
Chapter 2
FPGA Architectures: An Overview

Field Programmable Gate Arrays (FPGAs) were first introduced almost two and a
half decades ago. Since then they have seen a rapid growth and have become a popular
implementation media for digital circuits. The advancement in process technology
has greatly enhanced the logic capacity of FPGAs and has in turn made them a viable
implementation alternative for larger and complex designs. Further, programmable
nature of their logic and routing resources has a dramatic effect on the quality of
final device’s area, speed, and power consumption.

This chapter covers different aspects related to FPGAs. First of all an overview
of the basic FPGA architecture is presented. An FPGA comprises of an array of
programmable logic blocks that are connected to each other through programmable
interconnect network. Programmability in FPGAs is achieved through an underlying
programming technology. This chapter first briefly discusses different programming
technologies. Details of basic FPGA logic blocks and different routing architectures
are then described. After that, an overview of the different steps involved in FPGA
design flow is given. Design flow of FPGA starts with the hardware description of
the circuit which is later synthesized, technology mapped and packed using different
tools. After that, the circuit is placed and routed on the architecture to complete the
design flow.

The programmable logic and routing interconnect of FPGAs makes them flexible
and general purpose but at the same time it makes them larger, slower and more
power consuming than standard cell ASICs. However, the advancement in process
technology has enabled and necessitated a number of developments in the basic
FPGA architecture. These developments are aimed at further improvement in the
overall efficiency of FPGAs so that the gap between FPGAs and ASICs might be
reduced. These developments and some future trends are presented in the last section
of this chapter.

U. Farooq et al., Tree-Based Heterogeneous FPGA Architectures, 7
DOI: 10.1007/978-1-4614-3594-5_2,
© Springer Science+Business Media New York 2012

8 2 FPGA Architectures: An Overview

2.1 Introduction to FPGAs

Field programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that can
be electrically programmed in the field to become almost any kind of digital circuit
or system. For low to medium volume productions, FPGAs provide cheaper solution
and faster time to market as compared to Application Specific Integrated Circuits
(ASIC) which normally require a lot of resources in terms of time and money to
obtain first device. FPGAs on the other hand take less than a minute to configure and
they cost anywhere around a few hundred dollars to a few thousand dollars. Also
for varying requirements, a portion of FPGA can be partially reconfigured while
the rest of an FPGA is still running. Any future updates in the final product can be
easily upgraded by simply downloading a new application bitstream. However, the
main advantage of FPGAs i.e. flexibility is also the major cause of its draw back.
Flexible nature of FPGAs makes them significantly larger, slower, and more power
consuming than their ASIC counterparts. These disadvantages arise largely because
of the programmable routing interconnect of FPGAs which comprises of almost 90%
of total area of FPGAs. But despite these disadvantages, FPGAs present a compelling
alternative for digital system implementation due to their less time to market and low
volume cost.

Normally FPGAs comprise of:

• Programmable logic blocks which implement logic functions.
• Programmable routing that connects these logic functions.
• I/O blocks that are connected to logic blocks through routing interconnect and that

make off-chip connections.

A generalized example of an FPGA is shown in Fig. 2.1 where configurable logic
blocks (CLBs) are arranged in a two dimensional grid and are interconnected by
programmable routing resources. I/O blocks are arranged at the periphery of the
grid and they are also connected to the programmable routing interconnect. The
“programmable/reconfigurable” term in FPGAs indicates their ability to implement
a new function on the chip after its fabrication is complete. The reconfigurabil-
ity/programmability of an FPGA is based on an underlying programming technology,
which can cause a change in behavior of a pre-fabricated chip after its fabrication.

2.2 Programming Technologies

There are a number of programming technologies that have been used for reconfig-
urable architectures. Each of these technologies have different characteristics which
in turn have significant effect on the programmable architecture. Some of the well
known technologies include static memory [122], flash [54], and anti-fuse [61].

2.2 Programming Technologies 9

Fig. 2.1 Overview of FPGA architecture [22]

2.2.1 SRAM-Based Programming Technology

Static memory cells are the basic cells used for SRAM-based FPGAs. Most commer-
cial vendors [76, 126] use static memory (SRAM) based programming technology
in their devices. These devices use static memory cells which are divided throughout
the FPGA to provide configurability. An example of such memory cell is shown
in Fig. 2.2. In an SRAM-based FPGA, SRAM cells are mainly used for following
purposes:

1. To program the routing interconnect of FPGAs which are generally steered by
small multiplexors.

2. To program Configurable Logic Blocks (CLBs) that are used to implement logic
functions.

SRAM-based programming technology has become the dominant approach for
FPGAs because of its re-programmability and the use of standard CMOS process
technology and therefore leading to increased integration, higher speed and lower

10 2 FPGA Architectures: An Overview

Fig. 2.2 Static memory cell

dynamic power consumption of new process with smaller geometry. There are how-
ever a number of drawbacks associated with SRAM-based programming technology.
For example an SRAM cell requires 6 transistors which makes the use of this tech-
nology costly in terms of area compared to other programming technologies. Further
SRAM cells are volatile in nature and external devices are required to permanently
store the configuration data. These external devices add to the cost and area overhead
of SRAM-based FPGAs.

2.2.2 Flash Programming Technology

One alternative to the SRAM-based programming technology is the use of flash
or EEPROM based programming technology. Flash-based programming technol-
ogy offers several advantages. For example, this programming technology is non-
volatile in nature. Flash-based programming technology is also more area efficient
than SRAM-based programming technology. Flash-based programming technology
has its own disadvantages also. Unlike SRAM-based programming technology, flash-
based devices can not be reconfigured/reprogrammed an infinite number of times.
Also, flash-based technology uses non-standard CMOS process.

2.2.3 Anti-fuse Programming Technology

An alternative to SRAM and flash-based technologies is anti-fuse programming tech-
nology. The primary advantage of anti-fuse programming technology is its low area.
Also this technology has lower on resistance and parasitic capacitance than other two

2.2 Programming Technologies 11

programming technologies. Further, this technology is non-volatile in nature. There
are however significant disadvantages associated with this programming technology.
For example, this technology does not make use of standard CMOS process. Also,
anti-fuse programming technology based devices can not be reprogrammed.

In this section, an overview of three commonly used programming technologies is
given where all of them have their advantages and disadvantages. Ideally, one would
like to have a programming technology which is reprogrammable, non-volatile, and
that uses a standard CMOS process. Apparently, none of the above presented tech-
nologies satisfy these conditions. However, SRAM-based programming technology
is the most widely used programming technology. The main reason is its use of stan-
dard CMOS process and for this very reason, it is expected that this technology will
continue to dominate the other two programming technologies.

2.3 Configurable Logic Block

A configurable logic block (CLB) is a basic component of an FPGA that provides
the basic logic and storage functionality for a target application design. In order to
provide the basic logic and storage capability, the basic component can be either
a transistor or an entire processor. However, these are the two extremes where at
one end the basic component is very fine-grained (in case of transistors) and requires
large amount of programmable interconnect which eventually results in an FPGA that
suffers from area-inefficiency, low performance and high power consumption. On
the other end (in case of processor), the basic logic block is very coarse-grained and
can not be used to implement small functions as it will lead to wastage of resources.
In between these two extremes, there exists a spectrum of basic logic blocks. Some
of them include logic blocks that are made of NAND gates [101], an interconnection
of multiplexors [44], lookup table (LUT) [121] and PAL style wide input gates [124].
Commercial vendors like Xilinx and Altera use LUT-based CLBs to provide basic
logic and storage functionality. LUT-based CLBs provide a good trade-off between
too fine-grained and too coarse-grained logic blocks. A CLB can comprise of a single
basic logic element (BLE), or a cluster of locally interconnected BLEs (as shown in
Fig. 2.4). A simple BLE consists of a LUT, and a Flip-Flop. A LUT with k inputs
(LUT-k) contains 2k configuration bits and it can implement any k-input boolean
function. Figure 2.3 shows a simple BLE comprising of a 4 input LUT (LUT-4) and
a D-type Flip-Flop. The LUT-4 uses 16 SRAM bits to implement any 4 inputs boolean
function. The output of LUT-4 is connected to an optional Flip-Flop. A multiplexor
selects the BLE output to be either the output of a Flip-Flop or the LUT-4.

A CLB can contain a cluster of BLEs connected through a local routing network.
Figure 2.4 shows a cluster of 4 BLEs; each BLE contains a LUT-4 and a Flip-Flop.
The BLE output is accessible to other BLEs of the same cluster through a local
routing network. The number of output pins of a cluster are equal to the total number
of BLEs in a cluster (with each BLE having a single output). However, the number
of input pins of a cluster can be less than or equal to the sum of input pins required

12 2 FPGA Architectures: An Overview

Fig. 2.3 Basic logic element (BLE) [22]

by all the BLEs in the cluster. Modern FPGAs contain typically 4 to 10 BLEs in
a single cluster. Although here we have discussed only basic logic blocks, many
modern FPGAs contain a heterogeneous mixture of blocks, some of which can only
be used for specific purposes. Theses specific purpose blocks, also referred here as
hard blocks, include memory, multipliers, adders and DSP blocks etc. Hard blocks
are very efficient at implementing specific functions as they are designed optimally
to perform these functions, yet they end up wasting huge amount of logic and routing
resources if unused. A detailed discussion on the use of heterogeneous mixture of
blocks for implementing digital circuits is presented in Chap. 4 where both advantages
and disadvantages of heterogeneous FPGA architectures and a remedy to counter the
resource loss problem are discussed in detail.

