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Preface

Graphs and networks have been studied extensively in recent decades by
mathematicians, computer scientists, engineers, operations researchers as well
as physicists, biologists, chemists, and even linguists and sociologists. Their
two key elements, vertices and edges, are extremely useful as representations
of a wide spectrum of phenomena ranging from transportation networks,
through topology of atoms to social networks. Furthermore, many problems
modelled with graphs and networks naturally lend themselves to algorithmic
analysis and ultimate solutions with the help of modern high-speed comput-
ers. The shortest path, maximal spanning tree and max-flow/min-cut prob-
lems are just three examples out of a large collection of well-solved important
problems.

Nonetheless, there is also a large collection of graph theoretic and network
optimisation problems that are fundamentally difficult in the sense of be-
longing to the very challenging computational complexity classes such as the
NP-complete and NP-hard classes. Indeed, the famous Hamiltonian cycle
problem (HCP) is known to be NP-complete. The now extensive body of re-
search into the HCP was, perhaps, stimulated by investigations of interesting
instances of that problem by great mathematicians such as Euler in the 18th
and Hamilton in the 19th century, respectively.

The essence of the Hamiltonian cycle problem is contained in the following—
deceptively simple—single sentence statement:

Given a graph, find a cycle that passes through every single vertex exactly
once, or determine that this cannot be achieved.

Such a cycle is called a Hamiltonian cycle. The HCP has become a challenge
that attracts mathematical minds both in its own right and because of its
close relationship to the famous travelling salesman problem (TSP), that calls
for the identification of a Hamiltonian cycle with the lowest cost possible in a
graph where every edge has a known cost associated with “travelling” along
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viii Preface

that edge. An efficient solution of the TSP would have an enormous impact
in operations research, optimisation and computer science. However, from a
mathematical perspective, the underlying difficulty of the TSP is, perhaps,
hidden in the Hamiltonian cycle problem. Hence, in this monograph, we focus
on the Hamiltonian cycle problem.

Arguably, the inherent difficulty of many problems in graph theory and com-
binatorial optimisation stems, precisely, from the discrete nature of the do-
mains in which these problems are posed. Consequently, this monograph is
devoted to a line of research that maps such problems into convex domains
where continuum analysis can be easily carried out. This convexification of
domains is achieved by assigning probabilistic interpretation to the key el-
ements of the original problems even though these problems are deterministic.

While there are other instances of similar ideas being exploited elsewhere,
our approach builds on the innovation introduced in Filar and Krass [49]
where the Hamiltonian cycle problem and the travelling salesman problem
are embedded in a structured singularly perturbed Markov decision process
(MDP). The unifying idea of [49] is to interpret subgraphs traced out by de-
terministic policies (including Hamiltonian cycles, if any) as extreme points
of a convex polyhedron in a space filled with randomised policies.

This approach was continued by Chen and Filar [22] and, independently,
by Feinberg and Shwartz [46] and Feinberg [44]. Further results were ob-
tained by Filar and Liu [51], Andramonov et al. [4], Filar and Lasserre [50],
Ejov et al. [30]–[38] and Borkar et al. [17]–[18]. In addition, three recent
(but not readily accessible) PhD theses by Nguyen [81], Haythorpe [62] and
Eshragh [41] contain some of the most recent results. Thus, there is now an
active group of researchers in various countries interested in this approach
to discrete problems. Majority of these contributions focused on the classi-
cal Hamiltonian cycle problem, but in principle many of the techniques used
could be adapted to other problems of discrete mathematics (as, indeed, was
done by Feinberg [45]).

To indicate the flavour of the results reported in the present monograph,
consider a key observation that led to the recent results presented in Borkar
et al. [17] and [18]: the “natural” convex domain where Hamiltonian cy-
cles should be sought is the set of doubly stochastic matrices induced by a
given graph. This observation is nearly obvious, once we recall the famous
Birkhoff-von Neumann theorem, which states that the set of all N×N doubly
stochastic matrices is the convex hull of permutation matrices. Of course, in
searching for a Hamiltonian cycle of a given graph, we need to restrict our-
selves to the convex hull of only those permutation matrices that correspond
to subgraphs of that graph. Results in Chapter 3 (based on Borkar et al. [17]
and [18]) imply, that after a suitable perturbation and defining the random
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variable τ1 to be the first hitting time of the home vertex 1 (after time 0),
the Hamiltonian cycle problem essentially reduces to “merely” minimising
the variance-like functional E[(τ1 −N)2] over the space of doubly stochastic
matrices. This probabilistic, almost statistical, interpretation enables us to
exploit a wide range of both analytical and algorithmic tools on the HCP.

More generally, this monograph summarises results of both theoretical and
algorithmic investigations. The theoretical aim of this line of research is to
explain the essential difficulty of the Hamiltonian cycle problem in analytic
terms such as a measure of variability, or the size of a gap between certain
optimisation problems, or by the nature of certain singularities. The algo-
rithmic aim of the approach is to construct either exact or heuristic methods
to obtain numerical solutions of the HCP. It is based on the belief that some
classical “static” optimisation problems can be well analysed by embedding
them in suitably constructed Markov decision processes.

In our setting, the theoretical and algorithmic aims are not separate. Indeed,
results on one aim seem to influence progress on the other. For instance, the
optimisation algorithms presented in Chapters 7 and 8 follow directly from
the theoretical developments presented in Chapters 3–5 and have identified
difficulties that some of the theoretical developments reported in Chapters 6,
9 and 10 are trying to resolve.

The general approach constitutes one of the few instances where probabilistic,
continuous optimisation and dynamic control methods are combined to deal
with a hard problem of discrete mathematics. Arguably, simulated annealing
could be seen as a precursor of this approach. However, it should be men-
tioned that relationships between Markov chains and graphs are also of recent
interest to other researchers, notably Aldous and Fill [2] and Hunter [67].

Next we shall, briefly, differentiate between our approach and some of the
best known, well established, approaches to the HCP. We first note that the
present line of research is essentially different from that adopted in the study
of random graphs, where an underlying random mechanism is used to gener-
ate a graph (see, for example, Karp’s seminal paper [69]). In our approach,
the graph to be studied is given and fixed but a controller can choose edges
according to a probability distribution, and with a small probability (due to a
perturbation) an edge may take you to a vertex. Random graphs have played
an important role in the study of Hamiltonicity, a striking result to quote
is that of Robinson and Wormald [92] who show that with high probability
k-regular graphs are Hamiltonian, for k ≥ 3.

Typical general purpose heuristic algorithms can perhaps be classified—we
cite only few representative papers—as rotational transformation algorithms
(Posa [86]), cycle extension algorithms (Bollobas et al. [13]), long path algo-
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rithms (Kocay and Li [71]), low degree vertices algorithms (Broder et al. [20]
and Brunacci [21]),multipath search or pruning algorithms (Christofides [23]).
Of course, much research has been done on algorithms for finding a Hamilto-
nian cycle on various restricted graph classes (see, for example, Parberry [84]).
Clearly, algorithms designed for particular classes of graphs tend to outper-
form the best general purpose algorithms when applied to graphs from these
classes.

In the operations research and optimisation communities, many of the suc-
cessful, now classical, approaches to the HCP and TSP focus on solving a
linear programming relaxation followed by heuristics that prevent the for-
mation of sub-cycles (see, for example, Lawler et al. [76]). In the present
approach, we embed a given graph in a singularly perturbed MDP in such a
way that we can identify Hamiltonian cycles with irreducible Markov chains
and sub-cycles with non-exhaustive ergodic classes. This permits a search for
a Hamiltonian cycle in either (i) the policy space of an MDP, or (ii) the space
of the occupational measures of the MDP that is a polytope with a non-empty
interior. In both cases, the original discrete optimisation problem is converted
to a continuous one. The Branch and Fix, Wedged-MIP and Cross-Entropy
heuristics reported in Chapters 7 and 8 can be seen as belonging to (ii), as
they all exploit properties of the spaces of occupational measures. They are
performing competitively with alternative—general purpose—algorithms on
various test problems including the Knight’s Tour problem on chessboards
of the size up to 32× 32. The Interior Point heuristic discussed in Chapter 8
belongs to (i) and should be properly seen as being still under development.
However, it opens up promising opportunities for a lot of further research,
as it exploits numerically attractive algebraic factorisation properties of irre-
ducible generator matrices of Markov chains.

Indian Institute of Technology, India, Vivek S. Borkar
Flinders University, Australia, Vladimir Ejov
Flinders University, Australia, Jerzy A. Filar
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Chapter 1

Illustrative Graphs

1.1 The Graph That Started It All

Sir William Rowan Hamilton (1805–1865) was a famous mathematician and
physicist, well-known for his vast contribution in various fields such as optics,
classical mechanics and algebra. However, it is a lesser known fact that Sir
William was the inventor of a commercial game, the mathematically gener-
alised version of which later became one of the most difficult graph theoretic
problems. Towards the end of his life, in 1857, Sir William Rowan Hamilton
designed a game called Icosian. Its name derived from a Greek word Icosa,
meaning twenty, the Icosian Game featured twenty connected cities, each
represented by a hole on a wooden pegboard. Deceptively simple, the player
was to visit every city exactly once and return to where he or she started. If
we represent each city in this game by a vertex and each connection between
two cities by an edge, then the resulting map of cities in the Icosian game is
the Dodecahedron graph (Figure 1.1).

Fig. 1.1: The dodecahedral graph [102], which represents the city map of Icosian
game, is the planar projection of a dodecahedron (a polyhedron with twelve faces)

.
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4 1 Illustrative Graphs

A mathematically generalised version of the Icosian game, the Hamiltonian
cycle problem (HCP) can be succinctly stated as:

Given a graph, find a cycle that passes through every single vertex exactly
once, or determine that this cannot be achieved.

Such a cycle is called a Hamiltonian cycle (HC). A graph is said to be Hamil-
tonian if it possesses at least one Hamiltonian cycle, and is otherwise non-
Hamiltonian. There might be, and usually are, multiple Hamiltonian cycles
in a Hamiltonian graph. The dodecahedron graph is Hamiltonian and has
multiple Hamiltonian cycles. The property of a graph possessing a Hamilto-
nian cycle is called Hamiltonicity .

In 1859, Sir William sold the game to an Irish toy manufacturer for 25
British pounds, approximately equivalent to today’s 2770 US dollars. The
Icosian game was later commercially distributed as the Traveller’s Dodecahe-
dron. In 2000, the Clay Mathematics Institute announced their list of seven
Prize Problems, and offered a one million US dollar prize for a solution to
each problem. One listed problem is the long-standing question on the re-
lationship between two complexity classes P and NP (see Cook [26] for the
formal problem description), an answer to which can be found by determining
whether there exists a polynomial-time algorithm to solve the Hamiltonian
cycle problem.

In the even better known travelling salesman problem, where we assign a
cost for each edge in a given graph, the objective is essentially to determine
which Hamiltonian cycle on the graph is the most cost-efficient. Thus, the
Hamiltonian cycle problem is a special case of the travelling salesman prob-
lem, and both are computationally difficult to solve. An efficient solution
to the Hamiltonian cycle problem would help solve the travelling salesman
problem effectively, and therefore would have a great impact in various fields
such as computer science, operations research and cryptology.

1.2 A Sample of Distinctive Graphs

A simple indication of the complexity of the Hamiltonian cycle problem is,
that it is not easy to determine whether or not a graph is Hamiltonian by
inspection even for small-sized problems. For example, it might take several
minutes for a person to determine whether the famous 10-vertex Petersen
graph (Figure 1.2) is Hamiltonian. A larger, but still reasonably small in
terms of computer science instances, problem that has challenged many HCP
algorithms is the 96-vertex Horton graph (Figure 1.3). In both graphs, there
is no Hamiltonian cycle.
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Fig. 1.2: Petersen graph

Fig. 1.3: Horton graph [103]

The dodecahedral graph, the Petersen graph and the Horton graph are all
cubic graphs. A graph is cubic or 3-regular if every vertex in the graph is
connected to exactly three other vertices. In general, a graph is k-regular if
every vertex in the graph is connected to exactly k other vertices. Despite
this regularity constraint which seemingly simplifies things, the Hamiltonian
cycle problem when restricted to cubic graphs retains its full complexity and
hence remains NP-complete [53]. Consequently, cubic graphs are one of the
simplest classes of graphs frequently chosen for analysis, in regards not only
to the Hamiltonian cycle problem but also to many other graph theoretic
problems [57].

In Figure 1.4, we list all 19 connected 10-vertex cubic graphs, 17 of which
are Hamiltonian and two are non-Hamiltonian, including the Petersen graph.
We enumerate these graphs using the graph-generating GENREG software
(Meringer [79]). For the Hamiltonian 10-vertex cubic graphs (numbered 2 to
18), all vertices are drawn in a circle to highlight the Hamiltonicity of these
graphs. Indeed, each of these Hamiltonian graphs has at least one Hamilto-
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nian cycle that is the circle circumscribing the graph. However, both non-
Hamiltonian graphs (numbered 1 and 19) are drawn with a different vertex
arrangement. This diagrammatic version of the first graph highlights a bridge
connecting two subgraphs, consequently indicating the lack of Hamiltonian
cycles in the graph.

Fig. 1.4: All 19 connected 10-vertex cubic graphs

For any given graph, there are many different graphical representations. A
planar graph is a graph that can be drawn in the plane in such a way that
its edges intersect only at the vertices. A nonplanar graph is a graph that is
not planar. Garey et al. [53] show that, even when restricted to planar cubic
graphs, the Hamiltonian cycle problem is NP-complete.

In addition to the quest for finding an efficient algorithm to solve the Hamil-
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tonian cycle problem for generic graphs, a lot of focus is on determining
whether classes of graphs with certain properties are always Hamiltonian.
Before stating a famous conjecture on a particular class of graphs, we need
to introduce a few definitions. A graph is bipartite if its set of vertices can
be divided in two disjoint subsets such that no pair of vertices in the same
subset are connected to each other. In general, a graph is k-partite if its set
of vertices can be divided into k disjoint subsets such that no two pair of
vertices in same subset are connected to each other. A graph is k-connected
if it remains connected after we remove any set of k − 1 vertices from the
graph. Of course, a cubic graph can be at most 3-connected, since removing
the three vertices adjacent to any vertex isolates it.

Among the aforementioned graphs, the dodecahedral graph is planar and
3-connected; the Petersen graph is nonplanar, 3-partite and 3-connected;
the Horton graph is nonplanar, bipartite and 3-connected. Out of 19 con-
nected 10-vertex cubic graphs in Figure 1.4, only the graph numbered 1 is
1-connected, as the removal of either vertex at the endpoints of the bridge dis-
connects the graph, and this graph is non-Hamiltonian. In fact, it was shown
almost a century ago that every 1-connected graph is non-Hamiltonian [72].
It is easy to verify that 1-connected graphs can be detected in polynomial
time.

A famous, long-standing and still open conjecture on Hamiltonicity of graphs
is the following conjecture, which relates Hamiltonicity to connectivity, reg-
ularity and planarity.

Conjecture 1.1. Barnette’s Conjecture [100]. Every 3-connected bipartite
cubic planar graph is Hamiltonian.

1.3 Co-spectral Graphs

A common way to represent a graph with N vertices is using an N ×N ad-
jacency matrix, of which the (i, j)th entry is 1 if edge (i, j) is present in the
graph and 0 otherwise. Two graphs are co-spectral if their adjacency matrices
share the same set of eigenvalues. In various texts, associated with a graph
eigenvalues could also be the Laplacian matrix or the normalised Laplacian
matrix of the graph (see Chapter 2 for precise definitions of these matrices).

Consider two graphs G and H, and let V (G) and V (H) be the sets of ver-
tices, and E(G) and E(H) be the sets of edges in G and H, respectively. For
brevity, we drop the dependency on graphs and simply write E and V when
no confusion can arise. The graphs G and H isomorphic if there exists a
bijection f : V (G) �→ V (H) such that for every edge (u, v) ∈ E(G), the edge
(f(u), f(v)) ∈ E(H). They are non-isomorphic otherwise. An automorphism
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of a graph G is an isomorphism of G with itself. Isomorphic graphs are co-
spectral. Cvetkovic [27] shows that there exist non-isomorphic graphs that
are co-spectral, and van Dam and Haemers [28] discuss the types of graphs
that are uniquely determined by their spectrum. More directly related to the
Hamiltonian cycle problem, Filar et al. [47] construct two 20-vertex cubic,
isomorphic and co-spectral graphs, one of which is Hamiltonian and the other
non-Hamiltonian.

This indicates that we cannot rely on the spectrum of a graph alone to deter-
mine whether the graph is Hamiltonian or not. However, the eigenvalues and
consequently the determinant of the adjacency matrix of a graph still contain
a lot of useful insights that could help us with determining Hamiltonicity. For
example, in an N -vertex Hamiltonian graph, it is well-known that the char-
acteristic polynomial of an adjacency matrix of a subgraph corresponding to
any Hamiltonian cycle on the graph is λN − 1. Moreover, Ejov et al. [32]
show that, for a given N -vertex Hamiltonian graph, any Hamiltonian cycle
is equivalent to a solution of the following system of polynomial equations:

xij(1− xij) = 0 for all (i, j) ∈ E,∑
j

xij − 1 = 0 for all i ∈ V,

∑
i

xij − 1 = 0 for all j ∈ V,

det(λI−X)− λN + 1 = 0,

where detA denotes the determinant of a matrix A, I is an N ×N identity
matrix, and X is the modified adjacency matrix , defined to be the adjacency
matrix with every non-zero (i, j)th entry replaced by the variable xij , for all
i, j ∈ V .

In Chapter 2, we discuss a few motivating numerical observations about
eigenvalues and determinants of subgraphs that lead to theoretical results
presented in the subsequent chapters.



Chapter 2

Intriguing Properties

2.1 Preliminaries and Notation

In this book, all graphs are connected and undirected, unless otherwise stated.
We follow the graph terminology and conventions from Harary [59], where the
reader can find an excellent introduction to graph theory. Consider a graph
G = (V (G), E(G)) = (V,E), where V is the set of vertices of G, |V | = N ,
and E is the set of edges of G. A graph with N vertices is said to be a graph
of order N . As the graph G is undirected, for every edge (i, j) ∈ E there
exists an opposite edge (j, i) ∈ E, where i �= j. A loop is an edge (i, i) joining
a vertex to itself. We do not consider multi-edges , which are distinct edges
that connect the same pair of vertices, and we use the terms edge and arc
interchangeably.

Subgraphs and Regularity Consider a graph G′, and let V (G′) be the
set of its vertices and E(G′) be the set of its edges. Then G′ is a subgraph
of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). A subgraph G′ is a spanning sub-
graph if V (G′) = V (G). From now on, the term subgraph refers to a spanning
subgraph, unless otherwise stated. A vertex j is a neighbour of i, or vertex j
is adjacent to i, if there exists an edge between them, that is, (i, j) ∈ E(G).
A vertex v has a degree d if it has d neighbours, and we write deg(v) = d. A
graph is k-regular if every vertex i ∈ V has the same degree k, and a cubic
graph is a 3-regular graph.

Walks, Paths and Cycles A walk is a sequence of vertices (v0, v1, . . . , vn)
where each edge (vi, vi+1) ∈ E for i = 0, . . . , n−1. A walk is said to be closed
if v0 = vn, and open otherwise. A walk is a path if all vertices in the sequence
are distinct, that is, vi �= vj for all i �= j. A path is a cycle if it is closed. The
length of a walk, a path or a cycle is the number of edges on the walk, the
path or the cycle, respectively. The girth of a graph is the length of a shortest
cycle on the graph, excluding cycles of length two. On the other hand, the

9
V. S. Borkar et al., Hamiltonian Cycle Problem and Markov Chains, 
International Series in Operations Research & Management Science 171, 
DOI 10.1007/978-1-4614-3232-6_2, © Springer Science+Business Media, LLC 2012
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circumference of a graph is the length of a longest cycle on the graph. The
circumference of a Hamiltonian graph of order N is N , as any Hamiltonian
cycle is a longest cycle of the graph.

Example 2.1 We give examples of an open walk (Figure 2.1), an open path
(Figure 2.2) and a cycle (Figure 2.3).

4

1 2

3

Fig. 2.1: An open walk (1, 2, 3, 4, 2, 1, 4)

4

1 2

3

Fig. 2.2: An open path (1, 3, 2, 4)

4

1 2

3

Fig. 2.3: A cycle (1, 3, 2, 4, 1)

Adjacency Matrices The adjacency matrix A = [aij ] of a graph G has
elements

aij =

{
1 for (i, j) ∈ E,

0 otherwise.
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The adjacency matrix of an undirected graph is always symmetric. Because
it is a one-to-one representation of a (labelled) graph, the adjacency matrix
is one of the most investigated matrices in graph theory. We can obtain much
interesting information about a given graph by studying its adjacency ma-
trix. For instance, the number of walks of length k from vertex i to vertex j
is the (i, j)th entry of the matrix Ak [28].

Laplacian Matrices Another well-studied matrix in graph theory is the
Laplacian matrix L = [�ij ] where

�ij =

⎧⎪⎨⎪⎩
deg(i) if i = j,

−1 if i �= j and (i, j) ∈ E,

0 otherwise.

(2.1)

The degree matrixD of G has diagonal elements dii = deg(i) for i = 1, . . . , N .
It is clear that

L = D−A. (2.2)

A normalised Laplacian matrix is defined as L̃ = [�̃ij ], where

�̃ij =

⎧⎪⎪⎨⎪⎪⎩
1 if i = j,
−1√

deg(i) deg(j)
if i �= j and (i, j) ∈ E,

0 otherwise.

(2.3)

Spectrum of a Graph The spectrum of a graph can refer to either the
set of eigenvalues of the adjacency matrix, or of the Laplacian matrix, or of
the normalised Laplacian matrix of the graph. For an excellent discussion of
normalised Laplacian matrices, we refer the interested reader to Chung [24].

2.2 Fractal-like Structure of Graphs

In this section, we present an intriguing self-similar structure that groups
cubic graphs according to the numbers of closed walks of various sizes in
each graph. The procedure of obtaining this self-similar structure is: for each
cubic graph G and its adjacency matrix A, we evaluate the sample mean
μ(A) and variance σ2(A) of the exponentials of all eigenvalues of 1

3A. As
the eigenvalues of the adjacency matrix of a cubic graph are real and belong
to the interval [−3, 3], the eigenvalues of 1

3A belong to the interval [−1, 1].
Thus, each cubic graph G corresponds to a point (μ(A), σ2(A)) in these
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mean-variance coordinates. We illustrate this procedure with the following
example.

Example 2.2 Consider the labelled Petersen graph.

Fig. 2.4: Labelled Petersen graph

1

2

34

5
6 7

89

10

Its adjacency matrix A is given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· 1 · · 1 · · · · 1
1 · 1 · · · 1 · · ·
· 1 · 1 · · · 1 · ·
· · 1 · 1 · · · 1 ·
1 · · 1 · 1 · · · ·
· · · · 1 · 1 1 · ·
· 1 · · · 1 · · 1 ·
· · 1 · · 1 · · · 1
· · · 1 · · 1 · · 1
1 · · · · · · 1 1 ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.4)

where ‘·’ denotes 0. The eigenvalues of 1/3A are 1,−2/3,−2/3,−2/3,−2/3,
1/3, 1/3, 1/3, 1/3, 1/3. Consequently,

μ(A) =
1

10
(e1 + 4e−2/3 + 5e1/3) = 1.1750, (2.5)

and

σ2(A) = 0.4376, (2.6)

and we obtain the point (0.1750, 0.4376) for the Petersen graph.

Continuing the procedure of obtaining the self-similar structure, we then
plot the mean-variance coordinates for all cubic graphs of the same order.
We identify a very interesting behavior for N taking values from 10 to 18.
For example, the structures for N = 14 and N = 16 appear as in, respec-
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tively, Figures 2.5 and 2.6.

1.17 1.175 1.18 1.185 1.19 1.195
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

μ(A,1/3)

σ
2 (A

,1
/3

)

Fig. 2.5: Mean-variance plot for cubic graphs of order 14

1.165 1.17 1.175 1.18 1.185 1.19 1.195 1.2
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

μ(A,1/3)

σ
2 (A

,1
/3

)

Fig. 2.6: Mean-variance plot for cubic graphs of order 16
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In these two figures, it is evident that the resulting scattergram in the mean-
variance coordinates consists of thread-like clusters with similar slopes of and
distances between consecutive clusters. Moreover, the value of variance at the
bottom of each segment is strictly increasing from left to right in the plot.
Ejov et al. [33] use the term multifilar to refer to this thread-like structure,
with each approximately linear cluster being called a filar . The authors make
an important observation that the overall structure is self-similar. In partic-
ular, zooming in on each of these filars shows us similar but smaller sub-filars
that are also made up of approximately straight and parallel segments, shifted
gradually from left to right. We illustrate this self-similarity in Figures 2.7
and 2.8, by showing plots of two successive enlargements of the first filar of
Figure 2.5.

1.172 1.173 1.174 1.175 1.176 1.177 1.178 1.179 1.18 1.181

0.43

0.44

0.45

0.46

0.47

0.48

μ(A,1/3)

σ
2 (A

,1
/3

)

Fig. 2.7: Zooming in on the first, from the left, filar in Figure 2.5—first level

Using a form of Ihara-Selberg trace formula derived in Mnev [80], Ejov et
al. [33] explain the filar memberships for each graph. In the overall clus-
tering, all graphs belonging to each filar have the same number of triangles
(cycles of length three) and these numbers strictly increase from the left most
filar to the right most, starting from zero. In the first level of zooming-in, all
graphs in a particular sub-filar have the same number of quadrangles (cycles
of length four) while the number of triangles over all these sub-filars is fixed.
This pattern repeats itself, with each higher level of zooming-in correspond-
ing to a larger cycle size.

Consider another frequently used matrix function in the spectral theory of
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1.174 1.1745 1.175 1.1755 1.176 1.1765 1.177 1.1775

0.435

0.44

0.445

0.45

0.455

μ(A,1/3)

σ
2 (A

,1
/3

)

Fig. 2.8: Zooming in on the first, from the left, filar in Figure 2.5—second level

linear operators: the resolvent of tA for t ∈ (0, 1/3). It appears that we can
reproduce the self-similar phenomenon described above in the mean-variance
coordinates with different slopes of and distances between segments [36]. In
Chapter 9, we use a modification of the Ihara-Selberg trace formula [80] to
justify the multifilar structure of the observed plots and to estimate the slopes
of and distances between filars, consistently with numerical evidence.

It is worth noting that in the aforementioned self-similar phenomenon, non-
Hamiltonian graphs seem to be separated in two groups. The first group
contains easy non-Hamiltonian graphs that seem to be located at the tops
of (the most zoomed in) sub-filars. We call a non-Hamiltonian graph easy if
it contains one or more bridges. A bridge is an edge the removal of which
disconnects the graph. A bridge graph is an easy non-Hamiltonian graph be-
cause these bridges, and consequently the bridge graphs, can be identified in
polynomial time [72] (in fact, in linear time in N). We call a non-Hamiltonian
graph that is not a bridge graph a hard non-Hamiltonian graph. In the self-
replicating structure, hard non-Hamiltonian graphs (the second group) seem
to be found at the bottom ends of (the most zoomed in) sub-filars. In these
sub-filars, the Hamiltonian graphs are strictly in between these two groups
of non-Hamiltonian graphs. To illustrate this observation, we plot the mean-
variance coordinates for the trace of the matrix resolvent, over the set of all
cubic graphs of order 14, in Figure 2.9, where dots represent Hamiltonian
graphs and crosses represent non-Hamiltonian graphs.
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1.0395 1.04 1.0405 1.041 1.0415 1.042 1.0425 1.043 1.0435 1.044
0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

μ(A,1/9)

σ
2 (A

,1
/9

)

Fig. 2.9: Mean-Variance plot for cubic graphs of order 14. Here, the dots represent
Hamiltonian graphs and crosses represent non-Hamiltonian graphs

We also include a zooming-in plot (see Figure 2.10) for more clarity. All
crosses that can be seen clearly in this plot are either at the top or the bot-
tom of their sub-filars.

In Chapter 9, we revisit this observation in more detail, and explore further
interesting properties that arise from it.

2.3 Invariants of Graphs

A graph invariant is a function that maps the set of graphs to some other
set, such as the set of natural numbers in such a way that certain “similar”
graphs are all mapped onto the same number. Informally, we can think of a
graph invariant as a numerical property associated with a graph that does
not depend on the graph labelling or drawing. Examples of graph invariants
include the number of vertices, the number of edges, the number of connected
components, the graph spectrum, and the chromatic number , which is the
minimum number of colours it requires to colour the vertices in a given graph
in such a way that no two connected vertices share the same colour.
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1.0398 1.04 1.0402 1.0404 1.0406 1.0408

0.044

0.0445

0.045

0.0455

0.046

0.0465

0.047

μ(A,1/9)

σ
2 (A

,1
/9

)

Fig. 2.10: Mean-Variance plot—zooming in. Here, the dots represent Hamiltonian
graphs and crosses represent non-Hamiltonian graphs

For each graph G of order N , we introduce a set F(G) of matrices on G,
where

F(G) =
{
P ∈ R

N×N
∣∣ pij = 0 if (i, j) �∈ E,

N∑
j=1

pij = 1,

pij ≥ 0 for all (i, j) ∈ E}. (2.7)

In Chapter 3, we show that these matrices have probabilistic interpretations.
For now, we refer to F(G) as the set of feasible matrices on G, and drop the
dependency on G when no confusion can arise. If pij is either 1 or 0 for all
i, j ∈ V , the matrix P is said to be deterministic. Every deterministic matrix
P ∈ F(G) corresponds to a spanning subgraph of G that has exactly one
edge coming out of each vertex.

For each P ∈ F , we define the matrix

W(P) = I−P+ 1/NJ, (2.8)

where I is the N × N identity matrix, and J is an N × N matrix of which
every entry is unity. Next, we note that the maximum value of the determi-
nant of W(P), over the set F , is a graph invariant. It is in fact equal to the
circumference of the graph, that is, the longest cycle of the graph. Conse-
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quently, solving the Hamiltonian cycle problem for a graph G is equivalent
to maximising the determinant of W(P) over the set F(G). In Chapter 5, we
prove the above property in a more general case, where 1/N is replaced by
any constant α ∈ R

+. In the same chapter, we also show that when we apply
a linear, singular perturbation to the determinant functional, Hamiltonian
cycles remain the maximisers over F .

Example 2.3 Consider a cubic graph G of order 6, which we call the enve-
lope graph (Figure 2.11). One of the only two 6-vertex cubic graphs, both of
which are Hamiltonian, the envelope graph has six Hamiltonian cycles.

3

2

65

4

1

Fig. 2.11: The envelope graph

Let H1 and H2 be the two Hamiltonian cycles on the envelope graph, depicted
in Figures 5.3 and 5.4, respectively.

3

2

65

4

1

Fig. 2.12: The Hamiltonian cycle H1

3

2

65

4

1

Fig. 2.13: The Hamiltonian cycle H2

The transition matrices P1 and P2 associated with the Hamiltonian cycles
H1 and H2, respectively, are

P1 =

⎡⎢⎢⎢⎢⎢⎢⎣
· 1 · · · ·
· · · · · 1
· · · 1 · ·
· · · · 1 ·
1 · · · · ·
· · 1 · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ and P2 =

⎡⎢⎢⎢⎢⎢⎢⎣
· 1 · · · ·
· · 1 · · ·
· · · · · 1
1 · · · · ·
· · · 1 · ·
· · · · 1 ·

⎤⎥⎥⎥⎥⎥⎥⎦ .



2.3 Invariants of Graphs 19

Simple calculations give us

det(I−P1 + 1/6J) = det(I−P2 + 1/6J) = 6.

Let T1 and T2 be two subgraphs of the envelope graph, depicted respectively
in Figures 2.14 and 2.15. Subgraph T1 has one cycle, which is of length 3.
Subgraph T2 has one cycle, which is of length 4.

3

2

65

4

1

Fig. 2.14: Subgraph T1 with one cycle

3
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65

4

1

Fig. 2.15: Subgraph T2 with one cycle

Because of their appearance, later on, we refer to subgraphs such as T1 and
T2 as noose cycles. The transition matrices P3 and P4 corresponding to
subgraphs T1 and T2, respectively, are

P3 =

⎡⎢⎢⎢⎢⎢⎢⎣
· 1 · · · ·
· · 1 · · ·
· · · · · 1
1 · · · · ·
· · · 1 · ·
· 1 · · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ and P4 =

⎡⎢⎢⎢⎢⎢⎢⎣
· 1 · · · ·
· · · · · 1
· · · 1 · ·
· · · · 1 ·
· · · · · 1
· · 1 · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ .

It is easy to check that

det(I−P3 + 1/6J) = 3,

and

det(I−P4 + 1/6J) = 4.

Let S1 and S2 be two subgraphs of the envelope, depicted in Figures 5.7 and
5.8. Each of subgraphs S1 and S2 has two disjoint cycles, both disjoint cycles
in S1 are of length 3, while one cycle in S2 is of length 4 and the other is of
length 2.
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3
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1

Fig. 2.16: Subgraph S1
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1

Fig. 2.17: Subgraph S2

The transition matrices P5 and P6 corresponding to subgraphs T1 and T2,
respectively, are

P5 =

⎡⎢⎢⎢⎢⎢⎢⎣
· · · 1 · ·
· · · · · 1
· 1 · · · ·
· · · · 1 ·
1 · · · · ·
· · 1 · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ and P6 =

⎡⎢⎢⎢⎢⎢⎢⎣
· 1 · · · ·
· · · · · 1
· · · 1 · ·
· · 1 · · ·
1 · · · · ·
· · · · 1 ·

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.9)

Again, it is easy to check that

det(I−PS1 + 1/6J) = det(I−PS2 + 1/6J) = 0. (2.10)

This example suggests that Hamiltonian cycles, indeed, yield the maximal
values of the determinant functional detW(P).

In Example 2.3, it is not coincidental that the determinant functional has a
value of 3 (or 4) at a subgraph containing a single cycle of length 3 (or 4), or
that the determinant functional is zero at subgraphs containing two disjoint
cycles. In Chapter 5, we prove that the determinant of W(P) is always k for
a deterministic matrix P that corresponds to a subgraph containing a single
cycle of length k. On the other hand, this determinant functional is always
zero for a deterministic matrix P that corresponds to a subgraph containing
two or more disjoint cycles.

In Chapter 3, we discuss the probabilistic interpretations of matrices P,
W(P), the inverse of the latter and other relevant matrices. These proba-
bilistic interpretations exhibit the connection between the theory of Markov
chains and the Hamiltonian cycle problem. Chapter 4 extends probabilistic
approaches to the Hamiltonian cycle problem to include Markov decision
processes. In Chapter 6, we use probabilistic arguments to prove that Hamil-
tonian cycles are minimisers of the trace functional of the inverse of a matrix
similar to W(P).



Part II

Probabilistic Approaches



Chapter 3

Markov Chains

3.1 Introduction

Probabilistic methods have long been applied to solve discrete mathematics
problems (see, for example, Erdős [39]–[40], and Alon and Spencer [3] for a re-
cent and comprehensive treatment on probabilistic methods). Similarly, con-
nections between Markov chains and graph theory have long been made (see
Harary [59]). Our contribution here is to apply properties of Markov chains
to the Hamiltonian cycle problem and to take advantage of the still emerging
theory of perturbed Markov chains in this context. In Section 3.2, we give a
brief introduction to Markov chains and various perturbations that we em-
ploy to obtain our results in this and subsequent chapters. More specifically,
in Section 3.3, we present results on how fundamental matrices of Markov
chains can be used to solve the Hamiltonian cycle problem, using their top-
left matrix elements. In Section 3.4, we show that Hamiltonian cycles can be
seen as variance minimisers of first hitting times and demonstrate a Hamilto-
nian gap that differentiates between the Hamiltonian and non-Hamiltonian
graphs. Sections 3.3 and 3.4 make greater use of probabilistic methods than
the remainder of this book. A reader unfamiliar with the latter could proceed
to Chapter 4 and beyond with only a minimal loss of continuity.

3.2 Markov Chains and Perturbations

A stochastic process is a collection of random variables Xt, t ≥ 0, which take
values from a set S called a state space. There are two types of stochas-
tic processes: continuous-time where t ∈ [0,∞), and discrete-time where
t ∈ {0, 1, 2, . . .}. In discrete-time case, each time point t is also called a stage.
A stochastic process is Markov if the knowledge of the past does not influence
the future, other than through the present. Mathematically, a stochastic pro-
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cess is Markov if, given t0 ≤ t1 ≤ · · · ≤ tn, the following equality is satisfied
for every set {Xtn ≤ xn}

P{Xtn ≤ xn|Xtn−1
, . . . , Xt1} = P{Xtn ≤ xn|Xtn−1

}, for all n ∈ N.

Such a stochastic process is a Markov chain if S is discrete, and a Markov
process otherwise. Significant applications of Markov chains and processes in-
clude those in geostatistics, stock market fluctuations, population processes,
modelling games of chance such as Monopoly and, most recently, internet
search engines including Google. Here, we are only concerned with finite
discrete-time Markov chains, where S = {1, 2, . . . , N} with N = |S| < ∞
and t ∈ {0, 1, . . .}. We recommend Kemeny and Snell [70] for an excellent
introduction to finite Markov chains.

In other words, a discrete-time stochastic process Xt is a Markov chain if,
given any s1, . . . , sn ∈ S and t0 ≤ t1 ≤ · · · ≤ tn, the following equality holds

P{Xtn = sn|Xtn−1
= sn−1, . . . , Xt1 = s1} = P{Xtn = sn|Xtn−1

= sn−1},

for all n ∈ N. The one-step transition probability

P t,t+1
ij = P{Xt+1 = j|Xt = i} (3.1)

is the probability that the system moves from state i at time t to state j at
time t+ 1. If this probability does not depend on t, that is, if for t �= t′,

P t,t+1
ij = P t′,t′+1

ij ,

then the Markov chain Xt is time-homogeneous, with stationary transition
probabilities Pij . Unless otherwise indicated, all Markov chains we deal with
in this book are time-homogeneous. The N×N one-step probability transition
matrix P has entries pij = Pij , where pij ≥ 0 and

∑
j∈S pij = 1. Similarly,

for i, j ∈ S and for t = 0, 1, 2, . . . , we define the n-step transition probability

P
(n)
ij = P{Xt+n = j|Xt = i}. (3.2)

This conditional probability does not depend on t as we assume that all
Markov chains considered are time-homogeneous. The N ×N n-step proba-

bility transition matrix P(n) has entries p
(n)
ij = P

(n)
ij . For m,n ≥ 0, the matrix

form of the Chapman-Kolmogorov equation is given by

P(n+m) = P(m)P(n). (3.3)

Following easily from the definitions above, (3.3) implies that the n-step prob-

ability transition matrix P(n) can be obtained by multiplying the one-step
transition matrix P by itself n times.
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Every probability transition matrix is a stochastic matrix , that is, a matrix
where the elements of each row are nonnegative and sum to 1. Consequently,
every stochastic matrix is a probability transition matrix of some Markov
chain. A doubly stochastic matrix is a stochastic matrix in which not only
every row but also every column has a sum of unity. A doubly stochastic
deterministic matrix is a doubly stochastic matrix every element of which is
either 1 or 0.

Types of Markov Chains Consider a discrete state space S, possibly
countably infinite. If it is not possible to leave some state i ∈ S, that is,
pii = 1, then state i is absorbing . After starting at state i, if every return to i
occurs in multiples of ni steps, then i has a period ni. Formally, we define
ni = gcd{t : P{Xt = i|X0 = i} > 0}, where gcd is the greatest common
divisor. A state i is aperiodic if ni = 1, and periodic with period ni if ni > 1.

If the probability of never returning to state i after starting at state i is
positive, then the state i is transient . Formally, P{Ti = ∞} > 0, where
Ti = inf{t ≥ 1 : Xt = i|X0 = i} is a random variable representing the first
time of returning to i, and is also known as the first return time of state i. A
state i that is not transient is said to be recurrent . For a recurrent state i, if
the expectation of the returning time Ti is finite, that is, E[Ti] < ∞, then the
state i is positive recurrent . Otherwise, it is null recurrent . A Markov chain
is absorbing if it has at least one absorbing state.

A Markov chain is irreducible if there is a path with positive probability
to go from any state to any other state. In an irreducible chain, if one state
is recurrent (respectively, positive recurrent or null recurrent) then all states
are likewise recurrent (respectively, positive recurrent or null recurrent). Fi-
nally, a Markov chain is ergodic (also known as regular) if it is irreducible and
every state is positive recurrent. For finite S, every recurrent state is positive
recurrent. In particular, all states of a finite state irreducible Markov chain
are positive recurrent.

Distribution Vectors A distribution vector ν is a row vector with non-
negative entries νi, the probability of the system being in state i. An initial

distribution vector ν(0) is a row vector with entries ν
(0)
i , the probability of

starting at state i. The distribution vector ν(n) with entries ν
(n)
i , the proba-

bility of being at state i after n steps, is given by

ν(n) = ν(0)Pn. (3.4)

Each of the vectors ν,ν(0), and ν(n) sums to 1.
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Stationary Distribution Matrix The stationary distribution matrix P∗ is
defined as follows

P∗ = lim
T→∞

1

T + 1

T∑
t=0

Pt. (3.5)

It is well-known (see Doob [29]) that the limit in (3.5) exists and P∗ is also
known as the Cesaro-limit matrix, as it is the long-run average of the powers
of P. Every stationary distribution matrix P∗ satisfies the following identity

P∗P = PP∗ = P∗P∗ = P∗. (3.6)

For ergodic (or regular) Markov chains, the following three properties hold.

