
Chapter 3
Homogeneous Architectures Exploration
Environments

The advancement in process technology has greatly enhanced the capacity of FPGAs
and they have become increasingly popular for the implementation of larger designs.
Design of large devices implies fundamental and efficient innovation in FPGA archi-
tecture to improve density, speed and power optimization of the architecture. It has
been observed that most of the designs exhibit a locality in their connections and
specific architectures are required to be designed to exploit their locality and improve
the architecture efficiency. In this chapter we present an exploration environment for
a new tree-based homogeneous FPGA architecture [132] that exploits the locality
that most of the designs exhibit. Routability and interconnect area of this architecture
depends on switch boxes topology and signals bandwidth (in/out signals per clus-
ter). In tree-based FPGA we use full crossbar switch boxes and we aim at exploiting
the available flexibility to reduce signals bandwidth based on suitable partitioning
approaches.

It is well established that the quality of an FPGA based implementation is largely
dependant on the accompanying flow that is used to map different applications on the
FPGA architecture. Benefits of an otherwise well designed, feature rich FPGA archi-
tecture might be impaired if the CAD tools can not take advantage of the features that
FPGA provides. In this book we have designed an environment for tree-based archi-
tecture that exploits the features of this architecture. The environment is based on a
mixture of generalized and specifically developed tools. These tools are used to map
different application on the tree-based architecture. A reference mesh-based archi-
tecture and its associated exploration environment is also presented in this chapter
and the two architectures are compared using the results that are obtained through
the exploration environments of both architectures.

U. Farooq et al., Tree-Based Heterogeneous FPGA Architectures, 49
DOI: 10.1007/978-1-4614-3594-5_3,
© Springer Science+Business Media New York 2012

50 3 Homogeneous Architectures Exploration Environments

3.1 Reference FPGA Architectures

This section gives basic overview of the two FPGA architectures that are used in
this book. A brief overview of generalized mesh and tree-based architectures is
already presented in Chap. 2. Here, we present further details and also present the
customized software flow that we have developed for both architectures. Although
two architectures are comprised of similar logic and routing resources (i.e. config-
urable logic blocks, multiplexors, configuration memory etc), it is the arrangement of
these resources that differentiates the two architectures. In a tree-based architecture
logic and routing resources are arranged in hierarchical manner while in mesh-based
architecture resources are arranged in an island-style.

3.1.1 Mesh-Based FPGA Architecture

A mesh-based FPGA is represented as a grid of equally sized slots which is termed as
slot-grid. The reference mesh-based FPGA is a VPR-style (Versatile Place & Route)
[22] architecture, as shown in Fig. 3.1. It contains Configurable Logic Blocks (CLBs)
arranged on a two dimensional grid. Each CLB contains one Look-Up Table with
cin inputs and cout = 1 output and one Flip-Flop (FF). In mesh-based FPGA, input
and output pads are arranged at the periphery of the slot-grid as shown in Fig. 3.1
and a CLB is surrounded by a single-driver unidirectional routing network [77]. The
routing network is arranged in the form of uniform horizontal and vertical routing
channels where each channel contains a fixed number of routing tracks which is
termed as the channel width of the architecture.

A mesh-based FPGA is divided into “tiles” that are repeated horizontally and
vertically to form a complete FPGA. A CLB, along with its surrounding routing
network, forms the tile of the architecture which is repeated horizontally and verti-
cally to form the complete FPGA architecture. A single FPGA tile, surrounded by
its routing network is shown in Fig. 3.2. In this figure CLB contains a LUT which
has 4 inputs and 1 output. Each of the 4 inputs of a CLB are connected to 4 adjacent
routing channels. The output pin of a CLB connects with the routing channel on
its top and right through the diagonal connections of the switch box (highlighted in
the bottom-left switch box shown in Fig. 3.2). The switch box uses unidirectional,
disjoint topology to connect different routing tracks together. The connectivity of a
routing track incident on a switch block with routing tracks of other routing channels
that are incident on the same switch block, termed as switch block flexibility (Fs),
is set to be 3. The connectivity of routing channel with the input and output pins of
a CLB, abbreviated as Fc(in) and Fc(out), is set to be maximum at 1.0. The channel
width is varied according to the netlist requirement but remains in multiples of 2 [77].

http://dx.doi.org/10.1007/978-1-4614-3594-5_2

3.1 Reference FPGA Architectures 51

Fig. 3.1 Generalized mesh-based FPGA architecture

Fig. 3.2 Detailed intercon-
nect of a CLB with its sur-
rounding routing network

52 3 Homogeneous Architectures Exploration Environments

Fig. 3.3 Generalized tree-based FPGA architecture

3.1.2 Tree-Based FPGA Architecture

In a tree-based architecture logic and routing resources are partitioned into a multi-
level clustered structure where each cluster contains sub-clusters and signals coming
in and out of clusters communicate with other clusters using switch blocks. General-
ized example of a two level, arity 4 tree-based architecture is shown in Fig. 3.3 where
level 2 cluster contains 4 level 1 sub-clusters and each level 1 sub-cluster contains
4 CLBs. Since each cluster contains 4 sub-clusters in this architecture, it is termed
here as arity 4 architecture. Tree-based architecture uses single driver unidirectional
wires as bidirectional wires introduce considerable routing and area overhead [77].
Just like [3, 4], for tree-based architecture, a fully hierarchical interconnect is built
where inter level signal bandwidth grows according to Rent’s rule [25]. As it can be
seen from Fig. 3.3 that contrary to [4], our tree-based architecture is divided into two
unidirectional routing networks: the downward network and upward network. The
downward network is inspired from SPIN [97] and it uses butterfly fat tree topol-
ogy [33] to connect different signals using switch boxes and unidirectional wires.
The upward network uses hierarchy and connects different signals using linearly
populated switch boxes and unidirectional wires.

3.1 Reference FPGA Architectures 53

3.1.2.1 Architecture Interconnect Details

In a tree-based architecture, each configurable logic block (CLB) contains one Look-
Up-Table (LUT) with cin inputs and cout = 1 output, followed by a bypass Flip-
Flop. CLBs are grouped into k sized clusters and interconnect is organized into
levels. For example in Fig. 3.3, the cluster size is 4, architecture has two levels
and it supports 16 CLBs. Let nb� denote the number of levels of a given Tree
containing N leaves (nb� = logk(N)). In each level � we have N

k� clusters; C is the
set of clusters in all levels. A cluster with index c belonging to level � is noted by
cluster(�, c). A cluster switch block is divided into separate Downward Mini Switch
Boxes (DMSBs) and Upward Mini Switch Boxes (UMSBs). DMSBs are responsible
for downward interconnect and UMSBs are responsible for upward interconnect.
DMSBs and UMSBs are combined together to route different signals of the netlists
that are mapped on the architecture. These DMSBs and UMSBs are unidirectional full
cross bar switches that connect signals coming into the cluster to its sub-clusters and
signals going out of a cluster to the other clusters of hierarchy. Each cluster(�, c)
where � ≥ 1 contains a set of inputs Nin(�), a set of outputs Nout (�), a set of
downward and upward switch boxes and k sub-clusters. The inputs and outputs of
cluster cluster(�, c) are divided equally among its DMSBs and UMSBs which are
used to connect these inputs and outputs to its sub-clusters and to other clusters
of hierarchy. Sub-clusters of cluster(�, c) are cluster(� − 1, k.c + i) where i ∈
{0, 1, 2, . . . , k − 1}. k is called cluster(�, c) arity.