2.4 FPGA Routing Architectures

As discussed earlier, in an FPGA, the computing functionality is provided by its
programmable logic blocks and these blocks connect to each other through pro-
grammable routing network. This programmable routing network provides routing

http://dx.doi.org/10.1007/978-1-4614-3594-5_4

2.4 FPGA Routing Architectures 13

Fig. 2.4 A configurable logic
block (CLB) having four
BLEs [22]

connections among logic blocks and I/O blocks to implement any user-defined circuit.
The routing interconnect of an FPGA consists of wires and programmable switches
that form the required connection. These programmable switches are configured
using the programmable technology.

Since FPGA architectures claim to be potential candidate for the implementation
of any digital circuit, their routing interconnect must be very flexible so that they
can accommodate a wide variety of circuits with widely varying routing demands.
Although the routing requirements vary from circuit to circuit, certain common char-
acteristics of these circuits can be used to optimally design the routing interconnect of
FPGA architecture. For example most of the designs exhibit locality, hence requiring
abundant short wires. But at the same time there are some distant connections, which
leads to the need for sparse long wires. So, care needs to be taken into account while
designing routing interconnect for FPGA architectures where we have to address
both flexibility and efficiency. The arrangement of routing resources, relative to the
arrangement of logic blocks of the architecture, plays a very important role in the
overall efficiency of the architecture. This arrangement is termed here as global rout-
ing architecture whereas the microscopic details regarding the switching topology
of different switch blocks is termed as detailed routing architecture. On the basis of
the global arrangement of routing resources of the architecture, FPGA architectures
can be categorized as either hierarchical [4] or island-style [22]. In this section, we
present a detailed overview of both routing architectures.

14 2 FPGA Architectures: An Overview

Fig. 2.5 Overview of mesh-based FPGA architecture [22]

2.4.1 Island-Style Routing Architecture

Figure 2.5 shows a traditional island-style FPGA architecture (also termed as mesh-
based FPGA architecture). This is the most commonly used architecture among
academic and commercial FPGAs. It is called island-style architecture because in
this architecture configurable logic blocks look like islands in a sea of routing inter-
connect. In this architecture, configurable logic blocks (CLBs) are arranged on a 2D
grid and are interconnected by a programmable routing network. The Input/Output
(I/O) blocks on the periphery of FPGA chip are also connected to the programmable
routing network. The routing network comprises of pre-fabricated wiring segments
and programmable switches that are organized in horizontal and vertical routing
channels.

The routing network of an FPGA occupies 80–90% of total area, whereas the logic
area occupies only 10–20% area [22]. The flexibility of an FPGA is mainly dependent
on its programmable routing network. A mesh-based FPGA routing network consists
of horizontal and vertical routing tracks which are interconnected through switch
boxes (SB). Logic blocks are connected to the routing network through connection
boxes (CB). The flexibility of a connection box (Fc) is the number of routing tracks
of adjacent channel which are connected to the pin of a block. The connectivity of
input pins of logic blocks with the adjacent routing channel is called as Fc(in); the
connectivity of output pins of the logic blocks with the adjacent routing channel is
called as Fc(out). An Fc(in) equal to 1.0 means that all the tracks of adjacent routing
channel are connected to the input pin of the logic block. The flexibility of switch
box (Fs) is the total number of tracks with which every track entering in the switch

2.4 FPGA Routing Architectures 15

Fig. 2.6 Example of switch
and connection box

box connects to. The number of tracks in routing channel is called the channel width
of the architecture. Same channel width is used for all horizontal and vertical routing
channels of the architecture. An example explaining the switch box, connection box
flexibilities, and routing channel width is shown in Fig. 2.6. In this figure switch box
has Fs = 3 as each track incident on it is connected to 3 tracks of adjacent routing
channels. Similarly, connection box has Fc(in) = 0.5 as each input of the logic block
is connected to 50% of the tracks of adjacent routing channel.

The routing tracks connected through a switch box can be bidirectional or uni-
directional (also called as directional) tracks. Figure 2.7 shows a bidirectional and a
unidirectional switch box having Fs equal to 3. The input tracks (or wires) in both
these switch boxes connect to 3 other tracks of the same switch box. The only lim-
itation of unidirectional switch box is that their routing channel width must be in
multiples of 2.

Generally, the output pins of a block can connect to any routing track through
pass transistors. Each pass transistor forms a tristate output that can be indepen-
dently turned on or off. However, single-driver wiring technique can also be used
to connect output pins of a block to the adjacent routing tracks. For single-driver
wiring, tristate elements cannot be used; the output of block needs to be connected
to the neighboring routing network through multiplexors in the switch box. Modern
commercial FPGA architectures have moved towards using single-driver, directional
routing tracks. Authors in [51] show that if single-driver directional wiring is used
instead of bidirectional wiring, 25% improvement in area, 9% in delay and 32% in
area-delay can be achieved. All these advantages are achieved without making any
major changes in the FPGA CAD flow.

In mesh-based FPGAs, multi-length wires are created to reduce delay. Figure 2.8
shows an example of different length wires. Longer wire segments span multiple
blocks and require fewer switches, thereby reducing routing area and delay. How-
ever, they also decrease routing flexibility, which reduces the probability to route a
hardware circuit successfully. Modern commercial FPGAs commonly use a combi-
nation of long and short wires to balance flexibility, area and delay of the routing
network.

16 2 FPGA Architectures: An Overview

Fig. 2.7 Switch block, length 1 wires [51]

Fig. 2.8 Channel segment distribution

2.4.1.1 Altera’s Stratix II Architecture

Until now, we have presented a general overview about island-style routing archi-
tecture. Now we present a commercial example of this kind of architectures.
Altera’s Stratix II [106] architecture is an industrial example of an island-style
FPGA (Fig. 2.9). The logic structure consists of LABs (Logic Array Blocks),
memory blocks, and digital signal processing (DSP) blocks. LABs are used to

2.4 FPGA Routing Architectures 17

Fig. 2.9 Altera’s stratix-II block diagram

implement general-purpose logic, and are symmetrically distributed in rows and
columns throughout the device fabric. The DSP blocks are custom designed to
implement full-precision multipliers of different granularities, and are grouped into
columns. Input- and output-only elements (IOEs) represent the external interface of
the device. IOEs are located along the periphery of the device.

Each Stratix II LAB consists of eight Adaptive Logic Modules (ALMs). An ALM
consists of 2 adaptive LUTs (ALUTs) with eight inputs altogether. Construction of
an ALM allows implementation of 2 separate 4-input Boolean functions. Further, an
ALM can also be used to implement any six-input Boolean function, and some seven-
input functions. In addition to lookup tables, an ALM provides 2 programmable
registers, 2 dedicated full-adders, a carry chain, and a register-chain. Full-adders and
carry chain can be used to implement arithmetic operations, and the register-chain
is used to build shift registers. Outputs of an ALM drive all types of interconnect
provided by the Stratix II device. Figure 2.10 illustrates a LAB interconnect interface.

Interconnections between LABs, RAM blocks, DSP blocks and the IOEs are
established using the Multi-track interconnect structure. This interconnect struc-
ture consists of wire segments of different lengths and speeds. The interconnect
wire-segments span fixed distances, and run in the horizontal (row interconnects)
and vertical (column interconnects) directions. The row interconnects (Fig. 2.11)
can be used to route signals between LABs, DSP blocks, and memory blocks in the
same row. Row interconnect resources are of the following types:

18 2 FPGA Architectures: An Overview

Fig. 2.10 Stratix-II logic array block (LAB) structure

• Direct connections between LABs and adjacent blocks.
• R4 resources that span 4 blocks to the left or right.
• R24 resources that provide high-speed access across 24 columns.

Each LAB owns its set of R4 interconnects. A LAB has approximately equal numbers
of driven-left and driven-right R4 interconnects. An R4 interconnect that is driven to
the left can be driven by either the primary LAB (Fig. 2.11) or the adjacent LAB to
the left.

Similarly, a driven-right R4 interconnect may be driven by the primary LAB or
the LAB immediately to its right. Multiple R4 resources can be connected to each
other to establish longer connections within the same row. R4 interconnects can also
drive C4 and C16 column interconnects, and R24 high speed row resources.

Column interconnect structure is similar to row interconnect structure. Column
interconnects include:

• Carry chain interconnects within a LAB, and from LAB to LAB in the same
column.

• Register chain interconnects.
• C4 resources that span 4 blocks in the up and down directions.
• C16 resources for high-speed vertical routing across 16 rows.

