
71S. Gangadharan and S. Churiwala, Constraining Designs for Synthesis
and Timing Analysis: A Practical Guide to Synopsys Design Constraints (SDC),
DOI 10.1007/978-1-4614-3269-2_7, © Springer Science+Business Media New York 2013

 When a design has more than one clock, the timing of such a design depends not
just on the frequency of clocks but also on the relation the clocks share with each
other. Synchronous clocks are clocks which share a deterministic phase relation-
ship. More often than not, synchronous clocks share the same source.

 On the other hand, asynchronous clocks are clocks which don’t share a fi xed
phase relationship. Let us consider Fig. 7.1 – if the two clocks C1 and C2 are gener-
ated from different sources, then they are treated as asynchronous.

 The section of the design driven by each of these clocks forms a clock domain .
The signals that interface between these clock domains driven by asynchronous
clocks are called asynchronous clock domain crossings or abbreviated as CDC .

 In this chapter, we will understand how to specify the relation between clocks
which are asynchronous in nature and how to group them into domains. But fi rst, let
us try to understand the timing impact on a design with multi-frequency clocks.

7.1 Setup and Hold Timing Check

 Let us consider Fig. 7.1 . In this simple circuit, there is a launch fl op (F1) that
launches data that is captured by the capture fl op (F2). As described in Chap. 3 ,
setup is defi ned as the time by which data needs to be available before the active
edge of clock, and hold is the time for which the data must remain stable after the
active edge of the clock, so that data is properly registered by the fl ip-fl op.

 The same concept can be extended for the design in Fig. 7.1 . The design would
need to ensure that data on the active edge of the launch fl op (F1) is captured by the
closest following active edge of the capture fl op (F2). This is called the setup timing
check . Figure 7.2 shows the waveform of the clocks for the design.

 Let us assume that t
 F
 is the delay from Clock to Q pin of launch fl op (F1) and t

 C

is the delay within the combination cloud. This means data arrives at fl op F2 at time
 t
 F
 +t

 C
 . Let us also assume that edges of clocks C1 and C2 are perfectly aligned and

 Chapter 7
 Clock Groups

http://dx.doi.org/10.1007/978-1-4614-3269-2_3

72

the setup requirement of capture fl op (F2) is t
 Setup

 . Since the next clock arrives at
 F2 at the next edge, which is t

 Period
 (period of clock C2), then for data from fl op F1

to be captured by F2 , the data must arrive at least t
 Setup

 time before the next active
edge of F2 . This setup timing check imposes an upper bound on the timing require-
ment for the signal to arrive at F2 and can be represented as:

 t
 F
 + t

 C
 < t

 Period
 – t

 Setup

 Once the setup requirement is met, for the data to be properly captured the hold
requirements have to meet as well. This is measured by the hold timing check , which
ensures the hold timing is met between the active edge of the launch clock and the
same edge of the capture clock. For the same design, since t

 F
 + t

 C
 is the time required

for the data to reach fl op F2 , the time at which the data arrives must be more than
the hold time (t

 Hold
) of fl op F2 , so that the current data does not corrupt the previous

data. This hold timing check therefore imposes a lower bound on the timing require-
ment for the signal to arrive at F2 and can be represented as:

 t
 F
 + t

 C
 > t

 Hold

 This was a rather simple case, since we assumed clocks C1 and C2 had perfectly
aligned edges. The equations get just a little more complicated if the edges are not
aligned (though, they still originate from the same source). If t

 L
 is the time for the

C2C1

F1 F2

tF tC

 Fig. 7.1 Asynchronous clock domain crossing

Hold
Check

tSetup

Data

Setup ChecktPeriod

 Fig. 7.2 Waveform for interacting clocks

7 Clock Groups

73

clock to reach the launch fl op from its source and t
 Z
 is the time for the clock to reach

the capture fl op from its source, then setup and hold timing check would be:

 t
 L
 + t

 F
 + t

 C
 < t

 Z
 + t

 Period
 – t

 Setup

 t
 L
 + t

 F
 + t

 C
 > t

 Z
 + t

 Hold

 On the other hand, if the two interacting clocks have different frequencies, then
depending on their respective frequency values, the active edge of fl op (F1) and
closest following active edge of capture fl op (F2) may vary in every clock cycle.
Here are few representative examples to analyze these further.

