
167S. Gangadharan and S. Churiwala, Constraining Designs for Synthesis
and Timing Analysis: A Practical Guide to Synopsys Design Constraints (SDC),
DOI 10.1007/978-1-4614-3269-2_14, © Springer Science+Business Media New York 2013

 Today’s designs are very complex. They are “System on a Chip” in the real sense.
The same chip performs multiple functions at different points of time. Within the
chip also, there are portions in the design which behave one way in one use mode
and behave differently in another use mode.

14.1 Usage Modes

 A portion of the design might have one requirement for one kind of operation. And,
for a different kind of operation the same portion of the design might have a differ-
ent requirement.

 The best example could be a design in the video entertainment segment. In the
video world, user experience is a major requirement. In order to provide a real-like
user experience, performance becomes the key factor. On the other hand, when the
user is not using the device for a video application, performance is no longer impor-
tant. Rather, it is more important to conserve battery life (thus, power) – even if
 performance has to be scaled down signifi cantly.

 Thus, parts of the device could have changing requirements – depending upon
what mode the device is currently in. Individually, each part of the design has to
meet the requirements of each of the individual modes.

14.2 Multiple Modes

 For the sake of simplicity, let us say, a device has two major usage scenario – represented
as modes M1 and M2 . Let us further assume, there are two parts – P1 and P2 in the
design, for which the timing requirements change depending upon whether the
device is being used in mode M1 or M2 .

 Chapter 14
 Modal Analysis

168

 Now, P1 has to meet the requirements of both the modes, M1 and M2 . Thus, P1
has to be designed to meet the most restrictive of the requirements. Similarly, P2 has
to be designed to meet the most restrictive of the requirements among M1 and M2 .
However, there is no situation when P1 will be operating in mode M1 while P2
would be operating in mode M2 . Both P1 and P2 will together operate in mode M1
or in M2 .

 Let us consider the circuit shown in Fig. 14.1 .
 The paths shown with solid lines indicate functional paths – which are active

when the circuit is in normal operation. The paths shown with dotted lines indicate
scan paths – which are active during Scan Shift . The same CLK port is used for
 SystemClock during functional mode and TestClock for Scan mode.

 The SystemClock usually operates at a higher frequency, say a period of 10ns ;
while TestClock usually operates at a lower frequency, say a period of 40ns .

 The path F1 → F3 is a functional path and should meet the timing corresponding
to 10ns period. The path F1 → F2/SI is a scan path and should meet the timing
 corresponding to 40ns .

 We need to specify SystemClock so that path F1 → F3 gets timed correctly. We
also need to specify TestClock so that path F1 → F2 gets timed. Since both
 SystemClock and TestClock share the same port, both clocks will be declared at the
same location – which is CLK port. Now, during timing analysis, each of the paths
will get analyzed corresponding to both SystemClock as well as TestClock . Thus,
path F1 → F2 will be timed corresponding to SystemClock also – which is an over-
kill. The path will be forced to meet 10ns , when 40 is good enough.

 However, at any time the device will be in only one mode – either it will be in
normal operation or it will be under scan mode. If it is in functional mode , the path
 F1 → F2 is not of interest. And, when the path F1 → F2 is of interest, the device is
in scan mode .

F1

F3

F2

SI

SI

CLK

 Fig. 14.1 Functional and test mode

14 Modal Analysis

169

 In such situations, we can defi ne two different modes for the device. We could
defi ne a functional mode. In this mode, it analyzes paths F1 → F3 and F2 → F3
using SystemClock . And, we could defi ne another mode for scan. In this mode, it
analyzes path F1 → F2 using TestClock .

14.3 Single Mode Versus Merged Mode

 A user could write the constraints for each mode individually, or write a set of con-
straints which are combined for multiple modes.

 Usually front end designers who write the RTL code to represent the functional-
ity fi nd it easier to comprehend the design in terms of various functional modes. It
comes more naturally for them to think of the design in terms of functional mode.
Hence, they prefer to write the constraints for each mode individually.