Carry chain and register chain interconnects are separated from local interconnect
(Fig. 2.10) in a LAB. Each LAB has its own set of driven-up and driven-down C4
interconnects. C4 interconnects can also be driven by the LABs that are immediately

2.4 FPGA Routing Architectures 19

Fig. 2.11 R4 interconnect connections

adjacent to the primary LAB. Multiple C4 resources can be connected to each other
to form longer connections within a column, and C4 interconnects can also drive row
interconnects to establish column-to-column interconnections. C16 interconnects are
high-speed vertical resources that span 16 LABs. A C16 interconnect can drive row
and column interconnects at every fourth LAB. A LAB local interconnect structure
cannot be directly driven by a C16 interconnect; only C4 and R4 interconnects can
drive a LAB local interconnect structure. Figure 2.12 shows the C4 interconnect
structure in the Stratix II device.

2.4.2 Hierarchical Routing Architecture

Most logic designs exhibit locality of connections; hence implying a hierarchy in
placement and routing of connections between different logic blocks. Hierarchical
routing architectures exploit this locality by dividing FPGA logic blocks into sepa-
rate groups/clusters. These clusters are recursively connected to form a hierarchical
structure. In a hierarchical architecture (also termed as tree-based architecture), con-
nections between logic blocks within same cluster are made by wire segments at the
lowest level of hierarchy. However, the connection between blocks residing in differ-
ent groups require the traversal of one or more levels of hierarchy. In a hierarchical
architecture, the signal bandwidth varies as we move away from the bottom level
and generally it is widest at the top level of hierarchy. The hierarchical routing archi-
tecture has been used in a number of commercial FPGA families including Altera
Flex10K [10], Apex [15] and ApexII [16] architectures. We assume that Multilevel
hierarchical interconnect regroups architectures with more than 2 levels of hierarchy
and Tree-based ones.

20 2 FPGA Architectures: An Overview

Fig. 2.12 C4 interconnect connections

2.4.2.1 HFPGA: Hierarchical FPGA

In the hierarchical FPGA called HFPGA, LBs are grouped into clusters. Clusters are
then grouped recursively together (see Fig. 2.13). The clustered VPR mesh architec-
ture [22] has a Hierarchical topology with only two levels. Here we consider mul-
tilevel hierarchical architectures with more than 2 levels. In [1] and [129] various
hierarchical structures were discussed. The HFPGA routability depends on switch
boxes topologies. HFPGAs comprising fully populated switch boxes ensure 100%
routability but are very penalizing in terms of area. In [129] authors explored the
HFPGA architecture, investigating how the switch pattern can be partly depopulated
while maintaining a good routability.

2.4 FPGA Routing Architectures 21

Fig. 2.13 Hierarchical FPGA topology

2.4.2.2 HSRA: Hierarchical Synchronous Reconfigurable Array

An example of an academic hierarchical routing architecture is shown in Fig. 2.14.
It has a strictly hierarchical, tree-based interconnect structure. In this architecture,
the only wire segments that directly connect to the logic units are located at the
leaves of the interconnect tree. All other wire segments are decoupled from the logic
structure. A logic block of this architecture consists of a pair of 2-input Look Up
Table (2-LUT) and a D-type Flip Flop (D-FF). The input-pin connectivity is based on
a choose-k strategy [4], and the output pins are fully connected. The richness of this
interconnect structure is defined by its base channel width c and interconnect growth
rate p. The base channel width c is defined as the number of tracks at the leaves of the
interconnect Tree (in Fig. 2.14, c = 3). Growth rate p is defined as the rate at which
the interconnect bandwidth grows towards the upper levels. The interconnect growth
rate can be realized either using non-compressing or compressing switch blocks. The
details regarding these switch blocks is as follows:

• Non-compressing (2:1) switch blocks—The number of tracks at the upper level
are equal to the sum of the number of tracks of the children at lower level. For
example, in Fig. 2.14, non-compressing switch blocks are used between levels 1,
2 and levels 3, 4.

• Compressing (1:1) switch blocks—The number of tracks at the upper level are
equal to the number of tracks of either child at the lower level. For example, in
Fig. 2.14, compressing switch blocks are used between levels 2 and 3.

A repeating combination of non-compressing and compressing switch blocks can
be used to realize any value of p less than one. For example, a repeating pattern of
(2:1, 1:1) switch blocks realizes p = 0.5, while the pattern (2:1, 2:1, 1:1) realizes
p = 0.67. An architecture that has only 2:1 switch blocks provides a growth rate of
p = 1.

Another hierarchical routing architecture is presented in [132] where the global
routing architecture (i.e. the position of routing resources relative to logic resources

22 2 FPGA Architectures: An Overview

Fig. 2.14 Example of hierarchical routing architecture [4]

of the architecture) remains the same as in [4]. However, there are several key differ-
ences at the level of detailed routing architecture (i.e. the way the routing resources
are connected to each other, flexibility of switch blocks etc.) that separate the two
architectures. For example the architecture shown in Fig. 2.14 has one bidirectional
interconnect that uses bidirectional switches and it supports only arity-2 (i.e. each
cluster can contain only two sub-clusters). On contrary, the architecture presented in
[132] supports two separate unidirectional interconnect networks: one is downward
interconnect whereas other is upward interconnect network. Further this architecture
is more flexible as it can support logic blocks with different sizes and also the clus-
ters/groups of the routing architecture can have different arity sizes. Further details
of this architecture, from now on alternatively termed as tree-based architecture, are
presented in next chapter.

2.4 FPGA Routing Architectures 23

Fig. 2.15 The APEX pro-
grammable logic Devices [87]

2.4.2.3 APEX: Altera

AP E X architecture is a commercial product from Altera Corporation which includes
3 levels of interconnect hierarchy. Figure 2.15 shows a diagram of the APEX 20K400
programmable logic device. The basic logic-element (LE) is a 4-input LUT and DFF
pair. Groups of 10 LEs are grouped into a logic-array-block or LAB. Interconnect
within a LAB is complete, meaning that a connection from the output of any LE to
the input of another LE in its LAB always exists, and any signal entering the input
region can reach every LE.

Groups of 16 LABs form a MegaLab. Interconnect within a MegaLab requires an
LE to drive a GH (MegaLab global H) line, a horizontal line, which switches into
the input region of any other LAB in the same MegaLab. Adjacent LABs have the
ability to interleave their input regions, so an LE in L ABi can usually drive L ABi+1
without using a GH line. A 20K400 MegaLab contains 279 GH lines.

The top-level architecture is a 4 by 26 array of MegaLabs. Communication
between MegaLabs is accomplished by global H (horizontal) and V (vertical) wires,
that switch at their intersection points. The H and V lines are segmented by a bidi-
rectional segmentation buffer at the horizontal and vertical centers of the chip. In
Fig. 2.15, We denote the use of a single (half-chip) line as H or V and a double or
full-chip line through the segmentation buffer as HH or VV. The 20K400 contains
100 H lines per MegaLab row, and 80 V lines per LAB-column.

In this section, so far we have given an overview of the two routing architec-
tures that are commonly employed in FPGAs. Both architectures have their posi-
tive and negative points. For example, hierarchical routing architectures exploit the

24 2 FPGA Architectures: An Overview

Fig. 2.16 a Number of series
switches in a mesh structure
b Number of series switches
in a tree structure

locality exhibited by the most of the designs and in turn offer smaller delays and
more predictable routing compared to island-style architectures. The speed of a net
is determined by the number of routing switches it has to pass and the length of
wires. In a mesh-based architecture, the number of segments increase linearly with
manhattan distance d between the logic blocks to be connected. However, for tree-
based architecture the distance d between the blocks to be connected increases in
a logarithmic manner [82]. This fact is illustrated in Fig. 2.16. On the other hand,
scalability is an issue in hierarchical routing architectures and there might be some
design mapping issues. But in the case of mesh-based architecture, there are no such
issues as it offers a tile-based layout where a tile once formed can be replicated
horizontally and vertically to make as large architecture as we wish.

2.5 Software Flow

FPGA architectures have been intensely investigated over the past two decades. A
major aspect of FPGA architecture research is the development of Computer Aided
Design (CAD) tools for mapping applications to FPGAs. It is well established that the
quality of an FPGA-based implementation is largely determined by the effectiveness
of accompanying suite of CAD tools. Benefits of an otherwise well designed, feature
rich FPGA architecture might be impaired if the CAD tools cannot take advantage
of the features that the FPGA provides. Thus, CAD algorithm research is essential
to the necessary architectural advancement to narrow the performance gaps between
FPGAs and other computational devices like ASICs.

The software flow (CAD flow) takes an application design description in a Hard-
ware Description Language (HDL) and converts it to a stream of bits that is eventually
programmed on the FPGA. The process of converting a circuit description into a for-
mat that can be loaded into an FPGA can be roughly divided into five distinct steps,
namely: synthesis, technology mapping, mapping, placement and routing. The final
output of FPGA CAD tools is a bitstream that configures the state of the memory

2.5 Software Flow 25

Fig. 2.17 FPGA software
flow

bits in an FPGA. The state of these bits determines the logical function that the
FPGA implements. Figure 2.17 shows a generalized software flow for programming
an application circuit on an FPGA architecture. A description of various modules
of software flow is given in the following part of this section. The details of these
modules are generally indifferent to the kind of routing architecture being used and
they are applicable to both architectures described earlier unless otherwise specified.

