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Medicine is a science of uncertainty and an art of probability.
Sir William Osler

Discussion of Issues

What Is Evidence-Based Imaging?

The standard medical education in Western med-

icine has emphasized skills and knowledge

learned from experts, particularly those encoun-

tered in the course of postgraduate medical edu-

cation, and through national publications and

meetings. This reliance on experts, referred to

by Dr. Paul Gerber of Dartmouth Medical School

as “eminence-based medicine” [1], is based on

the construct that the individual practitioner, par-

ticularly a specialist devoting extensive time to

a given discipline, can arrive at the best approach

to a problem through his or her experience. The

practitioner builds up an experience base over

years and digests information from national

experts who have a greater base of experience

due to their focus in a particular area. The

evidence-based imaging (EBI) paradigm, in con-

tradistinction, is based on the precept that a single

practitioner cannot through experience alone

arrive at the best course of action. Assessment of

appropriate medical care should instead be derived

through an evidence-based process. The role of the

practitioner, then, is not simply to accept informa-

tion from an expert but rather to assimilate and

critically assess the research evidence that exists in

the literature to guide a clinical decision [2–4].

Fundamental to the adoption of the principles

of EBI is the understanding that medical care is

not optimal. The life expectancy at birth in the

United States for males and females in 2005 was

75 and 80 years, respectively (Table 1.1). This is

slightly lower than the life expectancies in other

industrialized nations such as the United

Kingdom and Australia (Table 1.1). In fact, the

World Health Organization ranks the USA 50th

in life expectancy and 72nd in overall health. The

United States spent at least 15.2 % of the gross

domestic product (GDP) in order to achieve this

life expectancy. This was significantly more than

the United Kingdom and Australia, which spent

about half that (Table 1.1). In addition, the US per

capita health expenditure was $6,096, which was

twice the expenditure in the United Kingdom or

Australia. In short, the United States spends sig-

nificantly more money and resources than other

industrialized countries to achieve a similar or

slightly worse outcome in life expectancy. This

implies that a significant amount of resources is

wasted in the US health-care system. In 2007, the

United States spent $2.3 trillion in health care or

16 % of its GDP. By 2016, the US health percent

of the GDP is expected to grow to 20 % or

$4.2 trillion [5]. Recent estimates prepared by

the Commonwealth Fund Commission (USA)

on a High Performance Health System indicate

that $1.5 trillion could be saved over a 10-year

period if a combination of options, including

evidence-based medicine and universal health

insurance, was adopted [6].

Simultaneous with the increase in health-care

costs has been an explosion in available medical

information. The National Library of Medicine

PubMed search engine now lists over 18 million

citations. Practitioners cannot maintain familiar-

ity with even a minute subset of this literature

without a method of filtering out publications that

lack either relevance or appropriate methodolog-

ical quality. EBI is a promising method of iden-

tifying appropriate information to guide practice

and to improve the efficiency and effectiveness of

imaging.

Evidence-based imaging is defined as medical

decision making based on clinical integration of

the best medical imaging research evidence with

the physician’s expertise and with patient’s

expectations [2–4]. The best medical imaging

research evidence often comes from the basic

sciences of medicine. In EBI, however, the

basic science knowledge has been translated

into patient-centered clinical research, which

determines the accuracy and role of diagnostic

and therapeutic imaging in patient care [3]. New

research may make current diagnostic tests obso-

lete and provide evidence that new tests are more
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accurate, less invasive, safer, and less costly [3].

The physician’s expertise entails the ability to use

the referring physician’s clinical skills and past

experience to rapidly identify individuals who

will benefit from the diagnostic information of

an imaging test [4]. Patient’s expectations are

important because each individual has values

and preferences that should be integrated into

the clinical decision making [3]. When these

three components of medicine come together,

clinicians, imagers and patients form a diagnostic

team, which will optimize clinical outcomes and

quality of life for our patients.

The Evidence-Based Imaging Process

The EBI process involves a series of steps:

(a) formulation of the clinical question, (b) iden-

tification of the medical literature, (c) assessment

of the literature, (d) types of economic analyses in

medicine, (e) summary of the evidence, and

(f) application of the evidence to derive an appro-

priate clinical action. This book is designed to

bring the EBI process to the clinician and

imager in a user-friendly way. This introductory

chapter details each of the steps in the EBI pro-

cess. Chapter 2, “Assessing the Imaging Litera-

ture: Understanding Error and Bias” discusses

how to critically assess the literature. The rest of

the book makes available to practitioners the EBI

approach to important neuroimaging issues. Each

chapter addresses common disorders encountered

by the neuroradiologist evaluating the brain,

spine, and head and neck. Relevant clinical ques-

tions are delineated, and then each chapter dis-

cusses the results of the critical analysis of the

identified literature. Finally, we provide simple

recommendations for the various clinical ques-

tions, including the strength of the evidence that

supports these recommendations.

(a) Formulating the Clinical Question

The first step in the EBI process is formu-

lation of the clinical question. The entire pro-

cess of EBI arises from a question that is

asked in the context of clinical practice.

However, often formulating a question for

the EBI approach can be more challenging

than one would believe intuitively. To be

approachable by the EBI format, a question

must be specific to a clinical situation,

a patient group, and an outcome or action.

