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    Abstract     Lymph forms from the fl uid that is forced out of capillaries and 
 postcapillary venules by hydrostatic pressures, into the interstitium around the ves-
sel. This protein-rich fl uid fl ows through the extracellular matrix and between cells 
bathing them in nutrients and oxygen and carrying away cellular metabolites and 
waste products where it is collected by lymphatic capillaries and on to lymph nodes. 
As with the physiological situation, interstitial fl uid and lymph also form within and 
around tumors, which are collected from cancer-associated tissues. What does 
change in this situation, however, is the surroundings in which lymph is generated 
and the tissues exposed to the resulting fl uid. The environment in which lymph is 
formed and transported via can modify its composition and have drastic effects on 
cells and tissues downstream. This chapter explores the roles of lymphatic function, 
lymph transport, and their far-reaching implications in cancer development and pro-
gression. We pay particular attention to the mechanisms of lymph formation and 
composition, lymph clearance and resulting cellular effects, the impact on potential 
antitumour immune responses, methods to identify and measure lymphatic func-
tion, and new approaches to exploit or target lymphatics for therapy.  

7.1         Introduction 

 Lymph forms from blood capillary exudates—the fl uid that is forced out of capillar-
ies and postcapillary venules by hydrostatic pressures, into the interstitium around 
the vessel. This protein-rich fl uid fl ows through the extracellular matrix and between 
cells, bathing them in nutrients and oxygen, and carrying away cellular metabolites 
and waste products. Responding to pressure gradients within the interstitial space, 
openings at the junctions between adjacent lymphatic endothelial cells (LECs) drive 
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entry of interstitial fl uid, which then passes through at least one lymph node (LN)   . 
Interstitial fl uid and pre-nodal lymph are essentially identical, since very little fi ltra-
tion occurs as a result of crossing the endothelial barrier prior to reaching the lymph 
nodes. Lymph that exits the efferent vessels following fi ltration is now a different 
composition. Lymph nodes fi lter the lymph to remove waste products, some pro-
teins, fl uid, and potential pathogens and/or pathogen components prior to its even-
tual return to the blood. Many afferent lymphatics from defi ned catchment areas 
drain to into the subcapsular sinus of each lymph node. Here, prevented from enter-
ing the cortex, particulates and high molecular weight molecules circulate via sub-
capsular and medullary sinuses before entering the efferent lymphatic and exiting 
the node. In contrast, lymph carrying sub-80 kDa proteins are able to pass via size 
exclusion pores (0.1–1 mm diameter) and percolate through narrow conduits within 
reticular networks (1–200 nm) (Gretz et al.  2000 ; Roozendaal et al.  2008 ; Sixt et al. 
 2005 ) before entering the medullary sinus. Both routes rely on antigen-presenting 
cells to screen lymph before its exit. 

 As with the physiological situation, interstitial fl uid and lymph also form within 
tumors, and are collected from cancer-associated tissues. What does changes, how-
ever, is the surroundings in which lymph is generated and the tissues exposed to the 
resulting fl uid. The environment in which lymph is formed and transported via can 
modify its composition having drastic effects on cells and tissues downstream. This 
chapter aims to address the roles of lymphatic function, lymph transport, and their 
far-reaching implications in cancer progression.  

7.2     Lymph and the Tumor Microenvironment 

  Abnormal blood vessels contribute to generation of tumor interstitial fl uid : Tumors 
require the growth of new blood vessels to cope with the increasing oxygen and 
metabolic demands of the rapidly increasing tumor cell mass. In contrast to the 
characteristic well-organized branching structures in normal microvasculature, the 
rapid and uncontrolled manner in which tumor-associated blood microvessels 
develop renders them tortuous, with abnormal branching patterns. Tumor blood 
vessels do not undergo normal pruning and stabilization steps such as pericyte 
recruitment (reviewed by McDonald and Baluk  2002 ). Tumor vessel endothelial 
cells have also been noted to be irregularly shaped and present with larger numbers 
of fenestrations and vesicles, loose cell–cell junctions (Hashizume et al.  2000 ) as 
well as reduced connections between endothelium and the normally tightly associ-
ated basement membrane (which is also altered in the tumor) (McDonald and Baluk 
 2002 ). The combination of these factors means that microvessels are unable to 
maintain their normal barrier function, and hence a feature of tumor vasculature is 
abnormally high vessel leakiness. Consequently, fl uid and solutes are able to exit 
vessels much more readily than in normal cases; the accumulation of which contrib-
utes to high interstitial fl uid pressures (IFP) found within tumors (Boucher et al. 
 1990 ; Heldin et al.  2004 ; Lunt et al.  2008 ; Wiig et al.  1982 ; Gutmann et al.  1992 )   . 
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In comparison to normal tissues, where IFP is typically 0 mmHg or slightly lower 
(Boucher et al.  1990 ; Chary and Jain  1989 ), pressures associated with mouse mam-
mary cancers have been measured at 2.4 mmHg in the superfi cial layers and rising 
to 23 mmHg in the center of tumors (Boucher et al.  1990 ; Wiig et al.  1982 ). In 
humans, this range is typically 10–40 mmHg but can rise to 60 mmHg in some 
tumors (Heldin et al.  2004 ; Lunt et al.  2008 ). These pressure gradients drive fl uid 
out of the tumor into the lower pressure environment of peritumoral tissues. The 
movement of fl uid through the tumor and associated tissues forms tumor interstitial 
fl uid (TIF) fl ow. At the same time, extracellular matrix deposition and remodeling 
within and around the tumor generate further physical stresses, which compound 
the elevation seen in IFP (Fig.  7.1 )   .

