
157S. Gangadharan and S. Churiwala, Constraining Designs for Synthesis
and Timing Analysis: A Practical Guide to Synopsys Design Constraints (SDC),
DOI 10.1007/978-1-4614-3269-2_13, © Springer Science+Business Media New York 2013

 Usually, outputs are always registered – just before being presented to the port. In
many cases, inputs are also registered immediately after entering the block. In any
case, most of the times, each signal entering an input gets registered at least once,
before it comes out through an output port.

 However, sometimes there might be paths from input to output, without encoun-
tering any register. Such paths are called combinational paths . Figure 13.1 shows an
example of a combinational path.

13.1 set_max_delay

 A combinational path can be constrained so that the delay on the path can be limited
within an upper bound. This can be done through set_max_delay command. The
SDC syntax for this command is:

 set_max_delay [-rise] [-fall]
 [-from from_list]
 [-to to_list]
 [-through through_list]
 [-rise_from rise_from_list]
 [-rise_to rise_to_list]
 [-rise_through rise_through_list]
 [-fall_from fall_from_list]
 [-fall_to fall_to_list]
 [-fall_through fall_through_list]
 delay_value
 [-comment comment_string]

 The options related to path and transition specifi cation and comment are same as
those explained in Chap. 11 for set_false_path , and thus a detailed explanation is
omitted in this chapter. The delay_value specifi es the upper limit of the allowed

 Chapter 13
 Combinational Paths

http://dx.doi.org/10.1007/978-1-4614-3269-2_11

158

delay for this combinational path. For example, if the path shown in Fig. 13.1 is
allowed to have a maximum delay of 8ns , the corresponding command would be:

 set_max_delay -from [get_ports I1] -to [get_ports O1] 8.0

13.2 set_min_delay

 If the path is required to have a lower bound for the delay, the requirement can be
specifi ed through set_min_delay command. The SDC syntax for the command is:

 set_min_delay [-rise] [-fall]
 [-from from_list]
 [-to to_list]
 [-through through_list]
 [-rise_from rise_from_list]
 [-rise_to rise_to_list]
 [-rise_through rise_through_list]
 [-fall_from fall_from_list]
 [-fall_to fall_to_list]
 [-fall_through fall_through_list]
 delay_value
 [-comment comment_string]

 The options for set_min_delay and set_max_delay are the same in meaning and
syntax. The only way set_min_delay differs from set_max_delay is that this com-
mand specifi es the lower bound on the delay through the path, while set_max_delay
specifi es the upper bound on the delay. Thus, the actual delay for the path has to be
somewhere between set_min_delay and set_max_delay .

 Usually, in most cases, there might be no need to specify set_min_delay . Only in
some specifi c situation, where some hold requirements might need a minimal delay
value, there would be a need for set_min_delay specifi cation.

13.3 Input/Output Delay

 A combinational path can also be constrained using set_input_delay and set_
output_delay . The syntax and semantics of these commands and their options are
described in Chap. 9 and are not being repeated here. In this section, we will describe
how set_input_delay and set_output_delay can be used to constrain the delay for a
combinational path.

I1 O1
 Fig. 13.1 Combinational
path

13 Combinational Paths

http://dx.doi.org/10.1007/978-1-4614-3269-2_9

159

 Let us say that we want to constrain the combinational path shown in Fig. 13.1
to have a maximum delay of 8ns .

13.3.1 Constraining with Unrelated Clock

 Let us also say that this same block also has a clock declaration (say CLK) with a
period of 12ns . This clock may not have any relationship with this combinational
path, as shown in Fig. 13.2 .

 So, out of the period of 12ns , a duration of 8ns needs to be available for this
combinational path. The remaining 4ns can be distributed outside this block, through
 set_input_delay and set_output_delay . Say, an input delay of 3 and an output delay
of 1 can be specifi ed. The distribution of 3 and 1 among set_input_delay and set_
output_delay is not important, as long as the total of input delay and the output
delay specifi cation is 4 . Thus, the following set of commands can achieve a combi-
national path delay of maximum 8ns :

 create_clock -name CLK -period 12 [get_ports clk]
 set_input_delay -max -clock CLK [get_ports I1] 3.0
 set_output_delay -max -clock CLK [get_ports O1] 1.0

 The risk with this style of constraining a combinational path is, if for some reason,
the clock period is modifi ed, the combinational path delay also gets modifi ed, even
though there might be no relation between the combinational path and the clock.

