
counterparts, this chapter presents a detailed comparison between different architec-
tural techniques of heterogeneous mesh-based and tree-based architectures.
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Fig. 4.1 Generalized tree-based heterogeneous FPGA architecture

4.2 Reference Heterogeneous FPGA Architectures

This section gives basic overview of the two heterogeneous FPGA architectures.
These FPGA architectures are based on the architectures that are described in Chap. 3
and modifications are made in them so they can support a mixture of heterogenous
blocks.

4.2.1 Heterogeneous Tree-Based FPGA Architecture

A tree-based heterogeneous architecture [45] is a hierarchical architecture having
unidirectional interconnect. In tree-based heterogeneous architecture CLBs, I/Os
and HBs are partitioned into a multilevel clustered structure where each cluster
contains sub clusters and switch blocks allow to connect external signals to sub-
clusters. Figure 4.1 shows generalized example of a four-level, arity-4, tree-based
architecture. The arity of the architecture is basically defined as the number of CLBs
in the base-cluster of the architecture and it is respected as we move towards the top
of the hierarchy. However, in a heterogeneous architecture we may have a mixed
arity. For example in Fig. 4.1, first two levels have arity 4, third level has arity 5
and fourth level has arity 4. But in order to keep the convention, we refer it as arity
4 architecture because its base-cluster contains four CLBs. In a heterogenous tree-
based architecture, CLBs are placed at the bottom of hierarchy whereas HBs can be

http://dx.doi.org/10.1007/978-1-4614-3594-5_3
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Fig. 4.2 Detailed interconnect of base-cluster of tree-based architecture

placed at any level of hierarchy to meet the best design fit. For example, in Fig. 4.1
HBs are placed at level 2 of hierarchy.

4.2.1.1 The Interconnect Network

Similar to homogeneous architecture, tree-based heterogeneous architecture contains
two unidirectional, single length, interconnect networks: a downward network and
an upward network. As we move towards the top, signal bandwidth grows in both
networks and it is maximum at the top of hierarchy. Downward network is based on
butterfly fat tree topology and allows to connect signals coming from other clusters
to its sub-clusters through a switch block. The upward network is based on hierarchy
and it allows to connect sub-cluster outputs to other sub-clusters in the same cluster
and to clusters in other levels of hierarchy. A detailed base-cluster example of two
interconnect networks is shown in Fig. 4.2. In this figure, base-cluster contains four
CLBs where each CLB contains one LUT with 4 inputs and one output. It can be seen
from the figure that switch blocks are further divided into downward and upward mini
switch boxes (DMSBs and UMSBs). These DMSBs and UMSBs are unidirectional
full cross bar switches that connect signals coming into the cluster to its sub-clusters
and signals going out of a cluster to other clusters of hierarchy.

Because of the homogeneity at all the levels, in a tree-based homogeneous archi-
tecture, the number of DMSBs in a switch block of a cluster at level � are equal
to number of inputs of a cluster at level � − 1. Similarly, number of UMSBs in a
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Fig. 4.3 A two level tree-based heterogeneous FPGA architecture

cluster at level � are equal to number of outputs of a cluster at level � − 1. However,
this rule is slightly changed in case of tree-based heterogeneous architectures. In
a tree-based heterogeneous architecture, since, there can be clusters at a level with
different number of inputs and outputs. So, in this case the number of DMSBs in a
cluster at level � are equal to the the highest number of inputs of a cluster at level
�−1 and number of UMSBs in a cluster at level � are equal to the highest number of
outputs of a cluster at level �−1. In this way all the inputs of a cluster with maximum
inputs can be reached by DMSBs of of upper level cluster and all the outputs of the
cluster with maximum outputs can be connected to UMSBs of upper level cluster. By
applying this rule we ensure high flexibility and hence improved routability. Also by
using this principle we remain inline with the connection patterns of homogeneous
architecture explained in previous chapter. This rule can be further explained with the
help of example shown in Fig. 4.3. In this figure a two level tree-based heterogeneous
architecture is shown. This architecture contains four CLB clusters (detail shown in
Fig. 4.2) and two hard-block clusters. We can see that SLANSKY and SMUX (two
hard-blocks used by one of the benchmarks) clusters have highest number of inputs
among all the clusters of level 1 which is 32. So the number of DMSBs of a cluster at
level 2 are equal to 32 and same rule is applied to determine the number of UMSBs
at that level. Once the number of DMSBs and UMSBs of a cluster are determined,
the inputs per DMSB and outputs per UMSB are determined and connected to the
inputs and outputs of lower and upper level clusters in a similar manner as that of
tree-based homogeneous architecture.
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4.2.1.2 Interconnect Depopulation

Generally, in a tree-based architecture, the interconnect bandwidth grows from bot-
tom to top. However, the number of signals entering into and leaving from the cluster
situated at a particular level of a tree-based architecture can be varied depending upon
the netlist requirement. The signal bandwidth of clusters is controlled using Rent’s
rule [74] which is easily adapted to tree-based heterogeneous architecture. This rule
states that
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In Eq. 4.1 � is a tree level, n is the arity size, k is the number of in/out pins of a LUT,
ax is the number of in/out pins of a HB of type x , �x is the level where HB is located,
bx is the number of HBs at the level where it is located, z is the number of types of HBs
supported by the architecture and IO is the number of in/out pins of a cluster at level
�. Since there can be more than one type of HBs, their contribution is accumulated
and then added to the L .B(p) part of Eq. 4.1 to calculate p. The value of p is a factor
that determines the cluster bandwidth at each level of the tree-based architecture and
it is averaged across all the levels to determine the p for the architecture. Normally
the value of p is either ≤ 1. However, in particular cases, the initial value of p can
be >1 (for details please refer to Sect. 5.6).

4.2.2 Heterogeneous Mesh-Based FPGA Architecture

A mesh-based heterogeneous FPGA is represented as a grid of equally sized slots
which is termed as slot-grid. Blocks of different sizes can be mapped on the slot-
grid. A block can be either a soft-block like a configurable logic block (CLB) or
a hard-block like multiplier, adder, RAM etc. Each block (CLB or a HB) occupies
one or more slots depending upon its size. The architecture used in this work is a
VPR-style (Versatile Place and Route) [81] architecture that contains CLBs, I/Os
and HBs that are arranged on a two dimensional grid. In order to incorporate HBs in
a mesh-based FPGA, the size of HBs is quantized with size of the smallest block of
the architecture i.e. CLB. The width and height of an HB is therefore a multiple of
the width and height of the smallest block in the architecture. An example of such
FPGA where CLBs and HBs are mapped on a grid of size 8 × 8 is shown in Fig. 4.4.

http://dx.doi.org/10.1007/978-1-4614-3594-5_5
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Fig. 4.4 Generalized mesh-based heterogeneous FPGA architecture [94]

In mesh-based FPGA, input and output pads are arranged at the periphery of the
slot-grid as shown in Fig. 4.4. The position of different blocks in the architecture
depends on the used floor-planning technique. A block (referred as CLB or HB) is
surrounded by a uniform length, single driver, unidirectional routing network [77].
The input and output pins of a block connect with the neighboring routing channel.
In the case where HBs span multiple tiles, horizontal and vertical routing channels
are allowed to cross them [19]. In case of mesh-based heterogeneous FPGA, the
detailed interconnect of a CLB with surrounding routing network remains same as
homogeneous FPGA (already detailed in Fig. 3.2). For HBs, their input and output
pins are connected to the surrounding network in a similar manner as CLBs except
that CLBs occupy only one slot and HBs may occupy multiple slots (refer to Fig. 4.4).

http://dx.doi.org/10.1007/978-1-4614-3594-5_3
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In order to explore the two architectures, architecture exploration environments
are developed for both of them. Architecture exploration environment of both mesh-
based and tree-based architectures starts with respective architecture description.
Once the architecture is defined, netlists are placed and routed on both architectures
using a software flow. Different steps that are involved in the exploration are detailed
in following sections.

