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4.1            Introduction 

 In this article, we will discuss a research area/community with close ties to the 
learning analytics community discussed throughout this book, educational data 
mining (EDM). This chapter will introduce the EDM community, its methods, 
ongoing trends in the area, and give some brief thoughts on its relationship to the 
learning analytics community. 

 EDM can be seen in two ways; either as a research community or as an area of 
scientifi c inquiry. As a research community, EDM can be seen as a sister commu-
nity to learning analytics. EDM fi rst emerged in a workshop series starting in 2005, 
which became an annual conference in 2008 and spawned a journal in 2009 and a 
society, the International Educational Data Mining Society, in 2011. A timeline of 
key events in the formation of the EDM community can be seen in Fig.  4.1 .

   As of this writing, the EDM Society has 240 paid members, and the conference 
has an annual attendance around the same number. Many of the same people attend 
both EDM and the Learning Analytics and Knowledge (LAK) conference, and the 
general attitude between the two conferences is one of friendly collaboration and/or 
friendly competition. 

 As an area of scientifi c inquiry, EDM is concerned with the analysis of large- 
scale educational data, with a focus on automated methods. There is considerable 
thematic overlap between EDM and learning analytics. In particular, both 
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communities share a common interest in data-intensive approaches to education 
research, and share the goal of enhancing educational practice. At the same time, 
there are several interesting differences, with one viewpoint on the differences given 
in (Siemens and Baker  2012 ). In that work, it was argued that there are fi ve key 
areas of difference between the communities, including a preference for automated 
 paradigms of data analysis (EDM) versus making human judgment central (LA), a 
reductionist focus (EDM) versus a holistic focus (LA), and a comparatively greater 
focus on automated adaptation (EDM) versus supporting human intervention (LA). 
Siemens and Baker noted that these differences refl ected general trends in the two 
communities rather than hard-and-fast rules. They also noted differences in pre-
ferred methodology between the two communities, a topic which we will return to 
throughout this chapter. Another perspective on the difference between the com-
munities was offered in a recent talk by John Behrens at the LAK 2012 conference, 
where Dr. Behrens stated that (somewhat contrary to the names of the two commu-
nities), EDM has a greater focus on learning as a research topic, while learning 
analytics has a greater focus on aspects of education beyond learning. In our view, 
the overlap and differences between the communities is largely organic, developing 
from the interests and values of specifi c researchers rather than refl ecting a deeper 
philosophical split or antagonism. 

 In the remainder of this chapter, we will review the key methods of EDM and 
ongoing trends, returning to the issue of how EDM compares methodologically to 
learning analytics as we do so.  

1995 Corbett & Anderson paper on Bayesian Knowledge Tracing -- key 
early algorithm that is still prominent today 

2001 Zaiane theoretical paper on potential of EDM methods 

2006 First published book on EDM: "Data mining in e-learning", Romero 
& Ventura 

2000 First EDM-related workshop 

2005 First workshop using term "educational data mining" 

2008 First international conference on Educational Data Mining 
2009 Journal of EDM publishes first issue -- first issue has 189 citations 

as of this writing (15.75 citations per article per year) 
2010 First handbook on EDM published, Romero, Ventura, Pechenizkiy, 

& Baker 
2011 First Learning Analytics and Knowledge conference held 
2011 IEDMS founded 
2012 SoLAR founded 
2013 First learning analytics summer institute 

2022 All education research involves analytics and data mining

  Fig. 4.1    Timeline of signifi cant milestones in EDM       
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4.2     Key EDM Methods 

 A wide range of EDM methods have emerged through the last several years. Some 
are roughly similar to those seen in the use of data mining in other domains, whereas 
others are unique to EDM. In this section we will discuss four major classes of 
methods that are in particularly frequent use by the EDM community, including: (a) 
Prediction Models, (b) Structure Discovery, (c) Relationship Mining, and (d) 
Discovery with Models. This is not an exhaustive selection of EDM methods; more 
comprehensive reviews can be found in (Baker and Yacef  2009 ; Romero and 
Ventura  2007 ,  2010 ; Scheuer and McLaren  2011 ). Instead, we focus on a subset of 
methods that are in particularly wide use within the EDM community. 