13.3.2 Constraining with Virtual Clock

 Instead of using a clock which is being declared for this block for some other pur-
pose, a virtual clock can be declared, just for constraining the combinational path.

clk

I1 O1

 Fig. 13.2 Combinational
path – no interaction with
clock

13.3 Input/Output Delay

160

We can choose whatever period we want for this virtual clock – as long as the period
is more than the required max delay for the combinational path. And, the excess can
be distributed among input and output delays. The following set of constraints pro-
vides one example possibility:

 create_clock -name vCLK -period 15
 set_input_delay -max -clock vCLK [get_ports I1] 3.0
 set_output_delay -max -clock vCLK [get_ports O1] 4.0

 A virtual clock has been declared with a period of 15 . Notice that there is no
design object associated with the create_clock , thus making the clock to be virtual.
With the period of 15 , there is an excess of 7ns (15–8) . This excess has been distrib-
uted between set_input_delay and set_output_delay .

13.3.3 Constraining with Related Clock

 Let us look at the same path, but this time, we also consider the circuit around this
block, to show the launching and the capturing fl ops also – which lie outside this
block. Figure 13.3 shows an example.

 The launch and the capture fl ops lie outside the specifi c block. They could be
lying in a different block, or they could be a part of the top-level glue logic. The
input delay constraint can be specifi ed with respect to the clock that launches data
from F1 . The input delay specifi ed should be the delay from the launch fl op till the
input pin I1 .

 The output delay constraint can be specifi ed with respect to the clock that cap-
tures data in F2 . The output delay specifi ed should be the delay from the output pin
 O1 till the capture fl op F2 .

 The clocks (which trigger F1 and F2) themselves may or may not be feeding into
this block. If these specifi c clocks are not feeding into the block, a corresponding
virtual clock would need to be created.

I1 O1
F2F1

 Fig. 13.3 Combinational path in the context of launching/capturing fl op

13 Combinational Paths

161

 Among the three approaches discussed for constraining using input/output
delays, this approach using the related clocks is the best. It correctly refl ects the
design scenario, and the allowed delay through the combinational block can then be
determined automatically by the tools.

13.4 Min/Max Delay Versus Input/Output Delay

 In terms of timing implication, usage of either style (viz., set_max_delay /set_min_
delay or either of the three styles of set_input_delay /set_output_delay) has the same
effect. However, it is preferable to constrain a combinational path using set_input_
delay/set_output_delay combination. Let us consider the circuit in Fig. 13.4 , where
an input and output are part of both a combinational path as well as a registered
path.

 Let us say, the clock period is 15ns . Let us say, the input arrives at I1 at 4ns after
the clock edge. Let us say, the output O1 has to travel for 3ns , before it gets captured
in the destination fl op.

 So, the delay outside the block is 7ns . Thus, the combinational path can have a
delay of 8ns maximum. This can be specifi ed as:

 set_max_delay -from [get_ports I1] -to [get_ports O1] 8.0

 Because of the input feeding into a register, there needs to be an input delay also
on I1 (in order to time I1 to F1 path), which will be specifi ed as:

 set_input_delay -max -clock CLK [get_ports I1] 4.0

 And, in order to time F2 to O1 path, there needs to be an output delay also on O1 ,
which will be specifi ed as:

 set_output_delay -max -clock CLK [get_ports I1] 3.0

clk

I1 O1

F1 F2

 Fig. 13.4 An input/output is part of combinational as well as registered path

13.4 Min/Max Delay Versus Input/Output Delay

162

 The set_input_delay and the set_output_delay have to be anyways specifi ed,
because of I1 and O1 ’s involvement in registered path. With these two specifi ca-
tions, the combinational path anyways gets constrained to 8ns . So, there is no need
for the explicit specifi cation of set_max_delay .

 Assuming that the set_max_delay is anyways specifi ed (to 8ns), it might be
expected that these input and output delay specifi cations should not impact the com-
binational path delay (viz., 8ns). However, in reality, the arrival time at the input and
the output external delays will get counted as part of the combinational path!!!!

 So, the combinational path is specifi ed a limit of 8ns (through set_max_delay).
Out of that, 7ns is contributed by the input and output delays. Thus, only 1ns is left
for the actual path. This is not what was intended. So, it is possible that for a com-
binational path constrained through set_max_delay , the effective allowed delay gets
modifi ed due to an input/output delay specifi cation.

