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                    By default, each path is timed for a single cycle , i.e., data launched at any edge of 
the clock should be captured by the next fl op at the next rising edge of the clock on 
the destination fl op. Figure  12.1  shows this relationship.

   However, sometimes a designer might need to provide some additional cycles 
before the data is to be captured. Figure  12.2  shows this scenario of an additional 
cycle. The paths which get additional cycles are called multi cycle paths .

12.1      SDC Command for Multi Cycle Paths 

 The SDC command for declaring a path as multi cycle is:

    set_multicycle_path   [ -setup ]  
   [ -hold ]  
   [ -rise ] [ -fall ]  
   [ -start ] [ -end ]  
   [ -from  from_list]  
   [ -to  to_list] [ -through  through_list]  
   [ -rise_from  rise_from_list]  
   [ -rise_to  rise_to_list]  
   [ -rise_through  rise_through_list]  
   [ -fall_from  fall_from_list]  
   [ -fall_to  fall_to_list]  
   [ -fall_through  fall_through_list]  
   path_multiplier  
   [ -comment  comment_string]    
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 Between all these switches, the command specifi es:

 –    The exact path(s) which are to be treated as multi cycle  
 –   The transitions within the paths which are to be treated as multi cycle  
 –   Whether the multi cycle relationship is for setup or for hold  
 –   Whether the additional cycle(s) are in terms of launch clock or capturing clock  
 –   The number of cycles  
 –   Any additional textual annotation to explain the context/justifi cation for the 

multi cycle nature     

12.2    Path and Transition Specifi cation 

 Path and transition specifi cation (options:  -rise   , -fall   , -from   , -to   , -through   , -rise_
from   , -rise_to   , -rise_through   , -fall_from   , -fall_to   , -fall_through  ) for a multi cycle 
specifi cation is exactly same as that explained in Chap.   11    . These options and path 
specifi cations are not being repeated here.  

Data captureData launch

  Fig. 12.1    Default setup timing relationship       

Data capture
Data launch

  Fig. 12.2    Multi cycle of 2       
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12.3    Setup/Hold Specifi cation 

 For the purpose of this section, we will assume that both the launching device and 
the capturing device are triggered by the same clock. The implication of different 
clock frequencies will be discussed in Sect.  12.4 . A clock waveform is depicted in 
Fig.  12.3 .

   Timing analysis will assume that the launching fl op  will launch the data at edge 
 A . For setup analysis, it will consider that the data will be captured at the edge  B . So, 
setup relation is analyzed between edges  A  and  B . Use of  -setup  switch causes the 
capturing edge for setup  analysis to be moved further to the right – away from  A  to 
 C ,  D,  etc., depending upon the number of cycles  specifi ed. 

 Let us assume that the capturing edge  for setup  has been moved to edge  D , 
through  -setup   switch. For the purpose of hold  analysis, the timing analysis tool 
considers the immediately preceding edge at the capture fl op  (when launch and 
capture clocks are the same). Thus, hold analysis will be considered using the edge 
 C  for capture. Use of  -hold  switch causes the capturing edge for hold analysis to be 
moved towards left, to either  B  or  A  – depending upon the number of cycles speci-
fi ed. The general practice is to restore the hold check back to edge  A . If the hold 
check is not brought back to edge  A , there might be buffers inserted in the path to 
ensure some delay. These buffers will take up silicon area  as well as power . 

 We have assumed above, the setup edge  was moved to 3 cycles (so that it reached 
edge  D ). The hold edge  automatically moved to edge  C  (the immediately preceding 
edge). Now, in order to bring it back, it has to be moved back by 2 cycles. This can 
be achieved through use of  -hold   switch. 

 In order to move the hold check edge back to  A , we have moved it by 2 cycles. It 
has now come back to the same edge as launch edge , i.e., at  0 th edge (with launch 
edge being considered Origin). It should be noted that we are now talking about two 
different numbers. A hold multiplier  number  2  which specifi es the number of edges 
by which the hold edge needs to move towards left. This is the number that is speci-
fi ed in the  set_multicycle_path  with -hold. And, another is number  0 , which speci-
fi es the actual edge number, where the check is happening. These two numbers are 
often a source of confusion during conversation. When you are talking about hold 
edge – specially in the context of multi cycle path – make sure that all the people 
involved understand, whether the number being mentioned is the “hold multiplier ” 
the number by which the edge will move towards left, or the edge number, where 
the check will be performed. For the waveform shown in Fig.  12.3  (assuming setup 
number of 3), edge  A  corresponds to a hold multiplier number of  2 , edge  B  corre-
sponds to a hold multiplier number of  1 , and edge  C  corresponds to a hold multiplier 
number of  0 , in the context of the  set_multicycle_path  defi nition. 