(i) If the chain is aperiodic, the stationary distribution matrixP∗ is equivalent
to

P∗ = lim
t→∞Pt. (3.7)

(ii) Every row of P∗ is identical.
(iii) Define e = (1, . . . , 1)T ∈ RN and let every row of P∗ be the row-vector q.

Then, all entries of q are strictly positive and q is the unique solution to
the system of linear equations

qP = q
qe = 1.

(3.8)

In this case, the vector q is often called the stationary distribution vector
of the Markov chain.

Let J = eeT, an N ×N matrix of which every entry is unity. If P is doubly
stochastic and induces an irreducible Markov chain, then q = 1/NeT satisfies
the system of equations (3.8), and consequently,

P∗ = 1/NJ. (3.9)

In the context of this book, the Markov chains that we are interested in
always correspond to an arbitrary but fixed graph G of order N . Such a
graph defines a family of induced Markov chains that correspond to a family
of N×N probability transition matrices P such that the entries of the ith row
form a probability mass function on the edges of G emanating from vertex i
of the graph, for i = 1, 2, . . . , N .

Example 3.1 We consider a 5-vertex graph depicted in Figure 3.1, and two
Markov chains, each with the state space S = {1, 2, 3, 4, 5}.
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Fig. 3.1: A 5-vertex graph

In the first one, depicted in Figure 3.2, the system can travel from one state
to exactly one other state. For example, from state 1, the system can go only
to state 3. Therefore, the probability p13 of going from state 1 to state 3 is 1,
and p1i = 0 for all i �= 3, i ∈ S. Of course, the corresponding graph displayed
in Figure 3.2 is a spanning subgraph of the original graph from Figure 3.1.
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Fig. 3.2: An example of a finite discrete-time Markov chain with five states

The associated probability transition matrix P1 is given by

P1 =

⎡⎢⎢⎢⎢⎣
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·

⎤⎥⎥⎥⎥⎦ . (3.10)

In this Markov chain, it is possible to travel from every state to any other
state, hence it is irreducible. However, since every state has a period 5, the
Markov chain is not aperiodic. Let v = (1/4, 1/4, 0, 1/4, 1/4) be the initial
distribution vector, then the distribution vector after one step is

v(1) = vP1 = [1/4 1/4 1/4 1/4 0 ].
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After one step, the probabilities of the system being at states 1, 2, 3, 4 and 5
are 1/4, 1/4, 1/4, 1/4 and 0, respectively. The stationary distribution matrix
P∗

1 associated with this Markov chain is 1/5J.

In the second Markov chain, depicted in Figure 3.3, from state 1, the sys-
tem can travel to states 3 and 4, each with probability 1/2, and from state 5,
the system can travel to state 2 with probability 1/5 and to state 3 with prob-
ability 4/5. From any other state, the system can only travel to exactly one
other state.

1

2

3

5

4

Fig. 3.3: Another example of a finite discrete-time Markov chain with five states

The associated probability transition matrix P2 is given by

P2 =

⎡⎢⎢⎢⎢⎣
· · 1

2
1
2 ·

· · · 1 ·
· · · · 1
1 · · · ·
· 1

5
4
5 · ·

⎤⎥⎥⎥⎥⎦ . (3.11)

This Markov chain is irreducible and aperiodic. With the initial distribution
vector v = (1/4, 1/4, 0, 1/4, 1/4), the distribution vector after one step is

v(1) = vP2 = [1/4 1/20 13/40 3/8 0 ].

The stationary distribution matrix P∗
2 associated with this Markov chain is

P∗
2 = e(2/15, 1/15, 1/3, 2/15, 1/3).

For every Markov chain, the matrix I − P + P∗ is always invertible, and
its inverse is called the fundamental matrix . Let G(P) be the fundamental
matrix of a Markov chain specified by the probability transition matrix P,
then

G(P) = (I−P+P∗)−1. (3.12)
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Perturbations of Markov Chains We introduce two perturbations that
have been applied to Markov chains in our line of research:

1. Symmetric linear perturbation ([34; 38; 37]): For a perturbation parameter
ε ∈ [0, 1) and an N × N probability transition matrix P, the perturbed
matrix Pε is defined as

Pε = (1− ε)P+ ε/NJ. (3.13)

This symmetric linear perturbation ensures that the Markov chain specified
by Pε is always ergodic, while preserving double stochasticity whenever P is
doubly stochastic.

2. Asymmetric linear perturbation ([49; 51; 35]): For a perturbation parame-
ter ε ∈ [0, 1) and an N×N probability transition matrix P, the perturbed
matrix Pε is defined as

Pε = (1− ε)P+ ε

⎡⎢⎢⎢⎣
1 0 · · · 0
0 0 · · · 0
...
...

...
0 0 · · · 0

⎤⎥⎥⎥⎦P+ ε

⎡⎢⎢⎢⎣
0 0 · · · 0
1 0 · · · 0
...
...
. . .

...
1 0 · · · 0

⎤⎥⎥⎥⎦ . (3.14)

This asymmetric linear perturbation not only eliminates multiple ergodic
classes but also differentiates vertex 1—referred to as the home vertex from
Chapter 4 onwards—from other vertices. Additionally, it maintains roughly
the level of sparsity of the original probability transition matrix P.

Example 3.2 We revisit a Markov chain introduced in Example 3.1, with
the probability transition matrix P1 specified in (3.11)

P1 =

⎡⎢⎢⎢⎢⎣
· · 1 · ·
· · · 1 ·
· · · · 1
1 · · · ·
· 1 · · ·

⎤⎥⎥⎥⎥⎦ .

For ε ∈ (0, 1), applying the symmetric linear perturbation defined in (3.13),
we obtain

Pε =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρ 1− 4/5ε ρ ρ

ρ ρ ρ 1− 4/5ε ρ

ρ ρ ρ ρ 1− 4/5ε

1− 4/5ε ρ ρ ρ ρ

ρ 1− 4/5ε ρ ρ ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where ρ = 1/5ε. Applying the asymmetric linear perturbation defined in
(3.14) gives us

Pε =

⎡⎢⎢⎢⎢⎣
· · 1 · ·
ε · · 1− ε ·
ε · · · 1− ε
1 · · · ·
ε 1− ε · · ·

⎤⎥⎥⎥⎥⎦ .

3.3 Hitting Times and the Fundamental Matrix

In this section, we derive important relationships between entries of the fun-
damental matrix G(P) (associated with the Markov chain defined by the
transition matrix P) and the moments of the first hitting times, with respect
to a given initial distribution. Indeed, we focus on τ1, the random variable
denoting the first return time of the home state/vertex 1, given that Markov
chain starts at that vertex, and we denote by V ar[τ1] its variance. We show
that whenever P is doubly stochastic the first diagonal entry of G(P) has
the linear form a+ bV ar[τ1], where a and b depend only on N . Of course, if
we take vertex k as the home vertex, then the kth diagonal entry of G(P)
can be shown to have an analogous linear form a+ bV ar[τk].

The above is significant because, subsequently, we shall show that the Hamil-
tonian cycle problem is equivalent to an optimisation problem, the objective
of which is to minimise the top-left element of the fundamental matrix of the
Markov chain permissible on a given graph, over the space of Markov chains
on the graph that have doubly stochastic transition matrices. Therefore, the
HCP is also equivalent to the problem of minimising the variance of τ1 over
the space of doubly stochastic probability transition matrices P that can be
associated with the given graph.

We prove this equivalence by deriving the formulae for the entries of the
first column of the fundamental matrix. Consider w = (I−P+P∗)−1r, the
first column of G(P), where r = (1, 0, . . . , 0)T is an N -dimensional column
vector. Then, (I−P+P∗)w = r. Recall that for irreducible Markov chains,
every row of P∗ is identical to q, the stationary distribution vector of P.
Therefore, P∗w = (

∑
i qiwi) e and hence

w −Pw + (
∑
i

qiwi)e = r. (3.15)

We denote by Ei[τ1] the expectation of the first return time to vertex 1, start-
ing from vertex i, for i ∈ S. Before stating our results, we briefly introduce
some concepts and recall some well-known theorems.
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A σ-field F over a set Ω is a family of subsets of Ω such that it satisfies
the three conditions:

(i) Ω ∈ F ,
(ii) if Y ∈ F then Y c ∈ F , where Y c is the complement of Y ,
(iii) a countable union of sets in F is also in F .

A real random variable X is a measurable function on (Ω,F), that is, for all
intervals A ⊂ R, the set {ω ∈ Ω : X(ω) ∈ A} ∈ F . Let F1 ⊂ F2 ⊂ F3 ⊂ · · ·
be an increasing family of σ-fields. Then, a stochastic process {Xn} taking
values in R is said to be a martingale with respect to {Fn} if

(i) Xn is Fn-measurable for all n, and
(ii) E[|Xn|] < ∞ and E[Xn+1|Fn] = Xn for all n.

The family {Fn} is often understood from the context, Fn = σ(X1, . . . , Xn)
being a common choice. A random variable τ taking values in {0, 1, 2, . . . ,∞}
is a stopping time with respect to {Fn} if {τ ≤ n} ∈ Fn for all n. Equiva-
lently, {τ = n} ∈ Fn for all n. Intuitively, at each n, based on the “observed
history” at each n, one knows whether τ has occurred or not.

Let X0 = i and p(Xm−1, j) be the (Xm−1, j)th element of the matrix P.
We define

Mn =

n∑
m=1

{wXm −
∑
j

p(Xm−1, j)wj}, for n ≥ 1,

where wXm
is the Xmth entry of the vector w. Then, it is well-known (see

Borkar [16, Chapter 3]) that the sequence {Mn} is a martingale with respect
to the family of σ-fields Fn = σ(Xi, i ≤ n), that is, the σ-field generated
by the sets of the type {ω : Xi ∈ A} for i ≤ n and intervals A ⊂ R. The
following result, by Doob, can be found in Borkar [16, Chapter 3].

Theorem 3.1. Optional Sampling theorem. Let Xi be a martingale with
respect to {Fi} and η a bounded stopping time with respect to {Fi}. Then

E[Xη] = E[X1].

Now we are ready to state results concerning the elements of w, the first
column of the fundamental matrix G(P).

Theorem 3.2. The entries wi of the vector w are given by

w1 =
1

2

E1[τ1(τ1 + 1)]

E1[τ1]2
(3.16)

wj =
1

2

E1[τ1(τ1 + 1)]

E1[τ1]2
− Ej [τ1]

E1[τ1]
, for j �= 1. (3.17)
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Proof. By the Optional Sampling theorem, for i ∈ S and n ≥ 1,

Ei[Mτ1∧n] = Ei[

τ1∧n∑
m=1

(wXm −
∑
j

p(Xm−1, j)wj)] = 0,

where τ1 ∧ n = min{τ1, n}. Since 0 < Ei[τ1] < ∞, we take the limit as n
tends to ∞ and apply the dominated convergence theorem to obtain

Ei[

τ1∑
m=1

(wXm −
∑
j

p(Xm−1, j)wj)] = 0. (3.18)

Recall that X0 = i, and Xτ1 = 1. Then, for each i = 1, 2, . . . , n, the left-hand
side of (3.18) becomes

Ei[

τ1−1∑
m=0

(wXm+1
−

∑
j

p(Xm, j)wj)]

= Ei[

τ1−1∑
m=0

(wXm −
∑
j

p(Xm, j)wj) + wXτ1
− wX0 ]

= w1 + Ei[

τ1−1∑
m=0

(wXm
−

∑
j

p(Xm, j)wj)]− wi

= w1 − Ei[

τ1−1∑
m=0

(
∑
j

p(Xm, j)wj − wXm)]− wi.

Since the right-hand side of (3.18) is 0,

w1 − Ei[

τ1−1∑
m=0

(
∑
j

p(Xm, j)wj − wXm)]− wi = 0. (3.19)

Left-multiplying both sides of (3.15) by the limiting matrix P∗ yields

P∗{w −Pw + (
∑
i

qiwi)e} = P∗r. (3.20)

As P∗P = P∗, the left-hand side of (3.20) becomes

P∗w −P∗Pw +P∗(
∑
i

qiwi)e

= P∗w −P∗w +P∗(
∑
i

qiwi)e

= P∗(
∑
i

qiwi)e.
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Therefore, by (3.20), P∗(
∑

i qiwi)e = P∗r, and, consequently,
∑

i qiwi = q1.
Using this fact, the Xmth row of (3.15) is

wXm −
∑
j

p(Xm, j)wj + q1 = I{Xm = 1},

where I{Xm = 1} is 1 if Xm = 1 and 0 otherwise, as rXm
= 1 if Xm = 1 and

0 otherwise. Therefore,

wXm
−

∑
j

p(Xm, j)wj = I{Xm = 1} − q1,

and (3.19) becomes

w1 − Ei[

τ1−1∑
m=0

(wXm
− I{Xm = 1}+ q1 − wXm

)]− wi = 0

w1 + Ei[

τ1−1∑
m=0

(I{Xm = 1} − q1)]− wi = 0.

Rearranging the last equation yields

wi = w1 + Ei[

τ1−1∑
m=0

(I{Xm = 1} − q1)]. (3.21)

For all i �= 1, i ∈ S and m < τ1, Xm �= 1 as τ1 is the first hitting time of
vertex 1. Therefore, for i �= 1, i ∈ S, (3.21) is the same as

wi = w1 + Ei[

τ1−1∑
m=0

(−q1)]

= w1 + Ei[−q1τ1]

= w1 − q1Ei[τ1]. (3.22)

For i = 1, I{X0 = 1} = 1, and (3.21) reduces to w1 = w1 since

w1 = w1 + E1[

τ1−1∑
m=0

(−q1) + 1]

= w1 + Ei[−q1τ1] + 1

= w1 − q1E1[τ1] + 1

= w1, (3.23)

the second last equality comes from the fact that q1E1 [τ1] = 1, by Borkar [16,
Theorem 5.3.2]. As

∑
i qiwi = q1, we multiply both sides of (3.22) by qi, and
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sum over all i �= 1 to obtain∑
i �=1

wiqi = w1

∑
i �=1

qi − q1
∑
i �=1

qiEi[τ1]∑
i

wiqi − w1q1 = w1

∑
i �=1

qi − q1
∑
i �=1

qiEi[τ1]

q1 = w1

∑
i

qi − q1
∑
i �=1

qiEi[τ1]

= w1 − q1
∑
i �=1

qiEi[τ1], (3.24)

with the last equality obtained by the property of the stationary distribution
vector q (see (3.8)). As q1E1[τ1] = 1, q1 = E1[τ ]

−1, and (3.24) becomes

q1 = w1 − q1
∑
i

qiEi[τ1] + q1q1E1[τ1]

= w1 − q1
∑
i

qiEi[τ1] + q1.

Consequently,

w1 = q1
∑
i

qiEi[τ1]. (3.25)

By [16, Theorem 5.3.4], equation (3.25) is equivalent to

w1 = q1
E1[

∑τ1−1
m=0 EXm

[τ1]]

E1[τ1]

= E[τ1]
−1E1[

∑τ1−1
m=0 EXm

[τ1]]

E1[τ1]

=
E1[

∑τ1−1
m=0 EXm

[τ1]]

E1[τ1]2

=
E1[

∑τ1−1
m=0(τ1 −m)]

E1[τ1]2

=
1

2

E1[τ1(τ1 + 1)]

E1[τ1]2
,

with the last equation obtained by using the occupational measure identity
in Pitman [85, p.74]. Hence, we complete the proof for (3.16).

From (3.16) and (3.22), for i �= 1, we obtain

wi = w1 − q1Ei[τ1]
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=
1

2

E1[τ1(τ1 + 1)]

E1[τ1]2
− E1[τ1]

−1Ei[τ1]

=
1

2

E1[τ1(τ1 + 1)]

E1[τ1]2
− Ei[τ1]

E1[τ1]
,

which completes the proof for (3.17). �

The following theorem gives analytic expressions for w1, the top-left element
of the fundamental matrix G(P) for doubly stochastic matrices P. In effect,
it shows that this element can be regarded as an objective function

w1 = w1(P) = a+ bV ar[τ1|P].

In the next section, the associated optimisation problem will be discussed in
much more detail.

Theorem 3.3. For a given doubly stochastic P, we have

w1 =
1

N2

∑
i

Ei[τ1] =
(N + 1)

2N
+

1

2N2
E1[(τ1 −N)2]. (3.26)

Moreover, if P is associated with a Hamiltonian cycle and we apply the sym-
metric linear perturbation defined in (3.13), then w1 simplifies to

wε
1 =

1

2

(N + 1)

N
+O(ε). (3.27)

Proof. Recall that for a doubly stochastic probability transition matrix P,
the stationary distribution vector q of P is 1/NeT, so qi = 1/N for all i.
Since q1 = E1[τ1]

−1, we have E1[τ1] = N . By (3.25),

w1 = q1
∑
i

qiEi[τ1] = 1/N2
∑
i

Ei[τ1].

In addition, by (3.16),

w1 =
E1[τ1(τ1 + 1)]

2(E1[τ1])2

=
E1[τ

2
1 ] + E1[τ1]

2(E1[τ1])2

=
E1[(τ1 − E1[τ1])

2] + E1[τ1]
2 + E1[τ1]

2(E1[τ1])2

=
E1[τ1]

2 + E1[τ1]

2(E1[τ1])2
+

E1[(τ1 − E1[τ1])
2]

2(E1[τ1])2

=
N + 1

2N
+

E1[(τ1 −N)2]

2N2
.
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For the second part of Theorem 3.3, we need to show that E[(τ1−N)2] = O(ε).
The probability that the system travels using at least one weak transition,
that is, an edge with probability ε, inN steps is at mostN(N−1)ε. Therefore,
P{τ1 �= N} ≤ N(N − 1)ε. Also, for the inequality τ1 > kN to hold for k ≥ 1,
the system must travel using at least one weak transition in each block of N
consecutive steps. Consequently, P{τ1 > kN} ≤ [N(N − 1)ε]k. This leads to

E[(τ1 −N)2] =
∑
j≥1

j2P{|τ1 −N | = j}

=
∑
j≥1

j2P{τ1 = N − j}+
∑
j≥1

j2P{τ1 = N + j}

≤ N2
∑
j≥1

P{τ1 = N − j}+
∑
j≥1

j2P{τ1 = N + j}

≤ N2P{τ1 �= N}+
∑
j≥1

j2P{τ1 = N + j}

≤ N3(N − 1)ε+
∑
j≥1

j2P{τ1 = j +N}

≤ N3(N − 1)ε+
∑
k≥1

[(k + 1)N ]2P{τ1 > kN}

≤ N3(N − 1)ε+
∑
k≥1

[(k + 1)N ]2[N(N − 1)ε]k

≤ O(ε).

This completes the proof. �

3.4 Hamiltonian Cycles as Hitting Time Variance
Minimisers

Consider a given graph G with N vertices and recall that every unperturbed
probability transition matrix P induced by G has the property that pij = 0
whenever edge (i, j) is not present in the graph. All unperturbed probabil-
ity transition matrices considered in this section are assumed to be induced
by G. It is clear that if P is the probability transition matrix induced by
a Hamiltonian cycle, then starting from the home vertex 1, the correspond-
ing Markov chain will return to it after exactly N transitions, implying that
V ar[τ1|P] = 0. Furthermore, since in such a case the symmetric linear pertur-
bation defined in (3.13) does not alter the ergodic structure of this chain, it
is reasonable to expect that V ar[τ1|Pε] tends to 0 as ε approaches 0. Hence,
in view of Theorem 3.3, it is also reasonable to conjecture that probability
transition matrices Pε

H induced by Hamiltonian cycles achieve the minimum
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in the optimisation problem

minV ar[τ1|Pε],

over the space of doubly stochastic probability transition matrices Pε induced
by the given graph G, provided that ε > 0 is sufficiently small. Equivalently,
we conjecture that probability transition matrices Pε

H induced by Hamilto-
nian cycles achieve the minimum in the optimisation problem

minwε
1(P

ε),

over the same space of doubly stochastic probability transition matrices, pro-
vided that ε > 0 is sufficiently small. This section is devoted to proving these
conjectures and to establishing the existence of the Hamiltonicity gap prop-
erty, which demonstrates that the optimal values of these two objective func-
tions can be used to distinguish between Hamiltonian and non-Hamiltonian
graphs, without actually requiring that a Hamiltonian cycle be found.

We denote by Pε the probability transition matrix obtained from P after
we apply the symmetric linear perturbation defined in (3.13), by Dd the fi-
nite set of perturbed doubly stochastic deterministic matrices, and by D the
convex set of perturbed doubly stochastic matrices obtained by taking the
closed convex hull of Dd. We also write Dd as the disjoint union DH ∪ Ds,
where DH represents the set of Hamiltonian cycles and Ds the set of disjoint
unions of short cycles that cover the graph. All sets Dd,D,DH and Ds depend
on the perturbation parameter ε, which we suppress. Likewise, we suppress
the dependence of aforementioned objective functions on Pε, except where
ambiguity might arise.

Lemma 3.1. For Pε ∈ Ds, the top-left entry wε
1 of the fundamental matrix

G(Pε) tends to infinity as ε approaches 0.

Proof. Let i ∈ S lie in a short cycle of P not containing vertex 1. Then, a
chain starting at i must make an ε−transition before ever hitting 1. Thus, if
ζ denotes the first time it makes an ε−transition, then

Ei[τ1] ≥ Ei[ζ]

=
∑
m≥1

m(N − 1)ε{1− (N − 1)ε}m−1

= 1/{(N − 1)ε}.

The claim follows from (3.26). �

We say that P ∈ D is a perturbation of Hamiltonian cycle if there exists a
P̂ ∈ DH such that ||P − P̂|| = Cε0 for prescribed C, ε0 > 0. Let Dp denote
the set of such matrices P.
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Theorem 3.4. For sufficiently small ε > 0, all minima of wε
1 on D are

attained on Dp.

The proof uses the following lemma. We use the notation θ(1) to denote any
function g(ε) satisfying lim infε↓0 g(ε) > 0 and lim supε↓0 g(ε) < ∞.

Lemma 3.2. For P ∈ D \ Dp,

wε
1 ≥ 1

2

(N + 1)

N
+ θ(1).

Proof. By (3.26)

wε
1 =

1

2

N + 1

N
+

1

2N2
E1[(τ1 −N)2].

Thus, it suffices to prove that for P ∈ D \ Dp,

E1[(τ1 −N)2] = θ(1),

which it indeed will be if the weighted digraph of P contains a short (that is,
non-Hamiltonian) cycle containing 1 which has a probability θ(1). Now, P is
a finite convex combination of elements of De, with either

(i) weight θ(1) for at least one P̂ ∈ Ds, or
(ii) weights θ(1) for at least two distinct P′,P′′ ∈ DH.

It is easy to see that if (i) and (ii) were false, P would be in Dp. In case of (i), it
is clear that P has a short cycle containing 1 which has a probability θ(1). In
case of (ii), let P put the θ(1) weights on P1,P2 ∈ DH, corresponding to two
Hamiltonian cycles 1 → x1 → x2 → · · · → xN−1 → 1 and 1 → y1 → y2 →
· · · → yN−1 → 1 respectively. Let i = min{j > 1 : xj �= yj}. Then, xi = yk
for some k > i. Hence, 1 → · · · → xi → yk+1 → · · · → ys−1 → 1 defines
a short cycle that contains 1 and has a probability θ(1). This completes the
proof. �

Proof of Theorem 3.4. Since wε is the unique solution to the well-posed linear
system given by (3.15), it depends smoothly on the coefficients thereof by
Cramer’s rule, hence on ε. From Theorem 3.3, it then follows that

wε
1 = (N + 1)/(2N) +O(ε)

for P ∈ Dp. The claim now follows from Lemma 3.2. �

Directional derivatives Before showing that the minima of wε
1 on D are

attained at doubly stochastic matrices induced by Hamiltonian cycles, we
need to present some results on directional derivatives. We now derive an
expression for the directional derivative of our objective function wε

1.
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Let P0 and P1 denote two doubly stochastic matrices in D and for 0 ≤ λ ≤ 1,
define Pλ = λP1 + (1 − λ)P0. Correspondingly, define κλ(i) = Ei[τ1] for
i ∈ S, where the dependence of the distribution of τ1 on the parameter λ is
implicit. Also, let P̃0, P̃1 and P̃λ denote sub-matrices derived, respectively,
from P0,P1, and Pλ by deletion of their first row and column. Similarly, for
vectors, we use tilde to denote truncations resulting from the omission of the
first entry, for instance, κ̃λ = (κλ(2), . . . , κλ(N))T, ẽ = (1, . . . , 1)T ∈ RN−1.

By Borkar [15, Lemma 1.3], we know that κ̃λ is the unique solution to

κ̃λ = ẽ+ P̃λκ̃λ, (3.28)

that is,

κ̃λ = (I− P̃λ)
−1ẽ. (3.29)

We denote by {Xn} the Markov chain governed by Pλ, and by pij the ele-
ments of Pλ.

Lemma 3.3. Let νλ(i) = E[
∑τ1

m=1 I{Xm = i}] when the initial distribution
is the uniform distribution. Then, ν̃T

λ = (νλ(2), . . . , νλ(N)) is the unique
solution to

ν̃T

λ = 1/N ẽT + ν̃T

λP̃λ = 1/N ẽT(I− P̃λ)
−1. (3.30)

Proof. We define ζ1 = min{n ≥ 0 : Xn = 1} (= ∞ if this set is empty), and

νjλ(i) = Ej [
∑ζ1

m=0 I{Xm = i}]. Then, for j �= 1, ζ1 = τ1, and

νjλ(i) = Ej [

ζ1∑
m=0

I{Xm = i}] = Ej [

τ1∑
m=0

I{Xm = i}].

Consider i, j �= 1. We note that for n ≥ 1,Mn =
∑n

m=1(I{Xm = i}−pXm−1,i)
is a martingale. By the Optional Sampling theorem (stated in Theorem 3.1)
and for T ≥ 1,

Ej [

τ1∧T∑
m=1

(I{Xm = i} − pXm−1,i)] = 0 (3.31)

Letting T ↑ ∞ and using the easily established fact that E[τ21 ] < ∞, which
implies uniform integrability of the sum above as T varies, we have

Ej [

τ1∑
m=1

(I{Xm = i} − pXm−1,i)] = 0.
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Thus,

νjλ(i) = Ej [

τ1∑
m=0

I{Xm = i}]

= δij + Ej [

τ1∑
m=1

I{Xm = i}]

= δij + Ej [

τ1∑
m=1

pXm−1,i]

= δij + Ej [

τ1−1∑
m=0

pXm,i]

= δij + Ej [

τ1−1∑
m=0

∑
k �=1

pkiI{Xm = k}]

since Xm �= 1 for m < τ1,

= δij + Ej [
∑
k �=1

τ1−1∑
m=0

pkiI{Xm = k}]

= δij +
∑
k �=1

Ej [

τ1∑
m=0

I{Xm = k}]pki,

since Xτ1 = 1 �= k. Thus,

νjλ(i) = δij +
∑
k �=1

νjλ(k)pki. (3.32)

Since ν1λ(i) = 0 for i �= 1, we also have

ν1λ(i) = δi1 +
∑
k �=1

ν1λ(k)pki = 0.

Multiplying both sides of (3.32) by 1/N and summing over j, we obtain

N∑
j=1

1/Nνjλ(i) = 1/N + 1/N
∑
j

∑
k �=1

νjλ(k)pki.

This proves the claim. �

Let J(λ) denote our objective as a function of λ, that is, wε
1, evaluated along

the line segment {Pλ : 0 ≤ λ ≤ 1}. From (3.26), we have
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J(λ) = 1/N2
N∑
i=1

κλ(i). (3.33)

Differentiating with respect to λ on both sides yields

J ′(λ) = 1/N2
N∑
i=1

κ′
λ(i) = 1/N2

N∑
i=2

κ′
λ(i), (3.34)

because κλ(1) = E1[τ1] = N for all λ ∈ [0, 1] and, consequently, κ′
λ(1) = 0

for all λ ∈ [0, 1]. From (3.28) and the definition of P̃λ, we have

κ̃′
λ = (P̃1 − P̃0)κ̃λ + P̃λκ̃

′
λ.

Therefore,

κ̃′
λ = (I− P̃λ)

−1(P̃1 − P̃0)κ̃λ,

and, together with (3.29) and (3.30), this leads to

J ′(λ) =
1

N2
ẽT(I− P̃λ)

−1(P̃1 − P̃0)κ̃λ

=
1

N
ν̃T

λ(P̃1 − P̃0)κ̃λ

=
1

N2
ẽT(I− P̃λ)

−1(P̃1 − P̃0)(I− P̃λ)
−1ẽ. (3.35)

Though the following, purely technical, lemma is a straightforward applica-
tion of the Cauchy-Schwartz inequality, we include its proof for the sake of
completeness.

Lemma 3.4. If xm = m for 1 ≤ m ≤ N, and {yk} is a permutation of
{xj}, then

∑
i xiyi is maximised when yi = xi for all i, and minimised when

yi = N + 1− xi for all i.

Proof. The maximisation claim is immediate from the Cauchy-Schwartz in-
equality. For the permutation {zi = N + 1− yi} of {xj}, we have∑

i

xizi ≤
∑
i

x2
i ,

with equality if and only if xi = zi for all i. Hence,∑
i

xiyi =
∑
i

xi(N + 1− zi) ≥
∑
i

xi(N + 1− xi),
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with equality if and only if yi = N + 1− xi for all i. Thus, the minimisation
claim also follows. �

We now consider J ′(0) in the situations where the doubly stochastic matrix
P0 ∈ DH is induced by a deterministic transition matrix tracing out a Hamil-
tonian cycle. We first show that J ′(0) > 0 on a straight line path from P0

towards any doubly stochastic P1 induced by the graph. This shows that
deterministic transition matrices inducing Hamiltonian cycles correspond
to local minima. Suppose then that P0 corresponds to a Hamiltonian cy-
cle H0. Without loss of generality, we assume H0 is the Hamiltonian cycle
1 → 2 → · · · → N → 1. To start with, we consider P1 ∈ DH ∪Ds, other than
P0. That is, P1 is induced by any deterministic matrix that traces out in the
graph either a union of disjoint cycles or a Hamiltonian cycle other than H0.
For each i ∈ S and i �= 1, we denote by m(i) the number of steps required to
reach vertex 1 from i on H0 if ε = 0. Then,

κ0(i) = Ei[τ1] = m(i) +O(ε)

= (N − i+ 1) +O(ε). (3.36)

To verify that the suppressed ε−dependence above is, indeed, only of order
O(ε), note that by (3.13) we can write P̃0 = P̃0(ε) = P̃0(0)− εK̃0, for some
fixed matrix K̃0. Now, it follows from (3.29) that (3.36) is simply the ith
equation in the system

κ̃0 = (I− P̃0(ε))
−11̃ = (I− P̃0(0) + εK̃0)

−11̃. (3.37)

It is easy to check that I − P̃0(0) is invertible and hence that the above
equation corresponds to a regularly (rather than a singularly) perturbed sys-
tem. By well-known results from perturbation theory of linear operators (see
Langenhop [73] and Avrachenkov et al. [6]), it follows that

κ̃0 = (I− P̃0(0))
−11̃+O(ε).

Also,

Ej [

τ1∑
�=0

I{X� = i}] =
{
1 +O(ε) for j = 1, 2, . . . , i− 1,

O(ε) for j = i, . . . , N.
(3.38)

Equation (3.38) can be proved by arguments analogous to those used for
proving (3.36). Hence, for i = 2, . . . , N,

ν0(i) = 1/N
∑

1≤j<i

Ej [

τ1∑
�=1

I{X� = i}] +O(ε)

= (i− 1)/N +O(ε).
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Thus, by (3.28),

ν̃T

0 P̃0κ̃0 =

N−1∑
i=2

ν0(i)κ0(i+ 1)

= 1/N{1(N − 2) + 2(N − 3) + · · · (N − 2)1}+O(ε)

= 1/N

N−1∑
r=1

r{(N − 1)− r}+O(ε)

= (N − 1)2/2− 1/N

N−1∑
r=1

r2 +O(ε).

Now, suppose that P1 is induced by either a Hamiltonian cycle distinct from
H0 or a deterministic matrix that traces out a union of disjoint cycles in
the graph. Hence, for every ith row there is a unique jith column such that
[P1]i,ji = 1 and ji �= jk, for i �= k. Thus,

ν̃T

0 P̃1κ̃0 =

N∑
i=2

ν0(i)κ0(ji)

= 1/N

N∑
i=2

(i− 1)(N − ji + 1) +O(ε)

= 1/N

N−1∑
r=1

r{(N − 1)− (jr+1 − 2)}+O(ε)

= (N − 1)/N

N−1∑
r=1

r − 1/N

N−1∑
r=1

ryr +O(ε)

= (N − 1)2/2− 1/N
N−1∑
r=1

ryr +O(ε),

where r = i− 1, yr = (jr+1 − 2) and yr ∈ {0, 1, 2, . . . , (N − 2)} with yr �= yk
whenever r �= k. If yr were allowed to take values only in the set {1, 2, . . . , N−
1}, then by Lemma 3.4 we would have that

N−1∑
r=1

r2 >

N−1∑
r=1

ryr, (3.39)

whenever (y1, . . . , yN−1) �= (1, . . . , N − 1). However, the inclusion of zero as
one of the possible values for yr can only lower the right-hand side of (3.39).
Hence, we have proved that, whenever P̃1 ∈ DH ∪ Ds and P̃1 �= P̃0,

ν̃T

0 P̃1κ̃0 − ν̃T

0 P̃0κ̃0 > 0.
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Now consider an arbitrary doubly stochastic P1 other than P0. By Birkhoff-
von Neumann theorem (Bapat and Raghavan [9]),

P1 =

M∑
i=1

γiP
†
i , (3.40)

where γi ≥ 0 for all i,
∑

i γi = 1, P†
i ∈ DH ∪ Ds correspond to permutation

matrices and M ≥ 1 is the number of permutation matrices induced by the
graph. For at least one value of i in the summation (3.40), P†

i �= P0 and
γi > 0. Then, by the preceding strict inequalities and the second equality
of (3.35) we have that

J ′(0) = 1/N(ν̃T

0 P̃1κ̃0 − ν̃T

0 P̃0κ̃0)

= 1/N
∑
i

γi(ν̃
T

0 P̃
†
i κ̃0 − ν̃T

0 P̃0κ̃0) > 0.

The following main result now follows rather easily.

Theorem 3.5. If P0 is induced by a Hamiltonian cycle, then,

(i) P0 is a strict local minimum for the cost functional wε
1, and

(ii) P0 is also a global minimum for the cost functional wε
1.

Proof. Part (i) was proved above for P0 corresponding to the Hamiltonian
cycle H0: it is sufficient to observe that for a strict local minimum, the quan-
tity

ν0P̃1κ0 − ν0P̃0κ0

remains strictly bounded away from zero as ε approaches 0 for all extremal
P1 �= P0. The effect of considering another Hamiltonian cycle would be only
to permute the order of the terms in various summations, without changing
the conclusions.

To obtain Part (ii), first note that the above allows us to choose an η0 > 0
such that P0 is the strict local minimum of wε

1 in the η0−neighborhood of P0.
As in the proof of Theorem 3.4, choose ε > 0 small enough so that the global
minimum of wε

1 is attained on the η0−neighborhood of P0. Small enough
here is quantified by an upper bound that depends only on N and η0 (see
Borkar et al. [17]). The claim follows. �

Recall from Theorem 3.3 that for a doubly stochastic matrix P ∈ D, the func-
tional consisting of the top-left element of the fundamental matrix induced
by P is given by

wε
1 =

N + 1

2N
+

1

2N2
E1[(τ1 −N)2]. (3.41)
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We suppressed the dependence on P on the right-hand side of (3.41), but
the expectation term is a function of P, since P determines the distribution
of τ1. It should now be clear that a consequence of Theorems 3.3 and 3.5 is
that whenever the underlying graph G is Hamiltonian, the minimum of the
above functional over P ∈ D is given by

wε
1(PH) = min

P∈D
wε

1(P) = (N + 1)/(2N) +O(ε), (3.42)

where PH ∈ DH is a probability transition matrix defining any Hamiltonian
cycle in the graph.

Hamiltonicity Gap: A lower bound for the non-Hamiltonian case

In this section, we prove that for positive and sufficiently small ε, there exists
Δ(N) > 0 such that whenever the graph G is non-Hamiltonian

{ min
P∈Dε

wε
1(P)} − wε

1(PH) ≥ Δ(N)−O(ε).

We name the quantity Δ(N) the Hamiltonicity gap of order N because it
distinguishes all non-Hamiltonian graphs with N vertices from all Hamilto-
nian graphs with the same number of vertices.

Before presenting the proof, we note that such a result is reasonable when we
consider the possible variability of τ1—as captured by its variance E1[(τ1 −
N)2]—for both Hamiltonian and non-Hamiltonian graphs. In the former case,
it is clear that this variance can be made nearly zero by following a Hamil-
tonian cycle because the latter would yield a variance actually equal to zero
were it not for the (small) perturbation ε. However, if the graph is non-
Hamiltonian, perhaps we cannot avail ourselves of such a variance annihi-
lating transition matrix. This intuitive reasoning is made rigorous in the
remainder of this section.

The key step in what follows is the derivation of an upper bound on
P{τ1 = N |P}, the probability that the system returns to vertex 1 in N
steps, under an arbitrary doubly stochastic matrix P in a non-Hamiltonian
graph.

Lemma 3.5. Suppose that G is a non-Hamiltonian graph, and let P be an
arbitrary doubly stochastic transition matrix feasible on G.

(i) If ε = 0, then P{τ1 = N |P} ≤ 1/4.

(ii) If ε > 0 and small, then P{τ1 = N |P} ≤ 1/4 +O(ε).

Proof. First, consider the case ε = 0. Let P be an arbitrary doubly stochastic
matrix and let {Xt}∞0 be the Markov chain induced by P and the starting
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state 1. Let γ1 = (X0, X1, . . . , XN ) be a path of N steps through the graph
and let χ1 = {γ1|X0 = XN = 1, Xk �= 1, k = 1, . . . , N −1}. That is, the event
that the first return to 1 occurs after N steps is {τ1 = N}, which is simply
the event that γ1 traces a path within χ1 and hence

P{τ1 = N |P} =
∑

γ1∈χ1

pγ1
,

where pγ1 denotes the probability (under P) of observing the path γ1. How-
ever, because the graph is assumed to be non-Hamiltonian, all the paths in χ1

that receive a positive probability have the structure

γ1 = γ′
1 ∪ γ̄1,

where γ′
1 consists of a non-self-intersecting “reduced path” from 1 to itself

of length m ≤ N − 2 adjoined at some vertex (or vertices) other than 1 by
one or more loops of total length N − m, that together constitute γ̄1. One
can think of γ′

1 ∪ γ̄1 as the first and second parts of a figure comprising of a
basic loop with one or more side-lobes attached to it, each of which is either
a loop or a connected union of loops. The simplest instance of this is a figure
of eight, with two loops of length m and N −m respectively, attached at a
vertex other than 1.

Let pγ1
denote the probability of the original path and p′γ1

that of the re-
duced path. Let q = pγ1

/p′γ1
≤ 1, which is the contribution to p coming from

the loops comprising γ̄1. More generally, define γ0 = γ′
1, γ1 = γ′

1 ∪ γ̄1, γ2 =
γ′
1 ∪ γ̄1 ∪ γ̄1, γ3 = γ′

1 ∪ γ̄1 ∪ γ̄1 ∪ γ̄1, . . . . For n ≥ 2, the paths γn from 1 to
itself that begin with the same reduced path γ′

1 but may repeat exactly the
path γ̄1 for n ≥ 2 times, all contribute to the event {τ1 �= N}, as does γ0 = γ′

1.

The paths γn, for n ≥ 2, have probabilities pγ1q
n−1. The total probabil-

ity that these paths and γ0 = γ′
1 (but excluding the original γ1) contribute

to {τ1 �= N} is

pγ1
/q +

∑
n≥2

pγ1
qn−1 = pγ1

{1/q + q/(1− q)}

= pγ1
{−1 + 1/(q(1− q))}

≥ 3pγ1
.

It follows that

P{τ1 �= N |P} ≥
∑

γ1∈χ1

3pγ1
= 3P{τ1 = N |P}.
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Hence,

1 = P{τ1 < ∞|P}
= P{τ1 = N |P}+ P{τ1 �= N |P}
≥ 4P{τ1 = N |P},

implying P{τ1 = N |P} ≤ 1/4, or, P{τ1 �= N |P} ≥ 3/4.

Returning to the case when ε > 0 and sufficiently small, we note that in the
Markov chain induced by P there are now two types of transitions: strong
transitions that correspond to P assigning a positive probability to edges
that are actually in the graph and weak transitions that are strictly the re-
sult of our perturbation. The latter are of order ε. Thus, the only impact that
the perturbation makes on the argument presented above is to introduce an
adjustment of order ε. This completes the proof. �

Theorem 3.6. Consider a non-Hamiltonian graph G of order N , and define
Δ(N) = 3/(8N2).

