
57S. Gangadharan and S. Churiwala, Constraining Designs for Synthesis
and Timing Analysis: A Practical Guide to Synopsys Design Constraints (SDC),
DOI 10.1007/978-1-4614-3269-2_6, © Springer Science+Business Media New York 2013

 Most complex designs require more than one clock for its functioning. When there
are multiple clocks in a design, they would need to interact or share a relationship.
Asynchronous clocks are clock signals that don’t share a fi xed phase relationship.
Having only asynchronous clocks in the design makes it really hard to meet setup
and hold requirements when multiple clock domains are interacting. We will explain
about this in Chap. 7 as to why it is so. Synchronous clocks share a fi xed phase rela-
tionship. More often than not synchronous clocks originate from the same source.

 Today’s SoCs (System on a chip) contain heterogeneous devices within the same
chip. This could include very high-speed processors as well as low-speed memories
all on the same chip. These elements working at different speeds are usually trig-
gered by different clocks. Each portion operating on its own clock could bring in
asynchronicity in the design. This may result in several clocks being derived from
one master clock. Such clocks are referred to as generated clocks or derived clocks .
These clocks can be generated in multiple ways:

 1. Clock dividers
 2. Clock multipliers
 3. Clock gating

6.1 Clock Divider

 A clock divider generates a clock of higher period and lower frequency compared to
the original source clock. A typical example of a clock divider is a 2-bit ripple coun-
ter. Figure 6.1 shows the circuit of a ripple counter . For this circuit, if the period of
the clock at the input of the fi rst fl op is 10ns , then waveform generated at the LSB
(least signifi cant bit) is divided by 2, which means it has a period of 20ns . For the
same design, the waveform at the MSB (most signifi cant bit) is divided by 4, which
means it has a period of 40ns .

 Chapter 6
 Generated Clocks

http://dx.doi.org/10.1007/978-1-4614-3269-2_7

58

6.2 Clock Multiplier

 A clock multiplier is a circuit where frequency is increased and clock period is
decreased for faster clocking rate. This technique is typically used in microproces-
sors and on internal busses so as to improve the overall throughput of the processor
and is generally used in conjunction with internal cache memories. Figure 6.2 shows
the circuit of a simple clock multiplier, where the clock frequency is doubled. The
circuit is simple implementation of clock and its delayed version. The delay can be
introduced in the line by use of buffers and invertors.

 It is more common to use PLLs (phase-locked loops) to achieve frequency mul-
tiplication. This usage of PLLs has been mentioned in Chap. 17 .

6.3 Clock Gating

 Clock-gating technique has become very popular since mid-1990s to reduce power
consumption. Power in a circuit is consumed when a fl op or register in the design
switches state due to a clock trigger. However in a design portions of the logic may
not be getting used at certain times. During that stage, disabling clock to those por-
tions of the design reduces the switching power. This is achieved by having enable
logic before the clock and such a clock is called gated clock . Figure 6.3 shows the
example of a gated clock.

 We can also use clock gating to obtain divided clocks with waveforms similar to
those shown in Fig. 6.1 . The concept of clock gating can be extended to create clock
pulses. Let us consider Fig. 6.4 where the clock is gated via a chain of odd number

 Fig. 6.1 2-bit ripple counter

CLK

LSB

MSB

1 2 3 4 5 6 7 8

1 2 3 4

MSBLSB

CLK

FF1 FF2

CLK

LSB

MSB

1 2 3 4 5 6 7 8

1 2 3 4

MSBLSB

CLK

FF1 FF2

6 Generated Clocks

http://dx.doi.org/10.1007/978-1-4614-3269-2_17

CLK

CLKOUT

Delay

Delayed Clock

CLKOUT

Delayed CLK

CLK

XOR1

 Fig. 6.2 A simple clock multiplier

 Fig. 6.3 A gated clock

CLK
Enable

Gated Clock

 Fig. 6.4 A gated clock to generate pulse

CLK

Delayed CLK

PULSE

1 2 3 4 5 6 7 8

CLK

PULSE

AN1
Z

60

of inverters. Depending on the delay on the chain of inverters, a pulse will be gener-
ated. This method is used to improve performance and reduce power as well. It is
important to ensure that clock gating is typically done with only one clock.