For example, it would not be appropriate to

simply ask which imaging technique is

better – computed tomography (CT) or radi-

ography. The question must be refined to

include the particular patient population and

the action that the imaging will be used to

direct. One can refine the question to include

a particular population (which imaging tech-

nique is better in pediatric victims of high-

energy blunt trauma) and to guide a particular

action or decision (to exclude the presence of

unstable cervical spine fracture). The full EBI

question then becomes, in pediatric victims

of high-energy blunt trauma, which imaging

modality is preferred, CT or radiography, to

exclude the presence of unstable cervical

Table 1.1 Life expectancy

and health-care spending in

three developed countries

Life expectancy at

birth (2009)
Percentage of

GDP in health

care (2008) (%)

Per capita health

expenditure (2008)Male Female

United States 75.7 80.6 16.4 $7,720

United Kingdom 78.3 82.5 8.8 $3,281

Australia 79.3 83.9 8.7 $3,445

Source: Organization for Economic Cooperation and Development: http://stats.oecd.

org/Index.aspx?DataSetCode¼HEALTH

Reprinted, with revisions, with kind permission of Springer Science+Business Media.

Medina LS, Blackmore CC, Applegate KE. Principles of evidence-based imaging.

In: Medina LS, Applegate KE, Blackmore CC editors. Evidence-based imaging

in pediatrics: optimizing imaging in pediatric patient care. New York: Springer

Science+Business Media; 2010.

GDP gross domestic product
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spine fracture? This book addresses questions

that commonly arise when employing an EBI

approach for conditions encountered by neu-

roradiologists. These questions and issues are

detailed at the start of each chapter. One

popular method used to teach how to develop

a good clinical question is called the “PICO”

(Patient, Intervention, Comparison, Out-

come) format. This method provides struc-

ture to formulate the necessary elements for

a good clinical question that includes infor-

mation about the patient, the problem to be

solved, the intervention (such as a diagnostic

test) and its comparison intervention (perhaps

a newer diagnostic test), and the outcome of

interest (e.g., what the patient wants, or is

concerned about).

(b) Identifying the Medical Literature

The process of EBI requires timely access

to the relevant medical literature to answer

the question. Fortunately, massive on-line

bibliographical references such as PubMed,

Embase, Cochrane, and the Web of Science

databases are available. In general, titles,

indexing terms, abstracts, and often the com-

plete text of much of the world’s medical

literature are available through these on-line

sources. Also, medical librarians are a poten-

tial resource to aid identification of the

relevant imaging literature. A limitation of

today’s literature data sources is that often

too much information is available and too

many potential resources are identified in

a literature search. There are currently over

50 radiology journals, and imaging research

is also frequently published in journals from

other medical subspecialties. We are often

confronted with more literature and informa-

tion than we can process. The greater chal-

lenge is to sift through the literature that is

identified to select that which is appropriate.

(c) Assessing the Literature

To incorporate evidence into practice, the

clinician must be able to understand the

published literature and to critically evaluate

the strength of the evidence. In this introduc-

tory chapter on the process of EBI, we focus

on discussing types of research studies.

Chapter 2, “Assessing the Imaging Litera-

ture: Understanding Error and Bias” is

a detailed discussion of the issues in deter-

mining the validity and reliability of the

reported results.

1. What Are the Types of Clinical Studies?

An initial assessment of the literature

begins with determination of the type of

clinical study: descriptive, analytical, or

experimental [7]. Descriptive studies are

the most rudimentary, as they only sum-

marize disease processes as seen by imag-

ing, or discuss how an imaging modality

can be used to create images. Descriptive

studies include case reports and case

series. Although they may provide impor-

tant information that leads to further

investigation, descriptive studies are not

usually the basis for EBI.

Analytic or observational studies

include cohort, case–control, and cross-

sectional studies (Table 1.2). Cohort stud-

ies are defined by risk factor status, and

case–control studies consist of groups

defined by disease status [8]. Both

case–control and cohort studies may be

used to define the association between an

intervention, such as an imaging test, and

patient outcome [9]. In a cross-sectional

(prevalence) study, the researcher makes

all of his measurements on a single occa-

sion. The investigator draws a sample from

the population (i.e., headache in 15–45-

year-old females) and determines distribu-

tion of variables within that sample [7]. The

structure of a cross-sectional study is simi-

lar to that of a cohort study except that all

pertinent measurements (i.e., number of

head CT and MRI examinations) are

made at once, without a follow-up period.

Cross-sectional studies can be used as

a major source for health and habits of

different populations and countries, provid-

ing estimates of such parameters as the

prevalence of stroke, brain tumors, and

congenital anomalies [7, 10].

In experimental studies or clinical tri-

als, a specific intervention is performed
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and the effect of the intervention is mea-

sured by using a control group (Table 1.2).

The control group may be tested with a

different diagnostic test and treated with

a placebo or an alternative mode of ther-

apy [7, 11]. Clinical trials are epidemio-

logic designs that can provide data of high

quality that resemble the controlled exper-

iments done by basic science investigators

[8]. For example, clinical trials may be

used to assess new diagnostic tests (e.g.,

CT perfusion imaging for stroke diagnosis

and management) or new interventional

procedures (e.g., catheter embolization

for cerebral aneurysms).

Studies are also traditionally divided

into retrospective and prospective

(Table 1.2) [7, 11]. These terms refer

more to the way the data are gathered

than to the specific type of study design.

In retrospective studies, the events of

interest have occurred before study onset.

Retrospective studies are usually done to

assess rare disorders, for pilot studies, and

when prospective investigations are not

possible. If the disease process is consid-

ered rare, retrospective studies facilitate

the collection of enough subjects to have

meaningful data. For a pilot project, retro-

spective studies facilitate the collection of

preliminary data that can be used to

improve the study design in future pro-

spective studies. The major drawback of

a retrospective study is incomplete data

acquisition and resultant bias [10].

