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Abstract  Purpose
Degeneration or dysfunction of the retinal pigment epithelium (RPE) can induce 
secondary photoreceptor atrophy and catastrophic vision loss in patients with age-
related macular degeneration (AMD). AMD is the leading cause of vision loss in 
the elderly in industrialized countries and no cure exists for the “dry” or atrophic 
form to date. However, recent pre-clinical data from several groups suggests that 
embryonic stem cell-derived RPE cell transplantation may prevent photorecep-
tor degeneration in animal models of RPE degeneration. Another approach may 
be to derive RPE cells from autologous induced pluripotent stem cells (iPSCs) 
reprogrammed from dermal tissue. However, the safety of this approach has been 
questioned on several levels. In this chapter we will summarize work reported by 
several groups, including our own, that clearly demonstrate that transplanted RPE 
cells can provide anatomical and functional photoreceptor rescue in animal models 
of retinal degeneration. We will also discuss some of the prevailing concerns and 
challenges associated with this technique.
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hESC	 Human embryonic stem cell
hESC-RPE	 Human embryonic stem cell-derived RPE
HLA	 Human leukocyte antigen
OSKM	 Oct4, Sox2, Klf4, and c-Myc
OSNL	 Oct4, Sox2, Nanog, and Lin28
ACT	 Advanced Cell Technology, Inc

41.1 � Introduction

The retina consists of diverse cell types stratified into organized functional tiers. 
Rod and cone photoreceptors and retinal pigment epithelium (RPE) cells work in 
conjunction to perform the energy-demanding and complicated biochemical pro-
cess of converting light energy into electrical signals that ultimately are processed 
into “vision.” The neurosensory retina rests on a monolayer of RPE cells that as-
sociates with the photoreceptors on one side while partitioning the retina from the 
choriocapillaris on the other. The RPE performs multiple critical diverse functions 
essential for maintaining photoreceptor homeostasis (for review, see [1]). In fact, 
death or dysfunction of RPE cells can induce devastating secondary effects on pho-
toreceptors characteristic of age-related macular degeneration (AMD). AMD is the 
leading cause of vision loss in the elderly in industrialized countries [2, 3], and 
demographic analyses predict that it will become more widespread [4].

AMD is a multifactorial polygenic disease characterized by a broad spectrum of 
signs and symptoms (for review see [5]). However, RPE dysfunction and photore-
ceptor degeneration are shared characteristics that may be amenable to cell replace-
ment strategies for a majority of AMD patients if delivery could be optimized and 
graft rejection prevented [6–9]. Compared with photoreceptor transplantation, RPE 
transplantation strategies are more simple since RPE cells do not need to integrate 
into neuronal networks that begin to degenerate and/or remodel during retinal de-
generation (for review see [10]). Pluripotent stem cells may provide an excellent 
source of RPE, and banks of histocompatibility antigen-typed RPE derived from 
human embryonic stem cells (hESC-RPE) cells can be generated and used to inter-
vene therapeutically after a patient is diagnosed with the disease.

Several NIH approved pluripotent embryonic stem cells (ESCs) are currently 
available, however their widespread use is still controversial due to ethical concerns. 
These concerns may be obviated due to a remarkable observation that the trans-
genic manipulation of only four transcription factors, OSKM: Oct4, Sox2, Klf4, 
or c-Myc [11], or OSNL: Oct4, Sox2, Nanog, and Lin28 [12], in somatic cells can 
“reprogram” them into induced pluripotent stem cells (iPSCs) from which autolo-
gous RPE grafts can be generated. These iPSC-RPE could be derived from individ-
ual patients and used for therapeutic transplantation since the progression of AMD 
is relatively slow. However, there are some prevailing safety and immunogenic con-
cerns regarding the use of iPSCs that must first be resolved [13–20].
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41.2 � Stem Cell Derived RPE Cells Have Been Well 
Characterized

Pigmented RPE can be readily derived from hESCs [21–25] and hiPSCs [24, 26–
30]. These cells spontaneously differentiate with appropriate morphologies and 
functionality, but may be more efficiently generated if exogenous factors are added 
to the differentiation media [21, 24, 29, 30]. hES– and hiPS–RPE cells have been 
well characterized. They express RPE-specific terminal differentiation markers 
[21–30] in polarized planes [25, 26, 29]. Using high resolution mass spectrometry-
based metabolomic analyses as a measure of functional genomics, we have shown 
that iPS-RPE strongly resemble primary human RPE cells [29].