4.3 Architecture Description

4.3.1 Architecture Description of Heterogeneous
Tree-Based Architecture

Different architecture parameters of the tree-based heterogeneous FPGA architec-
ture are defined using an architecture description file. Some of these parameters are
shown in Table 4.1. The parameter Nb_Levels defines the total number of levels of
the architecture. Nb_Block_Types parameter defines the total number of types that
are supported by the architecture. By default, a tree-based architecture supports two
types of blocks which are logic blocks (CLBs or soft blocks) and I/Os. For het-
erogeneous architectures, however, the types of blocks may vary depending on the
netlist requirements that are being implemented on the architecture. The architecture
is quite flexible in this sense and it can support any number of block types that can
be placed at different levels of hierarchy in order to have a best design fit. In our
description mechanism, the architecture description starts with the specification of
I/O blocks and once it is done, the rest of the architecture is defined repeatedly using
the parameters of lines 5–10 of Table 4.1. These parameters include level number
being defined, number of sub-cluster types supported by each cluster, number of
sub-clusters contained in each cluster and number of inputs/outputs of the cluster.
Definition of clusters starts from bottom level of the architecture and it goes to top
until all the levels of the architecture are specified. Once cluster definition is over,
binary search parameter is either set to be true or false. If binary search parameter
is false, no architecture optimization is performed and the netlist is routed using
the given cluster bandwidth. However if this parameter is true, then an architecture
optimization is performed using the specified optimization approach which can be
bottom_up, top_down or random. Details regarding these optimization approaches
are already given in Sect. 3.5.1.

Once cluster definition of all the levels is over, different types of blocks that are
supported by the architecture can be defined using Define_Block parameter. Different
parameters that are used for the definition of a block are shown in Table 4.2. In a
tree-based architecture, definition of a block starts with the name of the block. The
parameter “Area” gives the area of the block which is later used for the area calculation
of the architecture. Other parameters include the number of input/output pins, the
level where the block is located, the arity (i.e. number of blocks per cluster) of the

http://dx.doi.org/10.1007/978-1-4614-3594-5_3
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Table 4.1 Architecture description file parameters of tree-based architecture

Name Description

1. Nb_Levels Total number of levels in the architecture
2. Nb_Block_Types Number of block types that are supported by the

architecture
3. In_Blocks The level of the cluster and the number of inputs per

cluster of
the input block

4. Out_Blocks The level of the cluster and the number of outputs per
cluster of

the output block
5. Level The level � of the architecture
6. Nb_Cluster_Type Number of sub-cluster types supported by a cluster of

level �

7. Arity Number of sub-clusters of each type supported by a
cluster of level �

8. Nb_Inputs_Per_Cluster Number of inputs per cluster of each type
9. Nb_Outputs_Per_Cluster Number of outputs per cluster type
10. End_Level Completes the definition of level �

11. Optimization Binary search flag set either true or false
12. Optimization_approach Specified as either bottom_up, top_down or random
13. Define_Block blk Block definition (See Table 4.2)

Table 4.2 Block definition in tree-based architecture

Definition Description

Define_Block
Block_Name Name of the block
Area Area of the block
Nb_Inputs Number of inputs of the block
Nb_Outputs Number of outputs of the block
Level_Number Level number where the block is located
Arity Number of blocks per cluster
Pin_Input Name and the class number of input pins of the block
Pin_Output Name and the class number of output pins of the block
End_Define_Block

block and the definition of its input and output pins. While defining I/O pins of a
particular block (logic-block or a hard-block), unique class number are assigned to
each block pin to ensure the appropriate routing of the netlist that is mapped on the
architecture. An example of the architecture description file that we use to construct
the architecture is shown in Fig. 4.5.
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Fig. 4.5 An example of
architecture description file for
tree-based FPGA architecture
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Table 4.3 Architecture description file parameters of mesh-based architecture

Name Description

1. Nx num Slots in the slot-grid in X direction (num >1)
2. Ny num Slots in the slot-grid in Y direction (num >1)
3. Input_Rate Number of input pads in each slot on the periphery of slot-grid
4. Output_Rate Number of output pads in each slot on the periphery of slot-grid
5. Channel_Type T T is unidirectional or bidirectional
6. Binary_Search F Binary search flag (F is true or false)
7. Channel_Width num Channel width if Binary_Search = false (num > 1)
8. Channel_Width_Min num Minimum channel width if Binary_Search = true (num > 1)
9. Channel_Width_Max num Maximum channel width if Binary_Search = true (num > 1)
10. Set_Block blk X Y Place a block named blk at a slot position (X,Y) of slot-grid
11. Set_Block_Auto blk N Place N instances of blk on first available position of slot-grid
12. Fix_Block_Positions F The Blocks are movable or fixed (F is true or false)
13. Block_Jump F If Blocks are moveable, blocks can be moved (F is true or false)
14. Block_Rotate F If Blocks are moveable, blocks can be rotated (F is true or false)
15. Column_Move W s If Blocks are moveable, a column can be moved (W is width of the

column, s is the starting horizontal slot position of column)
16. Define_Block blk Block definition (See Table 4.4)

4.3.2 Architecture Description of Heterogeneous
Mesh-Based Architecture

Architecture description file of mesh-based FPGA architecture comprises of a num-
ber of parameters that are used to construct the architecture. Few major architecture
description parameters are shown in Table 4.3. The parameters Nx and Ny define the
size of the slot-grid. Channel_Type is used to select a unidirectional mesh [77] or a
bidirectional mesh [120] routing network. The channel width of the routing network
is either set to a constant value (using the parameter Channel_Width), or a binary
search algorithm searches a minimum possible channel width between minimum
(Channel_Width_Min) and maximum (Channel_Width_Max) channel width limits.
In case of unidirectional mesh, the channel width remains in multiples of 2. The
position of blocks can be set to an absolute position on the slot-grid (by using the
parameter Set_Block). This parameter takes the name of the block and the position
on the slot-grid where it should be placed. Another option to place blocks on the
slot-grid is by using the parameter Set_Block_Auto. This parameter automatically
places N copies of a block on the first available position on the slot-grid. The blocks
on the slot-grid can be either fixed to an initial position or set as moveable (by using
the parameter Fix_Block_Positions). In case the blocks are moveable, the placer can
refine their position on the slot-grid. The parameter Block_Jump allows the placer to
move blocks on the slot-grid. The parameter Block_Rotate allows the placer to rotate
blocks at their own axis. The parameter Column_Move allows to move a complete
column from one position to another. Column_Move parameter requires the width
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Table 4.4 Block definition in mesh-based architecture

Definition Description

Define_Block
X_Slots Number of slots occupied by the block in horizontal direction
Y_Slots Number of slots occupied by the block in vertical direction
Rotate A flag set true or false to allow or restrict the rotation of block
Area Area of the block
Pin_Input Name, position, class and the direction of input pin of block
Pin_Output Name, position, class and the direction of output pin of block
End_Define_Block

of column, W (i.e number of slots as column width), and the starting horizontal slot
position of the column. All the blocks in a column must be within the boundaries of
the column. This parameter can be repeated if multiple columns are required to be
moved.