(i) For any P, E1[(τ1 −N)2] ≥ 3/4−O(ε).

(ii) The following lower bound holds:

{ min
P∈Dε

wε
1(P)} − wε

1(PH) ≥ Δ(N)−O(ε).

Proof. Let P be an arbitrary doubly stochastic matrix and E1[(τ1 − N)2]
be the corresponding variance of the first return time to vertex 1, starting
from 1. Clearly,

E1[(τ1 −N)2] =
∑
k≥1

(k −N)2P{τ1 = k|P}

≥
∑

k≥1, k �=N

P{τ1 = k|P}

= P{τ1 �= N |P}.

Hence by Part (ii) of Lemma 3.5, we have obtained Part (i), namely

E1[(τ1 −N)2] ≥ 3/4−O(ε). (3.43)

It now follows from (3.41) that

wε
1 ≥ N + 1

2N
+

1

2N2
(3/4−O(ε)) =

N + 1

2N
+Δ(N)−O(ε). (3.44)

Part (ii) now follows immediately from (3.44) and (3.42). �
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In summary, in this chapter, we considered spaces of probability transition
matrices of Markov chains induced by a given graph G and certain associ-
ated random variables such as first return times to given vertices. We showed
that, in a prescribed sense, the variances of the latter are minimised pre-
cisely at those Markov chains that are induced by Hamiltonian cycles of
the graph whenever it possesses such cycles. Furthermore, we showed that
the perturbed variance functional differentiates between all Hamiltonian and
non-Hamiltonian graphs of a given order, by means of the size of the gap be-
tween minimal values of that functional over the space of doubly stochastic
probability transition matrices induced by G. This suggests that stochastic—
perhaps even statistical—methods could be brought to bear on this essentially
deterministic, combinatorial, problem.



Chapter 4

Markov Decision Processes

4.1 Introduction

Markov chains are useful in describing many discrete event stochastic pro-
cesses; however, they are not flexible enough to model situations where we
have to make decisions to control the future trajectories of the system. For
this reason, the theory of Markov decision processes (MDPs), also known as
controlled Markov chains, has been developed. In particular, in the context
of this book, we observe that in any given graph Hamiltonian cycles (if any)
correspond to a family of spanning subgraphs inducing special Markov chains
whose probability transition matrices are a subset of permutation matrices
possessing only a single ergodic class. However, the family of all probabil-
ity transition matrices naturally induced by the same graph constitutes a
much richer, convex, domain. Markov decision processes provide a well de-
veloped body of techniques for searching both this domain and associated,
also convex, domains of occupational measures induced by stationary policies
of MDPs. In this chapter we explore the structure of one of these domains
in more detail and identify characteristics of its extreme points that lend
themselves to algorithmic developments described in subsequent chapters.

4.2 Markov Decision Processes

A Markov decision process is similar to a Markov chain, except that the tran-
sition probabilities—the probabilities of the process going from one state to
another within the state space—depend on the actions taken by a controller .
At each step of transition, we receive a certain value or reward . The objective
then is to find an optimal policy that specifies a sequence of deterministic or
randomised actions in order to maximise the reward obtained. The theory of
MDPs is useful in modelling certain real-life tasks involving planning under
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uncertainty, such as scheduling, robotics and financial decision making (see
Puterman [87] for an excellent introduction to MDPs).

Action Spaces In an MDP, in addition to the state space S, we have a
set of action spaces. For each i ∈ S, an action space A(i) is a finite set of
actions that the controller may choose in state i. We assume that A(i) �= ∅
for all i ∈ S. The total action space A then is defined as the union of all A(i),
that is,

A =

N⋃
i=1

A(i). (4.1)

Probability Transition Law It is assumed that the stationary transition
probabilities p(j|i, a) are known and satisfy∑

j∈S
p(j|i, a) = 1, a ∈ A(i), i ∈ S. (4.2)

The p(j|i, a)’s denote the probabilities of the system moving from state i to
state j, given that action a ∈ A(i) is selected in state i, independently of
when the latter state is visited. These probabilities form an essential part of
the data defining a Markov decision process.

Policies and Reward Functions As from each i ∈ S there is one or more
states to which the system can move, a selection of a policy f determines
which state(s) it will visit and with what probability.

If the probability of a policy choosing a particular action a does not depend
on time t or any previous state or action, other than through the current
state, then we have stationary transition probability. Let At be the action
chosen at time t. A policy is stationary if all decisions are only dependent
on the current state i, and not the time t1, that is, for a ∈ A(i), i ∈ S and
t = 0, 1, 2, . . . ,

P{At = a|Xt = i} = f(i, a) for some f :
⋃
i∈S

{i} × A(i) → [0, 1].

It is important to note that each stationary policy f uniquely defines a
Markov chain. Let FS be the set of all stationary policies in an MDP. A
policy f ∈ FS is deterministic if at each state i ∈ S, it chooses exactly one
a ∈ A(i). In this case, f(i, a) ∈ {0, 1} for all i ∈ S, a ∈ A(i). We denote by
FD the set of all deterministic policies in an MDP, FD ⊂ FS . On the other

1 In Markov decision processes, it is customary to also consider more general policies
that may depend on histories of the process. However, in our application of MDPs to
the HCP, only stationary policies will be needed.
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hand, a policy is randomised if for at least one state i ∈ S, it chooses two or
more a ∈ A(i). In both cases, f(i, a) ∈ [0, 1] and for every i ∈ S,∑

a∈A(i)

f(i, a) = 1. (4.3)

Every MDP also has a reward function r(i, a), which determines the re-
ward given to the policy for choosing a ∈ A(i) at state i. We define
r(f) = (r1(f), . . . , rN (f))T, where ri(f) =

∑
a∈A(i) r(i, a)f(i, a).

Probability Transition Matrix Associated with every f ∈ FS , we de-
fine a matrix P(f) = [pij ] where, for i, j = 1, . . . , N ,

pij = P (j|i,f) =
∑

a∈A(i)

p(j|i, a)f(i, a). (4.4)

The matrix P(f) is the probability transition matrix of the Markov chain
induced by f . Similarly to (3.5), define the stationary distribution matrix
P∗(f) as follows

P∗(f) = lim
T→∞

1

T + 1

T∑
t=0

Pt(f). (4.5)

Fundamental Matrix For every Markov chain, the matrix I−P(f)+P∗(f)
is always invertible, and its inverse is called the fundamental matrix. LetG(f)
be the fundamental matrix of a controlled Markov chain induced by f , namely

G(f) = {I−P(f) +P∗(f)}−1. (4.6)

Typically, we are interested in finding one or more policies f that is optimal
according to a suitable criterion, over a specified time horizon.

Evaluation of Rewards Let Rt be the reward for the period [t, t + 1).
For randomised policies, we have an expected reward

Eif [Rt] = Ef [Rt|S0 = i]

= [Pt(f)r(f)]i, for t = 0, 1, 2, . . . (4.7)

which is dependent on the selected policy f and the initial state S0. There
are three standard ways of evaluating this sequence of expected rewards:

1. We consider finite horizon situations, where there are a finite number of
steps, and we are able to evaluate the total expected reward.

2. We calculate the average of the accumulated rewards, over a finite time
horizon, and let the length of that horizon tend to infinity. This procedure
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defines the limiting average reward .

3. We consider a discounted model , where each successive reward is further
discounted by a multiplier lying between 0 and 1, so that earlier rewards
carry more weight than the later ones. This multiplier is called a discount
factor .

We briefly describe the last two options.

Limiting Average Process For a stationary policy f , with the initial dis-
tribution vector ν = eT

i , where eT
i = (0, . . . , 1, . . . , 0) with 1 being at the ith

position, the limiting average value is defined as

v(eT

i ,f) = lim
T→∞

1

T + 1

T∑
t=0

Eif [Rt]. (4.8)

Consequently, we have the limiting average value vector of f

v(f) = (v(eT

1 ,f), v(e
T

2 ,f), . . . , v(e
T

N ,f))T.

We say that v(f1) ≥ v(f2) if v(eT
i ,f1) ≥ v(eT

i ,f2) for every i ∈ S. The
objective of our optimisation problem is to find an optimal control f0 such
that v(f0) is maximum, that is,

v(f0) = max
f

v(f).

From (4.7) and (4.8), it now follows that

v(f) = lim
T→∞

1

T + 1

T∑
t=0

Pt(f)r(f)

= { lim
t→∞Pt(f)}r(f)

= P∗(f)r(f). (4.9)

A limiting average Markov decision process is a model that employs the above
limiting average value vector as a criterion for evaluating performance of dif-
ferent policies.

Discounted Model For a stationary policy f with the initial distribution
vector v = eT

i , the discounted value is defined as

vβ(e
T

i ,f) =

∞∑
t=0

βtEif [Rt],
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where β ∈ (0, 1) is the discount factor. Consequently, from (4.7), we have the
discounted value vector of f

vβ(f) = (vβ(e
T

1 ,f), vβ(e
T

2 ,f), . . . , vβ(e
T

N ,f))T

=
∞∑
t=0

βtPt(f)r(f)

= [I− βP(f)]−1r(f), (4.10)

where P0(f) is the N ×N identity matrix, and the last equality employs a
well-known result that the matrix I−βP(f) is invertible for every stationary
policy f . Furthermore, with the initial distribution vector ν(0) = eT

i , the
discounted value is

vβ(e
T

i ,f) = {[I− βP(f)]−1r(f)}i. (4.11)

We say vβ(f1) ≥ vβ(f2) if vβ(e
T
i ,f1) ≥ vβ(e

T
i ,f2) for every i ∈ S. The

objective of our optimisation problem, similar to that of the limiting average
process, is to find an optimal control f0 such that vβ(f

0) is maximum, that
is,

vβ(f
0) = max

f
vβ(f).

For both of these models, there exists a deterministic policy that gives the
optimal value for the associated objective function [12].

Embedding of a graph in a Markov decision process Begining with a
given graph G = (V (G), E(G)), we embed this graph in a Markov decision
process by setting the state space S = V (G), the set of vertices of G. The
action set A(i) = {j ∈ S|(i, j) ∈ E(G)} is the set of vertices that can be
reached from i ∈ S in one step in the graph G. It will also be useful to intro-
duce B(i) = {j ∈ S|(j, i) ∈ E(G)}, the set of vertices from which the system
can travel to i in one step in the graph G. The probability transition law of
the Markov decision process is defined by

p(j|i, a) =
{
1 if a ∈ A(i) and j = a,

0 otherwise,
(4.12)

for all a ∈ A(i) and i, j ∈ S. Note that (4.12) is very natural because it
merely states that the system will travel from i to j if and only if, at i, the
decision maker chooses an edge that has j as the other vertex.

We specify the reward vector r(f) formally as an N -dimensional column
vector, the ith element of which is the immediate expected reward for being
at vertex i ∈ S. As any Hamiltonian cycle visits every vertex exactly once
before returning to the beginning, it is important to identify where the sys-
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tem starts and when it revisits that vertex. While we need to know whether
the system originates at a single vertex, the label of the vertex is unimpor-
tant because of symmetry. For these reasons, we always start the system at
vertex 1, which we call the home vertex ; hence, the default N -dimensional
initial distribution vector is ν(0) = eT

1 = (1, 0, . . . , 0). Using ν(0), we decom-
pose the set of all deterministic policies feasible for a given graph into three
exhaustive and mutually exclusive subsets:

• noose cycles—non-Hamiltonian deterministic policies for which the home
vertex 1 is transient

1
· · ·

Fig. 4.1: A noose cycle

• short cycles—non-Hamiltonian deterministic policies for which the home
vertex 1 is recurrent

1
· · ·

Fig. 4.2: A short cycle.

• Hamiltonian cycles.

1

Fig. 4.3: A Hamiltonian cycle

By this classification, in a noose cycle, the home vertex is not a part of any
cycle, and in a short cycle, it is part of a cycle that has a length less than N .
In other words, after starting at the home vertex, the first vertex a short
cycle revisits is the home vertex itself, whereas the first vertex a noose cycle
revisits is not the home vertex. In fact, a noose cycle can never return to 1
after leaving it.

For every policy f , let r(f) = r = (1, 0, . . . , 0)T to distinguish the home
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vertex from any other vertex. Additionally, the discounted model assists us
in recognising when the system revisits the home vertex at the time t, as the
reward received at the tth step is assigned an unique coefficient βt, or 0 if
the vertex visited at that step is not the home vertex.

Example 4.1 Consider the 4-vertex complete graph, depicted in Figure 4.4.

4

1 2

3

Fig. 4.4: The 4-vertex complete graph

The policy fH : {1, 2, 3, 4} → {2, 3, 4, 1} is a Hamiltonian policy on the graph.
By our definitions, the deterministic policies f2 : {1, 2, 3, 4} → {2, 1, 4, 3} and
f3 : {1, 2, 3, 4} → {2, 3, 4, 3} are a short cycle and a noose cycle, respectively.
We define the randomised policy f4 = 1/2f2+1/2f3, which takes determin-
istic actions at vertices 1, 3 and 4, and randomised actions at vertex 2. The
probability transition matrices associated with these policies are

P(fH) =

⎡⎢⎢⎣
· 1 · ·
· · 1 ·
· · · 1
1 · · ·

⎤⎥⎥⎦ , P(f2) =

⎡⎢⎢⎣
· 1 · ·
1 · · ·
· · · 1
· · 1 ·

⎤⎥⎥⎦ ,

P(f3) =

⎡⎢⎢⎣
· 1 · ·
· · 1 ·
· · · 1
· · 1 ·

⎤⎥⎥⎦ , P(f4) =

⎡⎢⎢⎣
· 1 · ·

1/2 · 1/2 ·
· · · 1
· · 1 ·

⎤⎥⎥⎦ ,

By (4.11), for β = 0.9 the discounted rewards generated by fH,f2, f3 and
f4, respectively, are

vβ(e
T

1 ,fH) = {eT

1 [I− βP(fH)]
−1}1 ≈ 2.91,

vβ(e
T

1 ,f2) = {eT

1 [I− βP(f2)]
−1}1 ≈ 5.26,

vβ(e
T

1 ,f3) = {eT

1 [I− βP(f3)]
−1}1 ≈ 1,

vβ(e
T

1 ,f4) = {eT

1 [I− βP(f4)]
−1}1 ≈ 1.68.
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These values indicate that the usual objective function of maximising (or
minimising) the reward (or cost) in a discounted MDP need not be optimal
at Hamiltonian cycles.

4.3 Occupational Measures

In this section, we derive some characteristic properties of Hamiltonian poli-
cies. These arise in the context of the discounted MDP into which a given
graph G has been embedded as in Section 4.2. The occupation measure space,
Xβ = {x(f)|f ∈ FS} (induced by stationary policies) consists of vectors x(f)
entries of which are occupation measures of the state-action pairs (i, a) ∈ A(i)
defined by

xia(f) = {ν[(I− βP(f))−1]}ifia, (4.13)

where ν = (ν1, . . . , νN ) denotes an arbitrary initial state distribution.

In what follows, we consider a specially structured initial distribution. Namely,
for μ ∈ (0, 1/N) we define

νi =

{
1− (N − 1)μ if i = 1,

μ otherwise.
(4.14)

The occupation measure of the state i is defined as the aggregate

xi(f) =
∑

a∈A(i)

xia(f) =
{
ν[I− βP(f)]−1

}
i
, (4.15)

where the second last equality follows from the fact that
∑

a∈A(i) fia = 1. In
particular,

x1(f) =
∑

a∈A(1)

x1a(f) =
{
ν[I− βP(f)]−1

}
1
= vβ(ν,f), (4.16)

where vβ(ν,f) =
∑

i ν(i)vβ(ei,f) and r = (1, 0, . . . , 0)T. Note that xia(f) =
[vβ(ν,f)]if(i, a). The construction of x in (4.13) defines a map M of the
policy space FS into R|A| by

M(f) = x(f).

It is well-known (see Hordijk and Kallenberg [65] and Filar and Vrieze [52])
that for ν > 0, the map M is invertible and its inverse M−1 is defined by

M−1(x)(i, a) = fx(i, a) = xia/xi. (4.17)
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It is also known that, in this case, extreme points of Xβ are in one-to-one
correspondence with deterministic policies of FD. However, this important
property is lost when entries of ν are permitted to take on zero values.

Connection with Polytopes and Linear Programs

There is an important, nowadays standard, conversion of a discounted MDP
to a linear program (e.g., see Hordijk and Kallenberg [65]). However, in the
case of an MDP arising from our embedding of the given graph G, Proposi-
tion 4.1 suggests that Hamiltonian cycles can be sought among the extreme
points of the following subset of the occupation measure space Xβ that is
defined by the linear constraints

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a))xia = νj , j ∈ S, (4.18)

∑
a∈A(1)

x1a =
(1− (N − 1)μ)(1− β) + μ(β − βN )

(1− β)(1− βN )
,

(4.19)

xia ≥ 0, i ∈ S, a ∈ A(i). (4.20)

Proposition 4.1. Let β ∈ [0, 1) and μ ∈ [0, 1/N). Suppose that f ∈ FS is
Hamiltonian. The following two properties hold:

(i) If the initial state distribution ν is given by

νi =

{
1− (N − 1)μ if i = 1,

μ otherwise,
(4.21)

then

vβ(ν,f) =
(1− (N − 1)μ)(1− β) + μ(β − βN )

(1− β)(1− βN )
. (4.22)

(ii) If f ∈ FD and vβ(ν,f) is given by (4.22), then f is a Hamiltonian policy.

Proof. For μ = 0, Part (i) is established in Feinberg [44]. For μ ∈ (0, 1/N),
this part is merely an extension of the case when μ = 0. Part (ii) follows by
the same argument for the analogous result in [44]. �
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4.4 Extreme Points and 1-randomised Policies

In this section, we examine policies induced by extreme points of the feasible
polytope of Xβ . Our main aim of this section is to demonstrate that these
policies are either Hamiltonian cycles or 1-randomised policies satisfying a
certain special property. A policy is said to be 1-randomised if it is determin-
istic at all vertices except one i ∈ S, and that vertex i is called a splitting
vertex [46].

To ensure that the map M is always invertible and still distinguishes the
home vertex 1 from all other vertices in S, we define components of the
initial distribution ν(0) by (4.14), for μ ∈ (0, 1/(N − 1)). Thus, we have a
probability of 1− (N − 1)μ of starting at the home vertex 1 and of μ to start
at each of the other vertices.

Remark 4.1. By choosing μ ∈ (0, 1/(N − 1)), we ensure that ν0 is a proper
distribution vector, where ν0i ∈ (0, 1) for all i ∈ S. For μ ∈ (0, 1/N) (or
μ ∈ (1/N, 1/(N − 1))), we have a higher (or lower) probability of starting
at the home vertex than at each of other vertices, respectively. Only when
μ = 1/N do we have an equal probability of starting from anywhere.

Proposition 4.2. Consider a Hamiltonian graph G of order N , β ∈ (0, 1),
and r = (1, 0, . . . , 0)T. Then, for every μ ∈ (0, μ0) ⊆ (0, 1/(N − 1)) and
with an initial distribution vector ν(0) defined as in (4.14), the following two
statements hold:

(i) For any Hamiltonian policy fH ∈ FS ,

vβ(ν
(0),fH) =

(1− (N − 1)μ)(1− β) + μ(β − βN )

(1− β)(1− βN )
. (4.23)

(ii) If a deterministic policy f ∈ FD satisfies (4.23), then it is Hamiltonian.

Proof. (i) Without loss of generality, let fH ∈ FS trace out the standard
Hamiltonian cycle 1 → 2 → · · · → N → 1. Recall that with the constant
reward function r = (1, 0, . . . , 0)T, in a discounted MDP we receive a contri-
bution of βn for being at the home vertex at the nth step and 0 otherwise.
If we start at the home vertex, we will return to it at every (nN)th step, for
n ∈ N. If we start at any other vertex i �= 1 ∈ S, we will return to the home
vertex at (nN − (i− 1))th step, for n ∈ N. Therefore,

vβ(ν
(0),fH)

= {1− (N − 1)μ}
(
1 + βN + β2N + · · ·

)
+ μ

(
βN−1 + β2N−1 + β3N−1 + · · ·

)
+ μ

(
βN−2 + β2N−2 + β3N−2 + · · ·

)
+ · · ·+ μ

(
β + βN+1 + β2N+1 + · · ·

)
=

{1− (N − 1)μ}(1− β) + μ(β − βN )

(1− β)(1− βN )
.
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(ii) If f does not correspond to a Hamiltonian cycle, then it corresponds to
either a noose cycle or a short cycle. A calculation similar to that in the proof
of Part (i) shows that for a noose cycle,

vβ(ν
(0),f) = 1− (N − 1)μ, (4.24)

which is strictly less than vβ(ν
(0),fH). For a short cycle of length k < N ,

one similarly obtains

vβ(ν
(0),f) =

{1− (N − 1)μ}(1− β) + μ(β − βk)

(1− β)(1− βk)
, (4.25)

which is strictly larger than vβ(ν
(0),fH). The somewhat tedious details of

the derivation of (4.24) and (4.25) can be found in Nguyen [81]. This proves
the claim. �

By Proposition 4.2, we can define a subset X̃β of the discounted frequency
space Xβ characterised as the set of feasible solutions of the following system
of linear constraints:

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a))xia = νi, for all i ∈ S, (4.26)

∑
a∈A(1)

x1a =
(1− (N − 1)μ)(1− β) + μ(β − βN )

(1− β)(1− βN )
, (4.27)

xia ≥ 0, for all i ∈ S, a ∈ A(i). (4.28)

Formally,

X̃β = {x|x satisfies constraints (4.26)–(4.28)}, (4.29)

the extreme points of which include Hamiltonian cycles on G. It is well-known
(see Ross [93]) that every extreme point x ∈ Xβ has exactly N positive en-
tries and xia > 0 for only one value of a for every i ∈ S. This implies that
using the inverse map M−1, f(x) is a deterministic policy. As we introduce

the additional constraint (4.27), an extreme point x of X̃β has N or N + 1
positive entries; if the latter is true, then xia > 0 for two values of a for some
i ∈ S.

Consequently, using M−1, f(x) is either a deterministic policy and therefore,
by Proposition 4.2, is Hamiltonian, or it is a 1-randomised policy. Naturally,
as these 1-randomised policies prevent us from employing a feasibility of X̃β

to solve the HCP, it is important to understand their structures. Let fα be

a 1-randomised policy induced by an extreme point x of X̃β , where randomi-
sation occurs at exactly one splitting vertex i ∈ S, over two actions that
are chosen with probability α and 1− α for α ∈ (0, 1). Such a 1-randomised
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policy can always be decomposed into two deterministic policies f1 and f2

such that

fα = αf1 + (1− α)f2. (4.30)

Note that f1 and f2 share the same actions at all vertices except the splitting
vertex.

Remark 4.2. This raises an interesting, still open, question about the cardi-
nality of the set of extreme points of X̃β induced by 1-randomised policies.

Theorem 4.1. Consider a Hamiltonian graph G of order N , β ∈ (0, 1), and
r = (1, 0, . . . , 0)T. For every μ ∈ (0, μ0) ⊆ (0, 1/(N − 1)) and with an initial

distribution vector ν(0) defined as in (4.14), let an extreme point x of X̃β

induce a 1-randomised policy fα via the inverse map M−1, α ∈ (0, 1), and
f1 and f2 be two deterministic policies satisfying fα = αf1 + (1 − α)f2.
Then, the policies f1 and f2 cannot both be short cycles or noose cycles.

Proof. The proof of this theorem follows immediately from that of Part (ii)
of Proposition (4.2). �

Theorem 4.2. Let x be an extreme point of X̃β. Then, there exists a unique
α ∈ (0, 1) such that x = x(fα) where fα = αf1 + (1− α)f2, with the policy
f1 corresponding to a short cycle, the policy f2 corresponding to a noose
cycle, and f1 and f2 coinciding at all vertices except at the splitting vertex i.
In particular, α is given by (4.33), below.

Proof. Let x = {xia} and y = {yia} be two discounted occupation measures
corresponding to the discount factor β and initial distribution vector ν(0).
We define xi =

∑
a∈A(i) xia and yi =

∑
a∈A(i) yia, for i ∈ S. Applying the

inverse map defined as in (4.17), we have

fx(i, a) = xia/xi and fy(i, a) = yia/yi.

Let γ ∈ [0, 1] and define z = γx+ (1− γ)y. Then, since

xi = ν
(0)
i + β

∑
j

xjap(i|j, a),

yi = ν
(0)
i + β

∑
j

yjap(i|j, a),

we also have

zi = ν
(0)
i + β

∑
j

zjap(i|j, a),

that is, z is a discounted occupation measure as well. If x and y correspond
to deterministic policies such that z is an optimal randomisation, that is, z
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is an extreme point of X̃β , then we have an explicit expression for

z1 = γx1 + (1− γ)y1. (4.31)

given by (4.16) and (4.23). On the other hand, since one of x,y—say, x—
corresponds to a short cycle, we have an explicit expression for x1, given by
(4.25). The same is true for y1, the expression of which is given by (4.24) as y
corresponds to a noose cycle. Hence, (4.31) gives an explicit expression for γ.
Furthermore, by defining zi =

∑
a∈A(i) zia and considering the (i, a)th entry

of z divided by zia, we obtain

fz(i, a) = zia/zi

= γxia/zi + (1− γ)yia/zi

= { γxi

γxi + (1− γ)yi
}fx(i, a) + { (1− γ)yi

γxi + (1− γ)yi
}fy(i, a), (4.32)

as z = γx+ (1− γ)y. From (4.32),

α =
γxi

γxi + (1− γ)yi
, (4.33)

which can thus be explicitly calculated since γ is already known. �

4.5 A Parameter-Free Model

Corresponding to each given graph G, we can construct a discounted MDP.
It is well known that each discounted MDP is associated with the following
system of linear equations

xf (β)
T{I− βP(f)} = ν, (4.34)

where xf (β) is a vector with components xi(f) defined by (4.15), and ν is
the initial distribution. Equivalently,

N∑
i=1

xi(δij − βpij) = νj , for j ∈ S. (4.35)

Furthermore, by assuming xf (β) > 0, component-wise, and defining xia =
xif(i, a), we can rewrite the left hand side of (4.35) as below

N∑
i=1

xi(δij − βpij) =

N∑
i=1

xi

∑
a∈A(i)

(δij − βp(j|i, a))f(i, a)
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=

N∑
i=1

xi

∑
a∈A(i)

(δij − βp(j|i, a))xia/xi

=

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a)xia

=
∑

a∈A(j)

xja − β
∑

b∈B(j)

xbj ,

where the last equality is derived from (4.12). Thus, (4.35) is simplified to∑
a∈A(j)

xja − β
∑

b∈B(j)

xbj = νj , for j ∈ S. (4.36)

Next, we recognise that constraints (4.36) could be analogously derived for N
distinct, degenerate initial distributions ν = eT

k , k = 1, 2, . . . , N , where ek
is a column vector with 1 in the kth entry and 0 elsewhere. Furthermore, it
will be convenient to multiply all the constraints in (4.36) by a normalising
factor of 1− βN and make a change of variables by setting

xk
ja = (1− β)xja, for a ∈ A(j), j ∈ S,

where k indicates that the initial state distribution is eT

k . Hence, con-
straints (4.36) now take the form∑

a∈A(j)

xk
ja − β

∑
b∈B(j)

xk
bj = (1− β)Nδjk, for j ∈ S, (4.37)

where δkj is the Kronecker delta. It should be noted that there now might
be feasible non-negative solutions of (4.37) such that

xk
j =

∑
a∈A(j)

xk
ja = 0,

for some, but not all, j ∈ S. Nonetheless, from each non-negative solu-
tion of (4.37) we may construct a vector xk(β) = (xk

1 , . . . , x
k
N ), where

xk
j =

∑
a∈A(j) x

k
ja. Then, it is still possible to associate a stationary pol-

icy fxk defined, in the spirit of (4.17), by

fxk(j, a) =

{
xk
ja/x

k
j if xk

j > 0,

arbitrary otherwise.

Now, the policy fxk still induces a Markov chain with the probability transi-
tion matrix P(fxk) (see (4.4)). It is straightforward to verify that in matrix
notation, (4.37) become
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[xk(β)]T(I− βP) = (1− βN )eT

k , k ∈ S. (4.38)

If xk has exactly N positive entries that are in one-to-one correspondence
with a Hamiltonian cycle, then P is Hamiltonian (an irreducible permutation
matrix), PN = I the identity matrix and it follows that

(I− βP)−1 =
1

1− βN
{I+ βP+ · · ·+ βN−1PN−1}. (4.39)

Consequently, (4.38) and (4.39) imply that

xk(β)T = (1− βN )eT

k(I− βP)−1

= eT

kI+ βeT

kP+ β2eT

kP
2 + · · ·+ βN−1eT

kP
N−1. (4.40)

Define a new vector xk
r = eT

kP
r for r = 0, 1, . . . , N−1. Clearly, all components

of vector xk
r are equal to 0 except for one that is equal to 1. This unique

element identifies the rth vertex visited on a Hamiltonian cycle starting from
vertex k. Hence, we can rewrite xk(β) in terms of vectors xk

r as follows

xk(β) = xk
0 + βxk

1 + β2xk
2 + · · ·+ βN−1xk

N−1. (4.41)

Replacing xk(β) with the right-hand side of (4.41) in (4.38), we obtain

(xk
0 + βxk

1 + β2xk
2 + · · ·+ βN−1xk

N−1)
T(I− βP) = (1− βN )eT

k

for k ∈ S. Equivalently,

xk
0 + β(xk

1 −PTxk
0) + β2(xk

2 −PTxk
1) + · · ·

+βN−1(xk
N−1 −PTxk

N−2)− βNPTxk
N−1 = ek − βNek. (4.42)

Now, by equating coefficients of powers of β in both sides of the latter equa-
tion, we obtain the following set of linear constraints that are free of the
parameter β:

xk
0 = ek, (4.43)

xk
r −PTxk

r−1 = 0, for r ∈ S\{1, N}, (4.44)

PTxk
N−1 = ek. (4.45)

Analogous to the way that we derived (4.36), we can expand (4.43)–(4.45) as
follows ∑

a∈A(i)

xk
0,ia = δki, for i, k ∈ S, (4.46)

∑
a∈A(i)

xk
r,ia −

∑
b∈B(i)

xk
r−1,bi = 0, for i, k ∈ S, r ∈ S\{N}, (4.47)
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b∈B(i)

xk
N−1,bi = δki, for i, k ∈ S. (4.48)

Based on the way we defined vectors xk
r , we now have an interesting inter-

pretation for components xk
r,ia. In particular,

xk
r,ia = {eT

kP
r(fxk)ei}fxk(i, a),

the probability that starting from k, state/vertex i is visited on the rth step
and action a ∈ A(i) is selected. More precisely, if these vectors indeed came
from a Hamiltonian transition matrix P, then we may demand that xk

r,ia

be equal to 1 if edge (i, a) is visited at the rth step of a Hamiltonian cycle
starting from vertex k and otherwise equal to 0.

However, due to complexity associated with the introduction of 0–1 variables,
we can relax them to vary between 0 and 1 and try to establish new linear
constraints designed to force them to behave somewhat like 0–1 variables.
New constraints which can be augmented by utilising this interpretation are
listed below:

(i) If a vertex i is visited at rth step of a Hamiltonian cycle starting from
vertex k, then on the same cycle, vertex k should be visited at N − r steps
starting from vertex i:∑
a∈A(i)

xk
r,ia −

∑
a∈A(k)

xi
N−r,ka = 0, for i, k ∈ S, i �= k, r ∈ S\{N}. (4.49)

(ii) If an edge (i, a) belongs to a particular Hamiltonian cycle, then it should be
visited from any starting vertex on that cycle, in particular from starting
vertices k and j:

N−1∑
r=0

xk
r,ia −

N−1∑
r=0

xj
r,ia = 0, for i, k, j ∈ S, k < j, a ∈ A(i). (4.50)

Of course, if (i, a) does not belong to a Hamiltonian cycle, both terms on
the left-hand side of (4.50) are 0.

(iii) If an edge (i, a) belongs to a particular Hamiltonian cycle, then based on
the starting vertex, it can be visited at any steps of 0, 1, . . . , N −1 on that
cycle:

N∑
k=1

xk
r,ia −

N∑
k=1

xk
t,ia = 0, for i ∈ S, r, t = 0, 1, . . . , N − 1, r < t, a ∈ A(i).

(4.51)

Of course, if (i, a) does not belong to a Hamiltonian cycle, both terms on
the left-hand side of (4.51) are zero.
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(iv) Starting from vertex k, we must visit vertex i at some step in the next
N − 1 steps:

N−1∑
r=0

∑
a∈A(i)

xk
r,ia = 1, for i, k ∈ S. (4.52)

(v) Starting from vertex k, we must visit exactly one vertex at rth step:

N∑
i=1

∑
a∈A(i)

xk
r,ia = 1, for k ∈ S, r = 0, 1, . . . , N − 1. (4.53)

(vi) To tighten the whole feasible region, we can exploit the notion of a shortest
path. For this purpose,we assign length 1 to all edges of graph G. Then,
in polynomial time we can calculate the shortest path between each pair
of vertices in this graph. If θki is the length of the shortest path between
vertices k and i in G, starting from vertex k, vertex i cannot be visited
earlier than θki steps. Moreover, starting from vertex k, vertex i cannot
be visited later than N − θik steps (on a Hamiltonian cycle) either:

xk
r,ia = 0, for k, i ∈ S, a ∈ A(i), r < θki, r ≥ N − θak. (4.54)

(vii) If k is the starting vertex, it should not be revisited before the last step:

xk
r,ka = 0, for k ∈ S, a ∈ A(k), r ∈ S\{N}, (4.55)

xk
r,bk = 0, for k ∈ S, b ∈ B(k), r = 0, 1, . . . , N − 2. (4.56)

(viii) Finally, all variables should be non-negative:

xk
r,ia ≥ 0, for i, k ∈ S, r = 0, 1, . . . , N − 1, a ∈ A(i). (4.57)

We denote by PF the polytope defined by the set of linear constraints (4.46)–
(4.57). This model has N2|A| variables and 2N3 + N2 + N + N(N − 1)|A|
constraints (excluding non-negativity constraints). Thus, the numbers of vari-
ables and constraints are bounded above by N4 − N3 and N4 + 2N2 + N ,
respectively. Moreover, for the family of cubic graphs, the number of variables
and constraints are 3N3 and 5N3 − 2N2 +N , respectively.

Clearly, if we force all xk
r,ia variables to be binary variables, then the poly-

tope PF will be infeasible for all non-Hamiltonian graphs. However, we hope
that by relaxing such 0–1 condition, this model could still recognise non-
Hamiltonian graphs by showing infeasibility. Next, we present numerical ev-
idence that this goal is attained for a rather large class of non-Hamiltonian
cubic graphs.
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Numerical results

We have tested many Hamiltonian and non-Hamiltonian cubic graphs through
polytope PF . So far, it has been successful in recognising all bridge cu-
bic graphs2, on 10, 12, 14, 16 and 18 vertices by showing infeasibility. Sur-
prisingly, it could also eliminate some of the non-bridge non-Hamiltonian
(NBNH) cubic graphs by showing infeasibility. Table 4.1 displays the results
of these experiments.

Table 4.1: Solving the HCP for non-Hamiltonian cubic graphs

N Number of Bridge Graphs Eliminated Number of NBNH Eliminated Ratio
10 1 1 1 0 0
12 4 4 1 0 0
14 29 29 6 1 0.167
16 186 186 33 6 0.182
18 1435 1435 231 42 0.182

In Table 4.1, the first column indicates the number of vertices in the family of
cubic graphs. Then, the second to fourth columns show the total number of
bridge graphs in that particular family, the number of such bridge graphs that
made the corresponding polytope PF infeasible, the total number of NBNH
graphs in that particular family and the number of such NBNH graphs that
made the corresponding polytope PF infeasible. The last column gives the
ratio of the fifth column over the fourth one.

The promising results indicated in Table 4.1 strongly suggest the need for
further work on improving the PF model.

2 Recall that a bridge is an edge the removal of which disconnects the graph, and a
bridge graph is a graph that contains one or more bridges.



Part III

Optimisation



Chapter 5

Determinants

5.1 Introduction

Ejov et al. [35] embed the Hamiltonian cycle problem in a limiting average
Markov decision process model with an asymmetric linear perturbation de-
fined in (3.14). The authors prove that for positive and sufficiently small
values of ε, determining the Hamiltonicity of a given graph is equivalent to
minimising the top-left element of the fundamental matrix G of an MDP as-
sociated with the given graph, over the space of feasible deterministic policies
FD. The conjecture that the same holds for the larger space FS remains open.

In Chapter 3, we replaced the asymmetric linear perturbation used in Ejov
et al. [35] by a symmetric linear perturbation defined in (3.13), and extended
the result to the set of feasible doubly stochastic policies FDS . We also pre-
sented two mathematical programming problems, both of which are in the
spirit of

minG11

over the set of feasible doubly stochastic policies.
(5.1)

Theorem 3.6 shows that the gap between optimal values of (5.1) for a Hamil-
tonian graph and for a non-Hamiltonian graph of the same order is strictly
positive (see also Borkar et al. [18]). This strengthens the potential useful-
ness of the optimisation model (5.1). However, in implementing an efficient
algorithm for (5.1), numerical difficulties arise. The first major challenge is
the evaluation of the G11 functional, as the fundamental matrix is an inverse.
The second major challenge is that relevant Hessian matrices, an important
ingredient in many optimisation algorithms, are dense due to perturbation
and consequently expensive to compute.

Looking for other functionals to determine Hamiltonicity, we prove that the
determinant of the inverse of the fundamental matrix, too, is an appropriate

69
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optimisation functional. Furthermore, we show that the determinant objec-
tive function is more robust than the function G11, as it is maximised at
Hamiltonian cycles with or without the linear symmetric perturbation con-
sidered in Borkar et al. [17] and in Chapter 3.

5.2 Optimality at Hamiltonian Cycles

By (2.8) in Chapter 2, we define the matrix function W(P) = I−P+1/NJ,
where J = eeT is a matrix every element of which is 1. For a given policy f ,
we define similarly the function

W(f) = I−P(f) + 1/NJ. (5.2)

We apply the symmetric linear perturbation defined in (3.13) to P(f) to
obtain Pε(f), that is,

Pε(f) = (1− ε)P(f) + ε/NJ. (5.3)

Recall from (4.6) that the fundamental matrix G(f) is {I−P(f)+P∗(f)}−1,
and from (4.5) that the stationary distribution matrix P∗(f) is

P∗(f) = lim
T→∞

1

T + 1

T∑
t=0

Pt(f). (5.4)

Then, the stationary distribution matrix of Pε(f) is

P∗(f , ε) = lim
T→∞

1

T + 1

T∑
t=0

(Pε)t(f), (5.5)

the fundamental matrix of Pε(f) is

G(f , ε) = {I−Pε(f) +P∗(f , ε)}−1, (5.6)

and,

W(f , ε) = I−Pε(f) + 1/NJ. (5.7)

We denote by A11 the matrix A with the first row and first column removed.
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Lemma 5.1. For any doubly stochastic policy f and ε > 0,

G11(f , ε) =
detW11(f , ε)

detW(f , ε)
. (5.8)

Proof. For any doubly stochastic policy f , Pε(f) is doubly stochastic and
consequently, P∗(f , ε) = 1/NJ by (3.9). Therefore,

G(f , ε) = {I−Pε(f) + 1/NJ}−1

= W−1(f , ε). (5.9)

We denote by pεij and gij the (i, j)th entries of P∗(f , ε) and G(f , ε), respec-
tively. Obviously, these entries depend on f , which we suppress for notational
convenience. From (5.9), we have W(f , ε)G(f , ε) = I, which leads to

W(f , ε)

⎡⎢⎢⎢⎣
g11

g21
...

gN1

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
(N + 1)/N − pε11 1/N − pε12 · · · 1/N − pε1N

1/N − pε21 (N + 1)/N − pε22 · · · 1/N − pε2N
...

...
. . .

...
1/N − pεN1 1/N − pεN2 · · · (N + 1)/N − pεNN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
g11

g21
...

gN1

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
1

0
...
0

⎤⎥⎥⎥⎦ .

Applying Cramer’s rule [66], we obtain

G11(f , ε) =

det

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
1 1/N − pε12 · · · 1/N − pε1N

0 (N + 1)/N − pε22 · · · 1/N − pε2N
...

...
. . .

...
0 1/N − pεN2 · · · (N + 1)/N − pεNN

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

detW(f , ε)

=
detW11(f , ε)

detW(f , ε)
.

�

Lemma 5.1 makes it plausible that, perhaps, instead of minimising G11(f , ε)
over FDS , we can also maximise detW(f , ε) over the same set to determine
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if a given graph is Hamiltonian. This conjecture turns out to be correct for
ε ∈ [0, 1) over FS . We generalise this result further by replacing the coefficient
1/N with α > 0, to obtain the matrix

Wα(f , ε) = I−Pε(f) + αJ. (5.10)

the determinant value of which, too, is maximised at Hamiltonian cycles.
Recall that the circumference of a graph is the length of a longest cycle in
the graph. The following theorem shows the relationship between the matrix
function detWα(f , ε) and circumferences of graphs.