7.1.1 Fast to Slow Clocks

 For Fig. 7.1 , let us consider the case when the period of the launch clock is less than
the period of the capture clock. Let us further assume that C1 has a period of 10ns
with a 50 % duty cycle and C2 has a period of 15ns with a 50 % duty cycle. Let the
clocks be represented as:

 create_clock -period 10 -name C1 -waveform {0 5} [get_pins F1/CK]
 create_clock -period 15 -name C2 -waveform {0 7.5} [get_pins F2/CK]

 Figure 7.3 shows the waveform of these clocks. From this it will be evident that
the waveforms repeat themselves after 30ns . Thus, any analysis has to be done only
within 30ns window. For the setup timing check, the launch/capture combinations
within the window occur at

 1. Launch edge at 0 and capture at 15ns .
 2. Launch at 10ns and capture at 15ns .
 3. Launch at 20ns and capture at 30ns.

 Out of these, the second pair is the most restrictive and is considered for setup.
Similarly, if we compute all the hold check pairs within the window, we will fi nd
that the worst case combination for hold corresponds to the launch edge at 0 and
capture edge at 0 . So, both edges at 0 are chosen for hold check. This ensures that
data at time unit 0 at the launch fl op is not registered by capture fl op at time 0 .

Hold Check Setup Check

0 7.5 15 22.5 30 37.5 45 52.5 60

0 5 10 15 20 25 30 35 40 45 50 55 60

 Fig. 7.3 Waveform for fast to slow clocks

7.1 Setup and Hold Timing Check

74

7.1.2 Slow to Fast Clocks

 Let us look at another example of most restrictive check being used. If the period of
clocks C1 (15) and C2 (10) are reversed, then once again all edge-pair combination
till time 30ns are considered and the most restrictive pair is used. Thus, setup timing
check should be done between the launch edge at 15ns and capture edge at 20ns .
Similarly, the most restrictive hold check is determined, which is still at time 0 for
both edges. Figure 7.4 shows the waveform in this case.

7.1.3 Multiple Clocks Where Periods Synchronize
in More than Two Cycles

 Let us consider Fig. 7.5 where the clocks take several more cycles to realign. Let
period of clock C1 be 6ns and period of clock C2 be 10ns . Assuming the clock
edges are aligned at time t = 0, the next time their edges will align will be at time
 t = 30, which is the LCM of the two clock periods.

Hold Check Setup Check

0 7.5 15 22.5 30 37.5 45 52.5 60

0 5 10 15 20 25 30 35 40 45 50 55 60

 Fig. 7.4 Waveform for slow to fast clocks

0 5 10 15 20 25 30 35 40 45 50 55 60

0 3 6 9 12 15 18 21 24 27 30 33 36

Most Restrictive
Setup Check

Most Restrictive
Hold Check

 Fig. 7.5 Waveform for clocks that are not integer multiples

7 Clock Groups

75

 As it can be seen from the waveform, there are a number of edges where you can
perform setup and hold check. But the most restrictive setup check is when launch
is at 18ns and capture is at 20ns . Similarly the most restrictive hold check is when
both edges are at 0 .