A new block can be defined in the architecture description file using the
Define_Block parameter. The block definition parameters are shown in Table 4.4.
Each block is given a name, a size (number of slots occupied), a rotation flag and
input/output pins. The rotation flag allows the rotation of individual block by the
placer (significance of rotation of a block is explained in Sect. 4.4.3). This rotation
flag permits to turn off the rotation of a particular type of block when the global rota-
tion is turned on. Each pin of the block is given a name, a class number, a direction
and a slot position on the block to which this pin is connected. An example of the
architecture description file that is used to construct a mesh-based FPGA architecture
is shown in Fig. 4.6.

4.4 Software Flow

Once the FPGA architectures are defined using their respective architecture descrip-
tion mechanisms, different netlists (benchmarks) are placed and routed on them using
a software flow. The software flow used for the exploration of two architectures is
shown in Fig. 4.7. The software flow is mainly divided into two parts: first part deals
with synthesis and conversion of netlist to .net format while remaining flow deals
with the architecture exploration. It can be seen from the figure that netlist synthesis
involves a number of steps before it can be placed and routed on the FPGA archi-
tecture. These steps are common for both mesh-based and tree-based architectures
and they convert the netlist from .vst format to .net format. The netlist in .vst format
is obtained using VASY [62] that converts VHDL file to structured VHDL (.vst).
Normally a netlist in VST format is composed of traditional standard cell library
instances and hard-block instances. The VST2BLIF tool converts the VST file to
BLIF format. Later, PARSER-1 removes all the instances of hard-blocks and passes
the remaining netlist to SIS [102] for synthesis into 4 input Look-Up Table format.
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Fig. 4.6 An example of architecture description file for mesh-based FPGA architecture

All the dependence between hard-blocks and remaining netlist is preserved by adding
new input and output pins to the main netlist. SIS generates a network of LUTs and
Flip-Flops, which are later packed into CLBs through T-VPACK [120]. T-VPACK
generates a netlist in NET format and then PARSER-2 adds all the removed hard-
blocks into this netlist. It also removes all the inputs and outputs temporarily added
by PARSER-1. This final netlist in NET format, containing CLBs and hard-blocks,
is then placed and routed separately on mesh-based and tree-based architectures. In
this flow SIS is used for synthesis which we want to replace with ABC [21] in future.
Few of the major components of the software flow are detailed below.

4.4.1 Parsers

The output generated by VST2BLIF tool is a BLIF file containing input and output
port instances, gates belonging to a standard cell library, and hard-block instances
(which are represented as sub circuits in BLIF format). This BLIF file is passed to
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Fig. 4.7 Software flow

SIS [102] for synthesis into LUT format. However, the hard-blocks in the BLIF file
are not required to be synthesized. So, the main aim of PARSER-1 is to remove hard-
blocks from BLIF file in such a way that all the dependence between the hard-blocks
and the remaining netlist is preserved. After synthesis and packing, PARSER-2 will
add all the removed hard-blocks in the netlist.

Figure 4.8 shows five different modifications performed by PARSER-1 before
removing hard-block instances from the BLIF file. These cases are described as
below:

1. Figure 4.8a shows a hard-block whose output pin is connected to the input pin
of gate. The output pin of hard-block is detached from the input pin of gate. The
detached signal is added as the input pin of main circuit, as shown in Fig. 4.8b.

2. All the output pins of main circuit that are connected by the output pins of hard-
block (as shown in Fig. 4.8c) are connected to zero gates (as shown in Fig. 4.8d).
This is because, when hard-block is removed, these main circuit outputs do not
remain stranded.
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Fig. 4.8 Netlist modifications done by PARSER-1 [94]

3. All the output pins of gates connected only to the input pins of hard-blocks
(shown in Fig. 4.8e) are added as the output pins of main circuit (as shown in
Fig. 4.8f).

4. For all the output pins of gates connected to the input pins of hard-blocks and
also to the input pins of gates (as shown in Fig. 4.8g), add a buffer to this gate
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output. The buffered output is added as the output of main circuit. The name of
the buffered output should be replaced in all the input pins of hard-blocks (as
shown in Fig. 4.8h).

5. Figure 4.8i shows the input pins of main circuit that are connected only to input
pins of hard-blocks. After the removal of hard-blocks these inputs will remain
stranded and will eventually be removed by SIS. To avoid their removal, these
input pins are retained by adding buffers to them, and adding the buffered outputs
to the main circuit outputs.

After performing the above changes, PARSER-1 removes all the hard-blocks from
the BLIF file. The BLIF file without hard-blocks is passed to SIS, which converts
them to LUTs and Flip-Flops. T-VPACK packs LUTs and Flip-Flops together into
CLBs. Next, PARSER-2 performs the following changes

1. Adds hard-blocks in the netlist file which is generated by T-VPACK.
2. Removes the “Main circuit input” and “Main circuit outputs” added by PARSER-

1.
3. Removes all the zero gates (represented as a CLB after SIS) added by

PARSER-1.

The final output file contains I/O instances, CLB instances and hard-block
instances. This file is then separately placed and routed on mesh-based and tree-
based architectures.

4.4.2 Software Flow for Heterogeneous
Tree-Based Architecture

4.4.2.1 Partitioning

Once the netlist is obtained in .net format, it is partitioned using a partitioner. The
partitioner is based on the one described in previous chapter. Partitioner partitions
CLBs, HBs and I/Os into different clusters in such a way that the inter-cluster com-
munication is minimized. By minimizing inter-cluster communication we obtain a
depopulated global interconnect network and hence reduced area. Partitioner is based
on hMetis [50] platform. hMetis combines Fidducia-Mattheyses (FM) [47] algorithm
with its multi phase refinement approach to optimize the partitioning of the netlist.
The main objective of partitioner is to reduce communication between different par-
titions and FM algorithm achieves this objective using a hill-climbing, non greedy,
iterative improvement approach. During each iteration, a block with highest gain is
moved from one partition to another and then it is locked and it is not allowed to
move during remaining time of iteration. After the block is moved, the gain of all of
its associated blocks is recomputed and this process continues until all the blocks are
locked. At the end of an iteration, total cost is compared to that of previous iteration
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and the algorithm is terminated when it fails to improve during an iteration. After
the netlist is partitioned, it is placed and routed on the architecture.

4.4.2.2 Routing

Once partitioning is done, placement file is generated that contains positions of
different blocks on the architecture. This placement file along with netlist file is then
passed to another software module called router which is responsible for routing of
the netlist. In order to route all nets of the netlist, routing resources of the interconnect
structure are first assigned to the respective blocks of the netlist that are placed on
the architecture. These routing resources are modeled as directed graph abstraction
G(V, E). In this graph the set of vertices V represents the in/out pins of different
blocks and the routing wires in the interconnect structure and an edge E between
two vertices, represents a potential connection between the two vertices. Router
is based on PathFinder [80] routing algorithm that uses an iterative, negotiation-
based approach to successfully route all nets in a netlist. In order to optimize the
FPGA architecture, a binary search algorithm is used. This algorithm determines the
minimum number of signals required to route a netlist on FPGA.

4.4.3 Software Flow for Heterogeneous Mesh-Based Architecture

4.4.3.1 Placement

For mesh-based architecture, the netlist obtained in .net format is placed on the
architecture using the placement algorithm that determines the position of different
block instances of a netlist on their respective block types on FPGA architecture. The
main goal is to place connected instances near each other so that minimum routing
resources are required to route their connections. The placer uses simulated annealing
algorithm [37, 105] to achieve a placement having minimum sum of half-perimeters
of the bounding boxes of all the nets. This placer also optimizes floor-planning of
different blocks on the FPGA architecture. Different operation that are performed by
the placer are detailed as below.