6.4 create_generated_clock

 The SDC command for specifying derived clocks in a design is create_generated_
clock . The BNF grammar for the command is

 create_generated_clock [source_objects]
 -source clock_source_pin
 [-master_clock master_clock_name]
 [-name generated_clock_name]
 [-edges edge_list]
 [-divide_by factor]
 [-multiply_by factor]
 [-invert]
 [-edge_shift shift_list]
 [-duty_cycle percent]
 [-combinational]
 [-add]
 [-comment comment_string]

6.4.1 Defi ning the Generated Clock Object

 create_generated_clock is generally specifi ed on design objects where the clock is
actually available after division or multiplication or any other form of generation.
These design objects called source objects can be port, pin, or net. When defi ning a
clock on a net, ensure that net has a driver pin or the port. Otherwise the clock will
not have a source. These are the points from where generated clocks can propagate
into the circuit.

6.4.2 Defi ning the Source of Generated Clock

 The source pin of a generated clock is specifi ed using the -source option. This indi-
cates the master clock source pin from which the generated clock is derived. For

6 Generated Clocks

61

example, in Fig. 6.1 , the generated clock is defi ned for LSB and MSB, and the
source of the generated clock is defi ned at CLK.

 It is better to understand the difference between a source object and the source of
the generated clock. Source object refers to the point where the generated clock
(or clock) is being specifi ed, while source of the generated clock refers to the point
which acts as a reference from which the generated clock has been obtained.

 As indicated in Chap. 5 , a source object can have more than one clock. If the
master clock source pin has more than one clock in its fanin, then the generated
clock must indicate the master clock which causes the generated clock to be
derived. This is specifi ed using the -master_clock option. This option takes the
name of the SDC clock that has been defi ned to drive the master clock source pin.
Once a generated clock has been defi ned, the clock characteristics (waveform ,
period , etc.) would be derived by the tool, based on the characteristics of the
waveform at the source.

 For a clock to be generated from a specifi c source, it is important that the source
has to somehow infl uence the generated clock. One of the commonly committed
mistakes while specifying generated clock is to specify a source which doesn’t
fanout to the generated clock. Effectively, this means the waveform of the generated
clock has been specifi ed as a function of the waveform at a source pin that does not
even infl uence the generated clock! Many implementation tools do not catch this
and it results in incorrect clock waveforms being used for the generated clock dur-
ing STA.

6.4.3 Naming the Clock

 Like the primary clock, a generated clock is also identifi ed by its name. This is
specifi ed as string using the -name option. When -name is not specifi ed, tools might
assign a name on their own. To establish dependency on the generated clock, any
subsequent SDC command simply refers to the generated clock name.

6.4.4 Specifying the Generated Clock Characteristic

 The characteristic of a generated clock can be specifi ed using one of the three options:

 1. -edges – this is represented as a list of integers that correspond to the edge of
the source clock from which the generated clock has been obtained. The edges
indicate alternating rising and falling edge of the generated clock. The edges
must contain an odd number of integers and should at the very minimum contain
3 integers to represent one full cycle of the generated clock. The count of edge

6.4 create_generated_clock

http://dx.doi.org/10.1007/978-1-4614-3269-2_5

62

starts with “1” and this number (“1”) represents the fi rst rising edge of the source
clock.

 2. -divide_by – this represents a generated clock where the frequency has been
divided by a factor, which means the period is multiplied by the same factor.

 3. -multiply_by – this represents a generated clock where the frequency has been
multiplied by a factor, which means the period is divided by the same factor. It
should be noted that though clocks are defi ned using period characteristic, the
multiply_by and divide_by are specifi ed using frequency characteristic in mind
(which is inverse of period).

 In general any generated clock represented using -divide_by or -multiply_by
options can also be represented using -edges option. However the vice versa is not
true. Let us consider Fig. 6.1 ; assuming the create_clock is defi ned for CLK , the
generated clock can be defi ned at LSB and MSB .

 create_clock -period 10 -name CLK [get_ports CLK]
 create_generated_clock -name LSB -source [get_port CLK]
 -divide_by 2 [get_pins FF1/Q]
 create_generated_clock -name MSB -source [get_pins FF1/Q]
 -divide_by 2 [get_pins FF2/Q]

 The generated clocks at LSB and MSB can also be represented using the edges
option as:

 create_generated_clock -name LSB -source [get_ports CLK]
 -edges {1 3 5}[get_pins FF1/Q]
 create_generated_clock -name MSB -source [get_pins FF1/Q]
 -edges {1 3 5}[get_pins FF2/Q]

 In the LSB case, the edges {1 3 5} indicate the edge number of the specifi ed
source clock CLK to which the fall and rise edges of the generated clock are aligned.
For the MSB , since the edges are aligned to LSB (which is the source); hence, the
edge specifi cation is the same.

