
145S. Gangadharan and S. Churiwala, Constraining Designs for Synthesis
and Timing Analysis: A Practical Guide to Synopsys Design Constraints (SDC),
DOI 10.1007/978-1-4614-3269-2_12, © Springer Science+Business Media New York 2013

 By default, each path is timed for a single cycle , i.e., data launched at any edge of
the clock should be captured by the next fl op at the next rising edge of the clock on
the destination fl op. Figure 12.1 shows this relationship.

 However, sometimes a designer might need to provide some additional cycles
before the data is to be captured. Figure 12.2 shows this scenario of an additional
cycle. The paths which get additional cycles are called multi cycle paths .

12.1 SDC Command for Multi Cycle Paths

 The SDC command for declaring a path as multi cycle is:

 set_multicycle_path [-setup]
 [-hold]
 [-rise] [-fall]
 [-start] [-end]
 [-from from_list]
 [-to to_list] [-through through_list]
 [-rise_from rise_from_list]
 [-rise_to rise_to_list]
 [-rise_through rise_through_list]
 [-fall_from fall_from_list]
 [-fall_to fall_to_list]
 [-fall_through fall_through_list]
 path_multiplier
 [-comment comment_string]

 Chapter 12
 Multi Cycle Paths

146

 Between all these switches, the command specifi es:

 – The exact path(s) which are to be treated as multi cycle
 – The transitions within the paths which are to be treated as multi cycle
 – Whether the multi cycle relationship is for setup or for hold
 – Whether the additional cycle(s) are in terms of launch clock or capturing clock
 – The number of cycles
 – Any additional textual annotation to explain the context/justifi cation for the

multi cycle nature

12.2 Path and Transition Specifi cation

 Path and transition specifi cation (options: -rise , -fall , -from , -to , -through , -rise_
from , -rise_to , -rise_through , -fall_from , -fall_to , -fall_through) for a multi cycle
specifi cation is exactly same as that explained in Chap. 11 . These options and path
specifi cations are not being repeated here.

Data captureData launch

 Fig. 12.1 Default setup timing relationship

Data capture
Data launch

 Fig. 12.2 Multi cycle of 2

12 Multi Cycle Paths

http://dx.doi.org/10.1007/978-1-4614-3269-2_11

147

12.3 Setup/Hold Specifi cation

 For the purpose of this section, we will assume that both the launching device and
the capturing device are triggered by the same clock. The implication of different
clock frequencies will be discussed in Sect. 12.4 . A clock waveform is depicted in
Fig. 12.3 .

 Timing analysis will assume that the launching fl op will launch the data at edge
 A . For setup analysis, it will consider that the data will be captured at the edge B . So,
setup relation is analyzed between edges A and B . Use of -setup switch causes the
capturing edge for setup analysis to be moved further to the right – away from A to
 C , D, etc., depending upon the number of cycles specifi ed.

 Let us assume that the capturing edge for setup has been moved to edge D ,
through -setup switch. For the purpose of hold analysis, the timing analysis tool
considers the immediately preceding edge at the capture fl op (when launch and
capture clocks are the same). Thus, hold analysis will be considered using the edge
 C for capture. Use of -hold switch causes the capturing edge for hold analysis to be
moved towards left, to either B or A – depending upon the number of cycles speci-
fi ed. The general practice is to restore the hold check back to edge A . If the hold
check is not brought back to edge A , there might be buffers inserted in the path to
ensure some delay. These buffers will take up silicon area as well as power .

 We have assumed above, the setup edge was moved to 3 cycles (so that it reached
edge D). The hold edge automatically moved to edge C (the immediately preceding
edge). Now, in order to bring it back, it has to be moved back by 2 cycles. This can
be achieved through use of -hold switch.