Case–control studies are usually retro-

spective because the outcome or disease

status needs to have occurred in order to

form the comparison groups. For example,

in a case–control study, subjects in the

case group (patients with hemorrhagic

stroke) are compared with subjects in

a control group (nonhemorrhagic stroke)

to determine factors associated with hem-

orrhage (e.g., hypertension, duration of

symptoms, presence of prior neurologic

deficit) [10].

In prospective studies, the event of

interest transpires after study onset. Pro-

spective studies, therefore, are the pre-

ferred mode of study design, as they

facilitate better control of the design

(accounting for potential bias) and the

quality of the data acquired [7]. Prospec-

tive studies, even large studies, can be

performed efficiently and in a timely fash-

ion if done on common diseases at major

institutions, as multicenter trials with ade-

quate study populations [12]. The major

drawback of a prospective study is the

need to make sure that the institution and

personnel comply with strict rules

concerning consents, protocols, and data

acquisition [11]. Persistence and dogged

determination are crucial to completing a

prospective study. Cohort studies and clin-

ical trials are usually prospective. For

example, a cohort study could be

performed in children with sickle-cell dis-

ease who are poorly compliant with their

transfusion therapy in which the risk factor

of positive transcranial Doppler studies is

correlated with neurocognitive complica-

tions, as the patients are followed prospec-

tively over time [10].

The strongest study design is the pro-

spective randomized, blinded clinical trial

(Table 1.2) [7]. The randomization pro-

cess helps to distribute known and

Table 1.2 Study design

Prospective

follow-up

Randomization

of subjects Controls

Case report or

series

No No No

Cross-sectional

study

No No Yes

Case–control

study

No No Yes

Cohort study Yes/no No Yes

Randomized

controlled trial

Yes Yes Yes

Reprinted with the kind permission of Springer Science

+Business Media from Medina LS, Blackmore CC.

Evidence-based imaging: optimizing imaging in patient

care. New York: Springer Science+Business Media;

2006
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unknown confounding factors, and

blinding helps to prevent observer bias

from affecting the results [7, 8]. However,

there are often circumstances in which it is

not ethical or practical to randomize and

follow patients prospectively. This is par-

ticularly true in rare conditions and in

studies to determine causes or predictors

of a particular condition [9]. Finally, ran-

domized clinical trials are expensive and

may require many years to conduct. Not

surprisingly, randomized clinical trials are

uncommon in radiology. The evidence

that supports much of radiology practice

is derived from cohort and other observa-

tional studies. More randomized clinical

trials are necessary in radiology to provide

sound data to use for EBI practice [3].

Also, more “outcomes-based studies” are

needed in radiology to generate more rel-

evant EBI data.

2. What Is the Diagnostic Performance of

a Test: Sensitivity, Specificity, Positive

and Negative Predictive Values, and

Receiver Operating Characteristic Curve?

Defining the presence or absence of

an outcome (i.e., disease and nondisease)

is based on a standard of reference

(Table 1.3). While a perfect standard of

reference or so-called gold standard can

never be obtained, careful attention should

be paid to the selection of the standard that

should be widely believed to offer the best

approximation to the truth [13].

In evaluating diagnostic tests, we rely

on the statistical calculations of sensitivity

and specificity (see Appendix 1). Sensitiv-

ity and specificity of a diagnostic test are

based on the two-way (2 � 2) table

(Table 1.3). Sensitivity refers to the pro-

portion of subjects with the disease who

have a positive test and is referred to as the

true positive rate (Fig. 1.1a, b). Sensitivity,

therefore, indicates how well a test iden-

tifies the subjects with disease [7, 14].

Specificity is defined as the proportion

of subjects without the disease who have

a negative index test (Fig. 1.1a,b) and is

referred to as the true negative rate. Spec-

ificity, therefore, indicates how well a test

identifies the subjects with no disease

[7, 11]. It is important to note that the

sensitivity and specificity are characteris-

tics of the test being evaluated and are

therefore usually independent of the prev-

alence (proportion of individuals in a

population who have disease at a specific

instant) because the sensitivity only deals

with the diseased subjects, whereas the

specificity only deals with the nondiseased

subjects. However, sensitivity and speci-

ficity both depend on a threshold point for

considering a test positive and hence may

change according to which threshold is

selected in the study [11, 14, 15]

(Fig. 1.1a). Excellent diagnostic tests

have high values (close to 1.0) for both

sensitivity and specificity. Given exactly

the same diagnostic test, and exactly the

same subjects confirmed with the same

reference test, the sensitivity with a low

threshold is greater than the sensitivity

with a high threshold. Conversely, the

specificity with a low threshold is less

than the specificity with a high threshold

(Fig. 1.1b) [14, 15].

The positive predictive value is defined

as the probability that a patient will have

a disease given that the patient’s test is

positive. In other words, when a group of

patients test positive, we want to know

how frequently they will have the disease.

The formula for the positive predictive

value (PPV) is provided in the table in

Appendix 1. Similarly, the negative

Table 1.3 Two-way table of diagnostic testing

Disease (gold standard)

Test result Present Absent

Positive a (TP) b (FP)

Negative c (FN) d (TN)

Reprinted with the kind permission of Springer Science+

Business Media from Medina LS, Blackmore CC.

Evidence-based imaging: optimizing imaging in patient

care. New York: Springer Science+Business Media; 2006.

FN false negative, FP false positive, TN true negative,

TP true positive

8 L.S. Medina et al.



predictive value (NPV) refers to the prob-

ability that a group of patients that test

negative for a disease or condition will

actually not have the disease. It is impor-

tant to understand that while sensitivity

and specificity are relatively independent

of disease prevalence, the PPV and NPV

are not. Examples 1 and 2 (Appendix 2)

provide a demonstration ofwhat happens to

the PPV and NPV with a change in disease

prevalence. When there is concern about

large prevalence effects, the likelihood

ratio can be used to estimate the posttest

probability of disease. This issue is

discussed in the next section.