Theorem 5.1. For any feasible policy f on a given graph of order N ,

detWα(f , ε) ≤ αN
1− (1− ε)k

ε
, (5.11)

where k ≤ N is the circumference of the graph and ε ∈ [0, 1).

For clarity, here we consider only the case α = 1/N . For the general proof
of the case α ∈ R+, we refer the interested reader to Ejov et al. [34] and
Nguyen [81]. We prove Theorem 5.1 for the cases of ε = 0 and ε > 0 in
Sections 5.2.1 and 5.2.2, respectively.

Consider the following decomposition of the set FD of deterministic poli-
cies: FD = {FH ∪ FD1

∪ FD2
}, where FH,FD1

, and FD2
are three mutually

exclusive (possibly empty) subsets of FD that contain Hamiltonian cycles,
policies possessing a single cycle of length k < N , and policies possessing two
or more disjoint cycles, respectively. Figure 5.1 illustrates this decomposition
of the set FS .

Fig. 5.1: A Venn diagram of FS
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5.2.1 Unperturbed Case

We restate Theorem 5.1 for ε = 0 and α = 1/N .

Theorem 5.2. For any feasible policy f of a given graph of order N ,

detW(f) ≤ k, (5.12)

where k ≤ N is the circumference of the graph.

The proof of Theorem 5.2 requires the following intermediate results: Corol-
lary 5.1 states a relationship between eigenvalues of W(f) and those of P(f);
Propositions 5.1–5.3 establish that inequality (5.12) holds for a deterministic
policy f ∈ FH, FD1 and FD2 , respectively. Collectively, these results imply
that the upper bound (5.12) is true for any f ∈ FD; Proposition 5.4 shows
that given a randomised policy f ∈ FS \ FD, there exist two deterministic

policies f̄ and f̂ ∈ FD such that

detW(f̄) ≤ detW(f) ≤ detW(f̂). (5.13)

Inequalities (5.13), together with Propositions 5.1–5.3, indicate that the up-
per bound (5.12) also holds for any given randomised policy f ∈ FS \ FD.

For f ∈ FS and i = 1, . . . , N , let λi’s and μi’s be the eigenvalues of P(f) and
W(f), respectively. As P(f) is stochastic, at least one eigenvalue of P(f) is
unity, and we denote this eigenvalue by λN .

Corollary 5.1. For any feasible policy f ∈ FS on a given graph of order N ,
eigenvalues μi’s of W(f) are

μi =

{
1− λi for i = 1, . . . , N − 1,

0 for i = N.
(5.14)

Proof. This result follows from Serra-Capizzano [96, Theorem 2.3]. �

Corollary 5.2. For any feasible policy f ∈ FS on a given graph of order N ,

detW(f) =

N−1∏
i=1

(1− λi). (5.15)

Proof. It is well-known that

detW(f) =

N∏
i=1

μi. (5.16)

Then, Corollary 5.2 follows immediately from Corollary 5.1. �
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Proposition 5.1. For any Hamiltonian policy fH ∈ FH on a given graph of
order N ,

detW(fH) = N. (5.17)

Proof. By Corollary 5.2,

detW(fH) =
N−1∏
i=1

(1− λi)

= 1−
N−1∑
i=1

λi +

N−1∑
i>j

i,j=1

λiλj + · · ·+ (−1)N−1
N−1∏
i=1

λi

= 1− ρ(λ) + ρ2(λ) + · · ·+ (−1)N−1ρN−1(λ),

where for i = 1, . . . , N − 1, ρi is the ith elementary symmetric polynomial
in λ1, . . . , λN−1. We denote by Qi(λ1, . . . , λN ) the ith elementary symmetric
polynomials in λ1, . . . , λN , for i = 1, . . . , N−1. By Ejov et al. [32, Theorem 2],
for any Hamiltonian policy fH, the characteristic polynomial c(x) of P(fH)
is 1 − xN . Hence, for i = 1, . . . , N , all eigenvalues λi of P(fH) are the nth
roots of unity. This implies that

Q1(λ1, . . . , λN ) = Q2(λ1, . . . , λN ) = · · · = QN−1(λ1, . . . , λN ) = 0.

Define ρ0(λ1, . . . , λN−1) = Q0(λ1, . . . , λN ) = 1. As λN = 1, we have

ρ1(λ1, . . . , λN−1) = Q1(λ1, . . . , λN )− ρ0(λ1, . . . , λN−1),

ρ2(λ1, . . . , λN−1) = Q2(λ1, . . . , λN )− ρ1(λ1, . . . , λN−1),

...

ρN−1(λ1, . . . , λN−1) = QN−1(λ1, . . . , λN )− ρN−2(λ1, . . . , λN−1),

which gives us the result. �

Example 5.1 We revisit the envelope graph (Figure 5.2) and consider two
Hamiltonian cycles fH1

and fH2
on the graph, depicted respectively in Fig-

ures 5.3 and 5.4. The probability transition matrices induced by these policies
are

P(fH1
) =

⎡⎢⎢⎢⎢⎢⎢⎣
· 1 · · · ·
· · · · · 1
· · · 1 · ·
· · · · 1 ·
1 · · · · ·
· · 1 · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ and P(fH2
) =

⎡⎢⎢⎢⎢⎢⎢⎣
· 1 · · · ·
· · 1 · · ·
· · · · · 1
1 · · · · ·
· · · 1 · ·
· · · · 1 ·

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Fig. 5.2: A cubic graph G of order 6
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Fig. 5.3: The Hamiltonian cycle fH1
.
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Fig. 5.4: The Hamiltonian cycle fH2
.

In this example, N = 6, and detW(fH1
) = detW(fH2

) = 6.

Proposition 5.2. For any deterministic policy f ∈ FD1
that contains a sin-

gle cycle of length k < N on a given graph of order N ,

detW(f) = k. (5.18)

Proof. Without loss of generality, we assume that P(f) contains the cycle
1 → 2 → · · · → k → 1, and that for i ≥ k + 1, Pij = 1 for some j ∈
{i+ 1} ∪ {1, . . . , k}, and Pi�(f) = 0 for all � �= j. Hence, the N ×N matrix
P(f) is of the generic form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
. . .

. . .

. . . 1
1 0

0

1

1

0 0
0 1
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.19)

Let E = {e1, . . . , eN} be the standard basis of RN where for each ei, the
ith entry is unity and all other elements are zeroes. Consider a new basis
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V = {v1, . . . ,vN} of RN , with vk = e and

vi =

{
ei+1 − ei for i = 1, . . . , k − 1,

ei for i = k + 1, . . . , N.

We define B(f) = −P(f) + 1/NJ, and simply write B where no ambiguity
can arise. First, we show that vectors vk,vk+1, . . . ,vN form a basis of the null
space of BN−k+1, denoted by ker(BN−k+1). It is clear that vk = e ∈ ker(B),
and Ju = μe, for any u ∈ RN and some μ ∈ R, since rank(J) = 1 and
Je = e. Therefore, by (5.19),

Bvk+1 = −P(f)ek+1 + 1/NJek+1

= 1/Ne,

Similarly, for k + 2 ≤ i ≤ N and for γi ∈ {−1, 0},

Bvi = γivi−1 + 1/Ne,

If we consider Bmvi, then (modulo multiple of e) the longest possible chain
could be

vN
B→ vN−1

B→ vN−2
B→ · · · B→ vk+1

B→ 0.

At the last step, any multiple of e also vanishes. Thus, when restricted to
the span of basic vectors {vk, . . . ,vN}, denoted by span{vk, . . . ,vN}, B is a

nilpotent linear operator B̃, with B̃
N−k+1

= 0. Hence, zero is an eigenvalue of
B of multiplicity at least N−k+1. As vi is an eigenvector of I corresponding
to eigenvalue 1 for i = k, . . . , N , we have

detW(f) =

k−1∏
i=1

(1− λi), (5.20)

where λi’s are the eigenvalues of the (k− 1)× (k− 1) leading principal minor
of B in the V basis.

It remains to show that λ1, . . . , λk−1 coincide with eigenvalues of a k × k
probability transition matrix PHk

of a standard Hamiltonian cycle of length k
with eigenvalue 1 excluded. Indeed, for i = 1, . . . , k − 1, Jvi = 0. Hence,

Bv1 = −P(f)(e2 − e1) = −e1 + ek + v∗
1,

where v∗
1 ∈ span {vk, . . . ,vN}. Analogously, for i = 2, . . . , k − 1,

Bvi = −P(f)(ei+1 − e1) = −ei + ek + v∗
i ,
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where v∗
i ∈ span {vk, . . . ,vN}.

Therefore, we observe that the (k − 1) × (k − 1) leading principal minor
for B, namely [B]k−1, is the same as the principal leading minor [M]k−1 of

−PHk
+ 1/kJk, if we choose bases V and {e(k)l − e

(k)
1 , . . . , e

(k)
k−1 − e

(k)
1 , ek}

respectively, where Jk is the k × k matrix of units, e
(k)
j is the jth vector of

the standard unit basis of Rk and e(k) = (1, 1, . . . , 1)T ∈ Rk.

Hence, for r > 0, principal minors of powers of Br and Mr coincide and
so the eigenvalues λ1, . . . , λk−1 of [B]k−1 and of PHk

, excluding eigenvalue 1,
also coincide. By Proposition 5.1 with N = k, for PHk

,

k−1∏
i=1

(1− λi) = k, (5.21)

which, together with (5.20), proves (5.18). �

Example 5.2 We consider two deterministic policies f1 and f2 on the en-
velope graph, each policy possessing a cycle of length 3 and of length 4, re-
spectively, depicted in Figures 5.5 and 5.6.
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Fig. 5.5: Deterministic policy f1
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1

Fig. 5.6: Deterministic policy f2

The probability transition matrices induced by these two policies are

P(f1) =

⎡⎢⎢⎢⎢⎢⎢⎣
· 1 · · · ·
· · 1 · · ·
· · · · · 1
1 · · · · ·
· · · 1 · ·
· 1 · · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ and P(f2) =

⎡⎢⎢⎢⎢⎢⎢⎣
· 1 · · · ·
· · · · · 1
· · · 1 · ·
· · · · 1 ·
· · · · · 1
· · 1 · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ .

Simple calculations show that detW(f1) = 3, and detW(f2) = 4.

Proposition 5.3. For any deterministic policy f ∈ FD2 that contains m ≥ 2
disjoint cycles of lengths ki, 0 < ki < N for i = 1, . . . ,m, on a given graph
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of order N ,

detW(f) = 0. (5.22)

Proof. As the policy f traces out two or more disjoint cycles, P(f) is re-
ducible and consequently has an eigenvalue of unity with multiplicity two or
more. By Corollary 5.2, equality (5.22) follows immediately. �

Example 5.3 We consider two policies f1 and f2, each possessing two dis-
joint cycles: f1 has cycles (1, 4, 5, 1) and (2, 6, 3, 2), whereas f2 has cycles
(1, 2, 6, 5, 1) and (3, 4, 3).
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Fig. 5.7: Deterministic policy f1 ∈ FD2
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Fig. 5.8: Deterministic policy f2 ∈ FD2

The probability transition matrices induced by these two policies are

P(f1) =

⎡⎢⎢⎢⎢⎢⎢⎣
· · · 1 · ·
· · · · · 1
· 1 · · · ·
· · · · 1 ·
1 · · · · ·
· · 1 · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ and P(f2) =

⎡⎢⎢⎢⎢⎢⎢⎣
· 1 · · · ·
· · · · · 1
· · · 1 · ·
· · 1 · · ·
1 · · · · ·
· · · · 1 ·

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and, consequently, detW(f1) = detW(f2) = 0.

Proposition 5.4. For any randomised policy f ∈ FS \ FD on a given graph

of order N , there exist two deterministic policies f̄ , f̂ ∈ FD such that

detW(f̄) ≤ detW(f) ≤ detW(f̂). (5.23)

Proof. We define the number of randomisations in rows of P(f) to be the
number of elements pij �= {0, 1}. As f �∈ FD, there exists at least one row—
say, the first row—in P(f) such that a randomisation occurs in that row.
This row has the structure

[ · · · a · · · b · · · c · · · ], (5.24)

where 0 < a, b < 1. While the argument is almost identical for the case of
a + b + c < 1, for the sake of simplicity and without loss of generality, we
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assume a+b+c = 1. Construct a feasible policy dν such that P(dν) coincides
with P(f) in rows 2, . . . , N , and the first row of P(dν) is

[ · · · ν · · · (1− ν)b

1− a
· · · (1− ν)c

1− a
· · · ], (5.25)

where 0 ≤ ν ≤ 1. For ν = a,P(dν) = P(f) and dν reduces to f . Furthermore,
(1 − ν)b/(1 − a), (1 − ν)c/(1 − a) ∈ [0, 1] because b, c ≤ 1 − a = b + c. As
detW(dν) is a linear function in ν ∈ [0, 1], we must have that either

• the maximum or the minimum of detW(dν) occurs at d0 (or d1), and the
other occurs at d1 (or d0), or

• detW(dν) = detW(f) for all ν ∈ [0, 1].

By (5.25), the first row of P(d0) reduces to

[ · · · 0 · · · b

1− a
· · · c

1− a
· · · ], (5.26)

and the first row of P(d1) reduces to[
· · · 1 · · · 0 · · · 0 · · ·

]
. (5.27)

Define

d̄ = argmin{detW(d0), detW(d1)}, (5.28)

and

d̂ = argmax{detW(d0), detW(d1)}. (5.29)

As both matrices P(d̄) and P(d̂) coincide with P(f) in rows 2, . . . , N and
their first row has the structure of either (5.26) or (5.27), both of P(d̄) and

P(d̂) have at least one more zero in their rows than P(f). Furthermore,

detW(d̄) ≤ detW(f) and detW(d̂) ≥ detW(f). By induction on the num-

ber of randomisations, we obtain two deterministic policies f̄ , f̂ ∈ FD such
that (5.23) holds. �

Proof of Theorem 5.2. Equations (5.17), (5.18) and (5.22) and Proposition 5.4
imply Theorem 5.1, which gives an upper bound for the matrix function
detW(f) for f ∈ FS . �

Corollary 5.3. For any given graph G, the following statements hold:

(i) If G is Hamiltonian, then

max
f∈FS

detW(f) = N, (5.30)
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and detW(f) = N if and only if f is a Hamiltonian policy.

(ii) If G is non-Hamiltonian, then

max
f∈FS

detW(f) ≤ N − 1. (5.31)

Proof. (i) Equality (5.30) follows immediately from Theorem 5.2 as f ∈ FH
is a longest cycle on G. By Proposition 5.1, if f ∈ FH, then detW(f) = N .
Now it suffices to show that if detW(f) = N , then f is a Hamiltonian policy.

Suppose detW(f) = N for some non-Hamiltonian policy f . Define

T = {h ∈ FS | detW(h) = max
g∈F

detW(g) = N},

then f ∈ T . By Propositions 5.2 and 5.3, f �∈ FD. Therefore, there exists at
least one row in P(f) where a randomisation occurs. Following an argument
analogous to that presented in the proof of Proposition 5.4, there exists a
reduction f → d̂1 → d̂2 → · · · → d̂r → f̂ , such that f̂ ∈ FD and

detW(f) ≤ detW(d̂1) ≤ detW(d̂2) ≤ · · · ≤ detW(d̂r) ≤ detW(f̂).

As

detW(f) = max
g∈F

detW(g) = N,

it follows that

detW(f) = detW(d̂1) = detW(d̂2) = · · · = detW(d̂r)

= detW(f̂) = N.

In the last stage of the reduction, that is, at d̂r → f̂ , P(d̂r) has exactly one
row—say, the first row—where randomisation occurs, and the randomisation
is on two edges. Then, the first row of P(d̂r) is

[ · · · ν · · · (1− ν)b

1− a
· · · ],

where a + b = 1. As detW(d̂r) = N for all ν ∈ [0, 1], setting ν = 1 and

ν = 0 gives us two distinct deterministic policies, one of which is f̂ . Let the
other be f̄ , then both policies f̂ and f̄ must be distinct Hamiltonian cycles
coinciding at exactly N − 1 edges, which is a contradiction.

(ii) This follows directly from Theorem 5.1, as the length of the longest cycle
possible in a non-Hamiltonian graph is N − 1. �
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Corollary 5.3 implies that there is a strictly positive gap between the maxi-
mum value of detW(f) over the set of stochastic policies on a Hamiltonian
graph and that on a non-Hamiltonian graph. Corollary 5.3 also gives an upper
bound for a function of eigenvalues of any stochastic matrix. The following
result follows immediately from Corollaries 5.2 and 5.3, by considering the
set of feasible stochastic policies for a complete graph of order N that allows
self-loops and setting ε = 0.

Corollary 5.4. Let P be an N ×N stochastic matrix, and denote by λ1, . . .,
λN−1, λN = 1 the eigenvalues of P. Then

N−1∏
i=1

(1− λi) ≤ N. (5.32)

We note that complex eigenvalues of P can be rearranged in conjugate pairs,
so the product in (5.32) is, indeed, a real number.

5.2.2 Perturbed Case

We restate Theorem 5.1 for ε ∈ (0, 1) and α = 1/N .

Theorem 5.3. For any feasible policy f ∈ FS on a given graph of order N ,

detW(f , ε) ≤ 1− (1− ε)k

ε
, (5.33)

where k < N is the circumference of the graph and ε ∈ (0, 1).

Similarly to that of Theorem 5.2, the proof of Theorem 5.3 requires the fol-
lowing results: Corollary 5.7 establishes a relationship between eigenvalues of
W(f , ε) and those of Pε(f); Propositions 5.5–5.7 establish that (5.33) holds
for a deterministic policy f ∈ FH, FD1 and FD2 , respectively. Collectively,
these results imply that (5.33) is true for any f ∈ FD; Proposition 5.8 shows
that given a randomised policy f ∈ FS \ FD, there exist two deterministic

policies f̄ , f̂ ∈ FD such that

detW(f̄ , ε) ≤ detW(f , ε) ≤ detW(f̂ , ε). (5.34)

Inequalities (5.34), together with Propositions 5.5–5.7, indicate that (5.33)
also holds for f ∈ FS \ FD.

We denote by λε
i , κ

ε
i and με

i the eigenvalues of, respectively, the matrices
Pε(f), Pε(f)− 1/NJ and W(f , ε), for i = 1, . . . , N .

Remark 5.1. For ε ∈ (0, 1), the matrix Pε(f) is positive (elements Pε
ij(f) > 0

for all i and j) and hence irreducible. Consequently, by the Perron-Frobenius
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theorem (see Horn and Johnson [66]), the eigenvalue 1 of Pε(f) has multi-
plicity of 1.

Let L ∈ RN×N be a stochastic matrix, S = evT ∈ RN×N be a rank-one
stochastic matrix, where v is a probability distribution vector (vi > 0 and
||v||1 = 1) and c ∈ (0, 1). Serra-Capizzano [96] defines the matrix

L(c) = cL+ (1− c)S, (5.35)

and proves the following result on the Jordan canonical form of L(c).

Theorem 5.4. [96] Let �i be eigenvalues of L for i = 1, . . . , N and let L =
XT(1)X−1, where X = [ e | x2 | · · · | xN ], [ X−1]T = [ y1 | y2 | · · · | yN ],

T(c) =

⎡⎢⎢⎢⎢⎢⎣
1
c�2 c∗

. . .
. . .

c�N−1 c∗
c�N

⎤⎥⎥⎥⎥⎥⎦ = D−1

⎡⎢⎢⎢⎢⎢⎣
1
c�2 ∗

. . .
. . .

c�N−1 ∗
c�N

⎤⎥⎥⎥⎥⎥⎦D,

with D = diag(1, c, . . . , cN−1), and ∗ denotes a value that can be 1 or 0 (and,
consequently, c∗ can either be c or 0). Then,

L(c) = ZT(c)Z−1, (5.36)

where Z = XR−1 and R = I+ e1w
T, with w = (0, w2, . . . , wN )T, and

wj =

⎧⎪⎪⎨⎪⎪⎩
(1− c)vTx2

1− c�2
for j = 2,

[(1− c)vTxj + [T(c)]j−1,jwj−1]

1− c�2
for j = 3, . . . , N.

Corollary 5.5. For any feasible policy f ∈ FS on a given graph of order N ,
the relationship between eigenvalues λi’s of P(f) and eigenvalues λε

i ’s of
Pε(f) is

λε
i =

{
(1− ε)λi for i = 1, . . . , N − 1,

1 for i = N.
(5.37)

Proof. As Pε(f) = (1 − ε)P(f) + ε/NJ, (5.37) follows from Theorem 5.4,
by setting c = 1− ε, L = P(f), S = 1/NJ and L(c) = Pε(f). Note that we
assign the eigenvalue of 1 to λN and λε

N (instead of λ1 and λε
1, as it would

follow from the convention used in Theorem 5.4) for consistency throughout
this chapter. �

Corollary 5.6. For any feasible policy f ∈ FS on a given graph of order N
and for i = 1, . . . , N − 1, the eigenvalues λε

i ’s of Pε(f) and eigenvalues κε
i ’s
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of Pε(f)− 1/NJ coincide, that is,

λε
i = κε

i .

Furthermore, for i = N , λε
N = 1 corresponds to κε

N = 0.

Proof. First, it is simple to check that the proof for Theorem 5.4 still holds for
c > 1. Using analogous arguments to those presented in the aforementioned
proof, Lemma 5.6 follows. �

Corollary 5.7. For any feasible policy f ∈ FS on a given graph of order N ,
the eigenvalues με

i ’s of W(f) are

με
i =

{
1− λε

i for i = 1, . . . , N − 1,
1 for i = N.

(5.38)

Proof. This result follows directly from Corollary 5.5 and Lemma 5.6. �

Corollary 5.8. For any feasible policy f ∈ FS on a given graph of order N ,

detW(f , ε) =

N−1∏
i=1

(1− λε
i ). (5.39)

Proof. It is well-known that

detW(f , ε) =

N∏
i=1

με
i . (5.40)

Then, Corollary 5.8 follows immediately from Corollary 5.7. �

Proposition 5.5. For any Hamiltonian cycle fH ∈ FH on a given graph of
order N and for ε ∈ (0, 1),

detW(fH, ε) =
1− (1− ε)N

ε
. (5.41)

Proof. By Corollaries 5.2 and 5.5, we obtain

detW(fH, ε)

=

N−1∏
i=1

(1− λε
i ) =

N−1∏
i=1

(1− (1− ε)λi)

= 1− (1− ε)
N−1∑
i=1

λi + (1− ε)2
N−1∑
i>j

i,j=1

λiλj − · · ·+ (−1)N−1(1− ε)N−1
N−1∑
i=1

λi
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= 1− (1− ε)q1(λ1, . . . , λN−1) + (1− ε)2q2(λ1, . . . , λN−1)

− · · ·+ (−1)N−1(1− ε)N−1qN−1(λ1, . . . , λN−1), (5.42)

where qi(λ1, . . . , λN−1) is the ith elementary symmetric polynomial in λ1, . . . ,
λN−1 for i = 1, . . . , N − 1. Let Qi(λ1, . . . , λN ) be the ith elementary sym-
metric polynomials in λ1, . . . , λN , for i = 1, . . . , N − 1. By Ejov et al. [32,
Theorem 2], for any Hamiltonian policy fH ∈ FH, the characteristic polyno-
mial c(x) of P(fH) is 1− xN . Hence, all eigenvalues λi of P(fH) are the nth
roots of unity, for i = 1, . . . , N . This implies that

Q1(λ1, . . . , λN ) = Q2(λ1, . . . , λN ) = · · · = QN−1(λ1, . . . , λN ) = 0.

Define q0(λ1, . . . , λN−1) = Q0(λ1, . . . , λN ) = 1. As λN = 1, we have

q1(λ1, . . . , λN−1) = Q1(λ1, . . . , λN )− q0(λ1, . . . , λN−1),

q2(λ1, . . . , λN−1) = Q2(λ1, . . . , λN )− q1(λ1, . . . , λN−1),

...

qN−1(λ1, . . . , λN−1) = QN−1(λ1, . . . , λN )− qN−2(λ1, . . . , λN−1).

Consequently,

q1(λ1, . . . , λN−1) = −1,

q2(λ1, . . . , λN−1) = 1,

...

qN−1(λ1, . . . , λN−1) = (−1)N−1.

Substituting these results into (5.42), we obtain

detW(fH, ε) = 1 + (1− ε) + (1− ε)2 + · · ·+ (1− ε)N−1.

�

Proposition 5.6. For any deterministic policy f ∈ FD1
, that is, a policy

possessing a single cycle of length k < N on a given graph of order N and
for ε ∈ (0, 1),

detW(f , ε) =
1− (1− ε)k

ε
. (5.43)

Proof. As in the proof of Proposition 5.2, define B(f) = −P(f)+1/NJ, and
consider the k × k probability transition matrix PHk

of a standard Hamil-
tonian cycle of length k. For i = 1, . . . , k − 1, let τi’s be eigenvalues of PHk

excluding eigenvalue 1. By an argument presented in the proof of Proposi-
tion 5.1, τi’s are the kth roots of unity. From the proof of Proposition 5.2,
we have that eigenvalues ρi of B(f) = −P(f) + 1/NJ are
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ρi =

{
−τi for i = 1, . . . , k − 1,

0 for i = k, . . . , N.
(5.44)

consequently, eigenvalues κi’s of P(f)− 1/NJ are

κi =

{
τi for i = 1, . . . , k − 1,

0 for i = k, . . . , N.
(5.45)

By Corollary 5.6 and (5.45), eigenvalues λi’s of P(f) are

λi =

⎧⎨⎩
τi for i = 1, . . . , k − 1,

0 for i = k, . . . , N − 1,

1 for i = N.

(5.46)

By Corollary 5.5 and (5.46), eigenvalues λε
i ’s of P

ε(f) are

λε
i =

⎧⎨⎩
(1− ε)τi for i = 1, . . . , k − 1,

0 for i = k, . . . , N − 1,

1 for i = N.

(5.47)

By Corollary 5.2 and (5.47),

detW(f , ε) =
N−1∏
i=1

(1− λε
i ) =

k−1∏
i=1

{1− (1− ε)τi}. (5.48)

By the proof of Proposition 5.1,

k−1∏
i=1

(1− (1− ε)τi) =
1− (1− ε)k

ε
. (5.49)

Consequently,

detW(f , ε) =
1− (1− ε)k

ε
.

�

Proposition 5.7. For any deterministic policy f ∈ FD2
, that is, a policy

possessing m ≥ 2 disjoint cycles of lengths ki,

detW(f , ε) = εm−1
m∏
i=1

1− (1− ε)ki

ε
, (5.50)

where 2 ≤ ki ≤ N − 2 and
m∑
i=1

ki ≤ N .
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Proof. For simplicity and without loss of generality, we assume that m = 2
and f ∈ FD2

contains two disjoint cycles of lengths k1, k2 respectively, where
2 ≤ k1, k2 ≤ N − 2 and k1 + k2 ≤ N . In particular, assume that

• the first cycle is (1, 2, . . . , k1, 1), which we call the k1-cycle, the second
cycle is ((k1 + 1), (k1 + 2), . . . , (k1 + k2 − 1), (k1 + k2), (k1 + 1)), which we
call the k2-cycle,

• for i = k1 + k2 + 1, f chooses to go to a vertex on either the k1-cycle or
the k2-cycle, and for i > k1 + k2 + 1 ∈ S, f either chooses to go to i + 1
or to a vertex on either the k1-cycle or the k2-cycle.

Hence, the N ×N matrix P(f) is of the generic form

P(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
. . .

. . .

. . .
. . .

. . . 1
1 0

0k1×k2
0k1×(N−(k1+k2))

0k2×k1

0 1
. . .

. . .

. . . 1
1 0

0k2×(N−(k1+k2))

1

1 0 0
0 1
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.51)

where 0m×n is an m× n matrix of 0’s.

For the ith cycle, i = 1, 2, we construct a vector wi as follows

• every entry of wi corresponding to a vertex on this cycle is 1,
• every entry corresponding to a vertex not on the cycle that is connected,

by one or more edges, to this cycle is also 1, and
• every other entry is 0.

It is easy to verify that Pwi = wi, for i = 1, 2. Consequently, wi’s are
eigenvectors of P corresponding to the eigenvalue 1. Moreover, it is clear
that these eigenvectors are linearly independent and the multiplicity of the
eigenvalue 1 of P is 2. Let ni be the number of units in wi for i = 1, 2. We
define two linear combinations of w1 and w2 as follows

u1 = w2 −
n2

n1
w1, and u2 = w1 +w2 = e.
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With respect to the decomposition of RN = span{e}
⊕

ker(J), we define a
new basis V = {v1, . . . ,vN} of RN where

vi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei+1 − e1 for i = 1, . . . , k1 − 1,

u2 −
n2

n1
u1, for i = k1,

ei+1 − ek1+1 for i = k1 + 1, . . . , k1 + k2 − 1,

e for i = k1 + k2,

ei for i = k1 + k2 + 1, . . . , N.

(5.52)

We consider two standard Hamilonian cycles fHk1
and fHk1

of lengths k1
and k2, respectively, and their corresponding probability transition matrices
P(fHk1

) and P(fHk2
). Following analogous arguments to those in the proof

of Proposition 5.2, we can show that eigenvalues λi’s of P(f) are

λi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τ̄i for i = 1, . . . , k1 − 1,

1 for i = k,

τ̂i−k1 for i = k1 + 1, . . . , k1 + k2 − 1,

0 for i = k1 + k2, . . . , N − 1,

1 for i = N,

(5.53)

where, for i = 1, . . . , k1 − 1 and for j = 1, . . . , k2 − 1, τ̄i and τ̂j are the eigen-
values of P(fHk1

) excluding eigenvalue 1 and P(fHk2
) excluding eigenvalue 1,

respectively. By Corollary 5.5 and (5.53), eigenvalues λε
i ’s of P

ε(f) are

λε
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1− ε)τ̄i for i = 1, . . . , k1 − 1,

1− ε for i = k,

(1− ε)τ̂i−k1
for i = k1 + 1, . . . , k1 + k2 − 1,

0 for i = k1 + k2, . . . , N − 1,

1 for i = N.

(5.54)

By Corollary 5.2 and (5.54), we obtain

detW(f , ε) =

N−1∏
i=1

(1− λε
i )

= ε

k1−1∏
i=1

(1− λε
i )

k1+k2−1∏
i=k1+1

(1− λε
i )

= ε

k1−1∏
i=1

(1− (1− ε)τ̄i)

k1+k2−1∏
i=k1+1

(1− (1− ε)τ̂i−k1
).
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By the proof of Proposition 5.1, we have

k1−1∏
i=1

(1− (1− ε)τ̄i) =
1− (1− ε)k1

ε
, (5.55)

and

k2−1∏
i=1

(1− (1− ε)τ̂i) =
1− (1− ε)k2

ε
. (5.56)

Consequently,

detW(f , ε) = ε
1− (1− ε)k1

ε

1− (1− ε)k2

ε
. (5.57)

Applying analogous arguments to those used above, we can generalise (5.57)
to obtain (5.50) for m > 2. �

Proposition 5.8. For any randomised policy f ∈ FS \ FD, there exist two

deterministic policies f̄ , f̂ ∈ FD such that

detW(f̄ , ε) ≤ detW(f , ε) ≤ detW(f̂ , ε). (5.58)

Proof. This proof follows completely analogous arguments to those presented
in the proof of Proposition 5.4. �

Proof of Theorem 5.3. Assume ε ∈ (0, 1) and let L be the length of the longest
cycle in the graph G. Obviously, L = N if G is Hamiltonian. Equations
(5.41), (5.43) and (5.50) and Proposition 5.8 imply that to prove (5.33), it
suffices to show that

1− (1− ε)L

ε
>

1− (1− ε)k

ε
, (5.59)

and

1− (1− ε)L

ε
>

m∏
i=1

εm−1 1− (1− ε)�i

ε
, (5.60)

where for i = 1, . . . ,m, 2 ≤ k, �i ≤ L, m > 2 and
m∑
i=1

�i ≤ N .

As k < L, (1 − ε)L < (1 − ε)k and we have (5.59). Furthermore, (5.60)
also holds because

m∏
i=1

(
1− (1− ε)�i

)
≤ 1− (1− ε)�1 < 1− (1− ε)L.
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This completes the proof. �

In summary, in this chapter, we transformed HCP into an optimisation prob-
lem derived from results obtained in Chapters 3 and 4. Once again, we con-
sidered spaces of probability transition matrices of Markov chains induced
by stationary policies of a Markov decision processes in which the underly-
ing given graph G has been embedded as in Chapter 4. However, instead
of fundamental matrices of these Markov chains we focussed on their neg-
ative generators corrected by an addition of a simple rank-one matrix (see
(5.10)). We demonstrated that the determinant of such a matrix can act
as a suitable functional for differentiating between Hamiltonian and non-
Hamiltonian graphs by creating a similar, but stronger, Hamiltonicity gap as
the variance of first hitting time functional discussed in Chapter 3 (compare
Theorem 3.6 and Corollary 5.3). In the process, we proved that whenever the
graph is Hamiltonian the maximal value of the above (unperturbed) deter-
minant functional is simply equal to N , the order of the graph. Furthermore,
we established desirable asymptotic properties of this functional under the
symmetric linear perturbation first introduced in Section 3.2.



Chapter 6

Traces

6.1 Introduction

In this chapter, we present an alternative optimisation model that is equiva-
lent to the Hamiltonian cycle problem. We show that instead of minimising
top-left elements of the fundamental matrices like in Chapter 3, or max-
imising the determinant of the inverse of the fundamental matrices like in
Chapter 5, one can minimise the traces of the fundamental matrices to de-
termine the Hamiltonicity of a given graph. While it is unclear whether the
trace function offers an algorithmic advantage over the top-left element or
the determinant functions, the trace operator is certainly well studied and
frequently employed. Moreover, this alternative objective function provides
new probabilistic interpretations about the link between the Hamiltonian
cycle problem and Markov chains.

6.2 Optimality at Hamiltonian Cycles

In this section, we consider a range of important properties of the trace of fun-
damental matrices—corresponding to Markov chains—induced by stationary
policies in a Markov decision process into which the underlying graph has
been embedded, as in Chapter 4. However, for simplicity of notation, we sup-
press the dependence of the probability transition matrices in question on
the policies, as these do not play an explicit role in the derivations that fol-
low. We discuss the properties of the trace functional separately for the cases
when these transition matrices are unperturbed and perturbed according to
the symmetric linear perturbation introduced in Section 3.2.
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6.2.1 Unperturbed Case

We recall from Chapter 3 that the Cesaro-limit matrix P∗ of a Markov chain
with probability transition matrix P is given by

P∗(P) = lim
T→∞

1

T + 1

T∑
t=0

Pt,

and the fundamental matrix G(P) of the Markov chain is

G(P) = (I−P+P∗)−1.

Then, the deviation matrix Z(P) is defined as follows

Z(P) = G(P)−P

= lim
T→∞

1

T + 1

T∑
t0=0

t0∑
t=0

(Pt −P∗). (6.1)

If P is aperiodic, we have

Z(P) =

∞∑
t=0

(Pt −P∗). (6.2)

When no ambiguity can arise, we simply write Z(P) as Z. In Chapter 3, we
denote by q the stationary distribution vector, by τ1 the first hitting time
of vertex 1, by Ei[τ1] the expectation of the first hitting time to vertex 1
after starting at i �= 1, and by E1[τ1] the expectation of the first return time
to vertex 1 after starting from there. Generalising the notation, we denote
by τi the first hitting time of vertex i, for i ∈ S, by Eq[τi] the expectation
of the first hitting time to vertex i after starting at a vertex determined by
the stationary distribution q, and by ρi the first hitting time to vertex i after
starting at vertex i.

In the irreducible case, there is a close relationship between the diagonal
elements of Z and hitting times τi. By Aldous and Fill [2, Lemma 11],

qiEq[τi] = Zii. (6.3)

Combining it with formula (21) in the same chapter, we obtain
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Ei[τ
2
i ] = 2Eq[τi]/qi + 1/qi

= 2Zii/q
2
i + 1/qi. (6.4)

Let c2i = E[ρ2i ]/(E[ρi])
2 be the coefficient of variation of ρi. Since E[ρi] = 1/qi,

it follows from (6.4) that

c2i = q2iEi[τ
2
i ]

= 2Zii + qi, i = 1, . . . , N. (6.5)

Summing over i, we get

N∑
i=1

c2i = 2

N∑
i=1

Zii + 1, (6.6)

and thus, minimising either of the two sums in (6.6) is equivalent. This gives
us an alternative probabilistic proof of the next proposition, which has been
recently obtained in Hunter [67] by linear algebraic methods.

Proposition 6.1. On a set of irreducible transition matrices P and for any
Hamiltonian cycle PH on a given graph,

min
P

Tr[Z(P)] = Tr[Z(PH)] = (N − 1)/2.

Equivalently,
∑N

i=1 c
2
i achieves its minimal value N at matrix P if and only

if P induces a Hamiltonian cycle.

Proof. If P is a Hamiltonian matrix, then for any i ∈ S, we have ρi = N
implying that c2i takes its minimal possible value 1. Thus, the Hamiltonian
cycle provides

∑
i c

2
i = N which is the minimal possible value of this sum.

Moreover, no other irreducible matrix has such a property. Indeed, in any
irreducible non-Hamiltonian Markov chain, there exists a state j such that
ρj is not deterministic, implying c2j > 1, and, consequently,

∑
i c

2
i > N . �

We now generalise Proposition 6.1 to Markov chains with arbitrary structure.
Assume that P is such that there is a class of transient states C0 and a class
of ergodic states C1.

Proposition 6.2. If C0 is a non-empty class of transient states and C1 is an
irreducible class of ergodic states induced by the matrix P, then

Tr[Z] ≥ |C0|+
|C1| − 1

2
>

N − 1

2
.

Proof. For i ∈ C0, we have qi = 0 and thus it follows from the definition of Z
that Zii ≥ 1. Furthermore, the transition probabilities restricted to C1 consti-
tute a transition matrix of a Markov chain on C1. Note that the latter Markov
chain is ergodic. Moreover, according to the definition, the deviation matrix
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Z(1) of this smaller Markov chain is the same as the corresponding block of
the matrix Z of the original chain. Thus, it follows from Proposition 6.1 that∑

i∈C1

Zii = Tr[Z(1)] ≥ |C1| − 1

2
,

and the equality is achieved on a Hamiltonian cycle in the sub-graph whose
vertices are from C1. Putting everything together, we get

Tr[Z] =
∑
i∈C0

Zii +
∑
i∈C1

Zii ≥ |C0|+
|C1| − 1

2
>

N − 1

2

where the last inequality follows simply because N = |C0|+ |C1|. �

It follows from the above proposition that the chains with one ergodic and
one transient class of states can not be candidates for minimizing Tr[Z]. Now,
consider a multi-chain with several ergodic classes. Without loss of generality,
we unite all transient states in a single transient class. The following theorem
is a generalization of [67, Theorem 4.2] and Proposition 6.1 to the class of all
stochastic matrices.

Theorem 6.1. On a set of all stochastic matrices, the objective function
Tr[G] achieves its minimal value (N + 1)/2 at P if and only if P induces a
Hamiltonian cycle.

Proof. The argument goes as in the proof of Proposition 6.2. Assume that
P induces a Markov chain with M ergodic classes of communicating states
C1, . . . , CM . For m = 1, . . . ,M , the transition probabilities restricted to Cm
constitute a transition matrix of a Markov chain on Cm. The latter smaller
Markov chain is ergodic, and its deviation matrix Z(m) is the same as the
corresponding block of the matrix Z of the original chain. Moreover, the
corresponding block P∗(m) of P∗ is an ergodic projection of the Markov
chain on Cm. Thus, it follows from (6.5) that

Tr[Z(m) +P∗(m)] =
∑
i∈Cm

(Zii +P
∗(m)
ii )

=
1

2

∑
i∈Cm

(c2i +P
∗(m)
ii )

=
1

2

∑
i∈Cm

c2i +
1

2
, for m = 1, . . . ,M.

Now, summing over all ergodic classes and transient states and using Propo-
sition 6.2 we obtain

Tr[G] = Tr[Z+P∗] =
∑
i∈C0

Zii +

M∑
m=1

∑
i∈Cm

[Zii +P
∗(m)
ii ]
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=
∑
i∈C0

Zii +
1

2

N∑
i=1

c2i +
1

2
M ≥ |C0|+

N

2
+

M

2
≥ N + 1

2
.

We see that if all coefficients of variation equal 1 then Tr[G] is minimised if
there is only one ergodic class and no transient state. Then, we are back to
the irreducible case, and according to Proposition 6.1, the minimal value

(N − 1)/2 +
N∑
i=1

P∗
ii = (N − 1)/2 +

N∑
i=1

qi = (N + 1)/2

is achieved if and only if P induces a Hamiltonian cycle. �

In Chapter 3, we formulated the Hamiltonian cycle problem as an optimisa-
tion problem, where the objective function is to minimise the first diagonal
element G11 of a fundamental matrix, rather than the trace Tr[G]. The next
proposition shows that these two criteria are equivalent on the set FDS of
doubly stochastic Markov chains. We recall that for any doubly stochastic
Markov chain, the stationary distribution vector q is uniform and thus there
cannot be any transient state.

Proposition 6.3. Both G11 and Tr[G] attain their minima over doubly
stochastic matrices at a Hamiltonian cycle when one exists.