 In order to move the hold check edge back to A , we have moved it by 2 cycles. It
has now come back to the same edge as launch edge , i.e., at 0 th edge (with launch
edge being considered Origin). It should be noted that we are now talking about two
different numbers. A hold multiplier number 2 which specifi es the number of edges
by which the hold edge needs to move towards left. This is the number that is speci-
fi ed in the set_multicycle_path with -hold. And, another is number 0 , which speci-
fi es the actual edge number, where the check is happening. These two numbers are
often a source of confusion during conversation. When you are talking about hold
edge – specially in the context of multi cycle path – make sure that all the people
involved understand, whether the number being mentioned is the “hold multiplier ”
the number by which the edge will move towards left, or the edge number, where
the check will be performed. For the waveform shown in Fig. 12.3 (assuming setup
number of 3), edge A corresponds to a hold multiplier number of 2 , edge B corre-
sponds to a hold multiplier number of 1 , and edge C corresponds to a hold multiplier
number of 0 , in the context of the set_multicycle_path defi nition.

A B C D

 Fig. 12.3 Clock waveform

12.3 Setup/Hold Specifi cation

148

 -setup switch specifi es the period to which (not “by which”) the setup capture
edge will move to the right. Thus, a specifi cation of N means move to N th period.
This is different from move by N cycles. The -hold switch on the other hand speci-
fi es the period by which (not “to which”) the hold capture edge will move to the left.
If setup edge was moved to N th edge, the hold edge is automatically moved to
 N–1 th edge. In order to restore it back to its original location, the hold check needs
to be moved backwards by N–1 cycles, so that it goes back to “ 0 ” edge.

 Thus, -setup switch will move the capturing edge for setup. Simultaneously, it
also moves the capturing edge for hold. After that, another set_multicycle_path
might be needed with -hold switch to restore the hold check back to the original
edges. Multi cycle path specifi cations are usually found in pairs of -setup and
-hold . If the -hold specifi cation is not given, the hold edge remains where it had got
moved due to setup edge movement.

12.4 Shift Amount

 The path multiplier specifi es the number of clock cycles for the multi cycle path
specifi cation. If the launching device and the capturing devices are triggered by the
same clock (or different clocks but with the same frequency), and the command
specifi es a multi cycle relationship, it is not important as to whether the number of
cycles mentioned is for the start clock or for the end clock . However, if the start and
the end clocks are different, then, it is important to specify whether the number of
cycles specifi ed is in terms of start clock or the end clock. For the purpose of our
understanding, let us assume the clocks to be synchronous (Though the same
approach can be extended to asynchronous clocks, however, asynchronous clocks
are usually not timed).

 Let start clock have a period of 10ns and end clock have a period of 20ns . For
performing setup checks, the timing analysis tool identifi es pairs of launch edge and
the next capture edge . For all such pairs determined, the timing analysis tool fi gures
out which of these pairs gives the minimal time for the data to travel. Figure 12.4
shows the waveforms for these clocks.

 For the given example waveforms, the setup check would be made for the com-
bination, launch at B and capture at N . So, for setup to be met, data path has to be
within 10ns .

 Similarly, determine which are the worst case hold combinations, and use that
launch/capture combination for hold check. The edge combinations used for hold
check may not have any relation with the edges used for setup check.

 For the given waveform, the hold check would be made for the combination:
launch at A and capture at M (this is equivalent to launch at C and capture at N).

 Within 1 cycle of destination clock, two data can get launched, which will mean
losing one data. Within 1 cycle of destination clock, only one data should be
launched – to avoid data loss. For a capture at N , the data could be launched either
at A or at B . There is no advantage of launching at B , since the capture is still at N .

12 Multi Cycle Paths

149

We might as well launch the data at A and provide 2 cycles (of source clock) for the
data to reach the destination. Thus typically, for setup, we want to move the launch
edge back to A . So, we declare a path of 2 cycles in terms of source clock . This can
be specifi ed through use of -start switch. This results in the launch edge being
moved to the previous triggering edge of the launch clock, namely, launch at A and
capture at N . So, setup gets another 10ns . Note that the number “2” represents the
number of cycles to be allowed for setup. It is different from the number of cycles
by which the check got moved. The check got moved by 1 cycle, since the original
setup check allowed for 1 cycle.