2.5.1 Logic Synthesis

The flow of FPGA starts with the logic synthesis of the netlist being mapped
on it. Logic synthesis [26, 27] transforms an HDL description (VHDL or Ver-
ilog) into a set of boolean gates and Flip-Flops. The synthesis tools transform the

26 2 FPGA Architectures: An Overview

Fig. 2.18 Directed acyclic graph representation of a circuit

register-transfer-level (RTL) description of a design into a hierarchical boolean
network. Various technology-independent techniques are applied to optimize the
boolean network. The typical cost function of technology-independent optimiza-
tions is the total literal count of the factored representation of the logic function.
The literal count correlates very well with the circuit area. Further details of logic
synthesis are beyond the scope of this book.

2.5.2 Technology Mapping

The output from synthesis tools is a circuit description of Boolean logic gates, flip-
flops and wiring connections between these elements. The circuit can also be rep-
resented by a Directed Acyclic Graph (D AG). Each node in the graph represents a
gate, flip-flop, primary input or primary output. Each edge in the graph represents a
connection between two circuit elements. Figure 2.18 shows an example of a DAG
representation of a circuit. Given a library of cells, the technology mapping problem
can be expressed as finding a network of cells that implements the Boolean network.
In the FPGA technology mapping problem, the library of cells is composed of k-input
LUTs and flip-flops. Therefore, FPGA technology mapping involves transforming
the Boolean network into k-bounded cells. Each cell can then be implemented as an
independent k-LUT. Figure 2.19 shows an example of transforming a Boolean net-
work into k-bounded cells. Technology mapping algorithms can optimize a design
for a set of objectives including depth, area or power. The FlowMap algorithm [64]
is the most widely used academic tool for FPGA technology mapping. FlowMap is a
breakthrough in FPGA technology mapping because it is able to find a depth-optimal
solution in polynomial time. FlowMap guarantees depth optimality at the expense of
logic duplication. Since the introduction of FlowMap, numerous technology map-
pers have been designed that optimize for area and run-time while still maintaining

2.5 Software Flow 27

00000

1 1 1 1

11

2

S

00000

1 1

1

S

4−LUT

Fig. 2.19 Example of technology mapping

the depth-optimality of the circuit [65–67]. The result of the technology mapping
step generates a network of k-bounded LUTs and flip-flops.

2.5.3 Clustering/Packing

The logic elements in a Mesh-based FPGA are typically arranged in two levels of
hierarchy. The first level consists of logic blocks (LBs) which are k-input LUT and
flip-flop pairs. The second level hierarchy groups k LBs together to form logic blocks
clusters. The clustering phase of the FPGA CAD flow is the process of forming groups
of k LBs. These clusters can then be mapped directly to a logic element on an FPGA.
Figure 2.20 shows an example of the clustering process.

Clustering algorithms can be broadly categorized into three general approaches,
namely top-down [39, 78], depth-optimal [84, 100] and bottom-up [14, 17, 43].
Top-down approaches partition the LBs into clusters by successively subdividing
the network or by iteratively moving LBs between parts. Depth-optimal solutions
attempt to minimize delay at the expense of logic duplication. Bottom-up approaches
are generally preferred for FPGA CAD tools due to their fast run times and reasonable
timing delays. They only consider local connectivity information and can easily sat-
isfy clusters pin constraints. Top-down approaches offer the best solutions; however,
their computational complexity can be prohibitive.

2.5.3.1 Bottom-up Approaches

Bottom-up approaches build clusters sequentially one at a time. The process starts
by choosing an LB which acts as a cluster seed. LBs are then greedily selected and
added to the cluster, applying various attraction functions. The VPack [14] attraction

28 2 FPGA Architectures: An Overview

Fig. 2.20 Example of packing

function is based on the number of shared nets between a candidate LB and the LBs
that are already in the cluster. For each cluster, the attraction function is used to select
a seed LB from the set of all LBs that have not already been packed. After packing
a seed LB into the new cluster, a second attraction function selects new LBs to pack
into the cluster. LBs are packed into the cluster until the cluster reaches full capacity
or all cluster inputs have been used. If all cluster inputs become occupied before this
cluster reaches full capacity, a hill-climbing technique is applied, searching for LBs
that do not increase the number of inputs used by the cluster. The VPack pseudo-code
is outlined in algorithm 2.1.

T-VPack [22] is a timing-driven version of VPack which gives added weight to
grouping LBs on the critical path together. The algorithm is identical to VPack, how-
ever, the attraction functions which select the LBs to be packed into the clusters are
different. The VPack seed function chooses LBs with the most used inputs, whereas
the T-VPack seed function chooses LBs that are on the most critical path. VPack’s
second attraction function chooses LBs with the largest number of connections with
the LBs already packed into the cluster. T-VPack’s second attraction function has
two components for a LB B being considered for cluster C :

Attraction(B, C) = α.Crit (B) + (1 − α)
| Nets(B) ∩ Nets(C) |

G
(2.1)

where Crit (B) is a measure of how close LB B is to being on the critical path,
Nets(B) is the set of nets connected to LB B, Nets(C) is the set of nets con-
nected to the LBs already selected for cluster C , α is a user-defined constant which
determines the relative importance of the attraction components, and G is a normal-
izing factor. The first component of T-VPack’s second attraction function chooses
critical-path LBs, and the second chooses LBs that share many connections with the
LBs already packed into the cluster. By initializing and then packing clusters with

2.5 Software Flow 29

UnclusteredLBs = PatternMatchToLBs(LUTs,Registers);
LogicClusters = NULL;
while UnclusteredLBs != NULL do

C = GetLBwithMostUsedInputs(UnclusteredLBs);
while | C |< k do

/*cluster is not full*/
BestLB = MaxAttractionLegalLB(C,UnclusteredLBs);
if BestLB == NULL then

/*No LB can be added to this cluster*/
break;

endif
Unclustered L Bs = Unclustered L B − Best L B;
C = C ∪ Best L B;

endw
if | C |< k then

/*Cluster is not full - try hill climbing*/
while | C |< k do

BestLB = MinClusterInputIncreaseLB(C,UnclusteredLBs);
C = C ∪ Best L B;
Unclustered L Bs = Unclustered L B − Best L B;

endw
if ClusterIsIllegal(C) then

RestoreToLastLegalState(C,UnclusteredLBs);
endif

endif
LogicClusters = LogicClusters ∪ C ;

endw

Algorithm 2.1 Pseudo-code of the VPack Algorithm [22]

critical-path LBs, the algorithm is able to absorb long sequences of critical-path LBs
into clusters. This minimizes circuit delay since the local interconnect within the
cluster is significantly faster than the global interconnect of the FPGA. RPack [43]
improves routability of a circuit by introducing a new set of routability metrics. RPack
significantly reduced the channel widths required by circuits compared to VPack.
T-RPack [43] is a timing driven version of RPack which is similar to T-VPack by
giving added weight to grouping LBs on the critical path. iRAC [17] improves the
routability of circuits even further by using an attraction function that attempts to
encapsulate as many low fanout nets as possible within a cluster. If a net can be
completely encapsulated within a cluster, there is no need to route that net in the
external routing network. By encapsulating as many nets as possible within clusters,
routability is improved because there are less external nets to route in total.

2.5.3.2 Top-down Approaches

The K-way partitioning problem seeks to minimize a given cost function of such
an assignment. A standard cost function is net cut, which is the number of hyper-
edges that span more than one partition, or more generally, the sum of weights of

30 2 FPGA Architectures: An Overview

such hyperedges. Constraints are typically imposed on the solution, and make the
problem difficult. For example some vertices can be fixed in their parts or the total
vertex weight in each part must be limited (balance constraint and FPGA clusters
size). With balance constraints, the problem of partitioning optimally a hypergraph
is known to be NP-hard [85]. However, since partitioning is critical in several practi-
cal applications, heuristic algorithms were developed with near-linear runtime. Such
move-based heuristics for k-way hypergraph partitioning appear in [24, 34, 110].

Fiduccia-Mattheyses Algorithm

The Fiduccia-Mattheyses (FM) heuristics [34] work by prioritizing moves by gain.
A move changes to which partition a particular vertex belongs, and the gain is the
corresponding change of the cost function. After each vertex is moved, gains for
connected modules are updated.

partitioning = initial_solution;
while solution quality improves do

Initialize gain_container from partitioning;
solution_cost = partitioning.get_cost();
while not all vertices locked do

move = choose_move();
solution_cost += gain_container.get_gain(move);
gain_container.lock_vertex(move.vertex());
gain_update(move);
partitioning.apply(move);

endw
roll back partitioning to best seen solution;
gain_container.unlock_all();

endw

Algorithm 2.2 Pseudo-code for FM Heuristic [38]

The Fiduccia-Mattheyses (FM) heuristic for partitioning hypergraphs is an itera-
tive improvement algorithm. FM starts with a possibly random solution and changes
the solution by a sequence of moves which are organized as passes. At the begin-
ning of a pass, all vertices are free to move (unlocked), and each possible move is
labeled with the immediate change to the cost it would cause; this is called the gain
of the move (positive gains reduce solution cost, while negative gains increase it).
Iteratively, a move with highest gain is selected and executed, and the moving vertex
is locked, i.e., is not allowed to move again during that pass. Since moving a vertex
can change gains of adjacent vertices, after a move is executed all affected gains are
updated. Selection and execution of a best-gain move, followed by gain update, are
repeated until every vertex is locked. Then, the best solution seen during the pass is
adopted as the starting solution of the next pass. The algorithm terminates when a

2.5 Software Flow 31

Fig. 2.21 The gain bucket structure as illustrated in [34]

pass fails to improve solution quality. Pseudo-code for the FM heuristic is given in
algorithm 2.2.