 The same waveform for MSB can be generated using CLK as the source. In this
case, the edge would be {1 5 9} .

 create_generated_clock -name MSB -source [get_ports CLK]
 -edges {1 5 9} [get_pins FF2/Q]

 The edge specifi cation of MSB depends on the edge of the source, which in this
case is the primary clock CLK .

 When a generated clock defi ned using -divide_by or -multiply_by options need to
be inverted, then it can be specifi ed using the -invert option. Let us consider Figs. 6.5
and 6.6 which have different fl avors of the divide-by-two circuits. Now depending
on how the generated clock is defi ned (inverting or non-inverting), the characteristic
of the generated clock can change.

6 Generated Clocks

63

CLK

GCLK1

GCLK2

CLK

GCLK1

1 2 3 4

GCLK2

FF1

 Fig. 6.5 Divide-by-two circuit with a non-inverting clock

CLK

1 2 3 4

GCLK3

GCLK4

GCLK3

GCLK4
FF1

CLK

 Fig. 6.6 Divide-by-two circuit with an inverting clock

6.4 create_generated_clock

64

 In Fig. 6.5 , the divider is triggered by positive edge of the source clock, and the
generated clock GCLK1 is defi ned as:

 create_generated_clock -name GCLK1 -source [get_ports CLK]
 -divide_by 2 [get_pins FF1/Q]

 The clock GCLK2 is an inverted version of GCLK1 ; this is therefore defi ned as:

 create_generated_clock -name GCLK2 -source [get_ports CLK]
 -divide_by 2 -invert [get_pins FF1/QBAR]

 It should be noted that the presence of - invert does not change the edge of the
source clock at which generated clock will have a transition. It only impacts whether
the generated clock will start with a rising transition or a falling transition.

 However in Fig. 6.6 , the divider is triggered by negative edge of the source clock;
in this case, the generated clock GCLK3 is defi ned as:

 create_generated_clock -name GCLK3 -source [get_ports CLK]
 -edges { 2 4 6} [get_pins FF1/Q]

 The clock GCLK4 is an inverted version of GCLK3 ; this is therefore defi ned as:

 create_generated_clock -name GCLK4 -source [get_ports CLK]
 -edges { 4 6 8} [get_pins FF1/QBAR]

 As it can be seen that GCLK3 and GCLK4 can be represented using the - edges
option. Specifying it any other way will result in inconsistency between the actual
circuit and the waveform as represented by the SDC command. This is the most
commonly made mistake in defi ning generated clocks.

 Similarly, the CLKOUT in Fig. 6.2 can be represented as:

 create_generated_clock -name CLKOUT -source [get_ports CLK]
 -multiply_by 2 [get_pins XOR1/Z]

 When defi ning a clock where frequency is multiplied, the duty cycle can be spec-
ifi ed using the -duty_cycle option. This option has meaning only with multiply_by
option and represents the percentage of the pulse width when the multiplied clock
is 1 . For example, CLKOUT in Fig. 6.2 can also be represented as below, indicating
a 50 % duty cycle.

 create_generated_clock -name CLKOUT -source [get_ports CLK]
 -multiply_by 2 [get_pins XOR1/Z] -duty_cycle 50

 Let us consider the Fig. 6.4 , where a high pulse has been generated and the pulse
width depends on the delay in the chain of the invertors. In this case, edge 1 of the
clock triggers both the rising and falling edge of the pulse. This is represented as:

 create_generated_clock -name PULSE -source [get_ports CLK]
 -edges { 1 1 3} [get_pins AN1/Z]

6 Generated Clocks

65

 Depending on the kind of pulse, the edge specifi cation may change. For example,
in Fig. 6.4 , if the AND gate is replaced by a NAND gate, then it will result in a rise-
edge-triggered low pulse . This would be represented as:

 create_generated_clock -name PULSE_N -source [get_ports clk]
 -edges { 1 3 3} [get_pins NAND1/Z]

 This is because the fi rst edge of the clock will result in a falling edge and then a
rising edge of the low pulse and since -edges represent the order in terms of rising
and falling, so it is represented as {1 3 3} . This implies the rising edge of the gener-
ated clock will happen due to edge 1 of the source clock. The next falling edge of
the generated clock will happen due to edge 3 of the source clock followed by the
next rising edge which also is on the edge 3 of the source clock. This falling edge is
actually in the next pulse of the generated clock.

