
Chapter 7

Linear Programming Based Algorithms

7.1 Introduction

In Chapter 4, we showed that when a graph is embedded in a suitably con-
structed Markov decision process, the associated convex domain of discounted
occupational measures is a polyhedron with extreme points corresponding to
all spanning subgraphs of the given graph. Furthermore, from Theorem 4.1
we learned that a simple cut of the above domain yields a polyhedron the
extreme points of which correspond to only two possible types: Hamiltonian
cycles and convex combinations of short and noose cycles. These properties,
naturally, suggest certain algorithmic approaches to searching for Hamilto-
nian cycles.

In this chapter, we present two methods to solve the HCP: the branch and
fix method, and the Wedged-MIP heuristic. Both methods take advantage of
the Markov decision process embedding outlined in Chapter 4. The branch
and fix method is implemented in MATLAB and results that are supplied
demonstrate the potential of this model. The Wedged-MIP heuristic is im-
plemented in IBM ILOG OPL-CPLEX and succeeds in solving large graphs,
including two of the large test problems given on the TSPLIB website main-
tained by the University of Heidelberg [98]. Both of these methods operate
in the space of discounted occupational measures, but similar methods could
be developed for the space of limiting average occupational measures.

Here, we continue exploiting properties of the space of discounted occupa-
tional measures in the Markov decision process associated with a graph G,
as outlined in Chapter 4. In particular, we apply the non-standard branch
and bound method of Filar and Lasserre [50] to Feinberg’s embedding of the
HCP in a discounted Markov decision process [44] (rather than the limiting
average Markov decision process used previously). This embedding has the
benefit that the discount parameter does not destroy the sparsity of coeffi-

113
V. S. Borkar et al., Hamiltonian Cycle Problem and Markov Chains, 
International Series in Operations Research & Management Science 171, 
DOI 10.1007/978-1-4614-3232-6_7, © Springer Science+Business Media, LLC 2012



114 7 Linear Programming Based Algorithms

cient matrices to nearly the same extent as did the perturbation parameter
ε, used in [50] to replace the underlying probability transitions p(j|i, a) of the
MDP by the linearly perturbed transitions pε(j|i, a). We refer to the method
that arises from this embedding as the branch and fix method1.

We show that in the present application, the appropriate sub-space of dis-
counted occupational measures is synonymous with a polytope X̃β defined by
only N + 1 equality constraints and nonnegativity constraints. Using results
in Theorems 4.1 and 4.2 about the structure of extreme points of X̃β , we
conjecture that Hamiltonian cycles will be found far earlier, and the result-
ing logical branch and fix tree will have fewer branches than that for more
common polytopes. The logical branch and fix (B&F) tree that arises from
the branch and fix method is a rooted tree. The root of the logical B&F tree
corresponds to the original graph G, and each branch corresponds to a cer-
tain fixing of arcs in G. Then, a branch forms a pathway from the root of the
logical B&F tree to a leaf. These leaves correspond to particular subdigraphs
of G, which may or may not contain Hamiltonian cycles. At the maximum
depth of the logical B&F tree, each leaf corresponds to a subdigraph for which
there is exactly one arc emanating from every vertex. We refer to subdigraphs
of this type as spanning 1-out-regular subdigraphs of G. Leaves at a shallower
level correspond to subdigraphs in which there are multiple arcs emanating
from at least one vertex.

The set of all spanning 1-out-regular subdigraphs has a one-to-one corre-
spondence with the set of all deterministic policies in G. Even for graphs
with bounded out-degree, this represents a set with non-polynomial cardi-
nality. Cubic graphs, for example, have 3N distinct deterministic policies.
Hence, it is desirable to be able to fathom branches early, and consequently
restrict the number of leaves in the logical B&F tree. The special structure of
the extreme points of X̃β usually enables us to identify a Hamiltonian cycle
before obtaining a spanning 1-out-regular subdigraph, limiting the depth of
the logical B&F tree. We achieve significant improvements by introducing
into the branch and fix method additional feasibility constraints as bounds,
and logical checks that allow us to fathom branches early. This further limits
the depth of the logical B&F tree.

The resulting method is guaranteed to solve the HCP in finitely many itera-
tions. While the worst case may involve examination of exponentially many
branches, empirically we show that the number of branches required to find a
Hamiltonian cycle is generally reduced to a tiny fraction of the total number
of deterministic policies. For example, a 24-vertex Hamiltonian cubic graph
has 324 ≈ 3 × 1011 possible choices for deterministic policies, but the algo-

1 Since the speed of convergence depends more on arc fixing features than on bounds,
the name branch and fix (or B&F) method is more appropriate than branch and
bound.



7.2 Branch and Fix Method 115

rithm finds a Hamiltonian cycle by examining only 28 branches. We observe
that Hamiltonian graphs perform better than non-Hamiltonian graphs, as
they typically have many Hamiltonian cycles spread throughout the logical
B&F tree, and only one needs to be found. However, even in non-Hamiltonian
graphs we demonstrate that the algorithm performs well. For instance, a 28-
vertex non-Hamiltonian cubic graph has 328 ≈ 2 × 1013 possible choices for
deterministic policies, but the algorithm terminates after investigating only
11,708 branches. This example highlights the ability of the B&F method to
fathom branches early, allowing us to ignore, in this case, 99.99999995% of
the potential branches.

In addition to the basic branch and fix method, we develop and compare
several branching methods for traversing the logical B&F tree that may find
Hamiltonian cycles quicker in certain graphs, and propose additional con-
straints that can find infeasibility at an earlier depth in the logical B&F
tree. We provide experimental results demonstrating the significant improve-
ment achieved by these additions. We also demonstrate that X̃β can be a
useful polytope in many other optimisation algorithms. In particular we use
X̃β , along with the additional constraints, in a mixed integer programming
model that can solve extremely large graphs using commercially available
software such as CPLEX. Finally, we present solutions of four large non-
regular graphs, with 250, 500, 1000 and 2000 vertices respectively, which are
obtained by this model.

7.2 Branch and Fix Method

In this section, we describe the branch and fix method and some of the tech-
niques used within that branch and fix method that are designed to help limit
the size of the logical branching tree. The original source for this algorithm
is Ejov et al. [31] and the presentation here is based on the PhD thesis of
Haythorpe [62].

Outline of The Branch and Fix Method

In view of the fact that it is only 1-randomised policies that prevent standard
simplex methods from finding a Hamiltonian cycle, it has been recognised for
some time that branch and bound-type methods can be used to eliminate
the possibility of arriving at these undesirable extreme points (see, for in-
stance, Filar and Lasserre [50]). However, the method reported in Filar and
Lasserre [50] uses an embedding in a long-run average MDP, with a perturba-
tion of transition probabilities that introduces a small parameter in most of
the p(j|i, a) coefficients of variables in linear constraints (4.18), thereby lead-



116 7 Linear Programming Based Algorithms

ing to loss of sparsity. Furthermore, the method in Filar and Lasserre [50]
was never implemented fully, or tested beyond a few simple examples.

Theorem 4.1 indicates that 1-randomised policies induced by extreme points
of X̃β are less prevalent than might have been conjectured, since they cannot
be constructed from convex combinations of just any two deterministic poli-
cies. This provides motivation for testing algorithmic approaches based on
successive elimination of arcs that could be used to construct these convex
combinations. Since our goal is to find an extreme point xe ∈ X̃β such that

f = M−1(xe) ∈ FD,

we have a number of degrees of freedom in designing an algorithm. In par-
ticular, different linear objective functions can be chosen at each stage of
the algorithm, the parameter β ∈ (0, 1) can be adjusted, and μ ∈ (0, 1/N)
can be chosen small but not so small as to cause numerical difficulties. The
latter parameter needs to be positive to ensure that the inverse map M−1 is
well-defined. In the experiments reported here, we choose μ to be 1/N2.