The effect of threshold on the ability of

a test to discriminate between disease and

nondisease can be measured by a receiver

operating characteristic (ROC) curve

[11, 15]. The ROC curve is used to indi-

cate the trade-offs between sensitivity and

specificity for a particular diagnostic test

and hence describes the discrimination

capacity of that test. An ROC graph

shows the relationship between sensitivity

(y axis) and 1� specificity (x axis) plotted
for various cutoff points. If the threshold

for sensitivity and specificity is varied, an

ROC curve can be generated. The diag-

nostic performance of a test can be esti-

mated by the area under the ROC curve.

The steeper the ROC curve, the greater the

area and the better the discrimination of

the test (Fig. 1.2a–c). A test with perfect

discrimination has an area of 1.0, whereas

a test with only random discrimination has

an area of 0.5 (Fig. 1.2a–c). The area under

the ROC curve usually determines the

overall diagnostic performance of the

test independent of the threshold selected

[11, 15]. The ROC curve is threshold inde-

pendent because it is generated by using

varied thresholds of sensitivity and

specificity. Therefore, when evaluating

a new imaging test, in addition to the sen-

sitivity and specificity, an ROC curve

analysis should be done so that the thresh-

old-dependent and threshold-independent

diagnostic performance can be fully deter-

mined [10].

3. What Are Cost-Effectiveness and

Cost–Utility Studies?

Cost-effectiveness analysis (CEA) is a

scientific technique used to assess alterna-

tive health-care strategies on both cost and

effectiveness [16–18]. It can be used to

develop clinical and imaging practice

guidelines and to set health policy [19].

However, it is not designed to be the final

answer to the decision-making process;

rather, it provides a detailed analysis of

the cost and outcome variables and how

they are affected by competing medical

and diagnostic choices.

Fig. 1.1 Test with a low (a) and high (b) threshold. The
sensitivity and specificity of a test change according to the

threshold selected; hence, these diagnostic performance

parameters are threshold dependent. Sensitivity with low

threshold (TPa/diseased patients) is greater than sensitiv-

ity with a higher threshold (TPb/diseased patients).

Specificity with a low threshold (TNa/nondiseased

patients) is less than specificity with a high threshold

(TNb/nondiseased patients). FN false negative, FP false

positive, TN true negative, TP true positive (Reprinted

with permission of the American Society of Neuroradiol-

ogy from Medina L. AJNR Am J Neuroradiol 1999;

20:1584–96)

1 Evidence-Based Imaging: Principles 9



Health dollars are limited regardless of

the country’s economic status. Hence,

medical decision makers must weigh the

benefits of a diagnostic test (or any inter-

vention) in relation to its cost. Health-care

resources should be allocated so the max-

imum health-care benefit for the entire

population is achieved [10]. Cost-

effectiveness analysis is an important

tool to address health cost-outcome issues

in a cost-conscious society. Countries

such as Australia usually require robust

CEA before drugs are approved for

national use [10]. Health-care decisions

are often made from a “societal perspec-

tive,” one that looks at a group benefit but

which may not result in individual benefit.

Unfortunately, the term cost-

effectiveness is often misused in the med-

ical literature [20]. To say that a diagnostic

test is truly cost-effective, a comprehen-

sive analysis of the entire short- and

long-term outcomes and costs needs to be

considered. Cost-effectiveness analysis is

a technique used to determine which of the

available tests or treatments are worth the

additional costs [21].

There are established guidelines for

conducting robust CEA. The US Public

Health Service formed a panel of experts

on cost-effectiveness in health and

medicine to create detailed standards for

cost-effectiveness analysis. The panel’s

recommendations were published as a

book in 1996 [21].

(d) Types of Economic Analyses in Medicine

There are four well-defined types of

economic evaluations in medicine: cost-

minimization studies, cost–benefit analyses,

cost-effectiveness analyses, and cost–utility

analyses. They are all commonly lumped

under the term cost-effectiveness analysis.

However, significant differences exist

among these different studies.

Cost-minimization analysis is a compari-

son of the cost of different health-care strat-

egies that are assumed to have identical or

similar effectiveness [16]. In medical prac-

tice, few diagnostic tests or treatments have

identical or similar effectiveness. Therefore,

relatively few articles have been published in

the literature with this type of study design

[22]. For example, a recent study demon-

strated that functional magnetic resonance

imaging (MRI) and the Wada test have sim-

ilar effectiveness for language lateralization,

but the latter is 3.7 times more costly than the

former [23].

Cost–benefit analysis (CBA) uses mone-

tary units such as dollars or euros to compare

the costs of a health intervention with its

health benefits [16]. It converts all benefits

to a cost equivalent and is commonly used

in the financial world where the cost and

benefits of multiple industries can be

changed to only monetary values. One

Fig. 1.2 The perfect test (a) has an area under the curve

(AUC) of 1. The useless test (b) has an AUC of 0.5.

The typical test (c) has an AUC between 0.5 and 1.

The greater the AUC (i.e., excellent > good > poor), the

better the diagnostic performance (Reprinted with

permission of the American Society of Neuroradiology

from Medina L. AJNR Am J Neuroradiol. 1999;20:

1584–96)

10 L.S. Medina et al.



method of converting health outcomes into

dollars is through a contingent valuation or

willingness-to-pay approach. Using this tech-

nique, subjects are asked how much money

they would be willing to spend to obtain, or

avoid, a health outcome. For example,

a study by Appel et al. [24] found that indi-

viduals would be willing to pay $50 for low-

osmolar contrast agents to decrease the

probability of side effects from intravenous

contrast. However, in general, health out-

comes and benefits are difficult to transform

to monetary units; hence, CBA has had lim-

ited acceptance and use in medicine and diag-

nostic imaging [16, 25].