4.2.1     Prediction Methods 

 In prediction, the goal is to develop a model which can infer a single aspect of the 
data (the predicted variable, similar to dependent variables in traditional statistical 
analysis) from some combination of other aspects of the data (predictor variables, 
similar to independent variables in traditional statistical analysis). 

 In EDM, classifi ers and regressors are the most common types of prediction 
models, and each has several subtypes, which we will discuss below. Classifi ers and 
regressors have a rich history in data mining and artifi cial intelligence, which is 
leveraged by EDM research. The area of latent knowledge estimation is of particu-
lar importance within EDM, and work in this area largely emerges from the User 
Modeling, Artifi cial Intelligence in Education, and Psychometrics/Educational 
Measurement traditions. 

 Prediction requires having labels for the output variable for a limited dataset, 
where a label represents some trusted ground truth information about the predicted 
variable’s value in specifi c cases. Ground truth can come from a variety of sources, 
including “natural” sources such as whether a student chooses to drop out of college 
(Dekker et al.  2009 ), state-standardized exam scores (Feng et al.  2009 ), or grades 
assigned by instructors, and in approaches where labels are created solely to use as 
ground truth, using methods such as self-report (cf. D’Mello et al.  2008 ), video cod-
ing (cf. D’Mello et al.  2008 ), fi eld observations (Baker et al.  2004 ), and text replays 
(Sao Pedro et al.  2010 ). 

 Prediction models are used for several applications. They are most commonly 
used to predict what a value will be in contexts where it is not desirable to directly 
obtain a label for that construct. This is particularly useful if it can be conducted in 
real time, for instance to predict a student’s knowledge (cf. Corbett and Anderson 
 1995 ) or affect (D’Mello et al.  2008 ; Baker et al.  2012 ) to support intervention, or 
to predict a student’s future outcomes (Dekker et al.  2009 ; San Pedro et al.  2013 ). 
Prediction models can also be used to study which specifi c constructs play an impor-
tant role in predicting another construct (for instance, which behaviors are associ-
ated with the eventual choice to attend high school) (cf. San Pedro et al.  2013 ). 
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4.2.1.1     Classifi cation 

 In classifi ers, the predicted variable can be either a binary or categorical variable. 
Some popular classifi cation methods in educational domains include decision trees, 
random forests, decision rules, step regression, and logistic regression. In EDM, 
classifi ers are typically validated using cross-validation, where part of the dataset is 
repeatedly and systematically held out and used to test the goodness of the model. 
Cross-validation should be conducted at multiple levels, in line with what type of 
generalizability is desired; for instance, it is typically standard in EDM for research-
ers to cross-validate at the student level in order to ensure that the model will work 
for new students, although researchers also cross-validate in terms of populations or 
learning content. Note that step regression and logistic regression, despite their 
names, are classifi ers rather than regressors. Some common metrics used for classi-
fi ers include A’/AUC (Hanley and McNeil  1982 ), kappa (Cohen  1960 ), precision 
(Davis and Goadrich  2006 ), and recall (Davis and Goadrich  2006 ); accuracy, often 
popular in other fi elds, is not sensitive to base rates and should only be used if base 
rates are also reported.  

4.2.1.2     Regression 

 In regression, the predicted variable is a continuous variable. The most popular 
regressor within EDM is linear regression, with regression trees also fairly popular. 
Note that a model produced through this method is mathematically the same as 
linear regression as used in statistical signifi cance testing, but that the method for 
selecting and validating the model in EDM’s use of linear regression is quite differ-
ent than in statistical signifi cance testing. Regressors such as neural networks and 
support vector machines, which are prominent in other data mining domains, are 
somewhat less common in EDM. This is thought to be because the high degrees of 
noise and multiple explanatory factors in educational domains often lead to more 
conservative algorithms being more successful. Regressors can be validated using 
the same overall techniques as that in classifi ers, often using the metrics of linear 
correlation or root mean squared error (RMSE).  

4.2.1.3     Latent Knowledge Estimation 

 One special case of classifi cation that is particularly important in EDM is latent 
knowledge estimation. In latent knowledge estimation, a student’s knowledge of 
specifi c skills and concepts is assessed by their patterns of correctness on those 
skills (and occasionally other information as well). The word “latent” refers to the 
idea that knowledge is not directly measurable, it must be inferred from a stu-
dent’s performance. Inferring a student’s knowledge can be useful for many 
goals—it can be a meaningful input to other analyses (we discuss this use below, 
in the section on discovery with models), it can be useful for deciding when to 
advance a student in a curriculum (Corbett and Anderson  1995 ) or intervene in 
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other ways (cf. Roll et al.  2007 ), and it can be very useful information for 
 instructors (Feng and Heffernan  2007 ). 