The branch and fix method is as follows. We solve a sequence of linear
programs—two at each branching point of the logical B&F tree—with the
generic structure

minL(x)

subject to (7.1)

x ∈ X̃β , and additional constraints, if any, on arcs fixed earlier.

Step 1—Initiation. We solve the original LP (7.1) without any additional
constraints and with some choice of an objective function L(x), to obtain an
optimal basic feasible solution x0. We then find f0 = M−1(x0). If f0 ∈ FD,
we stop, the policy f0 identifies a Hamiltonian cycle. Otherwise, f0 is a 1-
randomised policy.

Step 2—Branching. We use the 1-randomised policy f0 to identify the
splitting vertex i, and two arcs (i, j1) and (i, j2) corresponding to the single
randomisation in f0. If there are d arcs {(i, a1), . . . , (i, ad)} emanating from
vertex i, we construct d subdigraphs: G1, G2, . . . , Gd, where in Gk the arc
(i, ak) is the only arc emanating from vertex i. These graphs are identical to
the original graph G at all other vertices. In this process we, by default, fix
an arc in each Gk.

Step 3—Fixing. In many subdigraphs, the fixing of one arc implies that
other arcs may also be fixed2, without a possibility of unintentionally elim-

2 This frequently happens in the case of cubic graphs that supplied many of our test
examples. For instance, see Figure 7.2.



7.2 Branch and Fix Method 117

inating a Hamiltonian cycle containing already fixed arcs that are part of a
Hamiltonian cycle in the current subdigraph. Later in this section, we de-
scribe four checks for determining additional arcs that can be fixed. Once we
identify these arcs, we also fix them at this step.

Step 4—Iteration.We solve a second LP (with the objective function (7.9))
to determine if (4.19) is still satisfied with the current fixing of arcs. If so,
we repeat Step 1 with the LP (7.1) constructed for the graph at the cur-
rent branching point of the logical B&F tree, with additional constraints
derived in (7.5) and (7.6) below. This branching point may correspond to
G1, G2, . . . , Gd, or to a sub-graph constructed from one of these with the
help of additional arc fixing3.

We now briefly discuss the construction of additional constraints alluded to in
Step 4 of the B&F. If f is a Hamiltonian policy, x = M(f), and μ = 0, then
we can easily check that x satisfies (4.18)–(4.20) and, for k = 0, . . . , N − 1,

xikik+1
=

∑
a∈A(ik)

xika =
βk

1− βN
(7.2)

where (ik, ik+1) is the kth arc on the Hamiltonian cycle traced out by f .
This immediately suggests lower and upper bounds on sums of the x variables
corresponding to arcs emanating from the heads of fixed arcs. This is because
if ik+1 �= 1, ∑

a∈A(ik+1)

xik+1a − βxikik+1
= 0. (7.3)

If ik+1 = 1, then k + 1 = N and we have

−βN
∑

a∈A(1)

x1a + βxiN−1,1 = 0. (7.4)

For μ > 0, analogous, but more complex, expressions for the preceding sums
can be derived and the relationship (7.3) between these sums at successive
vertices on the Hamiltonian cycle, for ik+1 �= 1, is simply∑

a∈A(ik+1)

xik+1a − βxikik+1
= μ. (7.5)

If the fixed arc is the final arc (iN , 1), we have

3 As is typical with branching methods, decisions guiding which branch to select
first are important and open to alternative heuristics. We investigate five possible
branching methods later in this section.



118 7 Linear Programming Based Algorithms

−βN
∑

a∈A(1)

x1a + βxiN−1,1 =
μβ(1− βN−1)

1− β
. (7.6)

We derive equation (7.5) by simply inspecting the form of (4.18). For (7.6),
we know from (4.18) that∑

a∈A(1)

x1a − βxiN−1,1 = 1− (N − 1)μ,

and therefore

βxiN−1,1 =
∑

a∈A(1)

x1a − 1 + (N − 1)μ. (7.7)

Then, we substitute (7.7) into the left-hand side of (7.6) to obtain

−βN
∑

a∈A(1)

x1a + βxiN−1,1 = (1− βN )
∑

a∈A(1)

x1a − 1 + (N − 1)μ. (7.8)

Finally, we substitute (4.19) into (7.8) to obtain

− βN
∑

a∈A(1)

x1a + βxiN−1,1

= (1− βN )
(1− (N − 1)μ)(1− β) + μ(β − βN )

(1− β)(1− βN )
− 1 + (N − 1)μ

=
μβ(1− βN−1)

1− β
,

which coincides with (7.6).

Structure of the underlying LP in the branch and fix method

At the initiation step of the B&F method, we solve a feasibility problem
of satisfying constraints (4.18)–(4.20). This allows us to determine on which
vertex to begin branching.

At every branching point of the logical B&F tree other than the root, we solve
an additional LP that attempts to determine if we need to continue explor-
ing the current branch. As the algorithm evolves along successive branching
points of the logical B&F tree, we have additional information about which
arcs have been fixed. This permits us to perform tests to check the possibility
of finding a Hamiltonian cycle containing these fixed arcs. If we determine
that it is impossible, we fathom that branching point of the logical B&F tree
and no further exploration of that branch is required. For instance, suppose



7.2 Branch and Fix Method 119

that all fixed arcs belong to a set U . Let the objective function of a second
LP4 be

L(x) =
∑

a∈A(1)

x1a, (7.9)

and minimise (7.9) subject to constraints (4.18) and (4.20) together with
equations (7.5) and (7.6) providing additional constraints for each arc in U .
If the minimum L∗(x) fails to reach the level defined by the right-hand side

of the now omitted constraint (4.19) of X̃β , or if the constraints are infeasible,
then there exists no Hamiltonian cycle that uses all the arcs of U , and we
fathom the current branching point of the logical B&F tree. Otherwise, we
solve the LP (7.1) with the objective function5

L(x) =
∑

(i,j)∈U
{

∑
a∈A(j)

xja − β
∑

a∈A(i)

xia}, (7.10)

and with no additional constraints beyond those in X̃β . This LP will either
find a Hamiltonian cycle, or it will lead to an extreme point x′

e such that
f ′ = M−1(x′

e) is a new 1-randomised policy. Of course, alternative objective
functions L(x) could also be considered.

Arc fixing checks

There are a number of logical checks that enable us to fix additional arcs
once a decision is taken to fix a particular arc. This is best illustrated with
the help of an example. These checks are in the spirit of well-known rules for
constructing Hamiltonian cycles (see Tucker [99, Section 8.2]).

Consider the envelope graph (Figure 7.1). Figure 7.2 shows the kind of logical
additional arc fixing that can arise.

Check 1: Consider the top-left graph in Figure 7.2. The fixed arcs are (1, 2)
and (6, 3). Since the only arcs that can go to vertex 5 are (1, 5), (4, 5) and
(6, 5), we may also fix arc (4, 5) as vertices 1 and 6 already have fixed arcs
going elsewhere. In this case, we say that arc (4, 5) is free, whereas arcs (1, 5)
and (6, 5) are not free. In general, if only one free arc enters a vertex, it must
be fixed.