A B C D

  Fig. 12.3    Clock waveform       
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  -setup   switch specifi es the period to which (not “by which”) the setup capture 
edge will move to the right. Thus, a specifi cation of  N  means move to  N th period. 
This is different from move by  N  cycles. The  -hold   switch on the other hand speci-
fi es the period by which (not “to which”) the hold capture edge will move to the left. 
If setup edge was moved to  N th edge, the hold edge is automatically moved to 
 N–1 th edge. In order to restore it back to its original location, the hold check needs 
to be moved backwards by  N–1  cycles, so that it goes back to “ 0 ” edge. 

 Thus,  -setup  switch will move the capturing edge  for setup. Simultaneously, it 
also moves the capturing edge for hold. After that, another  set_multicycle_path  
might be needed with  -hold  switch to restore the hold check back to the original 
edges. Multi cycle path specifi cations are usually found in pairs of  -setup  and  
-hold . If the  -hold  specifi cation is not given, the hold edge remains where it had got 
moved due to setup edge movement.  

12.4     Shift Amount 

 The path multiplier specifi es the number of clock cycles for the multi cycle path 
specifi cation. If the launching device and the capturing devices are triggered by the 
same clock (or different clocks but with the same frequency), and the command 
specifi es a multi cycle relationship, it is not important as to whether the number of 
cycles mentioned is for the start clock  or for the end clock . However, if the start and 
the end clocks are different, then, it is important to specify whether the number of 
cycles specifi ed is in terms of start clock or the end clock. For the purpose of our 
understanding, let us assume the clocks to be synchronous  (Though the same 
approach can be extended to asynchronous clocks, however, asynchronous clocks  
are usually not timed). 

 Let start clock have a period of  10ns  and end clock have a period of  20ns . For 
performing setup checks, the timing analysis tool identifi es pairs of launch edge  and 
the next capture edge . For all such pairs determined, the timing analysis tool fi gures 
out which of these pairs gives the minimal time for the data to travel. Figure  12.4  
shows the waveforms for these clocks.

   For the given example waveforms, the setup check would be made for the com-
bination, launch at  B  and capture at  N . So, for setup to be met, data path has to be 
within  10ns . 

 Similarly, determine which are the worst case hold combinations, and use that 
launch/capture combination for hold check. The edge combinations used for hold 
check may not have any relation with the edges used for setup check. 

 For the given waveform, the hold check would be made for the combination: 
launch at  A  and capture at  M  (this is equivalent to launch at  C  and capture at  N ). 

  Within 1 cycle of destination clock, two data can get launched, which will mean 
losing one data. Within 1 cycle of destination clock, only one data should be 
launched – to avoid data loss. For a capture at   N  , the data could be launched either 
at   A   or at   B  . There is no advantage of launching at   B  , since the capture is still at   N  . 
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We might as well launch the data at   A   and provide 2 cycles (of source clock) for the 
data to reach the destination. Thus typically, for setup, we want to move the launch 
edge    back to   A  . So, we declare a path of 2 cycles in terms of source clock   . This can 
be specifi ed through use of   -start    switch. This results in the launch edge being 
moved to the previous triggering edge of the launch clock, namely, launch at   A   and 
capture at   N  . So, setup gets another   10ns  . Note that the number “2” represents the 
number of cycles to be allowed for setup. It is different from the number of cycles 
by which the check got moved. The check got moved by 1 cycle, since the original 
setup check allowed for 1 cycle.  