6.4.5 Shifting the Edges

 The edges of a generated clock may need to be moved by time units to indicate shift.
For example, in Fig. 6.4 , if the delay through the chain of inverters is 2ns , then the
high pulse can be accurately represented as:

 create_generated_clock -name PULSE -source [get_ports clk]
 -edges { 1 1 3} -edge_shift {0 2 0} [get_pins AN1/Z]

 The -edge_shift option takes a list of fl oating point numbers, which represents
the shift in each edge in terms of time units. This option must have the same number
of arguments as the number of edges to represent the shift of each edge of the gener-
ated clock. The above command now implies, on the generated clock:

 Rising edge happens at the fi rst edge of the source clock.
 Falling edge happens at 2ns after the fi rst edge of the source clock.
 Next rising edge happens at third edge of the source clock.

 Similarly, for a low pulse , the representation would be

 create_generated_clock -name PULSE_N -source [get_ports clk]
 -edges { 1 3 3}-edge_shift {2 0 2} [get_pins NAND1/Z]

 This command implies, on the generated clock

 Rising edge happens at 2ns after the fi rst edge of the source clock.
 Falling edge happens on third edge of the source clock.
 Next rising edge happens at 2ns after the third edge of the source clock.

 The shift can be a positive or negative number. Use of -edges and -edge_shift can
be used to model arbitrarily complex generated clocks.

6.4 create_generated_clock

66

6.4.6 More than One Clock on the Same Source

 As described in Chap. 5 , there can be more than one clock defi ned at a point. Or, for
a given source, multiple clocks could be reaching the source. Typically one gener-
ated clock is defi ned per clock reaching the specifi ed source. If there is more than
one clock converging on the source specifi ed for the generated clock, then the gen-
erated clock derived from this clock source pin could have characteristics corre-
sponding to either of the clocks reaching the source. Thus, we would need to specify
which of the clocks should be used to determine the characteristics of the generated
clock. Let us consider the block in Fig. 6.7 .

 Assume that the CLK port is driven outside the block by a multiplexer on which
two clocks with two different characteristics converge. This CLK port can act as a
source for a clock divider circuit inside the block. In order to model the clock con-
straints for such a block and the generated clock for divider circuit, the designer
would have to specify multiple generated clocks on the same object. This is repre-
sented as:

 create_clock -name C1 -period 10 [get_ports CLK]
 create_clock -name C2-period 15 [get_ports CLK] -add

 # The following generated clock is based on C1’s characteristics
 create_generated_clock -name GC1 -divide_by 3 -source [get_port CLK]
 -master_clock C1 [get_pins FF2/Q]

 # The following generated clock is based on C2’s characteristics
 create_generated_clock -name GC2 -divide_by 3 -source [get_port CLK]
 -master_clock C2 [get_pins FF2/Q] -add

 Thus, even though the source for both the generated clocks is the same (viz.,
 CLK port), the waveform for the two generated clocks are different. Alternately,

CLK

BLOCK

C1

C2

GC1
GC2

FF1 FF2

 Fig. 6.7 Block driven by off-chip multiplexer with two clocks

6 Generated Clocks

http://dx.doi.org/10.1007/978-1-4614-3269-2_5

67

there are two clock waveforms on the object FF2/Q . This makes sense logically.
If the source of the divider has two different kinds of clocks on it, the divider output
will also have two different kinds of clocks on it.

 Under these conditions the user would need to specify an -add option, if he wants
both the generated clocks to be considered for analysis by synthesis and STA. Since
each clock is required to be identifi ed by a unique name, it is mandatory to use
 -name option, when -add option is used. In this example for a generated clock, the
specifi ed source object had multiple clocks (either defi ned on it or reaching it). In
such situations, it’s not clear as to which of these clock characteristics should be
used to create the waveform for the generated clock. The option - master_clock has
been used to identify which of the clocks reaching the specifi ed source object should
be used for deriving the characteristics of the generated clock. When a user specifi es
multiple clocks (or generated clocks) on the same object but doesn’t specify a -add
option, the last constraint overrides the previous defi nitions.

 It should be noted that -source uses design object on which clock is defi ned/
reaches, while master specifi es the clock name.

6.4.7 Enabling Combinational Path

 Let us consider Fig. 6.8 which represents a source-synchronous interface . In a
source-synchronous interface, clock appears along with the data as an output. The
advantage of this mechanism is that both clock and data are routed through similar
traces and thus have very similar delays. At the receiver device, the incoming data
is sampled with respect to the incoming clock. The actual trace delay is not of much
importance as long as the delay differential on the two lines is close to 0. This
mechanism provides an interface for high-speed data transfer.