Proof. Since all states are recurrent, any state i ∈ S belongs to one of the
disjoint ergodic classes C1, . . . , CM , each of which can be seen as a separate
doubly stochastic Markov chain. Then, assuming i ∈ C1, from (6.5) we obtain

Gii = Zii +P∗
ii = 1/2(c2i + 1/|C1|),

which is clearly minimised on a Hamiltonian cycle with c2i = 1 and 1/|C1| =
1/N . Now, let P be doubly stochastic and irreducible so that qi = 1/N ,
and assume that P minimises c2i , that is, c

2
i = 1. Then, with probability 1, ρi

equals its expectation N . Since ρi is deterministic, each state has to be visited
exactly once on the way from i back to i. Moreover, the order of visiting the
states must be fixed, otherwise, there will be a possibility to shorten or extend
the cycle. Thus, we conclude that the condition c2i = 1 in a doubly stochastic
chain ensures the Hamiltonian cycle and, consequently, c2j = 1 for all j ∈ S.
Hence, according to Proposition 6.1, Tr[G] = Tr[Z] + 1 is also minimised on
this matrix. �

Consider an arbitrary irreducible stochastic matrix P. Since c21 ≥ 1, it follows
that

G11 = Z11 + q1 = (c21 + q1)/2 > 1/2 + 1/(2N)

if q1 > 1/N . Assume now that q1 < 1/N . Then, the average cycle length
between two successive visits to state 1 is greater than N , and thus the cy-
cle typically has loops implying that the cycle length is rather variable. The



96 6 Traces

question is whether the gain in q1 can compensate for the increased coefficient
of variation when minimising G11. We partially resolve this problem by con-
sidering a particular class of Markov chains that is described in Hunter [67]
as cycle drifts. A cycle drift is defined as follows: at each state i = 1, . . . , N ,
with probability pi, the process follows a cyclic path 1 → 2 → · · · → N → 1.
With complementary probability 1 − pi, the process makes a self-loop and
stays in state i. A Hamiltonian cycle is a special case of a cycle drift, where
a probability of a self-loop is zero in each state. The following proposition
holds.

Proposition 6.4. On a class of Markov chains inducing cycle drifts, the
minimum of G11 is equal to 1/2+1/(2N), and is achieved on a Hamiltonian
cycle.

Proof. Assume that a cycle drift has a stationary distribution q with q1 ≤
1/N . Define a renewal cycle as a time between two subsequent transitions
from N to 1. We denote by C the average length of the renewal cycle. Since
the length of stay in each state is geometric, we have

C =

N∑
i=1

1/pi ≥ N.

We observe that the beginning of each renewal cycle constitutes a regenerative
epoch of our Markov process; hence, the Renewal Theory [25] implies that
for i ∈ S,

qi =
E[time in state i on a cycle]

E[C]
= 1/(piC) ≥ 1/C.

Now, we use the formula Z11 = q1Eq[τ1] to compute Z11. For Eq[τ1], we
obtain

Eq[τ1] = 0 · q1 +
N∑
i=2

qi

N∑
j=i

1

pj

=
1

C

N∑
i=2

1

pi

N∑
j=i

1

pj

=
1

2C
(

N∑
i=2

1/pi)
2 +

1

2C

N∑
i=2

(1/pi)
2

=
1

2C
(C − 1/p1)

2 + 1/(2C)

N∑
i=2

(1/pi)
2. (6.7)

It is straightforward that the second term in the last equality is minimised
when 1/pi is constant for i = 2, . . . , N . Then,
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1

pi
=

C − 1/p1
N − 1

,

and (6.7) reduces to

Eq[τ1] =
1

2C
(C − 1/p1)

2
+

1

2C

(C − 1/p1)
2

N − 1

=
C

2
(1− q1)

2 N

N − 1
.

Next, we determine which value of C ≥ N and which value of q1 ∈ [1/C, 1/N ]
minimise the function

Z11 + q1 = q1Eπ[τ1] + q1

=
C

2
(1− q1)

2q1
N

N − 1
+ q1. (6.8)

For N ≥ 3, it is easy to check that the expression on the right-hand side of
(6.8) is increasing in q1 for q1 ≤ 1/N and thus, for minimising Z11 + q1 with
given C, we have to choose the smallest value q1 = 1/C. Substituting this
into (6.8), we get

Z11 + q1 =
1

2
(1− 1/C)2

N

N − 1
+ 1/C,

which is minimised at C = N . For N = 2, the right-hand side of (6.8) achieves
its minimal value when q1 = 1/2 and C = 2. Thus, the Z11 + q1 is minimised
when pi = 1 for i ∈ S, which corresponds to the Hamiltonian cycle. �

6.2.2 Perturbed Case

In Section 6.2.1, we showed that the Hamiltonian cycle problem can be solved
by minimising Tr[G] = Tr[Z+P∗] on a class of all stochastic matrices corre-
sponding to a given graph. While theoretically interesting, this formulation is
not very practical for several reasons. First, the objective function is difficult
to compute. There is no guarantee that series in (6.1) converge fast enough.
Evaluating the matrix inverse G might be computationally demanding for
large graphs, and it requires the knowledge of P∗. Second, a deviation ma-
trix turns out to be very sensitive to small changes in the transition matrix P.
Such sensitivity finds its explanation in the theory of singularly perturbed
Markov chains. Recall that a perturbation of a Markov chain is singular if
it alters the ergodic structure of the chain, for instance, if a reducible chain
becomes irreducible, equivalently, some transient states become recurrent, or
the number of ergodic classes changes. Assume for example that the transition



98 6 Traces

matrix P hasM ergodic classes. Then, by adding small but positive transition
probabilities between two states in different classes, we change the number
of classes which leads to drastic changes in the deviation matrix [7]. In the
special case of symmetric linear perturbation, we observe this phenomenon in
Proposition 6.5. For a comprehensive survey on singularly perturbed Markov
chains and Markov decision processes, we refer to Avrachenkov et al. [5].

Given the sensitivity of the deviation matrix to singular perturbations, it
would be convenient to preserve the ergodic structure of the chain while
changing the transition probabilities. Ideally, we would like to keep the tran-
sition matrix irreducible but imposing irreducibility on P is inconvenient. A
powerful way to guarantee irreducibility is to introduce a symmetric linear
perturbation as in Chapters 3 and 5

Pε = (1− ε)P+ ε/NJ, (6.9)

for ε ∈ (0, 1). The transition matrix Pε induces a Markov chain that at each
step follows P with probability (1 − ε) and picks the next state uniformly
at random with probability ε. The symmetric perturbation ε/NJ ensures
irreducibility and aperiodicity of Pε. This implies that the corresponding
deviation matrix Z(ε) is much less sensitive to changes in P than the original
deviation matrix Z. We note that since Pε is irreducible, we have

Tr[G(ε)] = Tr[Z(ε) +P∗(ε)]
= Tr[Z(ε)] + 1, (6.10)

where G(ε) is the fundamental matrix of Pε. In what follows, we operate
with Z(ε) rather than G(ε) because Tr[Z(ε)] has a natural probabilistic in-
terpretation via the Random Target lemma [2, Chapter 2, Corollary 13]. The
results obtained for Tr[Z(ε)] apply to Tr[G(ε)] straightforwardly via (6.10).

We observe that if P is reducible then the symmetric linear perturbation
is singular. Thus, the results from perturbation analysis suggest that for any
i ∈ S, the quantity Zii(ε) tends to infinity as ε approaches 0. Therefore,
when ε is small enough, all reducible chains have a higher value of Tr[Z(ε)]
than the perturbed Hamiltonian path. Hence, a small perturbation helps to
filter out reducible matrices when minimising Tr[Z(ε)]. This argument is for-
malised in the next proposition.

Proposition 6.5.

(i) If P is reducible, then

Tr[Z(ε)] ≥ 1

Nε
.

(ii) If P induces a Hamiltonian cycle, then for all ε < 1/N ,
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Tr[Z(ε)] ≤ N − 1

2
+

(N − 1)2

2
ε. (6.11)

Proof. To prove Part (i), note that a reducible matrix P induces at least one
class C(ε) (transient or ergodic) such that in the perturbed chain,∑

j∈C(ε)
qj(ε) ≥ 1/N. (6.12)

Now, choose some state i /∈ C(ε) as an initial state. In order to reach C(ε)
starting from i, at least one ε-transition has to be made, so the mean hit-
ting time is not smaller than 1/ε. Hence, according to the Random Target
lemma [2, Chapter 2, Corollary 13],

Tr[Z(ε)] =
∑
j

qj(ε)Ei[τj(ε)] ≥
∑

j∈C(ε)
qj(ε)Ei[τj(ε)]

≥ 1

ε
qC(ε)(ε) ≥

1

Nε
.

For Part (ii), consider the perturbation of the matrix inducing a Hamiltonian
cycle. Applying the Random Target lemma and taking into account that
qj(ε) = 1/N because the perturbed matrix is doubly stochastic, we get

Tr[Z(ε)] =
∑
j

qj(ε)E1[τj(ε)] =
1

N

∑
j

E1[τj(ε)]. (6.13)

Given that no ε-transition occurs on the way from 1 to j, the last expression
of (6.13) equals (N −1)/2. The probability of at least one ε-transition on the
way from 1 to j is at most (1−(1−ε)N−1). Furthermore, after an ε-transition,
the state j has to be reached starting from some new initial distribution μ.

Using again the Random Target lemma, we obtain

Tr[Z(ε)] ≤ N − 1

2
+ (1− ((1− ε)N−1)

∑
j

qj(ε)Eμ[τj(ε)]

=
N − 1

2
+ (1− ((1− ε)N−1)Tr[Z(ε)].

It follows that

Tr[Z(ε)] ≤ N − 1

2
(1− ε)−(N−1)

=
N − 1

2
{1 + (N − 1)ε+O(ε2)}

≤ N − 1

2
+

(N − 1)2

2
ε, if ε < 1/N.



100 6 Traces

�

Proposition 6.5 implies that if ε < 1/N2, then for any reducible matrix P,
we have Tr[Z(ε)] ≥ N , whereas for a Hamiltonian matrix P, Tr[Z(ε)] is not
greater than N/2. Thus, if a Hamiltonian cycle exists, then for ε < 1/N2

a reducible matrix cannot be a candidate for minimising Tr[Z(ε)]. The dis-
advantage of this approach, however, is that a very small perturbation does
not resolve the aforementioned issues on computation and robustness of the
objective function. Later in this section, we show that for the set of stochastic
matrices, the condition ε < 1/N2 can be relaxed to ε < 1.

The matrices with symmetric linear perturbation have recently received a
lot of attention in computer science literature, mainly because these matri-
ces are used in the Google PageRank algorithm that determines popularity
of Web pages. The PageRank is defined as a stationary distribution of a
Markov chain on a set of Web pages. This Markov chain serves as an ele-
mentary model of a surfing process. At each step, with probability (1 − ε),
a surfer follows a randomly chosen out-going hyperlink of a current page,
and with probability ε, the surfer is bored and picks a new page on the Web
at random. Clearly, a jump to a random page with probability ε is exactly
the symmetric linear perturbation of a random walk on the Web graph, and
the PageRank vector is the stationary vector of Pε. Google originally chose
ε = 0.15. After the introduction of PageRank by Brin and Page [19], a lot
of work has been done on analysing the formula and on determining the ex-
act meaning of the parameter ε. We refer to Langville and Meyer [74] for
an excellent survey of PageRank research. A number of explicit results are
available on sensitivity of PageRank to small changes in the Web (see, for ex-
ample, Bianchini et al. [11]), on the influence of the damping factor ε, and on
the relation between the PageRank vector and the Web structure. However,
a lion share of papers is devoted to enhancing the PageRank computation.
A comprehensive overview on this topic can be found in Berkhin [10] and
Langville and Meyer [74].

Langville and Meyer [74] and other PageRank literature show that as t tends
to infinity, the powers Pk(ε) converge to P∗(ε) at least as fast as (1 − ε)k

approaches zero. More specifically, Haveliwala and Kamvar [61] prove that
the absolute value of the second largest eigenvalue (in modulus) of Pε is at
most (1− ε). Below we prove a stronger result for a doubly stochastic matrix
P by stating the following simple linear algebraic fact.

The matrix Pε is aperiodic; hence, the corresponding deviation matrix Z(ε)
is defined by (6.2). Moreover, the results on the eigenvalues imply that the
kth term of the series in (6.2) is of the order at most (1− ε)k, and thus the
convergence improves significantly if ε is not very small. Clearly, numerical
methods developed for computing PageRank can be applied for computing
the deviation matrix Z(ε).
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Assume that P is doubly stochastic. Then, the linearly perturbed matrix Pε

in (6.9) is also doubly stochastic, and we obtain an elementary relation

G11(ε) = Z11(ε) + q1(ε) = Z11(ε) + 1/N. (6.14)

Theorem 3.5 states that on the class of doubly stochastic matrices, G11(ε)
is minimised at the matrix inducing a Hamiltonian cycle for all ε in a small
neighborhood of zero. The proofs in Borkar et al. [18] and in Chapter 3 rely
heavily on analytic methods. In this section, we use a probabilistic approach
to show that a Hamiltonian cycle ensures a minimal value of [G(ε)]11 for any
ε ∈ (0, 1). This increases the potential applicability of the results in this line
of research, because a reasonably large value of ε helps resolve some serious
computational issues.

For notational convenience, we write

W∗(P, ε) = I−Pε +P∗(P, ε), (6.15)

and

W(P, ε) = I−Pε + 1/NJ. (6.16)

The main result of the remainder of this chapter is given in the next theorem.

Theorem 6.2. For a given Hamiltonian graph of order N and for ε ∈ (0, 1),

min
P

Tr[G(P, ε)] = Tr[G(PH, ε] = 1 +
εN − (1− (1− ε)N )

ε(1− (1− ε)N )
, (6.17)

for any PH corresponding to a Hamiltonian cycle.

The proof of Theorem 6.2 has the following structure: First, in Lemma 6.1,
we establish the relationships between eigenvalues and eigenvectors of the
matrix P and a particular matrix function of P. Unless otherwise stated,
the terms eigenvectors refer to right eigenvectors. The result of Lemma 6.1
gives rise to alternative formulas for the trace function, which we enunciate
in Corollary 6.1. Next, in Lemma 6.2 we prove that the trace of the funda-
mental matrix G(P, ε) when ε ∈ (0, 1) for any randomised policy is bounded
above by that of some deterministic policy, and bounded below by that of
some other deterministic policy. This enables us to reduce our proof from
the set of all stochastic policies to the set of all deterministic policies only.
We derive the exact formulas for four exhaustive, mutually exclusive types of
deterministic policies in Lemmas 6.3–6.6. Finally, we show that among these,
Hamiltonian cycles are minimisers for the objective function.

Let R and T be arbitrary but fixed N×N rank-one stochastic matrices, that
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is, R = er and T = ew for some vectors r,w such that r,w ≥ 0, re = 1
and we = 1, where e = (1, . . . , 1)T. We define two matrices

PR(ε) = (1− ε)P+ εR,

and

WT(PR(ε)) = I−PR(ε) +T.

For i = 1, . . . , N , we denote by λi the eigenvalues of P, by ηi the eigen-
values of PR(ε), and by s the stationary vector of WT(PR(ε)), that is,
sWT(PR(ε)) = s and se = 1. Thus, sP = (1− ε)−1(w − εr).

The relationship between the eigenvalues λi’s and the eigenvalues ηi’s was
given in Serra-Capizzano [96, Theorem 2.3]. Specifically,

ηi =

{
(1− ε)λi for i = 1, . . . , N − 1,

λN = 1 for i = N.
(6.18)

The following lemma gives the relationship between the eigenvalues and eigen-
vectors of PR(ε) and the eigenvalues and eigenvectors of WT(PR(ε)).

Lemma 6.1. For ε ∈ (0, 1) and any stochastic matrix P, every eigenvector
vi of PQ(ε) corresponding to eigenvalue ηi < 1 gives an eigenvector (I −
es)vi of AT(PQ(ε)) corresponding to eigenvalue 1 − ηi. The eigenvector e
of PQ(ε) corresponding to the eigenvalue 1 is an eigenvector of AT(PQ(ε))
corresponding to eigenvalue 1.

Proof. Because PR(ε) is irreducible, the Perron-Frobenius theorem (see Horn
and Johnson [66]) guarantees that its maximal eigenvalue 1 is simple and we
can write its Jordan canonical form L as

L =

[
U
π

]
PR(ε)

[
V e

]
, (6.19)

where Ue = 0,πPR(ε) = π,πe = 1,πV = 0,UV = IN−1 and VU =
IN − eπ. Then, it is straightforward that

L =

[
UPR(ε)V 0

0 1

]
. (6.20)

Let C be a Jordan canonical block with the same structure as that of L, with
eigenvalues 1 − ηi for i = 1, . . . , N − 1 and the last eigenvalue being 1. We
now show that C is the Jordan canonical form of WT(PR(ε)), that is,

C =

[
U
s

]
WT(PR(ε))

[
V− esV e

]
. (6.21)
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Expanding the right-hand side of (6.21) gives us[
U
s

]
(I−PR(ε) +T)

[
V− esV e

]
=

[
U(I−PR(ε) +T)V 0

s(V− esV) 1

]
=

[
I−UPR(ε)V 0

s(I−PR(ε) +T)(V− esV) 1

]
.

Focusing on the bottom-left entry of the above right-hand side, we have

s(I−PR(ε) +T)(V− esV) = s(V− (1− ε)PV− εeqV+ ewV− esV)

= sV− (w − εr)V− εrV+wV− sV

= 0,

which proves the lemma. �

Let t and r be the respective stationary vectors of W(P, ε) and W∗(P, ε),
that is, tW(P, ε) = t, rW∗(P, ε) = r, and te = re = 1. We now easily
obtain the eigenvalues and eigenvectors of the matrices W(P, ε), W∗(P, ε),
and G(P, ε).

Corollary 6.1. For ε ∈ (0, 1) and any stochastic matrix P,

(i) For i = 1, . . . , N − 1, every eigenvector vi of Pε corresponding to eigen-
value ηi < 1 gives an eigenvector (I − et)vi (respectively, (I − er)vi) of
A(P, ε) (respectively, A∗(P, ε)) corresponding to eigenvalue 1 − ηi. The
eigenvector e = (1, . . . , 1)T of P corresponding to the unique eigenvalue
1 is an eigenvector of A(P, ε) (respectively, A∗(P, ε)) corresponding to
eigenvalue 1.

(ii) For i = 1, . . . , N−1, the eigenvalues of G(P, ε) are 1 and 1/(1−(1−ε)λi).

(iii) Tr[G(P, ε)] = 1 +
N−1∑
i=1

1

1− (1− ε)λi
= Tr[(I− (1− ε)P)−1]− (1− ε)/ε.

Proof. Part (i) follows from Lemma 1 by setting R = 1/NJ and T = 1/NJ
(respectively, T = P∗(P, ε)). We obtain Parts (ii) and (iii) by (6.18) and the
well-known properties that the eigenvalues of an invertible matrix are the
reciprocals of the eigenvalues of its inverse, and that the trace of a matrix is
the sum of its eigenvalues. In the last equality of Part (iii), we note that the
eigenvalues of (I− (1− ε)P) are ε and 1− (1− ε)λi, for i = 1, . . . , N − 1. �

Lemma 6.1 indicates that the eigenvalues of WT(PR(ε)) do not depend on T
and R. This observation is crucial for our further discussion because instead
of Tr[G(P, ε)] = Tr[A−1

∗ (P, ε)] we may consider Tr[A−1(P, ε)], which is ben-
eficial as the elements of the matrix A(P, ε) depend linearly on the elements
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of P. This allows us to make the next step in the proof of Theorem 6.2, by
stating that the trace of the fundamental matrix can be maximised or min-
imised only at Markov chains associated with deterministic policies. This is
formalized in the following lemma.

Lemma 6.2. For any ε ∈ (0, 1) and for every randomised policy P, there
exist some deterministic policies D1 and D2 such that

Tr[G(D1, ε)] ≤ Tr[G(P, ε)] ≤ Tr[G(D2, ε)]. (6.22)

Proof. Let P be a randomised policy, and consider the randomisation at each
row i of P separately. Suppose a particular row i is of the following structure:

[ · · · a · · · b · · · c · · · ], (6.23)

where a, b ∈ (0, 1) and a + b + c = 1. The subsequent arguments are easily
generalisable to the case with more than three non-zero entries of the row in
consideration. Consider a policy Pγ that coincides with P in all rows except
row i, where it is replaced by

[ · · · γ · · · (1−γ)
1−a b · · · (1−γ)

1−a c · · · ], γ ∈ [0, 1]. (6.24)

For γ = a, the matrix Pγ reduces to P. By Corollary 6.1 and writing the
inverse in terms of the adjoint,

Tr[G(Pγ , ε)] = Tr[W−1(Pγ , ε)] =

N∑
i=1

detWii(Pγ , ε)

detW(Pγ , ε)
,

whereW(Pγ , ε) = I−Pε
γ+1/NJ andWii(Pγ , ε) is the matrixW(Pγ , ε) with

its ith row and ith column removed. As both detW(Pγ , ε) and detWii(Pγ , ε)
are linear functions of γ for all i = 1, . . . , N , we have

Tr[G(Pγ , ε)] =
C1(detW(Pγ , ε)) + C2

detW(Pγ , ε)
= C1 +

C2

detW(Pγ , ε)
,

for some C1, C2 constant, C1 �= 0. Differentiating the objective function with
respect to γ gives us

∂

∂γ
Tr [G(Pγ , ε)] = − C3

(detW(Pγ , ε))2
,

for some constant C3. Obviously, this partial derivative is zero for all γ ∈ (0, 1)
if C3 = 0, or never zero for all γ ∈ (0, 1) if C3 �= 0. In both cases, this implies
that Tr[G(Pγ , ε)] is a monotone function over γ ∈ [0, 1], and is maximised or
minimised at either extreme of the interval. As the ith row in Pγ=0 or Pγ=1

has at least one more zero than the ith row in P, Pγ=0 or Pγ=1 has at least
one more zero than P, and
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• either Tr[G(Pγ=0, ε)] or Tr[G(Pγ=1, ε)] ≥ Tr[G(P, ε)], and
• either Tr[G(Pγ=1, ε)] or Tr[G(Pγ=0, ε)] ≤ Tr[G(P, ε)], respectively.

Applying this process of increasing the number of zeros and consequently
reducing the number of randomisations, we can find two deterministic policies
D1 and D2 that satisfy the inequalities in (6.22). �

It follows from Lemma 6.2 that in order to prove Theorem 6.2, it suffices
to compare Tr[G(PH, ε)] to the values of Tr[G(P, ε)], where P induces a
deterministic policy. To this end, in Lemma 6.3 we derive the expression
for Tr[G(PH, ε)] and then, in Lemmas 6.4–6.6, we derive the expression for
Tr[G(P, ε)] corresponding to three other exhaustive and mutually exclusive
classes of deterministic policies.

Lemma 6.3. For any ε ∈ (0, 1) and any PH that corresponds to a Hamil-
tonian cycle, that is, a policy with a single ergodic class and no transient
states,

Tr[G(PH, ε)] = 1 +
εN − (1− (1− ε)N )

ε(1− (1− ε)N )
.

Proof. Consider a Markov walk that starts at i and is governed by P. The
Markov walk governed by the strictly substochastic matrix (1 − ε)P is a
“stopped version” of this Markov walk in which at each time step there is
a probability ε of termination. The termination time T (ε) is geometrically-
distributed with parameter ε. For i ∈ S, the (i, i)th entry of {I− (1−ε)P}−1

is equal to the expected number of visits to i in the time interval [0, T (ε)],
given that the random walk starts in state i. Now, assume that P = PH.
Then, the random walk proceeds in cycles of length N , and thus, starting
from any state i, the probability that it ever returns to i is (1−ε)N , implying
that the expected number of returns is {1−(1−ε)N}−1. Hence, from Part (iii)
of Corollary 6.1 we obtain

Tr[G(PH, ε)] =
N

1− (1− ε)N
− 1− ε

ε
= 1 +

εN − (1− (1− ε)N )

ε(1− (1− ε)N )
.

�

Lemma 6.4. For ε ∈ (0, 1) and for any P that corresponds to a deterministic
policy with � > 1 ergodic classes and no transient states,

Tr[G(P, ε)] = 1 +
�− 1

ε
+

�∑
i=1

miε− (1− (1− ε)mi)

ε(1− (1− ε)mi)
, (6.25)

where mi is the size of the ith ergodic class in P.

Proof. Consider again the diagonal elements of {I− (1−ε)P}−1. As P corre-
sponds to a deterministic policy with � > 1 ergodic classes and no transient
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states, the Markov chain given by P contains � disjoint cycles of lengths
m1, . . . ,m�, with

∑�
i=1 mi = N . For each of the cycles, we can apply the

argument from the proof of Lemma 6.3. Then, every diagonal element that
corresponds to a state in ergodic class i is given by 1/(1−(1−ε)mi). Summing
over all diagonal elements and using Corollary 6.1 (iii), we derive

Tr[G(PH, ε)] =

�∑
i=1

mi

1− (1− ε)mi
− 1− ε

ε

= 1 +
�− 1

ε
+

�∑
i=1

miε− (1− (1− ε)mi)

ε(1− (1− ε)mi)
.

To obtain the last equation, it is sufficient to subtract and add (�−1)(1−ε)/ε
in the second expression and then use the result of Lemma 6.3. �

Lemma 6.5. For any ε ∈ (0, 1) and any P that corresponds to a policy with
a single ergodic class and one or more transient states,

Tr[G(P, ε)] = (N −m+ 1) +
mε− (1− (1− ε)m)

ε(1− (1− ε)m)
,

where m < N is the size of the single ergodic class.

Proof. Let i be a transient state of the Markov chain with transition matrix
(1 − ε)P. Since P is deterministic, a Markov random walk starting at i can
never return to i. Since the (i, i)th element of {I− (1− ε)P}−1 is the average
number of visits to i on [0, T (ε)] starting from i, where T (ε) is defined as in
the proof of Lemma 6.3, we conclude that each transient state contributes
precisely one to Tr[[I−(1−ε)P]−1]. On the other hand, ergodic states form a
cycle of lengthm, and we can determine the contribution of these states by ap-
plying the argument as in the proof of Lemma 6.3 with N = m. Summing the
contributions of transient and ergodic states and applying Corollary 6.1 (iii),
we obtain the result of the lemma. �

Lemma 6.6. For any ε ∈ (0, 1) and for any P corresponding to a policy with
multiple ergodic classes and one or more transient states,

Tr[G(P, ε)] = N −
�∑

i=1

mi + 1 +
�− 1

ε
+

�∑
i=1

miε− (1− (1− ε)mi)

ε(1− (1− ε)mi)
, (6.26)

where mi is the size of the ith ergodic class in P.

Proof. The result follows by combining the proofs of Lemmas 6.4 and 6.5.�

Now we are ready to prove Theorem 6.2.

Proof of Theorem 6.2. We need to show that for any ε ∈ (0, 1) and for
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any stochastic policy P feasible on a given Hamiltonian graph, Hamiltonian
cycles are indeed the minimisers.

As the result of Lemma 6.2 enables us to reduce the proof for the set of
stochastic policies to the proof for the set of deterministic policies, by Lem-
mas 6.3–6.6 all we need to show now is, that for � > 1 and m,mi < N with∑�

i=1 mi ≤ N ,

1 +
εN − (1− (1− ε)N )

ε(1− (1− ε)N )
≤ 1 +

�− 1

ε
+

�∑
i=1

miε− (1− (1− ε)mi)

ε(1− (1− ε)mi)
, (6.27)

1 +
εN − (1− (1− ε)N )

ε(1− (1− ε)N )
≤ (N −m+ 1) +

mε− (1− (1− ε)m)

ε(1− (1− ε)m)
, (6.28)

and

1 +
εN − (1− (1− ε)N )

ε(1− (1− ε)N )

≤ N −
�∑

i=1

mi + 1 +
�− 1

ε
+

�∑
i=1

miε− (1− (1− ε)mi)

ε(1− (1− ε)mi)
. (6.29)

Note that for mi such that
∑�

i=1 mi = N , inequality (6.29) reduces to in-
equality (6.27). Therefore, we only need to focus on the last two inequalities
(6.28) and (6.29). In order to prove (6.28), it suffices to show that

N

1− (1− ε)N
≤ N −m+

m

1− (1− ε)m
. (6.30)

Define t = 1− ε, then t ∈ (0, 1). Writing both sides over a common denomi-
nator, inequality (6.30) is equivalent to

NtN

1− tN
≤ mtm

1− tm
. (6.31)

Define the function g(x) = xtx/(1− tx) for x ≥ 0. Differentiating g(x) gives
us

d

dx
g(x) =

tx(1− tx + x ln t)

(1− tx)2
.

It is straightforward that the denominator (1 − tx)2 > 0 for all x > 0. Also,
tx > 0 for all x ≥ 0. Define the function h(x) = 1− tx + x ln t for x ≥ 0, and
observe that h(0) = 0 and

d

dx
h(x) = −tx ln t+ ln t = ln t(1− tx) < 0.
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as ln t < 0 and 1 − tx > 0, for all x > 0. Therefore, h(x) is a decreasing
function and h(x) < 0 for x > 0. This implies that d

dxg(x) < 0 for x > 0 and
consequently g(x) is a decreasing function. As N > m, we obtain (6.31) and
subsequently (6.28).

Now, to prove inequality (6.29), it suffices to show that

N

1− (1− ε)N
≤ N −

�∑
i=1

mi +
�− 1

ε
+

�∑
i=1

{ mi

1− (1− ε)mi
− 1

ε
}, (6.32)

which is equivalent to

N(1− ε)N

1− (1− ε)N
+

1

ε
≤ m1(1− ε)m1

1− (1− ε)m1
+

�∑
i=2

mi(1− ε)mi

1− (1− ε)mi
. (6.33)

As we have proved that g(x) is a decreasing function for x > 0,

N(1− ε)N

1− (1− ε)N
≤ m1(1− ε)m1

1− (1− ε)m1
.

To obtain (6.33), we require

1

ε
≤ mi(1− ε)mi

1− (1− ε)mi
, (6.34)

or equivalently,

0 ≤ εmi(1− ε)mi − (1− (1− ε)mi) = (1 + εmi)(1− ε)mi − 1. (6.35)

for i = 2, . . . , �. Define fi(x) = (1 + xmi)(1 − x)mi − 1, for i = 1, . . . , � and
x ∈ [0, 1). We observe that fi(0) = 0, and differentiating fi(x) gives

d

dx
f(x) = mi(1− x)mi −mi(1 + xmi)(1− x)mi−1

= mi(1− x)mi−1{(1− x)− (1 + xmi)}
= xmi(1− x)mi−1(mi − 1) > 0

for all x ∈ (0, 1), as 2 ≤ mi ≤ N − 2. This implies that fi(x) is an increasing
function, and fi(x) > 0 for x ∈ (0, 1). Thus, we obtain (6.35) and subse-
quently (6.29). �

In summary, in this chapter, we concluded our exploration of functionals
based on Markov chains (induced by stationary policies) by focussing on the
trace of fundamental matrices corresponding to such policies. We demon-
strated that in both the perturbed and unperturbed cases these trace func-
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tionals can be used as objective functions of minimisation problems that
achieve their global minima only at policies identifying Hamiltonian cycles,
whenever the underlying graph is Hamiltonian. We note that, to date, there
has been no attempt to exploit these results to develop any algorithmic meth-
ods to find Hamiltonian cycles.



Part IV

Algorithms



Chapter 7

Linear Programming Based Algorithms

7.1 Introduction

In Chapter 4, we showed that when a graph is embedded in a suitably con-
structed Markov decision process, the associated convex domain of discounted
occupational measures is a polyhedron with extreme points corresponding to
all spanning subgraphs of the given graph. Furthermore, from Theorem 4.1
we learned that a simple cut of the above domain yields a polyhedron the
extreme points of which correspond to only two possible types: Hamiltonian
cycles and convex combinations of short and noose cycles. These properties,
naturally, suggest certain algorithmic approaches to searching for Hamilto-
nian cycles.

In this chapter, we present two methods to solve the HCP: the branch and
fix method, and the Wedged-MIP heuristic. Both methods take advantage of
the Markov decision process embedding outlined in Chapter 4. The branch
and fix method is implemented in MATLAB and results that are supplied
demonstrate the potential of this model. The Wedged-MIP heuristic is im-
plemented in IBM ILOG OPL-CPLEX and succeeds in solving large graphs,
including two of the large test problems given on the TSPLIB website main-
tained by the University of Heidelberg [98]. Both of these methods operate
in the space of discounted occupational measures, but similar methods could
be developed for the space of limiting average occupational measures.

Here, we continue exploiting properties of the space of discounted occupa-
tional measures in the Markov decision process associated with a graph G,
as outlined in Chapter 4. In particular, we apply the non-standard branch
and bound method of Filar and Lasserre [50] to Feinberg’s embedding of the
HCP in a discounted Markov decision process [44] (rather than the limiting
average Markov decision process used previously). This embedding has the
benefit that the discount parameter does not destroy the sparsity of coeffi-
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cient matrices to nearly the same extent as did the perturbation parameter
ε, used in [50] to replace the underlying probability transitions p(j|i, a) of the
MDP by the linearly perturbed transitions pε(j|i, a). We refer to the method
that arises from this embedding as the branch and fix method1.

We show that in the present application, the appropriate sub-space of dis-
counted occupational measures is synonymous with a polytope X̃β defined by
only N + 1 equality constraints and nonnegativity constraints. Using results
in Theorems 4.1 and 4.2 about the structure of extreme points of X̃β , we
conjecture that Hamiltonian cycles will be found far earlier, and the result-
ing logical branch and fix tree will have fewer branches than that for more
common polytopes. The logical branch and fix (B&F) tree that arises from
the branch and fix method is a rooted tree. The root of the logical B&F tree
corresponds to the original graph G, and each branch corresponds to a cer-
tain fixing of arcs in G. Then, a branch forms a pathway from the root of the
logical B&F tree to a leaf. These leaves correspond to particular subdigraphs
of G, which may or may not contain Hamiltonian cycles. At the maximum
depth of the logical B&F tree, each leaf corresponds to a subdigraph for which
there is exactly one arc emanating from every vertex. We refer to subdigraphs
of this type as spanning 1-out-regular subdigraphs of G. Leaves at a shallower
level correspond to subdigraphs in which there are multiple arcs emanating
from at least one vertex.

The set of all spanning 1-out-regular subdigraphs has a one-to-one corre-
spondence with the set of all deterministic policies in G. Even for graphs
with bounded out-degree, this represents a set with non-polynomial cardi-
nality. Cubic graphs, for example, have 3N distinct deterministic policies.
Hence, it is desirable to be able to fathom branches early, and consequently
restrict the number of leaves in the logical B&F tree. The special structure of
the extreme points of X̃β usually enables us to identify a Hamiltonian cycle
before obtaining a spanning 1-out-regular subdigraph, limiting the depth of
the logical B&F tree. We achieve significant improvements by introducing
into the branch and fix method additional feasibility constraints as bounds,
and logical checks that allow us to fathom branches early. This further limits
the depth of the logical B&F tree.

The resulting method is guaranteed to solve the HCP in finitely many itera-
tions. While the worst case may involve examination of exponentially many
branches, empirically we show that the number of branches required to find a
Hamiltonian cycle is generally reduced to a tiny fraction of the total number
of deterministic policies. For example, a 24-vertex Hamiltonian cubic graph
has 324 ≈ 3 × 1011 possible choices for deterministic policies, but the algo-

1 Since the speed of convergence depends more on arc fixing features than on bounds,
the name branch and fix (or B&F) method is more appropriate than branch and
bound.
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rithm finds a Hamiltonian cycle by examining only 28 branches. We observe
that Hamiltonian graphs perform better than non-Hamiltonian graphs, as
they typically have many Hamiltonian cycles spread throughout the logical
B&F tree, and only one needs to be found. However, even in non-Hamiltonian
graphs we demonstrate that the algorithm performs well. For instance, a 28-
vertex non-Hamiltonian cubic graph has 328 ≈ 2 × 1013 possible choices for
deterministic policies, but the algorithm terminates after investigating only
11,708 branches. This example highlights the ability of the B&F method to
fathom branches early, allowing us to ignore, in this case, 99.99999995% of
the potential branches.

In addition to the basic branch and fix method, we develop and compare
several branching methods for traversing the logical B&F tree that may find
Hamiltonian cycles quicker in certain graphs, and propose additional con-
straints that can find infeasibility at an earlier depth in the logical B&F
tree. We provide experimental results demonstrating the significant improve-
ment achieved by these additions. We also demonstrate that X̃β can be a
useful polytope in many other optimisation algorithms. In particular we use
X̃β , along with the additional constraints, in a mixed integer programming
model that can solve extremely large graphs using commercially available
software such as CPLEX. Finally, we present solutions of four large non-
regular graphs, with 250, 500, 1000 and 2000 vertices respectively, which are
obtained by this model.

7.2 Branch and Fix Method

In this section, we describe the branch and fix method and some of the tech-
niques used within that branch and fix method that are designed to help limit
the size of the logical branching tree. The original source for this algorithm
is Ejov et al. [31] and the presentation here is based on the PhD thesis of
Haythorpe [62].

Outline of The Branch and Fix Method

In view of the fact that it is only 1-randomised policies that prevent standard
simplex methods from finding a Hamiltonian cycle, it has been recognised for
some time that branch and bound-type methods can be used to eliminate
the possibility of arriving at these undesirable extreme points (see, for in-
stance, Filar and Lasserre [50]). However, the method reported in Filar and
Lasserre [50] uses an embedding in a long-run average MDP, with a perturba-
tion of transition probabilities that introduces a small parameter in most of
the p(j|i, a) coefficients of variables in linear constraints (4.18), thereby lead-
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ing to loss of sparsity. Furthermore, the method in Filar and Lasserre [50]
was never implemented fully, or tested beyond a few simple examples.

Theorem 4.1 indicates that 1-randomised policies induced by extreme points
of X̃β are less prevalent than might have been conjectured, since they cannot
be constructed from convex combinations of just any two deterministic poli-
cies. This provides motivation for testing algorithmic approaches based on
successive elimination of arcs that could be used to construct these convex
combinations. Since our goal is to find an extreme point xe ∈ X̃β such that

f = M−1(xe) ∈ FD,

we have a number of degrees of freedom in designing an algorithm. In par-
ticular, different linear objective functions can be chosen at each stage of
the algorithm, the parameter β ∈ (0, 1) can be adjusted, and μ ∈ (0, 1/N)
can be chosen small but not so small as to cause numerical difficulties. The
latter parameter needs to be positive to ensure that the inverse map M−1 is
well-defined. In the experiments reported here, we choose μ to be 1/N2.

The branch and fix method is as follows. We solve a sequence of linear
programs—two at each branching point of the logical B&F tree—with the
generic structure

minL(x)

subject to (7.1)

x ∈ X̃β , and additional constraints, if any, on arcs fixed earlier.

Step 1—Initiation. We solve the original LP (7.1) without any additional
constraints and with some choice of an objective function L(x), to obtain an
optimal basic feasible solution x0. We then find f0 = M−1(x0). If f0 ∈ FD,
we stop, the policy f0 identifies a Hamiltonian cycle. Otherwise, f0 is a 1-
randomised policy.

Step 2—Branching. We use the 1-randomised policy f0 to identify the
splitting vertex i, and two arcs (i, j1) and (i, j2) corresponding to the single
randomisation in f0. If there are d arcs {(i, a1), . . . , (i, ad)} emanating from
vertex i, we construct d subdigraphs: G1, G2, . . . , Gd, where in Gk the arc
(i, ak) is the only arc emanating from vertex i. These graphs are identical to
the original graph G at all other vertices. In this process we, by default, fix
an arc in each Gk.

Step 3—Fixing. In many subdigraphs, the fixing of one arc implies that
other arcs may also be fixed2, without a possibility of unintentionally elim-

2 This frequently happens in the case of cubic graphs that supplied many of our test
examples. For instance, see Figure 7.2.
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inating a Hamiltonian cycle containing already fixed arcs that are part of a
Hamiltonian cycle in the current subdigraph. Later in this section, we de-
scribe four checks for determining additional arcs that can be fixed. Once we
identify these arcs, we also fix them at this step.

Step 4—Iteration.We solve a second LP (with the objective function (7.9))
to determine if (4.19) is still satisfied with the current fixing of arcs. If so,
we repeat Step 1 with the LP (7.1) constructed for the graph at the cur-
rent branching point of the logical B&F tree, with additional constraints
derived in (7.5) and (7.6) below. This branching point may correspond to
G1, G2, . . . , Gd, or to a sub-graph constructed from one of these with the
help of additional arc fixing3.