Cost-effectiveness analysis (CEA) refers

to analyses that study both the effectiveness

and cost of competing diagnostic or treatment

strategies, where effectiveness is an objective

measure (e.g., intermediate outcome: number

of strokes detected; or long-term outcome:

life-years saved). Radiology CEAs often use

intermediate outcomes, such as lesion identi-

fied, length of stay, and number of avoidable

surgeries [16, 18]. However, ideally, long-

term outcomes such as life-years saved

(LYS) should be used [21]. By using LYS,

different health-care fields or interventions

can be compared. Given how few exist,

there is a need for more “outcome-based

studies” in radiology and the imaging

sciences.

Cost–utility analysis is similar to CEA

except that the effectiveness also accounts

for quality of life. Quality of life is measured

as utilities that are based on patient prefer-

ences [16]. The most commonly used utility

measurement is the quality-adjusted life year

(QALY). The rationale behind this concept is

that the QALY of excellent health is more

desirable than the same 1 year with substan-

tial morbidity. The QALY model uses pref-

erences with weight for each health state on

a scale from 0 to 1, where 0 is death and 1 is

perfect health. The utility score for each health

state is multiplied by the length of time the

patient spends in that specific health state

[16, 26]. For example, assume that a patient

with an untreated Chiari I malformation has a

utility of 0.8 and he spends 1 year in this health

state. The patient with the Chiari I malforma-

tion would have a 0.8 QALY in comparison

with his neighbor who has a perfect health and

hence a 1 QALY.

Cost–utility analysis incorporates the

patient’s subjective value of the risk, discom-

fort, and pain into the effectiveness mea-

surements of the different diagnostic or

therapeutic alternatives. Ideally, all medical

decisions should reflect the patient’s values

and priorities [26]. That is the explanation of

why cost–utility analysis is the preferred

method for evaluation of economic issues in

health [19, 21]. For example, in low-risk

newborns with intergluteal dimple suspected

of having occult spinal dysraphism, ultra-

sound was the most effective strategy with

an incremental cost-effectiveness ratio of

$55,100 per QALY. In intermediate-risk

newborns with low anorectal malformation,

however, MRI was more effective than ultra-

sound at an incremental cost-effectiveness of

$1,000 per QALY [27].

Assessment of Outcomes: The major chal-

lenge to cost–utility analysis is the quantifi-

cation of health or quality of life. One way to

quantify health is descriptive analyses. By

assessing what patients can and cannot do,

how they feel, their mental state, their func-

tional independence, their freedom from

pain, and any number of other facets of health

and well-being that are referred to as

domains, one can summarize their overall

health status. Instruments designed to mea-

sure these domains are called health status

instruments. A large number of health status

instruments exist, both general instruments,

such as the SF-36 [28], and instruments that

are specific to particular disease states, such as

the Roland scale for back pain. These various

scales enable the quantification of health ben-

efit. For example, Jarvik et al. [29] found no

significant difference in the Roland score

between patients randomized to MRI versus

radiography for low back pain, suggesting that

MRI was not worth the additional cost.
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Assessment of Cost: All forms of eco-

nomic analysis require assessment of cost.

However, assessment of cost in medical

care can be confusing, as the term cost is

used to refer to many different things. The

use of charges for any sort of cost estimation,

however, is inappropriate. Charges are arbi-

trary and have no meaningful use. Reim-

bursements, derived from Medicare and

other fee schedules, are useful as an estima-

tion of the amounts society pays for particular

health-care interventions. For an analysis

taken from the societal perspective, such

reimbursements may be most appropriate.

For analyses from the institutional perspec-

tive or in situations where there are no mean-

ingful Medicare reimbursements, assessment

of actual direct and overhead costs may be

appropriate [30].

Direct cost assessment centers on the

determination of the resources that are con-

sumed in the process of performing a given

imaging study, including fixed costs such as

equipment and variable costs such as labor

and supplies. Cost analysis often utilizes

activity-based costing and time motion

studies to determine the resources consumed

for a single intervention in the context of the

complex health-care delivery system.

Activity-based accounting is a type of

accounting that assigns costs to each resource

activity based on resource consumption,

decreasing the amount of indirect costs with

this method. Time and motion studies are

time-intensive observational methods used

to understand and improve work efficiency

in a process. Overhead, or indirect cost,
assessment includes the costs of buildings,

overall administration, taxes, and mainte-

nance that cannot be easily assigned to one

particular imaging study. Institutional cost

accounting systemsmay be used to determine

both the direct costs of an imaging study and

the amount of institutional overhead costs

that should be apportioned to that particular

test. For example, Medina et al. [31] studied

the total direct costs of the Wada test

($1,130.01 � $138.40) and of functional

MR imaging ($301.82 � $10.65) that were

significantly different (P < .001).

The cost of the Wada test was 3.7 times

higher than that of functional MR imaging.

(e) Summarizing the Data

The results of the EBI process are a sum-

mary of the literature on the topic, both quan-

titative and qualitative. Quantitative analysis

involves, at minimum, a descriptive summary

of the data and may include formal meta-
analysis, where there is sufficient reliably

acquired data. Qualitative analysis requires

an understanding of error, bias, and the sub-

tleties of experimental design that can affect

the quality of study results. Qualitative

assessment of the literature is covered in

detail in Chap. 2, “Assessing the Imaging

Literature: Understanding Error and Bias”;

this section focuses on meta-analysis and

the quantitative summary of data.