The FM algorithm has 3 main components (1) computation of initial gain values
at the beginning of a pass; (2) the retrieval of the best-gain (feasible) move; and
(3) the update of all affected gain values after a move is made. One contribution of
Fiduccia and Mattheyses lies in observing that circuit hypergraphs are sparse, and
any move’s gain is bounded between plus and minus the maximal vertex degree
Gmax in the hypergraph (times the maximal hyperedge weight, if weights are used).
This allows prioritizing moves by their gains. All affected gains can be updated in
amortized-constant time, giving overall linear complexity per pass [34]. All moves
with the same gain are stored in a linked list representing a “gain bucket”. Figure. 2.21
presents the gain bucket list structure. It is important to note that some gains G may
be negative, and as such, FM performs hill-climbing and is not strictly greedy.

Multilevel Partitioning

The multilevel hypergraph partitioning framework was successfully verified by
[31, 48, 49] and leads to the best known partitioning results ever since. The main
advantage of multilevel partitioning over flat partitioners is its ability to search the
solution space more effectively by spending comparatively more effort on smaller
coarsened hypergraphs. Good coarsening algorithms allow for high correlation
between good partitioning for coarsened hypergraphs and good partitioning for the
initial hypergraph. Therefore, a thorough search at the top of the multilevel hierarchy
is worthwhile because it is relatively inexpensive when compared to flat partitioning
of the original hypergraph, but can still preserve most of the possible improvement.

32 2 FPGA Architectures: An Overview

The result is an algorithmic framework with both improved runtime and solution
quality over a completely flat approach. Pseudo-code for an implementation of the
multilevel partitioning framework is given in algorithm 2.3.

level = 0;
hierarchy[level] = hypergraph;
min_vertices = 200;
while hierarchy[level].vertex_count() > min_vertices do

next_level = cluster(hierarchy[level]);
level = level + 1;
hierarchy[level] = next_level;

endw
partitioning[level] = a random initial solution for top-level hypergraph;
FM(hierarchy[level], partitioning[level]);
while level>0 do

level = level - 1;
partitioning[level] = project(partitioning[level+1], hierarchy[level]);
FM(hierarchy[level], partitioning[level]);

endw

Algorithm 2.3 Pseudo-code for the Multilevel Partitioning Algorithm [38]

As illustrated in Fig. 2.22, multilevel partitioning consists of 3 main components:
clustering, top-level partitioning and refinement or “uncoarsening”. During cluster-
ing, hypergraph vertices are combined into clusters based on connectivity, leading
to a smaller, clustered hypergraph. This step is repeated until obtaining only several
hundred clusters and a hierarchy of clustered hypergraphs. We describe this hier-
archy, as shown in Fig. 2.22, with the smaller hypergraphs being “higher” and the
larger hypergraphs being “lower”. The smallest (top-level) hypergraph is partitioned
with a very fast initial solution generator and improved iteratively, for example, using
the FM algorithm. The resulting partitioning is then interpreted as a solution for the
next hypergraph in the hierarchy. During the refinement stage, solutions are projected
from one level to the next and improved iteratively. Additionally, the hMETIS par-
titioning program [49] introduced several new heuristics that are incorporated into
their multilevel partitioning implementation and are reportedly performance critical.

2.5.4 Placement

Placement algorithms determine which logic block within an FPGA should imple-
ment the corresponding logic block (instance) required by the circuit. The opti-
mization goals consist in placing connected logic blocks close together to mini-
mize the required wiring (wire length-driven placement), and sometimes to place
blocks to balance the wiring density across the FPGA (routability-driven placement)
or to maximize circuit speed (timing-driven placement). The 3 major classes of

2.5 Software Flow 33

Fig. 2.22 Multilevel hypergraph bisection

placers in use today are min-cut (Partitioning-based) [6, 40], analytic [32, 53] which
are often followed by local iterative improvement, and simulated annealing based
placers [37, 105]. To investigate architectures fairly we must make sure that our CAD
tools are attempting to use every FPGA’s feature. This means that the optimization
approach and goals of the placer may change from architecture to architecture. Parti-
tioning and simulated annealing approaches are the most common and used in FPGA
CAD tools. Thus we focus on both techniques in the sequel.

2.5.4.1 Simulated Annealing Based Approach

Simulated annealing mimics the annealing process used to cool gradually molten
metal to produce high-quality metal objects [105]. Pseudo-code for a generic sim-
ulated annealing-based placer is shown in algorithm 2.4. A cost function is used to
evaluate the quality of a given placement of logic blocks. For example, a common
cost function in wirelength-driven placement is the sum over all nets of the half
perimeter of their bounding boxes. An initial placement is created by assigning logic
blocks randomly to the available locations in the FPGA. A large number of moves,
or local improvements are then made to gradually improve the placement. A logic
block is selected at random, and a new location for it is also selected randomly. The
change in cost function that results from moving the selected logic block to the pro-
posed new location is computed. If the cost decreases, the move is always accepted
and the block is moved. If the cost increases, there is still a chance to accept the
move, even though it makes the placement worse. This probability of acceptance is

34 2 FPGA Architectures: An Overview

S = RandomPlacement();
T = InitialTemperature();
Rlimit = I ni tial Rlimit ;
while ExitCriterion() == false do

while InnerLoopCriterion() == false do
Snew = GenerateV iaMove(S, Rlimit);
�C = Cost (Snew) − Cost (S);
r = random(0,1);
if r < e− �C

T then
S = Snew;

endif
endw
T = UpdateTemp();
Rlimit = U pdateRlimit ();

endw

Algorithm 2.4 Generic Simulated Annealing-based Placer [22]

given by e− �C
T , where �C is the change in cost function, and T is a parameter called

temperature that controls probability of accepting moves that worsen the placement.
Initially, T is high enough so almost all moves are accepted; it is gradually decreased
as the placement improves, in such a way that eventually the probability of accepting
a worsening move is very low. This ability to accept hill-climbing moves that make
a placement worse allows simulated annealing to escape local minima of the cost
function.

The Rlimit parameter in algorithm 2.4 controls how close are together blocks
must be to be considered for swapping. Initially, Rlimit is fairly large, and swaps of
blocks far apart on a chip are more likely. Throughout the annealing process, Rlimit

is adjusted to try to keep the fraction of accepted moves at any temperature close to
0.44. If the fraction of moves accepted, α, is less than 0.44, Rlimit is reduced, while
if α is greater than 0.44, Rlimit is increased.

In [22], the objective cost function is a function of the total wirelength of the
current placement. The wirelength is an estimate of the routing resources needed to
completely route all nets in the netlist. Reductions in wirelength mean fewer routing
wires and switches are required to route nets. This point is important because routing
resources in an FPGA are limited. Fewer routing wires and switches typically are also
translated into reductions of the delay incurred in routing nets between logic blocks.
The total wirelength of a placement is estimated using a semi-perimeter metric, and
is given by Eq. 2.2. N is the total number of nets in the netlist, bbx(i) is the horizontal
span of net i , bby(i) is its vertical span, and q(i) is a correction factor. Figure 2.23
illustrates the calculation of the horizontal and vertical spans of a hypothetical net
that has 6 terminals.

WireCost =
N∑

i=1

q(i) × (bbx (i) + bby(i)) (2.2)

2.5 Software Flow 35

Fig. 2.23 Bounding box of
a hypothetical 6-terminal
net [22]

The temperature decrease rate, the exit criterion for terminating the anneal, the num-
ber of moves attempted at each temperature (InnerLoopCriterion), and the method
by which potential moves are generated are defined by the annealing schedule. An
efficient annealing schedule is crucial to obtain good results in a reasonable amount
of CPU time. Many proposed annealing schedules are “fixed” schedules with no abil-
ity to adapt to different problems. Such schedules can work well within the narrow
application range for which they are developed, but their lack of adaptability means
they are not very general. In [86] authors propose an “adaptive” annealing schedule
based on statistics computed during the anneal itself. Adaptive schedules are widely
used to solve large scale optimization problems with many variables.

2.5.4.2 Partitioning Based Approach

Partitioning-based placement methods, are based on graph partitioning algorithms
such as the Fiduccia-Mattheyses (FM) algorithm [34], and Kernighan Lin (KL) algo-
rithm [6]. Partitioning-based placement are suitable to Tree-based FPGA architec-
tures. The partitioner is applied recursively to each hierarchical level to distribute
netlist cells between clusters. The aim is to reduce external communications and to
collect highly connected cells into the same cluster.