4 Although we call (7.9) the second LP, it is the first LP solved in all iterations other
than the initial iteration. Since it is not solved first in the initial iteration, we refer
to (7.9) as the second LP.
5 For simplicity, we are assuming here that U does not contain any arc going into
vertex 1. If such an arc were in U , the objective function (7.10) would have one term
consistent with the left-hand side of equation (7.6).



120 7 Linear Programming Based Algorithms

3

2

65

4

1

Fig. 7.1: The envelope graph

3

2

65

4

1

3

2

65

4

1

3

2

65

4

1

3

2

65

4

1

3

2

65

4

1

Fig. 7.2: Various arc fixing situations

Check 2: Consider the top-right graph in Figure 7.2. The fixed arcs are (1, 2)
and (5, 6). The arcs going to vertex 5 are (1, 5), (4, 5) and (6, 5). We cannot
choose (6, 5) as this would create a subcycle of length 2, and vertex 1 already
has a fixed arc going elsewhere, so we must fix arc (4, 5). In general, if there
are only two free arcs and fixing one arc would create a subcycle, we must
fix the other one.

Check 3: Consider the bottom-left graph in Figure 7.2. The fixed arcs are
(1, 2) and (2, 3). Since the only arcs that can come from vertex 6 are (6, 2),
(6, 3) and (6, 5), we must fix arc (6, 5) as vertices 2 and 3 already have arcs
going into them. In this case, we say that arcs (6, 3) and (6, 5) are blocked,
whereas arc (6, 2) is unblocked. In general, if there is only one unblocked arc
emanating from a vertex, the arc must be fixed.

Check 4: Consider the bottom-right graph in Figure 7.2. The fixed arcs
are (1, 2) and (3, 6). The only arcs that can come from vertex 6 are (6, 2),
(6, 3) and (6, 5). We cannot choose (6, 2) because vertex 2 already has an in-



7.2 Branch and Fix Method 121

coming arc, and we cannot choose (6, 3) as this would create a subcycle, so we
must fix arc (6, 5). In general, if there are two unblocked arcs emanating from
a vertex and fixing one arc would create a subcycle, we must fix the other one.

The branch and bound method given in Filar and Lasserre [50] always finds
a Hamiltonian cycle if one exists. While the branch and fix method presented
here is in the same spirit as the method in [50], we include a finite convergence
proof for the sake of completeness.

Theorem 7.1. The branch and fix method converges in finitely many steps.
In particular, if G is Hamiltonian, the algorithm finds a Hamiltonian cycle;
otherwise, the algorithm terminates after fathoming all constructed branches
of the logical B&F tree.

Proof. Given a graph G, at each stage of the algorithm, a splitting vertex is
identified and branches are created for all arcs emanating from that vertex.
As we consider every arc for this vertex and therefore explore every possibil-
ity from this vertex, the branching process cannot prevent the discovery of
a Hamiltonian cycle if one exists in the graph G. It then suffices to confirm
that none of the checking, bounding, or fixing steps in the branch and fix
method can eliminate the possibility of finding a Hamiltonian cycle.

Recall that constraints (4.19), (7.5) and (7.6) are shown to be satisfied by all
Hamiltonian cycles. Then, for a particular branching point, if the minimum
value of (7.9) constrained by (4.18), (4.20), (7.5) and (7.6) cannot achieve
the value given in (4.19), or if the constraints are infeasible, there cannot be
any Hamiltonian cycles remaining in the subdigraph. Therefore, fathoming
the branch due to the second LP (with the objective function (7.9)) cannot
eliminate any Hamiltonian cycles. Checks 1–4 above are designed to ensure
that at least one arc goes into and comes out of each vertex (while preventing
the formation of subcycles), by fixing one or more arcs in situations where
any other choice would violate this requirement. Since this is a requirement
for all Hamiltonian cycles, it follows that the arc fixing procedures previously
described cannot eliminate any Hamiltonian cycles.

The B&F method continues to search the tree until either a Hamiltonian
cycle is found, or all constructed branches are fathomed. Since none of the
steps in the B&F method can eliminate the possibility of finding a Hamil-
tonian cycle, we are guaranteed to find one of the Hamiltonian cycles in G.
If all branches of the logical B&F tree are fathomed without finding any
Hamiltonian cycles, we can conclude that G is non-Hamiltonian. �

While the branch and fix method only finds a single Hamiltonian cycle, it is
possible to find all Hamiltonian cycles by simply recording each Hamiltonian
cycle when it is found, and then continuing to search the branch and fix tree
rather than terminating.



122 7 Linear Programming Based Algorithms

Corollary 7.1. The depth of the logical B&F tree has an upper bound of N .

Proof. Since at each branching point of the B&F we branch on all arcs ema-
nating from a vertex, it follows that once an arc (i, j) is fixed, no other arcs
emanating from vertex i can be fixed. Then, at each level of the branch and
fix tree, a different vertex is branched on. After N levels, all vertices will have
exactly one arc fixed, and either a Hamiltonian cycle will be found, or the
relevant LP will be infeasible and we will fathom that branch. �

In practice, the arc fixing checks ensure that we never reach this upper bound,
as we will certainly fix multiple arcs at branching points corresponding to
subdigraphs where only few unfixed arcs remain.

7.3 An Algorithm that Implements the Branch and Fix
Method

In Section 7.2, we described the branch and fix method for the HCP and
proved its finite convergence. Here, we present a recursive algorithm that
implements the method in pseudocode format, with separate component al-
gorithms for the arc fixing checks and for solving the second LP. The input
variable fixed arcs is initially input as an empty vector, as no arcs are fixed
at the commencement of the algorithm. The output term HC may either be
a Hamiltonian cycle found by the branch and fix method, or a message that
no Hamiltonian cycle was found.

Input: G, fixed arcs
Output: G, fixed arcs

begin
N ← Size(G)
for i from 1 to N

if only one arc (j, i) is free to go into vertex i
fixed arcs ← Add arc (j, i) to fixed arcs if it is not already in fixed arcs

end

if two arcs (j, i), (k, i), j �= k are free to go into i and arc (i, k) is in fixed arcs
fixed arcs ← Add arc (j, i) to fixed arcs if it is not already in fixed arcs

end

if only one arc (i, j) that emanates from i is unblocked
fixed arcs ← Add arc (i, j) to fixed arcs if it is not already in fixed arcs

end

if two arcs (i, j), (i, k), j �= k that emanate from i are unblocked, and arc (k, i)
is in fixed arcs

fixed arcs ← Add arc (i, j) to fixed arcs if it is not already in fixed arcs
end

end
end

Algorithm 7.1: Checking algorithm



7.3 An Algorithm that Implements the Branch and Fix Method 123

Input: G, β, fixed arcs
Output: HC

begin
N ← Size(G)
μ ← 1/N2

function value ← Algorithm 7.3: Second LP algorithm(G, β, fixed arcs)

if infeasibility is found or function value >
(1 − (N − 1)μ)(1 − β) + μ(β − βN )

(1 − β)(1 − βN )
return no HC found

end
˜Xβ ← constraints (4.18)–(4.20)
for Each arc in fixed arcs

if Arc goes into vertex 1
˜Xβ ← Add constraint (7.6)

else
˜Xβ ← Add constraint (7.5)

end
end

x ← Solve the LP (7.1) with constraints ˜Xβ

if infeasibility is found
return no HC found

elseif a HC is found
return HC

end
splitting vertex ← Identify which vertex has 2 non-zero entries in x
d ← Number of arcs emanating from splitting vertex
for i from 1 to d