The goal of the EBI process is to produce

a single summary of all of the data on a

particular clinically relevant question. How-

ever, the underlying investigations on a

particular topic may be too dissimilar in

methods or study populations to allow for

a simple summary. In such cases, the user of

the EBI approach may have to rely on the

single study that most closely resembles the

clinical subjects upon whom the results are to

be applied or may be able only to reliably

estimate a range of possible values for

the data.

Often, there is abundant information avail-

able to answer an EBI question. Multiple

studies may be identified that provide meth-

odologically sound data. Therefore, some

method must be used to combine the results

of these studies in a summary statement.

Meta-analysis is the method of combining

results of multiple studies in a statistically

valid manner to determine a summary mea-

sure of accuracy or effectiveness [32, 33]. For

diagnostic studies, the summary estimate is

generally a summary sensitivity and specific-

ity, or a summary ROC curve.

The process of performing meta-analysis

parallels that of performing primary research.
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However, instead of individual subjects, the

meta-analysis is based on individual studies

of a particular question. The process of

selecting the studies for a meta-analysis is

as important as unbiased selection of subjects

for a primary investigation. Identification of

studies for meta-analysis employs the same

type of process as that for EBI described

above, employing Medline and other litera-

ture search engines. Critical information

from each of the selected studies is then

abstracted usually by more than one investi-

gator. For a meta-analysis of a diagnostic

accuracy study, the numbers of true positives,

false positives, true negatives, and false neg-

atives would be determined for each of the

eligible research publications. The results of

a meta-analysis are derived not just by simply

pooling the results of the individual studies

but instead by considering each individual

study as a data point and determining a sum-

mary estimate for accuracy based on each of

these individual investigations. There are

sophisticated statistical methods of combin-

ing such results [34].

Like all research, the value of a meta-

analysis is directly dependent on the validity

of each of the data points. In other words, the

quality of the meta-analysis can only be as

good as the quality of the research studies that

the meta-analysis summarizes. In general,

a meta-analysis cannot compensate for selec-

tion and other biases in the primary data. If

the studies included in a meta-analysis are

different in some way, or are subject to

some bias, then the results may be too hetero-

geneous to combine in a single summary

measure. Exploration for such heterogeneity

is an important component of a meta-

analysis.

The ideal for EBI is that all practice be

based on the information from one or more

well-performed meta-analyses. However,

there is often too little data or too much het-

erogeneity to support a formal meta-analysis.

Understanding the hierarchy of next best

available evidence, and how to find it, is

then critical for readers of the literature.

(f) Applying the Evidence

The final step in the EBI process is to apply

the summary results of the medical literature

to the EBI question. Sometimes the answer to

an EBI question is a simple yes or no, as for

this question: Does a normal clinical exam

exclude unstable cervical spine fracture in

patients with minor trauma? Commonly, the

answers to EBI questions are expressed as

some measure of accuracy. For example,

how good is MRI for detecting acute ischemic

infarction (<6 h)? The answer is that MRI has

an approximate sensitivity of 91 % and spec-

ificity of 95 % [35]. However, to guide prac-

tice, EBI must be able to answer questions

that go beyond simple accuracy; for example,

should MRI then be used for the early detec-

tion of acute infarct? To answer this question,

it is useful to divide the types of literature

studies into a hierarchical framework [36]

(Table 1.4). At the foundation in this hierar-

chy is assessment of technical efficacy:
studies that are designed to determine if

a particular proposed imaging method or

application has the underlying ability to pro-

duce an image that contains useful informa-

tion. Information for technical efficacy would

include signal-to-noise ratios, image resolu-

tion, and freedom from artifacts. The second

step in this hierarchy is to determine if the

image predicts the truth. This is the accuracy
of an imaging study and is generally studied

by comparing the test results to a reference

standard and defining the sensitivity and the

specificity of the imaging test. The third step

is to incorporate the physician into the evalu-

ation of the imaging intervention by evaluat-

ing the effect of the use of the particular

imaging intervention on physician certainty

of a given diagnosis (physician decision mak-

ing) and on the actual management of the

patient (therapeutic efficacy). Finally, to be

of value to the patient, an imaging procedure

must not only affect management but also

improve outcome. Patient outcome efficacy

is the determination of the effect of a given

imaging intervention on the length and qual-

ity of life of a patient. A final efficacy level
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is that of society, which examines the ques-

tion of not simply the health of a single

patient but that of the health of society as

a whole, encompassing the effect of a given

intervention on all patients and including the

concepts of cost and cost-effectiveness [36].
Some additional research studies in imag-

ing, such as clinical prediction rules, do not fit

readily into this hierarchy. Clinical prediction
rules are used to define a population in whom

imaging is appropriate or can safely be avoided.

Clinical prediction rules can also be used in

combination with CEA as a way of deciding

between competing imaging strategies [37].

Bayes’ Theorem, Predictive Values, and
the Likelihood Ratio
Ideally, information would be available to

address the effectiveness of a diagnostic test on

all levels of the hierarchy. Commonly in imaging,

however, the only reliable information that is

available is that of diagnostic accuracy. It is

incumbent upon the user of the imaging literature

to determine if a test with a given sensitivity and

specificity is appropriate for use in a given clin-

ical situation. To address this issue, the concept

of Bayes’ theorem is critical. Bayes’ theorem is

based on the concept that the value of the diag-

nostic tests depends not only on the characteris-

tics of the test (sensitivity and specificity) but also

on the prevalence (pretest probability) of the

disease in the test population. As the prevalence

of a specific disease decreases, it becomes less

likely that someone with a positive test will

actually have the disease and more likely that

the positive test result is a false positive. The

relationship between the sensitivity and specific-

ity of the test and the prevalence (pretest proba-

bility) can be expressed through the use of Bayes’

theorem (see Appendix 2) [11, 14] and the likeli-

hood ratio. The positive likelihood ratio (PLR)

estimates the likelihood that a positive test result

will raise or lower the pretest probability,

resulting in estimation of the posttest probability

[where PLR ¼ sensitivity/(1 � specificity)]. The

negative likelihood ratio (NLR) estimates the

likelihood that a negative test result will raise

or lower the pretest probability, resulting in

estimation of the posttest probability [where

NLR ¼ (1 � sensitivity)/specificity] [38].