7.1.4 Asynchronous Clocks

 As it is evident from these examples, these checks can get pretty complicated for
multiple-frequency clocks. If the clocks don’t share a phase relationship, the arrival
of the launch clock and capture clock will not be deterministic relative to each other.
This means setup and hold timing requirement could potentially vary in every cycle.
This becomes a big timing problem when analyzing asynchronous clocks, if there is
a signal in the data path driven by these clocks that may be interacting and creating
an asynchronous clock domain crossing. This can potentially lead to certain issues
like metastability. In Fig. 7.1 , if the input of the fl ip-fl op F2 is changing while it is
being captured by fl ip-fl op F2 , then the output of F2 could be unstable for a certain
period of time. This is called metastability which needs to be resolved using syn-
chronizers . The main problem with asynchronous CDC is as follows: With each
edge pair, there is a different timing requirement. So, at some time or other, there
will be very little margin. And, since checks are supposed to be made on most
restrictive pair, hence, there will be at least some edge, which will violate!

 To prevent implementation tools from spending time unnecessarily to meet the
timing on such paths, it is generally recommend to identify such crossings. This is
achieved using set_clock_groups .

7.2 Logically and Physically Exclusive Clocks

 Sometimes, you would have designs where clocks may not be talking to each other
depending on how the design is architected. Let us consider Fig. 7.6 ; here the two
clocks irrespective of their source don’t interact with each other, even though they
coexist in the design. These clocks are considered to be logically exclusive .

C2

C1
F1 F2

 Fig. 7.6 Logically exclusive clocks (C1 and C2)

7.2 Logically and Physically Exclusive Clocks

76

 Let us consider Fig. 7.7 ; here the clocks C1 and C2 are logically exclusive; how-
ever, the two generated clocks GC1 and GC2 are exclusive, but they cannot coexist
together on the same net. Thus, clocks GC1 and GC2 are considered to be physi-
cally exclusive .

7.3 Crosstalk

 When clocks are mutually exclusive, even though they don’t talk, there could be
interference between the signals resulting in unwanted effect. This is typically a
problem seen in deep submicron technology and could be because of a number of
reasons like lower geometry’s requirement for higher routing density, interaction
between devices, or coupling capacitance between signals. This results in a phe-
nomenon called crosstalk . Let us consider Fig. 7.8 .

 In this fi gure the coupling capacitance between neighborhood nets results in
unwanted and unexpected activity on the signals. This activity could be a glitch that
can impact timing. The signal that is impacted is called the victim and signal that is
the cause is called the aggressor . The crosstalk can affect the timing of the victim
signal, if the aggressor switches at the same time as the victim. Depending upon the

C2

C1
F1 F2

F3 F4

GC1
GC2

 Fig. 7.7 Physically exclusive clocks (GC1 and GC2)

7 Clock Groups

77

direction of the switching for the aggressor and the victim, the transition at the victim
could be slower (impacting setup relationship) or faster (impacting hold relationship).
This is referred as the timing window relationship between the aggressor and victim
and indicates the period of overlapping time when switching of aggressor and victim
can potentially coincide.

 Since crosstalk affects timing, it has a direct impact on setup and hold timing
check. Let us consider Fig. 7.9 , which is the schematic representation of Fig. 7.8
without the resistance and capacitance. If the aggressor net has a switching in the
direction opposite to that of the victim, the slew on the victim net can deteriorate,
thereby increasing its delay. This will impact the setup timing. Similarly, a switch-
ing on the aggressor net in the same direction as the victim can improve the slew of
the adjacent victim net reducing its delay. This will impact hold timing.

 From a signal integrity perspective, if mutually exclusive clocks have no cross-
talk issue, then they are considered to be physically exclusive .

 Most STA tools provide a way to measure the integrity of a signal in a design
framework. There are books just on signal integrity and crosstalk analysis, and we
will not be covering this in detail here. The concept is being introduced since certain
SDC commands provide directives for crosstalk analysis.