    From vessel exudates to tumor interstitial fl uid and lymph formation : In normal situ-
ations, the compositions of plasma exudates (immediately after leaving the capillary) 
and lymph have some similarities. Analysis of the proteome via mass spectrometry 
and 2D page techniques has begun to shed light onto the composition of lymph com-
pared with plasma. Both lymph and plasma contain typical plasma proteins from 
albumin and immunoglobulin families (Leak et al.  2004 ). Lymph is also highly 
enriched with fi brinogen fragments, enzymes, catabolic products, complement com-
ponents, extracellular matrix fragments, and cellular constituents (intracellular and 
membrane) such as histones, mitochondria, and cytoplasmic proteins (Mittal et al. 
 2009 ). The abundance of peptide fragments in pre-nodal lymph is also thought to be 
important for the maintenance of immune homeostasis (Clement et al.  2010 ,  2011 ). 

 So, what do tumor-associated lymphatic vessels collect? How does this differ 
physiological states? The fl uid that exits abnormal vessels into the surrounding 
tumor is referred to as TIF. TIF is a component of the tumor microenvironment that 
is relatively overlooked compared to angiogenesis and lymphangiogenesis for 
example, yet is likely to play an equally important role in successful establishment 
of the tumor niche. Unlike the harvest of normal lymph, which requires vessel can-
nulation, collection of TIF is technically challenging. Progress in the fi eld has been 
hampered due to diffi culties in (a) accessing the tumor-associated tissues or vessels, 
given the disorganized tissue architecture, and (b) harvesting TIF without intercel-
lular fl uid contamination or directly altering the tissues that are under investigation 
(methods reviewed by Wiig et al.  2010 ). Early measurements (Gullino et al.  1964 ) 
demonstrated that as with normal lymph, albumin and immunoglobulins form a 
major fraction of TIF, whereas TIF has high H + , CO 2 , and lactic acid, but low glu-
cose, oxygen, and pH compared with plasma and normal subcutaneous fl uid. These 
differences most likely refl ect the differing metabolic needs, and hypoxic environ-
ment seen in tumor vs. normal tissue. Representative of the changes in endothelial 
barrier function, an accumulation of low molecular weight proteins (<25 kDa) has 
been recorded in TIF compared with plasma, whereas those of >25 kDa are not 
signifi cantly different (Stohrer et al.  2000 ). Following the acceptance of the tumor 
microenvironment as a major infl uencing factor in defi ning tumor fate (Hanahan 
and Weinberg  2011 ), there has been a renewed interest in the TIF and pre-nodal 
lymph. Given that these fl uids envelop highly bioactive tumor cells, many 
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components of TIF are actively secreted or produced in metabolic exchanges, and 
thus represent an accurate readout of cellular events in the tumor. Breast (Celis et al. 
 2004 ,  2005 ; Mannello et al.  2009 ; Wiig et al.  2003 ), ovarian (Haslene-Hox et al. 
 2011 ), and renal cell (Teng et al.  2010 ) carcinomas are among the fi rst to undergo 
proteomic profi ling of TIF composition. These studies have re-highlighted the 
abundance of proteins contained within TIF, and identifi ed enriched compounds 
with potential therapeutic signifi cance. Of those examined, particular enrichment of 
plasma membrane-associated or predicted extracellular matrix constituents was 

  Fig. 7.1    High interstitial fl uid pressure (IFP) exists within tumors. ( a ) High IFP and mechanical 
stresses created by high cell numbers mean that lymphatic vessels (LYVE-1 positive,  green ) within 
the tumor mass are collapsed and nonfunctional. ( b ) In contrast, vessels at the tumor periphery are 
hyperplastic and dilated. Nuclei are counterstained with DAPI. ( c ) High IFP results from exudates 
leaving abnormally leaky vessels within a tumor. Vessels are tortuous and associations with mural 
cells such as pericytes are looser than in normal tissues. As lymphatics within a tumor are not 
functional, fl uid follows a pressure gradient via non-endothelial channels into the surrounding tis-
sues where resistance is lower. From here, dilated peritumoral lymphatics collect the lymph and 
any proteins contained within       
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recorded when compared with normal adjacent tissue (Teng et al.  2010 ). Given that 
TIF is a direct refl ection of metabolic state and cellular activity and that a major 
hallmark of cancer is growth factor overexpression and independence (Hanahan and 
Weinberg  2011 ), we can expect that TIF is enriched with numerous other factors in 
addition to those described above. TIF that passes over tumor cells and surrounding 
tissues before entering vessels as lymph is also rich in all the growth factors, cyto-
kines, and chemokines secreted from within the tumor microenvironment—irre-
spective of whether this is from tumor cells, fi broblasts, endothelial cells, or 
infi ltrating immune cells   . TIF therefore constitutes a potentially rich hunting ground 
for tumor-specifi c biomarker discovery, in both shed (e.g., components released 
during cell death) and soluble secreted forms (Leak et al.  2004 ; Clement et al.  2010 , 
 2011 ; Celis et al.  2004 ; Haslene-Hox et al.  2011 ).  

7.3     Physical Effects Created as a Result of Tumor-Associated 
Lymphatic Drainage and Lymph Flow 

    We have seen that TIF and lymph compositions differ from each other in physiology 
and disease, but what impact does this have on tumor cells themselves, their 
immediate surrounding tissues, and those further downstream? This section of the 
chapter will discuss their role in the context of lymph-mediated effects, as well as 
the resultant biophysical factors that contribute to the tumor microenvironment. 