The partitioning-based placement is also used in the case of Mesh-based FPGA.
The device is divided into two parts, and a circuit partitioning algorithm is applied to
determine the adequate part where a given logic block must be placed to minimize the
number of cuts in the nets that connect the blocks between partitions, while leaving
highly-connected blocks in one partition.

36 2 FPGA Architectures: An Overview

A divide-and-conquer strategy is used in these heuristics. By partitioning the
problem into sub-parts, a drastic reduction in search space can be achieved. On
the whole, these algorithms perform in the top-down manner, placing blocks in the
general regions which they should belong to. In the Mesh FPGA case, partitioning-
based placement algorithms are good from a “global” perspective, but they do not
actually attempt to minimize wirelength. Therefore, the solutions obtained are sub-
optimal in terms of wirelength. However, these classes of algorithms run very fast.
They are normally used in conjunction with other search techniques for further quality
improvement. Some algorithms [130] and [95] combine multi-level clustering and
hierarchical simulated annealing to obtain ultra-fast placement with good quality. In
the following chapters, the partitioning-based placement approach will be used only
for Tree-based FPGA architectures.

2.5.5 Routing

The FPGA routing problem consists in assigning nets to routing resources such
that no routing resource is shared by more than one net. Path f inder [80] is the
current, state-of-the-art FPGA routing algorithm. Path f inder operates on a directed
graph abstraction G(V, E) of the routing resources in an FPGA. The set of vertices
V in the graph represents the IO terminals of logic blocks and the routing wires
in the interconnect structure. An edge between two vertices represents a potential
connection between them. Figure 2.24 presents a part of a routing graph in a Mesh-
based interconnect.

Given this graph abstraction, the routing problem for a given net is to find a
directed tree embedded in G that connects the source terminal of the net to each of
its sink terminals. Since the number of routing resources in an FPGA is limited, the
goal of finding unique, non-intersecting trees for all the nets in a netlist is a difficult
problem.

Path f inder uses an iterative, negotiation-based approach to successfully route
all the nets in a netlist. During the first routing iteration, nets are freely routed without
paying attention to resource sharing. Individual nets are routed using Di jkstra’s
shortest path algorithm [111]. At the end of the first iteration, resources may be
congested because multiple nets have used them. During subsequent iterations, the
cost of using a resource is increased, based on the number of nets that share the
resource, and the history of congestion on that resource. Thus, nets are made to
negotiate for routing resources. If a resource is highly congested, nets which can use
lower congestion alternatives are forced to do so. On the other hand, if the alternatives
are more congested than the resource, then a net may still use that resource.

The cost of using a routing resource n during a routing iteration is given by Eq. 2.3.

cn = (bn + hn) × pn (2.3)

2.5 Software Flow 37

Fig. 2.24 Modeling FPGA architecture as a directed graph [22]

bn is the base cost of using the resource n, hn is related to the history of congestion
during previous iterations, and pn is proportional to the number of nets sharing the
resource in the current iteration. The pn term represents the cost of using a shared
resource n, and the hn term represents the cost of using a resource that has been
shared during earlier routing iterations. The latter term is based on the intuition that
a historically congested node should appear expensive, even if it is slightly shared
currently. Cost functions and routing schedule were described in details in [22]. The
Pseudo-code of the Path f inder routing algorithm is presented in algorithm 2.5.

Let: RTi be the set of nodes in the current routing of net i
while shared resources exist do

/*Illegal routing*/
foreach net, i do

rip-up routing tree RTi ;
RT (i) = si ;
foreach sink ti j do

Initialize priority queue PQ to RTi at cost 0;
while sink ti j not found do

Remove lowest cost node m from PQ;
foreach fanout node n of node m do

Add n to PQ at PathCost (n) = cn + PathCost (m);
endfch

endw
foreach node n in path ti j to si do

/*backtrace*/
Update cn ;
Add n to RTi ;

endfch
endfch

endfch
update hn for all n;

endw

Algorithm 2.5 Pseudo-code of the Path f inder Routing Algorithm [80]

38 2 FPGA Architectures: An Overview

An important measure of routing quality produced by an FPGA routing algorithm
is the critical path delay. The critical path delay of a routed netlist is the maximum
delay of any combinational path in the netlist. The maximum frequency at which
a netlist can be clocked has an inverse relationship with critical path delay. Thus,
larger critical path delays slow down the operation of netlist. Delay information is
incorporated into Path f inder by redefining the cost of using a resource n (Eq. 2.4).

cn = Ai j × dn + (1 − Ai j) × (bn + hn) × pn (2.4)

The cn term is from Eq. 2.3, dn is the delay incurred in using the resource, and Ai j

is the criticality given by Eq. 2.5.

Ai j = Di j

Dmax
(2.5)

Di j is the maximum delay of any combinational path going through the source and
sink terminals of the net being routed, and Dmax is the critical path delay of the
netlist. Equation 2.4 is formulated as a sum of two cost terms. The first term in
the equation represents the delay cost of using resource n, while the second term
represents the congestion cost. When a net is routed, the value of Ai j determines
whether the delay or the congestion cost of a resource dominates. If a net is near
critical (i.e. its Ai j is close to 1), then congestion is largely ignored and the cost of
using a resource is primarily determined by the delay term. If the criticality of a net is
low, the congestion term in Eq. 2.4 dominates, and the route found for the net avoids
congestion while potentially incurring delay.

Path f inder has proved to be one of the most powerful FPGA routing algo-
rithms to date. The negotiation-based framework that trades off delay for congestion
is an extremely effective technique for routing signals on FPGAs. More importantly,
Path f inder is a truly architecture-adaptive routing algorithm. The algorithm oper-
ates on a directed graph abstraction of an FPGA’s routing structure, and can thus
be used to route netlists on any FPGA that can be represented as a directed routing
graph.

2.5.6 Timing Analysis

Timing analysis [99] is used for two basic purposes:

• To determine the speed of circuits which have been completely placed and routed,
• To estimate the slack [68] of each source-sink connection during routing (place-

ment and other parts of the CAD flow) in order to decide which connections must
be made via fast paths to avoid slowing down the circuit.

First the circuit under consideration is presented as a directed graph. Nodes in the
graph represent input and output pins of circuit elements such as LUTs, registers,

2.5 Software Flow 39

and I/O pads. Connections between these nodes are modeled with edges in the graph.
Edges are added between the inputs of combinational logic Blocks (LUTs) and their
outputs. These edges are annotated with a delay corresponding to the physical delay
between the nodes. Register input pins are not joined to register output pins. To
determine the delay of the circuit, a breadth first traversal is performed on the graph
starting at sources (input pads, and register outputs). Then the arrival time, Tarrival ,
at all nodes in the circuit is computed with the following equation:

Tarrival(i) = max j∈ f anin(i){Tarrival(j) + delay(j, i)}
where node i is the node currently being computed, and delay(j, i) is the delay value
of the edge joining node j to node i . The delay of the circuit is then the maximum
arrival time, Dmax , of all nodes in the circuit.
To guide a placement or routing algorithm, it is useful to know how much delay may
be added to a connection before the path that the connection is on becomes critical.
The amount of delay that may be added to a connection before it becomes critical is
called the slack of that connection. To compute the slack of a connection, one must
compute the required arrival time, Trequired , at every node in the circuit. We first
set the Trequired at all sinks (output pads and register inputs) to be Dmax . Required
arrival time is then propagated backwards starting from the sinks with the following
equation:

Trequired(i) = min j∈ f anout (i){Trequired(j) − delay(j, i)}
Finally, the slack of a connection (i, j) driving node, j , is defined as:

Slack(i, j) = Trequired(j) − Tarrival(i) − delay(i, j)

2.5.7 Bitstream Generation

Once a netlist is placed and routed on an FPGA, bitstream information is generated
for the netlist. This bitstream is programmed on the FPGA using a bitstream loader.
The bitstream of a netlist contains information as to which SRAM bit of an FPGA
be programmed to 0 or to 1. The bitstream generator reads the technology mapping,
packing and placement information to program the SRAM bits of Look-Up Tables.
The routing information of a netlist is used to correctly program the SRAM bits of
connection boxes and switch boxes.

2.6 Research Trends in Reconfigurable Architectures

Until now in this chapter a detailed overview of logic architecture, routing architecture
and software flow of FPGAs is presented. In this section, we highlight some of the
disadvantages associated with FPGAs and further we describe some of the trends that

40 2 FPGA Architectures: An Overview

are currently being followed to remedy these disadvantages. FPGA-based products
are basically very effective for low to medium volume production as they are easy
to program and debug, and have less NRE cost and faster time-to-market. All these
major advantages of an FPGA come through their reconfigurability which makes
them general purpose and field programmable. But, the very same reconfigurability
is the major cause of its disadvantages; thus making it larger, slower and more power
consuming than ASICs.

However, the continued scaling of CMOS and increased integration has resulted
in a number of alternative architectures for FPGAs. These architectures are mainly
aimed to improve area, performance and power consumption of FPGA architectures.
Some of these propositions are discussed in this section.

