
Chapter 3

Markov Chains

3.1 Introduction

Probabilistic methods have long been applied to solve discrete mathematics
problems (see, for example, Erdős [39]–[40], and Alon and Spencer [3] for a re-
cent and comprehensive treatment on probabilistic methods). Similarly, con-
nections between Markov chains and graph theory have long been made (see
Harary [59]). Our contribution here is to apply properties of Markov chains
to the Hamiltonian cycle problem and to take advantage of the still emerging
theory of perturbed Markov chains in this context. In Section 3.2, we give a
brief introduction to Markov chains and various perturbations that we em-
ploy to obtain our results in this and subsequent chapters. More specifically,
in Section 3.3, we present results on how fundamental matrices of Markov
chains can be used to solve the Hamiltonian cycle problem, using their top-
left matrix elements. In Section 3.4, we show that Hamiltonian cycles can be
seen as variance minimisers of first hitting times and demonstrate a Hamilto-
nian gap that differentiates between the Hamiltonian and non-Hamiltonian
graphs. Sections 3.3 and 3.4 make greater use of probabilistic methods than
the remainder of this book. A reader unfamiliar with the latter could proceed
to Chapter 4 and beyond with only a minimal loss of continuity.

3.2 Markov Chains and Perturbations

A stochastic process is a collection of random variables Xt, t ≥ 0, which take
values from a set S called a state space. There are two types of stochas-
tic processes: continuous-time where t ∈ [0,∞), and discrete-time where
t ∈ {0, 1, 2, . . .}. In discrete-time case, each time point t is also called a stage.
A stochastic process is Markov if the knowledge of the past does not influence
the future, other than through the present. Mathematically, a stochastic pro-
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cess is Markov if, given t0 ≤ t1 ≤ · · · ≤ tn, the following equality is satisfied
for every set {Xtn ≤ xn}

P{Xtn ≤ xn|Xtn−1
, . . . , Xt1} = P{Xtn ≤ xn|Xtn−1

}, for all n ∈ N.

Such a stochastic process is a Markov chain if S is discrete, and a Markov
process otherwise. Significant applications of Markov chains and processes in-
clude those in geostatistics, stock market fluctuations, population processes,
modelling games of chance such as Monopoly and, most recently, internet
search engines including Google. Here, we are only concerned with finite
discrete-time Markov chains, where S = {1, 2, . . . , N} with N = |S| < ∞
and t ∈ {0, 1, . . .}. We recommend Kemeny and Snell [70] for an excellent
introduction to finite Markov chains.

In other words, a discrete-time stochastic process Xt is a Markov chain if,
given any s1, . . . , sn ∈ S and t0 ≤ t1 ≤ · · · ≤ tn, the following equality holds

P{Xtn = sn|Xtn−1
= sn−1, . . . , Xt1 = s1} = P{Xtn = sn|Xtn−1

= sn−1},

for all n ∈ N. The one-step transition probability

P t,t+1
ij = P{Xt+1 = j|Xt = i} (3.1)

is the probability that the system moves from state i at time t to state j at
time t+ 1. If this probability does not depend on t, that is, if for t �= t′,

P t,t+1
ij = P t′,t′+1

ij ,

then the Markov chain Xt is time-homogeneous, with stationary transition
probabilities Pij . Unless otherwise indicated, all Markov chains we deal with
in this book are time-homogeneous. The N×N one-step probability transition
matrix P has entries pij = Pij , where pij ≥ 0 and

∑
j∈S pij = 1. Similarly,

for i, j ∈ S and for t = 0, 1, 2, . . . , we define the n-step transition probability

P
(n)
ij = P{Xt+n = j|Xt = i}. (3.2)

This conditional probability does not depend on t as we assume that all
Markov chains considered are time-homogeneous. The N ×N n-step proba-

bility transition matrix P(n) has entries p
(n)
ij = P

(n)
ij . For m,n ≥ 0, the matrix

form of the Chapman-Kolmogorov equation is given by

P(n+m) = P(m)P(n). (3.3)

Following easily from the definitions above, (3.3) implies that the n-step prob-

ability transition matrix P(n) can be obtained by multiplying the one-step
transition matrix P by itself n times.
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Every probability transition matrix is a stochastic matrix , that is, a matrix
where the elements of each row are nonnegative and sum to 1. Consequently,
every stochastic matrix is a probability transition matrix of some Markov
chain. A doubly stochastic matrix is a stochastic matrix in which not only
every row but also every column has a sum of unity. A doubly stochastic
deterministic matrix is a doubly stochastic matrix every element of which is
either 1 or 0.

Types of Markov Chains Consider a discrete state space S, possibly
countably infinite. If it is not possible to leave some state i ∈ S, that is,
pii = 1, then state i is absorbing . After starting at state i, if every return to i
occurs in multiples of ni steps, then i has a period ni. Formally, we define
ni = gcd{t : P{Xt = i|X0 = i} > 0}, where gcd is the greatest common
divisor. A state i is aperiodic if ni = 1, and periodic with period ni if ni > 1.

If the probability of never returning to state i after starting at state i is
positive, then the state i is transient . Formally, P{Ti = ∞} > 0, where
Ti = inf{t ≥ 1 : Xt = i|X0 = i} is a random variable representing the first
time of returning to i, and is also known as the first return time of state i. A
state i that is not transient is said to be recurrent . For a recurrent state i, if
the expectation of the returning time Ti is finite, that is, E[Ti] < ∞, then the
state i is positive recurrent . Otherwise, it is null recurrent . A Markov chain
is absorbing if it has at least one absorbing state.

A Markov chain is irreducible if there is a path with positive probability
to go from any state to any other state. In an irreducible chain, if one state
is recurrent (respectively, positive recurrent or null recurrent) then all states
are likewise recurrent (respectively, positive recurrent or null recurrent). Fi-
nally, a Markov chain is ergodic (also known as regular) if it is irreducible and
every state is positive recurrent. For finite S, every recurrent state is positive
recurrent. In particular, all states of a finite state irreducible Markov chain
are positive recurrent.