  Tumor-associated lymphatic vessels : Within tumors, the elevated IFP from fl uid and 
protein accumulation, along with the mechanical stresses imposed by proliferating 
tumor cells within a confi ned space results in the compression of intratumoral lym-
phatic vessels, rendering them nonfunctional (Leu et al.  2000 ; Jain and Fenton  2002 ; 
Padera et al.  2002 ). The loss of intratumoral lymphatic functionality and reduction in 
fl uid clearance from the tumor interstitium compound the problem of high fl uid pres-
sure within the tumor. Instead, fl uid is able to move through a tumor via non-endo-
thelial, matrix-rich channels oozing out into surrounding tissues that pose the least 
resistance (Padera et al.  2002 ). Here, TIF can be collected by peritumoral lymphat-
ics. In many tumor types, the tumor periphery contains an abundance of lymphatic 
vessels (Mandriota et al.  2001 ; Shields et al.  2004 ; Skobe et al.  2001 ). These vessels 
are either co-opted preexisting vasculature or newly formed and remodeled vessels. 
Peritumoral lymphatics are frequently hyperplastic and functionally abnormal hav-
ing malformed valves and retrograde fl ow (Hagendoorn et al.  2006 ; Isaka et al. 
 2004 ). That being said, even with abnormal function, tumor- associated lymphatics 
collect the protein-rich fl uids exiting the tumor mass (Fig.  7.2 ).

   Many human cancers metastasize via the lymphatic system. To maximize the 
opportunity for dissemination, tumor-derived expression and secretion of vascular 
endothelial growth factor-C and -D (VEGF-C and VEGF-D, the major lymphangio-
genic growth factors) are frequently observed in tumor cells (Mandriota et al.  2001 ; 
Shields et al.  2004 ; Skobe et al.  2001 ; Stacker et al.  2001 ; Mattila et al.  2002 ) and 
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  Fig. 7.2    The effects of tumor interstitial fl ow on tumor-associated tissues. ( a ) To ensure the main-
tenance of tissue homeostasis in normal differentiated tissues, plasma exudates leaving blood ves-
sels are slowly transported through the interstitial space via pressure gradients before entering 
lymphatic capillaries. Cell adhesion molecules such as CD31 maintain lymphatic endothelial cell 
(LEC) junctions. Self-antigens and potential pathogenic components are also transported to help 
maintain immune homeostasis. ( b ) In the tumor microenvironment, enhanced interstitial fl ow cre-
ated by high IFP exits the tumor and drains into peritumoral lymphatics. In the process of passing 
over metabolically active tumor cells, TIF and later lymph pick up growth factors (e.g., vascular 
endothelial growth factor-C [VEGF-C]) and tumor cell components, which enter the lymphatic 
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surrounding tissues (Gallego et al.  2011 ; Schoppmann et al.  2006 ). VEGF-C expres-
sion in tumor-associated tissues refl ects a strong correlation with the incidence of 
lymph node metastasis and poor prognosis in patients (Emmett et al.  2010 ; Kurahara 
et al.  2010 ; Nakamura et al.  2005 ). VEGF-C directly acts on lymphatic vessels at 
the tumor periphery through the ligation of its cognate receptor VEGFR-3, stimulat-
ing both de novo vessel formation and remodeling (hyper-proliferation) of those 
preexisting. The expanded lymphatic network presents a tumor with greater chance 
of encountering a vessel, and a portal for tumor metastasis that can directly help 
tumor progression. 

  Increased lymphatic drainage : The stimulation of extra lymphatic vessels also con-
fers indirect effects that help support a growing tumor. TIF that oozes out of a tumor 
is collected as lymph by peritumoral lymphatics. VEGF-C (and other growth factors 
such as FGF) present in the vicinity of the tumor is suffi cient to induce high peritu-
moral vessel density, so although hyperplastic and functionally abnormal, the 
increase in number is translated to increased functional output and enhanced capac-
ity for fl uid clearance (Hoshida et al.  2006 ). Moreover, VEGF-D has been shown to 
act further downstream in the vessel hierarchy via a mechanism distinct from 
VEGF-C. Rather than stimulating endothelial proliferation, VEGF-D induces col-
lecting lymphatic vessel dilation in a prostaglandin-dependent manner (Karnezis 
et al.  2012 ). This would imply that the synergies between tumor-derived VEGF-C 
and -D extend beyond the induction of new lymphatic vessels, towards modulating 
their functionality in the tumors’ favor. 

  Fluid fl ux effects on cell behavior : The physical movement of fl uid through tumor 
tissues and the tissues immediately surrounding it is a tumor-promoting stimulus 
in its own right. Firstly, it is likely that tumor cells in the process of detaching from 
the main tumor bulk are assisted as a consequence of increasing lymph fl ow. 
Shedding cells may be physically carried along fl uid channels towards draining 
lymphatics and further downstream, augmenting delivery of “fl ushed” cells to the 
draining lymph node (Hoshida et al.  2006 ). In lymphatic-rich tumors, there is gen-
erally more cellular movement between the tumor and lymph nodes (Shields et al. 
 2010 ; Hoshida et al.  2006 ; Lund et al.  2012 ; Hoshida et al.  2006 ). Fluorescently 
labeled microbeads have enabled researchers to defi ne specifi c migrating cell 
populations and trace cell movements. Not surprisingly, the major cell types identi-
fi ed as traffi cking via the tumor lymphatics are immune cells (immune context 
discussed later) (Shields et al.  2010 ; Lund et al.  2012 ). In addition to physically 