Gd ← G with the d-th arc from splitting vertex fixed
(Gd, new fixed arcs) ← Algorithm 7.1: Checking algorithm(Gd, fixed arcs)
HC ← Algorithm 7.2: Branch and fix algorithm(Gd, β, new fixed arcs)
if a HC is found

return HC
end

end
if a HC is found

return HC
else

return no HC found
end

end

Algorithm 7.2: Branch and fix algorithm

Input: G, β, fixed arcs
Output: function value

begin
L(x) ← Sum of all arcs (1, j) emanating from vertex 1
˜Xβ ← constraints (4.18) and (4.20)
for each arc in fixed arcs

if arc goes into vertex 1
˜Xβ ← Add constraint (7.6)

else
˜Xβ ← Add constraint (7.5)

end
end
(x,function value) ← Solve the LP minL(x) subject to Xβ

end

Algorithm 7.3: Second LP algorithm



124 7 Linear Programming Based Algorithms

Numerical results

We implement Algorithms 7.1–7.3 in MATLAB (version 7.4.0.336) and use
CPLEX (version 11.0.0) to solve all the linear programming sub-problems.
The algorithm is tested on a range of small- to medium-sized graphs. The
results are encouraging. The number of branches required to solve each of
these problems is only a tiny fraction of the number of deterministic policies.
It is clear that non-Hamiltonian graphs require more branches to solve than
Hamiltonian graphs of the same size. This is because in a Hamiltonian graph,
as soon as a Hamiltonian cycle is found, the algorithm terminates. As there
is no Hamiltonian cycle in a non-Hamiltonian graph, the algorithm only ter-
minates after fathoming all generated branches of the logical B&F tree.

We provide a sample of results in Tables 7.1 and 7.2, including a comparison
between the number of branches examined and the maximum possible num-
ber of branches (deterministic policies), and the running time in seconds.
The Dodecahedron, Petersen, and Coxeter graphs, and the Knight’s Tour
problem are well-known in the literature (see Gross and Yellen [58, p. 12]
for the first two, Gross and Yellen [58, p. 225] for the third, and Bondy and
Murty [14, p. 241] for the last). The 24-vertex graph is a randomly chosen
cubic 24-vertex graph.

Table 7.1: Preliminary results for the branch and fix method

Graph Branches Upper bound Time(s)
Dodecahedron: Ham, N = 20, arcs = 60 75 3.4868× 109 2.98

Ham, N = 24, arcs = 72 28 2.8243× 1011 1.02
8×8 Knight’s Tour: Ham, N = 64, arcs = 336 failed 9.1654× 1043 > 12 hrs

Petersen: non-Ham, N = 10, arcs = 30 53 5.9049× 104 0.99
Coxeter: non-Ham, N = 28, arcs = 84 11589 2.2877× 1013 593.40

In Table 7.2, in the first column we refer to the sets of cubic graphs with the
prescribed number of vertices in the first column, in the second column we
give the average number of branches examined by the branch and fix method,
with the average taken over all graphs in the corresponding set of graphs. In
the last three columns, we present the minimum and maximum branches ex-
amined over the set of graphs, and the average running time taken to solve
the graphs in the corresponding class.

More specifically, we consider all 10-vertex cubic graphs, of which there are 17
Hamiltonian and 2 non-Hamiltonian graphs, and all 12-vertex cubic graphs, of
which there are 80 Hamiltonian and 5 non-Hamiltonian graphs. We randomly
generate 50 cubic graphs of size N = 20, 30, 40 and 50. All of the randomly



7.3 An Algorithm that Implements the Branch and Fix Method 125

Table 7.2: Performance of the branch and fix method over cubic graphs

Type of graphs Average Minimum Maximum Average
branches branches branches time(s)

Hamiltonian, N = 10 2.1 1 4 0.08
Hamiltonian, N = 12 3.4 1 10 0.14

Non-Hamiltonian, N = 10 32.5 12 53 0.61
Non-Hamiltonian, N = 12 25.6 11 80 0.53

50 graphs, N = 20 29.5 1 141 1.08
50 graphs, N = 30 216.5 3 1057 10.41
50 graphs, N = 40 2595.6 52 10536 160.09
50 graphs, N = 50 40316.7 324 232812 2171.46

generated graphs are Hamiltonian. See Meringer [79] for a reference on gen-
erating cubic graphs. We run every test with β = 0.99 and μ = 1/N2.

With this basic implementation of the B&F, we are not able to obtain a
Hamiltonian solution for the 8× 8 Knight’s Tour problem after 12 hours. In
Section 7.4, however, we introduce new constraints that allow us solve this
problem in little more than a minute.

Example 7.1 We describe a solution of the envelope graph (Figure 7.1),
obtained using the aforementioned implementation of the B&F method, with
β = 0.99 and μ = 1/36. First, we solve the feasibility problem

x12 + x14 + x15 − βx21 − βx41 − βx51 = 1− 5μ,

x21 + x23 + x26 − βx12 − βx32 − βx62 = μ,

x32 + x34 + x36 − βx23 − βx43 − βx63 = μ,

x41 + x43 + x45 − βx14 − βx34 − βx54 = μ,

x51 + x54 + x56 − βx15 − βx45 − βx65 = μ,

x62 + x63 + x65 − βx26 − βx36 − βx56 = μ,

x12 + x14 + x15 =
(1− 5μ)(1− β) + μ(β − β6)

(1− β)(1− β6)
,

xia ≥ 0, for all (i, a) ∈ E(G).

The first iteration produces a 1-randomised policy where the randomisation
occurs at vertex 4. The logical B&F tree then splits into three choices: to fix
arc (4,1), (4,3) or (4,5).

The algorithm first branches on fixing arc (4,1) (Figure 7.3). As the algo-
rithm uses a depth-first search, arcs (4,3) and (4,5) will not be fixed unless
the algorithm fathoms the (4,1) branch without having found a Hamiltonian
cycle. Fixing the arc (4,1) is equivalent to eliminating arcs (4,3) and (4,5) in
the remainder of this branch of the logical B&F tree. In addition, arcs (1,4),



126 7 Linear Programming Based Algorithms

3

2

65

4

1

Fig. 7.3: Branching on arc (4, 1)

(2,1) and (5,1) can also be eliminated because they cannot be present together
with arc (4,1) in a Hamiltonian cycle.

At the second iteration we solve two LPs. We first solve the second LP, to
check the feasibility of the graph remaining after the above round of fixing
(and eliminating) of arcs

min {x12 + x15} (7.11)

subject to

x12 + x15 − βx41 = 1− 5μ,

x23 + x26 − βx12 − βx32 − βx62 = μ,

x32 + x34 + x36 − βx23 − βx63 = μ,

x41 − βx34 − βx54 = μ,

x54 + x56 − βx15 − βx65 = μ,

x62 + x63 + x65 − βx26 − βx36 − βx56 = μ,

−β6x12 − β6x15 + βx41 =
μ(β − β6)

1− β
,

xia ≥ 0, for all (i, a) ∈ E(G).