 Now, for determining the hold check, the two pairs of edges are determined:

 1. Launch at B and capture at N (hold launch edge one later than the setup launch
edge).

 2. Launch at A and capture at M (hold capture edge one earlier than the setup cap-
ture edge).

 Out of these two combinations, the fi rst one is more restrictive (higher require-
ment for hold check). Hence, the hold check moves to launch at B and capture at N .
This means a minimum delay of 10ns (B to N). The aim was to allow additional
time, if needed, not to force a higher delay. So, we would want to restore the hold
checks to default positions (viz., launch at C and capture at N). Thus, we need to
move the launch edge towards right by 1 cycle of the start clock . This can be
achieved by specifying -start switch with -hold . Now, the hold edges are C, N com-
bination, which is same as A, M combination. Thus, the hold check edges have been
restored to the original conditions. Note that in the case of hold multiplier, the num-
ber “1” represents the number of cycles by which the check got moved.

 Let us consider another example. This time, the start clock has a period of 20ns
and the end clock has a period of 10ns . Figure 12.5 shows the corresponding
waveform:

 For this combination of start and end clocks, the default setup check would be
made at launch edge M and capture edge B . And, the hold check would be made at
launch edge M and capture edge A .

A B C D E F

M N P

End
Clock

Start
Clock

10

20

 Fig. 12.4 Start and end clocks have different period

12.4 Shift Amount

150

 The data launched at M does not get changed for 2 cycles in terms of destination
clock. So, multiple edges of destination clock would capture the same data (launched
at M). We might as well disable the capture at all the edges of destination and do the
capture only once for each launch. And, for a data launched at M , we would rather
do the capture at C , thereby allowing more time for the signal to reach the destina-
tion. So, typically for setup, we declare a path of 2 cycles in terms of destination
clock. This can be specifi ed through use of -end switch. This results in the capture
edge being moved to the next triggering edge of the destination clock, namely,
launch at M and capture at C . Thus, setup gets another 10ns .

 This will cause the hold check to be moved to launch at M and capture at B (hold
capture edge being 1 clock edge before the setup capture edge). If we want to restore
the hold checks to default positions (viz., launch at M and capture at A), we need to
move the capture edge towards left by 1 cycle of the end clock. This can be achieved
by specifying -end switch with -hold .

 So, effectively, for setup checks, -end means move the capture edge to the right,
and -start means move the launch edge to the left. -start with -hold causes the
launch edge to move to the right, and -end switch with -hold causes the capture edge
to move to the left.

 Stated alternately, - start moves the launch clock edge and -end moves the capture
clock edge. With multi cycle, these edges move in a direction so as to make the checks
less stringent. The number of cycles moved is always in terms of the edge that is mov-
ing. So, if launch edge is moving, the number of cycles is in terms of the launch clock.

 Few more observations apparent from these two examples are:

 1. In order to restore the hold edge back to the original location, the hold multiplier
is 1 less than the setup multiplier .

 2. For synchronous clocks with different frequencies, the setup number is equal to
the ratio of the time period of the two clocks.

 3. The multiplier is specifi ed in terms of the period of the faster clock (smaller time
period).

 There should be an exact match in the number of data launched and data cap-
tured. For a one-to-one transmittal of data, that would mean one launch and one
capture per one period of the slower clock. The remaining edges of the faster
clock should be disabled, so that they neither capture nor launch additional data.

End
Clock

Start
Clock

A B C D E F
10

M N P

20

 Fig. 12.5 Start clock slower than end clock

12 Multi Cycle Paths

151

And the launch/capture edges can be so chosen that they provide maximum time for
the data to travel. This will result in the observation 2 and 3 above.

 These are just thumb rules. Each multi cycle path should be analyzed on its own
for the right value of the multiplier, and the right clock period to be used.

 The comment option can be used to specify a text annotation – mostly to mention
the reasoning behind the multi cycle specifi cation.

12.5 Example Multi Cycle Specifi cation

 Let us consider a few example situations of multi cycle specifi cation. In the previous
section, we already saw examples of synchronous data transfers between a fast to
slow and a slow to fast clocks.