 In this fi gure the delay on the DATAOUT pin should be specifi ed with respect to
 CLKOUT . In this case, a generated clock needs to be defi ned at CLKOUT. This is
done using the -combinational option. When this option is specifi ed, the generated

CLK

CLKOUT

DATAOUT

FF1

FF2

 Fig. 6.8 Source-synchronous interface

6.4 create_generated_clock

68

clock is considered to be of the same period as master clock pin, which is equivalent
to a divide_by 1 . It cannot be used with any other option. This can be represented as:

 create_generated_clock -name CLKOUT -combinational
 -source [get_pins FF1/Q [get_ports CLKOUT]

 In some case, there may be more than one path from the source clock pin to the
place where generated clock is defi ned. If these paths are sequential in nature, i.e.,
they pass through sequential elements like fl ip-fl ops or through a transparent latch,
then generated clocks are generally considered safe the way they are traditionally
defi ned. However in some cases, if there is path from the source pin to the generated
clock, which is purely combinational, that coexists with the sequential path, then
traditional defi nitions of create_generated_clock will fail. In such cases, it is impor-
tant to block the sequential path because the combinational path is always active.
That too is achieved by defi ning a generated clock with -combinational option.

 In Chap. 11 on false paths, we will see how the various kinds of clocks can be
used to disable certain clock paths from timing analysis, which help in improving
the effi ciency of STA tools.

6.5 Generated Clock Gotchas

 Since clocks can be generated in multiple ways, it is a common source of mismatch
between design functionality and timing specifi cation. While specifying generated
clock, the designer must be careful about the following things:

 1. If you defi ne a generated clock make sure it is actually generated by the specifi ed
source object. Conversely, if a fl ip-fl ip or register is driven by a clock which is in
fanout of another clock, make sure there is create_generated_clock constraint set
on it. A missing generated clock may result in unconstrained registers.

 2. When multiple clocks converge on the source pin of a clock, make sure to spec-
ify the master clock with the generated clock defi nition.

 3. If you are specifying more than one generated clock constraint on a pin because
of multiple sources, make sure to use the -add option; otherwise, the last speci-
fi ed constraint would override.

 4. Avoid clock convergence via multiple combinational paths as it can result in a
pulse. If clocks converge via multiple paths (combinational and sequential), then
it is important to disable the sequential path.

6.6 Conclusion

 As with primary clocks, it is important to model generated clocks correctly. Failure to
do so may result in increased timing closure iterations. If the characteristic of the gen-
erated clock as defi ned by the SDC constraint doesn’t match the actual functionality

6 Generated Clocks

http://dx.doi.org/10.1007/978-1-4614-3269-2_11

69

of the circuit, then these are extremely diffi cult to debug. In many cases, the design
may meet the timing, but the hardware will exhibit a totally different behavior.

 When generated clocks are defi ned, the clock characteristics are formed based on
the clock characteristic at the source. It is usually possible to defi ne the same char-
acteristic directly through create_clock on the objects, rather than using generated
clocks. From timing analysis perspective, as long as the characteristics are the same,
it does not matter whether the clock was specifi ed using create_generated_clock or
using create_clock . However, whenever a clock is derived from another clock, it is
always better to use create_generated_clock , rather than create_clock . It is easier to
maintain and enhance, as modifying the source clock characteristic will directly
impact the characteristic here. Also, using the correct constraint better mimics the
design intent, which reduces the chances of errors as constraints are modifi ed or
enhanced – including migration across technologies and designs.

 Further, when multiple clocks in a design interact, it is not enough to simply
defi ne the clocks correctly; it is also required to correctly defi ne relationship between
clocks. In the next chapter we will cover how you can effectively defi ne such rela-
tionship between interacting clocks.

6.6 Conclusion

	Chapter 6: Generated Clocks
	6.1 Clock Divider
	6.2 Clock Multiplier
	6.3 Clock Gating
	6.4 create_generated_clock
	6.4.1 Defining the Generated Clock Object
	6.4.2 Defining the Source of Generated Clock
	6.4.3 Naming the Clock
	6.4.4 Specifying the Generated Clock Characteristic
	6.4.5 Shifting the Edges
	6.4.6 More than One Clock on the Same Source
	6.4.7 Enabling Combinational Path

	6.5 Generated Clock Gotchas
	6.6 Conclusion