The last equality constraint above comes from (7.6) because the fixed arc (4, 1)
returns to the home vertex. The optimal objective function returned is equal
to the right-hand side of the omitted constraint (4.19), so we cannot fathom
this branch, at this stage. Hence, we also solve the updated LP (7.1)

min {−β6x12 − β6x15 + βx41}

subject to

x12 + x15 − βx41 = 1− 5μ,

x23 + x26 − βx12 − βx32 − βx62 = μ,

x32 + x34 + x36 − βx23 − βx63 = μ,



7.3 An Algorithm that Implements the Branch and Fix Method 127

x41 − βx34 − βx54 = μ,

x54 + x56 − βx15 − βx65 = μ,

x62 + x63 + x65 − βx26 − βx36 − βx56 = μ,

x12 + x15 =
(1− 5μ)(1− β) + μ(β − β6)

(1− β)(1− β6)
,

xia ≥ 0, for all (i, a) ∈ E(G).

The second iteration produces a 1-randomised policy where the randomisation
occurs at vertex 3. The logical B&F tree then splits into three choices: to fix
arc (3,2), (3,4) or (3,6). The algorithm first selects the arc (3,2) to continue
the branch. The graph at this stage is shown in Figure 7.4.

3

2

65

4

1

Fig. 7.4: Branching on arc (3, 2) after fixing arc (4, 1)

Applying Checks 1–4 to the remaining vertices with multiple non-fixed arcs,
we immediately see that arcs (2,6) and (1,5) must be fixed by Check 4. Once
these arcs are fixed, arcs (5,4) and (6,3) are also fixed by Check 4. At this
stage, every vertex has a fixed arc but we have not obtained a Hamiltonian
cycle; hence, we fathom the branch. Travelling back up the tree, the algorithm
next selects the arc (3,4) to branch on. Figure 7.5 shows the current graph.

3

2

65

4

1

Fig. 7.5: Second branching on arc (3, 4)

Applying Checks 1–4 to the remaining vertices with multiple non-fixed arcs,
we immediately see that arc (5,6) must be fixed by Check 3. Once this
arc is fixed, arc (2,3) is also fixed by Check 3. Next, arc (6,2) is fixed by



128 7 Linear Programming Based Algorithms

Check 4 and, finally, arc (1,5) is fixed by Check 3. At this stage, every vertex
has a fixed arc. Since these fixed arcs correspond to the Hamiltonian cycle
1 → 5 → 6 → 2 → 3 → 4 → 1, the algorithm terminates. The Hamiltonian
cycle is shown in Figure 7.6.

3

2

65

4

1

Fig. 7.6: Hamiltonian cycle found by the B&F method

The whole logical B&F tree is illustrated in Figure 7.7.

 HC

Start

(4,3)(4,1)Iteration 1

Iteration 2

(4,5)

(3,2) (3,4) (3,6)

Fig. 7.7: The logical B&F tree for the envelope graph

We note that even in this simple example, in the worst case 36 = 729 branches
are generated. However, our algorithm is able to find a Hamiltonian cycle af-
ter examining only two.

Branching methods

A standard question when using a branching algorithm is which method of
branching to use. A major benefit of the branch and fix method is that the
checks and the second LP (7.9) often allow us to fathom a branching point
relatively early, so depth-first searching is used. However, the horizontal or-
dering of the branch tree is, by default, determined by nothing more than the
initial ordering of the vertices. For a non-Hamiltonian graph, this ordering
makes no difference as the breadth of the entire tree will need to be traversed



7.3 An Algorithm that Implements the Branch and Fix Method 129

to determine that no Hamiltonian cycles exist. However, for a Hamiltonian
graph, it is possible that a relabelling of the graph would result in the branch
and fix method finding a Hamiltonian cycle sooner.

While it seems impossible to predict, in advance, which relabelling of vertices
will find a Hamiltonian cycle the quickest, it is possible that the structure of
the 1-randomised policy found at each branching point can provide informa-
tion about which branch should be traversed first. Each 1-randomised policy
with the splitting vertex i contains two non-zero values xij and xik, j �= k.
Without loss of generality, assume that xij ≤ xik. We propose five branching
methods:

1. Default branching (or vertex order): the branches are traversed in the or-
der of the numerical labels of the vertices.

2. First branch on fixing (i, j), then (i, k) and then traverse the rest of the
branches in vertex order.

3. First branch on fixing (i, k), then (i, j) and then traverse the rest of the
branches in vertex order.

4. All branches are traversed in vertex order other than those corresponding
to fixing (i, j) or (i, k). The last two branches traversed are (i, j) and then
(i, k).

5. First branch on fixing (i, k), then traverse the rest of the branches other
than the branch corresponding to fixing (i, j) in vertex order, and finally
branch on fixing (i, j).

We test these five branching methods on the same sets of 50 randomly gen-
erated Hamiltonian cubic graphs as those generated for Table 7.2. In Ta-
ble 7.3, we give the average number of branches examined by the B&F for
each branching method.

Table 7.3: Average number of branches examined by the five branching methods over
sets of Hamiltonian cubic graphs

Branching 20-vertex 30-vertex 40-vertex 50-vertex
method graphs graphs graphs graphs

1 29.48 216.54 2595.58 40316.68
2 33.28 261.24 2227.24 43646.92
3 24.58 172.30 1624.50 17468.26
4 38.68 285.26 2834.44 53719.96
5 34.04 345.44 3228.44 76159.30

From the results shown in Table 7.3, it appears that Branching Method 3 is



130 7 Linear Programming Based Algorithms

the best performing method for cubic graphs. The sets of cubic graphs are
produced by GENREG [79], which uses a particular strategy of ordering the
vertices that may also account for the success of Branching Method 3.

7.4 Wedge Constraints

Recall that constraints (4.18)–(4.20) that define X̃β depend upon parameters
β and μ. While the use of β is necessary in the framework of a discounted
Markov decision process, the selection of μ as a small, positive parameter is
used only to ensure that the mapping fx(i, a) = xia/xi (see (4.17)) is well-
defined. Without setting μ > 0, it is possible for xi to be 0. To illustrate this,
recall constraint (4.18)

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a))xia = νj , for j ∈ S,

where

νj =

{
1− (N − 1)μ, if i = 1,

μ, otherwise.

Rearranging constraint (4.18), we obtain

∑
a∈A(j)

xja = β

N∑
i=1

∑
a∈A(i)

p(j|i, a)xia + νj , for j ∈ S.

Since we cannot ensure that

N∑
i=1

∑
a∈A(i)

p(j|i, a)xia �= 0

for all j, we select μ > 0 to ensure that xj =
∑

a∈A(j) xja > 0. However, an

additional set of constraints, introduced in Eshragh et al. [43], can achieve
the same goal while allowing us to set μ = 0 by bounding xj away from 0. We
call these constraints wedge constraints. The wedge constraints are comprised
of the following two sets of inequalities:∑

a∈A(i)

xia ≤ β

1− βN
, for i = 2, . . . , N, (7.12)

∑
a∈A(i)

xia ≥ βN−1

1− βN
, for i = 2, . . . , N. (7.13)



7.4 Wedge Constraints 131

The rationale behind the wedge constraints is that when μ = 0, we know
from (7.2) that all Hamiltonian solutions to (4.18)–(4.20) take the form

xia =

{
βk/(1− βN ) if (i, a) is the kth arc on the HC,

0 otherwise.
(7.14)

In every Hamiltonian cycle, exactly one arc emanates from each vertex. If
(ik, ik+1) is an arc on a Hamiltonian cycle, then,∑

a∈A(ik)

xika = xikik+1
. (7.15)

Recall that we define the home vertex of a graph as vertex 1. Then, the initial
(0th) arc in any Hamiltonian cycle is arc (1, a), for some a ∈ A(1); therefore,
from (7.14) we obtain ∑

a∈A(1)

x1a =
1

1− βN
. (7.16)

Constraint (7.16) is already given in (4.19) if we set μ = 0. For all other ver-
tices, however, constraints (7.12)–(7.13) will partially capture a new property
of Hamiltonian solutions that is expressed in (7.14). In particular, substitut-
ing (7.14) into (7.15), for all vertices other than the home vertex, we obtain
wedge constraints (7.12)–(7.13). Recall that in a cubic graph, there are ex-
actly three arcs—say (i, a), (i, b) and (i, c)—from a given vertex i. Thus,
in 3-dimensions, the corresponding constraints (7.12)–(7.13) have the shape
indicated in Figure 7.8 that looks like a slice of a pyramid. The resulting
wedge-like shape inspires the name wedge constraints.