 In Sect. 14.6 , we will see some of the challenges that arise due to individual
mode constraints. Because of those challenges, the backend designers tend to merge
the constraints. For them, the design is usually less about the functionality. They
look at the design as a network of logic elements, and don’t tend to think in terms of
individual functional modes.

14.4 Setting Mode

 When an SDC represents a single mode, certain points in the design can be fi xed at
specifi c values that are unique characteristics of that mode. The SDC command for
setting a specifi c value is set_case_analysis . The SDC syntax for the command is:

 set_case_analysis value port_pin_list

where, value can be 0 / 1 / rising / falling .
 The command fundamentally conveys that for the current analysis assume that a

given object is at the specifi ed value or transition.
 For putting a device into a specifi c mode , sometimes just one set_case_analysis

might be suffi cient. And, sometimes, a set of several set_case_analysis might be
needed to put the device into a specifi c mode.

 Figure 14.2 shows the same circuit as Fig. 14.1 – but with some more details.
 For this example to be analyzed in the functional mode , the clocks will be

declared as:

 create_clock -name SysClk -period 10 [get_ports CLK]

 In addition, we should apply

 set_case_analysis 0 [get_ports SE]

14.4 Setting Mode

170

 The fl op models contain the information that when SE pin is 0 , only D pin can be
sampled. Thus, the paths to SI pin will not be analyzed, but the paths to D pin will
be analyzed. Thus, path F1 → F2 will not be analyzed in this mode, because this
path reaches SI pin of F2 .

 On the other hand, if we want the example to be analyzed in the scan mode , the
corresponding commands would be:

 create_clock -name TstClk -period 40 [get_ports CLK]
 set_case_analysis 1 [get_ports SE]

 Again, because fl op model contains the information that when SE pin is 1 , only
 SI pin can be sampled. Thus, the paths to D pin will not be analyzed but the paths to
 SI pin will be analyzed. Thus path F1 → F2 will be analyzed in this mode. Also, the
path from F2 → F3 ’s SI pin will also be analyzed.

 Let us consider a block, which has several possible modes of operation. There is
a confi guration register of 8 bits whose setting decides the specifi c mode of opera-
tion. In such a case, all 8 bits of the register might need to be set in order to put the
device in the mode of interest. Example commands could be something like:

 set_case_anlaysis 0 [get_pins confi g_reg[0]/Q]
 set_case_anlaysis 1 [get_pins confi g_reg[1]/Q]
 set_case_anlaysis 1 [get_pins confi g_reg[2]/Q]
 set_case_anlaysis 0 [get_pins confi g_reg[3]/Q]
 set_case_anlaysis 1 [get_pins confi g_reg[4]/Q]
 set_case_anlaysis 0 [get_pins confi g_reg[5]/Q]
 set_case_anlaysis 1 [get_pins confi g_reg[6]/Q]
 set_case_anlaysis 0 [get_pins confi g_reg[7]/Q]

F1

F3

F2

SI

SI

CLK

SE

SE

SE

 Fig. 14.2 Scan pins shown for the previous circuit

14 Modal Analysis

171

 In order to decide the set_case_analysis settings, we fi rst need to decide the mode
of operation for which the analysis has to be done. After that we need to decide the
control pins/ports which infl uence the mode of operation for the device. Then, we
need to specify those pins/ports to be at the values which will put the device into that
mode of operation. Usually, set_case_analysis is applied only on ports or on register
output pins. Usually, the register pins are used to set values on confi guration regis-
ters. Even though, the syntax allows the values to be applied on any pin.

 set_case_analysis command prevents certain paths from participating in timing
analysis. This prevention happens in multiple ways. First, the specifi c pin being
constant does not originate or transmit any transition. Second, the values specifi ed
through set_case_analysis propagate to the rest of the design – thus putting addi-
tional constants in the design. Third, these constants (either specifi ed directly
through set_case_analysis or after propagation) disable certain paths from being
timed. Circuit shown in Fig. 14.3 provides an example of how the values applied
through set_case_anlaysis propagate and disable certain paths from participating in
timing analysis.