 The models used for estimating latent knowledge in online learning typically differ 
from the psychometric models used in paper tests or in computer-adaptive testing, as 
the latent knowledge in online learning is itself dynamic. The models used for latent 
knowledge estimation in EDM come from two sources: new takes on classical psy-
chometric approaches, and research on user modeling/artifi cial intelligence in educa-
tion literature. A wide range of algorithms exists for latent knowledge estimation. The 
classic algorithm is either Bayes Nets (Martin and VanLehn  1995 ; Shute  1995 ) for 
complex knowledge structures, or Bayesian Knowledge Tracing (Corbett and 
Anderson  1995 ) for cases where each problem or problem step is primarily associated 
with a single skill at the point in time when it is encountered. Recently, there has also 
been work suggesting that an approach based on logistic regression, Performance 
Factors Assessment (Pavlik et al.  2009 ), can be effective for cases where multiple skills 
are relevant to a problem or problem step at the same time. Work by Pardos and col-
leagues ( 2012 ) has also found evidence that combining multiple approaches through 
ensemble selection can be more effective for large datasets than single models.   

4.2.2     Relationship Mining 

 In relationship mining, the goal is to discover relationships between variables in a 
dataset with a large number of variables. This may take the form of attempting to 
fi nd out which variables are most strongly associated with a single variable of par-
ticular interest, or may take the form of attempting to discover which relationships 
between any two variables are strongest. Broadly, there are four types of relation-
ship mining in common use in EDM: association rule mining, sequential pattern 
mining, correlation mining, and causal data mining. Association rule mining comes 
from the fi eld of data mining, in particular from “market basket” analysis used in 
mining of business data (Brin et al.  1997 ); sequential pattern mining also comes 
from data mining, with some variants emerging from the bioinformatics commu-
nity; correlation mining has been a practice in statistics for some time (and the 
methods of post hoc analysis came about in part to make this type of method more 
valid); causal data mining also comes from the intersection of statistics and data 
mining (Spirtes et al.  2000 ). 

4.2.2.1     Association Rule Mining 

 In association rule mining, the goal is to fi nd if-then rules of the form that if some 
set of variable values is found, another variable will generally have a specifi c value. 
For example, a rule might be found of the form:

    IF  student is frustrated  OR  has a stronger goal of learning than performance  
   THEN  the student frequently asks for help    
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 Rules uncovered by association rule mining reveal common co-occurrences in 
data which would have been diffi cult to discover manually. Association rule mining 
has been used for a variety of applications in EDM. For example, Ben-Naim and 
colleagues ( 2009 ) found association rules within student data from an engineering 
class, representing patterns of successful student performance, and Merceron and 
Yacef ( 2005 ) studied which student errors tend to go together. 

 There is ongoing debate as to which metrics lead to fi nding the most interesting 
and usable association rules; a discussion of this issue can be found in Merceron and 
Yacef ( 2008 ), who recommend in particular cosine and lift.  

4.2.2.2    Sequential Pattern Mining 

 In sequential pattern mining, the goal is to fi nd temporal associations between 
events. Two paradigms are seen that fi nd sequential patterns—classical sequential 
pattern mining (Srikant and Agrawal  1996 ), which is a special case of association 
rule mining, and motif analysis (Lin et al.  2002 ), a method often used in bioinfor-
matics to fi nd common general patterns that can vary somewhat. These methods, 
like association rule mining, have been used for a variety of applications, including 
to study what paths in student collaboration behaviors lead to a more successful 
eventual group project (Perera et al.  2009 ), the patterns in help-seeking behavior 
over time (Shanabrook et al.  2010 ), and studying which patterns in the use of con-
cept maps are associated with better overall learning (Kinnebrew and Biswas  2012 ). 
Sequential pattern mining algorithms, like association rule mining algorithms, 
depend on a number of parameters to select which rules are worth outputting.  