 Now, for determining the hold check, the two pairs of edges are determined:

    1.    Launch at  B  and capture at  N  (hold launch edge one later than the setup launch 
edge).   

   2.    Launch at  A  and capture at  M  (hold capture edge one earlier than the setup cap-
ture edge).     

 Out of these two combinations, the fi rst one is more restrictive (higher require-
ment for hold check). Hence, the hold check moves to launch at  B  and capture at  N . 
This means a minimum delay of  10ns  ( B  to  N ). The aim was to allow additional 
time, if needed, not to force a higher delay. So, we would want to restore the hold 
checks to default positions (viz., launch at  C  and capture at  N ). Thus, we need to 
move the launch edge  towards right by 1 cycle of the start clock . This can be 
achieved by specifying  -start  switch with  -hold . Now, the hold edges are  C, N  com-
bination, which is same as  A, M  combination. Thus, the hold check edges have been 
restored to the original conditions. Note that in the case of hold multiplier, the num-
ber “1” represents the number of cycles by which the check got moved. 

 Let us consider another example. This time, the start clock has a period of  20ns  
and the end clock has a period of  10ns . Figure  12.5  shows the corresponding 
waveform:

   For this combination of start and end clocks, the default setup check would be 
made at launch edge   M  and capture edge   B . And, the hold check would be made at 
launch edge  M  and capture edge  A . 

A B C D E F

M N P

End
Clock

Start
Clock
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20

  Fig. 12.4    Start and end clocks have different period       
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 The data launched at  M  does not get changed for 2 cycles in terms of destination 
clock. So, multiple edges of destination clock would capture the same data (launched 
at  M ). We might as well disable the capture at all the edges of destination and do the 
capture only once for each launch. And, for a data launched at  M , we would rather 
do the capture at  C , thereby allowing more time for the signal to reach the destina-
tion. So, typically for setup, we declare a path of 2 cycles in terms of destination 
clock. This can be specifi ed through use of  -end  switch. This results in the capture 
edge  being moved to the next triggering edge of the destination clock, namely, 
launch at  M  and capture at  C . Thus, setup gets another  10ns . 

 This will cause the hold  check to be moved to launch at  M  and capture at  B  (hold 
capture edge being 1 clock edge before the setup capture edge). If we want to restore 
the hold checks to default positions (viz., launch at  M  and capture at  A ), we need to 
move the capture edge  towards left by 1 cycle of the end clock. This can be achieved 
by specifying  -end  switch with  -hold . 

 So, effectively, for setup  checks,  -end   means move the capture edge  to the right, 
and  -start   means move the launch edge  to the left.  -start  with  -hold  causes the 
launch edge to move to the right, and  -end  switch with  -hold   causes the capture edge 
to move to the left. 

 Stated alternately, - start  moves the launch clock edge and  -end  moves the capture 
clock edge. With multi cycle, these edges move in a direction so as to make the checks 
less stringent. The number of cycles moved is always in terms of the edge that is mov-
ing. So, if launch edge is moving, the number of cycles is in terms of the launch clock. 

 Few more observations apparent from these two examples are:

    1.    In order to restore the hold edge back to the original location, the hold multiplier  
is 1 less than the setup multiplier .   

   2.    For synchronous clocks with different frequencies, the setup number is equal to 
the ratio of the time period of the two clocks.   

   3.    The multiplier is specifi ed in terms of the period of the faster clock (smaller time 
period).     

 There should be an exact match in the number of data launched and data cap-
tured. For a one-to-one transmittal of data, that would mean one launch and one 
capture per one period of the slower clock. The remaining edges of the faster 
clock should be disabled, so that they neither capture nor launch additional data. 

End
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  Fig. 12.5    Start clock slower than end clock       
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And the launch/capture edges can be so chosen that they provide maximum time for 
the data to travel. This will result in the observation 2 and 3 above. 

 These are just thumb rules. Each multi cycle path should be analyzed on its own 
for the right value of the multiplier, and the right clock period to be used. 

 The comment  option can be used to specify a text annotation – mostly to mention 
the reasoning behind the multi cycle specifi cation.  

12.5    Example Multi Cycle Specifi cation 

 Let us consider a few example situations of multi cycle specifi cation. In the previous 
section, we already saw examples of synchronous data transfers between a fast to 
slow and a slow to fast clocks. 