 Now, if an input to output path is purely combinational, we would have a choice
of either using only a set_max_delay or a combination of set_input_delay and set_
output_delay . Here, since there is no need for set_input_delay and set_output_delay ,
it might appear as if set_max_delay alone is suffi cient and is harmless. This is true.
However, if the design gets modifi ed so that I1 or O1 get involved in a registered
path, they will also warrant a set_input_delay/set_output_delay specifi cation. Now,
this new specifi cation of set_input_delay /set_output_delay ends up inadvertently
modifying the max allowed delay for the combinational path.

 Hence, from an ease-of-maintenance perspective, it is better to use input/output
delay combination, rather than set_max_delay . Though the discussion was pre-
sented in terms of set_max_delay and set_input_delay / set_output_delay with - max
specifi cation, the same discussion holds true for set_min_delay and set_input_delay/
set_output_delay with -min specifi cation.

13.5 Feedthroughs

 The word feedthrough has more than one meaning – depending upon the context.
In the context of this chapter, we use the term to refer to specifi c types of combi-
national paths , wherein an input signal directly reaches an output port, without any
circuit. The delay for a feedthrough path is just the wire delay inside the block.
A feedthrough path often spans several consecutive blocks. The discussion mentioned
in this section in the context of a feedthrough is equally applicable for other combi-
national paths also, if they happen to span through multiple consecutive blocks.

 Let us consider a feedthrough path which spans across four consecutive blocks,
as shown in Fig. 13.5 .

 Let us assume that the total path delay from S (ource) to D (estination) is supposed
to be within 13ns . Let us assume that the delay within each block is supposed to be
maximum 2ns and that the time of fl ight from one block to another block can be
maximum 1ns . The time of fl ight for S to B1 and from B4 to D also has a maximum
limit of 1ns each. So, the total path delay stays within 13ns .

13 Combinational Paths

163

 We will now apply constraint on all these blocks. One way is to specify the fol-
lowing for each of the blocks. The actual port names have to be specifi ed in the
command below:

 set_max_delay -from <input port> -to <output port> 2.0

 However, we have seen in the previous section that it is better to specify set_
input_delay /set_output_delay , rather than set_max_delay .

 For B1 , the signal arrives at I1 within 1ns . After it comes out of O1 , it has to
travel for a max of 10ns (3 blocks * 2ns each + 4 top-level routing * 1ns each).

 For B2 , the signal arrives at I2 within 4ns (1 block * 2ns + 2 top-level routing
* 1ns each). After it comes out of O2 , it has to travel for a max of 7ns (2 blocks * 2ns
each + 3 top-level routing * 1ns each).

 For B3 , the signal arrives at I3 within 7ns (2 blocks * 2ns each + 3 top-level rout-
ing * 1ns each). After it comes out of O3 , it has to travel for a max of 4ns (1 block
* 2ns + 2 top-level routing * 1ns each).

 For B4 , the signal arrives at I4 within 10ns (3 blocks * 2ns each + 4 top-level
routing * 1ns each). After it comes out of O4 , it has to travel for a maximum of 1ns
(1 top-level routing * 1ns).

 Assuming a clock CLK has already been created with a period of 13ns , the con-
straints would be specifi ed as:

 For B1 :
 set_input_delay -max -clock CLK [get_ports I1] 1.0
 set_output_delay -max -clock CLK [get_ports 01] 10.0

 For B2 :
 set_input_delay -max -clock CLK [get_ports I2] 4.0
 set_output_delay -max -clock CLK [get_ports 02] 7.0

 For B3 :
 set_input_delay -max -clock CLK [get_ports I3] 7.0
 set_output_delay -max -clock CLK [get_ports 03] 4.0

 For B4 :
 set_input_delay -max -clock CLK [get_ports I4] 10.0
 set_output_delay -max -clock CLK [get_ports 04] 1.0

 It should be seen that the delay through each of the block gets constrained to a
max of 2ns .

B1 B2 B3 B4

S
I1 I2 I3 I4O1 O2 O3 O4

D

 Fig. 13.5 Feedthrough path spanning multiple blocks

13.5 Feedthroughs

164

13.5.1 Feedthroughs Constrained Imperfectly

 Let us say that after the above is tried, for some reason, the timing for B2 could not
be met. Say, the delay for this block could not be reduced below 2.5ns . So, for some
other block, the delay has to be reduced. Say, for B4 , the delay can be reduced to
 1.5ns . So, the total delay for the whole feedthrough path remains the same. However,
the set_input_delay and set_output_delay for the individual blocks would need to be
modifi ed. This will change the arrival time for B3 and B4 (arrives 0.5ns later), and
external time on the output side of B3 and B2 (external required time is 0.5ns lesser),
thus changing many input/output delays – including for blocks like B3 – for which
there was no change in the routing/delays inside it.