Fig. 7.2 (continued) system towards the draining lymph node where further changes occur in 
preparation for metastasis. Tumor-derived growth factors can synergize with fl ow to act in an 
autocrine fashion increasing cell invasiveness, or paracrine on cancer-associated fi broblasts and 
LECs. VEGF-C stimulates lymphatic growth (enhancing drainage capacity), and also the secretion 
of lymph homing chemokines such as CCL21. Proteases, skewed by fl ow, further liberate proteins 
within the matrix amplifying gradient effects. Flow itself is suffi cient to induce environmental 
changes, stimulating remodeling of the interstitium and modifi cation of vessel functionality (via 
down-regulation of junction proteins and changes in surface expression)       
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assisting tumor cell  detachment and metastasis, fluid convection created by 
lymphatic drainage can act as a  morphogenetic cue, synergizing with the local 
chemical and physical  environment. Together, these forces can signifi cantly infl u-
ence the environment and cellular behaviors. Oncogenic stresses and physical 
pressures associated with tumor development stimulate tumor cells to secrete 
growth factors, chemokines, etc.; for example, high pressures within a tumor have 
been shown to stimulate tumor proliferation (Hofmann et al.  2006 ) and the release 
of VEGF-C (Nathan et al.  2009 ). These factors exert their effects on cells within 
their immediate proximity in (a) autocrine, (b) paracrine fashion, or are (c) trans-
ported to downstream tissues to exert their effects remotely (Gretz et al.  2000 ; 
Helm et al.  2005 ; Miteva et al.  2010 ; Ng et al.  2004 ).  Autocrine effects on tumor 
cells : On exposure to subtle fl uid fl ows, transcellular chemokine gradients are gen-
erated that are biased towards functional, draining lymphatic vessels. In this sense, 
a tumor cell can follow an autologously generated cue that directs it to the nearest 
functioning vessel—and escape route (Fleury et al.  2006 ; Haessler et al.  2012 ; 
Shields et al.  2007a ; Polacheck et al.  2011 ). This phenomenon, referred to as autol-
ogous chemotaxis, was shown in vitro in tumor cells that utilize a CCL21–CCR7 
signaling loop, but has the potential to exist for any number of tumor-derived fac-
tors. Similarly, VEGF-C is able to ligate its receptor VEGFR-3 in an autocrine 
manner leading to increased tumor cell motility and proteolytic capacity (Issa et al. 
 2009 ).  Paracrine effects on cells within the stroma : Proteins carried within the fl uid 
that is collected from a tumor maintain the capacity to infl uence neighboring cells 
encountered en route to lymphatic vessels, including cancer-associated fi broblasts 
and the LECs themselves. Fibroblasts proliferate and become activated upon expo-
sure to fl ow. Flow-dependent responses measured include the up-regulation of 
smooth muscle actin for contractility, reorientation to align themselves and colla-
gen fi bers perpendicular to fl ow, the induction of factors such as TGF-β 1 , and 
enhanced degradation of surrounding matrix (Ng et al.  2005 ; Ng and Swartz  2003 , 
 2006 ; Shieh et al.  2011 ). In this way, fl ow through tissue spaces can “prime” the 
tumors surroundings in preparation for metastasis. Indeed, it has been shown that 
activated cancer-associated fi broblasts guide escaping tumor cells away from the 
primary mass towards vessels (Shieh et al.  2011 ; Gaggioli et al.  2007 ). We also 
know that the extracellular matrix which fi broblasts deposit modulates the physical 
environment via the mechanical stresses they exert, but matrix components can 
also amplify the paracrine (and some degree autocrine) effects generated by inter-
stitial fl uid fl ow. Many proteins bind to matrix components leading to sequestered 
pools of locally high concentrations of e.g. latent TGF-β 1 , VEGF, or CCL21 (Shieh 
et al.  2011 ; Patel et al.  2001 ; Zilberberg et al.  2012 ). Proteases transported within 
the interstitial fl uid are able to rapidly liberate any bound factors. Directional fl uid 
fl ow and protein release can then synergize to form directed and intensifi ed chemi-
cal gradients that cancer-associated fi broblasts or egressing tumor and immune 
cells can respond to (Ng et al.  2004 ,  2005 ; Haessler et al.  2012 ; Shields et al. 
 2007a ,  b ; Polacheck et al.  2011 ). Movement of lymph as it enters lymphatics 
(referred to as transmural fl ow) and lymph constituents modulates LEC properties 
too. The lymph node homing chemokine CCL21 is produced and secreted in 
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response to transmural fl ow, acting as a potential homing signal for CCR7-
expressing tumor cells in the early stages of metastasis. CCL21 can in turn simu-
late VEGF-C up-regulation, which as we saw earlier may further contribute to 
lymphatic mediated events. Furthermore, even at low fl ow rates of 0.1 μm s −1  (rep-
resentative of measured interstitial fl uid velocity), entry of lymph into vessels 
results in delocalization and down-regulation of cell junction proteins such as 
VE-cadherin and CD31 (Miteva et al.  2010 ), but up- regulation of cell adhesion 
molecules such as ICAM and E-selectin; a preparatory step prior to cellular trans-
migration and entry into lymphatic circulation.  Downstream effects within vessels 
and lymph node : Once inside a vessel, tumor cell behavior continues to be infl u-
enced by lymph fl ow and lymph-borne factors. When compared with the harsh 
environment of the blood system, lymph fl ows seen in tumor- draining lymphatics 
provide a setting more conducive with cell survival—with velocities typically an 
order of magnitude lower than blood (1–10 vs. 100–1,000 μm s −1 , respectively; 
Berk et al.  1996 ; Leu et al.  1994a ,  b ; Swartz et al.  1996 ). Tumor emboli within 
vessels have been shown to utilize the low shear stresses found in lymphatics to 
their advantage. Under low fl ow conditions ( τ  = 2.5 dyn cm −2 ; Byers et al.  1995 ), 
highly invasive E-cadherin negative or defective tumor cells are much more likely 
to detach from their counterparts in response to lymph fl ow and lodge in local 
lymph nodes than E-cadherin positive epithelial cells (Byers et al.  1995 ). 