Each cluster in level 0 is denoted cluster(0, c) or lea f cluster(c) and corresponds
to the Configurable Logic Block (CLB) and contains cin inputs, 1 output, no MSBs
and no sub-cluster. Each cluster(�, c) where � < nb� − 1 has an owner in level �′,
where �′ > �, denoted cluster(�′, c ÷ k(�′−�)). We define for each cluster(�, c) a
position inside its owner in level � + 1 (direct owner) by the following function:

pos : C −→ {0, 1, 2, . . . , k − 1}
cluster(�, c) �−→ c mod k

Two clusters belonging to level � and with the same owner at level � + 1 have two
different positions. To get the cluster owner in level �′ of cluster(�, c) (� < �′ ≤
nb� − 1) we define the function:

owner : C × IN −→ C

(cluster(�, c), �′) �−→ cluster(�′, c ÷ k�′−�)

3.1.2.2 Downward Network

Figure 3.4 shows a sparse downward network based on unidirectional DMSBs. The
downward interconnect topology is similar to the butterfly fat tree. Each DMSB of
a cluster(�, c) where � > 1 is connected to each sub-cluster through one and only

54 3 Homogeneous Architectures Exploration Environments

Fig. 3.4 Detailed downward interconnect of a tree-based architecture

one input pin. Thus, the DMSBs number in a cluster situated in level � is equal to
the input number of a cluster situated in level � − 1: nbDM SB(�) = Nin(l − 1).
For example in Fig. 3.4, the number of DMSBs at level 2 are equal to the number of
inputs of a sub-cluster at level 1 (i.e. 16).

We name DMSB(�, c, m) as the successor of DM SB(�′, c′, m′) where 0 < � < �′
if there is a downward directed path from DM SB(�′, c′, m′) to DM SB(�, c, m). The
path between a DMSB and its successor is unique. Thus each DM SB(�′, c′, m′) has a
successor in each sub-cluster belonging to level � DM SB(�, c, m) where 0 < � < �′.

3.1.2.3 Upward Network

Figure 3.5 shows the upward network of a tree-based architecture that uses UMSBs
that allow LBs outputs to reach a larger number of Downward MSBs (DMSBs). The
UMSBs are organized in a way that allows CLBs belonging to the same “owner
cluster” (at level 1 or above) to reach exactly the same set of DMSBs at each level.
The interconnect offers more routing paths to connect a net source to a given sink. In
this case we are more likely to achieve highly congested netlists routing. This gives
an efficient solution for mapping netlists since instances may have different fanout
sizes. For example in Fig. 3.5, a CLB output can reach all 4 DMSBs of its owner
cluster at level 1 and all the 16 DMSBs of its owner cluster at level 2.

3.1 Reference FPGA Architectures 55

Fig. 3.5 Detailed upward interconnect of a tree-based architecture

3.1.2.4 I/O Connections

Figure 3.6 shows the combined downward and upward interconnect of tree-based
architecture. Also it can be seen from this figure that output and input pads are
grouped into specific clusters. The cluster size and the level where it is located can
be modified to obtain the best design fit. Each input pad is connected to all UMSBs
of the upper level. In this way each input pad can reach all CLBs of the architecture
with different paths.

Similarly, output pads are connected to all DMSBs of the upper level; in this way
they can be reached from all CLBs through different paths. The flexibility of I/O pads
is kept higher than those of CLBs to ensure the routing of highly congested netlists.

3.1.2.5 Interconnect Depopulation

Although the use of DMSBs and UMSBs gives the architecture a great amount of
flexibility in terms of the number of paths that can be used to route different signals
on the architecture, it increases the number of switches in the architecture which can
increase the area of the architecture. This can be compensated by reduction of in/out
signals bandwidth of clusters at every level. In fact Rent’s rule [25] is easily adapted
to tree-based structure:

IO = c.k�.p (3.1)

56 3 Homogeneous Architectures Exploration Environments

Fig. 3.6 Tree-based architecture with detailed downward and upward networks

where � is a Tree level, k is the cluster arity, c is the number of in/out pins of a logic
block and I O the number of in/out pins of a cluster situated at level �. Intuitively, p
represents the locality in interconnect requirements. If most connections are purely
local and only few of them come in from the exterior of a local region, p will be small.
In Tree-based architecture, both the upward and downward interconnects populations
depend on this parameter. We can depopulate the routing interconnect by reducing
the value of p which in turn reduces the signal bandwidth of the architecture. By
doing so the architecture routability is reduced too. An example of a depopulated
tree-based interconnect is shown in Fig. 3.7. Compared to the example shown in
Fig. 3.6, number of inputs of each cluster at level 1 are reduced from 16 to 10 and the
number of outputs are reduced from 4 to 3. By reducing the inputs and outputs the
number of switches are reduced by 21% and value of p is reduced from 1 to 0.79.
Although, this reduction improves the area of the architecture, it reduces its flexibility
too. Thus we have to find the best tradeoff between interconnect population and logic
blocks occupancy. Dehon showed in [4] that the best way to improve circuit density
is to balance logic blocks and interconnect utilization. In tree-based architecture, the
logic occupancy factor is controlled by N , the leaves (CLBs) number in the Tree.
N is directly related to the number of levels and the clusters arity k. In most cases N
is larger than the number of netlists instances. This means that in these cases we have
a low logic utilization. This is not really penalizing since it can be compensated by
a depopulated interconnect. In other words, the area overhead due to unused CLBs
is compensated by congestion spreading and interconnect reduction.

3.1 Reference FPGA Architectures 57

Fig. 3.7 Depopulation of tree-based architecture using Rent’s rule

3.1.2.6 Rent’s Rule Based Model

Based on Rent’s rule presented in Eq. (3.1), we evaluate the Tree architecture switches
requirement to connect LBs.

Switches requirement

We model upward and downward networks separately:
Downward network:
We note:
- Nin(�) the number of inputs of a cluster located at level �.
- Nout (�) the number of outputs of a cluster located at level �.
- cout the number of outputs of an LB.
- cin the number of inputs of an LB.
- k clusters arity (size).

Clusters located at level � contain Nin(� − 1) DMSB with k outputs and
Nin(�)+k Nout (�−1)

Nin(�−1)
inputs. As we assume that the DMSB are full crossbar devices,

we get k(Nin(�) + k Nout (� − 1)) switches in the switch box of a level � cluster.
Since we have N

k� clusters in level �, we get a total number of switches, related to the
downward network, given by:

58 3 Homogeneous Architectures Exploration Environments

logk (N)∑

�=1

k × N × Nin(�) + k Nout (� − 1)

k�

Nout (0) = cout is the number of outputs of a Basic Logic Block. Following Eq. (3.1),
we get Nin(�) = cin .k�.p and Nout (� − 1) = cout .k(�−1)p. The total number of
switches used in the downward network is:

Nswi tch(down) = N × (k pcin + kcout) ×
logk (N)∑

�=1

k(p−1)(�−1)

U pward network:
Clusters located at level � contain Nout (�−1) UMSB with k inputs and k outputs.