Aggressor

Victim

Coupling
capacitance

Glitch

 Fig. 7.8 Glitch due to crosstalk

Aggressor

Victim

 Fig. 7.9 Victim slew
deterioration on account
of crosstalk

7.3 Crosstalk

78

7.4 set_clock_group

 Based on what we have looked so far, correct setup and hold requirements ensure
timing for reliable data capture. However for asynchronous clocks it could be
tedious and impossible to meet the requirement given that the phase relationship of
the clocks is not deterministic. For mutually exclusive clocks it makes no sense to
try to meet the requirement, since the clocks don’t talk to each other. In order to
indicate to timing tools to ignore any timing paths or crosstalk analysis between
asynchronous or mutually exclusive clocks, SDC provides the set_clock_groups
command. The BNF grammar for the command is:

 set_clock_groups [- name group_name]
 [- group clock_list]
 [- logically_exclusive]
 [- physically_exclusive]
 [- asynchronous]
 [- allow_paths]
 [- comments comment_string]

 The -name option is used to provide a unique name for clock group. The clocks
are divided into groups which are specifi ed using -group option.

 The -logically_exclusive option is used when clocks are mutually exclusive but
can have a coupling interaction between them. The grouping between clocks in
Fig. 7.6 can be represented as:

 create_clock -period 10 -name C1 -waveform {0 5} [get_ports C1]
 create_clock -period 20 -name C2 -waveform {0 12} [get_ports C2]
 set_clock_groups -logically_exclusive -group C1 -group C2

 Though the aforementioned set_clock_groups is technically correct, the authors
recommend to create a combinational generated clock from C1 and C2 and then set
up the clock group relation between them. This helps reuse in case the design is
modifi ed at a later stage such that clocks C1 and C2 start interacting in another part
of the design (among F3 and F4) as shown in Fig. 7.7 . This would be modifi ed as:

 create_clock -period 10 -name C1 -waveform {0 5} [get_ports C1]
 create_clock -period 20 -name C2 -waveform {0 12} [get_ports C2]
 create_generated_clock -name GC1 \
 -source [get_ ports C1] [get_ pins mux1/A] -combinational
 create_generated_clock -name GC2 \
 -source [get_ ports C2] [get_ pins mux1/B] -combinational
 set_clock_groups -logically_exclusive -group GC1 -group GC2

 The -physically_exclusive option is used when the clocks don’t coexist in the
design. The grouping between the clocks in Fig. 7.7 can be represented as:

 create_clock -period 10 -name C1 -waveform {0 5} [get_ports C1]
 create_clock -period 20 -name C2 -waveform {0 12} [get_ports C2]
 create_generated_clock -name GC1 -divide_by 1 \

7 Clock Groups

79

 -source [get_pins mux1/A] [get_pins mux1/Z] -combinational
 create_generated_clock -name GC2 -divide_by 1 \
 -source [get_pins mux1/B] [get_pins mux1/Z] -combinational -add
 set_clock_groups -physically_exclusive -group GC1 -group GC2

 As it can be seen, the timing between fl ops F1 and F2 doesn’t have to be consid-
ered for the combination of F1 being driven by C1 and F2 by C2 and vice versa, but
clocks C1 and C2 also drive fl ops F3 and F4, and so, we cannot simply apply

 set_clock_groups -logically_exclusive -group C1 -group C2

 This command will disable timing paths between F3 and F4 for the clocks C1
and C2 . By defi ning a combinational generated clock at the output of the mux, the
timing tool is given the directive to disable localized timing path analysis between
fl ops F1 and F2 for the relevant clocks, without impacting fl ops F3 and F4 .

 If you defi ne multiple clocks on the same design object (using -add option), they
should be physically exclusive. Another scenario when clocks are physically exclu-
sive is when both system clock and test clock are applied on the same port.

 The -asynchronous option is used when the clocks don’t share a phase relation-
ship with each other. It should be understood that asynchronous crossings also need
synchronizers, purely for functional reliability. Synchronizers are not being dealt in
this book, since the scope of the book is limited to timing aspects.