Distribution Vectors A distribution vector ν is a row vector with non-
negative entries νi, the probability of the system being in state i. An initial

distribution vector ν(0) is a row vector with entries ν
(0)
i , the probability of

starting at state i. The distribution vector ν(n) with entries ν
(n)
i , the proba-

bility of being at state i after n steps, is given by

ν(n) = ν(0)Pn. (3.4)

Each of the vectors ν,ν(0), and ν(n) sums to 1.
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Stationary Distribution Matrix The stationary distribution matrix P∗ is
defined as follows

P∗ = lim
T→∞

1

T + 1

T∑
t=0

Pt. (3.5)

It is well-known (see Doob [29]) that the limit in (3.5) exists and P∗ is also
known as the Cesaro-limit matrix, as it is the long-run average of the powers
of P. Every stationary distribution matrix P∗ satisfies the following identity

P∗P = PP∗ = P∗P∗ = P∗. (3.6)

For ergodic (or regular) Markov chains, the following three properties hold.

(i) If the chain is aperiodic, the stationary distribution matrix P∗ is equivalent
to

P∗ = lim
t→∞Pt. (3.7)

(ii) Every row of P∗ is identical.
(iii) Define e = (1, . . . , 1)T ∈ RN and let every row of P∗ be the row-vector q.

Then, all entries of q are strictly positive and q is the unique solution to
the system of linear equations

qP = q
qe = 1.

(3.8)

In this case, the vector q is often called the stationary distribution vector
of the Markov chain.

Let J = eeT, an N ×N matrix of which every entry is unity. If P is doubly
stochastic and induces an irreducible Markov chain, then q = 1/NeT satisfies
the system of equations (3.8), and consequently,

P∗ = 1/NJ. (3.9)

In the context of this book, the Markov chains that we are interested in
always correspond to an arbitrary but fixed graph G of order N . Such a
graph defines a family of induced Markov chains that correspond to a family
of N×N probability transition matrices P such that the entries of the ith row
form a probability mass function on the edges of G emanating from vertex i
of the graph, for i = 1, 2, . . . , N .

Example 3.1 We consider a 5-vertex graph depicted in Figure 3.1, and two
Markov chains, each with the state space S = {1, 2, 3, 4, 5}.
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Fig. 3.1: A 5-vertex graph

In the first one, depicted in Figure 3.2, the system can travel from one state
to exactly one other state. For example, from state 1, the system can go only
to state 3. Therefore, the probability p13 of going from state 1 to state 3 is 1,
and p1i = 0 for all i �= 3, i ∈ S. Of course, the corresponding graph displayed
in Figure 3.2 is a spanning subgraph of the original graph from Figure 3.1.
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Fig. 3.2: An example of a finite discrete-time Markov chain with five states

The associated probability transition matrix P1 is given by

P1 =

⎡⎢⎢⎢⎢⎣
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·

⎤⎥⎥⎥⎥⎦ . (3.10)

In this Markov chain, it is possible to travel from every state to any other
state, hence it is irreducible. However, since every state has a period 5, the
Markov chain is not aperiodic. Let v = (1/4, 1/4, 0, 1/4, 1/4) be the initial
distribution vector, then the distribution vector after one step is

v(1) = vP1 = [1/4 1/4 1/4 1/4 0 ].
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After one step, the probabilities of the system being at states 1, 2, 3, 4 and 5
are 1/4, 1/4, 1/4, 1/4 and 0, respectively. The stationary distribution matrix
P∗

1 associated with this Markov chain is 1/5J.

In the second Markov chain, depicted in Figure 3.3, from state 1, the sys-
tem can travel to states 3 and 4, each with probability 1/2, and from state 5,
the system can travel to state 2 with probability 1/5 and to state 3 with prob-
ability 4/5. From any other state, the system can only travel to exactly one
other state.
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4

Fig. 3.3: Another example of a finite discrete-time Markov chain with five states

The associated probability transition matrix P2 is given by

P2 =

⎡⎢⎢⎢⎢⎣
· · 1

2
1
2 ·

· · · 1 ·
· · · · 1
1 · · · ·
· 1

5
4
5 · ·

⎤⎥⎥⎥⎥⎦ . (3.11)

This Markov chain is irreducible and aperiodic. With the initial distribution
vector v = (1/4, 1/4, 0, 1/4, 1/4), the distribution vector after one step is

v(1) = vP2 = [1/4 1/20 13/40 3/8 0 ].

The stationary distribution matrix P∗
2 associated with this Markov chain is

P∗
2 = e(2/15, 1/15, 1/3, 2/15, 1/3).

For every Markov chain, the matrix I − P + P∗ is always invertible, and
its inverse is called the fundamental matrix . Let G(P) be the fundamental
matrix of a Markov chain specified by the probability transition matrix P,
then

G(P) = (I−P+P∗)−1. (3.12)
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Perturbations of Markov Chains We introduce two perturbations that
have been applied to Markov chains in our line of research:

1. Symmetric linear perturbation ([34; 38; 37]): For a perturbation parameter
ε ∈ [0, 1) and an N × N probability transition matrix P, the perturbed
matrix Pε is defined as

Pε = (1− ε)P+ ε/NJ. (3.13)

This symmetric linear perturbation ensures that the Markov chain specified
by Pε is always ergodic, while preserving double stochasticity whenever P is
doubly stochastic.

2. Asymmetric linear perturbation ([49; 51; 35]): For a perturbation parame-
ter ε ∈ [0, 1) and an N×N probability transition matrix P, the perturbed
matrix Pε is defined as

Pε = (1− ε)P+ ε

⎡⎢⎢⎢⎣
1 0 · · · 0
0 0 · · · 0
...
...

...
0 0 · · · 0

⎤⎥⎥⎥⎦P+ ε

⎡⎢⎢⎢⎣
0 0 · · · 0
1 0 · · · 0
...
...
. . .

...
1 0 · · · 0

⎤⎥⎥⎥⎦ . (3.14)

This asymmetric linear perturbation not only eliminates multiple ergodic
classes but also differentiates vertex 1—referred to as the home vertex from
Chapter 4 onwards—from other vertices. Additionally, it maintains roughly
the level of sparsity of the original probability transition matrix P.

Example 3.2 We revisit a Markov chain introduced in Example 3.1, with
the probability transition matrix P1 specified in (3.11)

P1 =

⎡⎢⎢⎢⎢⎣
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·

⎤⎥⎥⎥⎥⎦ .