As we assume that UMSB are full crossbar devices, we get k2 × Nout (�−1) switches
in the switch box of a level � cluster. As we have N

k� clusters at level � we get the
total number of switches, related to the upward network:

logk (N)∑

�=1

k2 × N

k�
× Nout (� − 1)

Nout (0) = cout is the number of outputs of a Basic Logic Block. Following (3.1),
we get Nout (� − 1) = cout .k(�−1)p.
The total number of switches used in the upward interconnect is:

Nswi tch(up) = N × k × cout ×
logk (N)∑

�=1

k(p−1)(�−1)

The total number of Tree-based interconnect switches is

Nswi tch(T ree) = Nswi tch(down) + Nswi tch(up)

Nswi tch(T ree) = N × (k pcin + 2kcout) ×
logk (N)∑

�=1

k(p−1)(�−1)

The number of switches per Logic Block is:

Nswi tch(L B) = (k pcin + 2kcout) ×
logk (N)∑

�=1

k(p−1)(�−1)

Nswi tch(L B) =
{

(k pcin + 2kcout) × 1−N p−1

1−k p−1 if p �= 1
(k pcin + 2kcout) × logk(N) if p = 1

3.1 Reference FPGA Architectures 59

Fig. 3.8 Interconnect
switches distribution

Nswi tch(L B) =
{

O (1) if p < 1
O

(
logk(N)

)
if p = 1

(3.2)

The cost of adding the upward can be compensated by reducing the architecture
Rent’s parameter. In addition we notice that the number of the upward network
switches is smaller than the switches number in the downward network:

Nswi tch(down)

Nswi tch(up)
= k pcin + kcout

k × cout

With p = 1, k = 4, cin = 4 and cout = 1 this ratio is equal to 5. In Fig. 3.8, we show
the distribution of interconnect resources between the upward and the downward
networks for different Tree sizes (we include in/out pads connections).

Wiring Requirements

At each level � of the hierarchy, every switching node has nin(�) inputs and nout (�)

outputs. This makes the bisection width equal to (cin + cout)k�.p. Since ∀� ∈
{1, . . . , logk(N)} k�.p ≤ N , the bisection width is O(N p). For a 2-dimensional
network layout this bisection width must cross the perimeter out of the subarray.
Thus the perimeter of each subarray is O(N p). The areas of the subarray will be
proportional to the square of its perimeter, making: Asubarray ∝ N 2p. The required
area per logic block (LB) based on wiring constraints, is therefore evaluated by:

60 3 Homogeneous Architectures Exploration Environments

AL B ∝ N 2p−1

In tree-based architecture, we can control bisection bandwidth in each level based on
Rent’s parameter (p < 1). Consequently, physical layout generation may be much
optimized since wiring is no more dominant.

3.1.3 Comparison with Mesh Model

Concerning switches per logic block growth, it was established in [4] that in the
Mesh architecture:

Nswi tch(L B) = O(N p−0.5) (3.3)

Equations (3.2) and (3.3) show that in the tree-based architecture, switches require-
ment grows more slowly than in common mesh-based architecture. These results
are encouraging for constructing very large structures, especially when p is less
than 1. But this does not mean that our Tree-based topology is more efficient than
mesh-based architecture, since they do not have the same routability. The best way to
check this point is through experimental work. Based on benchmark circuits imple-
mentation, we compare the resulting areas in the case of tree-based and mesh-based
FPGA.

3.2 Architectures Exploration Environments

Since we are exploring two different architecture topologies, an effort is required
to ensure transparency for comparison between two architectures. For this purpose,
we have designed separate exploration environments for the two architectures. Some
parts of two exploration environments are shared while rest of them are designed
specifically to meet the needs of two architectures. Exploration of each architecture
starts with its definition which is done through an appropriate architecture descrip-
tion mechanism. Once the architecture is defined, netlists are separately placed and
routed on the two architectures. Although separate placement and routing tools are
developed for two architectures, these tools are based on generic algorithms. These
algorithms are adapted appropriately to the needs of the two architectures. Once
the placement and routing of the netlists is performed, the area of the architectures
is calculated which eventually leads to the termination of architecture exploration.
Details of different steps that are involved in architecture exploration are explained
in the following sections.

3.3 Architecture Description 61

3.3 Architecture Description

3.3.1 Architecture Description of Tree-Based Architecture

In exploration environment of tree-based architecture, an architecture description
mechanism is used to define different parameters of a tree-based architecture. The
architecture description starts with the number of levels of the architecture. Then
the level of I/O pads clusters and the number of I/Os per cluster are defined. Later
the parameters of clusters located at all levels of the architecture are defined. These
parameters include the arity and signal bandwidth of clusters that are located at
that particular level. After that, architecture optimization is either set to be true or
false. In case this parameter is set to be true, a binary search algorithm is applied to
search the best signal bandwidth for the clusters that are located at different levels of
hierarchy. Otherwise a fixed routing interconnect based on the initially defined cluster
bandwidth values is built and no optimization is performed. Finally the parameters
of CLBs are defined that include their level, area, inputs, outputs and details of their
pins.

3.3.2 Architecture Description of Mesh-Based Architecture

The exploration environment of mesh-based architecture used in this book is based
on the environment presented in [82]. In this environment, architecture description of
mesh-based architecture starts with the definition of height and width of the slot-grid.
Then Channel_Type of the architecture is defined which can be either a unidirec-
tional mesh [77] or a bidirectional mesh [120] routing network. The channel width
of the routing network is then either set to a constant value, or a binary search algo-
rithm searches a minimum possible channel width. In case of unidirectional mesh,
the channel width remains in multiples of 2. Finally the parameters of CLBs are
defined which include a name, a size (number of slots occupied), area, number of
inputs/outputs and the detail of their pins.

3.4 Software Flow

Once the architecture is defined, different netlists are placed and routed on the archi-
tecture using a software flow. However, before being placed and routed on an archi-
tecture, a netlist is required to pass through certain number of processes so that it
might be converted from hardware description to a format that can be placed and
routed on the FPGA architecture (.net format). Complete software flow illustrating
these processes along with the placement and routing modules is shown in Fig. 3.9.
As it can be seen from the figure that a certain part of software flow is shared by

62 3 Homogeneous Architectures Exploration Environments

Fig. 3.9 Software flow

both mesh-based and tree-based architectures. This part involves the transformation
of netlist from hardware description to .net format (i.e. synthesis of netlist) and once
the netlist is converted into .net format, the two architectures place and route the
netlist separately using their appropriate tools. A brief description of different tools
involved in the software flow is given as follows:

3.4.1 Logic Optimization, Mapping and Packing

The input to the software flow is the hardware description of the netlist. First of all
the netlist is synthesized/logically optimized using a tool called SIS [102]. This is a
process in which circuit description is converted into gate level presentation. SIS is
an open source tool and it can be replaced by any commercial synthesis tool.

After logic optimization, mapping of the netlist is performed using SIS. Mapping
is a process that converts gate level representation into K-input LUT and flip-flops.
This process takes LUT size as its input and converts logic expressions into given

3.4 Software Flow 63

LUT size netlist. We have used “Flow Map” [64] mapper for our experimentation
which is included in SIS package. This mapper uses timing and area as its objectives
and netlists produced using this mapper produce good results in terms of area and
delay.

After mapping, packing is performed using T-VPACK [14] that packs registers
together with K-input LUTs and converts the netlist into .net format. A netlist in
.net format contains CLBs and I/O instances that are connected together using nets.
The size of a CLB is defined as the number of LUTs contained in it and in this
book this size is set to be 1 for both mesh-based and tree-based architectures. Once
netlist is obtained in .net format, it is placed and routed separately on tree-based and
mesh-based FPGA.