4.2.2.3    Correlation Mining 

 In correlation mining, the goal is to fi nd positive or negative linear correlations 
between variables. This goal is not a new one; it is a well-known goal within statis-
tics, where a literature has emerged on how to use post hoc analysis and/or dimen-
sionality reduction techniques in order to avoid fi nding spurious relationships. The 
False Discovery Rate paradigm (cf. Benjamini and Hochberg  1995 ; Storey  2003 ) 
has become increasingly popular among data mining researchers across a number of 
domains. Correlation mining has been used to study the relationship between stu-
dent attitudes and help-seeking behaviors (Arroyo and Woolf  2005 ; Baker et al. 
 2008 ), and to study the relationship between the design of intelligent tutoring sys-
tems and whether students game the system (Baker et al.  2009 ).  

4.2.2.4    Causal Data Mining 

 In causal data mining, the goal is to fi nd whether one event (or observed construct) 
was the cause of another event (or observed construct) (   Spirtes et al.  2000 ). Causal 
data mining is distinguished from prediction in its attempts to fi nd not just 
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predictors but actual causal relationships, through looking at the patterns of 
 covariance between those variables and other variables in the dataset. Causal data 
mining in packages such as TETRAD (Scheines et al.  1998 ) has been used in EDM 
to predict which factors will lead a student to do poorly in a class (Fancsali  2012 ), 
to analyze how different conditions of a study impact help use and learning differ-
ently (Rau and Scheines  2012 ), and to study how gender and attitudes impact 
behaviors in an intelligent tutor and consequent learning (Rai and Beck  2011 ).   

4.2.3     Structure Discovery 

 Structure discovery algorithms attempt to fi nd structure in the data without any 
ground truth or a priori idea of what should be found. In this way, this type of data 
mining contrasts strongly with prediction models, above, where ground truth labels 
must be applied to a subset of the data before model development can occur. Common 
structure discovery algorithms in educational data include clustering, factor analy-
sis, and domain structure discovery algorithms. Clustering and factor analysis have 
been used since the early days of the fi eld of statistics, and were refi ned and explored 
further by the data mining and machine learning communities. Domain structure 
discovery emerged from the fi eld of psychometrics/educational measurement. 1  

 As methods that discover structure without ground truth, less attention is gener-
ally given to validation than in prediction, though goodness and fi t calculations are 
still used in determining if a specifi c structure is superior to another structure. 

4.2.3.1    Clustering 

 In clustering, the goal is to fi nd data points that naturally group together, splitting 
the full dataset into a set of clusters (Kaufman and Rousseeuw  1990 ). Clustering is 
particularly useful in cases where the most common categories within the dataset 
are not known in advance. If a set of clusters is optimal, each data point in a cluster 
will in general be more similar to the other data points in that cluster than the data 
points in other clusters. Clusters can be created at several different grain sizes. For 
example, schools could be clustered together (to investigate similarities and differ-
ences among schools), students could be clustered together (to investigate similari-
ties and differences among students), or student actions could be clustered together 
(to investigate patterns of behavior) (cf. Amershi and Conati  2009 ; Beal et al.  2006 ). 
Clustering algorithms typically split into two categories: hierarchical approaches 
such as hierarchical agglomerative clustering (HAC), and non-hierarchical 
approaches such as  k -means, gaussian mixture modeling (sometimes referred to as 

1   A fourth type of structure discovery, Network Analysis, is more characteristic of work in learning 
analytics than in educational data mining (cf. Dawson  2008 ; Suthers and Rosen  2011 ), and is not 
discussed in detail here for that reason. 
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EM-based clustering), and spectral clustering. The key difference is that  hierarchical 
approaches assume that clusters themselves cluster together, whereas non- hierarchical 
approaches assume that clusters are separate from each other.  

4.2.3.2    Factor Analysis 

 In factor analysis, the goal is to fi nd variables that naturally group together, splitting 
the set of variables (as opposed to the data points) into a set of latent (not directly 
observable) factors (Kline  1993 ). Factor analysis is frequently used in psychomet-
rics for validating or determining scales. In EDM, factor analysis is used for dimen-
sionality reduction (e.g., reducing the number of variables), including in 
preprocessing to reduce the potential for overfi tting and to determine meta-features. 
One example of its use in EDM is work to determine which features of intelligent 
tutoring systems group together (cf. Baker et al.  2009 ); another example is as a step 
in the process of developing a prediction model (cf. Minaei-Bidgoli et al.  2003 ). 
Factor analysis includes algorithms such as principal component analysis and 
exponential- family principal components analysis.  