 Lymph drainage from the tumor site clears the excess fl uid from leaky blood 
vessels, which as we discussed can have autocrine and paracrine effects. As lymph 
fl ows along a vessel hierarchy, its components also pass this same route and there-
fore imply that tumors can utilize this path to remotely access distant tissues. One 
of the primary reasons a tumor might want to communicate with distant tissues is 
in order to prepare the new environment for metastasizing cells, otherwise known 
as the pre-metastatic niche (reviewed by Peinado et al.  2011 ; Psaila and Lyden 
 2009 ). Changes to lymph nodes immediately downstream of tumor-bearing sites 
 prior  to arrival of metastasizing cells have frequently been recorded in experimen-
tal models (Harrell et al.  2007 ; Hirakawa et al.  2005 ,  2007 ; Mumprecht et al. 
 2010 ; Ruddell et al.  2008 ), and similar changes in clinical samples are showing 
prognostic potential (Kurahara et al.  2010 ; Jakob et al.  2011 ). In mouse models of 
lymph node metastasis, tumor-draining lymph nodes present with greatly enlarged 
and supernumerary lymphatic sinuses before metastasis occurs, whereas lymph 
node metastases are not observed in the absence of LN lymphatic expansion 
(Hirakawa et al.  2007 ). In contrast, metastasis is frequently observed where LN 
lymphangiogenesis had preceded, and further distant lesions, e.g., lung, are more 
likely to occur (Hirakawa et al.  2007 ). Whether this directly relates to an enhanced 
delivery of tumor cells to the node, or some secondary survival advantage pro-
vided via environmental adaptation is still not clear. Consistent with earlier data 
on VEGF-C effects, lymph fl ow to the nodes is enhanced suggesting that tumor-
derived VEGF-C not only impacts tumor cells and LECs at the tumor periphery 
but that VEGF-C can also be transported in lymph to the LN to stimulate lym-
phangiogenesis there.  
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7.4     Lymph Effects on the Tumor Immune Response 

 Of course, there is a fl ip side to every story. In the case of lymph and lymphatics 
from the context of a tumor, we know that tumor-derived factors and proteins con-
tained within lymph can help to increase the probability of a tumor cell fi nding 
lymphatic vessels. We have also seen that the lymph fl ow generated as a conse-
quence can both physically detach cells and act as a guidance cue. However, in 
providing a route for tumor cell dissemination, lymphatic expansion also reinforces 
the connection to our immune system. To survive, therefore, a tumor must develop 
methods to suppress potentially destructive immune responses. Early clues alluding 
to a cooperative relationship between a tumor, lymphatics, and the host immune 
system came from studies illustrating that immune cells recruited to a tumor and 
within the draining LN actively stimulated lymphangiogenesis and tumor progres-
sion (Schoppmann et al.  2006 ; Harrell et al.  2007 ; Jeon et al.  2008 ; Moussai et al. 
 2011 ). More recently, research advances indicate that tumors are capable of exploit-
ing normal aspects of immunology into their advantage, confi rming that lymph and 
lymphatic vessels are important mediators of this. Maintenance of tissue fl uid bal-
ance requires an equilibrium between fl uid that enters the interstitial space and that 
which leaves via the lymphatics. This ensures a fl ow of lymph from the periphery 
via lymph nodes and towards the thoracic duct before reentering blood circulation. 
The anatomical sites of lymphatic capillaries in peripheral tissues mean that they 
are in close proximity to the environment, and therefore represent a major route of 
immune surveillance and protection. In addition to plasma proteins and cellular 
waste products lymph also acts as a sampling reservoir, transporting soluble anti-
gens from peripheral tissues towards the LN (Clement et al.  2010 ; Sixt et al.  2005 ; 
Roozendaal et al.  2009 ). Here, antigen and small molecular weight proteins pene-
trate the lymph node to the T cell zones via fi ne conduit structures and lymph node-
resident antigen- presenting cells sample the unfi ltered fl uid, take up, and cross 
present antigen. These responses are rapid (within minutes), much more so than 
mobilizing peripheral antigen-presenting cells (8–12 h). Delivery of soluble anti-
gens represents a rapid effi cient way to monitor events at the periphery and adapt 
accordingly, either by inciting effective immune responses or by preventing inap-
propriate tissue- damaging responses. Many tumors evolve to express mutated anti-
gens and overexpress normal tissue antigens (e.g., EGFR), differentiation antigens 
specifi c to tissue types (e.g., Melan-A specifi c to skin), or cancer/testes antigens, 
normally only expressed in germline tissues. In normal circumstances such changes 
would be detected and eliminated, however this is not the case in cancer. Something 
clearly goes awry. With collection of tumor-derived factors, vesicles, chemokines, 
infl ammatory mediators, and cells by lymphatics it is also likely that shed tumor-
derived antigens are carried in the soup. Infl uenced by this altered milieu, normally 
reactive immune cells undergo changes to functional phenotype (e.g., induction of 
T reg ), functional inactivation (loss of co-stimulatory molecules in dendritic cells), or 
die (deletion and exhaustion of tumor-reactive T cells). Indeed in physiological situ-
ations, lymph node LECs and stromal cells, which are continually exposed to 
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lymph-borne antigens, are able to process and present endogenous antigen, result-
ing in the  deletion of self-reactive T cells and maintenance of immune homeostasis 
and  tolerance (Lee et al.  2007 ; Cohen et al.  2010 ; Fletcher et al.  2010 ). More 
recently, this scenario was translated to the pathological setting of the tumor. Tumors 
that express the model antigen ovalbumin together with VEGF-C developed exten-
sive peritumoral lymphatic vessels networks, signifi cant immune infi ltrates which 
 concentrated in close proximity to the vessels, and enhanced lymphatic drainage 
(Lund et al.  2012 ). This study demonstrated that tumor-specifi c antigen could be 
scavenged by LECs of the tumor and draining LN and presented in Class I MHC 
complexes. This leads to impaired activation, function, and deletion of 
 ovalbumin-specifi c, tumor- reactive T cells that infi ltrate the tumor (Lund et al. 
 2012 ). Consistent with this, lymph node LECs are capable of iNOS production 
upon infl ammatory stimulation, which attenuate T cell proliferation (Lukacs-
Kornek et al.  2011 ) and may promote regulatory T cell development (Niedbala et al. 
 2007 ). In areas of chronic infl ammation such as the tumor microenvironment, the 
associated immune cells can further contribute to immune suppressive effects by 
signaling to collecting lymphatics in their vicinity. iNOS secreting immune cells 
such as myeloid-derived suppressor cells (MDSC) cause collecting vessel  relaxation 
and diminished vessel contraction strength (Liao et al.  2011 ). While the 
 interpretations of these and other studies differ, they all support the hypothesis that 
tumors employ complex strategies to manipulate our immune system, but thanks to 
the major role that lymphatics and their cargo play in immune homeostasis, modifi -
cations to lymphatic function are a key weapon in a tumors arsenal.  

