
Chapter 1
Introduction

1.1 Background

Field Programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that can
be electrically programmed to become almost any kind of digital circuit or system.
First modern era FPGA was introduced almost two and a half decades ago. That
FPGA contained very small number of logic blocks and I/Os. Since then, FPGAs
have witnessed an enormous expansion both in terms of capacity and market. They
have come a long way from the devices that were once considered only as glue
logic to the devices that can now implement complete applications. FPGAs are now
widely used for implementing digital circuits in a wide variety of markets including
telecommunications, automotive systems and consumer electronics.

FPGAs consist of an array of blocks of potentially different types, including gen-
eral purpose logic blocks and specific purpose hard blocks like memory and multiplier
blocks. Among these blocks, general purpose logic blocks are programmable and
along with specific purpose hard blocks they are surrounded by a programmable rout-
ing fabric that allows these blocks to be programmably interconnected. The array of
blocks along with routing fabric is surrounded by programmable input/output blocks
that connect the chip to the outside world. The “programmable” term in FPGA
indicates that virtually any hardware function can be programmed into it after its
fabrication. This customization is realized with the help of programming technol-
ogy, which is a method that changes the behavior of the chip in the field after its
fabrication.

FPGAs rely on an underlying programming technology that is used to control
the programmable switches that give FPGAs their programmability. There are a
number of programming technologies and their differences have a significant impact
on programmable logic architecture. Earlier programmable logic devices used very
small fuses as their programming technology [55]. However, later this programmable
technology was replaced by now widely used static memory based programming
technology. Most commercial vendors [76, 126] use Static Random Access Memory
(SRAM) based programming technology because of its easy re-programmability and

U. Farooq et al., Tree-Based Heterogeneous FPGA Architectures, 1
DOI: 10.1007/978-1-4614-3594-5_1,
© Springer Science+Business Media New York 2012

2 1 Introduction

the use of standard CMOS process technology. Although, some other programming
technologies like flash [2] and anti-fuse [23] are both smaller in area and are non-
volatile, the use of standard CMOS manufacturing process makes the SRAM-based
programming technology dominating. As a result SRAM-based FPGAs can use the
latest CMOS technology and therefore benefit from increased integration, higher
speed and lower dynamic power consumption of new process with smaller geometry.
Primarily, in an FPGA, SRAM cells are used to program multiplexors that steer the
interconnect of FPGAs. Further, they are also used to store the data in general purpose
logic blocks also termed as Configurable Logic Blocks (CLBs) that are typically used
in SRAM based FPGAs to implement logic functions.

The flexibility and reprogrammability of FPGAs leads to lower Non-Recurring
Engineering (NRE) cost and faster time to market than more customized approaches
such as Application Specific Integrated Circuit (ASIC) design. The pre-fabricated
and programmable nature of FPGAs provides digital circuit designers access to the
benefits of latest process technology. In case of custom design, however, significant
time and money must be spent on ever-increasing complex issues associated with
design and fabrication using latest custom VLSI process technology. On contrary,
FPGA-based design cycle time and NRE cost is much lower than full-custom or
standard-cell based ASIC layouts.

FPGAs pay for these advantages, however, with some significant disadvantages.
Compared with the non-programmable devices, FPGAs have higher area, lower per-
formance and higher power consumption. The large area gap affects the costs, and
also limits the size of the designs that can be implemented on FPGAs. The loss in
performance also drives up costs as more parallelism and hence greater area may
be needed to achieve a performance target. Also it simply may not be possible to
achieve the desired performance on an FPGA. Similarly, higher power consumption
often limits FPGAs from markets requiring high efficiency in terms of power con-
sumption. Together, this area, performance and power gap limits the applicability of
FPGAs when area, speed and/or power requirements of an application are not met.
Authors in [60] have reported that FPGAs are 20–35 times larger, 3–4 times slower
and 7–14 times more power consuming than ASICs. As a result of this large area,
performance and power gap between FPGAs and ASICs, FPGAs become unsuitable
for some applications. To address this limitation, a range of alternatives to FPGAs
exist.

The primary alternative to an FPGA is an ASIC that has speed, power and area
advantages over an FPGA. However, compared to FPGAs, ASICs have certain dis-
advantages in the form of higher non-recurring engineering (NRE) cost, longer man-
ufacturing time and increasingly complicated design process. While an ASIC imple-
mentation offers area, performance and power gains, the difficulties associated to their
design process have led to the development of devices that lie in between FPGAs
and ASICs. These devices are termed as Structured-ASICs. Structured-ASICs can
cut the NRE cost of ASICs by more than 90% while speeding up significantly their
time to market [125]. Structured-ASICs contain array of optimized elements which
implement a desired functionality by making changes to few upper mask layers. The
density and performance of a Structured-ASIC is directly related to the number of

1.1 Background 3

Fig. 1.1 Comparison of different platforms used for implementing digital applications

mask layers that are available for customization. Structured-ASICs are explored or
manufactured by several companies [41, 91, 103, 125]. Although Structured-ASICs
give lower NRE cost as compared to the standard cell ASICs, their overall efficiency
is not as good as that of ASICs and additional cost of an ASIC implementation is not
always prohibitive.