4.4.3.2 Placer Operations

The placer either moves an instance from one block to another, moves a block from
one slot position to another, rotates a block at its own axis, or moves an entire column
of blocks. After each operation, the bounding box cost (also called as placement
cost) is recomputed for all the disturbed signals. Depending on the cost value and
the annealing temperature, the simulated annealing algorithm accepts or rejects the
current operation.
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The placer performs its operation on “source” and “destination” and the slots
occupied by source and destination are termed as source window and destination
window respectively. Normally, source window contains one block whereas desti-
nation window can contain multiple blocks. An example of source and destination
windows is shown in Fig. 4.9a and b respectively. Once the source and destination
windows are selected, the move operation is performed if:

1. Destination window does not contain any block that exceeds the boundary of
destination window. An example violating this condition is shown in Fig. 4.9c.

2. The destination window does not exceed the boundaries of slot-grid (refer to
Fig. 4.9d).

3. Destination window does not overlap source window diagonally (refer to Fig. 4.9g).
However if the destination window overlaps source window vertically or horizon-
tally, then horizontal or vertical translation operation is performed. Figure 4.9e
shows an example where destination window overlaps source window vertically
and Fig. 4.9f shows that the move operation is performed using vertical translation.

However, if above three conditions are not met, the procedure continues until a valid
destination window is found. After the selection of source and destination, placer
either moves an instance, moves a block, rotates a block, or moves an entire column
of blocks. The rotation of blocks is important when the class number assigned to the
input pins of a block are different; bounding box varies depending upon the pin posi-
tions and their directions. A block can have an orientation of 0◦, 90◦, 180◦ or 270◦.
Figure 4.9h depicts a 90◦ clock-wise rotation. Multiples of 90◦ rotation are allowed
for all the blocks having a square shape, whereas at the moment only multiples of
180◦ rotation are allowed for rectangular (non-square) blocks. A 90◦ rotation for non-
square blocks involves both rotation and move operations, which is left for future
work.

4.4.3.3 Routing

After the placement of netlist on the FPGA architecture, the exploration environment
constructs routing graph for the architecture. Few of the architecture description para-
meters required for the construction of routing graph are taken from the architecture
description parameters. These parameters mainly include the type of routing net-
work (unidirectional or bidirectional), channel width, I/O rate, block types and their
pin positions on the block. Other parameters depend on the floor-planning details.
These parameters include the position of blocks on the slot-grid and their orienta-
tion (0◦, 90◦, 180◦ or 270◦). After the construction of routing graph, the PathFinder
routing algorithm [80] is used to route netlists on the routing architecture. In case
a binary search operation is used, routing graph is constructed for varying channel
widths; routing is tried for each channel width until a minimum channel width is
found.
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Fig. 4.9 Placer operations

4.4.4 Area Model

Once the optimization of the architecture is over, a generic area model is used to cal-
culate the area of the FPGA (separately for mesh-based and tree-based architecture).
The area model is based on the reference FPGA architectures shown in Figs. 4.1 and
4.4 respectively. Area of SRAMs, multiplexors, buffers and Flip-Flops is taken from
a symbolic standard cell library (SXLIB [9]) which works on unit Lambda(λ). The
area of FPGA is reported as the sum of the areas taken by the switch box, connection
box, buffers, soft logic blocks, and hard-blocks.

4.5 Exploration Techniques

Various techniques are explored for both mesh-based and tree-based architectures
using the software flow described in Sect. 4.4. A brief overview of different techniques
is presented here.
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Fig. 4.10 Symmetric tree-based FPGA architecture

4.5.1 Exploration Techniques for Heterogeneous
Tree-Based Architecture

Different manual parameters are used in architecture description file to explore two
techniques for tree-based architecture. Generalized examples of both techniques are
shown in Figs. 4.10 and 4.11 respectively. These techniques are detailed below:

4.5.1.1 Symmetric

A generalized example of first technique is shown in Fig. 4.10. This technique is
referred as symmetric (SYM). In this technique clusters of HBs are mixed with those
of LBs and HBs can be placed at any level of hierarchy in order to have best design fit.
In this technique the symmetry of hierarchy is respected which can eventually result
in wastage of HBs and their associated routing resources. For example in Fig. 4.10,
it can be seen that this architecture supports four clusters of HBs of a certain type
where each cluster contains four HBs. This is because of the fact that this is an arity
4 architecture. However the respect for symmetry of hierarchy may lead to under
utilization of HBs and their associated routing resources in the case where a netlist
requires less HBs than supported by the architecture.
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Fig. 4.11 Asymmetric tree-based FPGA architecture

4.5.1.2 Asymmetric

Contrary to the first technique, where the architecture contains only one structure,
second technique contains two sub-structures: one sub-structure contains only CLBs
while the other contains only HBs. An example of second technique is shown in
Fig. 4.11. The main motivation behind this technique is the easy management of
logic and routing resources. In this technique both sub-structures are constructed
separately and the communication between them is ensured using the switch blocks
of their parent cluster. Since the two sub-structures are constructed independently,
they do not have to respect the arity of each other; hence leading to more optimized
logic and routing resources. This technique is referred as asymmetric (ASYM).

Although this aspect is not fully explored in this work but this type of technique
can also be used to exploit arithmetic intensive applications. Arithmetic intensive
applications contain a large portion of data-path circuits that contain hard-blocks
(e.g. multipliers, adders, memories etc.) that are connected together by regularly
structured signals called buses. Conventional FPGAs do not use the regularity of data-
path circuits. The regularity of data-path circuits can be exploited by implementing
coarse-grain (or bus-based) routing in the sub-structure containing only HBs; routing
of the sub-structure containing only CLBs remains unchanged. Exploitation of the
regularity of data-path circuits is possible in this technique as the two sub-structures
are independent of each other and they communicate with each other only through
a parent cluster. By implementing the coarse-grain routing in the sub-structure con-
taining only HBs, the number of SRAMs and switches can be reduced which can
eventually lead to smaller area of the architecture.
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4.5.2 Exploration Techniques for Heterogeneous Mesh-Based
Architecture

By using different placer operations, six floor-planning technique are explored for
mesh-based architecture. The detail of these floor-planning techniques is as follows:

4.5.2.1 Apart

In this technique, hard-blocks are placed in fixed columns, apart from the CLBs. This
technique is shown in Fig. 4.12a and is termed as Apart (A). Such kind of technique
can be beneficial for data-path circuits as described by [29]. It can be seen from
the figure that if all HBs of a type are placed and still there is space available in the
column then in order to avoid wastage of resources, CLBs are placed in the remaining
place of column.

4.5.2.2 Column-Partial

Figure 4.12b shows the Column-Partial (CP) technique where columns of HBs are
evenly distributed among columns of CLBs.

4.5.2.3 Column-Full

Figure 4.12c shows Column-Full (CF) technique where columns of HBs are evenly
distributed among CLBs. Contrary to first and second techniques, whole column
contains only one type of blocks. This technique is normally used in commercial
architectures and topologically this technique is equivalent to Symmetric and Asym-
metric techniques of tree-based FPGA architecture.

4.5.2.4 Column-Move

In this technique, HBs are placed in columns but unlike first three techniques, columns
are not fixed, rather they are allowed to move using the column-move operation of
placer. This technique is shown in Fig. 4.12d and it is termed as Column-Move (CM).