7.5     Lymph Measurement in Tumors 

 The steps leading to hematogenous metastasis have been extensively studied (Butler 
and Gullino  1975 ; Condeelis and Segall  2003 ; Liotta et al.  1974 ) and until recently, 
lymphatics had not received the same attention. However, genetically modifi ed 
mouse models are now proving invaluable tools to aid our understanding of how 
lymphatic vessels function in both normal and diseased tissues   . 

  Detection of lymphatic vessels : Coincident improvements to intravital imaging tech-
niques and development of transgenic lines with fl uorescent proteins such as GFP, 
mOrange, tomato red, and luciferase under the transcriptional control of lymphatic- 
specifi c genes  Prox1  or  Vegfr3  have made the accurate identifi cation of lymphatic 
vessels possible and allowed real-time, minimally invasive tracking of the cells that 
contribute to the changes (Choi et al.  2011 ; Hagerling et al.  2011 ; Martinez-Corral 
et al.  2012 ; Truman et al.  2012 ). This is particularly useful for studying the onset 
and progression of lymphangiogenesis in cancer both at primary and metastatic sites 
(Harrell et al.  2007 ; Mumprecht et al.  2010 ; Martinez-Corral et al.  2012 ). 

  Measuring functionality in tumors : As we have seen, vessel functionality is essen-
tial for the establishment and propagation of tumors. Using murine models of 
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cancer, lymph exit from tumors and transit to lymph nodes have been measured by 
magnetic resonance imaging (MRI) technology (Ruddell et al.  2008 ; Dafni et al. 
 2002 ) and fl uorescence microlymphangiography using fl uorescently labeled tracers 
(dextrans and quantum dots) (Hoshida et al.  2006 ; Harrell et al.  2007 ; and reviewed 
by Cohen et al.  2011 ). Both methods have advantages and disadvantages. MRI 
allows three-dimensional imaging, which can be achieved for both superfi cial and 
deeper structures (Pathak et al.  2005 ). Contrast agents such as low molecular weight 
gadolinium-based agents (e.g., dimeglumine gadopentate, Gd-DTPA), however, 
can rapidly diffuse out of lymphatic vessels so are not suitable for long-term imag-
ing in small animal models. Gd-DTPA has proven useful for short-term kinetic stud-
ies of tumor- associated lymph fl ow in mice, where rapid uptake into lymphatics 
enabled measurement of the increased lymph fl ow from tumors to lymph nodes and 
back into the circulation of tumor-bearing mice (Ruddell et al.  2008 ). In contrast, 
quantifi cation of lymph fl ow velocity is achieved using fl uorescence lymphangiog-
raphy, which tracks the convective movement of photobleached spots within fl uo-
rescently loaded vessels (Hoshida et al.  2006 ). Alternative methods to quantify 
lymphatic function involve the measurement of depot clearance of labeled albumins 
or dextrans (Emmett et al.  2011 ; Karlsen et al.  2012 ). Fluorescent and near-infrared 
optical imaging are useful for imaging of superfi cial lymphatic vessel drainage, 
however, they do have the drawbacks that images are of relatively low resolution 
and deeper vessels cannot be detected (Harrell et al.  2007 ; Kwon and Sevick-
Muraca  2007 ). Recently, optical frequency domain imaging, a second generation of 
optical coherence tomography, has been described as an exciting new technique for 
intravital imaging of tumors, utilizing elastic light scattering properties to yield high 
resolution images in 3D. Signals are generated based upon the intrinsic movement 
of erythrocytes so no contrast agents are required. Without the need for tracers, both 
angiography and lymphangiography can be employed at the same time and distin-
guished based on contrast. This method is being advocated as a high volumetric 
imaging technique with suffi ciently high resolution and offering enhanced tissue 
penetration up to depths in the order of millimeters (Vakoc et al.  2009 ). 