For ε ∈ (0, 1), applying the symmetric linear perturbation defined in (3.13),
we obtain

Pε =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρ 1− 4/5ε ρ ρ

ρ ρ ρ 1− 4/5ε ρ

ρ ρ ρ ρ 1− 4/5ε

1− 4/5ε ρ ρ ρ ρ

ρ 1− 4/5ε ρ ρ ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where ρ = 1/5ε. Applying the asymmetric linear perturbation defined in
(3.14) gives us

Pε =

⎡⎢⎢⎢⎢⎣
· · 1 · ·
ε · · 1− ε ·
ε · · · 1− ε
1 · · · ·
ε 1− ε · · ·

⎤⎥⎥⎥⎥⎦ .

3.3 Hitting Times and the Fundamental Matrix

In this section, we derive important relationships between entries of the fun-
damental matrix G(P) (associated with the Markov chain defined by the
transition matrix P) and the moments of the first hitting times, with respect
to a given initial distribution. Indeed, we focus on τ1, the random variable
denoting the first return time of the home state/vertex 1, given that Markov
chain starts at that vertex, and we denote by V ar[τ1] its variance. We show
that whenever P is doubly stochastic the first diagonal entry of G(P) has
the linear form a+ bV ar[τ1], where a and b depend only on N . Of course, if
we take vertex k as the home vertex, then the kth diagonal entry of G(P)
can be shown to have an analogous linear form a+ bV ar[τk].

The above is significant because, subsequently, we shall show that the Hamil-
tonian cycle problem is equivalent to an optimisation problem, the objective
of which is to minimise the top-left element of the fundamental matrix of the
Markov chain permissible on a given graph, over the space of Markov chains
on the graph that have doubly stochastic transition matrices. Therefore, the
HCP is also equivalent to the problem of minimising the variance of τ1 over
the space of doubly stochastic probability transition matrices P that can be
associated with the given graph.

We prove this equivalence by deriving the formulae for the entries of the
first column of the fundamental matrix. Consider w = (I−P+P∗)−1r, the
first column of G(P), where r = (1, 0, . . . , 0)T is an N -dimensional column
vector. Then, (I−P+P∗)w = r. Recall that for irreducible Markov chains,
every row of P∗ is identical to q, the stationary distribution vector of P.
Therefore, P∗w = (

∑
i qiwi) e and hence

w −Pw + (
∑
i

qiwi)e = r. (3.15)

We denote by Ei[τ1] the expectation of the first return time to vertex 1, start-
ing from vertex i, for i ∈ S. Before stating our results, we briefly introduce
some concepts and recall some well-known theorems.
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A σ-field F over a set Ω is a family of subsets of Ω such that it satisfies
the three conditions:

(i) Ω ∈ F ,
(ii) if Y ∈ F then Y c ∈ F , where Y c is the complement of Y ,
(iii) a countable union of sets in F is also in F .

A real random variable X is a measurable function on (Ω,F), that is, for all
intervals A ⊂ R, the set {ω ∈ Ω : X(ω) ∈ A} ∈ F . Let F1 ⊂ F2 ⊂ F3 ⊂ · · ·
be an increasing family of σ-fields. Then, a stochastic process {Xn} taking
values in R is said to be a martingale with respect to {Fn} if

(i) Xn is Fn-measurable for all n, and
(ii) E[|Xn|] < ∞ and E[Xn+1|Fn] = Xn for all n.

The family {Fn} is often understood from the context, Fn = σ(X1, . . . , Xn)
being a common choice. A random variable τ taking values in {0, 1, 2, . . . ,∞}
is a stopping time with respect to {Fn} if {τ ≤ n} ∈ Fn for all n. Equiva-
lently, {τ = n} ∈ Fn for all n. Intuitively, at each n, based on the “observed
history” at each n, one knows whether τ has occurred or not.

Let X0 = i and p(Xm−1, j) be the (Xm−1, j)th element of the matrix P.
We define

Mn =

n∑
m=1

{wXm −
∑
j

p(Xm−1, j)wj}, for n ≥ 1,

where wXm
is the Xmth entry of the vector w. Then, it is well-known (see

Borkar [16, Chapter 3]) that the sequence {Mn} is a martingale with respect
to the family of σ-fields Fn = σ(Xi, i ≤ n), that is, the σ-field generated
by the sets of the type {ω : Xi ∈ A} for i ≤ n and intervals A ⊂ R. The
following result, by Doob, can be found in Borkar [16, Chapter 3].

Theorem 3.1. Optional Sampling theorem. Let Xi be a martingale with
respect to {Fi} and η a bounded stopping time with respect to {Fi}. Then

E[Xη] = E[X1].

Now we are ready to state results concerning the elements of w, the first
column of the fundamental matrix G(P).

Theorem 3.2. The entries wi of the vector w are given by

w1 =
1

2

E1[τ1(τ1 + 1)]

E1[τ1]2
(3.16)

wj =
1

2

E1[τ1(τ1 + 1)]

E1[τ1]2
− Ej [τ1]

E1[τ1]
, for j �= 1. (3.17)
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Proof. By the Optional Sampling theorem, for i ∈ S and n ≥ 1,

Ei[Mτ1∧n] = Ei[

τ1∧n∑
m=1

(wXm −
∑
j

p(Xm−1, j)wj)] = 0,

where τ1 ∧ n = min{τ1, n}. Since 0 < Ei[τ1] < ∞, we take the limit as n
tends to ∞ and apply the dominated convergence theorem to obtain

Ei[

τ1∑
m=1

(wXm −
∑
j

p(Xm−1, j)wj)] = 0. (3.18)

Recall that X0 = i, and Xτ1 = 1. Then, for each i = 1, 2, . . . , n, the left-hand
side of (3.18) becomes

Ei[

τ1−1∑
m=0

(wXm+1
−

∑
j

p(Xm, j)wj)]

= Ei[

τ1−1∑
m=0

(wXm −
∑
j

p(Xm, j)wj) + wXτ1
− wX0 ]

= w1 + Ei[

τ1−1∑
m=0

(wXm
−

∑
j

p(Xm, j)wj)]− wi

= w1 − Ei[

τ1−1∑
m=0

(
∑
j

p(Xm, j)wj − wXm)]− wi.