3.4.2 Software Flow for Tree-Based Architecture

3.4.2.1 Partitioning

In recent FPGA architectures, interconnect is organized in multiple hierarchical
levels. Hierarchy becomes an interesting feature to improve density, to reduce run
time effort (divide and conquer) and to consider local communication. In the case
of a Tree-based interconnect we get multiple hierarchical levels. Levels number
depends on the total number of CLBs and clusters size (arity). Basically if 2 signals
are within the same hierarchy level, it does not really matter where they are within
that hierarchy. Similarly, geometrically close cells incur greater delay to get to other
locations outside their hierarchical boundary than to distant cells within their hierar-
chical boundary. Thus, unlike flat or island style device, a hierarchical architecture
uses a natural placement algorithm based on recursive partitioning.

Multilevel hierarchical organization is considered in our CAD flow and netlists
instances are partitioned between architecture clusters in the best possible way, reduc-
ing the desired objectives. There are two main partitioning approaches: bottom-up
(clustering) and top-down. The choice between both approaches depends on levels
number, clusters size, clusters number at each level and problem constraints. In [133],
authors proposed to use hMetis [49] which uses an FM algorithm [47] based top-
down partitioning approach for tree-based architecture. In fact top-down approaches
based on FM refinement heuristics are efficient when we target a small number
of clusters (parts) of important size (balance constraint). To investigate partition-
ing approaches, we used a multilevel hypergraph data structure called Mangrove.
It provides a development framework for efficient modeling of hypergraph nested
partitions. It offers a compact C++ data structure and a high level API. As illustrated
in Fig. 3.10, this structure is organized as follows:

• ClusteringHierarchy: holds a vector of nested partitions called Clustering
Level, and refers to a unique enclosing cluster T opLevelCluster ,

64 3 Homogeneous Architectures Exploration Environments

Fig. 3.10 Mangrove data structure: multilevel clustered hypergraph

• ClusteringLevel: corresponds to the set of clusters at the partitioning at a given
level. A clusteringLevel corresponds to an hypergraph where nodes are clusters
located at this level,

• Cluster : Aggregates sub-clusters belonging to a lower ClusteringLevel (unless
leaf one). A Cluster may cross multiple levels and has U pper Level and
Lower Level identifiers,

• Net : presents a tree of branches,
• Branch: represents the net (signal) crossing point of a cluster boundary. Branch

bifurcates within a cluster if the net crosses at least 2 sub-clusters.

Since in Mangrove a clusteringLevel can be added at any level, this structure
can be used in different partitioning approaches: Bottom-up and top-down. The
combination of both approaches leads to an efficient multilevel partitioner where
first multilevel bottom-up coarsening is run and then top-down multilevel refinement
is applied. In Fig. 3.11, we show different steps of recursive netlist partitioning based
on a multilevel approach. The netlist is first partitioned into 2 parts (first level) and
then instances inside each part are partitioned into 2 fractions. In each partitioning
phase we apply a multilevel coarsening followed by a multilevel refinement. Finally,
we obtain the partitioning result corresponding to each level. The final result describes
how instances are distributed between clusters of the Tree-based topology. Recursive
partitioning is also interesting to reduce run time since it allows to avoid applying
FM heuristics directly on a large number of parts, which can dramatically increase
partitioning run time according to [75].

3.4 Software Flow 65

Fig. 3.11 2-levels recursive bi-partitioning steps. a Leaves at level 0 hypograph partitioning,
b coarsened hypergraph, c bi-partitioned hypergraph, d clustering according to partitioning, e
restricted coarsening in cluster 0, f bi-partitioning in sub hypergraph (cluster 0), g restricted coarsen-
ing in cluster 1, h bi-partitioning in sub hypergraph (cluster 1), i clustering according to partitioning

3.4.2.2 Routing

Once partitioning is done, placement file is generated that contains positions of
different blocks on the architecture. This placement file along with netlist file is then
passed to another software module called router which is responsible for the routing
of netlist. In order to route all the nets of netlist, routing graph is first constructed that
contains the details about all the routing resources of the architecture. The construc-
tion of routing graph is mainly dependant upon the cluster bandwidth information
which is extracted from the architecture description file. Once the routing graph is
constructed, routing resources of the architecture are later assigned to respective
blocks of the netlist that are placed on the architecture. These routing resources are
modeled as directed graph abstraction G(V, E) where the set of vertices V represents
the in/out pins of different blocks and the routing wires in the interconnect struc-
ture and an edge E between two vertices, represents a potential connection between
the two vertices. Router is based on PathFinder [80] routing algorithm that uses an
iterative, negotiation-based approach to successfully route all nets in a netlist.

66 3 Homogeneous Architectures Exploration Environments

3.4.3 Software Flow for Mesh-Based Architecture

3.4.3.1 Placement

For mesh-based architecture, the netlist obtained in the .net format is placed using
a placement algorithm. The placement algorithm determines the position of block
instances of a netlist on their respective block types on FPGA architecture. The
main goal is to place connected instances near to each other so that minimum routing
resources are required to route their connections. The placer uses simulated annealing
algorithm [37, 105] to achieve a placement having minimum sum of half-perimeters
of the bounding boxes of all the nets.

3.4.3.2 Routing

After the placement of netlist on the FPGA architecture, the exploration environment
constructs routing graph for the architecture. Few architecture description parameters
required for the construction of routing graph are taken from architecture description
parameters. These parameters mainly include the type of routing network (unidirec-
tional or bidirectional), channel width, I/O rate, block types and their pin positions on
the block. After the construction of routing graph, the PathFinder routing algorithm
[80] is used to route netlists on the routing architecture.

3.4.4 Timing Analysis

Timing analysis evaluates performances of a circuit implemented on an FPGA (mesh
or tree) in terms of functional speed. Thus, once an application is completely placed
and routed we estimate the minimum feasible clock separately for mesh and tree-
based architectures. To achieve timing analysis we need 2 different graphs:

• Routed graph: Describes the way netlist instances are routed using architecture
resources. This graph allows to evaluate routing delays between netlist instances
connections. A path connecting two instances crosses several wires and switches.
The connection delay is equal to the sum of resources delays.

• Timing graph: It is a direct acyclic graph generated from the netlist hypergraph.
Nodes correspond to instances pins and edges to connections. Based on the result-
ing routed graph, each edge is labeled with the corresponding routed connection
delay. The minimum required clock period is determined via a breadth-first tra-
versal applied on this graph.

Only the routed graph is architecture dependent. Timing graph generation and critical
path extraction depend only on netlist to implement.

3.4 Software Flow 67

3.4.5 Area and Delay Models

Once the netlists are placed and routed on the architecture, area and performance of
the architecture is calculated using respective area and delay models. These models
are generic in nature and they are applicable to both mesh-based and tree-based
architectures. This section describes the generic area and delay models that we have
used for both architectures.

3.4.5.1 Area Model

The area model is used to compute the areas of two architectures under consideration
and these architectures are then compared using the area values calculated through
their respective models. As mentioned in [22], discussions with FPGA vendors have
revealed that transistor area, and not wiring density, is the area limiting factor. The use
of directional wires in Virtex-I also suggests that routing area is transistor-dominant
and must be reduced. As it was explained by DeHon [5], large area of switches
compared to wires is one of the key reasons why we have to care about the number
of switches required by a network. If the wire pitch is 5–8λ, the area of a wire
crossing is 25–64λ2. The area of static memory cell used to configure a switch is
roughly 1,200λ2. A switch transistor size is 2,500λ2. In this case the ratio switches
area/wires area can reach the value of 40. This ratio increases if we want more than
just a pass gate for the switch. We may want to rebuffer the switch or even add a
register to it. Such switch can easily be 5–10Kλ2. The large area ratio means that we
definitely need to take much care about switch count in the interconnect.