FPGA vendors have also started giving provision to migrate FPGA based appli-
cation to Structured-ASIC. In this regard, Altera has proposed a clean migration
methodology [98] that ensures equivalence verification between FPGA and its
Structured-ASIC (known as HardCopy [56]). However, migration of an FPGA based
application to HardCopy can execute only a single circuit. An Application Specific
Inflexible FPGA (ASIF) [93], on the other hand, comprises of optimized logic and
routing resources like Structured-ASIC but retains enough flexibility to implement a
set of pre-determined applications that operate at mutually exclusive times. Contrary
to Structured-ASIC which is basically a modified form of ASIC and which is capable
of implementing only one application, an ASIF is a modified form of an FPGA and it
can implement a set of application for whom it is designed. However, unlike FPGAs
that are generalized in nature, an ASIF contains more customized logic and routing
resources and it has only enough flexibility that is required to implement a pre-
determined set of applications. Figure 1.1 presents a rough comparison of different
platforms that can be used for implementing digital applications.

1.2 Book Motivation and Contributions

In general, the overall efficiency of an FPGA is in inverse relation with its flexi-
bility i.e. improvement in one aspect causes a deterioration in the other and vice
versa. The main theme of this work is to remedy the drawbacks that are associ-
ated with FPGAs with/without compromising their advantages. For this purpose, we
explore and optimize a relatively new and unexplored tree-based (hierarchical) archi-
tecture along with an established and well investigated mesh-based (island-style)
architecture. Although the two architectures comprise of similar logic and routing
resources, it is the arrangement of these resources that converts them into altogether
different architectures exhibiting different area, performance and power results. In a

4 1 Introduction

tree-based architecture, logic resources are arranged in clusters and these clusters
are connected to each other recursively to form a hierarchical structure. On the other
hand, logic resources in a mesh-based architecture are arranged in an island-style
and these resources are connected to each other using uniform routing resources that
surround them. In order to explore the two architectures, a new exploration envi-
ronment for tree-based architecture and an optimized, enhanced environment for
mesh-based architecture are used. The two environments are based on a mixture of
generalized and specifically developed tools for mapping different applications on
the two architectures.

While exploring and optimizing two architectures, our main emphasis is on the
area optimization; performance and power optimization are not performed in this
work. Area improvement generally implies smaller architectures which result in an
improvement both in performance and power consumption. In order to improve the
area of the two FPGA architectures, following two broad techniques are employed:

1. Improve the utilization of logic resources of the architecture.
2. Improve the utilization of routing resources of the architecture.

Classic FPGA architectures used only a single type of block that provided the basic
logic capability for the implementation of almost any kind of application. Although
the use of logic blocks makes FPGAs a good alternative for almost any kind of
application, it requires a large amount of logic and routing resources. Now a days, a
lot of DSP and arithmetic intensive applications use memories, adders and multiply
operations. When these applications are mapped on FPGAs, considerable amount
of logic and routing resources can be saved in FPGAs by mapping such operations
directly on the specific hard-blocks that are embedded in the architecture along with
logic blocks. By embedding hard-blocks directly into the architecture, the overall
size of the architecture can be reduced which eventually results in improved area
and performance results. The types and quantities of hard-blocks in an FPGA can be
decided from the application domain for which an FPGA is required. In this work,
we embed hard-blocks in the two architectures under consideration to reduce the
overall architecture size and hence improve the utilization of logic resources of the
architecture.

The area of an FPGA can be further decreased by optimizing the routing network
of an FPGA for a given set of application circuits. By optimization, here, we mean that
routing network has a reduced flexibility and it can implement only a pre-determined
set of applications. Such a reduced FPGA is called here as an Application Specific
Inflexible FPGA (ASIF). An ASIF can be either used in the same scenario as that
of Structured-ASIC where a product is initially designed and tested on an FPGA
and later it is migrated to an ASIF for high volume production. However, the second
and major application of ASIF can be a product that performs different tasks at
different times. Such a product may comprise of a video application, a multi-standard
radio application, or any set of DSP functionalities required at different times. For
example, in the case of a camera different encoders and decoders are required for
video and image processing. Further, various compression techniques can be used
both for images (e.g. JPEG and PNG etc) and video recording (e.g. MPEG-4 and

1.2 Book Motivation and Contributions 5

H.264). So different digital circuits can be designed and tested on an FPGA and
later, for high volume production, the FPGA can be reduced to an ASIF for the given
application circuits. So in this work we improve the area of the FPGA architectures by
first efficiently incorporating hard-blocks in them and then optimizing their routing
networks for a particular set of applications.

The major contributions of this book are as follows:

1.2.1 Exploration Environment for Heterogeneous
Tree-Based FPGA Architectures

This work presents a new exploration environment for tree-based heterogeneous
FPGA architecture. This environment is generalized and flexible in nature and can
be used to explore different architectural topologies with a varying range of logic
blocks and hard-blocks. Further, this work also presents an exploration environ-
ment for mesh-based heterogeneous FPGA architectures. The environments of two
architectures are used to explore and evaluate a number of techniques for both archi-
tectures.