Since the right-hand side of (3.18) is 0,

w1 − Ei[

τ1−1∑
m=0

(
∑
j

p(Xm, j)wj − wXm)]− wi = 0. (3.19)

Left-multiplying both sides of (3.15) by the limiting matrix P∗ yields

P∗{w −Pw + (
∑
i

qiwi)e} = P∗r. (3.20)

As P∗P = P∗, the left-hand side of (3.20) becomes

P∗w −P∗Pw +P∗(
∑
i

qiwi)e

= P∗w −P∗w +P∗(
∑
i

qiwi)e

= P∗(
∑
i

qiwi)e.
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Therefore, by (3.20), P∗(
∑

i qiwi)e = P∗r, and, consequently,
∑

i qiwi = q1.
Using this fact, the Xmth row of (3.15) is

wXm −
∑
j

p(Xm, j)wj + q1 = I{Xm = 1},

where I{Xm = 1} is 1 if Xm = 1 and 0 otherwise, as rXm
= 1 if Xm = 1 and

0 otherwise. Therefore,

wXm
−

∑
j

p(Xm, j)wj = I{Xm = 1} − q1,

and (3.19) becomes

w1 − Ei[

τ1−1∑
m=0

(wXm
− I{Xm = 1}+ q1 − wXm

)]− wi = 0

w1 + Ei[

τ1−1∑
m=0

(I{Xm = 1} − q1)]− wi = 0.

Rearranging the last equation yields

wi = w1 + Ei[

τ1−1∑
m=0

(I{Xm = 1} − q1)]. (3.21)

For all i �= 1, i ∈ S and m < τ1, Xm �= 1 as τ1 is the first hitting time of
vertex 1. Therefore, for i �= 1, i ∈ S, (3.21) is the same as

wi = w1 + Ei[

τ1−1∑
m=0

(−q1)]

= w1 + Ei[−q1τ1]

= w1 − q1Ei[τ1]. (3.22)

For i = 1, I{X0 = 1} = 1, and (3.21) reduces to w1 = w1 since

w1 = w1 + E1[

τ1−1∑
m=0

(−q1) + 1]

= w1 + Ei[−q1τ1] + 1

= w1 − q1E1[τ1] + 1

= w1, (3.23)

the second last equality comes from the fact that q1E1 [τ1] = 1, by Borkar [16,
Theorem 5.3.2]. As

∑
i qiwi = q1, we multiply both sides of (3.22) by qi, and
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sum over all i �= 1 to obtain∑
i�=1

wiqi = w1

∑
i�=1

qi − q1
∑
i�=1

qiEi[τ1]∑
i

wiqi − w1q1 = w1

∑
i�=1

qi − q1
∑
i�=1

qiEi[τ1]

q1 = w1

∑
i

qi − q1
∑
i�=1

qiEi[τ1]

= w1 − q1
∑
i�=1

qiEi[τ1], (3.24)

with the last equality obtained by the property of the stationary distribution
vector q (see (3.8)). As q1E1[τ1] = 1, q1 = E1[τ ]

−1, and (3.24) becomes

q1 = w1 − q1
∑
i

qiEi[τ1] + q1q1E1[τ1]

= w1 − q1
∑
i

qiEi[τ1] + q1.

Consequently,

w1 = q1
∑
i

qiEi[τ1]. (3.25)

By [16, Theorem 5.3.4], equation (3.25) is equivalent to

w1 = q1
E1[

∑τ1−1
m=0 EXm

[τ1]]

E1[τ1]

= E[τ1]
−1E1[

∑τ1−1
m=0 EXm

[τ1]]

E1[τ1]

=
E1[

∑τ1−1
m=0 EXm

[τ1]]

E1[τ1]2

=
E1[

∑τ1−1
m=0(τ1 −m)]

E1[τ1]2

=
1

2

E1[τ1(τ1 + 1)]

E1[τ1]2
,

with the last equation obtained by using the occupational measure identity
in Pitman [85, p.74]. Hence, we complete the proof for (3.16).

From (3.16) and (3.22), for i �= 1, we obtain

wi = w1 − q1Ei[τ1]
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=
1

2

E1[τ1(τ1 + 1)]

E1[τ1]2
− E1[τ1]

−1Ei[τ1]

=
1

2

E1[τ1(τ1 + 1)]

E1[τ1]2
− Ei[τ1]

E1[τ1]
,

which completes the proof for (3.17). �

The following theorem gives analytic expressions for w1, the top-left element
of the fundamental matrix G(P) for doubly stochastic matrices P. In effect,
it shows that this element can be regarded as an objective function

w1 = w1(P) = a+ bV ar[τ1|P].

In the next section, the associated optimisation problem will be discussed in
much more detail.

Theorem 3.3. For a given doubly stochastic P, we have

w1 =
1

N2

∑
i

Ei[τ1] =
(N + 1)

2N
+

1

2N2
E1[(τ1 −N)2]. (3.26)

Moreover, if P is associated with a Hamiltonian cycle and we apply the sym-
metric linear perturbation defined in (3.13), then w1 simplifies to

wε
1 =

1

2

(N + 1)

N
+O(ε). (3.27)

Proof. Recall that for a doubly stochastic probability transition matrix P,
the stationary distribution vector q of P is 1/NeT, so qi = 1/N for all i.
Since q1 = E1[τ1]

−1, we have E1[τ1] = N . By (3.25),

w1 = q1
∑
i

qiEi[τ1] = 1/N2
∑
i

Ei[τ1].

In addition, by (3.16),

w1 =
E1[τ1(τ1 + 1)]

2(E1[τ1])2

=
E1[τ

2
1 ] + E1[τ1]

2(E1[τ1])2

=
E1[(τ1 − E1[τ1])

2] + E1[τ1]
2 + E1[τ1]

2(E1[τ1])2

=
E1[τ1]

2 + E1[τ1]

2(E1[τ1])2
+

E1[(τ1 − E1[τ1])
2]

2(E1[τ1])2

=
N + 1

2N
+

E1[(τ1 −N)2]

2N2
.
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For the second part of Theorem 3.3, we need to show that E[(τ1−N)2] = O(ε).
The probability that the system travels using at least one weak transition,
that is, an edge with probability ε, inN steps is at mostN(N−1)ε. Therefore,
P{τ1 �= N} ≤ N(N − 1)ε. Also, for the inequality τ1 > kN to hold for k ≥ 1,
the system must travel using at least one weak transition in each block of N
consecutive steps. Consequently, P{τ1 > kN} ≤ [N(N − 1)ε]k. This leads to

E[(τ1 −N)2] =
∑
j≥1

j2P{|τ1 −N | = j}

=
∑
j≥1

j2P{τ1 = N − j}+
∑
j≥1

j2P{τ1 = N + j}

≤ N2
∑
j≥1

P{τ1 = N − j}+
∑
j≥1

j2P{τ1 = N + j}

≤ N2P{τ1 �= N}+
∑
j≥1

j2P{τ1 = N + j}

≤ N3(N − 1)ε+
∑
j≥1

j2P{τ1 = j +N}

≤ N3(N − 1)ε+
∑
k≥1

[(k + 1)N ]2P{τ1 > kN}

≤ N3(N − 1)ε+
∑
k≥1

[(k + 1)N ]2[N(N − 1)ε]k

≤ O(ε).