4.5.2.5 Block-Move

In this technique HBs are not restricted in columns; and they are allowed to move
through block move operation. This technique is termed as Block-Move (BM) and
it is shown in Fig. 4.12e.



4.5 Exploration Techniques 107

Fig. 4.12 Exploration techniques for mesh-based architecture

4.5.2.6 Block-Move-Rotate

The blocks in this technique are allowed to move and rotate through block move
and rotate operations. This floor-planning technique is shown in Fig. 4.12f and it is
termed as Block-Move-Rotate (BMR). Among these techniques CF is the technique
that is usually used in mesh-based architectures while rest of them are new. Different
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floor-planning techniques for mesh-based FPGA are explored here because floor-
planning can have a major implication on the area of an FPGA. If a tile-based layout
is required for an FPGA, similar blocks can be placed in same column. In this way,
width of the entire column can be adjusted according to the layout requirements
of the blocks placed in a column. On the other hand, if blocks of different types
are placed in a column, the width of the column cannot be fully optimized. This is
because the column width can only be reduced to maximum width of any tile in that
particular column. Thus, some unused space in smaller tiles will go wasted. Such a
problem does not arise if a tile-based layout is not required. In such a case, an FPGA
hardware netlist can be laid out using any ASIC design flow.

4.6 Experimentation and Analysis

Different techniques of two architectures are explored using the software flow
described in Sect. 4.4. Three sets of benchmarks are used for this exploration. The
detail about three sets and their selection criteria is described below.

4.6.1 Benchmark Selection

Generally in academia and industry, the quality of an FPGA architecture is mea-
sured by mapping a certain set of benchmarks on it. Thus the selection of bench-
marks plays a very important role in the exploration of heterogeneous FPGAs. This
work puts special emphasis on the selection of benchmark circuits, as different cir-
cuits can give different results for different architecture techniques. This work cat-
egorizes the benchmark circuits by the trend of communication between different
blocks of the benchmark. So, three sets of benchmarks are assembled having distinct
trend of inter-block communication. These benchmarks are shown in Tables 4.5, 4.6
and 4.7. Benchmarks shown in Table 4.5 are developed at [79], the benchmarks
shown in Table 4.6 are obtained from [36] and the benchmarks shown in Table 4.7
are obtained from [119]. The communication between different blocks of a bench-
mark can be mainly divided into the following four categories:

1. CLB-CLB: CLBs communicate with CLBs.
2. CLB-HB: CLBs communicate with HBs and vice versa.
3. HB-HB: HBs communicate with HBs.
4. IO-LB/HB: I/O blocks communicate with CLBs and HBs.

In SET I benchmarks, the major percentage of total communication is between HBs
(i.e. HB-HB) and only a small part of total communication is covered by the commu-
nication CLB-CLB or CLB-HB. On average, in SET I, the HB-HB communication
takes up to 80% of the total communication between different instances of the bench-
marks (netlists). Similarly, in SET II the major percentage of total communication
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Table 4.5 DSP benchmarks SET I

Circuit name Inputs Outputs LUTs Mult Slansky Sff Sub Smux Function
(LUT-4) (8 × 8) (16 + 16) (8) (8 − 8) (32:16)

ADAC 18 16 47 – – 2 – 1 –
DCU 35 16 34 1 1 4 2 2 Discrete

cosine
transform

FIR 9 16 32 4 3 4 – – Finite
impulse
response

FFT 48 64 94 4 3 – 6 – Fast
fourier

transform

Table 4.6 Open core benchmarks SET II

Circuit name Number of Number of Number of Number of Number of Function
inputs outputs LUTs multipliers adders

(LUT-4) (16 × 16) (20+20)

cf_fir_3_8_8_open 42 18 159 4 3 Finite
impulse
response

(8 bit)
cf_fir_7_16_16 146 35 638 8 14 Finite

impulse
response
(16 bit)

cfft16 × 8 20 40 1,511 – 26 –
cordic_p2r 18 32 803 – 43 Polar to

rectangular
cordic_r2p 34 40 1,328 – 52 Rectangular

to polar
fm 9 12 1,308 1 19 –
fm_receiver 10 12 910 1 20 –
lms 18 16 940 10 11 –
reed_solomon 138 128 537 16 16 –

is HB-CLB and in SET III, major percentage of total communication is covered by
CLB-CLB. Normally the percentage of IO-CLB/HB is a very small part of the total
communication for all the three sets of benchmarks.
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Table 4.7 Open core benchmarks SET III

Circuit name Number of Number of Number of Number of Function
inputs outputs LUTs multipliers

(LUT-4) (18 × 18)

cf_fir_3_8_8_ut 42 22 214 4 Finite
impulse
response

(8 bit)
diffeq_f_systemC 66 99 1532 4 –
diffeq_paj_convert 12 101 738 5 –
fir_scu 10 27 1366 17 –
iir1 33 30 632 5 Infinite

impulse
response
(16 bit)

iir 28 15 392 5 Infinite
impulse
response

(8 bit)
rs_decoder_1 13 20 1553 13 Decoder
rs_decoder_2 21 20 2960 9 Decoder

4.6.2 Experimental Methodology

Once the benchmarks are selected, they are placed and routed on the two archi-
tectures using two different experimental methodologies. An overview of the two
methodologies is as follows:

4.6.2.1 Individual Experimentation

In first methodology, experiments are performed individually for each netlist (both for
mesh-based and tree-based architectures). The architecture definition, floor-planning,
placement/ partitioning, routing and optimization is performed individually for each
netlist. Although, such an approach is not applicable to real FPGAs, as their archi-
tecture, floor-planning and routing resources are already defined and fixed. However
this methodology is useful in order to have detailed analysis of a particular floor-
planning technique and usually it is employed to evaluate different parameters of the
architecture under consideration. If a generalized architecture is defined for a group
of netlists, the netlists with highest logic and routing requirements decide logic and
routing resources of the architecture and the behavior of remaining netlists of the
group is overshadowed by larger netlists of the group. So, to have more profound
analysis, the architecture and floor-planning is optimized for each netlist and the area
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Table 4.8 Area of different blocks of three sets

Block name Inputs Outputs Block size
(λ2)

clb 4 1 58,500
mult (8 × 8) 16 16 1,075,250
slansky_16 32 16 306,750
sff_8 8 8 36,000
sub_8 17 8 154,500
smux_16 33 16 36,000
mult (16 × 16) 32 32 1,974,000
adder (20 + 20) 41 21 207,000
mult (18 × 18) 36 36 2,498,300
sram – – 1,500
buffer 1 1 1,000
flip-flop 1 1 4,500
mux 2:1 2 1 1,750

of the architecture is calculated individually using the model described in Sect. 4.4.4
and the values shown in Table 4.8. Later average of results of all netlists gives more
thorough results.

4.6.2.2 Generalized Experimentation

However, in order to further validate the results, we have also performed experimen-
tation based on the generalized architecture. In this methodology, for mesh-based
architecture a generalized minimum architecture is defined for each SET of netlists
and the floor-planning is then optimized for this architecture. Generalized floor-
planning is achieved by allowing the mapping of multiple netlists on the same archi-
tecture where each block of the architecture allows mapping of multiple instances
on it, but multiple instances of the same netlist are not allowed. Similarly for tree-
based architecture, multiple netlists are partitioned using generalized architecture
description where mapping of multiple instances on each block position is allowed
but multiple instances of same netlist are not allowed on a single block position.
Once generalized floor-planning/partitioning is over, individual netlists are placed
and routed separately on both architectures with minimum routing resources that can
route any of the netlists of the SET. Since, in this case a generalized architecture is
used, optimization of the architecture is not performed for individual netlists.