 Often, for such paths, where a feedthrough passes through several blocks, many
designers do not necessarily specify the actual arrival time for input and external
required time for output. Rather, they would choose a pair of input and output delay
values such that the delay inside the block is the desired value. For the example
described, the output delay for B2 would be reduced by 0.5ns . And, the input delay
for B4 would be increased by 0.5ns . The constraints for B3 would be left unchanged.
Though, it still means 2ns inside B3 , the set_input_delay/set_output_delay no lon-
ger represents the actual time of arrival or the actual time needed to travel after
coming out of the block.

 Usually, on some very high-performance designs, e.g., processors – several
blocks are designed as hard-IP s. In order to not impact the timing due to routing on
higher layers, these IPs provide feedthrough paths. A path going from one block to
another could feedthrough several IPs. Such designs might have such characteris-
tics, where the input and output delays are different from the actual values.

13.6 Point-to-Point Exception

 As shown in Sect. 13.4 , usually for port to port paths, set_input_delay and set_out-
put_delay combination is preferred compared to set_max_delay , even if the path is
purely combinational.

 Sometimes, a path segment on an entire path inside the design might need to be
constrained to a special value. set_max_delay might be very useful for such point-
to-point exceptions. Figure 13.6 shows a simple double-fl op synchronizer due to an
asynchronous clock domain crossing .

F1 F2 F3

C1

C2

 Fig. 13.6 Simple double-fl op synchronization

13 Combinational Paths

165

 The path from F1 to F2 should not be timed. This can be achieved through either
 set_clock_groups or set_false_path . Or, a user might put a set_multicycle_path .
The path from F2 to F3 gets constrained due to clock period defi ned for C2 . Usually,
no logic is put between F2 and F3 . It is possible that placement and routing tools
can place these fl ops far apart or take a long route, since they see the complete
clock period available for this path. If the path from F2 to F3 is long, then the whole
purpose of putting a direct path without any other logic is lost. The effectiveness of
the synchronization is reduced (means MTBF (mean time between failures) will not
increase as much as desired). Designers usually want that the delay from F2 to F3
should be very small – much smaller than the allowed clock period. So, they will
constrain this path using set_max_delay , e.g.,

 set_max_delay -from F2 -to F3 <value>

13.7 Path Breaking

 Before applying a set_max_delay or a set_min_delay , the designer should under-
stand that if the constrained portion does not start from a timing start point or end at
a timing end point , these constraints break the path, at both ends of the path seg-
ment. Figure 13.7 shows a design excerpt, which has several paths, namely,
 F1 → F3; F1 → F4; F2 → F3; F2 → F4 .

 Each of these paths will be timed. However, let us say, for some reason, a set_
max_delay or a set_min_delay is specifi ed -from I1/Z -to I2/A . Now, a timing path
that starts from F1 (or F2) will stop at I1/Z , which has become a new start point. It
is very important to understand this path breaking nature of set_min_delay and set_
max_delay . Because of this characteristic, the paths F1 → F3; F1 → F4; F2 → F3
and F2 → F4 will not be timed any more.

F3

F4

F1

F2

I1

Z
I2

A

 Fig. 13.7 Path breaking

13.7 Path Breaking

166

13.8 Conclusion

 A combinational path can be constrained using set_min_delay and set_max_delay .
If the paths span from an input port to an output port, it is better to constrain the path
using set_input_delay and set_output_delay combination. In general, since in most
cases, the interest is in making sure that the delays are lesser than a desired value,
so, set_max_delay is used more often than set_min_delay .

13 Combinational Paths

	Chapter 13: Combinational Paths
	13.1 set_max_delay
	13.2 set_min_delay
	13.3 Input/Output Delay
	13.3.1 Constraining with Unrelated Clock
	13.3.2 Constraining with Virtual Clock
	13.3.3 Constraining with Related Clock

	13.4 Min/Max Delay Versus Input/Output Delay
	13.5 Feedthroughs
	13.5.1 Feedthroughs Constrained Imperfectly

	13.6 Point-to-Point Exception
	13.7 Path Breaking
	13.8 Conclusion