We now briefly discuss the construction of additional constraints alluded to in
Step 4 of the B&F. If f is a Hamiltonian policy, x = M(f), and μ = 0, then
we can easily check that x satisfies (4.18)–(4.20) and, for k = 0, . . . , N − 1,

xikik+1
=

∑
a∈A(ik)

xika =
βk

1− βN
(7.2)

where (ik, ik+1) is the kth arc on the Hamiltonian cycle traced out by f .
This immediately suggests lower and upper bounds on sums of the x variables
corresponding to arcs emanating from the heads of fixed arcs. This is because
if ik+1 �= 1, ∑

a∈A(ik+1)

xik+1a − βxikik+1
= 0. (7.3)

If ik+1 = 1, then k + 1 = N and we have

−βN
∑

a∈A(1)

x1a + βxiN−1,1 = 0. (7.4)

For μ > 0, analogous, but more complex, expressions for the preceding sums
can be derived and the relationship (7.3) between these sums at successive
vertices on the Hamiltonian cycle, for ik+1 �= 1, is simply∑

a∈A(ik+1)

xik+1a − βxikik+1
= μ. (7.5)

If the fixed arc is the final arc (iN , 1), we have

3 As is typical with branching methods, decisions guiding which branch to select
first are important and open to alternative heuristics. We investigate five possible
branching methods later in this section.
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−βN
∑

a∈A(1)

x1a + βxiN−1,1 =
μβ(1− βN−1)

1− β
. (7.6)

We derive equation (7.5) by simply inspecting the form of (4.18). For (7.6),
we know from (4.18) that∑

a∈A(1)

x1a − βxiN−1,1 = 1− (N − 1)μ,

and therefore

βxiN−1,1 =
∑

a∈A(1)

x1a − 1 + (N − 1)μ. (7.7)

Then, we substitute (7.7) into the left-hand side of (7.6) to obtain

−βN
∑

a∈A(1)

x1a + βxiN−1,1 = (1− βN )
∑

a∈A(1)

x1a − 1 + (N − 1)μ. (7.8)

Finally, we substitute (4.19) into (7.8) to obtain

− βN
∑

a∈A(1)

x1a + βxiN−1,1

= (1− βN )
(1− (N − 1)μ)(1− β) + μ(β − βN )

(1− β)(1− βN )
− 1 + (N − 1)μ

=
μβ(1− βN−1)

1− β
,

which coincides with (7.6).

Structure of the underlying LP in the branch and fix method

At the initiation step of the B&F method, we solve a feasibility problem
of satisfying constraints (4.18)–(4.20). This allows us to determine on which
vertex to begin branching.

At every branching point of the logical B&F tree other than the root, we solve
an additional LP that attempts to determine if we need to continue explor-
ing the current branch. As the algorithm evolves along successive branching
points of the logical B&F tree, we have additional information about which
arcs have been fixed. This permits us to perform tests to check the possibility
of finding a Hamiltonian cycle containing these fixed arcs. If we determine
that it is impossible, we fathom that branching point of the logical B&F tree
and no further exploration of that branch is required. For instance, suppose



7.2 Branch and Fix Method 119

that all fixed arcs belong to a set U . Let the objective function of a second
LP4 be

L(x) =
∑

a∈A(1)

x1a, (7.9)

and minimise (7.9) subject to constraints (4.18) and (4.20) together with
equations (7.5) and (7.6) providing additional constraints for each arc in U .
If the minimum L∗(x) fails to reach the level defined by the right-hand side

of the now omitted constraint (4.19) of X̃β , or if the constraints are infeasible,
then there exists no Hamiltonian cycle that uses all the arcs of U , and we
fathom the current branching point of the logical B&F tree. Otherwise, we
solve the LP (7.1) with the objective function5

L(x) =
∑

(i,j)∈U
{

∑
a∈A(j)

xja − β
∑

a∈A(i)

xia}, (7.10)

and with no additional constraints beyond those in X̃β . This LP will either
find a Hamiltonian cycle, or it will lead to an extreme point x′

e such that
f ′ = M−1(x′

e) is a new 1-randomised policy. Of course, alternative objective
functions L(x) could also be considered.

Arc fixing checks

There are a number of logical checks that enable us to fix additional arcs
once a decision is taken to fix a particular arc. This is best illustrated with
the help of an example. These checks are in the spirit of well-known rules for
constructing Hamiltonian cycles (see Tucker [99, Section 8.2]).

Consider the envelope graph (Figure 7.1). Figure 7.2 shows the kind of logical
additional arc fixing that can arise.

Check 1: Consider the top-left graph in Figure 7.2. The fixed arcs are (1, 2)
and (6, 3). Since the only arcs that can go to vertex 5 are (1, 5), (4, 5) and
(6, 5), we may also fix arc (4, 5) as vertices 1 and 6 already have fixed arcs
going elsewhere. In this case, we say that arc (4, 5) is free, whereas arcs (1, 5)
and (6, 5) are not free. In general, if only one free arc enters a vertex, it must
be fixed.

4 Although we call (7.9) the second LP, it is the first LP solved in all iterations other
than the initial iteration. Since it is not solved first in the initial iteration, we refer
to (7.9) as the second LP.
5 For simplicity, we are assuming here that U does not contain any arc going into
vertex 1. If such an arc were in U , the objective function (7.10) would have one term
consistent with the left-hand side of equation (7.6).
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Fig. 7.1: The envelope graph
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Fig. 7.2: Various arc fixing situations

Check 2: Consider the top-right graph in Figure 7.2. The fixed arcs are (1, 2)
and (5, 6). The arcs going to vertex 5 are (1, 5), (4, 5) and (6, 5). We cannot
choose (6, 5) as this would create a subcycle of length 2, and vertex 1 already
has a fixed arc going elsewhere, so we must fix arc (4, 5). In general, if there
are only two free arcs and fixing one arc would create a subcycle, we must
fix the other one.

Check 3: Consider the bottom-left graph in Figure 7.2. The fixed arcs are
(1, 2) and (2, 3). Since the only arcs that can come from vertex 6 are (6, 2),
(6, 3) and (6, 5), we must fix arc (6, 5) as vertices 2 and 3 already have arcs
going into them. In this case, we say that arcs (6, 3) and (6, 5) are blocked,
whereas arc (6, 2) is unblocked. In general, if there is only one unblocked arc
emanating from a vertex, the arc must be fixed.

Check 4: Consider the bottom-right graph in Figure 7.2. The fixed arcs
are (1, 2) and (3, 6). The only arcs that can come from vertex 6 are (6, 2),
(6, 3) and (6, 5). We cannot choose (6, 2) because vertex 2 already has an in-
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coming arc, and we cannot choose (6, 3) as this would create a subcycle, so we
must fix arc (6, 5). In general, if there are two unblocked arcs emanating from
a vertex and fixing one arc would create a subcycle, we must fix the other one.

The branch and bound method given in Filar and Lasserre [50] always finds
a Hamiltonian cycle if one exists. While the branch and fix method presented
here is in the same spirit as the method in [50], we include a finite convergence
proof for the sake of completeness.

Theorem 7.1. The branch and fix method converges in finitely many steps.
In particular, if G is Hamiltonian, the algorithm finds a Hamiltonian cycle;
otherwise, the algorithm terminates after fathoming all constructed branches
of the logical B&F tree.

Proof. Given a graph G, at each stage of the algorithm, a splitting vertex is
identified and branches are created for all arcs emanating from that vertex.
As we consider every arc for this vertex and therefore explore every possibil-
ity from this vertex, the branching process cannot prevent the discovery of
a Hamiltonian cycle if one exists in the graph G. It then suffices to confirm
that none of the checking, bounding, or fixing steps in the branch and fix
method can eliminate the possibility of finding a Hamiltonian cycle.

Recall that constraints (4.19), (7.5) and (7.6) are shown to be satisfied by all
Hamiltonian cycles. Then, for a particular branching point, if the minimum
value of (7.9) constrained by (4.18), (4.20), (7.5) and (7.6) cannot achieve
the value given in (4.19), or if the constraints are infeasible, there cannot be
any Hamiltonian cycles remaining in the subdigraph. Therefore, fathoming
the branch due to the second LP (with the objective function (7.9)) cannot
eliminate any Hamiltonian cycles. Checks 1–4 above are designed to ensure
that at least one arc goes into and comes out of each vertex (while preventing
the formation of subcycles), by fixing one or more arcs in situations where
any other choice would violate this requirement. Since this is a requirement
for all Hamiltonian cycles, it follows that the arc fixing procedures previously
described cannot eliminate any Hamiltonian cycles.

The B&F method continues to search the tree until either a Hamiltonian
cycle is found, or all constructed branches are fathomed. Since none of the
steps in the B&F method can eliminate the possibility of finding a Hamil-
tonian cycle, we are guaranteed to find one of the Hamiltonian cycles in G.
If all branches of the logical B&F tree are fathomed without finding any
Hamiltonian cycles, we can conclude that G is non-Hamiltonian. �

While the branch and fix method only finds a single Hamiltonian cycle, it is
possible to find all Hamiltonian cycles by simply recording each Hamiltonian
cycle when it is found, and then continuing to search the branch and fix tree
rather than terminating.
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Corollary 7.1. The depth of the logical B&F tree has an upper bound of N .

Proof. Since at each branching point of the B&F we branch on all arcs ema-
nating from a vertex, it follows that once an arc (i, j) is fixed, no other arcs
emanating from vertex i can be fixed. Then, at each level of the branch and
fix tree, a different vertex is branched on. After N levels, all vertices will have
exactly one arc fixed, and either a Hamiltonian cycle will be found, or the
relevant LP will be infeasible and we will fathom that branch. �

In practice, the arc fixing checks ensure that we never reach this upper bound,
as we will certainly fix multiple arcs at branching points corresponding to
subdigraphs where only few unfixed arcs remain.

7.3 An Algorithm that Implements the Branch and Fix
Method

In Section 7.2, we described the branch and fix method for the HCP and
proved its finite convergence. Here, we present a recursive algorithm that
implements the method in pseudocode format, with separate component al-
gorithms for the arc fixing checks and for solving the second LP. The input
variable fixed arcs is initially input as an empty vector, as no arcs are fixed
at the commencement of the algorithm. The output term HC may either be
a Hamiltonian cycle found by the branch and fix method, or a message that
no Hamiltonian cycle was found.

Input: G, fixed arcs
Output: G, fixed arcs

begin
N ← Size(G)
for i from 1 to N

if only one arc (j, i) is free to go into vertex i
fixed arcs ← Add arc (j, i) to fixed arcs if it is not already in fixed arcs

end

if two arcs (j, i), (k, i), j �= k are free to go into i and arc (i, k) is in fixed arcs
fixed arcs ← Add arc (j, i) to fixed arcs if it is not already in fixed arcs

end

if only one arc (i, j) that emanates from i is unblocked
fixed arcs ← Add arc (i, j) to fixed arcs if it is not already in fixed arcs

end

if two arcs (i, j), (i, k), j �= k that emanate from i are unblocked, and arc (k, i)
is in fixed arcs

fixed arcs ← Add arc (i, j) to fixed arcs if it is not already in fixed arcs
end

end
end

Algorithm 7.1: Checking algorithm
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Input: G, β, fixed arcs
Output: HC

begin
N ← Size(G)
μ ← 1/N2

function value ← Algorithm 7.3: Second LP algorithm(G, β, fixed arcs)

if infeasibility is found or function value >
(1 − (N − 1)μ)(1 − β) + μ(β − βN )

(1 − β)(1 − βN )
return no HC found

end
˜Xβ ← constraints (4.18)–(4.20)
for Each arc in fixed arcs

if Arc goes into vertex 1
˜Xβ ← Add constraint (7.6)

else
˜Xβ ← Add constraint (7.5)

end
end

x ← Solve the LP (7.1) with constraints ˜Xβ

if infeasibility is found
return no HC found

elseif a HC is found
return HC

end
splitting vertex ← Identify which vertex has 2 non-zero entries in x
d ← Number of arcs emanating from splitting vertex
for i from 1 to d

Gd ← G with the d-th arc from splitting vertex fixed
(Gd, new fixed arcs) ← Algorithm 7.1: Checking algorithm(Gd, fixed arcs)
HC ← Algorithm 7.2: Branch and fix algorithm(Gd, β, new fixed arcs)
if a HC is found

return HC
end

end
if a HC is found

return HC
else

return no HC found
end

end

Algorithm 7.2: Branch and fix algorithm

Input: G, β, fixed arcs
Output: function value

begin
L(x) ← Sum of all arcs (1, j) emanating from vertex 1
˜Xβ ← constraints (4.18) and (4.20)
for each arc in fixed arcs

if arc goes into vertex 1
˜Xβ ← Add constraint (7.6)

else
˜Xβ ← Add constraint (7.5)

end
end
(x,function value) ← Solve the LP minL(x) subject to Xβ

end

Algorithm 7.3: Second LP algorithm
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Numerical results

We implement Algorithms 7.1–7.3 in MATLAB (version 7.4.0.336) and use
CPLEX (version 11.0.0) to solve all the linear programming sub-problems.
The algorithm is tested on a range of small- to medium-sized graphs. The
results are encouraging. The number of branches required to solve each of
these problems is only a tiny fraction of the number of deterministic policies.
It is clear that non-Hamiltonian graphs require more branches to solve than
Hamiltonian graphs of the same size. This is because in a Hamiltonian graph,
as soon as a Hamiltonian cycle is found, the algorithm terminates. As there
is no Hamiltonian cycle in a non-Hamiltonian graph, the algorithm only ter-
minates after fathoming all generated branches of the logical B&F tree.

We provide a sample of results in Tables 7.1 and 7.2, including a comparison
between the number of branches examined and the maximum possible num-
ber of branches (deterministic policies), and the running time in seconds.
The Dodecahedron, Petersen, and Coxeter graphs, and the Knight’s Tour
problem are well-known in the literature (see Gross and Yellen [58, p. 12]
for the first two, Gross and Yellen [58, p. 225] for the third, and Bondy and
Murty [14, p. 241] for the last). The 24-vertex graph is a randomly chosen
cubic 24-vertex graph.

Table 7.1: Preliminary results for the branch and fix method

Graph Branches Upper bound Time(s)
Dodecahedron: Ham, N = 20, arcs = 60 75 3.4868× 109 2.98

Ham, N = 24, arcs = 72 28 2.8243× 1011 1.02
8×8 Knight’s Tour: Ham, N = 64, arcs = 336 failed 9.1654× 1043 > 12 hrs

Petersen: non-Ham, N = 10, arcs = 30 53 5.9049× 104 0.99
Coxeter: non-Ham, N = 28, arcs = 84 11589 2.2877× 1013 593.40

In Table 7.2, in the first column we refer to the sets of cubic graphs with the
prescribed number of vertices in the first column, in the second column we
give the average number of branches examined by the branch and fix method,
with the average taken over all graphs in the corresponding set of graphs. In
the last three columns, we present the minimum and maximum branches ex-
amined over the set of graphs, and the average running time taken to solve
the graphs in the corresponding class.

More specifically, we consider all 10-vertex cubic graphs, of which there are 17
Hamiltonian and 2 non-Hamiltonian graphs, and all 12-vertex cubic graphs, of
which there are 80 Hamiltonian and 5 non-Hamiltonian graphs. We randomly
generate 50 cubic graphs of size N = 20, 30, 40 and 50. All of the randomly
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Table 7.2: Performance of the branch and fix method over cubic graphs

Type of graphs Average Minimum Maximum Average
branches branches branches time(s)

Hamiltonian, N = 10 2.1 1 4 0.08
Hamiltonian, N = 12 3.4 1 10 0.14

Non-Hamiltonian, N = 10 32.5 12 53 0.61
Non-Hamiltonian, N = 12 25.6 11 80 0.53

50 graphs, N = 20 29.5 1 141 1.08
50 graphs, N = 30 216.5 3 1057 10.41
50 graphs, N = 40 2595.6 52 10536 160.09
50 graphs, N = 50 40316.7 324 232812 2171.46

generated graphs are Hamiltonian. See Meringer [79] for a reference on gen-
erating cubic graphs. We run every test with β = 0.99 and μ = 1/N2.

With this basic implementation of the B&F, we are not able to obtain a
Hamiltonian solution for the 8× 8 Knight’s Tour problem after 12 hours. In
Section 7.4, however, we introduce new constraints that allow us solve this
problem in little more than a minute.

Example 7.1 We describe a solution of the envelope graph (Figure 7.1),
obtained using the aforementioned implementation of the B&F method, with
β = 0.99 and μ = 1/36. First, we solve the feasibility problem

x12 + x14 + x15 − βx21 − βx41 − βx51 = 1− 5μ,

x21 + x23 + x26 − βx12 − βx32 − βx62 = μ,

x32 + x34 + x36 − βx23 − βx43 − βx63 = μ,

x41 + x43 + x45 − βx14 − βx34 − βx54 = μ,

x51 + x54 + x56 − βx15 − βx45 − βx65 = μ,

x62 + x63 + x65 − βx26 − βx36 − βx56 = μ,

x12 + x14 + x15 =
(1− 5μ)(1− β) + μ(β − β6)

(1− β)(1− β6)
,

xia ≥ 0, for all (i, a) ∈ E(G).

The first iteration produces a 1-randomised policy where the randomisation
occurs at vertex 4. The logical B&F tree then splits into three choices: to fix
arc (4,1), (4,3) or (4,5).

The algorithm first branches on fixing arc (4,1) (Figure 7.3). As the algo-
rithm uses a depth-first search, arcs (4,3) and (4,5) will not be fixed unless
the algorithm fathoms the (4,1) branch without having found a Hamiltonian
cycle. Fixing the arc (4,1) is equivalent to eliminating arcs (4,3) and (4,5) in
the remainder of this branch of the logical B&F tree. In addition, arcs (1,4),
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Fig. 7.3: Branching on arc (4, 1)

(2,1) and (5,1) can also be eliminated because they cannot be present together
with arc (4,1) in a Hamiltonian cycle.

At the second iteration we solve two LPs. We first solve the second LP, to
check the feasibility of the graph remaining after the above round of fixing
(and eliminating) of arcs

min {x12 + x15} (7.11)

subject to

x12 + x15 − βx41 = 1− 5μ,

x23 + x26 − βx12 − βx32 − βx62 = μ,

x32 + x34 + x36 − βx23 − βx63 = μ,

x41 − βx34 − βx54 = μ,

x54 + x56 − βx15 − βx65 = μ,

x62 + x63 + x65 − βx26 − βx36 − βx56 = μ,

−β6x12 − β6x15 + βx41 =
μ(β − β6)

1− β
,

xia ≥ 0, for all (i, a) ∈ E(G).

The last equality constraint above comes from (7.6) because the fixed arc (4, 1)
returns to the home vertex. The optimal objective function returned is equal
to the right-hand side of the omitted constraint (4.19), so we cannot fathom
this branch, at this stage. Hence, we also solve the updated LP (7.1)

min {−β6x12 − β6x15 + βx41}

subject to

x12 + x15 − βx41 = 1− 5μ,

x23 + x26 − βx12 − βx32 − βx62 = μ,

x32 + x34 + x36 − βx23 − βx63 = μ,
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x41 − βx34 − βx54 = μ,

x54 + x56 − βx15 − βx65 = μ,

x62 + x63 + x65 − βx26 − βx36 − βx56 = μ,

x12 + x15 =
(1− 5μ)(1− β) + μ(β − β6)

(1− β)(1− β6)
,

xia ≥ 0, for all (i, a) ∈ E(G).

The second iteration produces a 1-randomised policy where the randomisation
occurs at vertex 3. The logical B&F tree then splits into three choices: to fix
arc (3,2), (3,4) or (3,6). The algorithm first selects the arc (3,2) to continue
the branch. The graph at this stage is shown in Figure 7.4.
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Fig. 7.4: Branching on arc (3, 2) after fixing arc (4, 1)

Applying Checks 1–4 to the remaining vertices with multiple non-fixed arcs,
we immediately see that arcs (2,6) and (1,5) must be fixed by Check 4. Once
these arcs are fixed, arcs (5,4) and (6,3) are also fixed by Check 4. At this
stage, every vertex has a fixed arc but we have not obtained a Hamiltonian
cycle; hence, we fathom the branch. Travelling back up the tree, the algorithm
next selects the arc (3,4) to branch on. Figure 7.5 shows the current graph.
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Fig. 7.5: Second branching on arc (3, 4)

Applying Checks 1–4 to the remaining vertices with multiple non-fixed arcs,
we immediately see that arc (5,6) must be fixed by Check 3. Once this
arc is fixed, arc (2,3) is also fixed by Check 3. Next, arc (6,2) is fixed by
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Check 4 and, finally, arc (1,5) is fixed by Check 3. At this stage, every vertex
has a fixed arc. Since these fixed arcs correspond to the Hamiltonian cycle
1 → 5 → 6 → 2 → 3 → 4 → 1, the algorithm terminates. The Hamiltonian
cycle is shown in Figure 7.6.
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Fig. 7.6: Hamiltonian cycle found by the B&F method

The whole logical B&F tree is illustrated in Figure 7.7.

 HC

Start

(4,3)(4,1)Iteration 1

Iteration 2

(4,5)

(3,2) (3,4) (3,6)

Fig. 7.7: The logical B&F tree for the envelope graph

We note that even in this simple example, in the worst case 36 = 729 branches
are generated. However, our algorithm is able to find a Hamiltonian cycle af-
ter examining only two.

Branching methods

A standard question when using a branching algorithm is which method of
branching to use. A major benefit of the branch and fix method is that the
checks and the second LP (7.9) often allow us to fathom a branching point
relatively early, so depth-first searching is used. However, the horizontal or-
dering of the branch tree is, by default, determined by nothing more than the
initial ordering of the vertices. For a non-Hamiltonian graph, this ordering
makes no difference as the breadth of the entire tree will need to be traversed
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to determine that no Hamiltonian cycles exist. However, for a Hamiltonian
graph, it is possible that a relabelling of the graph would result in the branch
and fix method finding a Hamiltonian cycle sooner.

While it seems impossible to predict, in advance, which relabelling of vertices
will find a Hamiltonian cycle the quickest, it is possible that the structure of
the 1-randomised policy found at each branching point can provide informa-
tion about which branch should be traversed first. Each 1-randomised policy
with the splitting vertex i contains two non-zero values xij and xik, j �= k.
Without loss of generality, assume that xij ≤ xik. We propose five branching
methods:

1. Default branching (or vertex order): the branches are traversed in the or-
der of the numerical labels of the vertices.

2. First branch on fixing (i, j), then (i, k) and then traverse the rest of the
branches in vertex order.

3. First branch on fixing (i, k), then (i, j) and then traverse the rest of the
branches in vertex order.

4. All branches are traversed in vertex order other than those corresponding
to fixing (i, j) or (i, k). The last two branches traversed are (i, j) and then
(i, k).

5. First branch on fixing (i, k), then traverse the rest of the branches other
than the branch corresponding to fixing (i, j) in vertex order, and finally
branch on fixing (i, j).

We test these five branching methods on the same sets of 50 randomly gen-
erated Hamiltonian cubic graphs as those generated for Table 7.2. In Ta-
ble 7.3, we give the average number of branches examined by the B&F for
each branching method.

Table 7.3: Average number of branches examined by the five branching methods over
sets of Hamiltonian cubic graphs

Branching 20-vertex 30-vertex 40-vertex 50-vertex
method graphs graphs graphs graphs

1 29.48 216.54 2595.58 40316.68
2 33.28 261.24 2227.24 43646.92
3 24.58 172.30 1624.50 17468.26
4 38.68 285.26 2834.44 53719.96
5 34.04 345.44 3228.44 76159.30

From the results shown in Table 7.3, it appears that Branching Method 3 is
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the best performing method for cubic graphs. The sets of cubic graphs are
produced by GENREG [79], which uses a particular strategy of ordering the
vertices that may also account for the success of Branching Method 3.

7.4 Wedge Constraints

Recall that constraints (4.18)–(4.20) that define X̃β depend upon parameters
β and μ. While the use of β is necessary in the framework of a discounted
Markov decision process, the selection of μ as a small, positive parameter is
used only to ensure that the mapping fx(i, a) = xia/xi (see (4.17)) is well-
defined. Without setting μ > 0, it is possible for xi to be 0. To illustrate this,
recall constraint (4.18)

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a))xia = νj , for j ∈ S,

where

νj =

{
1− (N − 1)μ, if i = 1,

μ, otherwise.

Rearranging constraint (4.18), we obtain

∑
a∈A(j)

xja = β

N∑
i=1

∑
a∈A(i)

p(j|i, a)xia + νj , for j ∈ S.

Since we cannot ensure that

N∑
i=1

∑
a∈A(i)

p(j|i, a)xia �= 0

for all j, we select μ > 0 to ensure that xj =
∑

a∈A(j) xja > 0. However, an

additional set of constraints, introduced in Eshragh et al. [43], can achieve
the same goal while allowing us to set μ = 0 by bounding xj away from 0. We
call these constraints wedge constraints. The wedge constraints are comprised
of the following two sets of inequalities:∑

a∈A(i)

xia ≤ β

1− βN
, for i = 2, . . . , N, (7.12)

∑
a∈A(i)

xia ≥ βN−1

1− βN
, for i = 2, . . . , N. (7.13)
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The rationale behind the wedge constraints is that when μ = 0, we know
from (7.2) that all Hamiltonian solutions to (4.18)–(4.20) take the form

xia =

{
βk/(1− βN ) if (i, a) is the kth arc on the HC,

0 otherwise.
(7.14)

In every Hamiltonian cycle, exactly one arc emanates from each vertex. If
(ik, ik+1) is an arc on a Hamiltonian cycle, then,∑

a∈A(ik)

xika = xikik+1
. (7.15)

Recall that we define the home vertex of a graph as vertex 1. Then, the initial
(0th) arc in any Hamiltonian cycle is arc (1, a), for some a ∈ A(1); therefore,
from (7.14) we obtain ∑

a∈A(1)

x1a =
1

1− βN
. (7.16)

Constraint (7.16) is already given in (4.19) if we set μ = 0. For all other ver-
tices, however, constraints (7.12)–(7.13) will partially capture a new property
of Hamiltonian solutions that is expressed in (7.14). In particular, substitut-
ing (7.14) into (7.15), for all vertices other than the home vertex, we obtain
wedge constraints (7.12)–(7.13). Recall that in a cubic graph, there are ex-
actly three arcs—say (i, a), (i, b) and (i, c)—from a given vertex i. Thus,
in 3-dimensions, the corresponding constraints (7.12)–(7.13) have the shape
indicated in Figure 7.8 that looks like a slice of a pyramid. The resulting
wedge-like shape inspires the name wedge constraints.

Fig. 7.8: Wedge constraints for a vertex in a cubic graph
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We can add wedge constraints (7.12)–(7.13) to the constraint set (4.18)–
(4.20), setting μ = 0 in the latter. However, adding wedge constraints destroys
the 1-randomised structure of non-Hamiltonian solutions that exists for the
extreme points of the feasible region specified by (4.18)–(4.20), introducing
many new extreme points to the feasible region. Since this is undesirable, we
only use wedge constraints when solving the second LP (with the objective
function (7.9)), in an attempt to determine whether a branch can be fath-
omed earlier than is the case without the wedge constraints.

The model incorporating the wedge constraints is

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a))xia = δ1j , for j ∈ S, (7.17)

xia ≥ 0, for (i, a) ∈ E(G), (7.18)∑
a∈A(i)

xia ≤ β

1− βN
, for i = 2, . . . , N, (7.19)

∑
a∈A(i)

xia ≥ βN−1

1− βN
, for i = 2, . . . , N, (7.20)

which replaces constraints (4.18) and (4.20) in the second LP (7.9). Every-
thing else in the branch and fix method is identical to the method described
in Section 7.2, except that the obtained value of the objective function (7.9)
is now compared to the right-hand side of (7.16), that is, the right-hand side
of (4.19) with μ set to 0.

We run this model on the same selection of graphs as those in Tables 7.1–7.3,
to compare its performance to that of the original branch and fix method.
There is a significant decrease in the number of branches examined, and con-
sequently in the running time of the model. Tables 7.4–7.6 show a sample
of results. We run all tests with β = 0.99, and μ = 1/N2. In Table 7.4,
we compare the number of branches examined by the B&F for five graphs
to the maximum possible number of branches (deterministic policies), and
show the running time in seconds. In Table 7.5, we solve several sets of cu-
bic graphs, and report the average number of branches examined by the
B&F over each set. We also report the minimum and maximum branches
examined over each set, and the average running time. As in Table 7.2, we
consider all 10-vertex cubic graphs, of which there are 17 Hamiltonian and 2
non-Hamiltonian graphs, and all 12-vertex cubic graphs, of which there are
80 Hamiltonian and 5 non-Hamiltonian graphs. For each set of larger cubic
graphs, we use the same graphs as were randomly generated for Table 7.2.
Table 7.6 shows the average number of branches examined by the B&F for
the same set of randomly cubic graphs shown in Table 7.5, for all five branch-
ing methods.
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Table 7.4: Preliminary results for the branch and fix method with wedge constraints
included

Graph Branches Upper bound Time(s)
Dodecahedron: Ham, N = 20, arcs = 60 43 3.4868× 109 1.71

Ham, N = 24, arcs = 72 5 2.8243× 1011 0.39
8×8 Knight’s Tour: Ham, N = 64, arcs = 336 220 9.1654× 1043 78.46

Petersen: non-Ham, N = 10, arcs = 30 53 5.9049× 104 1.17
Coxeter: non-Ham, N = 28, arcs = 84 5126 2.2877× 1013 262.28

Table 7.5: Performance of the branch and fix method with wedge constraints included
over cubic graphs

Type of graphs Average Minimum Maximum Average
branches branches branches time(s)

Hamiltonian, N = 10 2.1 1 4 0.09
Hamiltonian, N = 12 3.0 1 10 0.14

Non-Hamiltonian, N = 10 32.5 12 53 0.70
Non-Hamiltonian, N = 12 23.2 11 72 0.50

50 graphs, N = 20 14.6 1 75 0.65
50 graphs, N = 30 41.7 2 182 2.56
50 graphs, N = 40 209.2 7 1264 18.11
50 graphs, N = 50 584.4 8 2522 67.99

Table 7.6: Average number of branches examined by the five branching methods with
wedge constraints included over sets of Hamiltonian cubic graphs

Branching 20-vertex 30-vertex 40-vertex 50-vertex
method graphs graphs graphs graphs

1 14.60 41.66 209.18 584.40
2 14.76 49.94 164.74 636.88
3 11.86 38 145.54 603.24
4 17.28 50.32 152.50 632.08
5 15.32 39.42 123.72 356.32

We observe that for smaller-size graphs, wedge constraints do not improve the
performance of the B&F method. For larger-size graphs, however, a signifi-
cant improvement is evident. This is especially striking for graphs with 30–40
vertices. We also note with interest that the model with wedge constraints
included performs well when we select Branching Method 5, which is the
worst performing branching method in the model without wedge constraints.
Since Branching Method 3 also performs well, and both Branching Methods
3 and 5 involve branching first on arc (i, k), it appears that branching first
on arc (i, k) is an efficient strategy for graphs generated by GENREG when
we include wedge constraints.
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In Andramonov et al. [4], the first numerical procedure taking advantage
of the MDP embedding is used to solve graphs of similar sizes to those listed
in Tables 7.4 and 7.5. The model given in [4] is solved using the Mix Integer
Programming (MIP) solver in CPLEX 4.0. The present model outperforms
the model in [4] in terms of the number of branches examined in the cases
displayed in Tables 7.4 and 7.5. In particular, the number of branches ex-
amined to solve each graph is much reduced in the branch and fix method
when compared to similar sized graphs in [4]. In particular, to solve the 8×8
Knight’s Tour graph, between 2000 and 40000 branches were examined in the
model given in [4] (depending on the selection of parameters in CPLEX), but
only 220 were required in the branch and fix method with wedge constraints
included. This significant improvement highlights both the progress made in
this line of research over the last decade, and the advantages obtained by the
use of wedge constraints. We seek to take further advantage of the wedge con-
straints in a new mixed integer programming formulation, the Wedged-MIP
heuristic, which we describe in the next section.

7.5 The Wedged-MIP heuristic

The discussion in the preceding section naturally leads us to consider the
polytope Yβ defined by the following seven sets of linear constraints

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a)) yia = δ1j(1− βN ), for j ∈ S, (7.21)

∑
a∈A(1)

y1a = 1, (7.22)

yia ≥ 0, for (i, a) ∈ E(G), (7.23)∑
j∈A(i)

yij ≤ β, for i ∈ S\{1}, (7.24)

∑
j∈A(i)

yij ≥ βN−1, for i ∈ S\{1}, (7.25)

yij + yji ≤ 1, for (i, j), (j, k) ∈ E(G), (7.26)

yij + yjk + yki ≤ 2, for (i, j), (j, k), (k, i) ∈ E(G). (7.27)

Remark 7.1.

1. The variables yia that define Yβ are obtained from the variables xia that
define Xβ by the transformation

yia = (1− βN )xia, for (i, a) ∈ E(G).
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2. In view of Item 1, constraints (7.21)–(7.23) are merely constraints (4.18)–
(4.20) normalised by the multiplier (1 − βN ), and with μ = 0. Further-
more, constraints (7.25)–(7.24) are similarly normalised wedge constraints
(7.12)–(7.13).

3. Note that normalising (7.14) in the same way implies that if y ∈ Yβ

corresponds to a Hamiltonian cycle, then

yia ∈ {0, 1, β, . . . , βN−1}, for (i, a) ∈ E(G).

Thus, for β sufficiently near 1 all positive entries of a Hamiltonian solution
y are also either 1 (if i = 1), or close to 1. Therefore, if y ∈ Yβ is any
feasible point with only one positive entry yia for all a ∈ A(i), for each i,
then constraints (7.25)–(7.24) ensure that all those positive entries have
values near 1. Furthermore, constraints (7.26)–(7.27) ensure that at most
one such large entry is permitted on any potential 2-cycle, and at most
two such large entries are permitted on any potential 3-cycle.

4. In view of Item 3, it is reasonable to search for a feasible point y ∈ Yβ

that has only a single positive entry yia for all a ∈ A(i) and for each i.

We make the last point of the above remark precise in the following propo-
sition that is analogous to a result proved in Chen and Filar [22] for an
embedding of the HCP in a long-run average MDP. Since it forms the theo-
retical basis of our most powerful heuristic, for the sake of completeness, we
supply a formal proof below.

Proposition 7.1. Given any graph G and its embedding in a discounted
Markov decision process, consider the polytope Yβ defined by (7.21)–(7.27)
for β ∈ [0, 1) and sufficiently near 1. The following statements are equivalent:

(i) The point ŷ ∈ Yβ is Hamiltonian in the sense that the positive entries ŷia
of ŷ correspond to arcs (i, a) defining a Hamiltonian cycle in G.

(ii) The point ŷ ∈ Yβ is a global minimiser of the nonlinear program

min

N∑
i=1

∑
a∈A(i)

∑
b∈A(i),b �=a

yiayib

subject to (7.28)

y ∈ Yβ .

which gives the objective function value of 0 in (7.28).

(iii) The point ŷ ∈ Yβ satisfies the additional set of nonlinear constraints

yiayib = 0, for i ∈ S, a, b ∈ A(i), a �= b, (7.29)
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Proof. By the nonnegativity of ŷ ∈ Yβ , it immediately follows that Parts (ii)
and (iii) are equivalent.

From (7.14) and Item 3 of Remark 7.1 we note that if ŷ is Hamiltonian, it
implies Part (iii). Furthermore, if ŷ is a global minimiser of (7.28), constraints
(7.25) ensure that it must have at least one positive entry corresponding to
some arc a ∈ A(i) for each i ∈ S. Since ŷiaŷib = 0 for all a �= b, i ∈ S,
we conclude that ŷ has exactly one positive entry ŷia, for each i. We then
define x̂ ∈ X̃β by x̂ia = 1/(1− βN )ŷia for all (i, a) ∈ E(G), and use (7.14)

to construct the policy f̂ = M−1(x̂). It is clear that f̂ ∈ FD, and hence x̂ is
Hamiltonian by Part (ii) of Proposition 4.2. Since positive entries of x̂ and
ŷ occur at precisely the same arcs (i, a), ŷ is also Hamiltonian, so Part (iii)
implies Part (i). �

Corollary 7.2. If Yβ = ∅, the empty set, then the graph G is non-Hamiltonian.
If Yβ �= ∅, the (possibly empty) set of Hamiltonian solutions YH

β ⊂ Yβ is in
one-to-one correspondence with Hamiltonian cycles of G, and satisfies

YH

β = Yβ ∩ {y | (7.29) holds}.

Proof. By construction, if G is Hamiltonian, then there exists a policy f̂ ∈
FD tracing out a Hamiltonian cycle in G. Let x̂ = M(f̂) using (4.13) with
ν = eT

1 , and define ŷ = (1 − βN )x̂. Clearly, ŷ ∈ Yβ , so Yβ �= ∅. From
Proposition 7.1, it follows that ŷ satisfies (7.29). Conversely, only points in
YH

β define Hamiltonian solutions in Yβ . �

For symmetric graphs, in which arc (i, a) ∈ E(G) if and only if arc (a, i) ∈
E(G), we further improve the wedge constraints (7.25)–(7.24) by considering
the shortest path between the home vertex and each other vertex in the
graph. We define �(i, j) to be the length of the shortest path between vertices
i and j in G.

Lemma 7.1. Any Hamiltonian solution to (7.21)–(7.23) satisfies the follow-
ing constraints ∑

a∈A(i)

yia ≤ β�(1,i), for i ∈ S\{1}, (7.30)

∑
a∈A(i)

yia ≥ βN−�(1,i), for i ∈ S\{1}. (7.31)

Proof. From (7.14) and Item 3 of Remark 7.1, we know that for a Hamiltonian
cycle in which the kth arc is the arc (i, a), the corresponding variable yia = βk,
and all other yib = 0, b �= a. Therefore,∑

a∈A(i)

yia = βk. (7.32)
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Then, since it takes at least �(1, i) arcs to reach vertex i from the home
vertex 1, we immediately obtain that k ≥ �(1, i), and therefore∑

a∈A(i)

yia ≤ β�(1,i),

which coincides with (7.30). Since G is an undirected graph, we know that
�(i, 1) = �(1, i). Thus, we obtain that k ≤ N − �(1, i), and hence,∑

a∈A(i)

yia ≥ βN−�(1,i),

which coincides with (7.31). �

Given the above, we reformulate the HCP as a mixed (non-linear) integer
programming feasibility problem, which we call the Wedged-MIP heuristic,
as follows

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a)) yia = δ1j(1− βN ), for j ∈ S, (7.33)

∑
a∈A(1)

y1a = 1, (7.34)

yia ≥ 0, for (i, a) ∈ E(G), (7.35)∑
j∈A(i)

yij ≤ β�(1,i), for i ∈ S\{1}, (7.36)

∑
j∈A(i)

yij ≥ βN−�(1,i), for i ∈ S\{1}, (7.37)

yij + yji ≤ 1, for (i, j), (j, i) ∈ E(G), (7.38)

yij + yjk + yki ≤ 2, for (i, j), (j, k), (k, i) ∈ E(G), (7.39)

yiayib = 0, for i ∈ S, a, b ∈ A(i), a �= b. (7.40)

We solve the above formulation in IBM ILOG OPL-CPLEX 5.1. A benefit
of this solver is that the non-linear constraints (7.40) may be submitted in a
format usually not acceptable in CPLEX and the IBM ILOG OPL-CPLEX
CP Optimizer will interpret them in a way suitable for CPLEX. We allow
these constraints to be submitted in one of two different ways, left up to the
user’s choice. We define the operator == as follows

(a == b) =

{
1 if a = b,

0 otherwise,
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the operator ! = as follows

(a ! = b) =

{
0 if a = b,

1 otherwise,

and denote by di the number of arcs emanating from vertex i. Then, we
submit constraints (7.40) to IBM ILOG OPL-CPLEX in either of the forms∑

a∈A(i)

(yia == 0) = di − 1, for i ∈ S, (7.41)

or ∑
a∈A(i)

(yia ! = 0) = 1, for i ∈ S. (7.42)

Even though constraints (7.41) and (7.42) are theoretically identical when
added to (7.33)–(7.39), their interpretation by IBM ILOG OPL-CPLEX pro-
duces different solutions, with different running times. Neither choice solves
graphs consistently faster than the other, so if one form fails to find a solution
quickly, we try the other form. Using this model we are able to obtain Hamil-
tonian solutions efficiently for many large graphs, using a Pentium 3.4GHz
with 4GB RAM. Table 7.7 presents results for eight graphs.

Table 7.7: Running times for Wedged-MIP heuristic

Graph N Arcs β Time(hh:mm:ss)
8× 8 Knight’s Tour 64 336 0.99999 00:00:02
Perturbed Horton 94 282 0.99999 00:00:02

12× 12 Knight’s Tour 144 880 0.99999 00:00:03
250-vertex 250 1128 0.99999 00:00:16

20× 20 Knight’s Tour 400 2736 0.99999 00:20:57
500-vertex 500 3046 0.99999 00:10:01
1000-vertex 1000 3996 0.999999 00:30:46
2000-vertex 2000 7992 0.999999 10:24:05

We note that the perturbed Horton graph given here is a 94-vertex cubic
graph that, unlike the original Horton graph (96-vertex cubic graph [103]),
is Hamiltonian. The 250- and 500-vertex graphs are both non-regular graphs
that are randomly generated for testing purposes, while the 1000- and 2000-
vertex graphs come from the TSPLIB website, maintained by University of
Heidelberg [98].

We present a visual representation of a solution to the 250-vertex graph
found by the Wedged-MIP heuristic in Figure 7.9, where the vertices are



7.5 The Wedged-MIP heuristic 139

drawn as blue dots clockwise in an ellipse, with vertex 1 at the top, and the
arcs between the vertices are inside the ellipse. The arcs in the Hamiltonian
cycle found by the Wedged-MIP heuristic are highlighted red, and all other
arcs are shown in blue. While it is very difficult to make out much detail
from Figure 7.9, it serves as a good illustration of the complexity involved in
problems of this size.