Fig. 7.8: Wedge constraints for a vertex in a cubic graph



132 7 Linear Programming Based Algorithms

We can add wedge constraints (7.12)–(7.13) to the constraint set (4.18)–
(4.20), setting μ = 0 in the latter. However, adding wedge constraints destroys
the 1-randomised structure of non-Hamiltonian solutions that exists for the
extreme points of the feasible region specified by (4.18)–(4.20), introducing
many new extreme points to the feasible region. Since this is undesirable, we
only use wedge constraints when solving the second LP (with the objective
function (7.9)), in an attempt to determine whether a branch can be fath-
omed earlier than is the case without the wedge constraints.

The model incorporating the wedge constraints is

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a))xia = δ1j , for j ∈ S, (7.17)

xia ≥ 0, for (i, a) ∈ E(G), (7.18)∑
a∈A(i)

xia ≤ β

1− βN
, for i = 2, . . . , N, (7.19)

∑
a∈A(i)

xia ≥ βN−1

1− βN
, for i = 2, . . . , N, (7.20)

which replaces constraints (4.18) and (4.20) in the second LP (7.9). Every-
thing else in the branch and fix method is identical to the method described
in Section 7.2, except that the obtained value of the objective function (7.9)
is now compared to the right-hand side of (7.16), that is, the right-hand side
of (4.19) with μ set to 0.

We run this model on the same selection of graphs as those in Tables 7.1–7.3,
to compare its performance to that of the original branch and fix method.
There is a significant decrease in the number of branches examined, and con-
sequently in the running time of the model. Tables 7.4–7.6 show a sample
of results. We run all tests with β = 0.99, and μ = 1/N2. In Table 7.4,
we compare the number of branches examined by the B&F for five graphs
to the maximum possible number of branches (deterministic policies), and
show the running time in seconds. In Table 7.5, we solve several sets of cu-
bic graphs, and report the average number of branches examined by the
B&F over each set. We also report the minimum and maximum branches
examined over each set, and the average running time. As in Table 7.2, we
consider all 10-vertex cubic graphs, of which there are 17 Hamiltonian and 2
non-Hamiltonian graphs, and all 12-vertex cubic graphs, of which there are
80 Hamiltonian and 5 non-Hamiltonian graphs. For each set of larger cubic
graphs, we use the same graphs as were randomly generated for Table 7.2.
Table 7.6 shows the average number of branches examined by the B&F for
the same set of randomly cubic graphs shown in Table 7.5, for all five branch-
ing methods.



7.4 Wedge Constraints 133

Table 7.4: Preliminary results for the branch and fix method with wedge constraints
included

Graph Branches Upper bound Time(s)
Dodecahedron: Ham, N = 20, arcs = 60 43 3.4868× 109 1.71

Ham, N = 24, arcs = 72 5 2.8243× 1011 0.39
8×8 Knight’s Tour: Ham, N = 64, arcs = 336 220 9.1654× 1043 78.46

Petersen: non-Ham, N = 10, arcs = 30 53 5.9049× 104 1.17
Coxeter: non-Ham, N = 28, arcs = 84 5126 2.2877× 1013 262.28

Table 7.5: Performance of the branch and fix method with wedge constraints included
over cubic graphs

Type of graphs Average Minimum Maximum Average
branches branches branches time(s)

Hamiltonian, N = 10 2.1 1 4 0.09
Hamiltonian, N = 12 3.0 1 10 0.14

Non-Hamiltonian, N = 10 32.5 12 53 0.70
Non-Hamiltonian, N = 12 23.2 11 72 0.50

50 graphs, N = 20 14.6 1 75 0.65
50 graphs, N = 30 41.7 2 182 2.56
50 graphs, N = 40 209.2 7 1264 18.11
50 graphs, N = 50 584.4 8 2522 67.99

Table 7.6: Average number of branches examined by the five branching methods with
wedge constraints included over sets of Hamiltonian cubic graphs

Branching 20-vertex 30-vertex 40-vertex 50-vertex
method graphs graphs graphs graphs

1 14.60 41.66 209.18 584.40
2 14.76 49.94 164.74 636.88
3 11.86 38 145.54 603.24
4 17.28 50.32 152.50 632.08
5 15.32 39.42 123.72 356.32

We observe that for smaller-size graphs, wedge constraints do not improve the
performance of the B&F method. For larger-size graphs, however, a signifi-
cant improvement is evident. This is especially striking for graphs with 30–40
vertices. We also note with interest that the model with wedge constraints
included performs well when we select Branching Method 5, which is the
worst performing branching method in the model without wedge constraints.
Since Branching Method 3 also performs well, and both Branching Methods
3 and 5 involve branching first on arc (i, k), it appears that branching first
on arc (i, k) is an efficient strategy for graphs generated by GENREG when
we include wedge constraints.



134 7 Linear Programming Based Algorithms

In Andramonov et al. [4], the first numerical procedure taking advantage
of the MDP embedding is used to solve graphs of similar sizes to those listed
in Tables 7.4 and 7.5. The model given in [4] is solved using the Mix Integer
Programming (MIP) solver in CPLEX 4.0. The present model outperforms
the model in [4] in terms of the number of branches examined in the cases
displayed in Tables 7.4 and 7.5. In particular, the number of branches ex-
amined to solve each graph is much reduced in the branch and fix method
when compared to similar sized graphs in [4]. In particular, to solve the 8×8
Knight’s Tour graph, between 2000 and 40000 branches were examined in the
model given in [4] (depending on the selection of parameters in CPLEX), but
only 220 were required in the branch and fix method with wedge constraints
included. This significant improvement highlights both the progress made in
this line of research over the last decade, and the advantages obtained by the
use of wedge constraints. We seek to take further advantage of the wedge con-
straints in a new mixed integer programming formulation, the Wedged-MIP
heuristic, which we describe in the next section.

7.5 The Wedged-MIP heuristic

The discussion in the preceding section naturally leads us to consider the
polytope Yβ defined by the following seven sets of linear constraints

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a)) yia = δ1j(1− βN ), for j ∈ S, (7.21)

∑
a∈A(1)

y1a = 1, (7.22)

yia ≥ 0, for (i, a) ∈ E(G), (7.23)∑
j∈A(i)

yij ≤ β, for i ∈ S\{1}, (7.24)

∑
j∈A(i)

yij ≥ βN−1, for i ∈ S\{1}, (7.25)

yij + yji ≤ 1, for (i, j), (j, k) ∈ E(G), (7.26)

yij + yjk + yki ≤ 2, for (i, j), (j, k), (k, i) ∈ E(G). (7.27)

Remark 7.1.