  Lymph fl ow measurements in cancer patients : In patients, tracers that rely on the 
functional properties of lymphatics for selective uptake and transport of either 
radiolabeled/radio-opaque colloids or inert dyes are most commonly used to locate 
sentinel lymph nodes (Lai and Rockall  2010 ; Mouli et al.  2010 ). There are few stud-
ies that have measured lymph fl ow in cancer patients. Indocyanine green, a near- 
infrared fl uorophore, has recently been used to measure lymph velocities, and 
lymphatic functionality in breast cancer patients undergoing sentinel lymph node 
mapping (Rasmussen et al.  2009 ; Sevick-Muraca et al.  2008 ). This noninvasive 
technique measured lymph velocities in patients ranging from 0.08 to 0.32 cm s −1  
(4.8–19.2 cm min −1 ) (Sevick-Muraca et al.  2008 ) in contrast to normal arms where 
lymph velocities have been measured at 8.9 cm min −1  (Modi et al.  2007a ,  b ). Near- 
infrared fl uorescence and other imaging techniques are also being utilized to map 
vessel functionality in patients suffering from complications associated with 
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surgical resection of lymph nodes. These modalities improve the effi ciency of man-
ual lymph drainage therapy (Maus et al.  2012 ; Sevick-Muraca  2012 ), and can also 
be applied to help detect early changes or defi cits in vessel function that could 
account for lymphatic dysfunction preceding postmastectomy lymphedema (Modi 
et al.  2007a ; de Rezende et al.  2011 ; Stanton et al.  2006 ; Szuba et al.  2007 ).  

7.6     Lymph and Lymphatics as Therapeutic Targets 

 With increasing insight into the role of lymphatics, their function, and the com-
pounds they carry, comes an increasing aspiration to exploit or manipulate these 
features as therapeutic targets for the treatment of cancer (Fig.  7.3 ).

    Manipulation of VEGF-C/VEGFR signaling axis : Numerous studies have been con-
ducted with a goal to assess the therapeutic potential of antibodies raised against 
lymphatic-specifi c epitopes. In experimental cancer models, neutralizing antibodies 
and antibody fragments against VEGF-C and its receptors inhibit the growth of 
peritumoral lymphatics and ultimately the incidence of lymph node metastasis but 
have no effect on growth of the primary tumor (Rinderknecht et al.  2010 ; Roberts 
et al.  2006 ; Tvorogov et al.  2010 ; Yang et al.  2011 ). Major effects on the primary 
tumor and metastasis were only observed when combinations of both anti-VEGFR-2 
and -VEGFR-3 were used. Moreover, antibodies designed to block shared markers 
of blood and lymphatic endothelium such as ephrins and angiopoietins impact both 
systems but the mechanisms of actions are yet unclear, whether they exert their 
benefi cial effects on lymphatics due to direct inhibition, or whether the observed 
lymphatic inhibition is a downstream consequence of the forced reduction in blood 
vessel density within the tumor (Abengozar et al.  2012 ; Holopainen et al.  2012 ; 
Hwang-Bo et al.  2012 ). Small molecule inhibitors such as Sunitinib, Sorafi neb, 
PTK787/ZK222584, and E7080, and mTOR inhibitors such as Rapamycin have 
also been shown to impact tumor lymphangiogenesis and lymphatic dissemination 
(Kodera et al.  2011 ; Matsui et al.  2008 ; Patel et al.  2011 ; Schomber et al.  2009 ). 
While effective in preclinical models, these compounds, e.g., broad-spectrum tyro-
sine kinase inhibitors, are not lymphatic-specifi c, therefore off-target secondary 
effects need to be carefully evaluated. These data would suggest that with the com-
plex survival strategies put in place by a growing tumor, targeting either lymphatics 
or blood vessels alone is not the best way to attack tumors. 

  Particulates that exploit the lymphatics : As we learn more about how lymphatics func-
tion and the profi cient manner in which lymphatics are able to rapidly but selectively 
take up pathogens such as viruses and virus-like particles up to 150 nm in diameter, 
there is an increasing thrust to harness and exploit these properties. With this in mind, 
researchers are aiming to improve the effi cacy of drug delivery, and develop novel “vac-
cines” that target both the tumor and the downstream immune checkpoints bridged by 
the lymphatics. Compounds loaded within particulates that are drained and carried via 
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  Fig. 7.3    Lymph-associated therapeutic strategies. ( a ) The implementation of “vaccines” and 
nanocarriers aim to improve effi ciency of therapies by exploiting the properties of lymph and their 
transport via lymphatics. These particulates can come in many guises due to their pliability. 
Researchers hope to use this strategy as an immunotherapy, directly targeting the draining lymph 
node and immune system, to more effectively deliver cytotoxic payloads or kill tumor cells as a 
direct consequence of particle properties. ( b ) Photodynamic therapy (PDT) relies on the accumula-
tion of photosensitizers within tissues, but cytotoxic activation only occurs once the specifi c tissue 
is exposed to light of defi ned wavelengths. Preclinical models demonstrated this method could  
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the lymphatics display reduced nonspecifi c cytotoxicity and enhanced bioavailability 
(e.g., protection from enzymatic degradation and fi rst pass clearance from liver metabo-
lism) compared with intravenous delivery. Furthermore, the pliability of such particu-
lates, e.g., particle material, core  composition, size, structure, shape, and surface 
modifi cation adds to their attractiveness as a therapeutic vehicle. For example, the 
potential to modify their surface chemistry can enhance lymphatic uptake (sub-50 nm 
diameter), retention (avidin coating), and cell-specifi c uptake. Ingestion particularly by 
antigen-presenting cells therefore potentiates these nanoparticles as immune activators. 
Although the use of patient-specifi c therapeutic vaccines is still some way off, the pros-
pect of individualized lymph-targeted immune-modulatory therapies is immensely 
exciting. The number of scientifi c research groups, biotech start-ups, and pharmaceuti-
cal giants buying into this technology indicates that the notion of lymph-borne therapeu-
tics is in fact likely to become a powerful therapeutic platform. 