Fig. 7.9: Solution to 250-vertex graph (Hamiltonian cycle in red)

Comparisons between Wedged-MIP heuristic and two TSP formu-
lations

Since we solve the Wedged-MIP heuristic in OPL-CPLEX, we investigate two
other, well-known, MIP formulations, and also solve them in OPL-CPLEX
for the same set of graphs as those in Table 7.7, as well as three randomly gen-
erated cubic Hamiltonian graphs of sizes 12, 24 and 38, as a benchmark test.
The two other formulations are the modified single commodity flow model [54]
and the third stage dependent model [101]. We select these two formulations
because they are the best performing methods of each type (commodity flow
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and stage dependent, respectively) reported in Orman and Williams [83].
Both the modified single commodity flow and the third stage dependent mod-
els were designed to solve the travelling salesman problem, so they contain
costs/distances cij for each arc (i, j) ∈ E(G). Since we only want to solve the
HCP with these formulations, we set

cij =

{
1 for (i, j) ∈ E(G),

0 for (i, j) �∈ E(G).

The modified single commodity flow model (MSCF) is formulated with deci-
sion variables xij and yij as follows

min
∑

(i,j)∈E(G)

cijxij

subject to ∑
j∈A(i)

xij = 1, for i ∈ S,

∑
i∈B(j)

xij = 1, for j ∈ S,

∑
j∈A(1)

y1j = N − 1,

∑
i∈B(j)

yij −
∑

k∈A(j)

yjk = 1, for j ∈ S\{1},

y1j ≤ (N − 1)x1j , for j ∈ A(1),

yij ≤ (N − 2)xij , for i ∈ S\{1}, j ∈ A(i),

xij ∈ {0, 1},
yij ≥ 0.

The third stage dependent model (TSD) is formulated with decision variables
xij and ytij , t ∈ S, as follows

min
∑

(i,j)∈E(G)

cijxij

subject to ∑
j∈A(i)

xij = 1, for i ∈ S,

∑
i∈B(j)

xij = 1, for j ∈ S,
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xij −
N∑
t=1

ytij = 0, for (i, j) ∈ E(G),

N∑
t=1

∑
j∈A(i)

ytij = 1, for i ∈ S,

N∑
t=1

∑
i∈B(j)

ytij = 1, for j ∈ S,

∑
(i,j)∈E(G)

ytij = 1, for t ∈ S,

∑
j∈A(1)

y11j = 1,

∑
i∈B(1)

yNi1 = 1,

∑
j∈A(i)

ytij −
∑

k∈B(i)

yt−1
ki = 0, for i ∈ S, and t ∈ S\{1}.

We run these two models on the same graphs as shown in Table 7.7, as well
as three additional randomly generated cubic Hamiltonian graphs of orders
12, 24 and 38. Table 7.8 shows the running times of these two models, along
with the Wedged-MIP heuristic running times. For each graph tested other
than the 1000- and 2000-vertex graph, we run MCSF and TSD for 24 hours,
and if no solution is found we terminate the execution. For the 1000- and
2000-vertex graphs, we allow 168 hours (1 week) before terminating.

Table 7.8: Running times (hh:mm:ss) for Wedged-MIP heuristic, MCSF and TSD

Graph N Wedged-MIP heuristic MCSF TSD
12-vertex cubic 12 00:00:01 00:00:01 00:00:01
24-vertex cubic 24 00:00:01 00:00:01 00:00:02
38-vertex cubic 38 00:00:01 00:00:01 00:21:04

8× 8 Knight’s Tour 64 00:00:02 00:00:01 > 24 hours
Perturbed Horton 94 00:00:02 00:03:04 > 24 hours

12× 12 Knight’s Tour 144 00:00:03 00:01:12 > 24 hours
250-vertex 250 00:00:16 00:29:42 > 24 hours

20× 20 Knight’s Tour 400 00:20:57 17:35:57 > 24 hours
500-vertex 500 00:10:01 > 24 hours > 24 hours
1000-vertex 1000 00:30:46 > 1 week > 1 week
2000-vertex 2000 10:24:05 > 1 week > 1 week

In summary, in this chapter, we considered the space Xβ of discounted oc-
cupational measures associated with the embedding of a given graph in a
discounted MDP as described in Chapter 4. We demonstrated that when
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modified by a small number of additional constraints, the resulting space
forms a suitable domain for a number of promising algorithmic approaches
to the HCP. We feel that this way of tackling the HCP, numerically, can be
explored much further. In particular, for graphs with large number of vertices,
using a value of β that is very close to 1 could present accuracy problems in
verifying validity of linear constraints involving that parameter. It is possible
that exploiting techniques similar to those used to develop the parameter-free
model of Section 4.5 may help resolve this problem.



Chapter 8

Interior Point and Cross-Entropy
Algorithms

8.1 Introduction

In this chapter, we briefly discuss two recent algorithms that exploit two
modern trends in optimisation in the context of our stochastic embedding of
the Hamiltonian cycle problem: the interior point method and the importance
sampling method . In particular, the first algorithm searches in the interior of
the convex domain of doubly stochastic matrices induced by a given graph,
with the goal of converging to an extreme point corresponding to a permu-
tation matrix that coincides with a Hamiltonian cycle. The search is carried
out with the help of a suitably-adapted barrier method (den Hertog [63]).
The second algorithm is a hybrid algorithm that assigns nominal costs to
edges in a given graph, and augments the graph with artificial edges (with
high costs) to form a complete graph as the base of an auxiliary instance
of the travelling salesman problem. Since it is easy to generate Hamiltonian
cycles in the resulting graph, the cross-entropy technique of Rubinstein and
Kroese [95] cleverly exploits importance sampling-type techniques, in order to
generate elite sample points that correspond to fully-randomised probability
transition matrices that begin favouring edges with low costs—the original,
authentic edges in the given graph. However, instead of waiting for this pro-
cess to converge, the presented algorithm switches to a linear programming
problem on a suitable subspace of discounted occupational measures where
the coefficients of the objective function are the entries of the best probability
transition matrix generated so far.

In Chapter 5, we characterised Hamiltonian cycles as global maxima of
suitably-constructed determinants over the space of probability transition
matrices of stationary policies in our Markov decision process. These results
can be used as a basis for alternative algorithmic approaches. In this section,
we outline one possible approach that exploits the LU-decomposition of I−P,
where P is the probability transition matrix in the interior of the set of dou-
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bly stochastic matrices induced by any given graph. These decompositions
greatly simplify the computational effort that would otherwise be needed
in implementations of interior point (logarithmic barrier)-type heuristics for
finding a Hamiltonian cycle. We discuss below the main steps of such a heuris-
tic and its numerical performance. See the PhD thesis of Haythorpe [62] for
more detail.

8.2 Interior Point Method Algorithm

Consider a constrained optimisation problem of the form

min f(x)

subject to (8.1)

hi(x) ≥ 0, for i = 1, . . . ,m,

that has a solution x∗ ∈ Rn. We assume that the feasible region Ω has a
nonempty interior, denoted by Int(Ω); that is, there exists an x such that
hi(x) > 0 for i = 1, 2, . . . ,m. We also assume that f(x) and hi(x), for
i = 1, 2, . . . ,m, are continuous functions and possess derivatives up to order 2.
This problem is often solved by an interior point method. One such method
is to consider a parameterized, auxiliary objective function of the form

F (x) = f(x)− μ

m∑
i=1

ln(hi(x)), (8.2)

for some μ > 0, and an associated, essentially unconstrained, auxiliary opti-
misation problem

minF (x)

subject to (8.3)

x ∈ Int(Ω).

For each inequality constraint, the auxiliary objective function F (x) con-
tains a logarithmic term, which ensures that F (x) increases to infinity as
hi(x) decreases to zero. The sum of logarithmic terms ensures that any min-
imiser of F (x) strictly satisfies the inequality constraints in the optimisation
model (8.1) for μ > 0. If we choose μ large enough that F (x) is strictly con-
vex, then its unique global minimiser x∗(μ) is well-defined. In well-behaved
cases, it is usually expected that as μ decreases to zero, the limit of x∗(μ)
exists and constitutes a global minimum to (8.1).

We define a sequence {μk}∞k=0 such that μk > 0 for all k and the sequence
converges to zero. We associate with this sequence a set of auxiliary objective
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functions

Fk(x) = f(x)− μk

m∑
i=1

ln(hi(x)),

which has a sequence of minimisers {xk}. It is well-known that if f(x) is con-
vex and hi(x) are concave for all i = 1, 2, . . . ,m, then xk converges to x∗ (see
den Hertog [63, pp. 49–65]). In our implementation, we select μk+1 = 0.9μk,
which is an arbitrary choice but generally performs well. A different multi-
plier besides 0.9 may be used, or left as an input parameter. We note that
although in our application f(x) is non-convex, it is still reasonable to ex-
pect an interior point method such as the above to perform well as a heuristic.

We can add linear equality constraints to the optimisation model (8.1) to
form a new problem:

min f(x)

subject to (8.4)

hi(x) ≥ 0, for i = 1, . . . ,m,

Qx = b.

Once we obtain an initial interior point satisfying the constraints in (8.4),
it is possible to convert the minimisation problem (8.4) to the minimisation
problem (8.1) by working in the null space of the equality constraintsQx = b.

We define the auxiliary objective function F (x) as in (8.2), and denote by
the matrix Z the null space of the linear equality constraints, so QZ = 0 and
the columns of Z are linearly independent. Then, given the current feasible
point xk, we find a search direction dk in the null space Z, by solving for dk

and y the system

H(xk)dk = QTy − g(xk), (8.5)

Qdk = 0, (8.6)

where g(xk) and H(xk) are, respectively, the gradient and Hessian of F (x)
evaluated at xk. By den Hertog [63], a solution to (8.5)–(8.6) is

dk = −Z(ZTH(xk)Z)−1ZTg(xk). (8.7)

By taking suitably-sized steps αk in the direction dk, we ensure that no
xk+1 = xk +αkdk violates any constraint as long as the initial x0 is feasible.

For a given graph G with the set S of vertices and the set E(G) of edges, a
common approach to the Hamiltonian cycle problem is to assign a variable
xij to each edge (i, j) ∈ E(G), and solve an associated optimisation problem.
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One convenient representation is to use a matrix P(x) = [pij(x)], where

pij(x) =

{
xij for (i, j) ∈ E(G),

0 otherwise.

Arising from an embedding of the HCP in a Markov decision process, con-
tinuous optimisation problems that are equivalent to the HCP have been
discovered. In particular, we demonstrated in Chapter 5 that the HCP is
equivalent to solving the following optimisation problem

min {− det(I−P(x) + 1/NeeT)} (8.8)

subject to ∑
j∈A(i)

xij = 1, for i ∈ S, (8.9)

∑
i∈A(j)

xij = 1, for j ∈ S, (8.10)

xij ≥ 0, for all (i, j) ∈ E(G), (8.11)

where A(i) is the set of vertices reachable in one step from vertex i. We call
constraints (8.9)–(8.11) the doubly-stochastic constraints,, and denote them
by the set DSx. Define f(P(x)) = − det(I − P(x) + 1/NeeT), then the
minimisation problem (8.8)–(8.11) can be represented as follows

min f(P(x))

subject to (8.12)

x ∈ DSx.

In this section, we solve the optimization problem (8.12) using an interior
point method that takes advantage of the particular structure of the deter-
minant objective function and the doubly-stochastic constraints, in order
to compute the derivatives efficiently. Interior point methods are now stan-
dard and described in detail in many books (see, for example, Nocedal and
Wright [82] and den Hertog [63]). Hence, we outline only the basic steps that
are essential to follow our adaptation of such a method to this particular
formulation of the HCP.

We now describe the Determinant-based Interior Point algorithm (DIPA),
which should properly be regarded as a heuristic for solving the HCP. Recall
that the HCP is equivalent to the optimisation problem

min f(P(x))

subject to constraints (8.9)–(8.11)
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Constraints (8.11) are the only inequality constraints we require of x ∈ DSx.
Thus, from (8.2), the auxiliary objective function is

F (x) = − det(I−P(x) + 1/NeeT)− μ
∑

(i,j)∈E

ln(xij). (8.13)

We take advantage of the special structure of our formulation (the DSx con-
straints and the determinant function) to develop a specific implementation
of the interior point method. After determining an initial point and initial
parameters, at each iteration of DIPA we perform the following steps:

Step 1. Calculate F (xk), and its gradient g(xk) and Hessian H(xk) at xk.

Step 2. Calculate the reduced gradient ZTg(xk) and reduced Hessian
ZTH(xk)Z.

Step 3. Find a direction vector dk and a step size αk to determine the
new point xk+1 = xk + αkdk.

Step 4. If a variable xij has converged very close to 1 or 0, fix it to this
value and alter the values of the remaining variables slightly to retain fea-
sibility. Note that fixing a value to 1 implies others must be fixed to 0, a
process we call deflation.

Step 5. Check if xk+1 corresponds to a Hamiltonian cycle after rounding
the variables to 1 or 0. If so, stop and return the Hamiltonian cycle. Other-
wise, repeat Steps 1–5 again.

We perform each step by invoking several component algorithms, which are
described in detail in Haythorpe [62]. Heyman [64] proves that the algorithm
is facilitated by the fact that for P ∈ Int(DS), we can find the LU decompo-
sition of LU = I−P without requiring prior permutations. Then,

W(P) = I−P+ 1/NeeT

= L(I+ vwT)U,

where Lv = e, U = U+ veT

N , and U
T

w = 1/Ne− eN . It can also be shown
that the elements of the gradient vector and Hessian matrix of f(P(x)) are
given by

gij(P) =
∂f(P)

∂xij
= −f(P)(aT

jQbi),

H[ij],[k�](P) =
∂2f(P)

∂xij∂xk�
= gkja

T

�Qbi − gija
T

�Qbk,
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where U
T

aj = ej , Lbi = ei, and Q = I− vwT.

We implemented DIPA in MATLAB and tested several sets of Hamiltonian
graphs. The test results are outlined in Table 8.1. Each test set contains 50
randomly-generated Hamiltonian graphs of a certain order where each vertex
degree is between 3 and 5. For each test set, we give the number of graphs
(out of the 50 generated) in which the algorithm succeeds in finding a Hamil-
tonian cycle, the average number of iterations performed, the average number
of deflations performed, the average number of function evaluations required
over the course of execution, and the average running time for each graph.
Since we implemented the interior point method in MATLAB, the running
times are not competitive when compared to similar models implemented
in compiled language. Nevertheless, we provide the running times here to
demonstrate how they grow as the order N increases.

Table 8.1: Results obtained by DIPA over sets of 50 Hamiltonian graphs of order N

N Number Average Average Average Average running
solved iterations deflations evaluations time (secs)

20 48 20.42 9.5 20.76 1.55
40 40 86.98 27.8 87.08 12.05
60 30 198.72 42.62 201.32 54.77
80 33 372.76 65.04 372.84 196.26

Example 8.1 We run DIPA on a 14-vertex cubic graph given by the follow-
ing adjacency matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· 1 1 1 · · · · · · · · · ·
1 · 1 1 · · · · · · · · · ·
1 1 · · 1 · · · · · · · · ·
1 1 · · · 1 · · · · · · · ·
· · 1 · · · 1 1 · · · · · ·
· · · 1 · · · · 1 1 · · · ·
· · · · 1 · · · 1 · 1 · · ·
· · · · 1 · · · · · 1 1 · ·
· · · · · 1 1 · · · · · 1 ·
· · · · · 1 · · · · · 1 1 ·
· · · · · · 1 1 · · · · · 1
· · · · · · · 1 · 1 · · · 1
· · · · · · · · 1 1 · · · 1
· · · · · · · · · · 1 1 1 ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A Hamiltonian cycle is found after 8 iterations. The probability given to each
edge is displayed in Figures 8.1–8.8. At iteration 1, P(x) has equal probabil-
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ities to all 42 edges, but at iteration 8, one edge from each vertex contains
most of the probability mass. The rounding process at the completion of iter-
ation 8 gives a Hamiltonian cycle 1 → 4 → 6 → 10 → 12 → 14 → 13 → 9 →
7 → 11 → 8 → 5 → 3 → 2 → 1.

Fig. 8.1: Iteration 1 Fig. 8.2: Iteration 2

Fig. 8.3: Iteration 3 Fig. 8.4: Iteration 4

Fig. 8.5: Iteration 5 Fig. 8.6: Iteration 6
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Fig. 8.7: Iteration 7 Fig. 8.8: Iteration 8

Fig. 8.9: Final Hamiltonian cycle

8.3 Cross-Entropy Algorithm

In this section, we outline a hybrid algorithm for the Hamiltonian cycle prob-
lem that is a combination of two lines of research. The first is the Cross-
Entropy method pioneered by R. Y. Rubinstein since 1990s [94] and the
second is an analytical approach based on Markov decision processes and
discussed, extensively, in this book (see, in particular, Chapters 4 and 7).

The Cross-Entropy method when applied to the travelling salesman prob-
lem relies on generating random samples of tours and then constructing a
sequence of transition probability matrices whose entries will, ultimately, be
concentrated on the edges of an optimal tour. Of course, the Hamiltonian
cycle problem can be regarded as a special case of the travelling salesman
problem and is thus, in principle, solvable by this method. On the other
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hand, the MDP-based method too searches for a probability transition ma-
trix entries of which are concentrated on the edges of a Hamiltonian cycle;
however, it does so by solving a global optimisation problem, for instance, in
the associated subspace of discounted occupational measures. The approach
proposed in this section is based on Eshragh et al. [43] and consists of two
parts:

• MDP-part—a static optimisation problem derived from the aforemen-
tioned embedding of a graph in a Markov decision process,

• CE-part—extracting information from a random sample in a manner con-
sistent with the Cross-Entropy method. This part may be used either
separately from or in conjunction with an appropriate optimisation algo-
rithm.

Consider a linear program LPHβ
of the following form

max

N∑
i=1

∑
a∈A(i)

λia xia

subject to ∑
a∈A(1)

x1a − β
∑

b∈B(1)

xb1 = 1− βN , (8.14)

∑
a∈A(i)

xia − β
∑

b∈B(i)

xbi = 0, for i ∈ S\{1}, (8.15)

∑
a∈A(1)

x1a = 1, (8.16)

xia ≥ 0, for i ∈ S, a ∈ A(i), (8.17)

βN−1 ≤
∑

a∈A(i)

xia ≤ β, for i ∈ S\{1}, (8.18)

where coefficients λia’s are yet to be specified. However, we note that con-
straints (8.14)–(8.18) correspond precisely to the constraints (7.21)–(7.24) of
the Wedged-MIP heuristics. A vector x satisfying (8.14)–(8.18) is said to be
quasi-Hamiltonian if for each i ∈ S, there exists unique ai ∈ A(i) such that
ai ∈ argmax{xia|a ∈ A(i)} and (a1, . . . , aN ) identifies a Hamiltonian cycle in
the underlying graph. We denote by Hβ the polytope defined by constraints
(8.14)–(8.17), and by WHβ the polytope defined by constraints (8.14)–(8.18).

In this section, we develop a new hybrid algorithm, Hybrid Simulation-
Optimisation (HSO), for the HCP by synthesizing Cross-Entropy (CE) and
discounted Markov decision processes. For an excellent introduction to the
Cross-Entropy method, we refer to Rubinstein and Kroese [95]. We note that
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for any Hamiltonian cycle in the graph G, there exists some objective function
coefficient matrix Λ = [λij ] for which the corresponding Hamiltonian solution
of (8.14)–(8.18) maximises that objective function. Thus, we try to construct
such a matrix by applying an adaptive procedure as in the CE method, and
then supply the matrix to LPHβ

. We use the terms Hamiltonian cycle and
tour interchangeably.

Consider a given graph G which may or may not contain Hamiltonian cycles.

Preliminary Set-up. Augment G with artificial edge to make the given
graph a complete one with no self-loops. The edges in the original graph G
are now called authentic edges to differentiate them from the newly-inserted
artificial edges. Assign a length �ia to each edge (i, a) as follows:

�ia ∼
{

U(0, ω) if (i, a) is an authentic edge,

U(μ, μ+ σ) otherwise,

where U(a, b) denotes the uniform distribution on the interval [a, b]. Here,
ω, μ, and σ are arbitrary positive real numbers, the only restriction is that
ω � μ, where � (respectively, �) means sufficiently smaller (respectively,
sufficiently greater). We can, for example, set ω = O(N1/η), μ = O(N1+ς/η),
and σ = ω, for η, ς > 1. Since lengths are generated from continuous distribu-
tions, the total length L(Θ) of a random tour Θ, defined to be the finite sum
of N continuous random variables, is a continuous random variable. Hence,
for two distinct tours Θi and Θj ,

P{L(Θi) = L(Θj)} = 0.

This means that, with probability 1, the shortest tour is unique and if the
original graph is Hamiltonian, then the length of an optimal tour must be
less than Nω. If the graph is not Hamiltonian, that length will be at least μ.

Set up the initial transition probability matrix P0 = [p0,ia], where

p0,ia =

⎧⎨⎩
1

|A(i)| −
N − 1− |A(i)|

|A(i)| ε if (i, a) is an authentic edge,

ε otherwise.

Here, 0 < ε < 1/(N − 1− |A(i)|) is a small positive real number. We can
interpret the element pt,ia of a corresponding matrix Pt as the probability of
(i, a) belonging to the shortest tour, given the observations obtained up to
the end of iteration number t.

Step 0. Set t = 0.

Step 1. Set t = t+ 1.
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Step 2. Obtain random tours Θ1, Θ2, . . . , Θn from Pt−1 as follows:

• generate 100ζ percent of the tours based on the rows of Pt−1, and
• generate the remaining 100(1− ζ) percent based on the columns of Pt−1,

where ζ ∈ [0, 1] is chosen arbitrarily. If ζ = 1, the random tour generation
is the same as in CE. The former tours are called direct tours, the latter are
called reverse tours1.

If a tour with total length of less than Nω has been generated,
go to Step 6;
else, go to Step 3.

Step 3. Update matrix Pt with the best m generated tours, 0 < m ≤ N ,
in an analogous way to that mentioned in CE algorithm (Rubinstein and
Kroese [95]), that is,

γ∗
t ∈ argmin

γ
{1/m

m∑
j=1

e−L(Θ(j))/γ ≥ ρ},

p∗t,ia =

∑
1≤j≤m:Θ(j)(i,a)

e−L(Θ(j))/γ
∗
t

m∑
j=1

e−L(Θ(j))/γ
∗
t

,

where the summation over “1 ≤ j ≤ m : Θ(j) � (i, a)” denotes summation
over the set of all tours passing through the arc (i, a) selected from the set
of best m generated tours, and

Pt = (1− α)Pt−1 + αP∗
t ,

where α is a smoothing parameter chosen from the interval (0,1).

If {t is large enough} AND {(pt,ia � 0 for some i ∈ S and a /∈ A(i))
or (pt,ia � 1 for all i ∈ S and a ∈ A(i))},

go to Step 7;
else, go to Step 4.

Step 4. Define Λ̃ = Pt. Set all entries of the matrix Λ̃ corresponding to
artificial edges equal to zero, then normalise each row to keep it a transition
probability matrix. Denote the resulting matrix by Λ = [λia], and consider
it as the objective function coefficient matrix of LPHβ

, then solve this linear

1 We note that Pt−1 may not be a doubly stochastic matrix. Hence, in an interme-
diate phase (to generate reverse tours), each column of this matrix is normalised.
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program. Denote an optimal solution by x∗ = {x∗
ia|i ∈ S, a ∈ A(i)}.

If x∗ is a quasi-Hamiltonian solution,
then go to Step 6,
else go to Step 5.

Step 5. If for any t > r and some r, say r = 20,

Lt = Lt−1 = · · · = Lt−r+1, (8.19)

reset Pt by Pt = (1−α̂)P0+α̂Pt, where α̂ is a fixed parameter chosen
from the interval (0, 1).

Go to Step 1.

Step 6. The graph is Hamiltonian, STOP.

Step 7. The graph is likely to be non-Hamiltonian, STOP.

Since it is proved in Margolin [77] that typical modifications of the CE al-
gorithm converge to an optimal solution in a finite number of steps with
probability one, it could be argued that the CE-part might be sufficient for
the HSO algorithm. Of course, even the CE-part differs slightly from the
basic CE method2, as the concept of generating reverse tours is introduced
in the above HSO algorithm. However, the main reason for augmenting the
MDP-part is the numerical performance. Our numerical experiments show
that the MDP-part has a significant effect on decreasing the search-time for
finding a tour in a Hamiltonian graph.

We implement the HSO algorithm in MATLAB using an efficient random
number generator taken from Gentle [55, Section 1.2]. For solving LPHβ

,
we use CPLEX software. Furthermore, in order to prevent the algorithm
from jamming, if after some consecutive iterations, say 20, the best solution
achieved, Lt, does not change, then the probability transition matrix Pt is
reset as expressed in the Step 5 of the HSO algorithm. In all numerical ex-
amples, we set ω = N , μ = N3, σ = N2, ε = 1/N5, m = 0.85N , ρ = 1/N3,
β = 0.9999 and α̂ = 0.25.

Preliminary numerical results show that, in most of Hamiltonian graphs, the
basic CE method does not converge to a deterministic policy corresponding
to a Hamiltonian cycle containing only authentic edges. More precisely, in
these Hamiltonian cycles, most of early edges (starting at home vertex 1) are
authentic and some of the latter edges are artificial. This is understandable,

2 By the basic CE method, we mean that all generated tours are direct tours, that is,
the CE-part with ζ = 1.



8.3 Cross-Entropy Algorithm 155

as authentic edges have, potentially, larger probabilities, they have higher
chances of being chosen when the algorithm tries to generate a random tour.
This means that most of authentic edges are generated in early steps, and
then, after the algorithm reaches some vertex, there are no (or very few) au-
thentic edges available and hence some artificial edge is selected.

To overcome this difficulty, we generate reverse tours. Numerical results show
that generating some reverse tours as a part of a sample can, significantly,
speed up the rate of convergence to a Hamiltonian cycle comprising of all au-
thentic edges. For example, we present the results of solving the 8×8 Knight’s
Tour problem with different values of ζ in Table 8.2. In these examples,
N = 1000 and α = 0.8. The first column of Table 8.2 contains 11 distinct
values of ζ, the second column shows the number of iterations that the algo-
rithm took to find a Hamiltonian cycle containing only authentic edges and
the last column determines which part of the algorithm caused termination.

Table 8.2: Solving the HCP for the 8×8 Knight’s Tour problem.

ζ Iteration Terminated by
0.50 24 CE-part
0.55 19 MDP-part
0.60 6 MDP-part
0.65 5 MDP-part
0.70 36 CE-part
0.75 17 CE-part
0.80 18 CE-part
0.85 19 CE-part
0.90 19 CE-part
0.95 15 CE-part
1.00 19 CE-part

Table 8.2 indicates that the value of ζ = 0.65 seems to be the most appro-
priate selection for this parameter. Interestingly, this value of ζ led to the
best solution times in many other numerical examples as well. Thus, we set
ζ = 0.65 in all subsequent examples.

With these parameter settings, we solved many Hamiltonian graphs with
the HSO algorithm, in the range of 6–256 vertices. In all these examples, the
HSO algorithm found a Hamiltonian cycle containing only authentic edges in
the graph. Table 8.3 demonstrates results of several such examples. The first
column of this table contains identification of each graph, the second one is
the sample size, the third and fourth ones are the same as columns two and
three in Table 8.2. As exhibited in Table 8.3, when the order of a graph is
small—say, fewer than 50 vertices—there is a high chance to generate a tour



156 8 Interior Point and Cross-Entropy Algorithms

in the original graph at random and, consequently, the algorithm is termi-
nated in the CE-part. However, when the order of a graph is moderate to
large—say, more than 50 vertices—the algorithm is more likely to terminate
by finding a Hamiltonian cycle through the MDP-part. Moreover, while Ru-
binstein and Kroese [95, Section 4.7] propose that the sample size should be
order of O(N2) to obtain good results from the basic CE method, here, by
generating reverse tours as well as solving LPHβ

, this order reduces to O(N).

Table 8.3: Solving the HCP for various graphs

Graph n Iteration Terminated by
Envelope Graph 20 1 CE-part
Hamiltonian Graph, N = 10 20 1 CE-part
Hamiltonian Graph, N = 12 20 1 CE-part
Hamiltonian Graph, N = 18 40 2 CE-part
Hamiltonian Graph, N = 20 50 2 CE-part
Hamiltonian Graph, N = 24 50 1 CE-part
Hamiltonian Graph, N = 30 100 4 CE-part
Hamiltonian Graph, N = 38 100 2 CE-part
Hamiltonian Graph, N = 48 400 9 MDP-part
8×8 Knight’s Tour 1000 5 MDP-part
10×10 Knight’s Tour 1000 47 MDP-part
12×12 Knight’s Tour 2000 42 MDP-part
14×14 Knight’s Tour 3000 397 MDP-part
16×16 Knight’s Tour 4000 277 MDP-part

Another advantage of this algorithm is that including both CE-part and
MDP-part can alleviate drawbacks of each part when considered separately.
More precisely, when there are plenty of edges in the graph, there will be a
high chance to generate a Hamiltonian cycle in the graph, at random, and
while there is a small number of edges in the graph (for instance, in the family
of cubic graphs) the MDP-part helps to find a Hamiltonian cycle.

8.4 Open Algorithmic Problems

In the last two chapters, we described a number of promising algorithmic
developments that exploit the stochastic approach. The DIPA algorithm de-
scribed earlier in Section 8.2 is based on searching the domain DS of policies
inducing doubly stochastic probability transition matrices. It employs an in-
terior point method that aimed to approach, through the interior, a global
optimum of the problem
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max
P∈DS

detW(P), (DM)

where W(P) = I − P + 1/NJ. Important special properties that made this
a tractable optimisation problem include: (a) simplicity of the structure of
the null space of the doubly stochastic constraints, and (b) availability of
an LU-type decomposition of the matrix W(P) when P lies in the interior
of DS. Unfortunately, detW(P) is a high-order polynomial in the decision
variables that are the entries of P.

However, an entirely novel re-formulation of (DM) in terms of the variables
of the above LU-decomposition should be possible. Namely, the decision vari-
ables would be the entries of the matrices L and U rather than of P. The
triangular structure of the L and U matrices in such a re-formulation should
significantly reduce the order of the polynomial of an objective function to
be optimised. The design and implementation of an effective algorithm based
on this notion constitutes a worthwhile, still open, problem.

A fundamental algorithmic difficulty of the HCP is the extreme “rarity” of
Hamiltonian cycles among the spanning subgraphs of some (typically sparse)
Hamiltonian graphs. Consequently, it is natural to try to develop methods
where the search for these cycles is over domains where they are not as rare.

Indeed, we see that the algorithm described in Section 8.3 combines the
modern simulation technique known as the Cross-Entropy method with the
polyhedral methods based on the space Xβ of discounted occupational mea-
sures discussed in Chapter 4. The idea is to use the importance sampling
type approach at initial iterations of the algorithm and then switch to one
of the classical optimisation techniques. In this approach, elite sub-samples
steer the method into the regions of the feasible domain where finding a
Hamiltonian cycle may be more likely. However, it is also natural to consider
the question whether the domain Xβ can be refined so that Hamiltonian cy-
cles are no longer so rare in the family of extreme points of the refined domain.

Exploiting the development in Chapters 4 and 7, we can constrain Xβ by

a very special single cut and a normalisation to construct a polytope X̃β that
is nonempty whenever the graph is Hamiltonian and which, in a prescribed
sense, contains all the Hamiltonian cycles among its extreme points. While
the latter polytope has already been exploited as a base of the Wedged-MIP
heuristic, there is some evidence that it may also reveal certain fundamental
properties of Hamiltonian graphs, when the parameter β is sufficiently close
to 1.

Now, transform the polytope Xβ defined by constraints (4.18)–(4.20) by set-
ting μ = 0, multiplying all constraints by 1 − βN and changing variables to
x̄ia = (1−βN )xia, for all i ∈ S, a ∈ A(i). Let us denote the transformed poly-
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tope by Hβ . The results of Sinclair [97] naturally lead to the consideration of
random walks on extreme points of specially constructed subsets of Hβ . In
fact, in Eshragh and Filar [42] two smaller polytopes WHβ and WHRp

β are
constructed in such a way that

WHRp
β ⊂ WHβ ⊂ Hβ , (8.20)

and, more importantly, the only extreme points that WHRp
β and Hβ have

in common correspond precisely to Hamiltonian cycles. This is, schemati-
cally, portrayed in Figure 8.10. Thus, the distance between extreme points of
WHRp

β and Hβ is mimimised to zero at, precisely, the points corresponding
to Hamiltonian cycles.

Then, by borrowing probability transition adaptation ideas from the Cross-
Entropy method (see Rubinstein and Kroese [95]), Eshragh and Filar [42]
construct a random walk pivoting algorithm on extreme points of WHRp

β

that converges surprisingly fast in test problems. For instance, increasing the
order of a Hamiltonian graph from 20 to 100 increases the number of random
pivots required to find a Hamiltonian cycle from 10 to only 29.

H

H

NH

WHβ

WHRp
β

Hβ

Fig. 8.10: Nesting of occupational measures polytopes.

Eshragh and Filar [42] prove that this random walk algorithm will find a
Hamiltonian cycle (if there is one) in finite time, with probability one. How-
ever, what makes this algorithm more interesting is, that the observed slow
growth of the number of random pivots in the graph order N suggests that
the following, much more powerful, result may also be true.
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Conjecture 8.1. Let Y be a suitably-designed random walk algorithm and Y be
the random variable denoting the number of extreme points that Y will need
to examine to identify a Hamiltonian cycle, if there is one. Then there exist
polynomials q1(log(β), N) and q2(log(β), N) (with positive coefficients of the
leading power of N) such that for β sufficiently near 1,

P{Y > q1(log(β), N)} ≤ e−q2(log(β),N).

We conclude this section with some additional, speculative, comments. In
particular, it can be argued that the stochastic perspective of the Hamil-
tonian cycle problem opens new opportunities for advancing the theory of
detecting special structures in complex graphs.

Once we think of a graph as a stochastic control system with the controller
making randomised choices at each vertex (according to a policy f), we can
also think of a graph as a “transmitter” generating signals that are influenced
both by the policy and by the underlying, discrete, structure of the graph.
This opens prospects of detecting, possibly very rare structures (like Hamilto-
nian cycles) in the graph by generating prescribed signals, and analysing their
properties in response to changes in controls. The rich subjects of Markov
processes, stochastic control, simulation and statistics offer many interesting
tools for this kind of investigations.



Part V

Geometric Approaches



Chapter 9

Self-similar Structure and Hamiltonicity

9.1 Introduction

The class of cubic graphs provides a convenient laboratory for studying
Hamiltonicity. This is because the Hamiltonian cycle problem is already NP-
complete for this class [53], and because there is freely available and reliable
software for enumerating all connected cubic graphs with N vertices (see,
for example, Meringer [79]). This offers an opportunity to study the whole
populations of these graphs with the goal of understanding the special nature
of the sub-populations of non-Hamiltonian graphs.

In this chapter, we exhibit a characteristic—self-similarity—structure of the
class of all cubic graphs that stems from the spectra of their adjacency ma-
trices. The structure has a fractal threadlike appearance. Points with coor-
dinates given by the mean and variance of certain simple functions of graph
eigenvalues cluster around line segments that we call filars. These are identi-
fied by the number of triangles in graphs. Zooming in reveals that these clus-
ters split into smaller segments, sub-filar , identified by the number of quad-
rangles in graphs, etc. Collectively, we refer to this fractal (or self-similar)
structure, discovered in numerical experiments, as multifilar structure. We
also provide a mathematical explanation of this phenomenon based on the
Ihara-Selberg trace formula, and compute the coordinates and slopes of all
filars in terms of Bessel functions of the first kind. We also consider the
location of non-Hamiltonian cubic graphs in the multifilar structure and ob-
serve that cubic bridge graphs not only take up characteristic positions in
that structure but also constitute a great majority of all non-Hamiltonian
cubic graphs. This observation leads to the, still open, conjecture about the
prevalence of cubic bridge graphs, discussed in Section 9.4. We note that the
analysis presented here for cubic graphs can be extended to regular graphs
of degree d.
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9.2 Preliminaries

The famous Selberg trace formula relates the eigenvalue spectrum of the
Laplace operator on a hyperbolic surface to its length spectrum—the collec-
tion of lengths of closed geodesics counted with multiplicities. An immediate
consequence of the Selberg trace formula is that the eigenvalue spectrum and
the length spectrum uniquely determine one another. A similar result is valid
for regular graphs. Two important references for the Selberg trace formula
are Ihara [68] and Ahumada [1]. To formulate this formula precisely, we need
to introduce some terminology, starting with a few definitions concerning
geodesics.

An elementary homotopy is a transformation of a closed walk of the following
form

(v1, v2, . . . , vi, . . . , vk−1, vk, v1) �→ (v1, v2, . . . , vi, vj , vi, . . . , vk−1, vk, v1),

where vj is a neighbor of vi, and the arrow can also be pointing in the opposite
direction

(v1, v2, . . . , vi, vj , vi, . . . , vk−1, vk, v1) �→ (v1, v2, . . . , vi, . . . , vk−1, vk, v1).

If one closed walk can be obtained from another by a sequence of elementary
homotopies (in either direction of the arrow), they are said to be homotopic.
A homotopy class is a set of closed walks such that every pair of closed walks
in the set are homotopic. In a homotopy class of closed walks, the shortest
walk is called a closed geodesic. In other words, a closed geodesic is a closed
walk with no cycles of length 2, that is, vi �= vi+2 for all i. As we are only
concerned with closed geodesics in this book, we will simply refer to them as
geodesics.

Also known as a short geodesic, a contractible is a geodesic of length 0,
or equivalently, a single vertex. A homotopy class of closed walks contain-
ing a geodesic of length 0 is equivalent to a homotopy class of closed walks
such that each member is either a single vertex or a union of two or more
joint cycles of length 2. A long geodesic is a geodesic of length greater than
zero, which from now on we refer to as simply a geodesic. A geodesic of
length 3, 4 or 5 is equivalent to a cycle of length 3, 4 or 5. On the other
hand, a geodesic of length 6 or longer can be a union of joint cycles. Con-
sider a geodesic g = (v1, v2, . . . , v�, v1) of length �. Another geodesic is
said to be a k-multiple of g, denoted as gk, if it simply traces out g for
k times: gk = ({v1, v2, . . . , v�, v1}, {v1, v2, . . . , v�, v1}, . . . , {v1, v2, . . . , v�, v1}).
A geodesic is said to be primitive if it is not a multiple of a shorter geodesic.
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9.3 Self-similar Multifilar Structure

We denote by λi, i = 1, . . . , N , eigenvalues of the adjacency matrix A of a
given cubic graph, and choose t ∈ (0, 1/3) to guarantee that the inverse of
I−tA exists. Then, it is clear that eigenvalues of (I−tA)−1 are (1−tλi)

−1. For
each adjacency matrixA, we define the expected value function of (1−tλi)

−1,
with respect to uniform distribution on the N eigenvalues, to be

μ(A, t) =
1

N
Tr[(I− tA)−1]

=
1

N

N∑
i=1

1

1− tλi
, (9.1)

and the variance function to be

σ2(A, t) =
1

N
Tr[(I− tA)−2]− μ2(A, t)

=
1

N

N∑
i=1

1

(1− tλi)2
− μ2(A, t). (9.2)

For numerical experiments presented here, we choose t = 1/9 ∈ (0, 1/3). We
illustrate this procedure with the following example.

Example 9.1 We consider the labelled Petersen graph (Figure 9.1), which
was also considered in Example 2.2.

Fig. 9.1: Labelled Petersen graph

1

2

34

5
6 7

89

10

The adjacency matrix A of the Petersen graph, the only 10-vertex cubic graph
that is non-Hamiltonian, is
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· 1 · · 1 · · · · 1
1 · 1 · · · 1 · · ·
· 1 · 1 · · · 1 · ·
· · 1 · 1 · · · 1 ·
1 · · 1 · 1 · · · ·
· · · · 1 · 1 1 · ·
· 1 · · · 1 · · 1 ·
· · 1 · · 1 · · · 1
· · · 1 · · 1 · · 1
1 · · · · · · 1 1 ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.3)

Thus,

μ(A, 1/9) = 1/10Tr[(I− 1/9A)−1] = 1.0398, (9.4)

and

σ2(A, 1/9) = 1/10Tr[(I− 1/9A)−2]− μ2(A, 1/9) = 0.0445, (9.5)

and we obtain the point (1.0398, 0.0445) for the Petersen graph.

Figure 9.2 shows the plot of (μ(A), σ2(A)) across all 509 cubic graphs of
order 14, which exhibits a self-similar multifilar structure.