1. The variables yia that define Yβ are obtained from the variables xia that
define Xβ by the transformation

yia = (1− βN )xia, for (i, a) ∈ E(G).



7.5 The Wedged-MIP heuristic 135

2. In view of Item 1, constraints (7.21)–(7.23) are merely constraints (4.18)–
(4.20) normalised by the multiplier (1 − βN ), and with μ = 0. Further-
more, constraints (7.25)–(7.24) are similarly normalised wedge constraints
(7.12)–(7.13).

3. Note that normalising (7.14) in the same way implies that if y ∈ Yβ

corresponds to a Hamiltonian cycle, then

yia ∈ {0, 1, β, . . . , βN−1}, for (i, a) ∈ E(G).

Thus, for β sufficiently near 1 all positive entries of a Hamiltonian solution
y are also either 1 (if i = 1), or close to 1. Therefore, if y ∈ Yβ is any
feasible point with only one positive entry yia for all a ∈ A(i), for each i,
then constraints (7.25)–(7.24) ensure that all those positive entries have
values near 1. Furthermore, constraints (7.26)–(7.27) ensure that at most
one such large entry is permitted on any potential 2-cycle, and at most
two such large entries are permitted on any potential 3-cycle.

4. In view of Item 3, it is reasonable to search for a feasible point y ∈ Yβ

that has only a single positive entry yia for all a ∈ A(i) and for each i.

We make the last point of the above remark precise in the following propo-
sition that is analogous to a result proved in Chen and Filar [22] for an
embedding of the HCP in a long-run average MDP. Since it forms the theo-
retical basis of our most powerful heuristic, for the sake of completeness, we
supply a formal proof below.

Proposition 7.1. Given any graph G and its embedding in a discounted
Markov decision process, consider the polytope Yβ defined by (7.21)–(7.27)
for β ∈ [0, 1) and sufficiently near 1. The following statements are equivalent:

(i) The point ŷ ∈ Yβ is Hamiltonian in the sense that the positive entries ŷia
of ŷ correspond to arcs (i, a) defining a Hamiltonian cycle in G.

(ii) The point ŷ ∈ Yβ is a global minimiser of the nonlinear program

min

N∑
i=1

∑
a∈A(i)

∑
b∈A(i),b �=a

yiayib

subject to (7.28)

y ∈ Yβ .

which gives the objective function value of 0 in (7.28).

(iii) The point ŷ ∈ Yβ satisfies the additional set of nonlinear constraints

yiayib = 0, for i ∈ S, a, b ∈ A(i), a �= b, (7.29)



136 7 Linear Programming Based Algorithms

Proof. By the nonnegativity of ŷ ∈ Yβ , it immediately follows that Parts (ii)
and (iii) are equivalent.

From (7.14) and Item 3 of Remark 7.1 we note that if ŷ is Hamiltonian, it
implies Part (iii). Furthermore, if ŷ is a global minimiser of (7.28), constraints
(7.25) ensure that it must have at least one positive entry corresponding to
some arc a ∈ A(i) for each i ∈ S. Since ŷiaŷib = 0 for all a �= b, i ∈ S,
we conclude that ŷ has exactly one positive entry ŷia, for each i. We then
define x̂ ∈ X̃β by x̂ia = 1/(1− βN )ŷia for all (i, a) ∈ E(G), and use (7.14)

to construct the policy f̂ = M−1(x̂). It is clear that f̂ ∈ FD, and hence x̂ is
Hamiltonian by Part (ii) of Proposition 4.2. Since positive entries of x̂ and
ŷ occur at precisely the same arcs (i, a), ŷ is also Hamiltonian, so Part (iii)
implies Part (i). �

Corollary 7.2. If Yβ = ∅, the empty set, then the graph G is non-Hamiltonian.
If Yβ �= ∅, the (possibly empty) set of Hamiltonian solutions YH

β ⊂ Yβ is in
one-to-one correspondence with Hamiltonian cycles of G, and satisfies

YH

β = Yβ ∩ {y | (7.29) holds}.

Proof. By construction, if G is Hamiltonian, then there exists a policy f̂ ∈
FD tracing out a Hamiltonian cycle in G. Let x̂ = M(f̂) using (4.13) with
ν = eT

1 , and define ŷ = (1 − βN )x̂. Clearly, ŷ ∈ Yβ , so Yβ �= ∅. From
Proposition 7.1, it follows that ŷ satisfies (7.29). Conversely, only points in
YH

β define Hamiltonian solutions in Yβ . �

For symmetric graphs, in which arc (i, a) ∈ E(G) if and only if arc (a, i) ∈
E(G), we further improve the wedge constraints (7.25)–(7.24) by considering
the shortest path between the home vertex and each other vertex in the
graph. We define �(i, j) to be the length of the shortest path between vertices
i and j in G.

Lemma 7.1. Any Hamiltonian solution to (7.21)–(7.23) satisfies the follow-
ing constraints ∑

a∈A(i)

yia ≤ β�(1,i), for i ∈ S\{1}, (7.30)

∑
a∈A(i)

yia ≥ βN−�(1,i), for i ∈ S\{1}. (7.31)

Proof. From (7.14) and Item 3 of Remark 7.1, we know that for a Hamiltonian
cycle in which the kth arc is the arc (i, a), the corresponding variable yia = βk,
and all other yib = 0, b �= a. Therefore,∑

a∈A(i)

yia = βk. (7.32)



7.5 The Wedged-MIP heuristic 137

Then, since it takes at least �(1, i) arcs to reach vertex i from the home
vertex 1, we immediately obtain that k ≥ �(1, i), and therefore∑

a∈A(i)

yia ≤ β�(1,i),

which coincides with (7.30). Since G is an undirected graph, we know that
�(i, 1) = �(1, i). Thus, we obtain that k ≤ N − �(1, i), and hence,∑

a∈A(i)

yia ≥ βN−�(1,i),

which coincides with (7.31). �

Given the above, we reformulate the HCP as a mixed (non-linear) integer
programming feasibility problem, which we call the Wedged-MIP heuristic,
as follows

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a)) yia = δ1j(1− βN ), for j ∈ S, (7.33)

∑
a∈A(1)

y1a = 1, (7.34)

yia ≥ 0, for (i, a) ∈ E(G), (7.35)∑
j∈A(i)

yij ≤ β�(1,i), for i ∈ S\{1}, (7.36)

∑
j∈A(i)

yij ≥ βN−�(1,i), for i ∈ S\{1}, (7.37)

yij + yji ≤ 1, for (i, j), (j, i) ∈ E(G), (7.38)

yij + yjk + yki ≤ 2, for (i, j), (j, k), (k, i) ∈ E(G), (7.39)

yiayib = 0, for i ∈ S, a, b ∈ A(i), a �= b. (7.40)

We solve the above formulation in IBM ILOG OPL-CPLEX 5.1. A benefit
of this solver is that the non-linear constraints (7.40) may be submitted in a
format usually not acceptable in CPLEX and the IBM ILOG OPL-CPLEX
CP Optimizer will interpret them in a way suitable for CPLEX. We allow
these constraints to be submitted in one of two different ways, left up to the
user’s choice. We define the operator == as follows

(a == b) =

{
1 if a = b,

0 otherwise,



138 7 Linear Programming Based Algorithms

the operator ! = as follows

(a ! = b) =

{
0 if a = b,

1 otherwise,

and denote by di the number of arcs emanating from vertex i. Then, we
submit constraints (7.40) to IBM ILOG OPL-CPLEX in either of the forms∑

a∈A(i)

(yia == 0) = di − 1, for i ∈ S, (7.41)

or ∑
a∈A(i)

(yia ! = 0) = 1, for i ∈ S. (7.42)

Even though constraints (7.41) and (7.42) are theoretically identical when
added to (7.33)–(7.39), their interpretation by IBM ILOG OPL-CPLEX pro-
duces different solutions, with different running times. Neither choice solves
graphs consistently faster than the other, so if one form fails to find a solution
quickly, we try the other form. Using this model we are able to obtain Hamil-
tonian solutions efficiently for many large graphs, using a Pentium 3.4GHz
with 4GB RAM. Table 7.7 presents results for eight graphs.