Area of any FPGA architecture can be basically divided into two parts: logic area
and routing area. Logic area is a small part of total area and it comprises of the area of
logic cells (i.e. CLBs) of the architecture. Routing area, on the other hand, comprises
of the area of switching cells used by the routing network of the architecture and it can
take up to 90% of the total area of the architecture. Routing area of the architecture
includes area of configuration memory, multiplexors and buffers etc. An example
showing how these switching cells are combined to construct a routing interconnect
is shown in Fig. 3.12. Area of SRAMs, multiplexors, buffers and Flip-Flops is taken
from a symbolic standard cell library (SXLIB [9]) which works on unit Lambda(λ).
Area of different cells used for the area calculation is shown in Table 3.1.

3.4.5.2 Delay Model

The delay through the routing network may easily be dominant in a programmable
technology. Care is required to minimize interconnect delays. The 2 following factors
are significant in this respect:

68 3 Homogeneous Architectures Exploration Environments

Fig. 3.12 An example show-
ing the use of switching cells

Table 3.1 Area of different
cells

Block name Inputs Outputs Block size (λ2)

clb 4 1 58,500
sram – – 1,500
buffer 1 1 1,000
flip-flop 1 1 4,500
mux 2:1 2 1 1,750

• Wires delay: Delay on a wire is proportional to distance and capacitive loading
(fanout). This makes interconnect delay roughly proportional to distance run. Con-
sequently short signals runs are faster than long signals runs.

• Switches delay: Each programmable switche in a path (crossbar, multiplexer) adds
delay. This delay is generally much larger than the propagation or fanout delay.
Consequently, one generally wants to minimize the number of switch elements in
a path, even if this means using some longer signals runs.

Wire length and switches delays depend respectively on physical layout and cells
library.

3.5 Experimentation and Analysis 69

Table 3.2 Description of circuits used in experiments

Index Circuit name No of inputs No of outputs No of 4-input LUTs

1 pdc 16 40 3,832
2 ex5p 8 63 982
3 spla 16 46 3,045
4 apex4 9 19 1,089
5 frisc 20 116 2,841
6 apex2 38 3 1,522
7 seq 41 35 1,455
8 misex3 14 14 1,198
9 elliptic 131 114 2,712
10 alu4 14 8 1,242
11 des 256 245 1,506
12 s298 4 6 1,091
13 bigkey 229 197 1,147
14 diffeq 64 39 1,161
15 dsip 229 197 1,145
16 tseng 52 122 953

3.5 Experimentation and Analysis

Exploration environments described in the previous section are used to place and
route different netlists on the two architectures and results are later compared to
evaluate them. We have used 16 largest MCNC benchmarks for our experimentation.
Details of these benchmarks are shown in Table 3.2. Name and I/Os of the circuits
under consideration are shown in first three columns of the table whereas the size of
each benchmark in terms of the number of 4 input LUTs used by it is shown in the
last column of the table.

3.5.1 Architectures Optimization Approaches

The benchmarks shown in Table 3.2 are individually placed and routed on the two
architectures under consideration. Specifically developed optimization approaches
are used for both architectures to get the optimized area and delay results for both
architectures. An overview of these optimization approaches is given below.

3.5.1.1 Tree-Based Architecture Optimization

Optimization of the tree-based architecture is dependant upon the information given
in the architecture description file. If the optimization flag is false, the routing of the

70 3 Homogeneous Architectures Exploration Environments

Fig. 3.13 Tree-based architecture optimization flow. a Top-down architecture optimization, b
bottom-up architecture optimization

netlist is performed with given signal bandwidth and the exploration of the architec-
ture is terminated after the calculation of area. However, if the optimization flag is
true, a binary search algorithm is used to find the minimum signal bandwidth required
to route the netlist. As explained in Sect. 3.1.2 the optimization of a tree-based archi-
tecture is dependant upon N and Rent’s parameter p, the optimization algorithm that
we employ is used to optimize the value of p for each level of the tree-based archi-
tecture. We apply binary search algorithm on each level to determine the minimum
I/O bandwidth required at that particular level and this process continues until all the
levels of the architecture are optimized. The value of p is then averaged across all the
levels to determine the p for architecture. Although the clusters situated at different
levels of hierarchy may have different values of p, clusters located at same level have
same value of p. Based on the level order, we have explored three different types
of optimization approaches for tree-based FPGA architecture. A brief overview of
these approaches is described as follows:

1. Top-down approach: As shown in Fig. 3.13a, we start by optimizing the top level
down to the lowest one. At each level we apply binary search to determine the
smallest input/output signals number allowing to route the benchmark circuit.

2. Bottom-up approach: As shown in Fig. 3.13b, we start by optimizing the lowest
level up to the highest one. At each level we apply binary search to determine the
smallest input/output signals number allowing to route the benchmark circuit.

3. Random approach: All levels are optimized simultaneously. We choose a level
randomly, we decrease its input/output signals number, depending on the previous
result obtained in this level; then we move to an other level. In this way we move
randomly from a level to another until all levels are optimized.

The 3 approaches have the same objective and aim at reducing clusters signals band-
width for every level. The difference is the order in which levels are processed.
In Table 3.3, we show architecture Rent’s parameter (in each level) obtained with
each technique. The first column of the table shows Rent’s parameters, at each level,
obtained after circuits partitioning. Results correspond to averages of all 16 circuits.

3.5 Experimentation and Analysis 71

Table 3.3 Levels Rent’s rule parameters

Level Circuits Architecture Architecture Architecture
partitioning top-down bottom-up random

1 0.64 0.98 0.79 0.88
2 0.55 0.88 0.74 0.79
3 0.50 0.80 0.77 0.76
4 0.49 0.75 0.86 0.73
5 0.45 0.59 0.87 0.7

Fig. 3.14 A netlist routing example. a Partitioned netlist, b routed netlist with conflict, c routed
netlist with no conflict

We notice that in all cases, architecture Rent’s parameters are larger than partitioned
circuits Rent’s parameters. This is due to the depopulated switch boxes topology. In
fact, to solve routing conflicts, a signal may enter from 2 different DMSB to reach
2 different destinations located at the same cluster. In Fig. 3.14 we show an example
of a partitioned netlist to place and route on an architecture with LBs inputs number
equal to 2 (2 DMSBs in each cluster located at level 1) and clusters size equal to 4.
As shown in Fig. 3.14, if each signal enters from only one DMSB, we cannot solve
conflicts. To deal with such problem we propose to enter the signal driven by S0 from
two different DMSBs. Thus, the resulting architecture cluster degree is equal to 4,
whereas the corresponding part degree is equal to 3 (number of crossing signals).

In Fig. 3.15, we show the average overhead between partitioning and architec-
ture Rent’s parameters with each optimizing approach. We notice that in the case
of the top-down (bottom-up) approach, overhead increases when we go down (up)
in the Tree. This was expected since the top-down (bottom-up) approach first opti-
mizes high (low) levels. With the random approach, we notice that levels overheads
are balanced.

We compared the resulting architectures (with the 3 approaches) in terms of area
and speed performance. Average results are shown in Table 3.4. We notice that with
the random approach we obtain the smallest area (22% less than top-down and
8% less than bottom-up). This means that optimizing levels simultaneously allows
avoiding local minima and obtaining a balanced congestion distribution over levels.
The bottom-up approach provides a smaller area than the top-down one. Nevertheless,

72 3 Homogeneous Architectures Exploration Environments

Fig. 3.15 Overhead between
architecture and partitioned
netlist Rent’s parameters
(16 benchmark avg.)