2.6.1 Heterogeneous FPGA Architectures

Use of hard-blocks in FPGAs improves their logic density. Hard-Blocks, in FPGAs
increase their density, performance and power consumption. There can be different
types of hard-blocks like multipliers, adders, memories, floating point units and DSP
blocks etc. In this regard, [19] have incorporated embedded floating-point units in
FPGAs, [30] have developed virtual embedded block methodology to model arbitrary
embedded blocks on existing commercial FPGAs. Here some of the academic and
commercial architectures are presented that make use of hard-blocks to improve
overall efficiency of FPGAs.

2.6.1.1 Versatile Packing, Placement and Routing VPR

Versatile Packing, Placement and Routing for FPGAs (commonly known as VPR)
[14, 22, 120] is the most widely used academic mesh-based FPGA exploration
environment. It allows to explore mesh-based FPGA architectures by employing
an empirical approach. Benchmark circuits are mapped, placed and routed on a
desired FPGA architecture. Later, area and delay of FPGAs are measured to decide
best architectural parameters. Different CAD tools in VPR are highly optimized to
ensure high quality results.

Earlier version of VPR supported only homogeneous achitectures [120]. However,
the latest version of VPR known as VPR 5.0 [81] supports hard-blocks (such as
multiplier and memory blocks) and single-driver routing wires. Hard-blocks are
restricted to be in one grid width column, and that column can be composed of only
similar type of blocks. The height of a hard-block is quantized and it must be an
integral multiple of grid units. In case a block height is indivisible with the height
of FPGA, some grid locations are left empty. Figure 2.25 illustrates a heterogeneous
FPGA with 8 different kinds of blocks.

2.6 Research Trends in Reconfigurable Architectures 41

Fig. 2.25 A heterogeneous
FPGA in VPR 5.0 [81]

2.6.1.2 Madeo, a Framework for Exploring Reconfigurable Architectures

Madeo [73] is another academic design suite for the exploration of reconfigurable
architectures. It includes a modeling environment that supports multi-grained, hetero-
geneous architectures with irregular topologies. Madeo framework initially allows
to model an FPGA architecture. The architecture characteristics are represented as a
common abstract model. Once the architecture is defined, the CAD tools of Madeo
are used to map a target netlist on the architecture. Madeo uses same placement and
routing algorithms as used by VPR [120]. Along with placement and routing algo-
rithms, it also embeds a bitstream generator, a netlist simulator, and a physical layout
generator in its design suite. Madeo supports architectural prospection and very fast
FPGA prototyping. Several FPGAs, including some commercial architectures (such
as Xilinx Virtex family) and prospective ones (such as STMicro LPPGA) have been
modeled using Madeo. The physical layout is produced as VHDL description.

2.6.1.3 Altera Architecture

Altera’s Stratix IV [107] is an example of a commercial architecture that uses a
heterogeneous mixture of blocks. Figure 2.26 shows the global architectural layout
of Stratix IV. The logic structure of Stratix IV consists of LABs (Logic Array Blocks),
memory blocks and digital signal processing (DSP) blocks. LABS are distributed
symmetrically in rows and columns and are used to implement general purpose
logic. The DSP blocks are used to implement full-precision multipliers of different

42 2 FPGA Architectures: An Overview

Fig. 2.26 Stratix IV architectural elements

granularities. The memory blocks and DSP blocks are placed in columns at equal
distance with one another. Input and Output (I/Os) are located at the periphery of
architecture.

Logic array blocks (LABs) and adaptive logic modules (ALMs) provide the basic
logic capacity for Stratix IV device. They can be used to configure logic functions,
arithmetic functions, and register functions. Each LAB consists of ten ALMs, carry
chains, arithmetic chains, LAB control signals, local interconnect, and register chain
connection lines. The local interconnect connects the ALMs that are inside same
LAB. The direct link allows a LAB to drive into the local interconnect of its left or
right neighboring LAB. The register chain connects the output of ALM register to
the adjacent ALM register in the LAB. A memory LAB (MLAB) is a derivative of
LAB which can be either used just like a simple LAB, or as a static random access
memory (SRAM). Each ALM in an MLAB can be configured as a 64 × 1, or 32 × 2
blocks, resulting in a configuration of 64 × 10 or 32 × 20 simple dual-port SRAM
block. MLAB and LAB blocks always coexist as pairs in Stratix IV families.

The DSP blocks in Stratix IV are optimized for signal processing applications such
as Finite Impulse Response (FIR), Infinite Impulse Response (IIR), Fast Fourier
Transform functions (FFT) and encoders etc. Stratix IV device has two to seven
columns of DSP blocks that can implement different operations like multiplication,
multiply-add, multiply-accumulate (MAC) and dynamic arithmetic or logical shift
functions. The DSP block supports different multiplication operations such as 9 × 9,
12 × 12, 18 × 18 and 36 × 36 multiplication operations. The Stratix IV devices
contain three different sizes of embedded SRAMs. The memory sizes include 640-
bit memory logic array blocks (MLABs), 9-Kbit M9K blocks, and 144-Kbit M144K
blocks. The MLABs have been optimized to implement filter delay lines, small FIFO
buffers, and shift registers. M9K blocks can be used for general purpose memory
applications, and M144K are generally meant to store code for a processor, packet
buffering or video frame buffering.

2.6 Research Trends in Reconfigurable Architectures 43

2.6.2 FPGAs to Structured Architectures

The ease of designing and prototyping with FPGAs can be exploited to quickly
design a hardware application on an FPGA. Later, improvements in area, speed,
power and volume production can be achieved by migrating the application design
from FPGA to other technologies such as Structured-ASICs. In this regard, Altera
provides a facility to migrate its Stratix IV based application design to HardCopy
IV [56]. Altera gives provision to migrate FPGA-based applications to Structured-
ASIC. Their Structured-ASIC is called as HardCopy [56]. The main theme is to
design, test and even initially ship a design using an FPGA. Later, the application
circuit that is mapped on the FPGA can be seamlessly migrated to HardCopy for
high volume production. Their latest HardCopy-IV devices offer pin-to-pin com-
patibility with the Stratix IV prototype, making them exact replacements for the
FPGAs. Thus, the same system board and softwares developed for prototyping and
field trials can be retained, enabling the lowest risk and fastest time-to-market for
high-volume production. Moreover, when an application circuit is migrated from
Stratix IV FPGA prototype to Hardcopy-VI, the core logic performance doubles and
power consumption reduces by half.

The basic logic unit of HardCopy is termed as HCell. It is similar to Stratix IV logic
cell (LAB) in the sense that the fabric consists of a regular pattern which is formed
by tiling one or more basic cells in a two dimensional array. However, the difference
is that HCell has no configuration memory. Different HCell candidates can be used,
ranging from fine-grained NAND gates to multiplexors and coarse-grained LUTs.
An array of such HCells, and a general purpose routing network which interconnects
them is laid down on the lower layers of the chip. Specific layers are then reserved to
form via connections or metal lines which are used to customize the generic array into
specific functionality. Figure 2.27 illustrates the correspondence between an FPGA
and a compatible structured ASIC. There is a one to one layout-level correspondence
between MRAMs, phase-lock loops (PLLs), embedded memories, transceivers, and
I/O blocks. The soft-logic DSP multipliers and logic cell fabric of the FPGA are
re-synthesized to structured ASIC fabric. However, they remain functionally and
electrically equivalent in FPGAs and HardCopy ASICs.

Apart from Altera, there are several other companies that provide a solution similar
to that of Altera. For example, the eASIC Nextreme [41] uses an FPGA-like design
flow to map an application design on SRAM programmable LUTs, which are later
interconnected through mask programming of few upper routing layers. Tierlogic
[113] is a recently launched FPGA vendor that offers 3D SRAM-based TierFPGA
devices for prototyping and early production. The same design solution can be frozen
to a TierASIC device with one low-NRE custom mask for error-free transition to an
ASIC implementation. The SRAM layer is placed on an upper 3D layer of TierFPGA.
Once the TierFPGA design is frozen, the bitstream information is used to create a
single custom mask metal layer that will replace the SRAM programming layer.

44 2 FPGA Architectures: An Overview

Fig. 2.27 FPGA/Structured-ASIC (HardCopy) Correspondence [59]

2.6.3 Configurable ASIC Cores

Configurable ASIC Core (cASIC) [35] is another example of reconfigurable devices
that can implement a limited set of circuits which operate at mutually exclusive times.
cASICs are intended as accelerator in domain-specific systems-on-a-chip, and are
not designed to replace the entire ASIC-only chip. The host would execute software
code, whereas compute-intensive sections can be executed on one or more cASICs.
So, to execute the compute intensive sections, cASICs implement only data-path
circuits and thus supports full-word blocks only (such as 16-bit wide multipliers,
adders, RAMS, etc). Since the application domain of cASICs is more specific, they
are significantly smaller than FPGAs. As hardware resources are shared between
different netlists, cASICs are even smaller than the sum of the standard-cell based
ASIC areas of individual circuits.