4.6.3 Results Using Individual Experimentation Approach

Experiments are performed for three sets of benchmarks using the software flow
described earlier where 21 benchmarks of three sets are placed and routed individ-
ually on the two FPGA architectures using different exploration techniques. Similar
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to homogeneous architectures experimentation, for tree-based architecture the LUT
size is set to be 4 while arity size is set to be 4 too; for mesh-based architecture LUT
size is also set to be 4 and CLB size is set to be 1 for both architectures. Since place-
ment cost and channel width of a mesh-based architecture are directly related to its
area, we first present the effect of different floor-planning techniques of mesh-based
architecture on these two values.

4.6.3.1 Placement Cost and Channel Width Comparison Results

Placement cost results for six floor-planning techniques of mesh-based architecture
are shown in Fig. 4.13. In this figure, for each benchmark circuit, placement cost of
five floor-planning techniques (Apart (A), Column-Partial (CP), Column-Full (CF),
Column-Move (CM) and Block-Move (BM)) of mesh-based FPGA is normalized
against the placement cost of Block-Move-Rotate (BMR) technique. Placement cost
is the sum of half perimeters of bounding boxes (BBX cost) of all the NETS in a
netlist. The results for benchmarks 1–4, 5–13 and 14–21 correspond to SET I, SET
II and SET III respectively. For example in Fig. 4.13 column 1 gives normalized
results for “ADAC”, column 5 gives results for “cf_fir_3_8_8_open” and column
21 gives results for “rs_decoder_2”. The avg1, avg2 and avg3 corresponds to the
geometric average of these results for SET I, SET II and SET III respectively while
avg corresponds to the average of all netlists. As it can be seen from the figure that
in general Apart (A) gives the worst and BMR gives the best placement cost results
whereas the results of remaining techniques are in between these two techniques. In
Apart the average placement cost is higher than the other floor-planning techniques
because in this technique columns of hard-blocks are fixed and they are separated
from CLBs. Although this kind of floor-planning technique can give good results for
data-path circuits, it gives poor placement solution for control path circuits as the
columns of HBs are fixed and they are not mixed with CLBs. This situation further
aggravates if there are more than one types of HBs that are required to be supported
by the architecture. Although columns of HBs are fixed in CF and CP, they give better
placement cost results when compared to Apart as in those techniques the columns
of hard-blocks are not placed apart rather they are interspersed evenly among CLBs;
hence leading to smaller placement costs. BMR gives the best placement cost results
because it is the most flexible technique among the six floor-planning techniques.
Although the only difference between BM and BMR is that of hard-block rotation, it
gives a slight edge to BMR which might lead to smaller bounding box and eventually
lower placement costs of the architecture. Figure 4.14 gives the channel width results
of the six floor-planning techniques of mesh-based architecture. In this figure, for 21
benchmarks, channel widths of 5 floor-planning techniques are normalized against
the channel width of BMR. Similar to the results in Fig. 4.13, BMR gives the best
results and Apart gives the worst results. The two figures (i.e. Figs. 4.13 and 4.14)
look similar to each other as

1. Both figures give normalized results.
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Fig. 4.13 Placement cost comparison between different techniques of mesh-based architecture

Fig. 4.14 Channel width comparison between different techniques of mesh-based architecture

2. Placement cost and channel width are closely related to each other.

Generally an architecture with higher placement cost indicates a poor placement
solution as in this solution instances connected to each other are placed far from
each other. A poor placement solution normally leads to higher channel width of
the architecture as the instances placed far from each other require more rout-
ing resources than the ones placed close to each other. Analysis of the results in
Figs. 4.13 and 4.14 show that, on average, CF (the technique used in most of the
work cited at the start of the chapter) gives 35, 35 and 11% more placement cost than
BMR, for SET I, SET II and SET III benchmark circuits respectively. Figure 4.14
shows that, on average, CF requires 13, 22 and 9% more channel width than BMR
for SET I, SET II and SET III respectively.

The reason that BMR gives better placement cost and channel width results when
compared to other techniques lies in its flexibility. In four out of five remaining tech-
niques (i.e. Apart, Column-Partial, Column-Full and Column-Move), hard-blocks are
fixed in columns and they are not free to move and the placer can move only logic-
blocks which eventually leads to higher placement costs and larger channel widths. In
case of BMR, however, both HBs and CLBs can be moved which increases the flex-
ibility of the architecture; hence smaller placement cost and smaller channel widths.
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Fig. 4.15 Area comparison between different techniques of mesh-based and tree-based architecture

It is interesting to note that the only difference between BM and BMR techniques is
that of block rotation. Although block rotation has no effect on CLBs, it affects the
bounding box cost of HBs which can decrease the overall placement cost; hence a
small gain in channel width is observed.

4.6.3.2 Area Comparison Results

Area results for different exploration techniques of mesh-based and tree-based archi-
tectures are shown in Fig. 4.15. Similar to the results of Figs. 4.13 and 4.14, area
results of different techniques are normalized against the BMR technique of mesh-
based architecture. In order to avoid congestion, results for only 4 out of 6 techniques
of mesh-based architecture are presented here. It can be seen from the figure that gains
of BMR technique observed in Figs. 4.13 and 4.14 remain valid here too and BMR
technique gives either equal or better results when compared to other floor-planning
techniques of mesh-based architecture. Among four floor-planning techniques of
mesh-based architecture, on average, Apart gives the worst results and BMR gives
the best results whereas the results of CF are in between Apart and BMR. How-
ever, when compared to exploration techniques of tree-based architecture, for SET I
benchmark circuits, SYM requires 35% more area than BMR, and ASYM requires
12% more area than BMR. However for SET II benchmark circuits, on average BMR
is almost equal to SYM and ASYM. For SET III benchmark circuits BMR is worse
than SYM and ASYM by 14 and 18% respectively. Further, the comparison of ASYM
with CF shows that for three sets of benchmarks, on average, tree-based architecture
consumes 15, 21 and 29% less area than mesh-based architecture. As compared to
the mesh-based architecture, tree-based architecture slightly under utilizes its logic
resources because of its hierarchy. This under utilization leads to natural congestion
spreading in routing resources; hence leading to smaller switch sizes and ultimately
reduced area.

In this work, the BMR floor-planning serves as a near ideal floor-planning with
which other floor-planning techniques are compared. It can be noted that results of
CF compared to BMR vary depending upon the set of benchmarks that are used. For
SET I benchmark circuits, where the types of blocks for each benchmark are two or
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more than two and communication is dominated by HB-HB type of communication,
CF produces worse results than the other two sets of benchmarks. This is because
of the fact that columns of different HBs are separated by columns of CLBs and
HBs need extra routing resources to communicate with other HBs. However in BMR
there is no such limitation; HBs communicating with each other can always be placed
close to each other. For other two sets the gap between CF and BMR is relatively
less. The reduced HB-HB communication in SET II and SET III benchmark circuits
is the major cause of reduction in the gap between CF and BMR. However 21 and
16% area difference for SET II and SET III is due to the placement algorithm. In
CF, the simulated annealing placement algorithm is restricted to place hard-block
instances of a netlist at predefined positions. This restriction for the placer reduces
the quality of placement solution. Decreased placement quality requires more routing
resources to route the netlist; thus more area is required. The results show that BMR
technique produces least placement cost, the smallest channel width and hence the
smallest area for mesh-based heterogeneous FPGA. However, BMR floor-planning
technique is dependant upon target netlists to be mapped upon FPGA. Although
such an approach is not suitable for generalized FPGAs, it can be beneficial for
domain specific FPGAs. Moreover, the hardware layout of BMR requires more efforts
than CF.