Table 3.4 Area and
performance comparison
between various optimizing
approaches

Optimizing approach Area (λ2) ×106 Critical path switches

Top-down 1,498 98
Bottom-up 1,326 106
Random 1,221 101

it is penalizing in terms of critical path switches number (8% more switches than top-
down approach). In fact starting by optimizing low levels means that local routing
resources are intensively reduced and signals are routed with resources located at
higher levels. Consequently, signals routing uses more switches in series.

To reduce the gap between circuit and architecture Rent’s parameters, we must
improve the partitioning tool and especially the objective function in order to reduce
congestion and resources (clusters inputs) required to route signals.

3.5.1.2 Mesh-Based Architecture Optimization

Like tree-based architecture, the optimization of mesh-based architecture is also
dependant on the information given in the architecture description file. If the binary
search flag is false, routing of the netlist is performed using a given value of channel
width and the experimentation is terminated with the area calculation. However if the
binary search flag is true, routing graph is constructed for varying channel widths;

3.5 Experimentation and Analysis 73

routing is tried for each channel width until a minimum channel width is found. This
optimization approach is similar vpr-based optimization approach used in [22].

3.5.2 Effect of LUT and Arity Size on Tree-Based FPGA
Architecture

Before we start with the comparison between two FPGAs under consideration, effect
of LUT (K) and arity (N) size is first explored for tree-based FPGA architecture.
Many studies in the past several years have been carried out to see the effect of
LUT and cluster size on the density of mesh-based FPGA architecture. The work in
[8] compiles a very detailed study regarding the effect of LUT and cluster size on
the density and performance of FPGA architecture. In [8] the authors have shown
that LUTs with sizes 4 to 6 and clusters with sizes 3 to 10 give the most efficient
results in terms of area-delay product for an FPGA. The work in [71] demonstrated
that LUT size of 4 is most area efficient in a non clustered context. But all the
work previously done in this context focusses on the mesh-based architecture and
no prior work has been done yet for tree-based architectures. In this work, we first
start our experimentation by exploring the effect of LUT and arity size on a tree-
based architecture. This exploration is significant in the sense that an appropriate
combination of K and N plays an important role in the overall efficiency of the
architecture. In order to perform the exploration we use 16 MCNC [108] benchmarks
shown in Table 3.2. These benchmarks are generated with different LUT (K) and arity
sizes (N) and then they are placed and routed on the tree-based architecture using
the flow described in Sect. 3.4. For these benchmarks, LUT size is varied from 3 to
7 while arity size is varied from 4 to 8.

Effect of LUT (K) and arity size (N) on area and performance of tree-based FPGA
architecture is shown in Figs. 3.16 and 3.17 respectively. It can be seen from Fig. 3.16
that for almost all arity sizes, there is a reduction in total average area from LUT-3
to LUT-4. However, as the LUT size is increased beyond LUT-4, the total area of
the architecture increases. It can be concluded from this figure that K=4 with N=4
gives best overall area results.

The second key metric is the effect of K and N on the performance of tree-based
architecture. Since we do not have accurate wire lengths, only results regarding
number of switches crossed by critical path are presented here. The extraction of
number of switches crossed by critical path is explained in Sect. 3.4.4. Figure 3.17
shows the effect of varying K and N on critical path performance of the architecture.
Results presented in this figure correspond to average number of switches crossed
by 16 benchmarks under consideration. It is clear from this figure that an increase in
K or N decreases the average number of switches that are crossed by critical path.
This is because of the fact that an increase in K or N decreases the architecture size
and there are smaller number of switches on the critical path. However, an increase
in K or N increases the size of these switches; hence resulting in an increase in the

74 3 Homogeneous Architectures Exploration Environments

Fig. 3.16 Effect of LUT and arity size on total area of tree-based FPGA architecture

Fig. 3.17 Effect of LUT and arity size on critical path of tree-based FPGA architecture

intrinsic delay of the switch. So from this figure we can conclude that with a increase
in K and N there will be decline in the critical path delay provided that the increase in
internal delay of switch due to its increased size does not overshadow the reduction
in number of switches. Further details regarding the effect of K and N on tree-based
architecture can be found in [46] where we have come up with the conclusion that
overall K=4 with N=4 provide the best overall results and this is the combination
that will be used for tree-based FPGA architecture in this work.

3.5 Experimentation and Analysis 75

Table 3.5 Architecture characteristics

Circuit name Mesh-based architecture Tree-based architecture

Architecture Occupancy Channel Architecture Occupancy Rent’s
N×N (%) width levels (%) p

pdc 64 × 64 93 20 4 × 4 × 4 × 4 × 4 × 4 93 0.98
ex5p 32 × 32 95 16 4 × 4 × 4 × 4 × 4 96 1.00
spla 57 × 57 93 18 4 × 4 × 4 × 4 × 4 × 4 74 0.90
apex4 34 × 34 94 16 4 × 4 × 4 × 4 × 4 × 2 53 0.83
frisc 55 × 55 94 14 4 × 4 × 4 × 4 × 4 × 4 69 0.86
apex2 40 × 40 95 14 4 × 4 × 4 × 4 × 4 × 2 74 0.91
seq 39 × 39 96 16 4 × 4 × 4 × 4 × 4 × 2 71 0.89
misex3 36 × 36 92 14 4 × 4 × 4 × 4 × 4 × 2 58 0.84
elliptic 53 × 53 97 12 4 × 4 × 4 × 4 × 4 × 4 66 0.80
alu4 36 × 36 96 14 4 × 4 × 4 × 4 × 4 × 2 60 0.83
des 40 × 40 94 10 4 × 4 × 4 × 4 × 4 × 2 73 0.91
s298 34 × 34 94 12 4 × 4 × 4 × 4 × 4 × 2 53 0.77
bigkey 35 × 35 93 8 4 × 4 × 4 × 4 × 4 × 2 56 0.74
diffeq 35 × 35 95 10 4 × 4 × 4 × 4 × 4 × 2 56 0.72
dsip 35 × 35 93 8 4 × 4 × 4 × 4 × 4 × 2 56 0.74
tseng 31 × 31 99 8 4 × 4 × 4 × 4 × 4 93 0.88
Average – 94 14 – 68 0.85

3.5.3 Comparison Between Homogeneous Mesh
and Tree-Based FPGAs

In [132], a comparison between mesh-based and tree-based FPGAs is performed
and it is shown that on average tree-based FPGA is 56% better than mesh-based
FPGA in terms of area. However, the reference mesh-based architecture used in
[132] is a bidirectional FPGA architecture and in [77], authors have proposed to
replace the bidirectional interconnect with the unidirectional interconnect as the
later gives better results compared to the former. So in this chapter we have changed
the reference mesh-based architecture from bidirectional to unidirectional and we
have re-evaluated the tree-based architecture. For tree-based architecture the LUT
size is set to be 4 while arity size is set to be 4 too as it gives best overall results for
it and for mesh-based architecture the LUT size is also set to be 4 and CLB size is
set to be 1 for both architectures.