12.5.1 FSM-Based Data Transfer

 Let us consider a circuit as shown in Fig. 12.6 .
 When the data is generated by Cs , the same clock also generates an enable sig-

nal. This signal goes through an FSM , and then the target capturing device is enabled
to capture the data. Let us assume that the enable signal takes N cycles within the
FSM, before the target device is ready to capture the data. In such a situation, there
is no need for the actual data to rush to the target device immediately. It can take
time up till N cycles (of destination clock) to reach there. Hence, this path needs to
be constrained as:

 set_multicycle_path -from Cs -through F1/Q -to Cd -setup N -end
 set_multicycle_path -from Cs -through F1/Q -to Cd -hold N-1 -end

Cs

F1

F2

enable

F3
en

Cd

 Fig. 12.6 FSM-based data transfer

12.5 Example Multi Cycle Specifi cation

152

 Note the use of -through . This is needed, so that only the F1 to F3 path are cov-
ered. The enable signal might need its own multi cycle specifi cation, if it takes more
than a cycle.

 Paths using Handshake , Acknowledge, etc., for data transfer are examples of
such situations which might use multi cycle. Another example is when a data bus is
crossing a clock domain and instead of trying to synchronize the whole bus, an
enable signal is synchronized. If the control FSM is going to take more than 1 cycle
before enabling the capture device, the data can take those many cycles in reaching
the destination device.

12.5.2 Source Synchronous Interface

 In a source synchronous interface , as a data is presented at the output, the clock is
also sent out. Both data and the clock lines can be routed on the board to have similar
delays. Thus, the receiving device need not worry about the delays through the board
trace. Whenever there is a clock signal, the receiving device knows that the actual
data is also available around the same time. Figure 12.7 shows a typical realization of
a source synchronous interface, and Fig. 12.8 shows the corresponding waveform.

 In a system synchronous interface (in which all the signals are synchronized
to system clocks), the output delay on the Data pin would be specifi ed with respect to
 Clk . However, in the source synchronous interface , the reference is with respect to
the Strobe . Thus, a timing relation specifi ed wrt Strobe would cover Data pin also.
The Strobe itself might be specifi ed through create_generated_clock using Clk as
the master.

Clk

F1

Data

Strobe

 Fig. 12.7 Simple realization
 of source synchronous
interface

QP

XXXXXX
AB

 Fig. 12.8 Source
synchronous interface –
corresponding waveform

12 Multi Cycle Paths

153

 Usually, Data launched on Clk edge corresponding to edge P of Strobe would be
timed for setup edge Q . However, in this interface, Data should be timed with
respect to the edge P itself. Thus, the setup edge needs to be moved. This can be
done through the command:

 set_multicycle_path -from [get_clocks Clk] -to [get_clocks Strobe] -setup 0

 Notice that the setup multiplier number is specifi ed as 0 , which moves the setup
edge towards left – to the same edge as the launch edge . The start point is the fl op
 F1 triggered by Clk and the end point is the port Data , constrained with respect to
 Strobe .

 When the setup edge moved back to point P , the hold edge needs to be restored
back to its original location. This can be done through the command:

 set_multicycle_path -from [get_clocks Clk] -to [get_clocks Strobe] -hold -1

 The same path can be specifi ed as -to [get_ports Data], instead of -from [get_
clocks Clk] -to [get_clocks Strobe] . Notice the negative value of the hold
multiplier .

 The Data cannot be available at exactly the same time as the Strobe edge. Let us
assume that the duration AB indicates the time during which the Data is expected to
change. That means, till B , the old Data would be available, and the new Data
should be available by time A . This has to be modeled through appropriate values on
 set_output_delay .

 Let us assume the duration P to A is 1.5ns . So, this can be specifi ed as:

 set_output_delay -clock [get_clocks Strobe] -max -1.5 [get_ports Data]

 Note the negative value of the delay. This indicates that the data availability is
after the reference edge.

 Let us assume the duration B to P is 1ns . So, this can be specifi ed as:

 set_output_delay -clock [get_clocks Strobe] -min 1.0 [get_ports Data]

 Notice that the min value is larger than the max value. Some tools do not support
this. Make sure that your tool allows this!

 The same timing effect can also be specifi ed without set_multicycle_path . Let us
assume the clock period to be 10ns . Without the set_multicycle_path , the default
edge for setup check would be launch at P and capture at Q . The need for data to be
available at A can also be looked as a requirement that the data should be available
 8.5ns before the next edge Q . This can be specifi ed as:

 set_output_delay -clock [get_clocks Strobe] -max 8.5 [get_ports Data]

 The hold check would still be made for capture at P . So, min delay remains the
same, namely, set_output_delay -clock [get_clocks Strobe] -min 1.0 [get_ports
Data].