4.2.3.3    Domain Structure Discovery 

 Domain structure discovery consists of fi nding which items map to specifi c skills 
across students. The Q-Matrix approach for doing so is well-known in psychomet-
rics (cf. Tatsuoka  1995 ). Considerable work has recently been applied to this prob-
lem in EDM, for both test data (cf. Barnes et al.  2005 ; Desmarais  2011 ), and for data 
tracking learning during use of an intelligent tutoring system (Cen et al.  2006 ). 
Domain structures can be compared using information criteria metrics (Koedinger 
et al.  2012 ), which assess fi t compared to the complexity of the model (more com-
plex models should be expected to spuriously fi t data better). A range of algorithms 
can be used for domain structure discovery, from purely automated algorithms 
(cf. Barnes et al.  2005 ; Desmarais  2011 ; Thai-Nghe et al.  2011 ), to approaches that 
utilize human judgment within the model discovery process such as learning factors 
analysis (LFA; Cen et al.  2006 ).   

4.2.4     Discovery with Models 

 In discovery with models, a model of a phenomenon is developed via prediction, 
clustering, or in some cases knowledge engineering (within knowledge engineering, 
the model is developed using human reasoning rather than automated methods). 
This model is then used as a component in a second analysis or model, for example 
in prediction or relationship mining. Discovery with models is not common in data 
mining in general, but is seen in some form in many computational science domains. 
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 In the case of EDM, one common use is when an initial model’s predictions 
(which represent predicted variables in the original model) become predictor vari-
ables in a new prediction model. For instance, prediction models of robust student 
learning have generally depended on models of student meta-cognitive behaviors 
(cf. Baker et al.  2011a ,  b ), which have in turn depended on assessments of latent 
student knowledge (cf. Aleven et al.  2006 ). These assessments of student knowl-
edge have in turn depended on models of domain structure. 

 When using relationship mining, the relationships between the initial model’s 
predictions and additional variables are studied. This enables a researcher to study 
the relationship between a complex latent construct and a wide variety of observable 
constructs, for example investigating the relationship between gaming the system 
(as detected by an automated detector) and student individual differences (Baker 
et al.  2008 ). 

 Often, discovery with models leverages the generalization of a prediction model 
across contexts. For instance, Baker and Gowda ( 2010 ) used predictions of gaming 
the system, off-task behavior, and carelessness across a full year of educational 
software data to study the differences in these behaviors between an urban, rural, 
and suburban school in the same region.   

4.3     Trends in EDM Methodologies and Research 

 Given that “educational data mining” has been around as a term for almost a decade 
at this writing, and several early EDM researchers had been working in this area 
even before the community had begun to coalesce, we can begin to see trends and 
changes in emphasis occurring over time. 

 One big shift in EDM is the relative emphasis given to relationship mining. In the 
early years of EDM, relationship mining was used in almost half of the articles 
published (Baker and Yacef  2009 ). Relationship mining methods have continued to 
be important in EDM since then, but it is fair to say that the dominance of relation-
ship mining has reduced somewhat in the following years. For example in the 
EDM2012 conference, only 16 % of papers use relationship mining as defi ned in 
this article. 

 Prediction and clustering were important methods in the early years of EDM 
(Baker and Yacef  2009 ), and have continued to be highly used. However, within the 
category of prediction modeling, the distribution of methods has changed substan-
tially. Classifi cation and regression were important in 2005–2009, and remain 
important to this day, but latent knowledge estimation has increased substantially in 
importance, with articles representing different paradigms for how to estimate stu-
dent knowledge competing to see which algorithms are most effective in which 
contexts (Pavlik et al.  2009 ; Gong et al.  2011 ; Pardos et al.  2012 ). 

 A related trend is the increase in the prominence of domain structure discovery 
in recent EDM research. Although domain structure discovery has been part of 
EDM from the beginning (Barnes  2005 ), recent years have seen increasing work on 
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a range of approaches for modeling domains. Some work has attempted to fi nd 
 better ways to fi nd q-matrices expressing domain structure in a purely empirical 
fashion (Desmarais  2011 ; Desmarais et al.  2012 ), while other work attempts to 
leverage human judgment in fi tting q-matrices (Cen et al.  2007 ; Koedinger et al. 
 2012 ). Additionally, in recent years there has been work attempting to automatically 
infer prerequisite structures in data (Beheshti and Desmarais  2012 ), and to study the 
impact of not following prerequisite structures (Vuong et al.  2011 ). 