This completes the proof. �

3.4 Hamiltonian Cycles as Hitting Time Variance
Minimisers

Consider a given graph G with N vertices and recall that every unperturbed
probability transition matrix P induced by G has the property that pij = 0
whenever edge (i, j) is not present in the graph. All unperturbed probabil-
ity transition matrices considered in this section are assumed to be induced
by G. It is clear that if P is the probability transition matrix induced by
a Hamiltonian cycle, then starting from the home vertex 1, the correspond-
ing Markov chain will return to it after exactly N transitions, implying that
V ar[τ1|P] = 0. Furthermore, since in such a case the symmetric linear pertur-
bation defined in (3.13) does not alter the ergodic structure of this chain, it
is reasonable to expect that V ar[τ1|Pε] tends to 0 as ε approaches 0. Hence,
in view of Theorem 3.3, it is also reasonable to conjecture that probability
transition matrices Pε

H induced by Hamiltonian cycles achieve the minimum
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in the optimisation problem

minV ar[τ1|Pε],

over the space of doubly stochastic probability transition matrices Pε induced
by the given graph G, provided that ε > 0 is sufficiently small. Equivalently,
we conjecture that probability transition matrices Pε

H induced by Hamilto-
nian cycles achieve the minimum in the optimisation problem

minwε
1(P

ε),

over the same space of doubly stochastic probability transition matrices, pro-
vided that ε > 0 is sufficiently small. This section is devoted to proving these
conjectures and to establishing the existence of the Hamiltonicity gap prop-
erty, which demonstrates that the optimal values of these two objective func-
tions can be used to distinguish between Hamiltonian and non-Hamiltonian
graphs, without actually requiring that a Hamiltonian cycle be found.

We denote by Pε the probability transition matrix obtained from P after
we apply the symmetric linear perturbation defined in (3.13), by Dd the fi-
nite set of perturbed doubly stochastic deterministic matrices, and by D the
convex set of perturbed doubly stochastic matrices obtained by taking the
closed convex hull of Dd. We also write Dd as the disjoint union DH ∪ Ds,
where DH represents the set of Hamiltonian cycles and Ds the set of disjoint
unions of short cycles that cover the graph. All sets Dd,D,DH and Ds depend
on the perturbation parameter ε, which we suppress. Likewise, we suppress
the dependence of aforementioned objective functions on Pε, except where
ambiguity might arise.

Lemma 3.1. For Pε ∈ Ds, the top-left entry wε
1 of the fundamental matrix

G(Pε) tends to infinity as ε approaches 0.

Proof. Let i ∈ S lie in a short cycle of P not containing vertex 1. Then, a
chain starting at i must make an ε−transition before ever hitting 1. Thus, if
ζ denotes the first time it makes an ε−transition, then

Ei[τ1] ≥ Ei[ζ]

=
∑
m≥1

m(N − 1)ε{1− (N − 1)ε}m−1

= 1/{(N − 1)ε}.

The claim follows from (3.26). �

We say that P ∈ D is a perturbation of Hamiltonian cycle if there exists a
P̂ ∈ DH such that ||P − P̂|| = Cε0 for prescribed C, ε0 > 0. Let Dp denote
the set of such matrices P.
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Theorem 3.4. For sufficiently small ε > 0, all minima of wε
1 on D are

attained on Dp.

The proof uses the following lemma. We use the notation θ(1) to denote any
function g(ε) satisfying lim infε↓0 g(ε) > 0 and lim supε↓0 g(ε) < ∞.

Lemma 3.2. For P ∈ D \ Dp,

wε
1 ≥ 1

2

(N + 1)

N
+ θ(1).

Proof. By (3.26)

wε
1 =

1

2

N + 1

N
+

1

2N2
E1[(τ1 −N)2].

Thus, it suffices to prove that for P ∈ D \ Dp,

E1[(τ1 −N)2] = θ(1),

which it indeed will be if the weighted digraph of P contains a short (that is,
non-Hamiltonian) cycle containing 1 which has a probability θ(1). Now, P is
a finite convex combination of elements of De, with either

(i) weight θ(1) for at least one P̂ ∈ Ds, or
(ii) weights θ(1) for at least two distinct P′,P′′ ∈ DH.

It is easy to see that if (i) and (ii) were false, P would be in Dp. In case of (i), it
is clear that P has a short cycle containing 1 which has a probability θ(1). In
case of (ii), let P put the θ(1) weights on P1,P2 ∈ DH, corresponding to two
Hamiltonian cycles 1 → x1 → x2 → · · · → xN−1 → 1 and 1 → y1 → y2 →
· · · → yN−1 → 1 respectively. Let i = min{j > 1 : xj �= yj}. Then, xi = yk
for some k > i. Hence, 1 → · · · → xi → yk+1 → · · · → ys−1 → 1 defines
a short cycle that contains 1 and has a probability θ(1). This completes the
proof. �

Proof of Theorem 3.4. Since wε is the unique solution to the well-posed linear
system given by (3.15), it depends smoothly on the coefficients thereof by
Cramer’s rule, hence on ε. From Theorem 3.3, it then follows that

wε
1 = (N + 1)/(2N) +O(ε)

for P ∈ Dp. The claim now follows from Lemma 3.2. �

Directional derivatives Before showing that the minima of wε
1 on D are

attained at doubly stochastic matrices induced by Hamiltonian cycles, we
need to present some results on directional derivatives. We now derive an
expression for the directional derivative of our objective function wε

1.
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Let P0 and P1 denote two doubly stochastic matrices in D and for 0 ≤ λ ≤ 1,
define Pλ = λP1 + (1 − λ)P0. Correspondingly, define κλ(i) = Ei[τ1] for
i ∈ S, where the dependence of the distribution of τ1 on the parameter λ is
implicit. Also, let P̃0, P̃1 and P̃λ denote sub-matrices derived, respectively,
from P0,P1, and Pλ by deletion of their first row and column. Similarly, for
vectors, we use tilde to denote truncations resulting from the omission of the
first entry, for instance, κ̃λ = (κλ(2), . . . , κλ(N))T, ẽ = (1, . . . , 1)T ∈ RN−1.