For tree-based FPGA, ASYM produces better results than SYM because of its
better logic resource utilization and further it is better than the best technique of mesh-
based FPGA (i.e. BMR) by an average of 8% for a total of 21 benchmark circuits.
The gain of tree-based FPGA is not large when compared to the best technique of
mesh-based FPGA. This is because of the fact that tree-based FPGA requires more
resources because of its hierarchy. Although it helps in spreading the congestion,
it leads to extra logic and routing resources which decrease the area gain of tree-
based FPGA. However, when the best technique of tree-based FPGA is compared to
equivalent mesh-based FPGA (i.e. CF), it gives on average a gain of 15, 21 and 29%
for SET I, SET II and SET III benchmarks respectively.

4.6.3.3 Critical Path Comparison Results

In order to evaluate the performance of different techniques of two architectures, we
have calculated the number of switches crossed by critical path. Since we are explor-
ing a number of techniques for both mesh-based and tree-based architectures, it would
be very difficult to perform layout for each technique and determine the exact critical
path delay. So, we use a simple model that gives an overview of the impact of active
routing resources (switches) on the overall performance of the architecture. Simi-
lar to area results, critical path results are normalized against BMR floor-planning
of mesh-based FPGA. These results are shown in Fig. 4.16. To avoid congestion,
results for only 6 out of 8 techniques are shown. It can be seen from Fig. 4.16 that
due to its higher flexibility, BMR gives higher performance results than other floor-
planning techniques of mesh-based FPGA. On average, CF critical path crosses 5, 7
and 10% more switches than BMR technique for SET I, SET II and SET III bench-
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Fig. 4.16 Critical path comparison between different techniques of mesh-based and tree-based
architecture

marks respectively. Although Apart (A) gives worst results in terms of placement
cost, channel width and area, it is quite interesting to note that critical path results
of Apart (A) are comparatively better than CF. This is because of the fact that in
Apart columns of HBs are placed close to each other and apart from the CLBs. Since
in SET I benchmarks majority of the communication involves HB-HB communica-
tion, there is a strong probability that critical path involves HBs which ultimately
leads to 50% of benchmarks of SET I crossing less number of switches than CF. For
SET II benchmarks this percentage drops to 44% as there is more communication
between CLBs and HBs. However, in case of SET III benchmarks 75% of benchmarks
cross less number of switches for Apart than CF as the communication pattern is
dominated by CLB-CLB and in case of Apart there are no columns of HBs inter-
spersed in between CLBs; hence leading to smaller number of switches that are
crossed by critical path. Although Apart gives better results than CF, BMR manages
to produce the best overall results among floor-planning techniques of mesh-based
architecture due to its higher flexibility.

However, compared to the tree-based FPGA, both SYM and ASYM techniques
of tree-based FPGA produce far better performance than BMR technique due to
the inherent characteristic of tree-based architecture. Compared to BMR technique
of mesh-based architecture, on average, SYM and ASYM techniques of tree-based
architecture cross 53%, (54% less switches for SET I), 64%, (63% less switches for
SET II) and 60%, (59% less switches for SET III) benchmarks respectively. It can
also be observed from these results that on average ASYM technique crosses 1%
more switches than SYM technique. In ASYM technique, HBs have a separate sub-
structure and if critical path involves HBs and CLBs then it can lead to an increase in
number of switches crossed by critical path (refer to Figs. 4.10 and 4.11). However
if critical path involves no HBs or only HBs and I/Os, it can lead to smaller number
of switches than SYM technique (refer to Fig. 4.16 results for benchmark 2 and 7).
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4.6.3.4 SRAM and Buffer Comparison Results

Power optimization of FPGAs has become very important with the advancement in
process technology. Although in this work a detailed power analysis of mesh-based
and tree-based FPGA architectures is not performed, it gives a brief overview of
the static power consumption of the two architectures; which has become increas-
ingly important for smaller process technologies [12]. Static power of the FPGAs is
directly related to the configuration memory and the number of buffers in an FPGA
architecture [132]. Therefore, a comparison of configuration memory and number
of buffers for different techniques of the two architectures is shown in Figs. 4.17
and 4.18 respectively.

Figure 4.17 shows number of SRAMs for different techniques normalized against
the BMR technique of mesh-based FPGA. Comparison of BMR with CF shows
that, on average, CF consumes 23, 16 and 9% more SRAMs than BMR for SET I,
SET II and SET III respectively. Comparison of BMR with tree-based architecture
techniques shows that, on average, SYM consumes 9% more and ASYM consumes
10% less SRAMs for SET I. However, for SET II and SET III SYM and ASYM
consume 11%, 7% and 13%, 15% less SRAMs than BMR respectively. Similarly
Fig. 4.18 shows that, compared to BMR, CF consumes 9, 22 and 18% more buffers
for SET I, SET II and SET III respectively. Comparison of SYM and ASYM with
BMR shows that both consume 6% more buffers for SET I, 3% less buffers for SET
II and 15%, (18% less buffers for SET III). Although the comparison presented in
Figs. 4.17 and 4.18 does not give detailed power estimation of the two architectures,
it gives an empirical estimate of the static power of the two architectures and as stated
by [63], it closely correlates to the average area results of the two architectures.

4.6.4 Results Using Generalized Experimentation Approach

In this approach experiments are performed for three sets of benchmarks shown in
Tables 4.5, 4.6 and 4.7 respectively. Different exploration techniques are explored for
each architecture. For each technique, a minimum common architecture is defined for
each set of benchmarks that can implement any of the netlists of the benchmark set.
Area comparison results for different exploration techniques of both mesh-based and
tree-based architectures are shown Fig. 4.19. For each of the three sets of benchmark,
the results of five floor-planning techniques of mesh-based architecture and two
exploration techniques of tree-based architecture are normalized against the BMR
technique of mesh-based architecture. Contrary to the individual experimentation
approach where separate architectures are defined and optimized for each netlist of
benchmark set, a common architecture is defined for each set in this approach.

The area comparison results of different floor-planning techniques show that com-
pared to other floor-planning techniques of mesh-based FPGA, BMR produces equal
or better results. However, compared to individual experimentation approach, the gain
of BMR compared to CF is reduced from 23%, 10 to 5%, 3% for SET II and SET III
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Fig. 4.17 SRAM comparison between different techniques of mesh-based and tree-based archi-
tecture

Fig. 4.18 Buffer comparison between different techniques of mesh-based and tree-based architec-
ture

benchmarks respectively, while the gain for SET I benchmarks remains unchanged.
This drop in gain is mainly due to the combined floor-planning optimization of all the
netlists of a SET where the routing requirements of smaller netlists are overshadowed
by those of larger netlists. As far as the comparison of BMR with SYM and ASYM
techniques of tree-based FPGA is concerned, the results of tree-based topologies are
further improved. For SET I benchmarks, SYM and ASYM techniques are only 4
and 3% worse than BMR and for SET II, their gain is increased from 0 to 22 and
24% and for SET III their gain is increased from 14–18% to 22–24% respectively.