hES–RPE and hiPS–RPE also function as well as their human primary RPE 
counterparts in vitro. As observed in primary RPE [31], tightly coupled stem cell-
derived RPE form fluid-filled domes, demonstrating that the ion pumps are vecto-
rially functional [32]. Stem cell-derived RPE can also phagocytose photoreceptor 
outer segments in vitro [21, 25–27, 29, 33]. We have developed a flow cytometry-
based method to measure the dynamics of RPE phagocytosis. Using this strategy we 
have shown that iPS-RPE synthesize phagocytosis receptors that phagocytose outer 
segments as effectively as primary human RPE do [34].

An important measure of RPE function is to determine if the cells operate in a 
diseased context in vivo. Studies in animal models have provided very encouraging 
evidence that stem cell-derived RPE transplantation can effectively promote pho-
toreceptor cell anatomical and functional rescue in dystrophic retinas [21, 23, 25, 
27, 29]. Additionally, the extremely preliminary results of a Phase 1/2 clinical trial 
using hES–RPE managed by Advanced Cell Technology Inc. (ACT) have shown 
that after four months the transplanted cells do not induce any obvious adverse side 
effects and may have integrated into the subretinal space of the treated patients [35].

41.3 � Current and Future Prospects for RPE Cell 
Transplantation

In the majority of studies published to date (and in the ACT managed clinical trial) 
a bolus of RPE cells were injected into the subretinal space. With a few exceptions 
(including in our study in which we see a monolayer of RPE cells integrated in 
the subretinal space up to 17 months post injection [29]), transplanted RPE cells 
generally survive only for a few months after implantation and not integrate into 
monolayers [21, 27, 36]. For these reasons the use of alternative approaches are be-
ing advocated, including the use of intact RPE sheets or RPE cells grown on porous 
engineered Bruch’s membrane mimics [37, 38]. The surgical techniques required 
to deliver sheets of cells are inherently more complicated. Furthermore, it must be 
demonstrated that the scaffolds can stably support RPE cells over extended periods 
of time and allow adequate RPE and choriocapillaris crosstalk.
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The use of iPS–RPE, and personalized medicine in general, could be very ex-
pensive. One alternative approach may be to bank reduced complexity human leu-
kocyte antigen (HLA)-homozygous iPSC (or perhaps even hESC cell-lines). It has 
been estimated that approximately 75 and 140 unique donors would be needed to 
cover ~ 80 % and ~ 90 % of the Japanese population, and roughly 64,000–160,000 
individuals would need to be typed to find the donors [39]. However, it is also 
important to consider that long-term immunosuppressive therapies are expensive, 
associated with complications, and not well tolerated by elderly patients [40, 41]. 
Therefore, the expenses for both techniques, and potential consequences of life-long 
immunosuppression, should be directly compared before any approach is deemed to 
be cost prohibitive.

While still extremely premature, an alternative therapeutic approach may in-
volve the replacement of whole degenerated regions of human retinas with large 
patches of intact ocular tissues grown from stem cells in 3D cultures. The idea of 
transplanting stratified layers of functional neural networks may be more realis-
tic based on two ground-breaking recent reports demonstrating that aggregates of 
mouse and, more recently, human ES cells grown in 3-D cultures self-assembled 
into structures strongly resembling optic cups (rudimentary sensory retinas) with 
neural and RPE domains [42, 43]. If this approach could be optimized, theoretically 
entire autologous maculas may be generated as therapeutic interventions for AMD.

41.4 � Conclusions

RPE that function in vitro and in vivo to maintain photoreceptor homeostasis can 
be readily generated from stem cells. While few conclusions can be drawn until 
long-term studies in human patients have been completed, and RPE derivation and 
delivery techniques are optimized, the evidence collected in animal models that 
RPE grafts can prevent continued retinal degeneration and maintain visual function 
is very encouraging. Therefore, stem cell-based RPE transplantation therapies for 
untreatable retinal degenerative diseases such as AMD may ultimately prove to be 
not only realistic, but also therapeutically effective.
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