By Borkar [15, Lemma 1.3], we know that κ̃λ is the unique solution to

κ̃λ = ẽ+ P̃λκ̃λ, (3.28)

that is,

κ̃λ = (I− P̃λ)
−1ẽ. (3.29)

We denote by {Xn} the Markov chain governed by Pλ, and by pij the ele-
ments of Pλ.

Lemma 3.3. Let νλ(i) = E[
∑τ1

m=1 I{Xm = i}] when the initial distribution
is the uniform distribution. Then, ν̃T

λ = (νλ(2), . . . , νλ(N)) is the unique
solution to

ν̃T

λ = 1/N ẽT + ν̃T

λP̃λ = 1/N ẽT(I− P̃λ)
−1. (3.30)

Proof. We define ζ1 = min{n ≥ 0 : Xn = 1} (= ∞ if this set is empty), and

νjλ(i) = Ej [
∑ζ1

m=0 I{Xm = i}]. Then, for j �= 1, ζ1 = τ1, and

νjλ(i) = Ej [

ζ1∑
m=0

I{Xm = i}] = Ej [

τ1∑
m=0

I{Xm = i}].

Consider i, j �= 1. We note that for n ≥ 1,Mn =
∑n

m=1(I{Xm = i}−pXm−1,i)
is a martingale. By the Optional Sampling theorem (stated in Theorem 3.1)
and for T ≥ 1,

Ej [

τ1∧T∑
m=1

(I{Xm = i} − pXm−1,i)] = 0 (3.31)

Letting T ↑ ∞ and using the easily established fact that E[τ21 ] < ∞, which
implies uniform integrability of the sum above as T varies, we have

Ej [

τ1∑
m=1

(I{Xm = i} − pXm−1,i)] = 0.
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Thus,

νjλ(i) = Ej [

τ1∑
m=0

I{Xm = i}]

= δij + Ej [

τ1∑
m=1

I{Xm = i}]

= δij + Ej [

τ1∑
m=1

pXm−1,i]

= δij + Ej [

τ1−1∑
m=0

pXm,i]

= δij + Ej [

τ1−1∑
m=0

∑
k �=1

pkiI{Xm = k}]

since Xm �= 1 for m < τ1,

= δij + Ej [
∑
k �=1

τ1−1∑
m=0

pkiI{Xm = k}]

= δij +
∑
k �=1

Ej [

τ1∑
m=0

I{Xm = k}]pki,

since Xτ1 = 1 �= k. Thus,

νjλ(i) = δij +
∑
k �=1

νjλ(k)pki. (3.32)

Since ν1λ(i) = 0 for i �= 1, we also have

ν1λ(i) = δi1 +
∑
k �=1

ν1λ(k)pki = 0.

Multiplying both sides of (3.32) by 1/N and summing over j, we obtain

N∑
j=1

1/Nνjλ(i) = 1/N + 1/N
∑
j

∑
k �=1

νjλ(k)pki.

This proves the claim. �

Let J(λ) denote our objective as a function of λ, that is, wε
1, evaluated along

the line segment {Pλ : 0 ≤ λ ≤ 1}. From (3.26), we have
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J(λ) = 1/N2
N∑
i=1

κλ(i). (3.33)

Differentiating with respect to λ on both sides yields

J ′(λ) = 1/N2
N∑
i=1

κ′
λ(i) = 1/N2

N∑
i=2

κ′
λ(i), (3.34)

because κλ(1) = E1[τ1] = N for all λ ∈ [0, 1] and, consequently, κ′
λ(1) = 0

for all λ ∈ [0, 1]. From (3.28) and the definition of P̃λ, we have

κ̃′
λ = (P̃1 − P̃0)κ̃λ + P̃λκ̃

′
λ.

Therefore,

κ̃′
λ = (I− P̃λ)

−1(P̃1 − P̃0)κ̃λ,

and, together with (3.29) and (3.30), this leads to

J ′(λ) =
1

N2
ẽT(I− P̃λ)

−1(P̃1 − P̃0)κ̃λ

=
1

N
ν̃T

λ(P̃1 − P̃0)κ̃λ

=
1

N2
ẽT(I− P̃λ)

−1(P̃1 − P̃0)(I− P̃λ)
−1ẽ. (3.35)

Though the following, purely technical, lemma is a straightforward applica-
tion of the Cauchy-Schwartz inequality, we include its proof for the sake of
completeness.

Lemma 3.4. If xm = m for 1 ≤ m ≤ N, and {yk} is a permutation of
{xj}, then

∑
i xiyi is maximised when yi = xi for all i, and minimised when

yi = N + 1− xi for all i.

Proof. The maximisation claim is immediate from the Cauchy-Schwartz in-
equality. For the permutation {zi = N + 1− yi} of {xj}, we have∑

i

xizi ≤
∑
i

x2
i ,

with equality if and only if xi = zi for all i. Hence,∑
i

xiyi =
∑
i

xi(N + 1− zi) ≥
∑
i

xi(N + 1− xi),
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with equality if and only if yi = N + 1− xi for all i. Thus, the minimisation
claim also follows. �

We now consider J ′(0) in the situations where the doubly stochastic matrix
P0 ∈ DH is induced by a deterministic transition matrix tracing out a Hamil-
tonian cycle. We first show that J ′(0) > 0 on a straight line path from P0

towards any doubly stochastic P1 induced by the graph. This shows that
deterministic transition matrices inducing Hamiltonian cycles correspond
to local minima. Suppose then that P0 corresponds to a Hamiltonian cy-
cle H0. Without loss of generality, we assume H0 is the Hamiltonian cycle
1 → 2 → · · · → N → 1. To start with, we consider P1 ∈ DH ∪Ds, other than
P0. That is, P1 is induced by any deterministic matrix that traces out in the
graph either a union of disjoint cycles or a Hamiltonian cycle other than H0.
For each i ∈ S and i �= 1, we denote by m(i) the number of steps required to
reach vertex 1 from i on H0 if ε = 0. Then,

κ0(i) = Ei[τ1] = m(i) +O(ε)

= (N − i+ 1) +O(ε). (3.36)

To verify that the suppressed ε−dependence above is, indeed, only of order
O(ε), note that by (3.13) we can write P̃0 = P̃0(ε) = P̃0(0)− εK̃0, for some
fixed matrix K̃0. Now, it follows from (3.29) that (3.36) is simply the ith
equation in the system

κ̃0 = (I− P̃0(ε))
−11̃ = (I− P̃0(0) + εK̃0)

−11̃. (3.37)

It is easy to check that I − P̃0(0) is invertible and hence that the above
equation corresponds to a regularly (rather than a singularly) perturbed sys-
tem. By well-known results from perturbation theory of linear operators (see
Langenhop [73] and Avrachenkov et al. [6]), it follows that

κ̃0 = (I− P̃0(0))
−11̃+O(ε).