12.5.1    FSM-Based Data Transfer 

 Let us consider a circuit as shown in Fig.  12.6 .
   When the  data  is generated by  Cs , the same clock also generates an  enable  sig-

nal. This signal goes through an FSM , and then the target capturing device is enabled 
to capture the data. Let us assume that the  enable  signal takes  N  cycles within the 
FSM, before the target device is ready to capture the data. In such a situation, there 
is no need for the actual  data  to rush to the target device immediately. It can take 
time up till  N  cycles (of destination clock) to reach there. Hence, this path needs to 
be constrained as:

    set_multicycle_path -from Cs -through F1/Q -to Cd -setup N -end   
   set_multicycle_path -from Cs -through F1/Q -to Cd -hold N-1 -end     

Cs

F1

F2

enable

F3
en

Cd

  Fig. 12.6    FSM-based data transfer       
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 Note the use of  -through . This is needed, so that only the  F1  to  F3  path are cov-
ered. The  enable  signal might need its own multi cycle specifi cation, if it takes more 
than a cycle. 

 Paths using Handshake , Acknowledge, etc., for data transfer are examples of 
such situations which might use multi cycle. Another example is when a data bus is 
crossing a clock domain  and instead of trying to synchronize  the whole bus, an 
enable signal is synchronized. If the control FSM is going to take more than 1 cycle 
before enabling the capture device, the data can take those many cycles in reaching 
the destination device.  

12.5.2    Source Synchronous Interface 

 In a source synchronous interface , as a data is presented at the output, the clock is 
also sent out. Both data and the clock lines can be routed on the board to have similar 
delays. Thus, the receiving device need not worry about the delays through the board 
trace. Whenever there is a clock signal, the receiving device knows that the actual 
data is also available around the same time. Figure  12.7  shows a typical realization of 
a source synchronous interface, and Fig.  12.8  shows the corresponding waveform.

    In a system synchronous interface  (in which all the signals are synchronized 
to system clocks), the output delay on the  Data  pin would be specifi ed with respect to 
 Clk . However, in the source synchronous interface , the reference is with respect to 
the  Strobe  . Thus, a timing relation specifi ed wrt  Strobe  would cover  Data  pin also. 
The  Strobe  itself might be specifi ed through  create_generated_clock   using  Clk  as 
the master. 

Clk

F1

Data

Strobe

  Fig. 12.7       Simple realization 
   of source synchronous 
interface       
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  Fig. 12.8    Source 
synchronous interface – 
corresponding waveform       
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 Usually,  Data  launched on  Clk  edge corresponding to edge  P  of  Strobe  would be 
timed for setup edge  Q . However, in this interface,  Data  should be timed with 
respect to the edge  P  itself. Thus, the setup edge  needs to be moved. This can be 
done through the command:

    set_multicycle_path -from [get_clocks Clk] -to [get_clocks Strobe] -setup 0     

 Notice that the setup multiplier  number is specifi ed as  0 , which moves the setup 
edge  towards left – to the same edge as the launch edge . The start point  is the fl op 
 F1  triggered by  Clk  and the end point  is the port  Data , constrained with respect to 
 Strobe  . 

 When the setup edge moved back to point  P , the hold edge  needs to be restored 
back to its original location. This can be done through the command:

    set_multicycle_path -from [get_clocks Clk] -to [get_clocks Strobe] -hold -1     

 The same path can be specifi ed as  -to [get_ports Data],  instead of  -from [get_
clocks Clk] -to [get_clocks Strobe] . Notice the negative  value of the hold 
multiplier . 

 The  Data  cannot be available at exactly the same time as the  Strobe  edge. Let us 
assume that the duration  AB  indicates the time during which the  Data  is expected to 
change. That means, till  B , the old  Data  would be available, and the new  Data  
should be available by time  A . This has to be modeled through appropriate values on 
 set_output_delay . 

 Let us assume the duration  P  to  A  is  1.5ns . So, this can be specifi ed as:

    set_output_delay -clock [get_clocks Strobe] -max -1.5 [get_ports Data]     

 Note the negative  value of the delay. This indicates that the data availability is 
after the reference edge. 

 Let us assume the duration  B  to  P  is  1ns . So, this can be specifi ed as:

    set_output_delay -clock [get_clocks Strobe] -min 1.0 [get_ports Data]     

 Notice that the min value is larger than the max value. Some tools do not support 
this. Make sure that your tool allows this! 