Experimental results of the two architectures are shown in Tables 3.5 and 3.6
respectively. Experiments are performed for individual netlists where an appropriate
architecture is defined for each netlist and architecture is optimized using the opti-
mization algorithm described in previous section. Although individual optimization
approach has been, at times, controversial because most engineers think that FPGA
is a fixed device and it does not vary in response to individual circuits that are being
mapped on it. However, this more refine approach is usually used as it is necessary

76 3 Homogeneous Architectures Exploration Environments

Table 3.6 Comparison results between mesh-based and tree-based architectures

Circuit name Mesh-based architecture Tree-based architecture Gain

Area SRAMs MUXs Area SRAMs MUXs Area SRAMs MUXs
×106λ2 ×103 ×103 ×106λ2 ×103 ×103 (%) (%) (%)

pdc 2,756 425 810 1,344 289 404 51 32 50
ex5p 567 84 162 296 62 86 47 25 46
spla 1,994 304 577 1,078 211 305 46 30 47
apex4 639 95 183 441 83 114 30 12 37
frisc 1,483 221 415 965 185 264 34 16 36
apex2 787 118 220 525 106 146 33 9 33
seq 839 124 240 480 93 128 42 24 46
misex3 639 95 179 417 77 105 34 19 40
elliptic 1,208 183 329 812 154 201 32 15 38
alu4 639 95 179 433 80 113 32 15 36
des 572 93 158 523 85 144 8 8 9
s298 500 76 136 378 66 92 24 12 32
bigkey 364 56 96 348 56 81 4 0.54 16
diffeq 432 70 119 330 56 74 23 20 38
dsip 364 56 96 347 56 81 4 0.64 15
tseng 281 43 74 242 41 54 13 5 26
Average 879 134 248 559 106 150 29 15 34

to evaluate the quality of an architecture in a more precise manner [7]. Different
architectural parameters for the two architectures (architecture size, occupancy and
signal bandwidth) are shown in Table 3.5 where individual architecture is defined and
optimized for each of the netlist under consideration. It can be seen from the table
that, compared to the occupancy of mesh-based architecture, tree-based architecture
has a smaller average occupancy. This smaller occupancy of tree-based architec-
ture is due to its hierarchical nature and compared to mesh-based architecture the
logic resources of the tree-based architecture are under utilized. However, poor logic
utilization is remedied by spreading the congestion of interconnect resources (con-
gestion spreading effect is explained below) which eventually leads to better area
results compared to mesh-based architecture.

Area results of the two architectures are shown in Table 3.6. It can be seen from
the table that tree-based architecture gives better area results for all the netlists and
on average it gives 29% area gain compared to unidirectional mesh-based architec-
ture. One of the reasons of this area gain is the ability of tree-based architecture to
simultaneously control the logic occupancy and interconnect population. It can be
seen from Table 3.5 that generally the netlists with higher occupancy have a higher
Rent’s p (e.g. netlist named ex5p) and the netlists with smaller occupancy have a
smaller Rent’s p. This confirms that we can balance the interconnect and logic uti-
lization by decreasing the logic occupancy and spreading the congestion. In fact, for
tree-based architecture, we use a high-interconnect/low-logic utilization which is in

3.5 Experimentation and Analysis 77

Fig. 3.18 Area distribu-
tion between interconnect
and logic area for mesh-based
and tree-based architectures

contrast to the mesh architecture’s high-logic utilization approach. It can be seen
from Fig. 3.18, unlike mesh-based architecture where interconnect occupies 90% of
total area, in tree-based architecture interconnect occupies 73% of total area. This
is because of the fact that in tree-based architecture, lower logic occupancy leads
to higher interconnect depopulation which ultimately leads to better area results for
tree-based architecture.

3.6 FPGA Hardware Generation

This section presents an automated method of generating hardware description of
mesh-based and tree-based FPGA architectures. For both mesh-based and tree-based
architectures, the FPGA hardware generator is integrated with their exploration envi-
ronment. By doing so, all FPGA architectural parameters that are supported by the
exploration environment are automatically supported by the VHDL model generator.
Different size of FPGAs, with varying signal bandwidths, different variety of blocks,
modification in connection patterns are automatically supported by this VHDL model
generator. The VHDL model is passed to Cadence Encounter to generate layout of
FPGA for 130 nm 6-metal layer CMOS process of ST Micro-Electronics. Different
steps involved in the FPGA hardware generation are described in the sections that
follow where the hardware generation of both mesh-based and tree-based architec-
tures is detailed. Although this chapter considers only the generation of VHDL model
of two FPGA architectures, an approximate layout scheme is taken into account to
generate efficient VHDL model for two architectures. This scheme considers the
efficient distribution of logic and routing resources of the architecture and it tries
to distribute them in a uniform manner; hence eventually leading towards a less

78 3 Homogeneous Architectures Exploration Environments

Fig. 3.19 Detailed interconnect of 16 tiles of mesh-based architecture

congested architecture. An overview of the two architectures is already presented in
Sect. 3.1.

As discussed earlier, mesh-based architecture uses a unidirectional interconnect
and the detailed interconnect of different tiles of mesh-based architecture is shown in
Fig. 3.19. In this figure the detailed interconnect of 16 tiles is shown that are arranged
in a 4x4 manner. As it can be seen from the figure that each tile contains switch box, a
connection box, a CLB and routing wires on top and right side of CLB. These tiles can
be further replicated to build larger architectures. In order to generate an optimized
VHDL model of the architecture, these tiles are numbered in an appropriate manner
and the logic and routing resources covered by each tile are also numbered. These
numbers are later used while generating the VHDL model of the architecture.

For tree-based architecture, the approximate layout scheme needs an arrangement
of logic and routing resources and it can be explained with the help of Fig. 3.20.
In this figure, second level cluster of a tree-base architecture is shown where this
cluster contains four level 1 clusters and each level 1 cluster in turn contains 4 CLBs
which makes it a part of arity-4 tree-based architecture. Contrary to Fig. 3.6, in this
figure switches and wires are depicted in different colors and for clarity only a small
portion of the total interconnect is shown here. This is done to differentiate between
the switches and wires of downward and upward interconnect of different levels. It

3.6 FPGA Hardware Generation 79

Fig. 3.20 Sparse interconnect of a level 2 cluster of a tree-based architecture

can be seen from this figure that every DMSB of level 1 cluster and its wires are
shown in blue and every UMSB of level 1 and its wires are shown in red. Similarly
for level 2 cluster the color is green for DMSBs and orange for UMSBs.

The approximate layout scheme of this cluster is shown in Fig. 3.21. This is a
detailed but topologically equivalent scheme of the cluster shown in Fig. 3.20. In this
figure switch blocks are broken down into small switches where each switch is placed
horizontally or vertically in front of its successor. The division of a switch block into
smaller switches is explained in Fig. 3.22 where a full cross bar switch has 5 inputs
and four outputs and it is divided into programmable switches (multiplexors). Every
programmable switch is composed of a group of switches and these groups are either
placed in the same row or same column as their successor. CLBs of level 1 cluster
of Fig. 3.20 are arranged in rows and the interconnect of two levels is interwoven
uniformly to build a regular structure based on tiles. Each tile in Fig. 3.21 contains a
CLB, a set of level 1 switches and a set of level 2 switches. In order to vary the arity of
the architecture, we vary the number of CLBs in a row and in order to vary the number
of inputs and outputs in a cluster level, we vary the number of switches in the tile.
This corresponds to change in multiplexor size in level 1 or level 2. Thus scalability
is taken care of in terms of arity and number of I/Os. It can be seen from the figure
that all tiles are equivalent in terms of logic and switches distribution. Similarly all

80 3 Homogeneous Architectures Exploration Environments

Fig. 3.21 Floor-plan of level 2 cluster of tree-based FPGA architecture

tiles of a column are equivalent. Although tiles of same row are different in routing
topology, they are still equivalent in terms of number of switches. To generate the
VHDL model for larger tree-based architectures, same technique of interweaving is
applied as it gives flexibility in terms of arity and number of inputs and outputs of a

3.6 FPGA Hardware Generation 81

Fig. 3.22 Detailed topology of a switch block

cluster. However, it is important to mention here that it is just an approximate scheme
and it does not represent the custom layout of tree-based architecture.