The likelihood ratio (LR) is not a probability but

a ratio of probabilities. The positive predictive

value (PPV) refers to the probability that a person

with a positive test result actually has the disease.

The negative predictive value (NPV) is the prob-

ability that a person with a negative test result

does not have the disease. Since the predictive

value is determined once the test results are

known (i.e., sensitivity and specificity), it actu-

ally represents a posttest probability; hence, the

posttest probability is determined by both the

prevalence (pretest probability) and the test

Table 1.4 Imaging effectiveness hierarchy

Technical efficacy: production of an image or information

Measures: signal-to-noise ratio, resolution, absence of artifacts

Accuracy efficacy: ability of test to differentiate between disease and nondisease

Measures: sensitivity, specificity, receiver operator characteristic curves

Diagnostic-thinking efficacy: impact of test on likelihood of diagnosis in a patient

Measures: pre- and posttest probability, diagnostic certainty

Treatment efficacy: potential of test to change therapy for a patient

Measures: treatment plan, operative or medical treatment frequency

Outcome efficacy: effect of use of test on patient health

Measures: mortality, quality-adjusted life years, health status

Societal efficacy: appropriateness of test from perspective of society

Measures: cost-effectiveness analysis, cost–utility analysis

Adapted with permission of Fryback DG, Thornbury JR. Med Decis Making. 1991;11:88–94

Reprinted with the kind permission of Springer Science+Business Media from Medina LS, Blackmore CC, Applegate

KE. Evidence-based imaging: improving the quality of imaging in patient care. Revised Edition. New York: Springer

Science+Business Media; 2011
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information (i.e., sensitivity and specificity).

Thus, the predictive values are affected by the

prevalence of disease in the study population.

A practical understanding of this concept is

shown in examples 1 and 2 in Appendix 2. The

example shows an increase in the PPV from 0.67

to 0.98 when the prevalence of carotid artery dis-

ease is increased from 0.16 to 0.82. Note that the

sensitivity and specificity of 0.83 and 0.92, respec-

tively, remain unchanged. If the test information is

kept constant (same sensitivity and specificity),

the pretest probability (prevalence) affects the

posttest probability (predictive value) results.

The concept of diagnostic performance

discussed above can be summarized by incorpo-

rating the data from Appendix 2 into a nomogram

for interpreting diagnostic test results (Fig. 1.3).

For example, two patients present to the emer-

gency department complaining of left-sided weak-

ness. The treating physician wants to determine if

they have a stroke from carotid artery disease. The

first patient is an 8-year-old boy complaining of

chronic left-sided weakness. Because of the

patient’s young age and chronic history, he was

determined clinically to be in a low-risk category

for carotid artery disease-induced stroke and

hence with a low pretest probability of 0.05

(5 %). Conversely, the second patient is 65 years

old and is complaining of acute onset of severe

left-sided weakness. Because of the patient’s older

age and acute history, hewas determined clinically

to be in a high-risk category for carotid artery

disease-induced stroke and hence with a high

pretest probability of 0.70 (70 %). The available

diagnostic imaging test was unenhanced head

CT followed by CT angiography. According to

the radiologist’s available literature, the sensitivity

and specificity of these tests for carotid artery

disease and stroke were each 0.90. The positive

likelihood ratio (sensitivity/1� specificity) calcu-

lation derived by the radiologist was 0.90/

(1 � 0.90) ¼ 9. The posttest probability for the

8-year-old patient is therefore 30% based on a pre-

test probability of 0.05 and a likelihood ratio of 9

(Fig. 1.3, dashed line A). Conversely, the posttest

probability for the 65-year-old patient is

greater than 95 % based on a pretest probability

Fig. 1.3 Bayes’ theorem nomogram for determining

posttest probability of disease using the pretest proba-

bility of disease and the likelihood ratio from the imag-

ing test. Clinical and imaging guidelines are aimed

at increasing the pretest probability and likelihood

ratio, respectively. Worked example is explained in

the text (Reprinted with permission from Medina L,

Aguirre E, Zurakowski D. Neuroimaging Clin N Am.

2003;13:157–65)
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of 0.70 and a positive likelihood ratio of 9 (Fig. 1.3,

dashed line B). Clinicians and radiologists can use

this scale to understand the probability of disease

in different risk groups and for imaging studies

with different diagnostic performance.

Jaeschke et al. [38] have proposed a rule of

thumb regarding the interpretation of the LR. For

PLR, tests with values greater than 10 have

a large difference between pretest and posttest

probability with conclusive diagnostic impact;

values of 5–10 have a moderate difference in

test probabilities and moderate diagnostic

impact; values of 2–5 have a small difference in

test probabilities and sometimes an important

diagnostic impact; and values less than 2 have

a small difference in test probabilities and seldom

have important diagnostic impact. For NLR, tests

with values less than 0.1 have a large difference

between pretest and posttest probability with con-

clusive diagnostic impact; values of 0.1 and less

than 0.2 have a moderate difference in test prob-

abilities and moderate diagnostic impact; values

of 0.2 and less than 0.5 have a small difference in

test probabilities and sometimes an important

diagnostic impact; and values of 0.5–1 have

small difference in test probabilities and seldom

have important diagnostic impact.