  Photodynamic ablation therapy : With the knowledge that systemic delivery of blocking 
antibodies is less effective and specifi c than hypothesized, alternative and more targeted 
ideas are under exploration. Photodynamic therapy (PDT)  typically works via the accu-
mulation of compounds with photosensitizing  properties at your tissue of choice. 
Exposure of this area to visible light activates the photosensitizer generating reactive 
oxygen species and cytotoxicity tissues exposed to the compound (reviewed by Juarranz 
et al.  2008 ). The benzoporphyrin derivative verteporfi n is clinically applied to patients 
with diseases such as age related macular degeneration (Zhao et al.  2010 ). It is delivered 
to patients in the form of liposomes. Recently, taking advantage of lymphatic functional 
characteristics, these particulates were applied to experimental models of melanoma. 
Upon intradermal inoculation, liposomes in the tumor-associated interstitium drained 
into local lymphatics where they were retained for up to 2 h. Upon subsequent activation 
by 639 nm laser light, activation of the verteporfi n resulted in specifi c destruction of 
tumor- associated lymphatics but also cancer cells contained within them in transit to the 
lymph node (Tammela et al.  2011 ). Developments of this nature are particularly exciting 
because of their low toxicity and off-target effects when compared to conventional cyto-
toxic therapies. Further advantages offered by PDT in the context of tumor-associated 
lymph formation are that this therapy can also (a) induce vascular shutdown which may 
help to interrupt the nutrient supply chain but also switch off vascular leakage and high 
interstitial pressures that drive lymph formation; and (b) activate the immune response 

Fig. 7.3 (continued) effectively ablate tumor-draining lymphatics and cancer cells within them. 
How this would impact tissue fl uid balance, however, is not clear. ( c ) Vessel normalization strate-
gies use anti-angiogenic therapies to temporarily restore the balance of pro- and anti-angiogenic 
signals, thereby reducing vessel leakiness and fl uid pressure, improving oxygenation and drug 
delivery. Reduction of fl uid pressure may then decrease lymph fl ow and the effects it and its cargo 
impart on lymphatics and downstream tissues. ( d ) Anti-lymphatic antibodies and small molecule 
inhibitors may prevent VEGFR-3 signaling, and therefore lymphangiogenesis at the tumor and 
lymph node by blocking the receptor or scavenging ligands on responsive cells (e.g. endothelium 
and infi ltrating immune cells). Secondary advantageous effects may also occur via interactions 
with blood endothelial cells       
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which is  compromised in tumors, partly as a consequence of the immune modulating 
components transported within tumor-derived lymph. 

  Vessel normalization strategies : Rather than directly targeting lymph and lymphatic 
vessels, the route of  vessel normalization  is also being explored to target abnormal 
vessels within the tumor. The concept came from the observation that in preclinical 
models, treatment with anti-angiogenic agents transiently restored vessel function 
in tumors, improving oxygenation and reducing fl uid pressure (Tong et al.  2004 ; 
Winkler et al.  2004 ; Yuan et al.  1996 ). In this window of opportunity, the effi cacy of 
cytotoxic drugs was also improved (Winkler et al.  2004 ; Mazzone et al.  2009 ). The 
reinstatement of a more normal vessel network by balancing pro- and anti-angio-
genic signals within the tumor microenvironment may therefore help to reduce the 
manifestation of lymph-mediated disease downstream stemming from high TIF 
pressure, irrespective of whether this occurs through direct effects on vessel wall 
components or via inhibition of angiogenic myeloid cells (reviewed by Carmeliet 
and Jain  2011 )   . Direct evidence to the benefi ts of this concept in human tumors is 
still missing, however recent studies in colorectal cancer and glioblastoma have 
reported changes in Bevacizumab-treated patients that are consistent with the notion 
of normalization (Batchelor et al.  2007 ,  2010 ; Willett et al.  2004 ). Although in the-
ory, vessel normalization may attenuate lymphatic promotion of tumor dissemina-
tion by reducing TIF generation and fl ow thereby reducing need for 
lymphangiogenesis and decreasing transport of soluble pro-tumor factors, recent 
work has demonstrated that caution is indeed warranted: compounds with potential 
to induce vessel normalization (and increase drug delivery) may also promote lym-
phatic metastasis (Grepin et al.  2012 ; Liu et al.  2011 ). Therefore understanding the 
delicate balances that exist within the tumor environment will be critical when 
designing and optimizing the doses, combinations, or timings of future therapeutic 
platforms.  

7.7     Concluding Remarks 

 There is no doubt that lymph via its generation, transport, and the vessels that facili-
tate this plays an essential role in the pathophysiology of cancer, and carries wide-
spread implications. As a result, lymphatics and their function are rapidly becoming 
a major therapeutic target. It is also clear to see that the relationship between tumor 
blood vessels, lymphatics, and their microenvironment is a convoluted one with 
multiple levels of complexity. But as the fi eld grows and expands into previously 
unexplored niches, we have begun to embrace new methodologies. The integration 
of tumor biology with disciplines, such as physics, proteomics, and bioengineering 
for example, is helping to unravel these relationships layer by layer at continually 
evolving and accelerating rates. It is through collaborations such as these that the 
biggest breakthroughs will transpire; an event we await with much anticipation.     
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