Table 7.7: Running times for Wedged-MIP heuristic

Graph N Arcs β Time(hh:mm:ss)
8× 8 Knight’s Tour 64 336 0.99999 00:00:02
Perturbed Horton 94 282 0.99999 00:00:02

12× 12 Knight’s Tour 144 880 0.99999 00:00:03
250-vertex 250 1128 0.99999 00:00:16

20× 20 Knight’s Tour 400 2736 0.99999 00:20:57
500-vertex 500 3046 0.99999 00:10:01
1000-vertex 1000 3996 0.999999 00:30:46
2000-vertex 2000 7992 0.999999 10:24:05

We note that the perturbed Horton graph given here is a 94-vertex cubic
graph that, unlike the original Horton graph (96-vertex cubic graph [103]),
is Hamiltonian. The 250- and 500-vertex graphs are both non-regular graphs
that are randomly generated for testing purposes, while the 1000- and 2000-
vertex graphs come from the TSPLIB website, maintained by University of
Heidelberg [98].

We present a visual representation of a solution to the 250-vertex graph
found by the Wedged-MIP heuristic in Figure 7.9, where the vertices are



7.5 The Wedged-MIP heuristic 139

drawn as blue dots clockwise in an ellipse, with vertex 1 at the top, and the
arcs between the vertices are inside the ellipse. The arcs in the Hamiltonian
cycle found by the Wedged-MIP heuristic are highlighted red, and all other
arcs are shown in blue. While it is very difficult to make out much detail
from Figure 7.9, it serves as a good illustration of the complexity involved in
problems of this size.

Fig. 7.9: Solution to 250-vertex graph (Hamiltonian cycle in red)

Comparisons between Wedged-MIP heuristic and two TSP formu-
lations

Since we solve the Wedged-MIP heuristic in OPL-CPLEX, we investigate two
other, well-known, MIP formulations, and also solve them in OPL-CPLEX
for the same set of graphs as those in Table 7.7, as well as three randomly gen-
erated cubic Hamiltonian graphs of sizes 12, 24 and 38, as a benchmark test.
The two other formulations are the modified single commodity flow model [54]
and the third stage dependent model [101]. We select these two formulations
because they are the best performing methods of each type (commodity flow



140 7 Linear Programming Based Algorithms

and stage dependent, respectively) reported in Orman and Williams [83].
Both the modified single commodity flow and the third stage dependent mod-
els were designed to solve the travelling salesman problem, so they contain
costs/distances cij for each arc (i, j) ∈ E(G). Since we only want to solve the
HCP with these formulations, we set

cij =

{
1 for (i, j) ∈ E(G),

0 for (i, j) �∈ E(G).

The modified single commodity flow model (MSCF) is formulated with deci-
sion variables xij and yij as follows

min
∑

(i,j)∈E(G)

cijxij

subject to ∑
j∈A(i)

xij = 1, for i ∈ S,

∑
i∈B(j)

xij = 1, for j ∈ S,

∑
j∈A(1)

y1j = N − 1,

∑
i∈B(j)

yij −
∑

k∈A(j)

yjk = 1, for j ∈ S\{1},

y1j ≤ (N − 1)x1j , for j ∈ A(1),

yij ≤ (N − 2)xij , for i ∈ S\{1}, j ∈ A(i),

xij ∈ {0, 1},
yij ≥ 0.

The third stage dependent model (TSD) is formulated with decision variables
xij and ytij , t ∈ S, as follows

min
∑

(i,j)∈E(G)

cijxij

subject to ∑
j∈A(i)

xij = 1, for i ∈ S,

∑
i∈B(j)

xij = 1, for j ∈ S,



7.5 The Wedged-MIP heuristic 141

xij −
N∑
t=1

ytij = 0, for (i, j) ∈ E(G),

N∑
t=1

∑
j∈A(i)

ytij = 1, for i ∈ S,

N∑
t=1

∑
i∈B(j)

ytij = 1, for j ∈ S,

∑
(i,j)∈E(G)

ytij = 1, for t ∈ S,

∑
j∈A(1)

y11j = 1,

∑
i∈B(1)

yNi1 = 1,

∑
j∈A(i)

ytij −
∑

k∈B(i)

yt−1
ki = 0, for i ∈ S, and t ∈ S\{1}.

We run these two models on the same graphs as shown in Table 7.7, as well
as three additional randomly generated cubic Hamiltonian graphs of orders
12, 24 and 38. Table 7.8 shows the running times of these two models, along
with the Wedged-MIP heuristic running times. For each graph tested other
than the 1000- and 2000-vertex graph, we run MCSF and TSD for 24 hours,
and if no solution is found we terminate the execution. For the 1000- and
2000-vertex graphs, we allow 168 hours (1 week) before terminating.

Table 7.8: Running times (hh:mm:ss) for Wedged-MIP heuristic, MCSF and TSD

Graph N Wedged-MIP heuristic MCSF TSD
12-vertex cubic 12 00:00:01 00:00:01 00:00:01
24-vertex cubic 24 00:00:01 00:00:01 00:00:02
38-vertex cubic 38 00:00:01 00:00:01 00:21:04

8× 8 Knight’s Tour 64 00:00:02 00:00:01 > 24 hours
Perturbed Horton 94 00:00:02 00:03:04 > 24 hours

12× 12 Knight’s Tour 144 00:00:03 00:01:12 > 24 hours
250-vertex 250 00:00:16 00:29:42 > 24 hours

20× 20 Knight’s Tour 400 00:20:57 17:35:57 > 24 hours
500-vertex 500 00:10:01 > 24 hours > 24 hours
1000-vertex 1000 00:30:46 > 1 week > 1 week
2000-vertex 2000 10:24:05 > 1 week > 1 week

In summary, in this chapter, we considered the space Xβ of discounted oc-
cupational measures associated with the embedding of a given graph in a
discounted MDP as described in Chapter 4. We demonstrated that when



142 7 Linear Programming Based Algorithms

modified by a small number of additional constraints, the resulting space
forms a suitable domain for a number of promising algorithmic approaches
to the HCP. We feel that this way of tackling the HCP, numerically, can be
explored much further. In particular, for graphs with large number of vertices,
using a value of β that is very close to 1 could present accuracy problems in
verifying validity of linear constraints involving that parameter. It is possible
that exploiting techniques similar to those used to develop the parameter-free
model of Section 4.5 may help resolve this problem.


	Part IV Algorithms
	Chapter 7 Linear Programming Based Algorithms
	7.1 Introduction
	7.2 Branch and Fix Method
	7.3 An Algorithm that Implements the Branch and FixMethod
	7.4 Wedge Constraints
	7.5 The Wedged-MIP heuristic