 The same timing effect can also be specifi ed without  set_multicycle_path . Let us 
assume the clock period to be  10ns . Without the  set_multicycle_path , the default 
edge for setup check would be launch at  P  and capture at  Q . The need for data to be 
available at  A  can also be looked as a requirement that the data should be available 
 8.5ns  before the next edge  Q . This can be specifi ed as:

    set_output_delay -clock [get_clocks Strobe] -max 8.5 [get_ports Data]     

 The hold check would still be made for capture at  P . So, min delay remains the 
same, namely,  set_output_delay -clock [get_clocks Strobe] -min 1.0 [get_ports 
Data].  

 This example showed how the same path can be specifi ed in multiple ways. And 
also, the same timing effect can be achieved through different ways.  

12.5 Example Multi Cycle Specifi cation
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12.5.3    Reset 

 In many ASIC designs, the master reset  signal remains asserted for several cycles. 
So, the assertion of these signals can be declared as multi cycle paths. Assuming an 
active low asynchronous reset kept asserted for 3 cycles, the command would be:

    set_multicycle_path -fall -from reset_n -setup 3   
   set_multicycle_path -fall -from reset_n -hold 2      

12.5.4    Asynchronous Clocks 

 In Chap.   7    , we have seen that asynchronous clock domain crossings  are declared as 
 set_clock_groups    -asynchronous . The timer effectively disables such paths from 
any timing analysis. Thus, a path crossing clock domain can be allowed to have any 
amount of delay. Many designers want to put some kind of upper limit on the delay 
that such paths might have. This can be achieved through the commands:

    set_multicycle_path -from [get_clocks C1] -to [get_clocks C2] -setup 2   
   set_multicycle_path -from [get_clocks C1] -to [get_clocks C2] -hold 1     

 When we specify a setup of 2 cycles, effectively the delay on the asynchronous 
path gets capped to 1 cycle (and not 2 cycles). Because the path is asynchronous, an 
edge pair will be considered where the launch and the capture edges are close. Thus, 
1 cycle is effectively lost because of the close edges. Figure  12.9  explains this.

   The default launch – capture combination is edges  A  and  P  which are very close. 
With a setup multi cycle of  2  (in terms of end clock), the capture edge moves to  Q . 
The data path then gets the time from  A  to  Q , which is almost one clock (of destina-
tion clock).  

12.5.5    Large Data Path Macros 

 Some data paths have huge adders, multipliers, or other data path elements . Or, they 
might have deep levels of logic. Or, they might have a high setup requirement for 

Launch clock

Capture clock
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  Fig. 12.9    Asynchronous clocks       
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the capturing device (say, a memory ), or the launching device might have a high 
 Clk-to-output  delay (e.g., a memory). Or, the path might be on a clock which has 
very high frequency. In many such cases, it might be diffi cult for the data to meet 
the timing requirements of a single cycle . In such cases, the path might have to be 
declared as multi cycle.  

12.5.6    Multimode 

 In Chap.   15    , when we discuss multimode , we will also see one more example situ-
ation of  set_multicycle_path  command.   

12.6    Conclusion 

 Multi cycle path provides additional relaxation to the specifi ed paths. While speci-
fying multi cycle paths, you should be careful to ensure:

 –    Unintended paths do not become multi cycle.  
 –   The amount of additional time allowed is in line with what you had intended.    

 If a path is under-constrained (i.e., multi cycle specifi cation allows a wider range 
for the signals to arrive) than what designed for, the device might not operate at the 
desired frequency. 

 When we move the setup edge through a multi cycle path specifi cation, the hold 
edge also moves. You should check if the hold edge needs to be restored back to its 
original location. In most cases, it should be restored back. If you do not restore the 
hold edge, the design might have additional buffers in the data path, in order to 
increase delay to meet the increased hold requirement. This would cause wasted 
silicon area as well as power. 

 This chapter discussed multi cycle paths only in the context of timing. However, 
there are implications on the functional design (RTL) also, to ensure:

 –    Data is not lost.  
 –   Glitches are not captured.       

12.6 Conclusion

http://dx.doi.org/10.1007/978-1-4614-3269-2_15
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