Also,

Ej [

τ1∑
�=0

I{X� = i}] =
{
1 +O(ε) for j = 1, 2, . . . , i− 1,

O(ε) for j = i, . . . , N.
(3.38)

Equation (3.38) can be proved by arguments analogous to those used for
proving (3.36). Hence, for i = 2, . . . , N,

ν0(i) = 1/N
∑

1≤j<i

Ej [

τ1∑
�=1

I{X� = i}] +O(ε)

= (i− 1)/N +O(ε).
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Thus, by (3.28),

ν̃T

0 P̃0κ̃0 =

N−1∑
i=2

ν0(i)κ0(i+ 1)

= 1/N{1(N − 2) + 2(N − 3) + · · · (N − 2)1}+O(ε)

= 1/N
N−1∑
r=1

r{(N − 1)− r}+O(ε)

= (N − 1)2/2− 1/N

N−1∑
r=1

r2 +O(ε).

Now, suppose that P1 is induced by either a Hamiltonian cycle distinct from
H0 or a deterministic matrix that traces out a union of disjoint cycles in
the graph. Hence, for every ith row there is a unique jith column such that
[P1]i,ji = 1 and ji �= jk, for i �= k. Thus,

ν̃T

0 P̃1κ̃0 =

N∑
i=2

ν0(i)κ0(ji)

= 1/N
N∑
i=2

(i− 1)(N − ji + 1) +O(ε)

= 1/N
N−1∑
r=1

r{(N − 1)− (jr+1 − 2)}+O(ε)

= (N − 1)/N
N−1∑
r=1

r − 1/N

N−1∑
r=1

ryr +O(ε)

= (N − 1)2/2− 1/N
N−1∑
r=1

ryr +O(ε),

where r = i− 1, yr = (jr+1 − 2) and yr ∈ {0, 1, 2, . . . , (N − 2)} with yr �= yk
whenever r �= k. If yr were allowed to take values only in the set {1, 2, . . . , N−
1}, then by Lemma 3.4 we would have that

N−1∑
r=1

r2 >

N−1∑
r=1

ryr, (3.39)

whenever (y1, . . . , yN−1) �= (1, . . . , N − 1). However, the inclusion of zero as
one of the possible values for yr can only lower the right-hand side of (3.39).
Hence, we have proved that, whenever P̃1 ∈ DH ∪ Ds and P̃1 �= P̃0,

ν̃T

0 P̃1κ̃0 − ν̃T

0 P̃0κ̃0 > 0.
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Now consider an arbitrary doubly stochastic P1 other than P0. By Birkhoff-
von Neumann theorem (Bapat and Raghavan [9]),

P1 =

M∑
i=1

γiP
†
i , (3.40)

where γi ≥ 0 for all i,
∑

i γi = 1, P†
i ∈ DH ∪ Ds correspond to permutation

matrices and M ≥ 1 is the number of permutation matrices induced by the
graph. For at least one value of i in the summation (3.40), P†

i �= P0 and
γi > 0. Then, by the preceding strict inequalities and the second equality
of (3.35) we have that

J ′(0) = 1/N(ν̃T

0 P̃1κ̃0 − ν̃T

0 P̃0κ̃0)

= 1/N
∑
i

γi(ν̃
T

0 P̃
†
i κ̃0 − ν̃T

0 P̃0κ̃0) > 0.

The following main result now follows rather easily.

Theorem 3.5. If P0 is induced by a Hamiltonian cycle, then,

(i) P0 is a strict local minimum for the cost functional wε
1, and

(ii) P0 is also a global minimum for the cost functional wε
1.

Proof. Part (i) was proved above for P0 corresponding to the Hamiltonian
cycle H0: it is sufficient to observe that for a strict local minimum, the quan-
tity

ν0P̃1κ0 − ν0P̃0κ0

remains strictly bounded away from zero as ε approaches 0 for all extremal
P1 �= P0. The effect of considering another Hamiltonian cycle would be only
to permute the order of the terms in various summations, without changing
the conclusions.

To obtain Part (ii), first note that the above allows us to choose an η0 > 0
such that P0 is the strict local minimum of wε

1 in the η0−neighborhood of P0.
As in the proof of Theorem 3.4, choose ε > 0 small enough so that the global
minimum of wε

1 is attained on the η0−neighborhood of P0. Small enough
here is quantified by an upper bound that depends only on N and η0 (see
Borkar et al. [17]). The claim follows. �

Recall from Theorem 3.3 that for a doubly stochastic matrix P ∈ D, the func-
tional consisting of the top-left element of the fundamental matrix induced
by P is given by

wε
1 =

N + 1

2N
+

1

2N2
E1[(τ1 −N)2]. (3.41)
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We suppressed the dependence on P on the right-hand side of (3.41), but
the expectation term is a function of P, since P determines the distribution
of τ1. It should now be clear that a consequence of Theorems 3.3 and 3.5 is
that whenever the underlying graph G is Hamiltonian, the minimum of the
above functional over P ∈ D is given by

wε
1(PH) = min

P∈D
wε

1(P) = (N + 1)/(2N) +O(ε), (3.42)

where PH ∈ DH is a probability transition matrix defining any Hamiltonian
cycle in the graph.

Hamiltonicity Gap: A lower bound for the non-Hamiltonian case

In this section, we prove that for positive and sufficiently small ε, there exists
Δ(N) > 0 such that whenever the graph G is non-Hamiltonian

{ min
P∈Dε

wε
1(P)} − wε

1(PH) ≥ Δ(N)−O(ε).

We name the quantity Δ(N) the Hamiltonicity gap of order N because it
distinguishes all non-Hamiltonian graphs with N vertices from all Hamilto-
nian graphs with the same number of vertices.