3.6.1 FPGA Generation Flow

Figure 3.23 shows the generalized flow that is used to generate the FPGA hard-
ware in an automated manner. This flow is applicable to both mesh-based and tree-
based architectures except that the two architectures use their respective architecture
description mechanisms and exploration environments to generate the hardware. As
it can be seen from the figure that the flow takes three parameters as its input:

1. Database of blocks contains the blocks definition of all the blocks that are sup-
ported by the FPGA architecture.

2. Architecture description file contains different architecture parameters using
which the architecture is built. Details of the architecture description and block
definition mechanism in mesh-based and tree-based architectures is given in
Sect. 3.3.

3. Third parameter of the flow is the netlist that contains the blocks that are defined
using block definition database and this netlist is then placed and routed on the
architecture which is constructed using the parameters of architecture description
file.

FPGA architecture exploration environment uses the architecture description file
to construct the architecture and later the netlist is efficiently placed and routed on
this architecture. Once the netlist is placed and routed on the architecture, exploration
environment generates results like the floor-planning and routing graph of the archi-
tecture. An FPGA is basically represented by the floor-planning of different blocks
and the routing graph connecting these blocks. The FPGA VHDL model generator

82 3 Homogeneous Architectures Exploration Environments

Fig. 3.23 FPGA VHDL
model generation flow

uses FPGA floor-planning and FPGA routing graph to generate the FPGA VHDL
model.

3.6.2 FPGA VHDL Model Generation

As shown in Fig. 3.23, the VHDL model of an FPGA is generated by using FPGA
floor-planning and FPGA routing graph. An FPGA architecture may contain different
kinds of blocks including I/Os, CLBs. The FPGA floor-planning gives the position
of different blocks on the FPGA. These blocks are interconnected through a routing
network. The routing network of the FPGA is represented by a routing graph. An
FPGA routing graph contains nodes that are connected through edges; nodes repre-
sent a wire, and an edge represent the connections between different wires. A wire
in the routing graph can be an input or output pin of a block, or a routing wire of the
routing network.

The VHDL model generation using routing graph is explained with the help of
a small example as shown in Fig. 3.24. Figure 3.24a shows a generalized full cross
bar switch block which has four inputs and four outputs. The routing graph for this
switch block is shown in Fig. 3.24b. This routing graph can be parsed to generate its

3.6 FPGA Hardware Generation 83

(a) (b) (c)

Fig. 3.24 FPGA VHDL model generation from routing graph. a Full cross-bar switch block, b
routing graph for FPGA switch block, c physical representation for FPGA switch box

physical representation. The physical representation of FPGA switch block is shown
in Fig. 3.24c. If a node is driven by more than one nodes, a multiplexor along with
the required SRAMs is used to drive multiple nodes to the receiver node. If a node is
driven by only a single node, a buffer is used to drive the receiver node. The physical
representation of the routing graph is later translated to a VHDL model. This VHDL
model is generated using a symbolic standard cell library, SXLIB [9].

The FPGA routing graph is parsed to generate its physical representation. If a
receiver wire is driven by two or more wires, a multiplexor of appropriate size is
connected to the receiver wire. If the receiver wire is being driven by only one wire,
a buffer is used to connect the driver wire to the receiver wire. When a multiplexor
is inserted, the SRAM bits required by the multiplexor are also declared along. The
multiplexors and buffers belong to the same tile to which the receiver wire belongs.
The SRAM bits connected to the multiplexor also belong to the same tile to which
the multiplexor belongs.

The IO and logic block instances are also declared. The logic block can be a soft-
block such as a CLB, or a hard-block such as multiplier or adder etc. The input and
output pins of these blocks are already represented in the routing graph. Thus, these
blocks are automatically linked to physical representation of an FPGA. These blocks
are declared in their respective tiles. The VHDL model of these blocks is provided
along with the architecture description. The SRAMs used by any logic blocks are
also placed in the same way as the SRAMs of routing network are placed.

3.6.3 FPGA Layout Generation

The FPGA VHDL model is generated using a symbolic standard cell library, SXLIB
[9]. The generated VHDL model is synthesized to 130 nm standard cell library of
STMicroelectronics, and then passed to Cadence encounter for layout generation.
The fanout loads are fixed through automatic buffer insertion and gate resizing. The
default parameters of encounter enforce at least 5% space reserved for empty space

84 3 Homogeneous Architectures Exploration Environments

(fillers). FPGA layout generation uses these default parameters. If there is too much
congestion in the chip, more fillers can be inserted to facilitate routing of a chip.

3.7 Summary and Conclusion

In this chapter, a brief overview of homogeneous mesh-based and tree-based archi-
tectures is given. Separate environments are designed for the exploration of the
two architectures. Exploration of the architectures starts with a detailed architecture
description mechanism and once the architecture is defined, netlists are placed and
routed on the architecture using a specifically designed software flow. The new fea-
ture of this software flow is that now it can use both uni-directional or bi-directional
routing networks for mesh-based architecture. Experiments are performed to evalu-
ate the two architectures and results show that for a set of 16 MCNC benchmarks,
on average, tree-based architecture is 29% better than uni-directional mesh-based
architecture. A generalized hardware generation method for mesh-based and tree-
based FPGA architectures is also presented. The method is automated as it is directly
integrated with the exploration environments of both architectures and it takes into
account the characteristics that are possessed by different exploration techniques of
both architectures. Further the method presented here is generalized in the sense that
it can be applied to either homogeneous or heterogeneous architectures.

Results presented in this chapter are for homogeneous architectures (i.e. architec-
tures containing only CLBs and I/Os). Environments presented in this chapter are
valid only for homogeneous architecture. However, they act as a stepping stone for
a number of aspects that are designed and explored in the remaining chapters of this
work. In the next chapter the two architectures and their respective environments are
modified to support a heterogeneous mixture of blocks. Heterogeneity in FPGAs has
become increasingly important as it gives them advantages in terms of area, speed
and power consumption over their homogeneous counterparts. In the next chapter
a number of techniques are explored for both mesh-based and tree-based architec-
tures and their effect is evaluated by placing and routing a number of heterogeneous
benchmarks on the two architectures. The work and some of the results presented in
this chapter are also published in [132].

	3 Homogeneous Architectures Exploration Environments
	3.1 Reference FPGA Architectures
	3.1.1 Mesh-Based FPGA Architecture
	3.1.2 Tree-Based FPGA Architecture
	3.1.3 Comparison with Mesh Model

	3.2 Architectures Exploration Environments
	3.3 Architecture Description
	3.3.1 Architecture Description of Tree-Based Architecture
	3.3.2 Architecture Description of Mesh-Based Architecture

	3.4 Software Flow
	3.4.1 Logic Optimization, Mapping and Packing
	3.4.2 Software Flow for Tree-Based Architecture
	3.4.3 Software Flow for Mesh-Based Architecture
	3.4.4 Timing Analysis
	3.4.5 Area and Delay Models

	3.5 Experimentation and Analysis
	3.5.1 Architectures Optimization Approaches
	3.5.2 Effect of LUT and Arity Size on Tree-Based FPGA Architecture
	3.5.3 Comparison Between Homogeneous Mesh and Tree-Based FPGAs

	3.6 FPGA Hardware Generation
	3.6.1 FPGA Generation Flow
	3.6.2 FPGA VHDL Model Generation
	3.6.3 FPGA Layout Generation

	3.7 Summary and Conclusion