 Let us assume that in order to set the device into a specifi c mode, the following
constraint has been specifi ed:

 set_case_analysis 0 [get_ports P1]

 So, any path involving a transition on I1/A no longer participates in timing analy-
sis, as I1/A is always held at a constant value. A transition on I1/B will also not reach
 I1 ’s output pin. Hence, any path involving a transition on I1/B will also not partici-
pate in timing analysis. The value of 0 on I1/A propagates to the output of the AND
gate and then to the Sel pin of the MUX . Because MUX ’s Sel pin is held at constant,
so, paths through this pin will also not be timed. And, paths through D1 pin of the
 MUX will also not participate – because, MUX ’s Sel pin being at 0 means D1 will
not reach the output. Only the paths through D0 to output of MUX and the I2/B to
 I2/Z will be timed.

B

P1

I2

AI1
B E

Z0

1

S

Z

D0

D1

 Fig. 14.3 Case analysis impact on paths being timed

14.4 Setting Mode

172

14.5 Other Constraints

 Using the set_case_analysis command we can set specifi c points in a design to fi xed
logical values which characterize a specifi c mode of operation. Besides setting the
logical values, the constraints for a specifi c mode also means setting other con-
straints like clock defi nitions, input and output delays etc. also which are specifi c to
the intended mode of operation. Thus for the same input port, in one mode, it could
have one input delay and in another mode, it could have another input delay.

 For example, let us say, an input port receives data with respect to one clock in
one mode of operation and data with respect to another clock in another mode of
operation. In this case, for each mode, the input would be constrained with respect
to one clock only (corresponding to that mode).

 Or, an input might receive signals at different time in different mode of opera-
tion. In such cases also, the input delay specifi ed in a specifi c mode is usually the
value corresponding to that mode of operation.

 In short, while writing constraints for a specifi c mode, the constraints are written
as if that is the only mode in which the device will operate.

14.6 Mode Analysis Challenges

 The advantage of analyzing individual modes is that certain timing paths which are
never possible in the actual device operation get excluded from timing analysis, e.g.,
referring to Fig. 14.1 , F1 → F2 path in functional mode need not be timed. However,
mode analysis also has its own challenges.

14.6.1 Timing Closure Iterations

 Let us consider a design with four different modes – M1 , M2, M3, and M4 . The
design has to meet the timing for each mode individually. The designer will synthe-
size the design for any one mode – say M1 . Now, if timing analysis is done for M1 ,
the timing might be clean. The same design also needs to be analyzed and made
timing clean for mode M2 . It is possible that certain paths which are applicable in
 M2 were not to be analyzed in M1 . These paths might potentially fail timing, when
subjected to timing analysis in mode M2 . So, some fi xes will have to be made into
the design – so that these paths also start meeting the timing. After mode M2 is also
timing clean, the timing analysis will need to be done for mode M3 . Once again, it
is possible that some paths valid in mode M3 might fail the timing. So, some fi xes
will have to be made once again – so that these paths also start meeting the timing.
Similarly, analysis will be needed for mode M4 , which might cause some more fi xes.

 By now, each of the modes has been individually analyzed and where needed,
fi xes were also made. However, as part of making these fi xes, the design has been
altered. Any timing analysis done before the design was last altered is no longer

14 Modal Analysis

173

valid. Thus, timing analysis will need to be done once again for each of the modes
after the last update.

 When we redo the timing analysis for mode M1 – it is possible that some path
might fail timing now. During the previous iteration of mode M1 , this same path was
meeting the timing. As part of making fi xes for other modes, it is possible that this
path was diverted through a longer route. And, as part of fi xing this, it is possible
that some other path is diverted through a longer route – which could potentially
cause some other mode to fail.

 Thus, the whole process goes into a loop, where a fi x of a path in one mode
causes another path applicable in another mode to have broken timing. The funda-
mental problem is that implementation tools have been made to see only a subset of
the paths at any given time and they try to meet only those paths. In the process, they
might deteriorate paths which are not being seen by them in the current mode. At
this time, the tools are not able to see that the paths which are being deteriorated
could be important in another mode, causing a failure in that other mode.

 Today, with complete systems on a single chip, many of the designs have more
than ten modes. So, there are too many analysis required; and there is always a risk
of this going into a loop. This loop is commonly referred as timing closure
iterations .