 A third emerging emphasis in EDM is the continued trend towards modeling a 
greater range of constructs. Though the trends in latent knowledge estimation and 
domain structure discovery refl ect the continued emphasis within EDM on modeling 
student knowledge and skill, there has been a simultaneous trend towards expanding 
the space of constructs modeled through EDM, with researchers expanding from 
modeling knowledge and learning to modeling constructs such as metacognition, 
self-regulation, motivation, and affect (cf. Goldin et al.  2012 ; Bouchet et al.  2012 ; 
Baker et al.  2012 ). The increase in the range of constructs being modeled in EDM 
has been accompanied by an increase in the number of discovery with models anal-
yses leveraging those models to support basic discovery.  

4.4     EDM and Learning Analytics 

 Many of the same methodologies are seen in both EDM and Learning Analytics. 
Learning analytics has a relatively greater focus on human interpretation of data and 
visualization (though there is a tradition of this in EDM as well—cf. Kay et al. 
 2006 ; Martinez et al.  2011 ). EDM has a relatively greater focus on automated meth-
ods. But ultimately, in our view, the differences between the two communities are 
more based on focus, research questions, and the eventual use of models (cf. 
Siemens and Baker  2012 ), than on the methods used. 

 Prediction models are prominent in both communities, for instance, although 
Learning Analytics researchers tend to focus on classical approaches of classifi ca-
tion and regression more than on latent knowledge estimation. Structure Discovery 
is prominent in both communities, and in particular clustering has an important role 
in both communities. In terms of specialized/domain-specifi c structure discovery 
algorithms, domain structure discovery is more emphasized by EDM researchers 
while network analysis/social network analysis is more emphasized in learning ana-
lytics (Bakharia and Dawson  2011 ; Schreurs et al.  2013 ), again more due to research 
questions adopted by specifi c researchers, than a deep difference between the fi elds. 
Relationship mining methods are signifi cantly more common in EDM than in learn-
ing analytics. It is not immediately clear to the authors of this paper why relation-
ship mining methods have been less utilized in learning analytics than in EDM, 
given the usefulness of these methods for supporting interpretation by analysts (this 
point is made in d’Aquin and Jay,  2013 , who demonstrate the use of sequential pat-
tern mining in learning analytics). Discovery with models is signifi cantly more 
common in EDM than learning analytics, and much of its appearance at LAK 
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conferences is in papers written by authors more known as members of the EDM 
community (e.g., Pardos et al.  2013 ). This is likely to again be due to differences in 
research questions and focus; even though both communities use prediction model-
ing, LAK papers tend to predict larger constructs (such as dropping out and course 
failure) whereas EDM papers tend to predict smaller constructs (such as boredom 
and short-term learning), which are more amenable to then use in discovery with 
analyses of larger constructs. 

 Finally, some methodological areas are more common in learning analytics than 
in EDM (though relatively fewer, owing to the longer history of EDM). The most 
prominent example is the automated analysis of textual data. Text analysis, text 
mining, and discourse analysis is a leading area in learning analytics; it is only seen 
occasionally in EDM (cf. D’Mello et al.  2010 ; Rus et al.  2012 ).  

4.5     Conclusion 

 In recent years, two communities have grown around the idea of using large-scale 
educational data to transform practice in education and education research. As this 
area emerges from relatively small and unknown conferences to a theme that is 
known throughout education research, and which impacts schools worldwide, there 
is an opportunity to leverage the methods listed above to accomplish a variety of 
goals. Every year, the potential applications of these methods become better known, 
as researchers and practitioners utilize these methods to study new constructs and 
answer new research questions. 

 While we learn where these methods can be applied, we are also learning how to 
apply them more effectively. Having multiple communities and venues to discuss 
these issues is benefi cial; having communities that select work with different values 
and perspectives will support the development of a fi eld that most effectively uses 
large-scale educational data. Ultimately, the question is not which methods are best, 
but which methods are useful for which applications, in order to improve the sup-
port for any person who is learning, whenever they are learning.     
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