In case of generalized experimentation, increase in the area gain of both techniques
of tree-based architecture is because of the fact that in this experimentation the netlist
having the highest routing requirements decides the logic and routing resources of the
architecture. Routing requirement of a benchmark not only depends on the number
of CLBs and HBs but also on the connection density. In our case the benchmarks
with the highest routing requirements are benchmarks 4, 10 and 21 for SET I, SET
II and SET III respectively and results of these benchmarks in Fig. 4.15 correspond
well to the results of Fig. 4.19.

Generalized critical path comparison results for different techniques of mesh-
based and tree-based architectures are presented in Fig. 4.20. It can be seen from the
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Fig. 4.19 Generalized area comparison between different techniques of mesh-based and tree-based
architecture

Fig. 4.20 Generalized critical path comparison between different techniques of mesh-based and
tree-based architecture

figure that similar to results of individual experimentation methodology, techniques
of tree-based architecture give far better results compared to the techniques of mesh-
base architecture. On average, SYM crosses 54, 57 and 60% less switches than
BMR and ASYM crosses 56, 57 and 60% less switches than BMR for SET I, SET
II and SET III benchmark sets respectively. Further, SRAM and buffer comparison
results are shown in Figs. 4.21 and 4.22 respectively. These results give an empirical
estimate of the static power consumption of the two architectures which has become
increasingly important with the advancement in the process technology. Figure 4.21
shows that CF consumes 37, 8 and 3% more SRAMs than BMR technique for SET
I, SET II and SET III respectively whereas ASYM consumes almost same number
of SRAMs for SET I and 24%, 14% less SRAMs than BMR for SET II and SET III
respectively. Similarly the buffer comparison shows that ASYM produces the best
overall results and as stated by [63] these results are in compliance with the area
results of the two architectures. In this chapter we have mainly emphasized on the
comparison between heterogeneous mesh-based and tree-based FPGA architectures
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Fig. 4.21 Generalized SRAM comparison between different techniques of mesh-based and tree-
based architecture

Fig. 4.22 Generalized buffer comparison between different techniques of mesh-based and tree-
based architecture

and no comparison is presented between tree-based heterogeneous architectures and
their homogeneous counterparts. However, in [45] we have performed a comparison
between heterogeneous and homogeneous tree-based FPGA architectures and results
show that on average heterogeneous architecture gives 41% area gain as compared
to tree-based homogeneous FPGA architecture. So, it can be stated here that the
introduction of hard-blocks in tree-based architectures improves their density as
compared to their homogeneous counterparts and further they give better overall
results when they are compared with mesh-based heterogeneous architectures.

The experimental results presented from Figs. 4.13 to 4.22 are concluded below.
These conclusions are valid both for individual and generalized experimentation
unless otherwise specified.

• Among the six floor-planning techniques of mesh-based FPGA, “Apart (A)” tech-
nique gives the worst area and static power results while “Block-Move-Rotate
(BMR)” gives the best overall results. The “Apart” floor-planning is not a suitable
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floor-planning; atleast not for the netlists used in this work. This floor-planning
might be advantageous if

1. Control-path portion of a circuit implemented on CLBs is relatively small as
compared to data-path portion of circuit implemented on hard-blocks.

2. Routing network of control and data-path sections of the FPGA architecture are
optimized independently.

• Column based floor-planning (CF) of hard-blocks is advantageous for an optimized
tile-based layout generation; the widths of hard-blocks placed in columns can be
appropriately adjusted to optimize the layout area. However, column-based floor-
planning is unable to decrease the placement cost as some other floor-plannings
do. This difference in placement costs can sometimes result in as high as 35%
difference in total area of FPGA.

• The floor-planning achieved through Block Move and Rotate (BMR) operation
gives the least possible placement cost, and eventually least FPGA area as com-
pared to other floor-planning techniques. However, such a floor-planning can be
achieved only if the set of netlists are known in advance. Such can be a case if an
application specific FPGA is desired for a product.

• Among the two exploration techniques of tree-based architecture, “Asymmet-
ric(ASYM)” technique gives the best overall results (area, critical path delay and
static power) because of its better resource utilization (see Sect. 4.5.1). When
compared to the equivalent mesh-based floor-planning technique (i.e. CF floor-
planning technique), ASYM gives better overall results. However, when compared
to the best floor-planning technique of mesh-based architecture (i.e. BMR), ASYM
gives either equal or better results except for the SET I benchmarks which makes
tree-based architecture unsuitable for benchmarks involving excessive communi-
cation between HBs. However, this deficiency can be remedied by incorporating
the architecture modifications that are suggested in Sect. 4.5.1.

4.7 Heterogeneous FPGA Hardware Generation

The hardware of heterogeneous FPGA is generated in a similar manner as that of
homogeneous FPGA. However, modifications are performed to incorporate the effect
of different types of blocks that are used by different netlists. Similar to the homo-
geneous FPGA, the VHDL model generator of heterogeneous FPGAs is integrated
with their exploration environments and the parameters that are supported by the
exploration environment are also supported by the VHDL generator.

The FPGA generation flow remains exactly the same except that now the block
database contains details about a variety of blocks that are used by different netlist
being mapped on the architecture. As far as the remaining steps involved in the
VHDL model generation are concerned, they remain the same. The only difference
between the VHDL generation of homogeneous and heterogeneous FPGAs is that
of the support for hard-blocks.
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4.8 Summary and Conclusion

This chapter presented a new exploration environment for tree-based heterogeneous
FPGA architecture which remains relatively unexplored despite its attractive char-
acteristics. Different architectural techniques of tree-based architecture are then
explored using its exploration environment. Exploration of heterogenous tree-based
FPGA architecture is mainly related to the architecture description and architec-
ture optimization. For the architecture description, a detailed architecture descrip-
tion mechanism is designed to define a heterogeneous FPGA architecture. Once
the architecture is defined, it is optimized using different parameters of architecture
exploration environments. Also, this chapter presented an exploration environment
for mesh-based heterogeneous FPGA architecture. Contrary to the existing envi-
ronments of mesh-based architecture that use pre-determined floor-planning, the
environment presented in this chapter automatically optimizes the floor-planning of
the architecture. The major feature of the exploration environments of two FPGA
architectures is that they are flexible and they can be used to explore different explo-
ration techniques for two FPGA architectures. In order to evaluate the exploration
environments of two architectures, a generalized software flow is designed which
maps different applications on the two architectures separately. The software flow
used to explore the two architectures is flexible in the sense that it can be used to
implement different types of applications having different types of blocks. Since
communication trends of applications play a very important role in the architecture
evaluation, special care has been taken while selecting these applications. We have
selected 21 benchmarks (applications) where we have covered different aspects of
inter-block communication.

A number of techniques are explored for both architectures using their respective
software flows and experimental results show that for 21 benchmarks, on average,
a column-based (CF) island-style FPGA takes 19% more area, crosses 8% more
switches on critical path, consumes 13% more memories and 20% more buffers than
the best non-column (BMR) based island-style FPGA. These differences increase
as the number of different types of hard-blocks increase in the FPGA architecture.
However, these gains might decrease due to difficulties associated with layout of
non-column based heterogeneous FPGA. Further, the comparison between different
techniques of mesh-based (island-style) and tree-based (hierarchical) architecture
shows that, on average, the best technique of tree-based architecture is 8.7% more area
efficient, crosses 60% less switches on critical path, consumes 11% less memories
and almost same number of buffers than the best non-column based technique of
mesh-based architecture. These gains further increase when the best technique of
tree-based architecture is compared to the equivalent column-based technique (i.e.
CF) of mesh-based architecture. These results are averaged for 21 benchmarks which
cover different aspects of heterogeneous benchmarks. The work and results presented
in this chapter are also published in [116].
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