 As a solution to this problem, many designers try to combine various modes into
a single hypothetical mode. The concept is called Mode Merge . We will read more
about it in the next chapter.

14.6.2 Missed Timing Paths

 We have seen earlier in this chapter, that when we apply some set_case_analysis , certain
paths get excluded from the timing analysis. However, it is expected that each timing
path in the design is there for some specifi c purpose, and each path should be required
to meet some timing in some mode or other. Typically, a design has millions of timing
paths. In each mode, thousands of paths may get excluded from timing analysis.

 However, each timing path should get covered in at least some mode or the other.
There is no good way of knowing that each path been covered. Effectively, there is
a risk that some specifi c path got excluded from each of the mode settings and was
not timed at all in any of the modes. This could happen because the set_case_analy-
sis used for some mode were incorrect; or because a certain mode was not consid-
ered for analysis.

14.7 Confl icting Modes

 Because of the problem related to timing closure iteration mentioned above, some-
times, users will set different parts of the design in different modes, which might
even be confl icting. They do this so that not many different modes have to be cre-
ated. Let us consider the circuit shown in Fig. 14.4 .

14.7 Confl icting Modes

174

B1

En

B2

 Fig. 14.4 Confl icting mode
settings

 Let us assume that the design pin En controls the operational mode of the design.
Hence, for two different runs, the case_analysis settings would be:

 set_case_analysis 0 [get_ports En]

 and

 set_case_anlaysis 1 [get_ports En]

 As mentioned in the previous section, this will mean doing timing analysis twice.
Sometimes, this could also cause iterations through the implementation tools.

 Let us further assume that the block B1 has the most restrictive timing when its
pin En is at 0 , while the block B2 has the most restrictive timing when its input pin
 En is 1 . In such a case, some designers prefer to specify:

 set_case_analysis 0 [get_ports En]
 set_case_anlaysis 1 [get_pins B2/En]

 It should be noticed that it is never possible to have the above situation in the
design, since B2/En is being driven directly by the En port. However, this allows the
design to be put into the most restrictive situation and do the analysis only once.

 Similarly, sometimes, confl icting values are set at fl ops. A set_case_analysis set
somewhere could propagate a 0 at a specifi c fl op’s input, while the fl op’s output
might have a 1 set at it. Again, not something that is actually possible in the design.
However, this covers the situation, where the timing was supposed to be most
restrictive in one condition till the fl op; and after the fl op it is most restrictive in an
opposite condition.

 Merging of several SDC fi les belonging to different modes into one SDC fi le is
dealt in more detail in the next chapter. This example has been given mostly to show
that sometimes, mode settings could be made in a confl icting manner, even though,
logically these situations may never occur in the actual design.

14 Modal Analysis

175

14.8 Mode Names

 It should be noted that several times in this chapter, we refer to mode names.
However, SDC does not provide any mode naming convention/command. Individual
tools might still provide a mechanism to provide a name to the mode. In the context
of SDC, any name for the mode is mostly for understanding of the user – as to which
functionality does he want to cover, by the corresponding set_case_analysis
commands.

14.9 Conclusion

 Mode analysis allows a user to restrict the analysis to specifi c operational situations
only, rather than considering all possible combinations of paths and situations, some
of which might never happen in the design. Mode analysis makes it easier for the
designer to write constraints only for specifi c operational modes. However, dealing
with only a subset of paths for one mode, without any consideration for the other
paths, which will be meaningful in other modes often causes a long iterative loop
through the timing closure.

 For most designs, front end designers generate the SDC fi le specifi c to individual
modes. However, the backend engineers merge several modes into one constraint
fi le, so that the implementation tools can look at the whole set of requirements in
one go.

14.9 Conclusion

	Chapter 14: Modal Analysis
	14.1 Usage Modes
	14.2 Multiple Modes
	14.3 Single Mode Versus Merged Mode
	14.4 Setting Mode
	14.5 Other Constraints
	14.6 Mode Analysis Challenges
	14.6.1 Timing Closure Iterations
	14.6.2 Missed Timing Paths

	14.7 Conflicting Modes
	14.8 Mode Names
	14.9 Conclusion