2.6 Research Trends in Reconfigurable Architectures 45

2.6.4 Processors Inside FPGAs

Considerable amount of FPGA area can be reduced by incorporating a microproces-
sor in an FPGA. A microprocessor can execute any less compute intensive task,
whereas compute-intensive tasks can be executed on an FPGA. Similarly, a micro-
processor based application can have huge speed-up gains if an FPGA is attached
with it. An FPGA attached with a microprocessor can execute any compute intensive
functionality as a customized hardware instruction. These advantages have com-
pelled commercial FPGA vendors to provide microprocessor in their FPGAs so
that complete system can be programmed on a single chip. Few vendors have inte-
grated fixed hard processor on their FPGA (like AVR Processor integrated in Atmel
FPSLIC [18] or PowerPC processors embedded in Xilinx Virtex-4 [126]). Others
provide soft processor cores which are highly optimized to be mapped on the pro-
grammable resources of FPGA. Altera’s Nios [90] and Xilinx’s Microblaze [88] are
soft processor meant for FPGA designs which allow custom hardware instructions.
[96] have shown that considerable area gains can be achieved if these soft processors
for FPGAs are optimized for particular applications. They have shown that unused
instructions in a soft processor can be removed and different architectural tradeoffs
can be selected to achieve on average 25% area gain for soft processors required for
specific applications. Reconfigurable units can also be attached with microproces-
sors to achieve execution time speedup in software programs. [28, 70, 104] have
incorporated a reconfigurable unit with microprocessors to achieve execution-time
speedup.

2.6.5 Application Specific FPGAs

The type of logic blocks and the routing network in an FPGA can be optimized to
gain area and performance advantages for a given application domain (controlpath-
oriented applications, datapath-oriented applications, etc). These types of FPGAs
may include different variety of desired hard-blocks, appropriate amount of flexi-
bility required for the given application domain or bus-based interconnects rather
than bit-based interconnects. Authors in [83] have presented a reconfigurable arith-
metic array for multimedia applications which they call as CHESS. The principal
goal of CHESS was to increase arithmetic computational density, to enhance the
flexibility, and to increase the bandwidth and capacity of internal memories signif-
icantly beyond the capabilities of existing commercial FPGAs. These goals were
achieved by proposing an array of ALUs with embedded RAMs where each ALU
is 4-bit wide and supports 16 instructions. Similarly, authors in [42] present a
coarse-grained, field programmable architecture for constructing deep computa-
tional pipelines. This architecture can efficiently implement applications related to
media, signal processing, scientific computing and communications. Further, authors
in [128] have used bus-based routing and logic blocks to improve density of FPGAs

46 2 FPGA Architectures: An Overview

for datapath circuits. This is a partial multi-bit FPGA architecture that is designed to
exploit the regularity that most of the datapath circuits exhibit.

2.6.6 Time-Multiplexed FPGAs

Time-multiplexed FPGAs increase the capacity of FPGAs by executing different
portions of a circuit in a time-multiplexed mode [89, 114]. An application design is
divided into different sub-circuits, and each sub-circuit runs as an individual context
of FPGA. The state information of each sub-circuit is saved in context registers before
a new context runs on FPGA. Authors in [114] have proposed a time-multiplexed
FPGA architecture where a large circuit is divided into sub-circuits and each sub-
circuit is sequentially executed on a time-multiplexed FPGA. Such an FPGA stores
a set of configuration bits for all contexts. A context is shifted simply by using
the SRAM bits dedicated to a particular context. The combinatorial and sequential
outputs of a sub-circuit that are required by other sub-circuits are saved in context
registers which can be easily accessed by sub-circuits at different times.

Time-Multiplexed FPGAs increase their capacity by actually adding more SRAM
bits rather than more CLBs. These FPGAs increase the logic capacity by dynamically
reusing the hardware. The configuration bits of only the currently executing context
are active, the configuration bits for the remaining supported contexts are inactive.
Intermediate results are saved and then shared with the contexts still to be run. Each
context takes a micro-cycle time to execute one context. The sum of the micro-
cycles of all the contexts makes one user-cycle. The entire time-multiplexed FPGA
or its smaller portion can be configured to (i) execute a single design, where each
context runs a sub-design, (ii) execute multiple designs in time-multiplexed modes,
or (iii) execute statically only one single design. Tabula [109] is a recently launched
FPGA vendor that provides time-multiplexed FPGAs. It dynamically reconfigures
logic, memory, and interconnect at multi-GHz rates with a Spacetime compiler.

2.6.7 Asynchronous FPGA Architecture

Another alternative approach that has been proposed to improve the overall perfor-
mance of FPGA architecture is the use of asynchronous design elements.
Conventionally, digital circuits are designed for synchronous operation and in turn
FPGA architectures have focused primarily on implementing synchronous circuits.
Asynchronous designs are proposed to improve the energy efficiency of asynchro-
nous FPGAs since asynchronous designs offer potentially lower energy as energy is
consumed only when necessary. Also the asynchronous architectures can simplify
the design process as complex clock distribution networks become unnecessary.

The first asynchronous FPGA was developed by [57]. It consisted the modified
version of previously developed synchronous FPGA architecture. Its logic block was

2.6 Research Trends in Reconfigurable Architectures 47

similar to the conventional logic block with added features of fast feedback and a
latch that could be used to initialize an asynchronous circuit. Another asynchronous
architecture was proposed in [112]. This architecture is designed specifically for
dataflow applications. Its logic block is similar to that of synchronous architecture,
along with it consists of units such as split unit which enables conditional forwarding
of data and a merge unit that allows for conditional selection of data from different
sources. An alternative to fully asynchronous design is a globally asynchronous,
locally synchronous approach (GALS). This approach is used by [69] where authors
have introduced a level of hierarchy into the FPGA architecture. Standard hard or
soft synchronous logic blocks are grouped together to form large synchronous blocks
and communication between these blocks is done asynchronously. More recently,
authors in [131] have applied the GALS approach on Network on Chip architectures
to improve the performance, energy consumption and the yield of future architectures
in a synergistic manner.

It is clear that, despite each architecture offering its own benefits, a number of
architectural questions remain unresolved for asynchronous FPGAs. Many architec-
tures rely on logic blocks similar to those used for synchronous designs [57, 69] and,
therefore, the same architectural issues such as LUT size, cluster size, and routing
topology must be investigated. In addition to those questions, asynchronous FPGAs
also add the challenge of determining the appropriate synchronization methodology.

2.7 Summary and Conclusion

In this chapter initially a brief introduction of traditional logic and routing architec-
tures of FPGAs is presented. Later, different steps involved in the FPGA design flow
are detailed. Finally various approaches that have been employed to reduce few dis-
advantages of FPGAs and ASICs, with or without compromising their major benefits
are described. Figure 2.28 presents a rough comparison of different solutions used
to reduce the drawbacks of FPGAs and ASICs. The remaining chapters of this book
will focus on the exploration of tree-based FPGA architectures using hard-blocks,
tree-based application specific Inflexible FPGAs (ASIF), and their automatic layout
generation methods.

This book presents new environment for the exploration of tree-based hetero-
geneous FPGAs. This environment is used to explore different architecture tech-
niques for tree-based heterogeneous FPGA architecture. This book also presents an
optimized environment for mesh-based heterogeneous FPGA. Further, the environ-
ments of two architectures are evaluated through the experimental results that are
obtained by mapping a number of heterogeneous benchmarks on the two architec-
tures.

Altera [11] has proposed a new idea to prototype, test, and even ship initial few
designs on an FPGA, later the FPGA based design can be migrated to Structured-
ASIC (known as HardCopy). However, migration of an FPGA-based product to
Structured-ASIC supports only a single application design. An ASIF retains this

48 2 FPGA Architectures: An Overview

Fig. 2.28 Comparison of different solutions used to reduce ASIC and FPGA drawbacks

property, and can be a possible future extension for the migration of FPGA-based
applications to Structured-ASIC. Thus when an FPGA-based product is in the final
phase of its development cycle, and if the set of circuits to be mapped on the FPGA are
known, the FPGA can be reduced to an ASIF for the given set of application designs.
This book presents a new tree-based ASIF and a detailed comparison of tree-based
ASIF is performed with mesh-based ASIF. This book also presents automatic layout
generation techniques for domain-specific FPGA and ASIF architectures.

	2 FPGA Architectures: An Overview
	2.1 Introduction to FPGAs
	2.2 Programming Technologies
	2.2.1 SRAM-Based Programming Technology
	2.2.2 Flash Programming Technology
	2.2.3 Anti-fuse Programming Technology

	2.3 Configurable Logic Block
	2.4 FPGA Routing Architectures
	2.4.1 Island-Style Routing Architecture
	2.4.2 Hierarchical Routing Architecture

	2.5 Software Flow
	2.5.1 Logic Synthesis
	2.5.2 Technology Mapping
	2.5.3 Clustering/Packing
	2.5.4 Placement
	2.5.5 Routing
	2.5.6 Timing Analysis
	2.5.7 Bitstream Generation

	2.6 Research Trends in Reconfigurable Architectures
	2.6.1 Heterogeneous FPGA Architectures
	2.6.2 FPGAs to Structured Architectures
	2.6.3 Configurable ASIC Cores
	2.6.4 Processors Inside FPGAs
	2.6.5 Application Specific FPGAs
	2.6.6 Time-Multiplexed FPGAs
	2.6.7 Asynchronous FPGA Architecture

	2.7 Summary and Conclusion