The role of the clinical guidelines is to increase

the pretest probability by adequately

distinguishing low risk from high-risk groups.

The role of imaging guidelines is to increase

the likelihood ratio by recommending the diagnos-

tic test with the highest sensitivity and specificity.

Comprehensive use of clinical and imaging guide-

lines will improve the posttest probability, hence

increasing the diagnostic outcome [10].

How to Use This Book

As these examples illustrate, the EBI process can

be lengthy [39]. The literature is overwhelming in

scope and somewhat frustrating in methodologi-

cal quality. The process of summarizing data can

be challenging to the clinician not skilled in meta-

analysis. The time demands on busy practitioners

can limit their appropriate use of the EBI

approach. This book can mitigate these

challenges in the use of EBI and make the EBI

accessible to all imagers and users of medical

imaging.

This book is organized by major diseases and

injuries. In the table of contents within each

chapter, you will find a series of EBI issues pro-

vided as clinically relevant questions. Readers

can quickly find the relevant clinical question

and receive guidance as to the appropriate rec-

ommendation based on the literature. Where

appropriate, these questions are further broken

down by age, gender, or other clinically impor-

tant circumstances. Following the chapter’s table

of contents is a summary of the key points deter-

mined from the critical literature review that

forms the basis of EBI. Sections on pathophysi-

ology, epidemiology, and cost are next, followed

by the goals of imaging and the search method-

ology. The chapter is then broken down into the

clinical issues. Discussion of each issue begins

with a brief summary of the literature, including

a quantification of the strength of the evidence,

and then continues with detailed examination of

the supporting evidence. At the end of the chap-

ter, the reader will find the take-home tables and

imaging case studies, which highlight key imag-

ing recommendations and their supporting evi-

dence. Finally, questions are included where

further research is necessary to understand the

role of imaging for each of the topics discussed.

Take-Home Appendix 1: Equations

Outcome

Test result Present Absent

Positive a (TP) b (FP)

Negative c (FN) d (TN)

(a) Sensitivity a/(a + c)

(b) Specificity d/(b + d)

(c) Prevalence (a + c)/(a + b + c + d)

(d) Accuracy (a + d)/(a + b + c + d)

(e) Positive

predictive

valuea

a/(a + b)

(f) Negative

predictive valuea
d/(c + d)

(continued)

16 L.S. Medina et al.



(g) 95 % confidence

interval (CI)
p� 1:96

ffiffiffiffiffiffi

1�n
n

q

p ¼ proportion

n ¼ number of subjects

(h) Likelihood ratio Senstivit y

1� Senstivit y
¼ aðbþ dÞ

bðaþ cÞ
Reprinted with the kind permission of Springer Science+

Business Media from Medina LS, Blackmore CC,

Applegate KE. Evidence-based imaging: improving the

quality of imaging in patient care. Revised Edition.

New York: Springer Science+Business Media; 2011.
aOnly correct if the prevalence of the outcome is estimated

from a random sample or based on an a priori estimate of

prevalence in the general population; otherwise, use of

Bayes’ theorem must be used to calculate positive predic-

tive value (PPV) and negative predictive value (NPV). TP
true positive, FP false positive, FN false negative, TN true

negative

Take-Home Appendix 2: Summary of
Bayes’ Theorem

1. Information before test � Information from

test ¼ Information after test

2. Pretest probability (prevalence) sensitivity/

1 � specificity ¼ posttest probability (predic-

tive value)

3. Information from the test also known as the

likelihood ratio, described by the equation:

sensitivity/1 � specificity

4. Examples 1 and 2 predictive values: The pre-

dictive values (posttest probability) change

according to the differences in prevalence

(pretest probability), although the diagnostic

performance of the test (i.e., sensitivity and

specificity) is unchanged. The following

examples illustrate how the prevalence (pre-

test probability) can affect the predictive

values (posttest probability) having the same

information in two different study groups.

Equations for calculating the results in the previ-

ous examples are listed in Appendix 1. As the

prevalence of carotid artery disease increases

from 0.16 (low) to 0.82 (high), the positive predic-

tive value (PPV) of a positive contrast-enhanced

CT increases from 0.67 to 0.98, respectively. The

sensitivity and specificity remain unchanged at

0.83 and 0.92, respectively. These examples

also illustrate that the diagnostic performance

of the test (i.e., sensitivity and specificity) does

not depend on the prevalence (pretest probabil-

ity) of the disease. CTA, CT angiogram.

Example 1: Low prevalence of carotid artery disease

Disease (carotid

artery disease)

No disease

(no carotid

artery disease) Total

Test positive

(positive CTA)

20 10 30

Test negative

(negative CTA)

4 120 124

Total 24 130 154

Example 2: High prevalence of carotid artery disease

Disease (carotid

artery disease)

No disease

(no carotid

artery disease) Total

Test positive

(positive CTA)

500 10 510

Test negative

(negative CTA)

100 120 220

Total 600 130 730

Results: sensitivity ¼ 500/600 ¼ 0.83; specificity ¼
120/130 ¼ 0.92; prevalence ¼ 600/730 ¼ 0.82; positive

predictive value ¼ 0.98; negative predictive value ¼ 0.55

Reprinted with the kind permission of Springer Science+

Business Media from Medina LS, Blackmore CC,

Applegate KE. Evidence-based imaging: improving the

quality of imaging in patient care. Revised Edition.

New York: Springer Science+Business Media, 2011
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