 The options -logically_exclusive , -physically_exclusive , and -asynchronous are
mutually exclusive. You can use only one option in a single set_clock_groups com-
mand. However you can specify relationships between clocks in multiple com-
mands which could be different.

 Each of these three options indicates that timing paths between clock groups
must not be considered. However for crosstalk analysis, they have a different mean-
ing. If the clock group is logically_exclusive , then crosstalk analysis between clocks
is computed like any two synchronous clocks. If the clock group is physically_
exclusive , then no crosstalk analysis is done between the clocks. If the clock group
is asynchronous , the clocks are assumed to have an infi nite timing window where
the aggressor and victim can switch together.

 When clock groups are defi ned asynchronous and the users want to maintain the
crosstalk analysis but don’t want to disable timing paths between clock, then that is
achieved using -allow_paths option. This option can only be used with -asynchro-
nous option. This is generally used only in the context of signal integrity checks and
not used in STA.

 You can have more than one group in a single set_clock_groups command. The list
of clocks in a group is meant to be logically exclusive or physically exclusive or asyn-
chronous to all the clocks in other groups. If only one group is specifi ed, then it indicates
all clocks in that group are logically exclusive or physically exclusive or asynchronous
to the rest of the clocks in the design. One of the most important things to note is this
command only specifi es relationship between clocks in different groups. No relation-
ship is implied for the clocks in the same group. Let us consider the command below:

 set_clock_groups -asynchronous -group [get_clocks {clk1 clk2 clk3}] \
 -group [get_clocks {clk4 clk5 clk6}]

7.4 set_clock_group

80

 This command implies:

 1. clk1 is asynchronous to clk4, clk5 , and clk6.
 2. clk2 is asynchronous to clk4, clk5, and clk6.
 3. clk3 is asynchronous to clk4, clk5, and clk6.
 4. No relation can be assumed among clk1, clk2, and clk3.
 5. No relation can be assumed among clk4, clk5, and clk6.

7.5 Clock Group Gotchas

 While specifying the clock group the designer must be careful about the following
things:

 1. If you defi ne clocks within a group, it doesn’t mean they are synchronous. The
relationship among clocks within a group could be defi ned elsewhere (say in
another set_clock_group command or by the tool default).

 2. Defi ning the clock group with incorrect option (-physically_exclusive, logically_
exclusive, -asynchronous) may not impact timing since all effected timing paths
are ignored, but it will impact your signal integrity analysis.

 3. Just because you have defi ned a clock group relationship between a master clock
and other clocks in the design, it doesn’t mean that relationship is inherited by
the generated clocks which have been derived from the master clock. All rela-
tionships should be explicitly specifi ed.

 4. The best way to remember clock grouping is

 (a) If two or more clocks coexist in the design, but there is no phase relation-
ship, then they are specifi ed as -asynchronous in set_clock_group .

 (b) If two or more clocks coexist in the design, but there is a circuit to select only
one among these, then they are specifi ed as -logically_exclusive in
 set_clock_group .

 (c) If two or more clocks cannot coexist in the design, then they are specifi ed as
 -physically_exclusive in set_clock_group .

7.6 Conclusion

 As much as we would like all clocks in a design to be in a single domain, the reality
is multiple clock domains are inevitable. We looked at how we can ignore timing
paths between domains that don’t necessarily interact or which need not be timed,
even if they interact. In the next chapter we will look at other clock characteristics
that have to be considered for clocks.

7 Clock Groups

	Chapter 7: Clock Groups
	7.1 Setup and Hold Timing Check
	7.1.1 Fast to Slow Clocks
	7.1.2 Slow to Fast Clocks
	7.1.3 Multiple Clocks Where Periods Synchronize in More than Two Cycles
	7.1.4 Asynchronous Clocks

	7.2 Logically and Physically Exclusive Clocks
	7.3 Crosstalk
	7.4 set_clock_group
	7.5 Clock Group Gotchas
	7.6 Conclusion