The exploration and evaluation of two architectures start with respective archi-
tecture definition where separate architecture description mechanisms are used to
select different architecture parameters for the two architectures under considera-
tion. Once the architectures are defined, separate software CAD flows are then used
to map application circuits on the two architectures. Each software flow uses appro-
priate techniques to optimize respective architecture. Although, the main objective
of the book is not to establish the supremacy of one architecture over the other,
however, a detailed comparison between mesh-based and tree-based architectures is
presented using 21 heterogeneous benchmarks. Comparison results reveal that tree-
based heterogeneous FPGA architecture gives better overall results than mesh-based
heterogeneous FPGA architecture.

1.2.2 Exploration of Tree-Based ASIF Architecture

An Application Specific Inflexible FPGA (ASIF) is a modified form of FPGA with
reduced flexibility that can implement a set of application circuits which will oper-
ate at mutually exclusive times. These circuits are efficiently placed and routed on
an FPGA to minimize total routing switches required by the architecture. Existing
placement and routing algorithms are modified to efficiently place and route circuits
on the architecture. Later, all unused routing switches are removed from the FPGA
to generate an ASIF.

In this work a new tree-based homogeneous ASIF is presented. Exploration of
tree-based ASIF is performed using a set of 16 benchmarks and experimental results

6 1 Introduction

have shown that tree-based ASIF is significantly smaller than an equivalent tree-
based FPGA which is required to map any of these circuits. Further a comparison
between mesh-based and tree-based ASIFs shows that tree-based ASIF gives better
area results when compared to an equivalent mesh-based ASIF. The concept of ASIF
is also extended to heterogeneous architectures where a comparison between tree-
based heterogeneous ASIF with an equivalent tree-based heterogeneous FPGA is
presented. Further, the comparison between mesh-based and tree-based ASIFs is
also presented. The VHDL models of homogeneous and heterogeneous ASIFs are
also generated using specifically developed VHDL model generator. Layout of the
VHDL model is later performed using Cadence Encounter with 130 nm 6-metal layer
CMOS process of ST Microelectronics.

1.3 Book Organization

The organization of this manuscript is as follows. Chapter 2 gives a detailed overview
about the basic FPGA architecture and their associated design flow. Later in the
chapter some current trends in the reconfigurable computing and in the FPGAs are
presented also. Chapter 3 presents a detailed overview of the basic exploration envi-
ronments of homogeneous mesh-based and tree-based architectures that are used
in this work. This chapter also presents some new comparison results of the two
architectures. Chapter 4 presents new exploration environment of tree-based hetero-
geneous FPGA architecture. An exploration environment for mesh-based heteroge-
neous FPGA architecture is also presented in this chapter. The two architectures
are explored using 21 benchmarks which, based on their communication trends, are
further divided into three distinct sets. Different techniques are explored using the
exploration environments of two architectures and results obtained through exper-
imentation are used for comparison between two architectures. Chapter 5 presents
a new tree-based ASIF where four ASIF generation techniques are explored for a
set of 16 MCNC [108] benchmarks and a comparison between tree-based ASIF and
an equivalent tree-based FPGA is also presented. Later, for tree-based architecture,
the effect of lookup table and arity size is explored for the most efficient technique
among the four explored techniques. Further a detailed comparison between mesh-
based and tree-based ASIFs is performed and finally a quality analysis of tree-based
ASIF and a quality comparison between mesh-based and tree-based ASIFs is per-
formed. Chapter 6 presents the extension of tree-based homogeneous ASIF to het-
erogeneous domain. Four ASIF generation techniques are explored for tree-based
heterogeneous ASIF using 17 benchmarks and a comparison between tree-based
ASIF and equivalent tree-based FPGA is also presented. Later experiments are per-
formed to determine the effect of LUT and arity size on tree-based heterogeneous
ASIF. After that, a comparison between mesh-based and tree-based ASIFs is per-
formed and then a quality analysis of tree-based heterogeneous ASIF and a quality
comparison between heterogeneous mesh-based and tree-based ASIFs is performed.
Chapter 7 concludes this work and presents some future work.

http://dx.doi.org/10.1007/978-1-4614-3594-5_2
http://dx.doi.org/10.1007/978-1-4614-3594-5_3
http://dx.doi.org/10.1007/978-1-4614-3594-5_4
http://dx.doi.org/10.1007/978-1-4614-3594-5_5
http://dx.doi.org/10.1007/978-1-4614-3594-5_6
http://dx.doi.org/10.1007/978-1-4614-3594-5_7

	1 Introduction
	1.1 Background
	1.2 Book Motivation and Contributions
	1.2.1 Exploration Environment for Heterogeneous Tree-Based FPGA Architectures
	1.2.2 Exploration of Tree-Based ASIF Architecture

	1.3 Book Organization