In order to explain why pairs of coordinates of certain graphs belong to
particular filars, we start by establishing alternative formulae for μ(A, t) and
σ2(A, t). Let p� be the number of all walks of length � in the graph G, for
� ≥ 0. It is well known (see, for example, van Dam and Haemers [28]) that the
ith diagonal element of the �th power of A, namely [A�]ii, is the number of
closed walks of length � starting at i. Hence, for any t such that the spectral
radius of tA is less than 1,

μ(A, t) =
1

N
Tr

[
(I− tA)−1

]
=

1

N
Tr

[
I+ tA+ t2A2 + · · ·

]
=

1

N

[
N + tp1 + t2p2 + t3p3 + · · ·

]
=

1

N

∞∑
i=0

tipi. (9.6)

The infinite sum in (9.6) resembles the trace of the matrix exponential of tA

Tr[etA] =
∞∑
i=0

ti

i!
pi. (9.7)
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Fig. 9.2: Mean-Variance (trace of resolvent) plot for cubic graphs of order 14

Mnev [80, Lemma 1] presents a recent proof of the Selberg trace formula
for regular graphs, which gives a closed-form expression for (9.7). We restate
here the theorem, in our context.

Theorem 9.1. For a given d-regular graph G of order N ,

Tr[etA] = N
q + 1

2π

∫ 2
√
q

−2
√
q

dsest
√
4q − s2

(q + 1)2 − s2
+

∑
γ∈G

Λ(γ)q|γ|/2I|γ|(2
√
qt),

(9.8)

where q = d − 1, |γ| is the length of a long geodesic γ, Λ(γ) = |γ′| if γ is
a multiple of a primitive geodesic γ′, Λ(γ) = |γ| if γ is primitive itself, and
I|γ|(z) denotes the Bessel function of the first kind.

In (9.8), the first summand is the contribution of the homotopy classes of
short geodesics, and the second summand is the contribution of the homotopy
classes of long geodesics. Recall that a geodesic is the shortest walk of its
homotopy class, and a geodesic is a short geodesic if it has length 0 and a
long geodesic otherwise. Let C1(t) and C2(t) be the contributions to (9.6)
from homotopy classes of short geodesics and long geodesics, respectively.
Then,
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μ(A, t) =
1

N
(C1(t) + C2(t)) . (9.9)

By Mnev [80, equations (19), (20)], the first contribution is

C1(t) = N
3
√
1− 8t2 − 1

2(1− 9t2)
. (9.10)

and by Mnev [80, equations (26), (27)], the second contribution is

C2(t) =
∑
γ∈G

Λ(γ)√
1− 8t2

{(1−
√
1− 8t2)/(4t)}|γ|, (9.11)

Define Θ(t) = (1−
√
1− 8t2)/(4t). Substituting (9.10) and (9.11) into (9.9),

we have

μ(A, t) =
3
√
1− 8t2 − 1

2(1− 9t2)
+

1

N

∑
γ∈G

Λ(γ)√
1− 8t2

Θ|γ|(t). (9.12)

Recall that a geodesic is said to be a k-multiple of g, denoted as gk, if it
traces out g exactly k times, namely,

gk = ({v1, v2, . . . , v�, v1}, {v1, v2, . . . , v�, v1}, . . . , {v1, v2, . . . , v�, v1}).

Consequently, if we consider some geodesic γ that is a k-multiple of a primi-
tive geodesic γ′, then |γ| = k|γ′|. The set of all long geodesics in a graph G
can be partitioned into sets of primitive geodesics and their k-multiples, for
k = 1, . . . , N . Therefore, by denoting primitive long geodesics by ζ, we trans-
form equation (9.12) into

μ(A, t) =
3
√
1− 8t2 − 1

2(1− 9t2)
+

1

N

∑
ζ∈G

∞∑
k=1

|ζ|√
1− 8t2

Θk|ζ|(t)

=
3
√
1− 8t2 − 1

2(1− 9t2)
+

1

N

∑
ζ∈G

|ζ|√
1− 8t2

∞∑
k=1

Θk|ζ|(t).

When t ∈ (0, 1/3), we have that Θ(t) ∈ (0, 1). Hence,

μ(A, t) =
3
√
1− 8t2 − 1

2(1− 9t2)
+

1

N

∑
ζ∈G

|ζ|√
1− 8t2

Θ|ζ|(t)
1−Θ|ζ|(t)

=
3
√
1− 8t2 − 1

2(1− 9t2)
+

1

N

∑
ζ∈G

|ζ|√
1− 8t2

(1−
√
1− 8t2)|ζ|

(4t)|ζ| − (1−
√
1− 8t2)|ζ|

.

(9.13)
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We denote by � the length of a primitive long geodesic, � ≥ 3 and define
{m3,m4,m5, . . .} to be the length spectrum of the graph, where m� is the
number of non-oriented primitive long geodesics of length �. Next, we shall
show that the mean and the variance μ(A, t) and σ2(A, t) can be expressed
in terms of the length spectrum of the graph. In particular, we can rewrite
(9.13) as

μ(A, t) =
3
√
1− 8t2 − 1

2(1− 9t2)
+

2

N

∞∑
�=3

�m�√
1− 8t2

(1−
√
1− 8t2)�

(4t)� − (1−
√
1− 8t2)�

= H(t) +
2

N

∞∑
�=3

m�F�(t), (9.14)

where

H(t) =
3
√
1− 8t2 − 1

2(1− 9t2)
, and F�(t) =

�√
1− 8t2

(1−
√
1− 8t2)�

(4t)� − (1−
√
1− 8t2)�

.

By (9.2),

σ2(A, t) =
1

N
Tr[(I− tA)−1(I− tA)−1]− μ2(A, t)

=
1

N
Tr[

d

dt
(tI+ t2A+ t3A2 + t4A3 + · · · )]− μ2(A, t)

=
1

N

d

dt

(
tTr[(I− tA)−1]

)
− μ2(A, t)

= μ(A, t) + t
d

dt
μ(A, t)− μ2(A, t). (9.15)

By (9.14) and (9.15), we have

σ2(A, t) = H(t) +
2

N

∞∑
�=3

m�F�(t) + t
d

dt
{H(t) +

2

N

∞∑
�=3

m�F�(t)}

−H2(t)− { 2

N

∞∑
�=3

m�F�(t)}2 −
4

N

∞∑
�=3

m�H(t)F�(t)

= H(t) + tH ′(t)−H2(t) +
2

N

∞∑
�=3

m�F�(t) +
2t

N

∞∑
�=3

m�F
′
�(t)

− 4

N2
{

∞∑
�=3

m�F�(t)}2 −
4

N
H(t)

∞∑
�=3

m�F�(t), (9.16)

where
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H ′(t) = −3
t
(
−5 + 36 t2 + 3

√
1− 8 t2

)
√
1− 8 t2 (−1 + 9 t2)

2 ,

and

F ′
�(t) =

�(1− κ)�(8(4t)�t2(�+ 1− κ) + 8(1− κ)�(κ− t2) + (κ− 1)(4t)��)

t(1− κ)κ3(−(4t)� + (1− κ)�)2)
,

with κ =
√
1− 8t2. In particular, for t = 1/9, equations (9.14) and (9.16)

simplify to, respectively,

μ(A, 1/9) ≈ 1.0395 +
2

N

∞∑
�=3

m�F�(1/9), and (9.17)

σ2(A, 1/9) ≈ 0.0433 +
2

N

∞∑
�=3

m�F�(1/9) +
2

9N

∞∑
�=3

m� [F
′
�(t)]t= 1

9

− 4

N2
{

∞∑
�=3

m�F�(1/9)}2 −
4.1580

N

∞∑
�=3

m�F�(1/9), (9.18)

where

F�(1/9) =
9

73

�
√
73

(
1− 1/9

√
73

)�
(4/9)� −

(
1− 1/9

√
73

)� ,
and

[F ′
�(t)]t= 1

9

=
81

5329

�ρ((584− 72
√
73)4� + (72

√
73− 584)ρ+ (657

√
73− 5913)4��)(

−9 +
√
73

)
(−4� + ρ)

2 ,

with ρ = (9−
√
73)�. The results of these derivations, while tedious, can easily

be verified using MATLAB or MAPLE.

Rates of Change and Dominant Terms The following analysis of the
rates of change, dominant terms, slopes of and distances between filars is
similar to arguments presented in Ejov et al. [33], in which the self-similar
multifilar phenomenon was first discovered.

For various fixed values of t ∈ (0, 1/3), our experiments show that both
function F�(t) and its partial derivative F ′

�(t) decrease rapidly as � grows.
In fact, we observe that F�

(
1
9

)
≤ C110

−� and [F ′
�(t)]t= 1

9
≤ C210

−� for some

positive constants C1 and C2. It is reasonable to assume that on the other
hand, m� does not grow as fast as C10� for some positive constant C as �
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increases, and that m�+1F�+1 � m�F� for � ≥ 3.

Consequently, the contribution of the terms of F�(1/9) for � ≥ 4 in (9.18)
is insignificant compared to F3, and thus � = 3 is the dominant term in
the infinite sums in (9.17) and (9.18). Recall our observation that each filar,
where each graph has m3 triangles, is made up of sub-filars. Each of these
sub-flars consists of graphs that have exactly m4 rectangles, with m4 = 0 for
the left-most sub-filar and m4 increases by 1 from one sub-filar to the next
sub-filar to the right. Consequently, the lower endpoint of each filar is most
likely to contain a graph that has m3 triangles and zero rectangles. Therefore,
from (9.17) and (9.18), with t = 1/9, we can approximate the coordinates for
the lower end point of each filar with graphs possessing m3 triangles by

μ(m3) = 1.0395 +
2

N
m3F3(1/9), and (9.19)

σ2(m3) = 0.0433 +
2

N
m3F3(1/9) +

2

9N
m3 [F

′
3(t)]t= 1

9

− 4.1580

N
m3F3(1/9). (9.20)

Consequently, let k ∈ [0,∞), then the line (see Figure 9.3) that goes through
the lower end points of filars can be approximated by the parametric line
(x(k), y(k)), where

x(k) = 1.0395 + kF3(1/9)

≈ 1.0395 + 0.0047k, (9.21)

y(k) = 0.0433 + k{F3(t) +
1

9
[F ′

3(t)]t= 1
9
− 2.0790F3(1/9)}

≈ 0.0433 + 0.0103k. (9.22)

The slope of the line parametrically described by (9.21) and (9.22) (and rep-
resented by the black line in Figure 9.3) is 0.0103/0.0047 = 2.1901, which is
close to the experimental value of 2.04 for cubic graphs of 14 vertices.

The observation that � = 3 is the dominant term in the infinite sums in
(9.17) and (9.18) also explains why in the self-similar structure in Figure 9.2
if two cubic graphs have the same number of triangles, then they belong to the
same filar. Similarly, we can explain the membership of sub-filars of various
levels. Each filar, where all graphs have m3 triangles, can be approximated
(see Figure 9.4) by a line parametrically defined as follows

x(s) = 1.0395 +
2

N
m3F3(1/9) + sF4(1/9)

= 1.0395 +
2

N
0.0047m3 + 0.0007s, (9.23)
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Fig. 9.3: Mean-Variance (trace of resolvent) plot for 14-vertex cubic graphs

y(s) = 0.0433 +
2

N
m3{F3( 1

9 ) +
1

9
[F ′

3(t)]t= 1
9
− 2.0790F3(1/9)}

+ s{F4( 1
9 ) +

1

9
[F ′

4(t)]t= 1
9
− 2.0790F4(1/9)}

= 0.0433 +
2

N
0.0103m3 + 0.0023s. (9.24)

The slope of each filar is approximately

F4( 1
9 ) +

1

9
[F ′

4(t)]t= 1
9
− 2.0790F4(1/9)

F4(1/9)
≈ 3.2448,

which is independent of the graph order N .

Consider two consecutive filars, consisting of graphs containing exactly m
(1)
3

and m
(2)
3 triangles respectively. Then, the line approximating the first filar is

parametrically defined by
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Fig. 9.4: Mean-Variance (trace of resolvent) plot for 14-vertex cubic graphs

x̄(s1) = 1.0395 +
2

N
0.0047m

(1)
3 + 0.0007s1,

ȳ(s1) = 0.0433 +
2

N
0.0103m

(1)
3 + 0.0023s1,

and the line approximating the second filar is parametrically defined by

x̂(s2) = 1.0395 +
2

N
0.0047m

(2)
3 + 0.0007s2,

ŷ(s2) = 0.0433 +
2

N
0.0103m

(2)
3 + 0.0023s2,

In order to find out the horizontal distance between two filars approximated
by the parametric lines (x̄(s1), ȳ(s2)) and (x̂(s1), ŷ(s2)), firstly, we need to
find out s1 and s2 such that ȳ(s1) = ŷ(s2)

0.0433 +
2

N
0.0103m

(1)
3 + 0.0023s1 = 0.0433 +

2

N
0.0103m

(2)
3 + 0.0023s2

s1 = s2 + 0.0206
m

(2)
3 −m

(1)
3

N
.
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Then the horizontal distance between the two aforementioned filars is

x̂(s2)− x̄(s2 + 0.0206
m

(2)
3 −m

(1)
3

N
)

=
2

N
0.0047m

(2)
3 + 0.0007s2 −

2

N
0.0047m

(1)
3 − 0.0007(s2 + 0.0206

m
(2)
3 −m

(1)
3

N
)

= 0.0094
m

(2)
3 −m

(1)
3

N
.

Hence, the horizontal distance between two consecutive filars decreases as the
graph order N increases, so the filars are closer to each other as the graphs
get larger.

9.4 Self-similarity and Hamiltonicity

Next, we reconstruct the variance-versus-mean plot in Figure 9.2, but dis-
tinguish between Hamiltonian and non-Hamiltonian graphs. Each pair of
coordinates (μA(1/9), σ2

A(1/9)) of a 14-vertex cubic graph is a dot on this
reconstructed plot (see Figure 9.5) if the graph is Hamiltonian, and a cross
if the graph is non-Hamiltonian. The discussion of this section is based on
empirical evidence only.

Two graphs are cospectral if they share the same spectrum, and are non-
cospectral otherwise. There are no cospectral cubic graphs with fewer than
14 vertices, and there are at least three pairs of cospectral cubic graphs on
14 vertices [56]. Therefore, there are three pairs of graphs of which the co-
ordinates in the above plot are the same. However, as these three pairs are
all Hamiltonian graphs, their cospectral property does not affect our obser-
vations on the self-similar multifilar structure and Hamiltonicity.

Glancing at the plot in Figure 9.5, it is easy to think that while the ma-
jority of non-Hamiltonian graphs are located in the top and bottom parts of
filars, some of them are mixed among dots representing Hamiltonian graphs.
However, if we zoom in on the innermost1 sub-filars, we will find that all non-
Hamiltonian graphs are strictly at the top and the bottom of these sub-filars,
and there is no mixing between Hamiltonian and non-Hamiltonian graphs.
While it is not practical to show all plots which zoom in on the innermost
sub-filars, we present here one of these zooming-in plots (see Figure 9.6) to
illustrate our observation. All crosses that can be seen clearly in this plot are
either at the top or the bottom of their sub-filars.

1 When we can no longer zoom in on a filar to obtain a similar structure made up of
smaller filars, we are at the innermost sub-filars.
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Fig. 9.5: Mean-Variance plot for 14-vertex cubic graphs and Hamiltonicity

We have not yet been able to explain why the absence of Hamiltonian cycles
makes non-Hamiltonian graphs gather around the top and the bottom of their
innermost sub-filars. However, we have experimentally found the answer as
to which non-Hamiltonian graphs are at the higher end while the rest are at
the lower.

Briefly, non-Hamiltonian graphs that are located at the top of their sub-
filars are bridge graphs . A bridge graph is a graph that contains at least one
bridge, that is, an edge the removal of which disconnects the graph. Sainte
Lague [72, Section 57] states a very natural theorem: all bridge graphs are
non-Hamiltonian. These graphs can be identified in polynomial time; hence,
we refer to them as easy non-Hamiltonian graphs. A non-Hamiltonian graph
that is not an easy non-Hamiltonian graph is a hard non-Hamiltonian graph.
The latter group are found to be at the bottom of their sub-filars. These hard
non-Hamiltonian graphs constitute the underlying difficulty of the NP-hard
complexity to the Hamiltonian cycle problem. For example, Figure 9.7 shows
the plot of coordinates (μA(1/9), σ2

A(1/9)) for 10-vertex (connected) cubic
graphs, of which there are 19, including 17 Hamiltonian ones.
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Fig. 9.6: Mean-Variance plot—zooming in

One non-Hamiltonian graph is a bridge graph (see Figure 9.8), represented
by the cross at the top right of the plot. The other non-Hamiltonian graph is
the well-known Petersen graph (see Figure 9.9), which is not a bridge graph
and is represented by the cross at the bottom left of the same plot.

It would be interesting to obtain a theoretical justification of this observation.

From numerical experiments using GENREG and nauty algorithms (see
Meringer [79] and McKay [78], respectively) on cubic graphs of various orders
up to N = 24, we have observed that bridge graphs make up the majority of
non-Hamiltonian graphs. Moreover, as the graph order N increases, so does
the ratio of cubic bridge graphs over all cubic non-Hamiltonian graphs of the
same order. This can be seen from Table 9.1.

For cubic graphs of order 40 and 50, we consider a 1000000-graph sample
for each order. The observed ratios of cubic bridge graphs to cubic non-
Hamiltonian graphs in Table 9.2 are even closer to 1. This naturally gives
rise to a conjecture on the prevalence of cubic bridge graphs.
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Fig. 9.7: Mean-Variance plot for 10-vertex cubic graphs and Hamiltonicity

Fig. 9.8: The only cubic bridge graph of order 10 Fig. 9.9: Petersen graph

Conjecture 9.1. [48] Consider cubic graphs of order N .

lim
N→∞

#cubic bridge graphs

#cubic non-Hamiltonian graphs

= lim
N→∞

#easy non-Hamiltonian graphs

#[easy non-Hamiltonian graphs + hard non-Hamiltonian graphs]
= 1.

In summary, the study of the self-similar, multifilar, structure of cubic graphs
revealed not only that bridge graphs cluster in the upper ends of individual
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Table 9.1: Ratio of cubic bridge graphs over cubic non-Hamiltonian graphs

N Cubic Cubic Non-H Cubic Bridge Bridge/Non-H
10 19 2 1 0.5000
12 85 5 4 0.8000
14 509 35 29 0.8286
16 4060 219 186 0.8493
18 41301 1666 1435 0.8613
20 510489 14498 12671 0.8740
22 7319447 148790 131820 0.8859
24 117940535 1768732 1590900 0.8995

Table 9.2: Ratio of cubic bridge graphs over cubic non-Hamiltonian graphs

N Cubic Cubic Non-H Cubic Bridge Bridge/Non-H
40 1000000 912 855 0.9375
50 1000000 549 530 0.9650

filars but also that, as N increases, they seem to vastly outnumber remaining
non-Hamiltonian graphs. Conjecture 9.1 is based on the belief that as N
grows, the population of non-Hamiltonian cubic graphs will be dominated by
bridge graphs as it is rather easy to construct bridge graphs of a given order
from many pairs of cubic graphs of smaller orders. For instance, if N is given
we can take any two connected cubic graphs G1 and G2 of orders N1 and N2,
respectively, such that N = N1 +N2 − 2, and select an edge e1 from G1 and
e2 from G2. Then, by inserting a new vertex in the middle of each of those
two edges and joining these two vertices by a new edge, we create a bridge
graph of order N . Thus, it is natural to expect that bridge graphs may have a
competitive advantage in spreading across the population of non-Hamiltonian
cubic graphs. Unfortunately, it is not clear how to turn this kind of intuitive
reasoning into a rigorous argument. However, in Chapter 10 we present some
graph enumeration results that could, perhaps, be useful in resolving this
conjecture.



Chapter 10

Graph Enumeration

10.1 Introduction

Graph enumeration is a study in graph theory that deals with counting non-
isomorphic graphs with a particular property. Harary and Palmer [60] provide
an excellent introduction to the topic of graph enumeration. On counting la-
belled cubic graphs, there has been a series of results, most notably Read [88],
Read [89], Wormald [104], and Wormald [105], which collectively present var-
ious approaches for counting labelled cubic graphs, and labelled cubic graphs
with a given connectivity. In comparison to labelled cubic graphs, the nu-
meration of unlabelled cubic graphs is a significantly more challenging prob-
lem [105]. Robinson [90] presents a method to count unlabelled cubic graphs.

In this chapter, we present the starting point of a possible approach to re-
solving Conjecture 9.1 on the prevalence of cubic bridge graphs. The idea is,
if we can find a method, possibly recursive, to count all cubic bridge graphs
of a given order, and use the same method to count the number of cubic
bridge graphs of the same order, then we can evaluate the ratio of cubic
bridge graphs to cubic graphs. Then, we can compare this ratio to the ratio
determined in Robinson and Wormald [91], which also states the striking re-
sult that almost all cubic graphs are Hamiltonian.

Here, we derive a new recursive formula for the cardinality of unlabelled
cubic graphs with bridges, weighted by the number of orbits of bridges in
each graph. In the process of deriving the formula, we introduce a new graph
property: subdivision-equivalent edges . Two edges in a graph are subdivision-
equivalent if the two graphs G and H obtained by subdividing each edge
respectively are isomorphic. In a sense, subdivision-equivalent edges are the
opposite of pseudo-similar edges . Two edges in a graph are pseudo-similar
if the two graphs G and H obtained by removing each edge respectively are
isomorphic, but there is no automorphism of the original graph that maps
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one edge to another. Pseudo-similar edges have received a lot of attention due
to their relationship to the well-known Reconstruction Conjecture in graph
theory [75], which states that graphs are uniquely determined by their set of
subgraphs.

10.2 Subdivision-equivalent Edges

Wormald [105] presents formulae to enumerate labelled cubic graphs with a
given connectivity. In particular, the author determines recurrence relations
to count connected cubic graphs, 2-connected cubic graphs and 3-connected
cubic graphs. Recall that all cubic bridge graphs are 1-connected, but not 2- or
3-connected. Consequently, subtracting the number of labelled 2-connected
cubic graphs from the total number of labelled cubic graphs of the same
order gives the number of labelled cubic bridge graphs. This, together with
the fact that the expected number of non-trivial automorphisms of a labelled
cubic graph of order N approaches zero as N tends to infinity [106], gives
us an asymptotic number of unlabelled bridge graphs. However, subtracting
one recurrence relation from another recurrence relation, in this case, results
in a formula that is not easy to interpret or manipulate. For the sake of
completeness, we include here the two aforementioned recurrence relations.

Proposition 10.1. [105] For N = 2n, the following two statements hold.
(i) The number of labelled cubic graphs of order N is

(2n)!

3n2n
r̂n,

where ŝ0 = ŝ1 = 0, ŝ2 = 1, and

ŝn = 3nŝn−1 + 4ŝn−2 + 2ŝn−3

+

n−3∑
i=2

ŝi (ŝn−1−i − 2ŝn−2−i − 2ŝn−3−i) , for n ≥ 3,

r̂n = ŝn − 2ŝn−1 − 2ŝn−2, for n ≥ 2.

(ii) The number of labelled 2-connected cubic graphs of order N is

(2n)!

3n2n
r̃n,

where s̃1 = 0, s̃2 = 1, and

s̃n = 3ns̃n−1 + 2s̃n−2 + (3n− 1)

n−3∑
i=2

s̃1s̃n−1−i, for n ≥ 3,
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r̃n = s̃n − 2s̃n−1, for n ≥ 2.

Automorphisms, Isomorphisms, Orbits and Similarities Consider two
graphs G and H. Let V (G) and V (H) be the sets of vertices, and E(G) and
E(H) be the sets of edges in G and H, respectively. Recall that the graphs
G and H are isomorphic if there exists a bijection f : V (G) �→ V (H) such
that for every edge (u, v) ∈ E(G), the edge (f(u), f(v)) ∈ E(H), and they
are said to be non-isomorphic otherwise. An automorphism of a graph G is
an isomorphism of G with itself [59]. Two edges e1 and e2 in G are similar if
there is an automorphism that maps e1 to e2. Similar edges are said to be in
the same orbit . An orbit of edges in G is a set of edges in G such that every
edge in the set is similar to any other edge in the set.

Example 10.1 The following two graphs G and H are isomorphic:

3

2

65

4

1

6

2

5

1 3

4

Fig. 10.1: G and H are isomorphic

This is because there exists at least one bijection f : V (G) �→ V (H), with
f(1) = 6, f(2) = 1, f(3) = 3, f(4) = 4, f(5) = 4, and f(6) = 2, such that for
every (u, v) ∈ E(G), the edge (f(u), f(v)) ∈ E(H). An automorphism of G is
g : V (G) �→ V (G), with g(1) = 3, g(2) = 4, g(3) = 1, g(4) = 2, g(5) = 6, and
g(6) = 5. Under this particular automorphism, the edge (1, 2) is mapped into
(3, 4), so they are similar. These two edges are also in the same orbit. Note
that there are other edges in this orbit, and there are other orbits of edges in
this graph.

Pseudo-Similarity and Removal-Similarity. Let G − e2 be the orig-
inal graph G with the edge e2 removed. Then V (G) = V (G − e2) and
E(G) = E(G− e2)\{e2}. If e1 and e2 are similar, then G− e1 and G− e2 are
isomorphic graphs. Two edges e1 and e2 are pseudosimilar if G−e1 and G−e2
are isomorphic graphs but e1 and e2 are not similar in G. Edge-similarity and
edge-pseudosimilarity are collectively known as edge-removal-similarity . The
parallel concepts of vertex-similarity , vertex-pseudo-similarity and vertex-
removal-similarity are defined analogously. As we are only concerned about
edge-similarity, edge-pseudosimilarity, and edge-removal-similarity, for con-
venience, we will drop the prefix edge- whenever confusion cannot arise.
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We present here a recursive formula, (10.1), to determine the number of
cubic bridge graphs of a given order N , weighted by the number of orbits of
bridges in these graphs. This means that, when counting cubic bridge graphs
of any given order, we count the number of cubic bridge graphs that have
one orbit of bridges once, two orbits of bridges twice, and so on.

Remark 10.1. For example, consider three cubic bridge graphs G1, G2 and
G3, where G1 has two bridges, G2 has three bridges, and G3 has one bridge.
Furthermore, assume that two bridges in G1 are not in the same orbit (hence
G1 has two orbits of bridges), that all three bridges in G2 are in the same
orbit (hence G2 has one orbit of bridges). In our method, we count G1 twice,
G2 once and G3 once. Hence, the total number of cubic bridge graphs of a
given order N , weighted by the number of orbits of bridges in these graphs,
is an overestimate of the total number of N -vertex cubic bridge graphs. An
open problem is to estimate the difference between these two counts, which
we conjecture to be approaching zero as N tends to infinity.

In the process of deriving the aforementioned formula (10.1), we introduce the
useful notion of subdivision-equivalent edges. Consider an edge e = (s, t) ∈
E(G). The edge e is subdivided if we add a new vertex w to V (G) and replace
the edge e with two edges (s, w) and (w, t).

Definition 10.2. Given a graph G, let G1 and G2 be two resulting graphs
obtained by subdividing edges e1 and e2 of G, respectively. Then, the two edges
e1 and e2 are subdivision-equivalent if and only if G1 and G2 are isomorphic.

Let Eqe(G) denote the number of sets of subdivision-equivalent edges in G,
and let Eqe(R) denote

∑
i Eqe(Ri), if R is a set of graphs Ri.

Example 10.3 Consider the labelled envelope graph G.

3

2

65

4

1

Fig. 10.2: The labelled envelope graph G

Subdividing (1, 2) and (3, 4) gives us the two graphs G1 and G2 in Figs
10.3 and 10.4, respectively. In G, the edges (1, 2) and (3, 4) are subdivision-
equivalent, as the resulting graphs G1 and G2 obtained after subdividing
these edges respectively are isomorphic. There are other pairs of subdivision-
equivalent edges in this graph.
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Fig. 10.3: G1

7
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65

4

1

3

Fig. 10.4: G2

One of our, still open, problems concerns the question of whether, for regular
graphs, two edges are subdivision-equivalent if and only if they are removal-
similar.

However, in a general graph, subdivision-equivalent edges are not necessarily
removal-similar and vice versa. The following counterexample was provided
by Brendan McKay, through private communication. We consider two graphs:
in the first one, a pair of edges are removal-similar but not subdivision-
equivalent, and in the second, a pair of edges are subdivision-equivalent but
not removal-similar.

Example 10.4 Edges a and c in G are removal-similar but not subdivision-
equivalent:

ca

Fig. 10.5: Graph G

The resulting graphs after removing a and c, respectively, are isomorphic (see
Figure 10.6), but the resulting graphs after subdividing a and c, respectively,
are non-isomorphic (see Figure 10.7).



184 10 Graph Enumeration

Fig. 10.6: The resulting graphs are isomorphic

Fig. 10.7: The resulting graphs are non-isomorphic

In the graph Π below, the edges a and c are subdivision-equivalent but not
removal-similar:

ca

Fig. 10.8: Graph Π



10.3 Enumerating Cubic Bridge Graphs 185

The resulting graphs and after subdividing a and c, respectively, are isomor-
phic:

Fig. 10.9: The resulting graphs are isomorphic

The resulting graphs after removing a and c, respectively, are non-isomorphic:

Fig. 10.10: The resulting graphs are non-isomorphic

10.3 Enumerating Cubic Bridge Graphs

We denote by CN and BN respectively the sets of cubic graphs and cubic
bridge graphs of order N . Our recursive formula for the total number of cubic
bridge graphs of order N , weighted by the number of orbits of bridges in each
graph, is dependent on Eqe(CMi

) and the number of cubic bridge graphs of
various orders M < N .
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Consider a cubic bridge graph G of order N with a bridge (u, v), displayed
in Figure 10.11. Let us denote two vertices that are connected to u (beside
v) by u1 and u2, and two vertices that are connected to v (beside u) by v1
and v2.

Fig. 10.11: A bridge (u, v)

u1 v1

u v

u2 v2

When a vertex t is removed from a graph, it is assumed that all edges with
t as one of its ends are also removed from the graph. Let G1 and G2 be
the two resulting, disjoint, components if we remove two vertices u and
v, and assume that u1 ∈ V (G1) while v1 ∈ V (G2). As (u, v) is a bridge
in G, we have V (G1 ∪ G2) = V (G)\{u, v}, u2 ∈ V (G1), v2 ∈ V (G2) and
|V (G1)|+ |(V (G2)|+ 2 = N .

Example 10.5 Recall the only cubic bridge graph of order 10:

4
6

1

2

3

5

7

9

8 10

Fig. 10.12: The only cubic bridge graph of order 10

In this graph, the edge (5, 6) is a bridge. Removing this bridge disconnects the
original graph, resulting in two separate components G1 and G2, in Figures
10.13 and 10.13, respectively.

In any cubic graph of order N , the number of edges is 3N/2. Therefore, N
has to be even, and |V (G1)| and |V (G2)| have to be both odd or both even.

Lemma 10.1. |V (G1)| and |V (G2)| are both even.

Proof. Suppose |V (G1)| and |V (G2)| are both odd. Let |V (G1)| = 2k+1, k ≥
2. In V (G1), there are 2k− 1 vertices with degrees of three and two vertices,
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4

1

2

3

5

Fig. 10.13: G1

10
6

7

9

8

Fig. 10.14: G2

u1 and u2, with degrees of two. The number of edges in G1 is (3(2k−1)+4)/2,
which implies that 2k − 1 is an even number, resulting in a contradiction. �

For k, q ≥ 2, let |V (G1)| = 2k and |V (G1)| = 2q, where 2k + 2q + 2 = N .
Note that it is not possible to construct G1 (or G2) if k = 1 (or q = 1).
Consequently, smallest possible cubic bridge graphs are of order 10. Recall
that, in this case, a bridge graph is one of two cubic non-Hamiltonian graphs
of order 10, the other one being the famous Petersen graph.

Theorem 10.1. The number of cubic bridge graphs of order N , weighted by
the number of orbits of bridges in each graph, is∑

i

f(ki, qi) + |BN−4|+ |BN−2|, (10.1)

where (ki, qi) are all possible unordered pairs of integers ki, qi ≥ 2, 2ki+2qi+
2 = N , and

f(ki, qi) =

⎧⎨⎩
Eqe(C2ki

)Eqe(C2qi) if ki �= qi,

1
2Eqe(C2ki) [Eqe(C2ki) + 1] if ki = qi.

(10.2)

Proof. Consider a cubic bridge graph G of order N with a bridge (u, v) as
described in Figure 10.11. Again, let G1 and G2 be the two resulting, disjoint,
components if we remove two vertices u and v and without loss of generality,
assume that u1 ∈ V (G1) while v1 ∈ V (G2).

There are now three cases to consider:

1. both edges (u1, u2) and (v1, v2) are not in E(G),
2. only one of them is E(G), and
3. both edges are in E(G).

For i = 1, 2, 3, let Bi
N denote the set of cubic bridge graphs that have an

orbit of bridges in each Case i. We count the number of cubic bridge graphs
of order N that have an orbit of bridges of Cases 1, 2, and 3, respectively.
Naturally, a cubic bridge graph might have two or more orbits of bridges, each
of which might be in a different or the same case. In an abuse of terminology,
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we will simply refer a cubic bridge graph that has an orbit of bridges of Case i
as a cubic bridge graph of Case i. Adding these three numbers together gives
us the total number of cubic bridge graphs of order N where each graph with
k orbits of bridges is counted k times.

For example, consider a cubic bridge graph H1 with three bridges, none
of which is in the same orbit of another. Therefore, H1 has three orbits of
bridges. Assume that each of these bridges is in a different case, then H1 is a
cubic bridge graph of Case 1, of Case 2 and also of Case 3. In our counting,
H1 is counted three times, once in each case. Consider a different cubic bridge
graph H2 with three bridges e1, e2 and e3, where e1 and e2 are in the same
orbit, and e3 is in a different orbit, but both orbits of bridges are in Case 1.
Then H2 is counted twice in Case 1.

Case 1. Here, (u1, u2), (v1, v2) �∈ E(G).

Fig. 10.15: Neighbour around the bridge (u, v)—Case 1

u1 v1

u v

u2 v2

In G1 and G2, inserting two new edges (u1, u2) and (v1, v2) results in two
cubic graphs Ḡ1 and Ḡ2 of orders 2k and 2q, respectively. Therefore, if we
choose any two cubic graphs of orders 2k and 2q, subdivide an edge in each
graph (consequently introducing two new vertices), and connect these two
vertices (thereby creating a bridge), we obtain a cubic bridge graph of order
2k+2q+2 = N . For each G, the number of non-isomorphic graphs obtained
by subdividing an edge is precisely the number Eqe(G) of sets of equivalent
edges in G.

Therefore,

|B1
N | =

t∑
i=1

f(ki, qi), (10.3)

where t is the number of possible unordered pairs of integers (ki, qi) such that
2ki + 2qi + 2 = N ; ki, qi ≥ 2, and
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f(ki, qi) =

⎧⎨⎩
Eqe(C2ki

)Eqe(C2qi), if ki �= qi,

1
2Eqe(C2ki) [Eqe(C2ki) + 1] , if ki = qi.

(10.4)

Note that the difference in the formulae of the case for ki �= qi and the case
for ki = qi is due to the fact that, for the former, we are counting pairs of
objects from two different sets, whereas for the latter, we are counting pairs
of objects from the same set.

Case 2. Here, (u1, u2) ∈ E(G), (v1, v2) �∈ E(G). Let u3, u4 �∈ {u, u2} be
the third vertices to which u1 and u2 are adjacent, respectively. Now there
are two subcases: u3 = u4 (Figure 10.16) and u3 �= u4 (Figure 10.17).

Case 2a. Here, u3 = u4. Let u5 �∈ {u1, u2} be the third vertex to which
u3 is adjacent.

Fig. 10.16: Neighbour around the bridge (u, v) in G—Case 2a

u1 v1

u v

u2 v2

u3

u4

u5

Since V (G1) ∩ V (G2) = ∅, (u3, u5) is also a bridge. Contracting G by re-
moving the set of “diamond” vertices {u, u1, u2, u3} and connecting v to u5

results in a bridge graph of order N − 4 which belongs to either Case 1 or
Case 2, since (v1, v2) �∈ E(G). Therefore, if we choose any cubic bridge graph
of order N − 4 that belongs to either Case 1 or Case 2, insert a diamond
set of four vertices and their associated edges like {u, u1, u2, u3} depicted in
Figure 10.16 into the bridge, we obtain a cubic bridge graph of order N .

Therefore,

|B2a
N | = |B1

N−4|+ |B2
N−4|. (10.5)

Since the smallest possible cubic bridge graphs are of order 10, the smallest
possible cubic bridge graphs in Case 2a are of order 14.

Case 2b. Here, u3 �= u4 (see Figure 10.17). Contracting G by removing the
set of vertices {u1, u2} and connecting u to u3 and u4 results in a bridge graph
of order N−2 which belongs to either Case 1 or Case 2, since (v1, v2) �∈ E(G).
Therefore, if we choose any cubic bridge graph of order N − 2 that belongs
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to either Case 1 or Case 2, insert two vertices and their associated edges
like (u1, u2), (u1, u) and (u2, u) depicted in Figure 10.17 into one side of the
bridge (the side that has a connecting edge between two vertices), we obtain
a cubic bridge graph of order N .

Fig. 10.17: Neighbour around the bridge (u, v) in G—Case 2b

u1 v1

u v

u2 v2

u3

u4

Therefore,

|B2b
N | = |B1

N−2|+ |B2
N−2|. (10.6)

Since the smallest possible cubic bridge graphs are of order 10, the smallest
possible cubic bridge graphs in Case 2b are of order 12.

Case 3. Here, (u1, u2), (v1, v2) ∈ E(G). Let u3, u4 �∈ {u, u2} be the “third
vertices” to which u1 and u2 are adjacent, respectively. Now there are two
subcases: u3 = u4 and u3 �= u4.

Case 3a. Here, u3 = u4. This case can be analysed in a manner similar
to Case 2a. Let u5 �∈ {u1, u2} be the “third vertex” that u3 is adjacent to.

Fig. 10.18: Neighbour around the bridge (u, v) in G—Case 3a

u1 v1

u v

u2 v2

u3

u4

u5

Since V (G1)∩ V (G2) = ∅, (u3, u5) is also a bridge. Contracting G by remov-
ing the diamond set of vertices {u, u1, u2, u3} and connecting v to u5 results
in a bridge graph of order N − 4 which belongs to either Case 2 or Case 3,
since (v1, v2) ∈ E(G). Therefore, if we choose any cubic bridge graph of or-
der N − 4 that belongs to either Case 2 or Case 3, insert a diamond set of
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four vertices and their associated edges like {u, u1, u2, u3} depicted in Figure
10.18 into the bridge, we obtain a cubic bridge graph of order N .

Note that, the set of cubic bridge graphs of order N obtained by applying
such a construction to any cubic bridge graph in B2

N−4 is equivalent to the
set of cubic bridge graphs of order N obtained by applying the construction
in Case 2a to any cubic bridge graph in B2

N−4.

Therefore,

|B2a
N |+ |B3a

N | = |B1
N−4|+ |B2

N−4|+ |B3
N−4| = |BN−4|. (10.7)

Since the smallest possible cubic bridge graphs are of order 10, the smallest
possible cubic bridge graph in Case 3a are of order 14.

Case 3b. Here, u3 �= u4 (see Figure 10.19).

Fig. 10.19: Neighbour around the bridge (u, v) in G—Case 3b

u1 v1

u v

u2 v2

u3

u4

Contracting G by removing the set of vertices {u1, u2} and connecting u to
u3 and u4 results in a bridge graph of order N − 2 which belongs to either
Case 2 or Case 3, since (v1, v2) �∈ E(G). Therefore, if we choose any cubic
bridge graph of order N − 2 that belongs to either Case 2 or Case 3, insert
a set of two vertices and their associated edges like {u1, u2} depicted in Fig-
ure 10.19 into one side of the bridge (the side that has a connecting edge
between two vertices), we obtain a cubic bridge graph of order N .

Note that, the set of cubic bridge graphs of order N obtained by apply-
ing such a construction to any cubic bridge graph in B2

N−2 is equivalent to
the set of cubic bridge graphs of order N obtained from applying the con-
struction in Case 2b to any cubic bridge graph in B2

N−2.

Therefore,

|B2b
N |+ |B3b

N | = |B1
N−2|+ |B2

N−2|+ |B3
N−2| = |BN−2|. (10.8)
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Since the smallest possible cubic bridge graphs are of order 10, the smallest
possible cubic bridge graphs in this case are of order 12.

From (10.3),(10.7), and (10.8), we obtain

|B1
N |+ |B2a

N |+ |B3a
N |+ |B2b

N |+ |B3b
N | = |B1

N |+ |B2
N |+ |B3

N |

=
∑
i

f(ki, qi) + |BN−4|+ |BN−2|.

�

In this chapter we outlined one attempt at counting cubic bridge graphs of a
given order, and in the process introduced a new graph property, subdivision-
equivalent edges. Arguably, the recursive relation described in Theorem 10.1
has potential to become an important component of a practical counting al-
gorithm. However, to date, we do not have any tools for counting, or even
estimating, the number of non-bridge non-Hamiltonian graphs of a given or-
der. Thus, it is not yet clear whether Theorem 10.1 can be helpful in resolving
Conjecture 9.1 concerning the prevalence of bridge graphs in the population
of cubic non-Hamiltonian graphs. Perhaps, a fruitful approach to tackling this
conjecture might be to explore a possibility of using results in this chapter
together with newly proposed “genetic theory” of cubic graphs (see Baniasadi
et al. [8]).
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