 This example showed how the same path can be specifi ed in multiple ways. And
also, the same timing effect can be achieved through different ways.

12.5 Example Multi Cycle Specifi cation

154

12.5.3 Reset

 In many ASIC designs, the master reset signal remains asserted for several cycles.
So, the assertion of these signals can be declared as multi cycle paths. Assuming an
active low asynchronous reset kept asserted for 3 cycles, the command would be:

 set_multicycle_path -fall -from reset_n -setup 3
 set_multicycle_path -fall -from reset_n -hold 2

12.5.4 Asynchronous Clocks

 In Chap. 7 , we have seen that asynchronous clock domain crossings are declared as
 set_clock_groups -asynchronous . The timer effectively disables such paths from
any timing analysis. Thus, a path crossing clock domain can be allowed to have any
amount of delay. Many designers want to put some kind of upper limit on the delay
that such paths might have. This can be achieved through the commands:

 set_multicycle_path -from [get_clocks C1] -to [get_clocks C2] -setup 2
 set_multicycle_path -from [get_clocks C1] -to [get_clocks C2] -hold 1

 When we specify a setup of 2 cycles, effectively the delay on the asynchronous
path gets capped to 1 cycle (and not 2 cycles). Because the path is asynchronous, an
edge pair will be considered where the launch and the capture edges are close. Thus,
1 cycle is effectively lost because of the close edges. Figure 12.9 explains this.

 The default launch – capture combination is edges A and P which are very close.
With a setup multi cycle of 2 (in terms of end clock), the capture edge moves to Q .
The data path then gets the time from A to Q , which is almost one clock (of destina-
tion clock).

12.5.5 Large Data Path Macros

 Some data paths have huge adders, multipliers, or other data path elements . Or, they
might have deep levels of logic. Or, they might have a high setup requirement for

Launch clock

Capture clock

A B C

QP

 Fig. 12.9 Asynchronous clocks

12 Multi Cycle Paths

http://dx.doi.org/10.1007/978-1-4614-3269-2_7

155

the capturing device (say, a memory), or the launching device might have a high
 Clk-to-output delay (e.g., a memory). Or, the path might be on a clock which has
very high frequency. In many such cases, it might be diffi cult for the data to meet
the timing requirements of a single cycle . In such cases, the path might have to be
declared as multi cycle.

12.5.6 Multimode

 In Chap. 15 , when we discuss multimode , we will also see one more example situ-
ation of set_multicycle_path command.

12.6 Conclusion

 Multi cycle path provides additional relaxation to the specifi ed paths. While speci-
fying multi cycle paths, you should be careful to ensure:

 – Unintended paths do not become multi cycle.
 – The amount of additional time allowed is in line with what you had intended.

 If a path is under-constrained (i.e., multi cycle specifi cation allows a wider range
for the signals to arrive) than what designed for, the device might not operate at the
desired frequency.

 When we move the setup edge through a multi cycle path specifi cation, the hold
edge also moves. You should check if the hold edge needs to be restored back to its
original location. In most cases, it should be restored back. If you do not restore the
hold edge, the design might have additional buffers in the data path, in order to
increase delay to meet the increased hold requirement. This would cause wasted
silicon area as well as power.

 This chapter discussed multi cycle paths only in the context of timing. However,
there are implications on the functional design (RTL) also, to ensure:

 – Data is not lost.
 – Glitches are not captured.

12.6 Conclusion

http://dx.doi.org/10.1007/978-1-4614-3269-2_15

	Chapter 12: Multi Cycle Paths
	12.1 SDC Command for Multi Cycle Paths
	12.2 Path and Transition Specification
	12.3 Setup/Hold Specification
	12.4 Shift Amount
	12.5 Example Multi Cycle Specification
	12.5.1 FSM-Based Data Transfer
	12.5.2 Source Synchronous Interface
	12.5.3 Reset
	12.5.4 Asynchronous Clocks
	12.5.5 Large Data Path Macros
	12.5.6 Multimode

	12.6 Conclusion