Before presenting the proof, we note that such a result is reasonable when we
consider the possible variability of τ1—as captured by its variance E1[(τ1 −
N)2]—for both Hamiltonian and non-Hamiltonian graphs. In the former case,
it is clear that this variance can be made nearly zero by following a Hamil-
tonian cycle because the latter would yield a variance actually equal to zero
were it not for the (small) perturbation ε. However, if the graph is non-
Hamiltonian, perhaps we cannot avail ourselves of such a variance annihi-
lating transition matrix. This intuitive reasoning is made rigorous in the
remainder of this section.

The key step in what follows is the derivation of an upper bound on
P{τ1 = N |P}, the probability that the system returns to vertex 1 in N
steps, under an arbitrary doubly stochastic matrix P in a non-Hamiltonian
graph.

Lemma 3.5. Suppose that G is a non-Hamiltonian graph, and let P be an
arbitrary doubly stochastic transition matrix feasible on G.

(i) If ε = 0, then P{τ1 = N |P} ≤ 1/4.

(ii) If ε > 0 and small, then P{τ1 = N |P} ≤ 1/4 +O(ε).

Proof. First, consider the case ε = 0. Let P be an arbitrary doubly stochastic
matrix and let {Xt}∞0 be the Markov chain induced by P and the starting
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state 1. Let γ1 = (X0, X1, . . . , XN ) be a path of N steps through the graph
and let χ1 = {γ1|X0 = XN = 1, Xk �= 1, k = 1, . . . , N −1}. That is, the event
that the first return to 1 occurs after N steps is {τ1 = N}, which is simply
the event that γ1 traces a path within χ1 and hence

P{τ1 = N |P} =
∑

γ1∈χ1

pγ1
,

where pγ1 denotes the probability (under P) of observing the path γ1. How-
ever, because the graph is assumed to be non-Hamiltonian, all the paths in χ1

that receive a positive probability have the structure

γ1 = γ′
1 ∪ γ̄1,

where γ′
1 consists of a non-self-intersecting “reduced path” from 1 to itself

of length m ≤ N − 2 adjoined at some vertex (or vertices) other than 1 by
one or more loops of total length N − m, that together constitute γ̄1. One
can think of γ′

1 ∪ γ̄1 as the first and second parts of a figure comprising of a
basic loop with one or more side-lobes attached to it, each of which is either
a loop or a connected union of loops. The simplest instance of this is a figure
of eight, with two loops of length m and N −m respectively, attached at a
vertex other than 1.

Let pγ1
denote the probability of the original path and p′γ1

that of the re-
duced path. Let q = pγ1

/p′γ1
≤ 1, which is the contribution to p coming from

the loops comprising γ̄1. More generally, define γ0 = γ′
1, γ1 = γ′

1 ∪ γ̄1, γ2 =
γ′
1 ∪ γ̄1 ∪ γ̄1, γ3 = γ′

1 ∪ γ̄1 ∪ γ̄1 ∪ γ̄1, . . . . For n ≥ 2, the paths γn from 1 to
itself that begin with the same reduced path γ′

1 but may repeat exactly the
path γ̄1 for n ≥ 2 times, all contribute to the event {τ1 �= N}, as does γ0 = γ′

1.

The paths γn, for n ≥ 2, have probabilities pγ1q
n−1. The total probabil-

ity that these paths and γ0 = γ′
1 (but excluding the original γ1) contribute

to {τ1 �= N} is

pγ1
/q +

∑
n≥2

pγ1
qn−1 = pγ1

{1/q + q/(1− q)}

= pγ1
{−1 + 1/(q(1− q))}

≥ 3pγ1
.

It follows that

P{τ1 �= N |P} ≥
∑

γ1∈χ1

3pγ1
= 3P{τ1 = N |P}.
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Hence,

1 = P{τ1 < ∞|P}
= P{τ1 = N |P}+ P{τ1 �= N |P}
≥ 4P{τ1 = N |P},

implying P{τ1 = N |P} ≤ 1/4, or, P{τ1 �= N |P} ≥ 3/4.

Returning to the case when ε > 0 and sufficiently small, we note that in the
Markov chain induced by P there are now two types of transitions: strong
transitions that correspond to P assigning a positive probability to edges
that are actually in the graph and weak transitions that are strictly the re-
sult of our perturbation. The latter are of order ε. Thus, the only impact that
the perturbation makes on the argument presented above is to introduce an
adjustment of order ε. This completes the proof. �

Theorem 3.6. Consider a non-Hamiltonian graph G of order N , and define
Δ(N) = 3/(8N2).

(i) For any P, E1[(τ1 −N)2] ≥ 3/4−O(ε).

(ii) The following lower bound holds:

{ min
P∈Dε

wε
1(P)} − wε

1(PH) ≥ Δ(N)−O(ε).

Proof. Let P be an arbitrary doubly stochastic matrix and E1[(τ1 − N)2]
be the corresponding variance of the first return time to vertex 1, starting
from 1. Clearly,

E1[(τ1 −N)2] =
∑
k≥1

(k −N)2P{τ1 = k|P}

≥
∑

k≥1, k �=N

P{τ1 = k|P}

= P{τ1 �= N |P}.

Hence by Part (ii) of Lemma 3.5, we have obtained Part (i), namely

E1[(τ1 −N)2] ≥ 3/4−O(ε). (3.43)

It now follows from (3.41) that

wε
1 ≥ N + 1

2N
+

1

2N2
(3/4−O(ε)) =

N + 1

2N
+Δ(N)−O(ε). (3.44)

Part (ii) now follows immediately from (3.44) and (3.42). �
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In summary, in this chapter, we considered spaces of probability transition
matrices of Markov chains induced by a given graph G and certain associ-
ated random variables such as first return times to given vertices. We showed
that, in a prescribed sense, the variances of the latter are minimised pre-
cisely at those Markov chains that are induced by Hamiltonian cycles of
the graph whenever it possesses such cycles. Furthermore, we showed that
the perturbed variance functional differentiates between all Hamiltonian and
non-Hamiltonian graphs of a given order, by means of the size of the gap be-
tween minimal values of that functional over the space of doubly stochastic
probability transition matrices induced by G. This suggests that stochastic—
perhaps even statistical—methods could be brought to bear on this essentially
deterministic, combinatorial, problem.


	Part II Probabilistic Approaches
	Chapter 3 Markov Chains
	3.1 Introduction
	3.2 Markov Chains and Perturbations
	3.3 Hitting Times and the Fundamental Matrix
	3.4 Hamiltonian Cycles as Hitting Time Variance Minimisers





